1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_sem 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 316 static void __save_error_info(struct super_block *sb, const char *func, 317 unsigned int line) 318 { 319 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 320 321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 322 if (bdev_read_only(sb->s_bdev)) 323 return; 324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 325 es->s_last_error_time = cpu_to_le32(get_seconds()); 326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 327 es->s_last_error_line = cpu_to_le32(line); 328 if (!es->s_first_error_time) { 329 es->s_first_error_time = es->s_last_error_time; 330 strncpy(es->s_first_error_func, func, 331 sizeof(es->s_first_error_func)); 332 es->s_first_error_line = cpu_to_le32(line); 333 es->s_first_error_ino = es->s_last_error_ino; 334 es->s_first_error_block = es->s_last_error_block; 335 } 336 /* 337 * Start the daily error reporting function if it hasn't been 338 * started already 339 */ 340 if (!es->s_error_count) 341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 342 le32_add_cpu(&es->s_error_count, 1); 343 } 344 345 static void save_error_info(struct super_block *sb, const char *func, 346 unsigned int line) 347 { 348 __save_error_info(sb, func, line); 349 ext4_commit_super(sb, 1); 350 } 351 352 /* 353 * The del_gendisk() function uninitializes the disk-specific data 354 * structures, including the bdi structure, without telling anyone 355 * else. Once this happens, any attempt to call mark_buffer_dirty() 356 * (for example, by ext4_commit_super), will cause a kernel OOPS. 357 * This is a kludge to prevent these oops until we can put in a proper 358 * hook in del_gendisk() to inform the VFS and file system layers. 359 */ 360 static int block_device_ejected(struct super_block *sb) 361 { 362 struct inode *bd_inode = sb->s_bdev->bd_inode; 363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 364 365 return bdi->dev == NULL; 366 } 367 368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 369 { 370 struct super_block *sb = journal->j_private; 371 struct ext4_sb_info *sbi = EXT4_SB(sb); 372 int error = is_journal_aborted(journal); 373 struct ext4_journal_cb_entry *jce; 374 375 BUG_ON(txn->t_state == T_FINISHED); 376 377 ext4_process_freed_data(sb, txn->t_tid); 378 379 spin_lock(&sbi->s_md_lock); 380 while (!list_empty(&txn->t_private_list)) { 381 jce = list_entry(txn->t_private_list.next, 382 struct ext4_journal_cb_entry, jce_list); 383 list_del_init(&jce->jce_list); 384 spin_unlock(&sbi->s_md_lock); 385 jce->jce_func(sb, jce, error); 386 spin_lock(&sbi->s_md_lock); 387 } 388 spin_unlock(&sbi->s_md_lock); 389 } 390 391 /* Deal with the reporting of failure conditions on a filesystem such as 392 * inconsistencies detected or read IO failures. 393 * 394 * On ext2, we can store the error state of the filesystem in the 395 * superblock. That is not possible on ext4, because we may have other 396 * write ordering constraints on the superblock which prevent us from 397 * writing it out straight away; and given that the journal is about to 398 * be aborted, we can't rely on the current, or future, transactions to 399 * write out the superblock safely. 400 * 401 * We'll just use the jbd2_journal_abort() error code to record an error in 402 * the journal instead. On recovery, the journal will complain about 403 * that error until we've noted it down and cleared it. 404 */ 405 406 static void ext4_handle_error(struct super_block *sb) 407 { 408 if (test_opt(sb, WARN_ON_ERROR)) 409 WARN_ON_ONCE(1); 410 411 if (sb_rdonly(sb)) 412 return; 413 414 if (!test_opt(sb, ERRORS_CONT)) { 415 journal_t *journal = EXT4_SB(sb)->s_journal; 416 417 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 418 if (journal) 419 jbd2_journal_abort(journal, -EIO); 420 } 421 if (test_opt(sb, ERRORS_RO)) { 422 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 423 /* 424 * Make sure updated value of ->s_mount_flags will be visible 425 * before ->s_flags update 426 */ 427 smp_wmb(); 428 sb->s_flags |= SB_RDONLY; 429 } 430 if (test_opt(sb, ERRORS_PANIC)) { 431 if (EXT4_SB(sb)->s_journal && 432 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 433 return; 434 panic("EXT4-fs (device %s): panic forced after error\n", 435 sb->s_id); 436 } 437 } 438 439 #define ext4_error_ratelimit(sb) \ 440 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 441 "EXT4-fs error") 442 443 void __ext4_error(struct super_block *sb, const char *function, 444 unsigned int line, const char *fmt, ...) 445 { 446 struct va_format vaf; 447 va_list args; 448 449 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 450 return; 451 452 trace_ext4_error(sb, function, line); 453 if (ext4_error_ratelimit(sb)) { 454 va_start(args, fmt); 455 vaf.fmt = fmt; 456 vaf.va = &args; 457 printk(KERN_CRIT 458 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 459 sb->s_id, function, line, current->comm, &vaf); 460 va_end(args); 461 } 462 save_error_info(sb, function, line); 463 ext4_handle_error(sb); 464 } 465 466 void __ext4_error_inode(struct inode *inode, const char *function, 467 unsigned int line, ext4_fsblk_t block, 468 const char *fmt, ...) 469 { 470 va_list args; 471 struct va_format vaf; 472 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 473 474 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 475 return; 476 477 trace_ext4_error(inode->i_sb, function, line); 478 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 479 es->s_last_error_block = cpu_to_le64(block); 480 if (ext4_error_ratelimit(inode->i_sb)) { 481 va_start(args, fmt); 482 vaf.fmt = fmt; 483 vaf.va = &args; 484 if (block) 485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 486 "inode #%lu: block %llu: comm %s: %pV\n", 487 inode->i_sb->s_id, function, line, inode->i_ino, 488 block, current->comm, &vaf); 489 else 490 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 491 "inode #%lu: comm %s: %pV\n", 492 inode->i_sb->s_id, function, line, inode->i_ino, 493 current->comm, &vaf); 494 va_end(args); 495 } 496 save_error_info(inode->i_sb, function, line); 497 ext4_handle_error(inode->i_sb); 498 } 499 500 void __ext4_error_file(struct file *file, const char *function, 501 unsigned int line, ext4_fsblk_t block, 502 const char *fmt, ...) 503 { 504 va_list args; 505 struct va_format vaf; 506 struct ext4_super_block *es; 507 struct inode *inode = file_inode(file); 508 char pathname[80], *path; 509 510 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 511 return; 512 513 trace_ext4_error(inode->i_sb, function, line); 514 es = EXT4_SB(inode->i_sb)->s_es; 515 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 516 if (ext4_error_ratelimit(inode->i_sb)) { 517 path = file_path(file, pathname, sizeof(pathname)); 518 if (IS_ERR(path)) 519 path = "(unknown)"; 520 va_start(args, fmt); 521 vaf.fmt = fmt; 522 vaf.va = &args; 523 if (block) 524 printk(KERN_CRIT 525 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 526 "block %llu: comm %s: path %s: %pV\n", 527 inode->i_sb->s_id, function, line, inode->i_ino, 528 block, current->comm, path, &vaf); 529 else 530 printk(KERN_CRIT 531 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 532 "comm %s: path %s: %pV\n", 533 inode->i_sb->s_id, function, line, inode->i_ino, 534 current->comm, path, &vaf); 535 va_end(args); 536 } 537 save_error_info(inode->i_sb, function, line); 538 ext4_handle_error(inode->i_sb); 539 } 540 541 const char *ext4_decode_error(struct super_block *sb, int errno, 542 char nbuf[16]) 543 { 544 char *errstr = NULL; 545 546 switch (errno) { 547 case -EFSCORRUPTED: 548 errstr = "Corrupt filesystem"; 549 break; 550 case -EFSBADCRC: 551 errstr = "Filesystem failed CRC"; 552 break; 553 case -EIO: 554 errstr = "IO failure"; 555 break; 556 case -ENOMEM: 557 errstr = "Out of memory"; 558 break; 559 case -EROFS: 560 if (!sb || (EXT4_SB(sb)->s_journal && 561 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 562 errstr = "Journal has aborted"; 563 else 564 errstr = "Readonly filesystem"; 565 break; 566 default: 567 /* If the caller passed in an extra buffer for unknown 568 * errors, textualise them now. Else we just return 569 * NULL. */ 570 if (nbuf) { 571 /* Check for truncated error codes... */ 572 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 573 errstr = nbuf; 574 } 575 break; 576 } 577 578 return errstr; 579 } 580 581 /* __ext4_std_error decodes expected errors from journaling functions 582 * automatically and invokes the appropriate error response. */ 583 584 void __ext4_std_error(struct super_block *sb, const char *function, 585 unsigned int line, int errno) 586 { 587 char nbuf[16]; 588 const char *errstr; 589 590 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 591 return; 592 593 /* Special case: if the error is EROFS, and we're not already 594 * inside a transaction, then there's really no point in logging 595 * an error. */ 596 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 597 return; 598 599 if (ext4_error_ratelimit(sb)) { 600 errstr = ext4_decode_error(sb, errno, nbuf); 601 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 602 sb->s_id, function, line, errstr); 603 } 604 605 save_error_info(sb, function, line); 606 ext4_handle_error(sb); 607 } 608 609 /* 610 * ext4_abort is a much stronger failure handler than ext4_error. The 611 * abort function may be used to deal with unrecoverable failures such 612 * as journal IO errors or ENOMEM at a critical moment in log management. 613 * 614 * We unconditionally force the filesystem into an ABORT|READONLY state, 615 * unless the error response on the fs has been set to panic in which 616 * case we take the easy way out and panic immediately. 617 */ 618 619 void __ext4_abort(struct super_block *sb, const char *function, 620 unsigned int line, const char *fmt, ...) 621 { 622 struct va_format vaf; 623 va_list args; 624 625 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 626 return; 627 628 save_error_info(sb, function, line); 629 va_start(args, fmt); 630 vaf.fmt = fmt; 631 vaf.va = &args; 632 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 633 sb->s_id, function, line, &vaf); 634 va_end(args); 635 636 if (sb_rdonly(sb) == 0) { 637 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 638 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 639 /* 640 * Make sure updated value of ->s_mount_flags will be visible 641 * before ->s_flags update 642 */ 643 smp_wmb(); 644 sb->s_flags |= SB_RDONLY; 645 if (EXT4_SB(sb)->s_journal) 646 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 647 save_error_info(sb, function, line); 648 } 649 if (test_opt(sb, ERRORS_PANIC)) { 650 if (EXT4_SB(sb)->s_journal && 651 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 652 return; 653 panic("EXT4-fs panic from previous error\n"); 654 } 655 } 656 657 void __ext4_msg(struct super_block *sb, 658 const char *prefix, const char *fmt, ...) 659 { 660 struct va_format vaf; 661 va_list args; 662 663 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 664 return; 665 666 va_start(args, fmt); 667 vaf.fmt = fmt; 668 vaf.va = &args; 669 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 670 va_end(args); 671 } 672 673 #define ext4_warning_ratelimit(sb) \ 674 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 675 "EXT4-fs warning") 676 677 void __ext4_warning(struct super_block *sb, const char *function, 678 unsigned int line, const char *fmt, ...) 679 { 680 struct va_format vaf; 681 va_list args; 682 683 if (!ext4_warning_ratelimit(sb)) 684 return; 685 686 va_start(args, fmt); 687 vaf.fmt = fmt; 688 vaf.va = &args; 689 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 690 sb->s_id, function, line, &vaf); 691 va_end(args); 692 } 693 694 void __ext4_warning_inode(const struct inode *inode, const char *function, 695 unsigned int line, const char *fmt, ...) 696 { 697 struct va_format vaf; 698 va_list args; 699 700 if (!ext4_warning_ratelimit(inode->i_sb)) 701 return; 702 703 va_start(args, fmt); 704 vaf.fmt = fmt; 705 vaf.va = &args; 706 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 707 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 708 function, line, inode->i_ino, current->comm, &vaf); 709 va_end(args); 710 } 711 712 void __ext4_grp_locked_error(const char *function, unsigned int line, 713 struct super_block *sb, ext4_group_t grp, 714 unsigned long ino, ext4_fsblk_t block, 715 const char *fmt, ...) 716 __releases(bitlock) 717 __acquires(bitlock) 718 { 719 struct va_format vaf; 720 va_list args; 721 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 722 723 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 724 return; 725 726 trace_ext4_error(sb, function, line); 727 es->s_last_error_ino = cpu_to_le32(ino); 728 es->s_last_error_block = cpu_to_le64(block); 729 __save_error_info(sb, function, line); 730 731 if (ext4_error_ratelimit(sb)) { 732 va_start(args, fmt); 733 vaf.fmt = fmt; 734 vaf.va = &args; 735 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 736 sb->s_id, function, line, grp); 737 if (ino) 738 printk(KERN_CONT "inode %lu: ", ino); 739 if (block) 740 printk(KERN_CONT "block %llu:", 741 (unsigned long long) block); 742 printk(KERN_CONT "%pV\n", &vaf); 743 va_end(args); 744 } 745 746 if (test_opt(sb, WARN_ON_ERROR)) 747 WARN_ON_ONCE(1); 748 749 if (test_opt(sb, ERRORS_CONT)) { 750 ext4_commit_super(sb, 0); 751 return; 752 } 753 754 ext4_unlock_group(sb, grp); 755 ext4_commit_super(sb, 1); 756 ext4_handle_error(sb); 757 /* 758 * We only get here in the ERRORS_RO case; relocking the group 759 * may be dangerous, but nothing bad will happen since the 760 * filesystem will have already been marked read/only and the 761 * journal has been aborted. We return 1 as a hint to callers 762 * who might what to use the return value from 763 * ext4_grp_locked_error() to distinguish between the 764 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 765 * aggressively from the ext4 function in question, with a 766 * more appropriate error code. 767 */ 768 ext4_lock_group(sb, grp); 769 return; 770 } 771 772 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 773 ext4_group_t group, 774 unsigned int flags) 775 { 776 struct ext4_sb_info *sbi = EXT4_SB(sb); 777 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 778 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 779 780 if ((flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) && 781 !EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) { 782 percpu_counter_sub(&sbi->s_freeclusters_counter, 783 grp->bb_free); 784 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 785 &grp->bb_state); 786 } 787 788 if ((flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) && 789 !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) { 790 if (gdp) { 791 int count; 792 793 count = ext4_free_inodes_count(sb, gdp); 794 percpu_counter_sub(&sbi->s_freeinodes_counter, 795 count); 796 } 797 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 798 &grp->bb_state); 799 } 800 } 801 802 void ext4_update_dynamic_rev(struct super_block *sb) 803 { 804 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 805 806 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 807 return; 808 809 ext4_warning(sb, 810 "updating to rev %d because of new feature flag, " 811 "running e2fsck is recommended", 812 EXT4_DYNAMIC_REV); 813 814 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 815 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 816 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 817 /* leave es->s_feature_*compat flags alone */ 818 /* es->s_uuid will be set by e2fsck if empty */ 819 820 /* 821 * The rest of the superblock fields should be zero, and if not it 822 * means they are likely already in use, so leave them alone. We 823 * can leave it up to e2fsck to clean up any inconsistencies there. 824 */ 825 } 826 827 /* 828 * Open the external journal device 829 */ 830 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 831 { 832 struct block_device *bdev; 833 char b[BDEVNAME_SIZE]; 834 835 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 836 if (IS_ERR(bdev)) 837 goto fail; 838 return bdev; 839 840 fail: 841 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 842 __bdevname(dev, b), PTR_ERR(bdev)); 843 return NULL; 844 } 845 846 /* 847 * Release the journal device 848 */ 849 static void ext4_blkdev_put(struct block_device *bdev) 850 { 851 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 852 } 853 854 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 855 { 856 struct block_device *bdev; 857 bdev = sbi->journal_bdev; 858 if (bdev) { 859 ext4_blkdev_put(bdev); 860 sbi->journal_bdev = NULL; 861 } 862 } 863 864 static inline struct inode *orphan_list_entry(struct list_head *l) 865 { 866 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 867 } 868 869 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 870 { 871 struct list_head *l; 872 873 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 874 le32_to_cpu(sbi->s_es->s_last_orphan)); 875 876 printk(KERN_ERR "sb_info orphan list:\n"); 877 list_for_each(l, &sbi->s_orphan) { 878 struct inode *inode = orphan_list_entry(l); 879 printk(KERN_ERR " " 880 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 881 inode->i_sb->s_id, inode->i_ino, inode, 882 inode->i_mode, inode->i_nlink, 883 NEXT_ORPHAN(inode)); 884 } 885 } 886 887 #ifdef CONFIG_QUOTA 888 static int ext4_quota_off(struct super_block *sb, int type); 889 890 static inline void ext4_quota_off_umount(struct super_block *sb) 891 { 892 int type; 893 894 /* Use our quota_off function to clear inode flags etc. */ 895 for (type = 0; type < EXT4_MAXQUOTAS; type++) 896 ext4_quota_off(sb, type); 897 } 898 #else 899 static inline void ext4_quota_off_umount(struct super_block *sb) 900 { 901 } 902 #endif 903 904 static void ext4_put_super(struct super_block *sb) 905 { 906 struct ext4_sb_info *sbi = EXT4_SB(sb); 907 struct ext4_super_block *es = sbi->s_es; 908 int aborted = 0; 909 int i, err; 910 911 ext4_unregister_li_request(sb); 912 ext4_quota_off_umount(sb); 913 914 destroy_workqueue(sbi->rsv_conversion_wq); 915 916 if (sbi->s_journal) { 917 aborted = is_journal_aborted(sbi->s_journal); 918 err = jbd2_journal_destroy(sbi->s_journal); 919 sbi->s_journal = NULL; 920 if ((err < 0) && !aborted) 921 ext4_abort(sb, "Couldn't clean up the journal"); 922 } 923 924 ext4_unregister_sysfs(sb); 925 ext4_es_unregister_shrinker(sbi); 926 del_timer_sync(&sbi->s_err_report); 927 ext4_release_system_zone(sb); 928 ext4_mb_release(sb); 929 ext4_ext_release(sb); 930 931 if (!sb_rdonly(sb) && !aborted) { 932 ext4_clear_feature_journal_needs_recovery(sb); 933 es->s_state = cpu_to_le16(sbi->s_mount_state); 934 } 935 if (!sb_rdonly(sb)) 936 ext4_commit_super(sb, 1); 937 938 for (i = 0; i < sbi->s_gdb_count; i++) 939 brelse(sbi->s_group_desc[i]); 940 kvfree(sbi->s_group_desc); 941 kvfree(sbi->s_flex_groups); 942 percpu_counter_destroy(&sbi->s_freeclusters_counter); 943 percpu_counter_destroy(&sbi->s_freeinodes_counter); 944 percpu_counter_destroy(&sbi->s_dirs_counter); 945 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 946 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 947 #ifdef CONFIG_QUOTA 948 for (i = 0; i < EXT4_MAXQUOTAS; i++) 949 kfree(sbi->s_qf_names[i]); 950 #endif 951 952 /* Debugging code just in case the in-memory inode orphan list 953 * isn't empty. The on-disk one can be non-empty if we've 954 * detected an error and taken the fs readonly, but the 955 * in-memory list had better be clean by this point. */ 956 if (!list_empty(&sbi->s_orphan)) 957 dump_orphan_list(sb, sbi); 958 J_ASSERT(list_empty(&sbi->s_orphan)); 959 960 sync_blockdev(sb->s_bdev); 961 invalidate_bdev(sb->s_bdev); 962 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 963 /* 964 * Invalidate the journal device's buffers. We don't want them 965 * floating about in memory - the physical journal device may 966 * hotswapped, and it breaks the `ro-after' testing code. 967 */ 968 sync_blockdev(sbi->journal_bdev); 969 invalidate_bdev(sbi->journal_bdev); 970 ext4_blkdev_remove(sbi); 971 } 972 if (sbi->s_ea_inode_cache) { 973 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 974 sbi->s_ea_inode_cache = NULL; 975 } 976 if (sbi->s_ea_block_cache) { 977 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 978 sbi->s_ea_block_cache = NULL; 979 } 980 if (sbi->s_mmp_tsk) 981 kthread_stop(sbi->s_mmp_tsk); 982 brelse(sbi->s_sbh); 983 sb->s_fs_info = NULL; 984 /* 985 * Now that we are completely done shutting down the 986 * superblock, we need to actually destroy the kobject. 987 */ 988 kobject_put(&sbi->s_kobj); 989 wait_for_completion(&sbi->s_kobj_unregister); 990 if (sbi->s_chksum_driver) 991 crypto_free_shash(sbi->s_chksum_driver); 992 kfree(sbi->s_blockgroup_lock); 993 fs_put_dax(sbi->s_daxdev); 994 kfree(sbi); 995 } 996 997 static struct kmem_cache *ext4_inode_cachep; 998 999 /* 1000 * Called inside transaction, so use GFP_NOFS 1001 */ 1002 static struct inode *ext4_alloc_inode(struct super_block *sb) 1003 { 1004 struct ext4_inode_info *ei; 1005 1006 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1007 if (!ei) 1008 return NULL; 1009 1010 inode_set_iversion(&ei->vfs_inode, 1); 1011 spin_lock_init(&ei->i_raw_lock); 1012 INIT_LIST_HEAD(&ei->i_prealloc_list); 1013 spin_lock_init(&ei->i_prealloc_lock); 1014 ext4_es_init_tree(&ei->i_es_tree); 1015 rwlock_init(&ei->i_es_lock); 1016 INIT_LIST_HEAD(&ei->i_es_list); 1017 ei->i_es_all_nr = 0; 1018 ei->i_es_shk_nr = 0; 1019 ei->i_es_shrink_lblk = 0; 1020 ei->i_reserved_data_blocks = 0; 1021 ei->i_da_metadata_calc_len = 0; 1022 ei->i_da_metadata_calc_last_lblock = 0; 1023 spin_lock_init(&(ei->i_block_reservation_lock)); 1024 #ifdef CONFIG_QUOTA 1025 ei->i_reserved_quota = 0; 1026 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1027 #endif 1028 ei->jinode = NULL; 1029 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1030 spin_lock_init(&ei->i_completed_io_lock); 1031 ei->i_sync_tid = 0; 1032 ei->i_datasync_tid = 0; 1033 atomic_set(&ei->i_unwritten, 0); 1034 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1035 return &ei->vfs_inode; 1036 } 1037 1038 static int ext4_drop_inode(struct inode *inode) 1039 { 1040 int drop = generic_drop_inode(inode); 1041 1042 trace_ext4_drop_inode(inode, drop); 1043 return drop; 1044 } 1045 1046 static void ext4_i_callback(struct rcu_head *head) 1047 { 1048 struct inode *inode = container_of(head, struct inode, i_rcu); 1049 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1050 } 1051 1052 static void ext4_destroy_inode(struct inode *inode) 1053 { 1054 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1055 ext4_msg(inode->i_sb, KERN_ERR, 1056 "Inode %lu (%p): orphan list check failed!", 1057 inode->i_ino, EXT4_I(inode)); 1058 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1059 EXT4_I(inode), sizeof(struct ext4_inode_info), 1060 true); 1061 dump_stack(); 1062 } 1063 call_rcu(&inode->i_rcu, ext4_i_callback); 1064 } 1065 1066 static void init_once(void *foo) 1067 { 1068 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1069 1070 INIT_LIST_HEAD(&ei->i_orphan); 1071 init_rwsem(&ei->xattr_sem); 1072 init_rwsem(&ei->i_data_sem); 1073 init_rwsem(&ei->i_mmap_sem); 1074 inode_init_once(&ei->vfs_inode); 1075 } 1076 1077 static int __init init_inodecache(void) 1078 { 1079 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1080 sizeof(struct ext4_inode_info), 0, 1081 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1082 SLAB_ACCOUNT), 1083 offsetof(struct ext4_inode_info, i_data), 1084 sizeof_field(struct ext4_inode_info, i_data), 1085 init_once); 1086 if (ext4_inode_cachep == NULL) 1087 return -ENOMEM; 1088 return 0; 1089 } 1090 1091 static void destroy_inodecache(void) 1092 { 1093 /* 1094 * Make sure all delayed rcu free inodes are flushed before we 1095 * destroy cache. 1096 */ 1097 rcu_barrier(); 1098 kmem_cache_destroy(ext4_inode_cachep); 1099 } 1100 1101 void ext4_clear_inode(struct inode *inode) 1102 { 1103 invalidate_inode_buffers(inode); 1104 clear_inode(inode); 1105 dquot_drop(inode); 1106 ext4_discard_preallocations(inode); 1107 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1108 if (EXT4_I(inode)->jinode) { 1109 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1110 EXT4_I(inode)->jinode); 1111 jbd2_free_inode(EXT4_I(inode)->jinode); 1112 EXT4_I(inode)->jinode = NULL; 1113 } 1114 fscrypt_put_encryption_info(inode); 1115 } 1116 1117 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1118 u64 ino, u32 generation) 1119 { 1120 struct inode *inode; 1121 1122 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1123 return ERR_PTR(-ESTALE); 1124 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1125 return ERR_PTR(-ESTALE); 1126 1127 /* iget isn't really right if the inode is currently unallocated!! 1128 * 1129 * ext4_read_inode will return a bad_inode if the inode had been 1130 * deleted, so we should be safe. 1131 * 1132 * Currently we don't know the generation for parent directory, so 1133 * a generation of 0 means "accept any" 1134 */ 1135 inode = ext4_iget_normal(sb, ino); 1136 if (IS_ERR(inode)) 1137 return ERR_CAST(inode); 1138 if (generation && inode->i_generation != generation) { 1139 iput(inode); 1140 return ERR_PTR(-ESTALE); 1141 } 1142 1143 return inode; 1144 } 1145 1146 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1147 int fh_len, int fh_type) 1148 { 1149 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1150 ext4_nfs_get_inode); 1151 } 1152 1153 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1154 int fh_len, int fh_type) 1155 { 1156 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1157 ext4_nfs_get_inode); 1158 } 1159 1160 /* 1161 * Try to release metadata pages (indirect blocks, directories) which are 1162 * mapped via the block device. Since these pages could have journal heads 1163 * which would prevent try_to_free_buffers() from freeing them, we must use 1164 * jbd2 layer's try_to_free_buffers() function to release them. 1165 */ 1166 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1167 gfp_t wait) 1168 { 1169 journal_t *journal = EXT4_SB(sb)->s_journal; 1170 1171 WARN_ON(PageChecked(page)); 1172 if (!page_has_buffers(page)) 1173 return 0; 1174 if (journal) 1175 return jbd2_journal_try_to_free_buffers(journal, page, 1176 wait & ~__GFP_DIRECT_RECLAIM); 1177 return try_to_free_buffers(page); 1178 } 1179 1180 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1181 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1182 { 1183 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1184 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1185 } 1186 1187 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1188 void *fs_data) 1189 { 1190 handle_t *handle = fs_data; 1191 int res, res2, credits, retries = 0; 1192 1193 /* 1194 * Encrypting the root directory is not allowed because e2fsck expects 1195 * lost+found to exist and be unencrypted, and encrypting the root 1196 * directory would imply encrypting the lost+found directory as well as 1197 * the filename "lost+found" itself. 1198 */ 1199 if (inode->i_ino == EXT4_ROOT_INO) 1200 return -EPERM; 1201 1202 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1203 return -EINVAL; 1204 1205 res = ext4_convert_inline_data(inode); 1206 if (res) 1207 return res; 1208 1209 /* 1210 * If a journal handle was specified, then the encryption context is 1211 * being set on a new inode via inheritance and is part of a larger 1212 * transaction to create the inode. Otherwise the encryption context is 1213 * being set on an existing inode in its own transaction. Only in the 1214 * latter case should the "retry on ENOSPC" logic be used. 1215 */ 1216 1217 if (handle) { 1218 res = ext4_xattr_set_handle(handle, inode, 1219 EXT4_XATTR_INDEX_ENCRYPTION, 1220 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1221 ctx, len, 0); 1222 if (!res) { 1223 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1224 ext4_clear_inode_state(inode, 1225 EXT4_STATE_MAY_INLINE_DATA); 1226 /* 1227 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1228 * S_DAX may be disabled 1229 */ 1230 ext4_set_inode_flags(inode); 1231 } 1232 return res; 1233 } 1234 1235 res = dquot_initialize(inode); 1236 if (res) 1237 return res; 1238 retry: 1239 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1240 &credits); 1241 if (res) 1242 return res; 1243 1244 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1245 if (IS_ERR(handle)) 1246 return PTR_ERR(handle); 1247 1248 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1249 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1250 ctx, len, 0); 1251 if (!res) { 1252 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1253 /* 1254 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1255 * S_DAX may be disabled 1256 */ 1257 ext4_set_inode_flags(inode); 1258 res = ext4_mark_inode_dirty(handle, inode); 1259 if (res) 1260 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1261 } 1262 res2 = ext4_journal_stop(handle); 1263 1264 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1265 goto retry; 1266 if (!res) 1267 res = res2; 1268 return res; 1269 } 1270 1271 static bool ext4_dummy_context(struct inode *inode) 1272 { 1273 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1274 } 1275 1276 static const struct fscrypt_operations ext4_cryptops = { 1277 .key_prefix = "ext4:", 1278 .get_context = ext4_get_context, 1279 .set_context = ext4_set_context, 1280 .dummy_context = ext4_dummy_context, 1281 .empty_dir = ext4_empty_dir, 1282 .max_namelen = EXT4_NAME_LEN, 1283 }; 1284 #endif 1285 1286 #ifdef CONFIG_QUOTA 1287 static const char * const quotatypes[] = INITQFNAMES; 1288 #define QTYPE2NAME(t) (quotatypes[t]) 1289 1290 static int ext4_write_dquot(struct dquot *dquot); 1291 static int ext4_acquire_dquot(struct dquot *dquot); 1292 static int ext4_release_dquot(struct dquot *dquot); 1293 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1294 static int ext4_write_info(struct super_block *sb, int type); 1295 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1296 const struct path *path); 1297 static int ext4_quota_on_mount(struct super_block *sb, int type); 1298 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1299 size_t len, loff_t off); 1300 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1301 const char *data, size_t len, loff_t off); 1302 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1303 unsigned int flags); 1304 static int ext4_enable_quotas(struct super_block *sb); 1305 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1306 1307 static struct dquot **ext4_get_dquots(struct inode *inode) 1308 { 1309 return EXT4_I(inode)->i_dquot; 1310 } 1311 1312 static const struct dquot_operations ext4_quota_operations = { 1313 .get_reserved_space = ext4_get_reserved_space, 1314 .write_dquot = ext4_write_dquot, 1315 .acquire_dquot = ext4_acquire_dquot, 1316 .release_dquot = ext4_release_dquot, 1317 .mark_dirty = ext4_mark_dquot_dirty, 1318 .write_info = ext4_write_info, 1319 .alloc_dquot = dquot_alloc, 1320 .destroy_dquot = dquot_destroy, 1321 .get_projid = ext4_get_projid, 1322 .get_inode_usage = ext4_get_inode_usage, 1323 .get_next_id = ext4_get_next_id, 1324 }; 1325 1326 static const struct quotactl_ops ext4_qctl_operations = { 1327 .quota_on = ext4_quota_on, 1328 .quota_off = ext4_quota_off, 1329 .quota_sync = dquot_quota_sync, 1330 .get_state = dquot_get_state, 1331 .set_info = dquot_set_dqinfo, 1332 .get_dqblk = dquot_get_dqblk, 1333 .set_dqblk = dquot_set_dqblk, 1334 .get_nextdqblk = dquot_get_next_dqblk, 1335 }; 1336 #endif 1337 1338 static const struct super_operations ext4_sops = { 1339 .alloc_inode = ext4_alloc_inode, 1340 .destroy_inode = ext4_destroy_inode, 1341 .write_inode = ext4_write_inode, 1342 .dirty_inode = ext4_dirty_inode, 1343 .drop_inode = ext4_drop_inode, 1344 .evict_inode = ext4_evict_inode, 1345 .put_super = ext4_put_super, 1346 .sync_fs = ext4_sync_fs, 1347 .freeze_fs = ext4_freeze, 1348 .unfreeze_fs = ext4_unfreeze, 1349 .statfs = ext4_statfs, 1350 .remount_fs = ext4_remount, 1351 .show_options = ext4_show_options, 1352 #ifdef CONFIG_QUOTA 1353 .quota_read = ext4_quota_read, 1354 .quota_write = ext4_quota_write, 1355 .get_dquots = ext4_get_dquots, 1356 #endif 1357 .bdev_try_to_free_page = bdev_try_to_free_page, 1358 }; 1359 1360 static const struct export_operations ext4_export_ops = { 1361 .fh_to_dentry = ext4_fh_to_dentry, 1362 .fh_to_parent = ext4_fh_to_parent, 1363 .get_parent = ext4_get_parent, 1364 }; 1365 1366 enum { 1367 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1368 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1369 Opt_nouid32, Opt_debug, Opt_removed, 1370 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1371 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1372 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1373 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1374 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1375 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1376 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1377 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1378 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1379 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1380 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1381 Opt_nowarn_on_error, Opt_mblk_io_submit, 1382 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1383 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1384 Opt_inode_readahead_blks, Opt_journal_ioprio, 1385 Opt_dioread_nolock, Opt_dioread_lock, 1386 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1387 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1388 }; 1389 1390 static const match_table_t tokens = { 1391 {Opt_bsd_df, "bsddf"}, 1392 {Opt_minix_df, "minixdf"}, 1393 {Opt_grpid, "grpid"}, 1394 {Opt_grpid, "bsdgroups"}, 1395 {Opt_nogrpid, "nogrpid"}, 1396 {Opt_nogrpid, "sysvgroups"}, 1397 {Opt_resgid, "resgid=%u"}, 1398 {Opt_resuid, "resuid=%u"}, 1399 {Opt_sb, "sb=%u"}, 1400 {Opt_err_cont, "errors=continue"}, 1401 {Opt_err_panic, "errors=panic"}, 1402 {Opt_err_ro, "errors=remount-ro"}, 1403 {Opt_nouid32, "nouid32"}, 1404 {Opt_debug, "debug"}, 1405 {Opt_removed, "oldalloc"}, 1406 {Opt_removed, "orlov"}, 1407 {Opt_user_xattr, "user_xattr"}, 1408 {Opt_nouser_xattr, "nouser_xattr"}, 1409 {Opt_acl, "acl"}, 1410 {Opt_noacl, "noacl"}, 1411 {Opt_noload, "norecovery"}, 1412 {Opt_noload, "noload"}, 1413 {Opt_removed, "nobh"}, 1414 {Opt_removed, "bh"}, 1415 {Opt_commit, "commit=%u"}, 1416 {Opt_min_batch_time, "min_batch_time=%u"}, 1417 {Opt_max_batch_time, "max_batch_time=%u"}, 1418 {Opt_journal_dev, "journal_dev=%u"}, 1419 {Opt_journal_path, "journal_path=%s"}, 1420 {Opt_journal_checksum, "journal_checksum"}, 1421 {Opt_nojournal_checksum, "nojournal_checksum"}, 1422 {Opt_journal_async_commit, "journal_async_commit"}, 1423 {Opt_abort, "abort"}, 1424 {Opt_data_journal, "data=journal"}, 1425 {Opt_data_ordered, "data=ordered"}, 1426 {Opt_data_writeback, "data=writeback"}, 1427 {Opt_data_err_abort, "data_err=abort"}, 1428 {Opt_data_err_ignore, "data_err=ignore"}, 1429 {Opt_offusrjquota, "usrjquota="}, 1430 {Opt_usrjquota, "usrjquota=%s"}, 1431 {Opt_offgrpjquota, "grpjquota="}, 1432 {Opt_grpjquota, "grpjquota=%s"}, 1433 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1434 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1435 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1436 {Opt_grpquota, "grpquota"}, 1437 {Opt_noquota, "noquota"}, 1438 {Opt_quota, "quota"}, 1439 {Opt_usrquota, "usrquota"}, 1440 {Opt_prjquota, "prjquota"}, 1441 {Opt_barrier, "barrier=%u"}, 1442 {Opt_barrier, "barrier"}, 1443 {Opt_nobarrier, "nobarrier"}, 1444 {Opt_i_version, "i_version"}, 1445 {Opt_dax, "dax"}, 1446 {Opt_stripe, "stripe=%u"}, 1447 {Opt_delalloc, "delalloc"}, 1448 {Opt_warn_on_error, "warn_on_error"}, 1449 {Opt_nowarn_on_error, "nowarn_on_error"}, 1450 {Opt_lazytime, "lazytime"}, 1451 {Opt_nolazytime, "nolazytime"}, 1452 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1453 {Opt_nodelalloc, "nodelalloc"}, 1454 {Opt_removed, "mblk_io_submit"}, 1455 {Opt_removed, "nomblk_io_submit"}, 1456 {Opt_block_validity, "block_validity"}, 1457 {Opt_noblock_validity, "noblock_validity"}, 1458 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1459 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1460 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1461 {Opt_auto_da_alloc, "auto_da_alloc"}, 1462 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1463 {Opt_dioread_nolock, "dioread_nolock"}, 1464 {Opt_dioread_lock, "dioread_lock"}, 1465 {Opt_discard, "discard"}, 1466 {Opt_nodiscard, "nodiscard"}, 1467 {Opt_init_itable, "init_itable=%u"}, 1468 {Opt_init_itable, "init_itable"}, 1469 {Opt_noinit_itable, "noinit_itable"}, 1470 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1471 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1472 {Opt_nombcache, "nombcache"}, 1473 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1474 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1475 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1476 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1477 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1478 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1479 {Opt_err, NULL}, 1480 }; 1481 1482 static ext4_fsblk_t get_sb_block(void **data) 1483 { 1484 ext4_fsblk_t sb_block; 1485 char *options = (char *) *data; 1486 1487 if (!options || strncmp(options, "sb=", 3) != 0) 1488 return 1; /* Default location */ 1489 1490 options += 3; 1491 /* TODO: use simple_strtoll with >32bit ext4 */ 1492 sb_block = simple_strtoul(options, &options, 0); 1493 if (*options && *options != ',') { 1494 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1495 (char *) *data); 1496 return 1; 1497 } 1498 if (*options == ',') 1499 options++; 1500 *data = (void *) options; 1501 1502 return sb_block; 1503 } 1504 1505 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1506 static const char deprecated_msg[] = 1507 "Mount option \"%s\" will be removed by %s\n" 1508 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1509 1510 #ifdef CONFIG_QUOTA 1511 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1512 { 1513 struct ext4_sb_info *sbi = EXT4_SB(sb); 1514 char *qname; 1515 int ret = -1; 1516 1517 if (sb_any_quota_loaded(sb) && 1518 !sbi->s_qf_names[qtype]) { 1519 ext4_msg(sb, KERN_ERR, 1520 "Cannot change journaled " 1521 "quota options when quota turned on"); 1522 return -1; 1523 } 1524 if (ext4_has_feature_quota(sb)) { 1525 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1526 "ignored when QUOTA feature is enabled"); 1527 return 1; 1528 } 1529 qname = match_strdup(args); 1530 if (!qname) { 1531 ext4_msg(sb, KERN_ERR, 1532 "Not enough memory for storing quotafile name"); 1533 return -1; 1534 } 1535 if (sbi->s_qf_names[qtype]) { 1536 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1537 ret = 1; 1538 else 1539 ext4_msg(sb, KERN_ERR, 1540 "%s quota file already specified", 1541 QTYPE2NAME(qtype)); 1542 goto errout; 1543 } 1544 if (strchr(qname, '/')) { 1545 ext4_msg(sb, KERN_ERR, 1546 "quotafile must be on filesystem root"); 1547 goto errout; 1548 } 1549 sbi->s_qf_names[qtype] = qname; 1550 set_opt(sb, QUOTA); 1551 return 1; 1552 errout: 1553 kfree(qname); 1554 return ret; 1555 } 1556 1557 static int clear_qf_name(struct super_block *sb, int qtype) 1558 { 1559 1560 struct ext4_sb_info *sbi = EXT4_SB(sb); 1561 1562 if (sb_any_quota_loaded(sb) && 1563 sbi->s_qf_names[qtype]) { 1564 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1565 " when quota turned on"); 1566 return -1; 1567 } 1568 kfree(sbi->s_qf_names[qtype]); 1569 sbi->s_qf_names[qtype] = NULL; 1570 return 1; 1571 } 1572 #endif 1573 1574 #define MOPT_SET 0x0001 1575 #define MOPT_CLEAR 0x0002 1576 #define MOPT_NOSUPPORT 0x0004 1577 #define MOPT_EXPLICIT 0x0008 1578 #define MOPT_CLEAR_ERR 0x0010 1579 #define MOPT_GTE0 0x0020 1580 #ifdef CONFIG_QUOTA 1581 #define MOPT_Q 0 1582 #define MOPT_QFMT 0x0040 1583 #else 1584 #define MOPT_Q MOPT_NOSUPPORT 1585 #define MOPT_QFMT MOPT_NOSUPPORT 1586 #endif 1587 #define MOPT_DATAJ 0x0080 1588 #define MOPT_NO_EXT2 0x0100 1589 #define MOPT_NO_EXT3 0x0200 1590 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1591 #define MOPT_STRING 0x0400 1592 1593 static const struct mount_opts { 1594 int token; 1595 int mount_opt; 1596 int flags; 1597 } ext4_mount_opts[] = { 1598 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1599 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1600 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1601 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1602 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1603 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1604 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1605 MOPT_EXT4_ONLY | MOPT_SET}, 1606 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1607 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1608 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1609 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1610 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1611 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1612 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1613 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1614 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1615 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1616 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1617 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1618 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1619 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1620 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1621 EXT4_MOUNT_JOURNAL_CHECKSUM), 1622 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1623 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1624 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1625 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1626 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1627 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1628 MOPT_NO_EXT2}, 1629 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1630 MOPT_NO_EXT2}, 1631 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1632 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1633 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1634 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1635 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1636 {Opt_commit, 0, MOPT_GTE0}, 1637 {Opt_max_batch_time, 0, MOPT_GTE0}, 1638 {Opt_min_batch_time, 0, MOPT_GTE0}, 1639 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1640 {Opt_init_itable, 0, MOPT_GTE0}, 1641 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1642 {Opt_stripe, 0, MOPT_GTE0}, 1643 {Opt_resuid, 0, MOPT_GTE0}, 1644 {Opt_resgid, 0, MOPT_GTE0}, 1645 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1646 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1647 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1648 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1649 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1650 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1651 MOPT_NO_EXT2 | MOPT_DATAJ}, 1652 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1653 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1654 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1655 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1656 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1657 #else 1658 {Opt_acl, 0, MOPT_NOSUPPORT}, 1659 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1660 #endif 1661 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1662 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1663 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1664 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1665 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1666 MOPT_SET | MOPT_Q}, 1667 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1668 MOPT_SET | MOPT_Q}, 1669 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1670 MOPT_SET | MOPT_Q}, 1671 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1672 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1673 MOPT_CLEAR | MOPT_Q}, 1674 {Opt_usrjquota, 0, MOPT_Q}, 1675 {Opt_grpjquota, 0, MOPT_Q}, 1676 {Opt_offusrjquota, 0, MOPT_Q}, 1677 {Opt_offgrpjquota, 0, MOPT_Q}, 1678 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1679 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1680 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1681 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1682 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1683 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1684 {Opt_err, 0, 0} 1685 }; 1686 1687 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1688 substring_t *args, unsigned long *journal_devnum, 1689 unsigned int *journal_ioprio, int is_remount) 1690 { 1691 struct ext4_sb_info *sbi = EXT4_SB(sb); 1692 const struct mount_opts *m; 1693 kuid_t uid; 1694 kgid_t gid; 1695 int arg = 0; 1696 1697 #ifdef CONFIG_QUOTA 1698 if (token == Opt_usrjquota) 1699 return set_qf_name(sb, USRQUOTA, &args[0]); 1700 else if (token == Opt_grpjquota) 1701 return set_qf_name(sb, GRPQUOTA, &args[0]); 1702 else if (token == Opt_offusrjquota) 1703 return clear_qf_name(sb, USRQUOTA); 1704 else if (token == Opt_offgrpjquota) 1705 return clear_qf_name(sb, GRPQUOTA); 1706 #endif 1707 switch (token) { 1708 case Opt_noacl: 1709 case Opt_nouser_xattr: 1710 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1711 break; 1712 case Opt_sb: 1713 return 1; /* handled by get_sb_block() */ 1714 case Opt_removed: 1715 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1716 return 1; 1717 case Opt_abort: 1718 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1719 return 1; 1720 case Opt_i_version: 1721 sb->s_flags |= SB_I_VERSION; 1722 return 1; 1723 case Opt_lazytime: 1724 sb->s_flags |= SB_LAZYTIME; 1725 return 1; 1726 case Opt_nolazytime: 1727 sb->s_flags &= ~SB_LAZYTIME; 1728 return 1; 1729 } 1730 1731 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1732 if (token == m->token) 1733 break; 1734 1735 if (m->token == Opt_err) { 1736 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1737 "or missing value", opt); 1738 return -1; 1739 } 1740 1741 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1742 ext4_msg(sb, KERN_ERR, 1743 "Mount option \"%s\" incompatible with ext2", opt); 1744 return -1; 1745 } 1746 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1747 ext4_msg(sb, KERN_ERR, 1748 "Mount option \"%s\" incompatible with ext3", opt); 1749 return -1; 1750 } 1751 1752 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1753 return -1; 1754 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1755 return -1; 1756 if (m->flags & MOPT_EXPLICIT) { 1757 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1758 set_opt2(sb, EXPLICIT_DELALLOC); 1759 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1760 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1761 } else 1762 return -1; 1763 } 1764 if (m->flags & MOPT_CLEAR_ERR) 1765 clear_opt(sb, ERRORS_MASK); 1766 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1767 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1768 "options when quota turned on"); 1769 return -1; 1770 } 1771 1772 if (m->flags & MOPT_NOSUPPORT) { 1773 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1774 } else if (token == Opt_commit) { 1775 if (arg == 0) 1776 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1777 sbi->s_commit_interval = HZ * arg; 1778 } else if (token == Opt_debug_want_extra_isize) { 1779 sbi->s_want_extra_isize = arg; 1780 } else if (token == Opt_max_batch_time) { 1781 sbi->s_max_batch_time = arg; 1782 } else if (token == Opt_min_batch_time) { 1783 sbi->s_min_batch_time = arg; 1784 } else if (token == Opt_inode_readahead_blks) { 1785 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1786 ext4_msg(sb, KERN_ERR, 1787 "EXT4-fs: inode_readahead_blks must be " 1788 "0 or a power of 2 smaller than 2^31"); 1789 return -1; 1790 } 1791 sbi->s_inode_readahead_blks = arg; 1792 } else if (token == Opt_init_itable) { 1793 set_opt(sb, INIT_INODE_TABLE); 1794 if (!args->from) 1795 arg = EXT4_DEF_LI_WAIT_MULT; 1796 sbi->s_li_wait_mult = arg; 1797 } else if (token == Opt_max_dir_size_kb) { 1798 sbi->s_max_dir_size_kb = arg; 1799 } else if (token == Opt_stripe) { 1800 sbi->s_stripe = arg; 1801 } else if (token == Opt_resuid) { 1802 uid = make_kuid(current_user_ns(), arg); 1803 if (!uid_valid(uid)) { 1804 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1805 return -1; 1806 } 1807 sbi->s_resuid = uid; 1808 } else if (token == Opt_resgid) { 1809 gid = make_kgid(current_user_ns(), arg); 1810 if (!gid_valid(gid)) { 1811 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1812 return -1; 1813 } 1814 sbi->s_resgid = gid; 1815 } else if (token == Opt_journal_dev) { 1816 if (is_remount) { 1817 ext4_msg(sb, KERN_ERR, 1818 "Cannot specify journal on remount"); 1819 return -1; 1820 } 1821 *journal_devnum = arg; 1822 } else if (token == Opt_journal_path) { 1823 char *journal_path; 1824 struct inode *journal_inode; 1825 struct path path; 1826 int error; 1827 1828 if (is_remount) { 1829 ext4_msg(sb, KERN_ERR, 1830 "Cannot specify journal on remount"); 1831 return -1; 1832 } 1833 journal_path = match_strdup(&args[0]); 1834 if (!journal_path) { 1835 ext4_msg(sb, KERN_ERR, "error: could not dup " 1836 "journal device string"); 1837 return -1; 1838 } 1839 1840 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1841 if (error) { 1842 ext4_msg(sb, KERN_ERR, "error: could not find " 1843 "journal device path: error %d", error); 1844 kfree(journal_path); 1845 return -1; 1846 } 1847 1848 journal_inode = d_inode(path.dentry); 1849 if (!S_ISBLK(journal_inode->i_mode)) { 1850 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1851 "is not a block device", journal_path); 1852 path_put(&path); 1853 kfree(journal_path); 1854 return -1; 1855 } 1856 1857 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1858 path_put(&path); 1859 kfree(journal_path); 1860 } else if (token == Opt_journal_ioprio) { 1861 if (arg > 7) { 1862 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1863 " (must be 0-7)"); 1864 return -1; 1865 } 1866 *journal_ioprio = 1867 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1868 } else if (token == Opt_test_dummy_encryption) { 1869 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1870 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1871 ext4_msg(sb, KERN_WARNING, 1872 "Test dummy encryption mode enabled"); 1873 #else 1874 ext4_msg(sb, KERN_WARNING, 1875 "Test dummy encryption mount option ignored"); 1876 #endif 1877 } else if (m->flags & MOPT_DATAJ) { 1878 if (is_remount) { 1879 if (!sbi->s_journal) 1880 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1881 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1882 ext4_msg(sb, KERN_ERR, 1883 "Cannot change data mode on remount"); 1884 return -1; 1885 } 1886 } else { 1887 clear_opt(sb, DATA_FLAGS); 1888 sbi->s_mount_opt |= m->mount_opt; 1889 } 1890 #ifdef CONFIG_QUOTA 1891 } else if (m->flags & MOPT_QFMT) { 1892 if (sb_any_quota_loaded(sb) && 1893 sbi->s_jquota_fmt != m->mount_opt) { 1894 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1895 "quota options when quota turned on"); 1896 return -1; 1897 } 1898 if (ext4_has_feature_quota(sb)) { 1899 ext4_msg(sb, KERN_INFO, 1900 "Quota format mount options ignored " 1901 "when QUOTA feature is enabled"); 1902 return 1; 1903 } 1904 sbi->s_jquota_fmt = m->mount_opt; 1905 #endif 1906 } else if (token == Opt_dax) { 1907 #ifdef CONFIG_FS_DAX 1908 ext4_msg(sb, KERN_WARNING, 1909 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1910 sbi->s_mount_opt |= m->mount_opt; 1911 #else 1912 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1913 return -1; 1914 #endif 1915 } else if (token == Opt_data_err_abort) { 1916 sbi->s_mount_opt |= m->mount_opt; 1917 } else if (token == Opt_data_err_ignore) { 1918 sbi->s_mount_opt &= ~m->mount_opt; 1919 } else { 1920 if (!args->from) 1921 arg = 1; 1922 if (m->flags & MOPT_CLEAR) 1923 arg = !arg; 1924 else if (unlikely(!(m->flags & MOPT_SET))) { 1925 ext4_msg(sb, KERN_WARNING, 1926 "buggy handling of option %s", opt); 1927 WARN_ON(1); 1928 return -1; 1929 } 1930 if (arg != 0) 1931 sbi->s_mount_opt |= m->mount_opt; 1932 else 1933 sbi->s_mount_opt &= ~m->mount_opt; 1934 } 1935 return 1; 1936 } 1937 1938 static int parse_options(char *options, struct super_block *sb, 1939 unsigned long *journal_devnum, 1940 unsigned int *journal_ioprio, 1941 int is_remount) 1942 { 1943 struct ext4_sb_info *sbi = EXT4_SB(sb); 1944 char *p; 1945 substring_t args[MAX_OPT_ARGS]; 1946 int token; 1947 1948 if (!options) 1949 return 1; 1950 1951 while ((p = strsep(&options, ",")) != NULL) { 1952 if (!*p) 1953 continue; 1954 /* 1955 * Initialize args struct so we know whether arg was 1956 * found; some options take optional arguments. 1957 */ 1958 args[0].to = args[0].from = NULL; 1959 token = match_token(p, tokens, args); 1960 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1961 journal_ioprio, is_remount) < 0) 1962 return 0; 1963 } 1964 #ifdef CONFIG_QUOTA 1965 /* 1966 * We do the test below only for project quotas. 'usrquota' and 1967 * 'grpquota' mount options are allowed even without quota feature 1968 * to support legacy quotas in quota files. 1969 */ 1970 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1971 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1972 "Cannot enable project quota enforcement."); 1973 return 0; 1974 } 1975 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1976 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1977 clear_opt(sb, USRQUOTA); 1978 1979 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1980 clear_opt(sb, GRPQUOTA); 1981 1982 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1983 ext4_msg(sb, KERN_ERR, "old and new quota " 1984 "format mixing"); 1985 return 0; 1986 } 1987 1988 if (!sbi->s_jquota_fmt) { 1989 ext4_msg(sb, KERN_ERR, "journaled quota format " 1990 "not specified"); 1991 return 0; 1992 } 1993 } 1994 #endif 1995 if (test_opt(sb, DIOREAD_NOLOCK)) { 1996 int blocksize = 1997 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1998 1999 if (blocksize < PAGE_SIZE) { 2000 ext4_msg(sb, KERN_ERR, "can't mount with " 2001 "dioread_nolock if block size != PAGE_SIZE"); 2002 return 0; 2003 } 2004 } 2005 return 1; 2006 } 2007 2008 static inline void ext4_show_quota_options(struct seq_file *seq, 2009 struct super_block *sb) 2010 { 2011 #if defined(CONFIG_QUOTA) 2012 struct ext4_sb_info *sbi = EXT4_SB(sb); 2013 2014 if (sbi->s_jquota_fmt) { 2015 char *fmtname = ""; 2016 2017 switch (sbi->s_jquota_fmt) { 2018 case QFMT_VFS_OLD: 2019 fmtname = "vfsold"; 2020 break; 2021 case QFMT_VFS_V0: 2022 fmtname = "vfsv0"; 2023 break; 2024 case QFMT_VFS_V1: 2025 fmtname = "vfsv1"; 2026 break; 2027 } 2028 seq_printf(seq, ",jqfmt=%s", fmtname); 2029 } 2030 2031 if (sbi->s_qf_names[USRQUOTA]) 2032 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 2033 2034 if (sbi->s_qf_names[GRPQUOTA]) 2035 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 2036 #endif 2037 } 2038 2039 static const char *token2str(int token) 2040 { 2041 const struct match_token *t; 2042 2043 for (t = tokens; t->token != Opt_err; t++) 2044 if (t->token == token && !strchr(t->pattern, '=')) 2045 break; 2046 return t->pattern; 2047 } 2048 2049 /* 2050 * Show an option if 2051 * - it's set to a non-default value OR 2052 * - if the per-sb default is different from the global default 2053 */ 2054 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2055 int nodefs) 2056 { 2057 struct ext4_sb_info *sbi = EXT4_SB(sb); 2058 struct ext4_super_block *es = sbi->s_es; 2059 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2060 const struct mount_opts *m; 2061 char sep = nodefs ? '\n' : ','; 2062 2063 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2064 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2065 2066 if (sbi->s_sb_block != 1) 2067 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2068 2069 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2070 int want_set = m->flags & MOPT_SET; 2071 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2072 (m->flags & MOPT_CLEAR_ERR)) 2073 continue; 2074 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2075 continue; /* skip if same as the default */ 2076 if ((want_set && 2077 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2078 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2079 continue; /* select Opt_noFoo vs Opt_Foo */ 2080 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2081 } 2082 2083 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2084 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2085 SEQ_OPTS_PRINT("resuid=%u", 2086 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2087 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2088 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2089 SEQ_OPTS_PRINT("resgid=%u", 2090 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2091 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2092 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2093 SEQ_OPTS_PUTS("errors=remount-ro"); 2094 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2095 SEQ_OPTS_PUTS("errors=continue"); 2096 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2097 SEQ_OPTS_PUTS("errors=panic"); 2098 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2099 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2100 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2101 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2102 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2103 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2104 if (sb->s_flags & SB_I_VERSION) 2105 SEQ_OPTS_PUTS("i_version"); 2106 if (nodefs || sbi->s_stripe) 2107 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2108 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2109 (sbi->s_mount_opt ^ def_mount_opt)) { 2110 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2111 SEQ_OPTS_PUTS("data=journal"); 2112 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2113 SEQ_OPTS_PUTS("data=ordered"); 2114 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2115 SEQ_OPTS_PUTS("data=writeback"); 2116 } 2117 if (nodefs || 2118 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2119 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2120 sbi->s_inode_readahead_blks); 2121 2122 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2123 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2124 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2125 if (nodefs || sbi->s_max_dir_size_kb) 2126 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2127 if (test_opt(sb, DATA_ERR_ABORT)) 2128 SEQ_OPTS_PUTS("data_err=abort"); 2129 2130 ext4_show_quota_options(seq, sb); 2131 return 0; 2132 } 2133 2134 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2135 { 2136 return _ext4_show_options(seq, root->d_sb, 0); 2137 } 2138 2139 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2140 { 2141 struct super_block *sb = seq->private; 2142 int rc; 2143 2144 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2145 rc = _ext4_show_options(seq, sb, 1); 2146 seq_puts(seq, "\n"); 2147 return rc; 2148 } 2149 2150 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2151 int read_only) 2152 { 2153 struct ext4_sb_info *sbi = EXT4_SB(sb); 2154 int err = 0; 2155 2156 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2157 ext4_msg(sb, KERN_ERR, "revision level too high, " 2158 "forcing read-only mode"); 2159 err = -EROFS; 2160 } 2161 if (read_only) 2162 goto done; 2163 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2164 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2165 "running e2fsck is recommended"); 2166 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2167 ext4_msg(sb, KERN_WARNING, 2168 "warning: mounting fs with errors, " 2169 "running e2fsck is recommended"); 2170 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2171 le16_to_cpu(es->s_mnt_count) >= 2172 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2173 ext4_msg(sb, KERN_WARNING, 2174 "warning: maximal mount count reached, " 2175 "running e2fsck is recommended"); 2176 else if (le32_to_cpu(es->s_checkinterval) && 2177 (le32_to_cpu(es->s_lastcheck) + 2178 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2179 ext4_msg(sb, KERN_WARNING, 2180 "warning: checktime reached, " 2181 "running e2fsck is recommended"); 2182 if (!sbi->s_journal) 2183 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2184 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2185 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2186 le16_add_cpu(&es->s_mnt_count, 1); 2187 es->s_mtime = cpu_to_le32(get_seconds()); 2188 ext4_update_dynamic_rev(sb); 2189 if (sbi->s_journal) 2190 ext4_set_feature_journal_needs_recovery(sb); 2191 2192 err = ext4_commit_super(sb, 1); 2193 done: 2194 if (test_opt(sb, DEBUG)) 2195 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2196 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2197 sb->s_blocksize, 2198 sbi->s_groups_count, 2199 EXT4_BLOCKS_PER_GROUP(sb), 2200 EXT4_INODES_PER_GROUP(sb), 2201 sbi->s_mount_opt, sbi->s_mount_opt2); 2202 2203 cleancache_init_fs(sb); 2204 return err; 2205 } 2206 2207 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2208 { 2209 struct ext4_sb_info *sbi = EXT4_SB(sb); 2210 struct flex_groups *new_groups; 2211 int size; 2212 2213 if (!sbi->s_log_groups_per_flex) 2214 return 0; 2215 2216 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2217 if (size <= sbi->s_flex_groups_allocated) 2218 return 0; 2219 2220 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2221 new_groups = kvzalloc(size, GFP_KERNEL); 2222 if (!new_groups) { 2223 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2224 size / (int) sizeof(struct flex_groups)); 2225 return -ENOMEM; 2226 } 2227 2228 if (sbi->s_flex_groups) { 2229 memcpy(new_groups, sbi->s_flex_groups, 2230 (sbi->s_flex_groups_allocated * 2231 sizeof(struct flex_groups))); 2232 kvfree(sbi->s_flex_groups); 2233 } 2234 sbi->s_flex_groups = new_groups; 2235 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2236 return 0; 2237 } 2238 2239 static int ext4_fill_flex_info(struct super_block *sb) 2240 { 2241 struct ext4_sb_info *sbi = EXT4_SB(sb); 2242 struct ext4_group_desc *gdp = NULL; 2243 ext4_group_t flex_group; 2244 int i, err; 2245 2246 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2247 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2248 sbi->s_log_groups_per_flex = 0; 2249 return 1; 2250 } 2251 2252 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2253 if (err) 2254 goto failed; 2255 2256 for (i = 0; i < sbi->s_groups_count; i++) { 2257 gdp = ext4_get_group_desc(sb, i, NULL); 2258 2259 flex_group = ext4_flex_group(sbi, i); 2260 atomic_add(ext4_free_inodes_count(sb, gdp), 2261 &sbi->s_flex_groups[flex_group].free_inodes); 2262 atomic64_add(ext4_free_group_clusters(sb, gdp), 2263 &sbi->s_flex_groups[flex_group].free_clusters); 2264 atomic_add(ext4_used_dirs_count(sb, gdp), 2265 &sbi->s_flex_groups[flex_group].used_dirs); 2266 } 2267 2268 return 1; 2269 failed: 2270 return 0; 2271 } 2272 2273 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2274 struct ext4_group_desc *gdp) 2275 { 2276 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2277 __u16 crc = 0; 2278 __le32 le_group = cpu_to_le32(block_group); 2279 struct ext4_sb_info *sbi = EXT4_SB(sb); 2280 2281 if (ext4_has_metadata_csum(sbi->s_sb)) { 2282 /* Use new metadata_csum algorithm */ 2283 __u32 csum32; 2284 __u16 dummy_csum = 0; 2285 2286 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2287 sizeof(le_group)); 2288 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2289 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2290 sizeof(dummy_csum)); 2291 offset += sizeof(dummy_csum); 2292 if (offset < sbi->s_desc_size) 2293 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2294 sbi->s_desc_size - offset); 2295 2296 crc = csum32 & 0xFFFF; 2297 goto out; 2298 } 2299 2300 /* old crc16 code */ 2301 if (!ext4_has_feature_gdt_csum(sb)) 2302 return 0; 2303 2304 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2305 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2306 crc = crc16(crc, (__u8 *)gdp, offset); 2307 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2308 /* for checksum of struct ext4_group_desc do the rest...*/ 2309 if (ext4_has_feature_64bit(sb) && 2310 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2311 crc = crc16(crc, (__u8 *)gdp + offset, 2312 le16_to_cpu(sbi->s_es->s_desc_size) - 2313 offset); 2314 2315 out: 2316 return cpu_to_le16(crc); 2317 } 2318 2319 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2320 struct ext4_group_desc *gdp) 2321 { 2322 if (ext4_has_group_desc_csum(sb) && 2323 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2324 return 0; 2325 2326 return 1; 2327 } 2328 2329 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2330 struct ext4_group_desc *gdp) 2331 { 2332 if (!ext4_has_group_desc_csum(sb)) 2333 return; 2334 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2335 } 2336 2337 /* Called at mount-time, super-block is locked */ 2338 static int ext4_check_descriptors(struct super_block *sb, 2339 ext4_fsblk_t sb_block, 2340 ext4_group_t *first_not_zeroed) 2341 { 2342 struct ext4_sb_info *sbi = EXT4_SB(sb); 2343 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2344 ext4_fsblk_t last_block; 2345 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0) + 1; 2346 ext4_fsblk_t block_bitmap; 2347 ext4_fsblk_t inode_bitmap; 2348 ext4_fsblk_t inode_table; 2349 int flexbg_flag = 0; 2350 ext4_group_t i, grp = sbi->s_groups_count; 2351 2352 if (ext4_has_feature_flex_bg(sb)) 2353 flexbg_flag = 1; 2354 2355 ext4_debug("Checking group descriptors"); 2356 2357 for (i = 0; i < sbi->s_groups_count; i++) { 2358 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2359 2360 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2361 last_block = ext4_blocks_count(sbi->s_es) - 1; 2362 else 2363 last_block = first_block + 2364 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2365 2366 if ((grp == sbi->s_groups_count) && 2367 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2368 grp = i; 2369 2370 block_bitmap = ext4_block_bitmap(sb, gdp); 2371 if (block_bitmap == sb_block) { 2372 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2373 "Block bitmap for group %u overlaps " 2374 "superblock", i); 2375 if (!sb_rdonly(sb)) 2376 return 0; 2377 } 2378 if (block_bitmap >= sb_block + 1 && 2379 block_bitmap <= last_bg_block) { 2380 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2381 "Block bitmap for group %u overlaps " 2382 "block group descriptors", i); 2383 if (!sb_rdonly(sb)) 2384 return 0; 2385 } 2386 if (block_bitmap < first_block || block_bitmap > last_block) { 2387 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2388 "Block bitmap for group %u not in group " 2389 "(block %llu)!", i, block_bitmap); 2390 return 0; 2391 } 2392 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2393 if (inode_bitmap == sb_block) { 2394 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2395 "Inode bitmap for group %u overlaps " 2396 "superblock", i); 2397 if (!sb_rdonly(sb)) 2398 return 0; 2399 } 2400 if (inode_bitmap >= sb_block + 1 && 2401 inode_bitmap <= last_bg_block) { 2402 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2403 "Inode bitmap for group %u overlaps " 2404 "block group descriptors", i); 2405 if (!sb_rdonly(sb)) 2406 return 0; 2407 } 2408 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2409 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2410 "Inode bitmap for group %u not in group " 2411 "(block %llu)!", i, inode_bitmap); 2412 return 0; 2413 } 2414 inode_table = ext4_inode_table(sb, gdp); 2415 if (inode_table == sb_block) { 2416 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2417 "Inode table for group %u overlaps " 2418 "superblock", i); 2419 if (!sb_rdonly(sb)) 2420 return 0; 2421 } 2422 if (inode_table >= sb_block + 1 && 2423 inode_table <= last_bg_block) { 2424 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2425 "Inode table for group %u overlaps " 2426 "block group descriptors", i); 2427 if (!sb_rdonly(sb)) 2428 return 0; 2429 } 2430 if (inode_table < first_block || 2431 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2432 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2433 "Inode table for group %u not in group " 2434 "(block %llu)!", i, inode_table); 2435 return 0; 2436 } 2437 ext4_lock_group(sb, i); 2438 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2439 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2440 "Checksum for group %u failed (%u!=%u)", 2441 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2442 gdp)), le16_to_cpu(gdp->bg_checksum)); 2443 if (!sb_rdonly(sb)) { 2444 ext4_unlock_group(sb, i); 2445 return 0; 2446 } 2447 } 2448 ext4_unlock_group(sb, i); 2449 if (!flexbg_flag) 2450 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2451 } 2452 if (NULL != first_not_zeroed) 2453 *first_not_zeroed = grp; 2454 return 1; 2455 } 2456 2457 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2458 * the superblock) which were deleted from all directories, but held open by 2459 * a process at the time of a crash. We walk the list and try to delete these 2460 * inodes at recovery time (only with a read-write filesystem). 2461 * 2462 * In order to keep the orphan inode chain consistent during traversal (in 2463 * case of crash during recovery), we link each inode into the superblock 2464 * orphan list_head and handle it the same way as an inode deletion during 2465 * normal operation (which journals the operations for us). 2466 * 2467 * We only do an iget() and an iput() on each inode, which is very safe if we 2468 * accidentally point at an in-use or already deleted inode. The worst that 2469 * can happen in this case is that we get a "bit already cleared" message from 2470 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2471 * e2fsck was run on this filesystem, and it must have already done the orphan 2472 * inode cleanup for us, so we can safely abort without any further action. 2473 */ 2474 static void ext4_orphan_cleanup(struct super_block *sb, 2475 struct ext4_super_block *es) 2476 { 2477 unsigned int s_flags = sb->s_flags; 2478 int ret, nr_orphans = 0, nr_truncates = 0; 2479 #ifdef CONFIG_QUOTA 2480 int quota_update = 0; 2481 int i; 2482 #endif 2483 if (!es->s_last_orphan) { 2484 jbd_debug(4, "no orphan inodes to clean up\n"); 2485 return; 2486 } 2487 2488 if (bdev_read_only(sb->s_bdev)) { 2489 ext4_msg(sb, KERN_ERR, "write access " 2490 "unavailable, skipping orphan cleanup"); 2491 return; 2492 } 2493 2494 /* Check if feature set would not allow a r/w mount */ 2495 if (!ext4_feature_set_ok(sb, 0)) { 2496 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2497 "unknown ROCOMPAT features"); 2498 return; 2499 } 2500 2501 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2502 /* don't clear list on RO mount w/ errors */ 2503 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2504 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2505 "clearing orphan list.\n"); 2506 es->s_last_orphan = 0; 2507 } 2508 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2509 return; 2510 } 2511 2512 if (s_flags & SB_RDONLY) { 2513 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2514 sb->s_flags &= ~SB_RDONLY; 2515 } 2516 #ifdef CONFIG_QUOTA 2517 /* Needed for iput() to work correctly and not trash data */ 2518 sb->s_flags |= SB_ACTIVE; 2519 2520 /* 2521 * Turn on quotas which were not enabled for read-only mounts if 2522 * filesystem has quota feature, so that they are updated correctly. 2523 */ 2524 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2525 int ret = ext4_enable_quotas(sb); 2526 2527 if (!ret) 2528 quota_update = 1; 2529 else 2530 ext4_msg(sb, KERN_ERR, 2531 "Cannot turn on quotas: error %d", ret); 2532 } 2533 2534 /* Turn on journaled quotas used for old sytle */ 2535 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2536 if (EXT4_SB(sb)->s_qf_names[i]) { 2537 int ret = ext4_quota_on_mount(sb, i); 2538 2539 if (!ret) 2540 quota_update = 1; 2541 else 2542 ext4_msg(sb, KERN_ERR, 2543 "Cannot turn on journaled " 2544 "quota: type %d: error %d", i, ret); 2545 } 2546 } 2547 #endif 2548 2549 while (es->s_last_orphan) { 2550 struct inode *inode; 2551 2552 /* 2553 * We may have encountered an error during cleanup; if 2554 * so, skip the rest. 2555 */ 2556 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2557 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2558 es->s_last_orphan = 0; 2559 break; 2560 } 2561 2562 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2563 if (IS_ERR(inode)) { 2564 es->s_last_orphan = 0; 2565 break; 2566 } 2567 2568 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2569 dquot_initialize(inode); 2570 if (inode->i_nlink) { 2571 if (test_opt(sb, DEBUG)) 2572 ext4_msg(sb, KERN_DEBUG, 2573 "%s: truncating inode %lu to %lld bytes", 2574 __func__, inode->i_ino, inode->i_size); 2575 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2576 inode->i_ino, inode->i_size); 2577 inode_lock(inode); 2578 truncate_inode_pages(inode->i_mapping, inode->i_size); 2579 ret = ext4_truncate(inode); 2580 if (ret) 2581 ext4_std_error(inode->i_sb, ret); 2582 inode_unlock(inode); 2583 nr_truncates++; 2584 } else { 2585 if (test_opt(sb, DEBUG)) 2586 ext4_msg(sb, KERN_DEBUG, 2587 "%s: deleting unreferenced inode %lu", 2588 __func__, inode->i_ino); 2589 jbd_debug(2, "deleting unreferenced inode %lu\n", 2590 inode->i_ino); 2591 nr_orphans++; 2592 } 2593 iput(inode); /* The delete magic happens here! */ 2594 } 2595 2596 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2597 2598 if (nr_orphans) 2599 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2600 PLURAL(nr_orphans)); 2601 if (nr_truncates) 2602 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2603 PLURAL(nr_truncates)); 2604 #ifdef CONFIG_QUOTA 2605 /* Turn off quotas if they were enabled for orphan cleanup */ 2606 if (quota_update) { 2607 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2608 if (sb_dqopt(sb)->files[i]) 2609 dquot_quota_off(sb, i); 2610 } 2611 } 2612 #endif 2613 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2614 } 2615 2616 /* 2617 * Maximal extent format file size. 2618 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2619 * extent format containers, within a sector_t, and within i_blocks 2620 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2621 * so that won't be a limiting factor. 2622 * 2623 * However there is other limiting factor. We do store extents in the form 2624 * of starting block and length, hence the resulting length of the extent 2625 * covering maximum file size must fit into on-disk format containers as 2626 * well. Given that length is always by 1 unit bigger than max unit (because 2627 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2628 * 2629 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2630 */ 2631 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2632 { 2633 loff_t res; 2634 loff_t upper_limit = MAX_LFS_FILESIZE; 2635 2636 /* small i_blocks in vfs inode? */ 2637 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2638 /* 2639 * CONFIG_LBDAF is not enabled implies the inode 2640 * i_block represent total blocks in 512 bytes 2641 * 32 == size of vfs inode i_blocks * 8 2642 */ 2643 upper_limit = (1LL << 32) - 1; 2644 2645 /* total blocks in file system block size */ 2646 upper_limit >>= (blkbits - 9); 2647 upper_limit <<= blkbits; 2648 } 2649 2650 /* 2651 * 32-bit extent-start container, ee_block. We lower the maxbytes 2652 * by one fs block, so ee_len can cover the extent of maximum file 2653 * size 2654 */ 2655 res = (1LL << 32) - 1; 2656 res <<= blkbits; 2657 2658 /* Sanity check against vm- & vfs- imposed limits */ 2659 if (res > upper_limit) 2660 res = upper_limit; 2661 2662 return res; 2663 } 2664 2665 /* 2666 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2667 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2668 * We need to be 1 filesystem block less than the 2^48 sector limit. 2669 */ 2670 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2671 { 2672 loff_t res = EXT4_NDIR_BLOCKS; 2673 int meta_blocks; 2674 loff_t upper_limit; 2675 /* This is calculated to be the largest file size for a dense, block 2676 * mapped file such that the file's total number of 512-byte sectors, 2677 * including data and all indirect blocks, does not exceed (2^48 - 1). 2678 * 2679 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2680 * number of 512-byte sectors of the file. 2681 */ 2682 2683 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2684 /* 2685 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2686 * the inode i_block field represents total file blocks in 2687 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2688 */ 2689 upper_limit = (1LL << 32) - 1; 2690 2691 /* total blocks in file system block size */ 2692 upper_limit >>= (bits - 9); 2693 2694 } else { 2695 /* 2696 * We use 48 bit ext4_inode i_blocks 2697 * With EXT4_HUGE_FILE_FL set the i_blocks 2698 * represent total number of blocks in 2699 * file system block size 2700 */ 2701 upper_limit = (1LL << 48) - 1; 2702 2703 } 2704 2705 /* indirect blocks */ 2706 meta_blocks = 1; 2707 /* double indirect blocks */ 2708 meta_blocks += 1 + (1LL << (bits-2)); 2709 /* tripple indirect blocks */ 2710 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2711 2712 upper_limit -= meta_blocks; 2713 upper_limit <<= bits; 2714 2715 res += 1LL << (bits-2); 2716 res += 1LL << (2*(bits-2)); 2717 res += 1LL << (3*(bits-2)); 2718 res <<= bits; 2719 if (res > upper_limit) 2720 res = upper_limit; 2721 2722 if (res > MAX_LFS_FILESIZE) 2723 res = MAX_LFS_FILESIZE; 2724 2725 return res; 2726 } 2727 2728 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2729 ext4_fsblk_t logical_sb_block, int nr) 2730 { 2731 struct ext4_sb_info *sbi = EXT4_SB(sb); 2732 ext4_group_t bg, first_meta_bg; 2733 int has_super = 0; 2734 2735 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2736 2737 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2738 return logical_sb_block + nr + 1; 2739 bg = sbi->s_desc_per_block * nr; 2740 if (ext4_bg_has_super(sb, bg)) 2741 has_super = 1; 2742 2743 /* 2744 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2745 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2746 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2747 * compensate. 2748 */ 2749 if (sb->s_blocksize == 1024 && nr == 0 && 2750 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2751 has_super++; 2752 2753 return (has_super + ext4_group_first_block_no(sb, bg)); 2754 } 2755 2756 /** 2757 * ext4_get_stripe_size: Get the stripe size. 2758 * @sbi: In memory super block info 2759 * 2760 * If we have specified it via mount option, then 2761 * use the mount option value. If the value specified at mount time is 2762 * greater than the blocks per group use the super block value. 2763 * If the super block value is greater than blocks per group return 0. 2764 * Allocator needs it be less than blocks per group. 2765 * 2766 */ 2767 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2768 { 2769 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2770 unsigned long stripe_width = 2771 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2772 int ret; 2773 2774 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2775 ret = sbi->s_stripe; 2776 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2777 ret = stripe_width; 2778 else if (stride && stride <= sbi->s_blocks_per_group) 2779 ret = stride; 2780 else 2781 ret = 0; 2782 2783 /* 2784 * If the stripe width is 1, this makes no sense and 2785 * we set it to 0 to turn off stripe handling code. 2786 */ 2787 if (ret <= 1) 2788 ret = 0; 2789 2790 return ret; 2791 } 2792 2793 /* 2794 * Check whether this filesystem can be mounted based on 2795 * the features present and the RDONLY/RDWR mount requested. 2796 * Returns 1 if this filesystem can be mounted as requested, 2797 * 0 if it cannot be. 2798 */ 2799 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2800 { 2801 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2802 ext4_msg(sb, KERN_ERR, 2803 "Couldn't mount because of " 2804 "unsupported optional features (%x)", 2805 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2806 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2807 return 0; 2808 } 2809 2810 if (readonly) 2811 return 1; 2812 2813 if (ext4_has_feature_readonly(sb)) { 2814 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2815 sb->s_flags |= SB_RDONLY; 2816 return 1; 2817 } 2818 2819 /* Check that feature set is OK for a read-write mount */ 2820 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2821 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2822 "unsupported optional features (%x)", 2823 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2824 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2825 return 0; 2826 } 2827 /* 2828 * Large file size enabled file system can only be mounted 2829 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2830 */ 2831 if (ext4_has_feature_huge_file(sb)) { 2832 if (sizeof(blkcnt_t) < sizeof(u64)) { 2833 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2834 "cannot be mounted RDWR without " 2835 "CONFIG_LBDAF"); 2836 return 0; 2837 } 2838 } 2839 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2840 ext4_msg(sb, KERN_ERR, 2841 "Can't support bigalloc feature without " 2842 "extents feature\n"); 2843 return 0; 2844 } 2845 2846 #ifndef CONFIG_QUOTA 2847 if (ext4_has_feature_quota(sb) && !readonly) { 2848 ext4_msg(sb, KERN_ERR, 2849 "Filesystem with quota feature cannot be mounted RDWR " 2850 "without CONFIG_QUOTA"); 2851 return 0; 2852 } 2853 if (ext4_has_feature_project(sb) && !readonly) { 2854 ext4_msg(sb, KERN_ERR, 2855 "Filesystem with project quota feature cannot be mounted RDWR " 2856 "without CONFIG_QUOTA"); 2857 return 0; 2858 } 2859 #endif /* CONFIG_QUOTA */ 2860 return 1; 2861 } 2862 2863 /* 2864 * This function is called once a day if we have errors logged 2865 * on the file system 2866 */ 2867 static void print_daily_error_info(struct timer_list *t) 2868 { 2869 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2870 struct super_block *sb = sbi->s_sb; 2871 struct ext4_super_block *es = sbi->s_es; 2872 2873 if (es->s_error_count) 2874 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2875 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2876 le32_to_cpu(es->s_error_count)); 2877 if (es->s_first_error_time) { 2878 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2879 sb->s_id, le32_to_cpu(es->s_first_error_time), 2880 (int) sizeof(es->s_first_error_func), 2881 es->s_first_error_func, 2882 le32_to_cpu(es->s_first_error_line)); 2883 if (es->s_first_error_ino) 2884 printk(KERN_CONT ": inode %u", 2885 le32_to_cpu(es->s_first_error_ino)); 2886 if (es->s_first_error_block) 2887 printk(KERN_CONT ": block %llu", (unsigned long long) 2888 le64_to_cpu(es->s_first_error_block)); 2889 printk(KERN_CONT "\n"); 2890 } 2891 if (es->s_last_error_time) { 2892 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2893 sb->s_id, le32_to_cpu(es->s_last_error_time), 2894 (int) sizeof(es->s_last_error_func), 2895 es->s_last_error_func, 2896 le32_to_cpu(es->s_last_error_line)); 2897 if (es->s_last_error_ino) 2898 printk(KERN_CONT ": inode %u", 2899 le32_to_cpu(es->s_last_error_ino)); 2900 if (es->s_last_error_block) 2901 printk(KERN_CONT ": block %llu", (unsigned long long) 2902 le64_to_cpu(es->s_last_error_block)); 2903 printk(KERN_CONT "\n"); 2904 } 2905 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2906 } 2907 2908 /* Find next suitable group and run ext4_init_inode_table */ 2909 static int ext4_run_li_request(struct ext4_li_request *elr) 2910 { 2911 struct ext4_group_desc *gdp = NULL; 2912 ext4_group_t group, ngroups; 2913 struct super_block *sb; 2914 unsigned long timeout = 0; 2915 int ret = 0; 2916 2917 sb = elr->lr_super; 2918 ngroups = EXT4_SB(sb)->s_groups_count; 2919 2920 for (group = elr->lr_next_group; group < ngroups; group++) { 2921 gdp = ext4_get_group_desc(sb, group, NULL); 2922 if (!gdp) { 2923 ret = 1; 2924 break; 2925 } 2926 2927 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2928 break; 2929 } 2930 2931 if (group >= ngroups) 2932 ret = 1; 2933 2934 if (!ret) { 2935 timeout = jiffies; 2936 ret = ext4_init_inode_table(sb, group, 2937 elr->lr_timeout ? 0 : 1); 2938 if (elr->lr_timeout == 0) { 2939 timeout = (jiffies - timeout) * 2940 elr->lr_sbi->s_li_wait_mult; 2941 elr->lr_timeout = timeout; 2942 } 2943 elr->lr_next_sched = jiffies + elr->lr_timeout; 2944 elr->lr_next_group = group + 1; 2945 } 2946 return ret; 2947 } 2948 2949 /* 2950 * Remove lr_request from the list_request and free the 2951 * request structure. Should be called with li_list_mtx held 2952 */ 2953 static void ext4_remove_li_request(struct ext4_li_request *elr) 2954 { 2955 struct ext4_sb_info *sbi; 2956 2957 if (!elr) 2958 return; 2959 2960 sbi = elr->lr_sbi; 2961 2962 list_del(&elr->lr_request); 2963 sbi->s_li_request = NULL; 2964 kfree(elr); 2965 } 2966 2967 static void ext4_unregister_li_request(struct super_block *sb) 2968 { 2969 mutex_lock(&ext4_li_mtx); 2970 if (!ext4_li_info) { 2971 mutex_unlock(&ext4_li_mtx); 2972 return; 2973 } 2974 2975 mutex_lock(&ext4_li_info->li_list_mtx); 2976 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2977 mutex_unlock(&ext4_li_info->li_list_mtx); 2978 mutex_unlock(&ext4_li_mtx); 2979 } 2980 2981 static struct task_struct *ext4_lazyinit_task; 2982 2983 /* 2984 * This is the function where ext4lazyinit thread lives. It walks 2985 * through the request list searching for next scheduled filesystem. 2986 * When such a fs is found, run the lazy initialization request 2987 * (ext4_rn_li_request) and keep track of the time spend in this 2988 * function. Based on that time we compute next schedule time of 2989 * the request. When walking through the list is complete, compute 2990 * next waking time and put itself into sleep. 2991 */ 2992 static int ext4_lazyinit_thread(void *arg) 2993 { 2994 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2995 struct list_head *pos, *n; 2996 struct ext4_li_request *elr; 2997 unsigned long next_wakeup, cur; 2998 2999 BUG_ON(NULL == eli); 3000 3001 cont_thread: 3002 while (true) { 3003 next_wakeup = MAX_JIFFY_OFFSET; 3004 3005 mutex_lock(&eli->li_list_mtx); 3006 if (list_empty(&eli->li_request_list)) { 3007 mutex_unlock(&eli->li_list_mtx); 3008 goto exit_thread; 3009 } 3010 list_for_each_safe(pos, n, &eli->li_request_list) { 3011 int err = 0; 3012 int progress = 0; 3013 elr = list_entry(pos, struct ext4_li_request, 3014 lr_request); 3015 3016 if (time_before(jiffies, elr->lr_next_sched)) { 3017 if (time_before(elr->lr_next_sched, next_wakeup)) 3018 next_wakeup = elr->lr_next_sched; 3019 continue; 3020 } 3021 if (down_read_trylock(&elr->lr_super->s_umount)) { 3022 if (sb_start_write_trylock(elr->lr_super)) { 3023 progress = 1; 3024 /* 3025 * We hold sb->s_umount, sb can not 3026 * be removed from the list, it is 3027 * now safe to drop li_list_mtx 3028 */ 3029 mutex_unlock(&eli->li_list_mtx); 3030 err = ext4_run_li_request(elr); 3031 sb_end_write(elr->lr_super); 3032 mutex_lock(&eli->li_list_mtx); 3033 n = pos->next; 3034 } 3035 up_read((&elr->lr_super->s_umount)); 3036 } 3037 /* error, remove the lazy_init job */ 3038 if (err) { 3039 ext4_remove_li_request(elr); 3040 continue; 3041 } 3042 if (!progress) { 3043 elr->lr_next_sched = jiffies + 3044 (prandom_u32() 3045 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3046 } 3047 if (time_before(elr->lr_next_sched, next_wakeup)) 3048 next_wakeup = elr->lr_next_sched; 3049 } 3050 mutex_unlock(&eli->li_list_mtx); 3051 3052 try_to_freeze(); 3053 3054 cur = jiffies; 3055 if ((time_after_eq(cur, next_wakeup)) || 3056 (MAX_JIFFY_OFFSET == next_wakeup)) { 3057 cond_resched(); 3058 continue; 3059 } 3060 3061 schedule_timeout_interruptible(next_wakeup - cur); 3062 3063 if (kthread_should_stop()) { 3064 ext4_clear_request_list(); 3065 goto exit_thread; 3066 } 3067 } 3068 3069 exit_thread: 3070 /* 3071 * It looks like the request list is empty, but we need 3072 * to check it under the li_list_mtx lock, to prevent any 3073 * additions into it, and of course we should lock ext4_li_mtx 3074 * to atomically free the list and ext4_li_info, because at 3075 * this point another ext4 filesystem could be registering 3076 * new one. 3077 */ 3078 mutex_lock(&ext4_li_mtx); 3079 mutex_lock(&eli->li_list_mtx); 3080 if (!list_empty(&eli->li_request_list)) { 3081 mutex_unlock(&eli->li_list_mtx); 3082 mutex_unlock(&ext4_li_mtx); 3083 goto cont_thread; 3084 } 3085 mutex_unlock(&eli->li_list_mtx); 3086 kfree(ext4_li_info); 3087 ext4_li_info = NULL; 3088 mutex_unlock(&ext4_li_mtx); 3089 3090 return 0; 3091 } 3092 3093 static void ext4_clear_request_list(void) 3094 { 3095 struct list_head *pos, *n; 3096 struct ext4_li_request *elr; 3097 3098 mutex_lock(&ext4_li_info->li_list_mtx); 3099 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3100 elr = list_entry(pos, struct ext4_li_request, 3101 lr_request); 3102 ext4_remove_li_request(elr); 3103 } 3104 mutex_unlock(&ext4_li_info->li_list_mtx); 3105 } 3106 3107 static int ext4_run_lazyinit_thread(void) 3108 { 3109 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3110 ext4_li_info, "ext4lazyinit"); 3111 if (IS_ERR(ext4_lazyinit_task)) { 3112 int err = PTR_ERR(ext4_lazyinit_task); 3113 ext4_clear_request_list(); 3114 kfree(ext4_li_info); 3115 ext4_li_info = NULL; 3116 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3117 "initialization thread\n", 3118 err); 3119 return err; 3120 } 3121 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3122 return 0; 3123 } 3124 3125 /* 3126 * Check whether it make sense to run itable init. thread or not. 3127 * If there is at least one uninitialized inode table, return 3128 * corresponding group number, else the loop goes through all 3129 * groups and return total number of groups. 3130 */ 3131 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3132 { 3133 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3134 struct ext4_group_desc *gdp = NULL; 3135 3136 if (!ext4_has_group_desc_csum(sb)) 3137 return ngroups; 3138 3139 for (group = 0; group < ngroups; group++) { 3140 gdp = ext4_get_group_desc(sb, group, NULL); 3141 if (!gdp) 3142 continue; 3143 3144 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)) 3145 continue; 3146 if (group != 0) 3147 break; 3148 ext4_error(sb, "Inode table for bg 0 marked as " 3149 "needing zeroing"); 3150 if (sb_rdonly(sb)) 3151 return ngroups; 3152 } 3153 3154 return group; 3155 } 3156 3157 static int ext4_li_info_new(void) 3158 { 3159 struct ext4_lazy_init *eli = NULL; 3160 3161 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3162 if (!eli) 3163 return -ENOMEM; 3164 3165 INIT_LIST_HEAD(&eli->li_request_list); 3166 mutex_init(&eli->li_list_mtx); 3167 3168 eli->li_state |= EXT4_LAZYINIT_QUIT; 3169 3170 ext4_li_info = eli; 3171 3172 return 0; 3173 } 3174 3175 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3176 ext4_group_t start) 3177 { 3178 struct ext4_sb_info *sbi = EXT4_SB(sb); 3179 struct ext4_li_request *elr; 3180 3181 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3182 if (!elr) 3183 return NULL; 3184 3185 elr->lr_super = sb; 3186 elr->lr_sbi = sbi; 3187 elr->lr_next_group = start; 3188 3189 /* 3190 * Randomize first schedule time of the request to 3191 * spread the inode table initialization requests 3192 * better. 3193 */ 3194 elr->lr_next_sched = jiffies + (prandom_u32() % 3195 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3196 return elr; 3197 } 3198 3199 int ext4_register_li_request(struct super_block *sb, 3200 ext4_group_t first_not_zeroed) 3201 { 3202 struct ext4_sb_info *sbi = EXT4_SB(sb); 3203 struct ext4_li_request *elr = NULL; 3204 ext4_group_t ngroups = sbi->s_groups_count; 3205 int ret = 0; 3206 3207 mutex_lock(&ext4_li_mtx); 3208 if (sbi->s_li_request != NULL) { 3209 /* 3210 * Reset timeout so it can be computed again, because 3211 * s_li_wait_mult might have changed. 3212 */ 3213 sbi->s_li_request->lr_timeout = 0; 3214 goto out; 3215 } 3216 3217 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3218 !test_opt(sb, INIT_INODE_TABLE)) 3219 goto out; 3220 3221 elr = ext4_li_request_new(sb, first_not_zeroed); 3222 if (!elr) { 3223 ret = -ENOMEM; 3224 goto out; 3225 } 3226 3227 if (NULL == ext4_li_info) { 3228 ret = ext4_li_info_new(); 3229 if (ret) 3230 goto out; 3231 } 3232 3233 mutex_lock(&ext4_li_info->li_list_mtx); 3234 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3235 mutex_unlock(&ext4_li_info->li_list_mtx); 3236 3237 sbi->s_li_request = elr; 3238 /* 3239 * set elr to NULL here since it has been inserted to 3240 * the request_list and the removal and free of it is 3241 * handled by ext4_clear_request_list from now on. 3242 */ 3243 elr = NULL; 3244 3245 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3246 ret = ext4_run_lazyinit_thread(); 3247 if (ret) 3248 goto out; 3249 } 3250 out: 3251 mutex_unlock(&ext4_li_mtx); 3252 if (ret) 3253 kfree(elr); 3254 return ret; 3255 } 3256 3257 /* 3258 * We do not need to lock anything since this is called on 3259 * module unload. 3260 */ 3261 static void ext4_destroy_lazyinit_thread(void) 3262 { 3263 /* 3264 * If thread exited earlier 3265 * there's nothing to be done. 3266 */ 3267 if (!ext4_li_info || !ext4_lazyinit_task) 3268 return; 3269 3270 kthread_stop(ext4_lazyinit_task); 3271 } 3272 3273 static int set_journal_csum_feature_set(struct super_block *sb) 3274 { 3275 int ret = 1; 3276 int compat, incompat; 3277 struct ext4_sb_info *sbi = EXT4_SB(sb); 3278 3279 if (ext4_has_metadata_csum(sb)) { 3280 /* journal checksum v3 */ 3281 compat = 0; 3282 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3283 } else { 3284 /* journal checksum v1 */ 3285 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3286 incompat = 0; 3287 } 3288 3289 jbd2_journal_clear_features(sbi->s_journal, 3290 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3291 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3292 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3293 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3294 ret = jbd2_journal_set_features(sbi->s_journal, 3295 compat, 0, 3296 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3297 incompat); 3298 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3299 ret = jbd2_journal_set_features(sbi->s_journal, 3300 compat, 0, 3301 incompat); 3302 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3303 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3304 } else { 3305 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3306 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3307 } 3308 3309 return ret; 3310 } 3311 3312 /* 3313 * Note: calculating the overhead so we can be compatible with 3314 * historical BSD practice is quite difficult in the face of 3315 * clusters/bigalloc. This is because multiple metadata blocks from 3316 * different block group can end up in the same allocation cluster. 3317 * Calculating the exact overhead in the face of clustered allocation 3318 * requires either O(all block bitmaps) in memory or O(number of block 3319 * groups**2) in time. We will still calculate the superblock for 3320 * older file systems --- and if we come across with a bigalloc file 3321 * system with zero in s_overhead_clusters the estimate will be close to 3322 * correct especially for very large cluster sizes --- but for newer 3323 * file systems, it's better to calculate this figure once at mkfs 3324 * time, and store it in the superblock. If the superblock value is 3325 * present (even for non-bigalloc file systems), we will use it. 3326 */ 3327 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3328 char *buf) 3329 { 3330 struct ext4_sb_info *sbi = EXT4_SB(sb); 3331 struct ext4_group_desc *gdp; 3332 ext4_fsblk_t first_block, last_block, b; 3333 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3334 int s, j, count = 0; 3335 3336 if (!ext4_has_feature_bigalloc(sb)) 3337 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3338 sbi->s_itb_per_group + 2); 3339 3340 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3341 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3342 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3343 for (i = 0; i < ngroups; i++) { 3344 gdp = ext4_get_group_desc(sb, i, NULL); 3345 b = ext4_block_bitmap(sb, gdp); 3346 if (b >= first_block && b <= last_block) { 3347 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3348 count++; 3349 } 3350 b = ext4_inode_bitmap(sb, gdp); 3351 if (b >= first_block && b <= last_block) { 3352 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3353 count++; 3354 } 3355 b = ext4_inode_table(sb, gdp); 3356 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3357 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3358 int c = EXT4_B2C(sbi, b - first_block); 3359 ext4_set_bit(c, buf); 3360 count++; 3361 } 3362 if (i != grp) 3363 continue; 3364 s = 0; 3365 if (ext4_bg_has_super(sb, grp)) { 3366 ext4_set_bit(s++, buf); 3367 count++; 3368 } 3369 j = ext4_bg_num_gdb(sb, grp); 3370 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3371 ext4_error(sb, "Invalid number of block group " 3372 "descriptor blocks: %d", j); 3373 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3374 } 3375 count += j; 3376 for (; j > 0; j--) 3377 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3378 } 3379 if (!count) 3380 return 0; 3381 return EXT4_CLUSTERS_PER_GROUP(sb) - 3382 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3383 } 3384 3385 /* 3386 * Compute the overhead and stash it in sbi->s_overhead 3387 */ 3388 int ext4_calculate_overhead(struct super_block *sb) 3389 { 3390 struct ext4_sb_info *sbi = EXT4_SB(sb); 3391 struct ext4_super_block *es = sbi->s_es; 3392 struct inode *j_inode; 3393 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3394 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3395 ext4_fsblk_t overhead = 0; 3396 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3397 3398 if (!buf) 3399 return -ENOMEM; 3400 3401 /* 3402 * Compute the overhead (FS structures). This is constant 3403 * for a given filesystem unless the number of block groups 3404 * changes so we cache the previous value until it does. 3405 */ 3406 3407 /* 3408 * All of the blocks before first_data_block are overhead 3409 */ 3410 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3411 3412 /* 3413 * Add the overhead found in each block group 3414 */ 3415 for (i = 0; i < ngroups; i++) { 3416 int blks; 3417 3418 blks = count_overhead(sb, i, buf); 3419 overhead += blks; 3420 if (blks) 3421 memset(buf, 0, PAGE_SIZE); 3422 cond_resched(); 3423 } 3424 3425 /* 3426 * Add the internal journal blocks whether the journal has been 3427 * loaded or not 3428 */ 3429 if (sbi->s_journal && !sbi->journal_bdev) 3430 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3431 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3432 j_inode = ext4_get_journal_inode(sb, j_inum); 3433 if (j_inode) { 3434 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3435 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3436 iput(j_inode); 3437 } else { 3438 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3439 } 3440 } 3441 sbi->s_overhead = overhead; 3442 smp_wmb(); 3443 free_page((unsigned long) buf); 3444 return 0; 3445 } 3446 3447 static void ext4_set_resv_clusters(struct super_block *sb) 3448 { 3449 ext4_fsblk_t resv_clusters; 3450 struct ext4_sb_info *sbi = EXT4_SB(sb); 3451 3452 /* 3453 * There's no need to reserve anything when we aren't using extents. 3454 * The space estimates are exact, there are no unwritten extents, 3455 * hole punching doesn't need new metadata... This is needed especially 3456 * to keep ext2/3 backward compatibility. 3457 */ 3458 if (!ext4_has_feature_extents(sb)) 3459 return; 3460 /* 3461 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3462 * This should cover the situations where we can not afford to run 3463 * out of space like for example punch hole, or converting 3464 * unwritten extents in delalloc path. In most cases such 3465 * allocation would require 1, or 2 blocks, higher numbers are 3466 * very rare. 3467 */ 3468 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3469 sbi->s_cluster_bits); 3470 3471 do_div(resv_clusters, 50); 3472 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3473 3474 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3475 } 3476 3477 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3478 { 3479 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3480 char *orig_data = kstrdup(data, GFP_KERNEL); 3481 struct buffer_head *bh; 3482 struct ext4_super_block *es = NULL; 3483 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3484 ext4_fsblk_t block; 3485 ext4_fsblk_t sb_block = get_sb_block(&data); 3486 ext4_fsblk_t logical_sb_block; 3487 unsigned long offset = 0; 3488 unsigned long journal_devnum = 0; 3489 unsigned long def_mount_opts; 3490 struct inode *root; 3491 const char *descr; 3492 int ret = -ENOMEM; 3493 int blocksize, clustersize; 3494 unsigned int db_count; 3495 unsigned int i; 3496 int needs_recovery, has_huge_files, has_bigalloc; 3497 __u64 blocks_count; 3498 int err = 0; 3499 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3500 ext4_group_t first_not_zeroed; 3501 3502 if ((data && !orig_data) || !sbi) 3503 goto out_free_base; 3504 3505 sbi->s_daxdev = dax_dev; 3506 sbi->s_blockgroup_lock = 3507 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3508 if (!sbi->s_blockgroup_lock) 3509 goto out_free_base; 3510 3511 sb->s_fs_info = sbi; 3512 sbi->s_sb = sb; 3513 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3514 sbi->s_sb_block = sb_block; 3515 if (sb->s_bdev->bd_part) 3516 sbi->s_sectors_written_start = 3517 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3518 3519 /* Cleanup superblock name */ 3520 strreplace(sb->s_id, '/', '!'); 3521 3522 /* -EINVAL is default */ 3523 ret = -EINVAL; 3524 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3525 if (!blocksize) { 3526 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3527 goto out_fail; 3528 } 3529 3530 /* 3531 * The ext4 superblock will not be buffer aligned for other than 1kB 3532 * block sizes. We need to calculate the offset from buffer start. 3533 */ 3534 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3535 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3536 offset = do_div(logical_sb_block, blocksize); 3537 } else { 3538 logical_sb_block = sb_block; 3539 } 3540 3541 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3542 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3543 goto out_fail; 3544 } 3545 /* 3546 * Note: s_es must be initialized as soon as possible because 3547 * some ext4 macro-instructions depend on its value 3548 */ 3549 es = (struct ext4_super_block *) (bh->b_data + offset); 3550 sbi->s_es = es; 3551 sb->s_magic = le16_to_cpu(es->s_magic); 3552 if (sb->s_magic != EXT4_SUPER_MAGIC) 3553 goto cantfind_ext4; 3554 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3555 3556 /* Warn if metadata_csum and gdt_csum are both set. */ 3557 if (ext4_has_feature_metadata_csum(sb) && 3558 ext4_has_feature_gdt_csum(sb)) 3559 ext4_warning(sb, "metadata_csum and uninit_bg are " 3560 "redundant flags; please run fsck."); 3561 3562 /* Check for a known checksum algorithm */ 3563 if (!ext4_verify_csum_type(sb, es)) { 3564 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3565 "unknown checksum algorithm."); 3566 silent = 1; 3567 goto cantfind_ext4; 3568 } 3569 3570 /* Load the checksum driver */ 3571 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3572 if (IS_ERR(sbi->s_chksum_driver)) { 3573 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3574 ret = PTR_ERR(sbi->s_chksum_driver); 3575 sbi->s_chksum_driver = NULL; 3576 goto failed_mount; 3577 } 3578 3579 /* Check superblock checksum */ 3580 if (!ext4_superblock_csum_verify(sb, es)) { 3581 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3582 "invalid superblock checksum. Run e2fsck?"); 3583 silent = 1; 3584 ret = -EFSBADCRC; 3585 goto cantfind_ext4; 3586 } 3587 3588 /* Precompute checksum seed for all metadata */ 3589 if (ext4_has_feature_csum_seed(sb)) 3590 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3591 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3592 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3593 sizeof(es->s_uuid)); 3594 3595 /* Set defaults before we parse the mount options */ 3596 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3597 set_opt(sb, INIT_INODE_TABLE); 3598 if (def_mount_opts & EXT4_DEFM_DEBUG) 3599 set_opt(sb, DEBUG); 3600 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3601 set_opt(sb, GRPID); 3602 if (def_mount_opts & EXT4_DEFM_UID16) 3603 set_opt(sb, NO_UID32); 3604 /* xattr user namespace & acls are now defaulted on */ 3605 set_opt(sb, XATTR_USER); 3606 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3607 set_opt(sb, POSIX_ACL); 3608 #endif 3609 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3610 if (ext4_has_metadata_csum(sb)) 3611 set_opt(sb, JOURNAL_CHECKSUM); 3612 3613 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3614 set_opt(sb, JOURNAL_DATA); 3615 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3616 set_opt(sb, ORDERED_DATA); 3617 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3618 set_opt(sb, WRITEBACK_DATA); 3619 3620 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3621 set_opt(sb, ERRORS_PANIC); 3622 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3623 set_opt(sb, ERRORS_CONT); 3624 else 3625 set_opt(sb, ERRORS_RO); 3626 /* block_validity enabled by default; disable with noblock_validity */ 3627 set_opt(sb, BLOCK_VALIDITY); 3628 if (def_mount_opts & EXT4_DEFM_DISCARD) 3629 set_opt(sb, DISCARD); 3630 3631 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3632 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3633 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3634 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3635 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3636 3637 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3638 set_opt(sb, BARRIER); 3639 3640 /* 3641 * enable delayed allocation by default 3642 * Use -o nodelalloc to turn it off 3643 */ 3644 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3645 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3646 set_opt(sb, DELALLOC); 3647 3648 /* 3649 * set default s_li_wait_mult for lazyinit, for the case there is 3650 * no mount option specified. 3651 */ 3652 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3653 3654 if (sbi->s_es->s_mount_opts[0]) { 3655 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3656 sizeof(sbi->s_es->s_mount_opts), 3657 GFP_KERNEL); 3658 if (!s_mount_opts) 3659 goto failed_mount; 3660 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3661 &journal_ioprio, 0)) { 3662 ext4_msg(sb, KERN_WARNING, 3663 "failed to parse options in superblock: %s", 3664 s_mount_opts); 3665 } 3666 kfree(s_mount_opts); 3667 } 3668 sbi->s_def_mount_opt = sbi->s_mount_opt; 3669 if (!parse_options((char *) data, sb, &journal_devnum, 3670 &journal_ioprio, 0)) 3671 goto failed_mount; 3672 3673 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3674 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3675 "with data=journal disables delayed " 3676 "allocation and O_DIRECT support!\n"); 3677 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3678 ext4_msg(sb, KERN_ERR, "can't mount with " 3679 "both data=journal and delalloc"); 3680 goto failed_mount; 3681 } 3682 if (test_opt(sb, DIOREAD_NOLOCK)) { 3683 ext4_msg(sb, KERN_ERR, "can't mount with " 3684 "both data=journal and dioread_nolock"); 3685 goto failed_mount; 3686 } 3687 if (test_opt(sb, DAX)) { 3688 ext4_msg(sb, KERN_ERR, "can't mount with " 3689 "both data=journal and dax"); 3690 goto failed_mount; 3691 } 3692 if (ext4_has_feature_encrypt(sb)) { 3693 ext4_msg(sb, KERN_WARNING, 3694 "encrypted files will use data=ordered " 3695 "instead of data journaling mode"); 3696 } 3697 if (test_opt(sb, DELALLOC)) 3698 clear_opt(sb, DELALLOC); 3699 } else { 3700 sb->s_iflags |= SB_I_CGROUPWB; 3701 } 3702 3703 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3704 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3705 3706 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3707 (ext4_has_compat_features(sb) || 3708 ext4_has_ro_compat_features(sb) || 3709 ext4_has_incompat_features(sb))) 3710 ext4_msg(sb, KERN_WARNING, 3711 "feature flags set on rev 0 fs, " 3712 "running e2fsck is recommended"); 3713 3714 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3715 set_opt2(sb, HURD_COMPAT); 3716 if (ext4_has_feature_64bit(sb)) { 3717 ext4_msg(sb, KERN_ERR, 3718 "The Hurd can't support 64-bit file systems"); 3719 goto failed_mount; 3720 } 3721 3722 /* 3723 * ea_inode feature uses l_i_version field which is not 3724 * available in HURD_COMPAT mode. 3725 */ 3726 if (ext4_has_feature_ea_inode(sb)) { 3727 ext4_msg(sb, KERN_ERR, 3728 "ea_inode feature is not supported for Hurd"); 3729 goto failed_mount; 3730 } 3731 } 3732 3733 if (IS_EXT2_SB(sb)) { 3734 if (ext2_feature_set_ok(sb)) 3735 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3736 "using the ext4 subsystem"); 3737 else { 3738 /* 3739 * If we're probing be silent, if this looks like 3740 * it's actually an ext[34] filesystem. 3741 */ 3742 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3743 goto failed_mount; 3744 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3745 "to feature incompatibilities"); 3746 goto failed_mount; 3747 } 3748 } 3749 3750 if (IS_EXT3_SB(sb)) { 3751 if (ext3_feature_set_ok(sb)) 3752 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3753 "using the ext4 subsystem"); 3754 else { 3755 /* 3756 * If we're probing be silent, if this looks like 3757 * it's actually an ext4 filesystem. 3758 */ 3759 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3760 goto failed_mount; 3761 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3762 "to feature incompatibilities"); 3763 goto failed_mount; 3764 } 3765 } 3766 3767 /* 3768 * Check feature flags regardless of the revision level, since we 3769 * previously didn't change the revision level when setting the flags, 3770 * so there is a chance incompat flags are set on a rev 0 filesystem. 3771 */ 3772 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3773 goto failed_mount; 3774 3775 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3776 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3777 blocksize > EXT4_MAX_BLOCK_SIZE) { 3778 ext4_msg(sb, KERN_ERR, 3779 "Unsupported filesystem blocksize %d (%d log_block_size)", 3780 blocksize, le32_to_cpu(es->s_log_block_size)); 3781 goto failed_mount; 3782 } 3783 if (le32_to_cpu(es->s_log_block_size) > 3784 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3785 ext4_msg(sb, KERN_ERR, 3786 "Invalid log block size: %u", 3787 le32_to_cpu(es->s_log_block_size)); 3788 goto failed_mount; 3789 } 3790 if (le32_to_cpu(es->s_log_cluster_size) > 3791 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3792 ext4_msg(sb, KERN_ERR, 3793 "Invalid log cluster size: %u", 3794 le32_to_cpu(es->s_log_cluster_size)); 3795 goto failed_mount; 3796 } 3797 3798 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3799 ext4_msg(sb, KERN_ERR, 3800 "Number of reserved GDT blocks insanely large: %d", 3801 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3802 goto failed_mount; 3803 } 3804 3805 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3806 if (ext4_has_feature_inline_data(sb)) { 3807 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3808 " that may contain inline data"); 3809 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3810 } 3811 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 3812 ext4_msg(sb, KERN_ERR, 3813 "DAX unsupported by block device. Turning off DAX."); 3814 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3815 } 3816 } 3817 3818 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3819 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3820 es->s_encryption_level); 3821 goto failed_mount; 3822 } 3823 3824 if (sb->s_blocksize != blocksize) { 3825 /* Validate the filesystem blocksize */ 3826 if (!sb_set_blocksize(sb, blocksize)) { 3827 ext4_msg(sb, KERN_ERR, "bad block size %d", 3828 blocksize); 3829 goto failed_mount; 3830 } 3831 3832 brelse(bh); 3833 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3834 offset = do_div(logical_sb_block, blocksize); 3835 bh = sb_bread_unmovable(sb, logical_sb_block); 3836 if (!bh) { 3837 ext4_msg(sb, KERN_ERR, 3838 "Can't read superblock on 2nd try"); 3839 goto failed_mount; 3840 } 3841 es = (struct ext4_super_block *)(bh->b_data + offset); 3842 sbi->s_es = es; 3843 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3844 ext4_msg(sb, KERN_ERR, 3845 "Magic mismatch, very weird!"); 3846 goto failed_mount; 3847 } 3848 } 3849 3850 has_huge_files = ext4_has_feature_huge_file(sb); 3851 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3852 has_huge_files); 3853 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3854 3855 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3856 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3857 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3858 } else { 3859 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3860 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3861 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3862 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3863 sbi->s_first_ino); 3864 goto failed_mount; 3865 } 3866 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3867 (!is_power_of_2(sbi->s_inode_size)) || 3868 (sbi->s_inode_size > blocksize)) { 3869 ext4_msg(sb, KERN_ERR, 3870 "unsupported inode size: %d", 3871 sbi->s_inode_size); 3872 goto failed_mount; 3873 } 3874 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3875 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3876 } 3877 3878 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3879 if (ext4_has_feature_64bit(sb)) { 3880 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3881 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3882 !is_power_of_2(sbi->s_desc_size)) { 3883 ext4_msg(sb, KERN_ERR, 3884 "unsupported descriptor size %lu", 3885 sbi->s_desc_size); 3886 goto failed_mount; 3887 } 3888 } else 3889 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3890 3891 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3892 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3893 3894 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3895 if (sbi->s_inodes_per_block == 0) 3896 goto cantfind_ext4; 3897 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3898 sbi->s_inodes_per_group > blocksize * 8) { 3899 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3900 sbi->s_blocks_per_group); 3901 goto failed_mount; 3902 } 3903 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3904 sbi->s_inodes_per_block; 3905 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3906 sbi->s_sbh = bh; 3907 sbi->s_mount_state = le16_to_cpu(es->s_state); 3908 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3909 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3910 3911 for (i = 0; i < 4; i++) 3912 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3913 sbi->s_def_hash_version = es->s_def_hash_version; 3914 if (ext4_has_feature_dir_index(sb)) { 3915 i = le32_to_cpu(es->s_flags); 3916 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3917 sbi->s_hash_unsigned = 3; 3918 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3919 #ifdef __CHAR_UNSIGNED__ 3920 if (!sb_rdonly(sb)) 3921 es->s_flags |= 3922 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3923 sbi->s_hash_unsigned = 3; 3924 #else 3925 if (!sb_rdonly(sb)) 3926 es->s_flags |= 3927 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3928 #endif 3929 } 3930 } 3931 3932 /* Handle clustersize */ 3933 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3934 has_bigalloc = ext4_has_feature_bigalloc(sb); 3935 if (has_bigalloc) { 3936 if (clustersize < blocksize) { 3937 ext4_msg(sb, KERN_ERR, 3938 "cluster size (%d) smaller than " 3939 "block size (%d)", clustersize, blocksize); 3940 goto failed_mount; 3941 } 3942 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3943 le32_to_cpu(es->s_log_block_size); 3944 sbi->s_clusters_per_group = 3945 le32_to_cpu(es->s_clusters_per_group); 3946 if (sbi->s_clusters_per_group > blocksize * 8) { 3947 ext4_msg(sb, KERN_ERR, 3948 "#clusters per group too big: %lu", 3949 sbi->s_clusters_per_group); 3950 goto failed_mount; 3951 } 3952 if (sbi->s_blocks_per_group != 3953 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3954 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3955 "clusters per group (%lu) inconsistent", 3956 sbi->s_blocks_per_group, 3957 sbi->s_clusters_per_group); 3958 goto failed_mount; 3959 } 3960 } else { 3961 if (clustersize != blocksize) { 3962 ext4_msg(sb, KERN_ERR, 3963 "fragment/cluster size (%d) != " 3964 "block size (%d)", clustersize, blocksize); 3965 goto failed_mount; 3966 } 3967 if (sbi->s_blocks_per_group > blocksize * 8) { 3968 ext4_msg(sb, KERN_ERR, 3969 "#blocks per group too big: %lu", 3970 sbi->s_blocks_per_group); 3971 goto failed_mount; 3972 } 3973 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3974 sbi->s_cluster_bits = 0; 3975 } 3976 sbi->s_cluster_ratio = clustersize / blocksize; 3977 3978 /* Do we have standard group size of clustersize * 8 blocks ? */ 3979 if (sbi->s_blocks_per_group == clustersize << 3) 3980 set_opt2(sb, STD_GROUP_SIZE); 3981 3982 /* 3983 * Test whether we have more sectors than will fit in sector_t, 3984 * and whether the max offset is addressable by the page cache. 3985 */ 3986 err = generic_check_addressable(sb->s_blocksize_bits, 3987 ext4_blocks_count(es)); 3988 if (err) { 3989 ext4_msg(sb, KERN_ERR, "filesystem" 3990 " too large to mount safely on this system"); 3991 if (sizeof(sector_t) < 8) 3992 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3993 goto failed_mount; 3994 } 3995 3996 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3997 goto cantfind_ext4; 3998 3999 /* check blocks count against device size */ 4000 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4001 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4002 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4003 "exceeds size of device (%llu blocks)", 4004 ext4_blocks_count(es), blocks_count); 4005 goto failed_mount; 4006 } 4007 4008 /* 4009 * It makes no sense for the first data block to be beyond the end 4010 * of the filesystem. 4011 */ 4012 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4013 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4014 "block %u is beyond end of filesystem (%llu)", 4015 le32_to_cpu(es->s_first_data_block), 4016 ext4_blocks_count(es)); 4017 goto failed_mount; 4018 } 4019 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4020 (sbi->s_cluster_ratio == 1)) { 4021 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4022 "block is 0 with a 1k block and cluster size"); 4023 goto failed_mount; 4024 } 4025 4026 blocks_count = (ext4_blocks_count(es) - 4027 le32_to_cpu(es->s_first_data_block) + 4028 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4029 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4030 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4031 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4032 "(block count %llu, first data block %u, " 4033 "blocks per group %lu)", sbi->s_groups_count, 4034 ext4_blocks_count(es), 4035 le32_to_cpu(es->s_first_data_block), 4036 EXT4_BLOCKS_PER_GROUP(sb)); 4037 goto failed_mount; 4038 } 4039 sbi->s_groups_count = blocks_count; 4040 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4041 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4042 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4043 EXT4_DESC_PER_BLOCK(sb); 4044 if (ext4_has_feature_meta_bg(sb)) { 4045 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4046 ext4_msg(sb, KERN_WARNING, 4047 "first meta block group too large: %u " 4048 "(group descriptor block count %u)", 4049 le32_to_cpu(es->s_first_meta_bg), db_count); 4050 goto failed_mount; 4051 } 4052 } 4053 sbi->s_group_desc = kvmalloc_array(db_count, 4054 sizeof(struct buffer_head *), 4055 GFP_KERNEL); 4056 if (sbi->s_group_desc == NULL) { 4057 ext4_msg(sb, KERN_ERR, "not enough memory"); 4058 ret = -ENOMEM; 4059 goto failed_mount; 4060 } 4061 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4062 le32_to_cpu(es->s_inodes_count)) { 4063 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4064 le32_to_cpu(es->s_inodes_count), 4065 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4066 ret = -EINVAL; 4067 goto failed_mount; 4068 } 4069 4070 bgl_lock_init(sbi->s_blockgroup_lock); 4071 4072 /* Pre-read the descriptors into the buffer cache */ 4073 for (i = 0; i < db_count; i++) { 4074 block = descriptor_loc(sb, logical_sb_block, i); 4075 sb_breadahead(sb, block); 4076 } 4077 4078 for (i = 0; i < db_count; i++) { 4079 block = descriptor_loc(sb, logical_sb_block, i); 4080 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4081 if (!sbi->s_group_desc[i]) { 4082 ext4_msg(sb, KERN_ERR, 4083 "can't read group descriptor %d", i); 4084 db_count = i; 4085 goto failed_mount2; 4086 } 4087 } 4088 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4089 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4090 ret = -EFSCORRUPTED; 4091 goto failed_mount2; 4092 } 4093 4094 sbi->s_gdb_count = db_count; 4095 4096 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4097 4098 /* Register extent status tree shrinker */ 4099 if (ext4_es_register_shrinker(sbi)) 4100 goto failed_mount3; 4101 4102 sbi->s_stripe = ext4_get_stripe_size(sbi); 4103 sbi->s_extent_max_zeroout_kb = 32; 4104 4105 /* 4106 * set up enough so that it can read an inode 4107 */ 4108 sb->s_op = &ext4_sops; 4109 sb->s_export_op = &ext4_export_ops; 4110 sb->s_xattr = ext4_xattr_handlers; 4111 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4112 sb->s_cop = &ext4_cryptops; 4113 #endif 4114 #ifdef CONFIG_QUOTA 4115 sb->dq_op = &ext4_quota_operations; 4116 if (ext4_has_feature_quota(sb)) 4117 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4118 else 4119 sb->s_qcop = &ext4_qctl_operations; 4120 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4121 #endif 4122 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4123 4124 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4125 mutex_init(&sbi->s_orphan_lock); 4126 4127 sb->s_root = NULL; 4128 4129 needs_recovery = (es->s_last_orphan != 0 || 4130 ext4_has_feature_journal_needs_recovery(sb)); 4131 4132 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4133 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4134 goto failed_mount3a; 4135 4136 /* 4137 * The first inode we look at is the journal inode. Don't try 4138 * root first: it may be modified in the journal! 4139 */ 4140 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4141 err = ext4_load_journal(sb, es, journal_devnum); 4142 if (err) 4143 goto failed_mount3a; 4144 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4145 ext4_has_feature_journal_needs_recovery(sb)) { 4146 ext4_msg(sb, KERN_ERR, "required journal recovery " 4147 "suppressed and not mounted read-only"); 4148 goto failed_mount_wq; 4149 } else { 4150 /* Nojournal mode, all journal mount options are illegal */ 4151 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4152 ext4_msg(sb, KERN_ERR, "can't mount with " 4153 "journal_checksum, fs mounted w/o journal"); 4154 goto failed_mount_wq; 4155 } 4156 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4157 ext4_msg(sb, KERN_ERR, "can't mount with " 4158 "journal_async_commit, fs mounted w/o journal"); 4159 goto failed_mount_wq; 4160 } 4161 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4162 ext4_msg(sb, KERN_ERR, "can't mount with " 4163 "commit=%lu, fs mounted w/o journal", 4164 sbi->s_commit_interval / HZ); 4165 goto failed_mount_wq; 4166 } 4167 if (EXT4_MOUNT_DATA_FLAGS & 4168 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4169 ext4_msg(sb, KERN_ERR, "can't mount with " 4170 "data=, fs mounted w/o journal"); 4171 goto failed_mount_wq; 4172 } 4173 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4174 clear_opt(sb, JOURNAL_CHECKSUM); 4175 clear_opt(sb, DATA_FLAGS); 4176 sbi->s_journal = NULL; 4177 needs_recovery = 0; 4178 goto no_journal; 4179 } 4180 4181 if (ext4_has_feature_64bit(sb) && 4182 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4183 JBD2_FEATURE_INCOMPAT_64BIT)) { 4184 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4185 goto failed_mount_wq; 4186 } 4187 4188 if (!set_journal_csum_feature_set(sb)) { 4189 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4190 "feature set"); 4191 goto failed_mount_wq; 4192 } 4193 4194 /* We have now updated the journal if required, so we can 4195 * validate the data journaling mode. */ 4196 switch (test_opt(sb, DATA_FLAGS)) { 4197 case 0: 4198 /* No mode set, assume a default based on the journal 4199 * capabilities: ORDERED_DATA if the journal can 4200 * cope, else JOURNAL_DATA 4201 */ 4202 if (jbd2_journal_check_available_features 4203 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4204 set_opt(sb, ORDERED_DATA); 4205 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4206 } else { 4207 set_opt(sb, JOURNAL_DATA); 4208 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4209 } 4210 break; 4211 4212 case EXT4_MOUNT_ORDERED_DATA: 4213 case EXT4_MOUNT_WRITEBACK_DATA: 4214 if (!jbd2_journal_check_available_features 4215 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4216 ext4_msg(sb, KERN_ERR, "Journal does not support " 4217 "requested data journaling mode"); 4218 goto failed_mount_wq; 4219 } 4220 default: 4221 break; 4222 } 4223 4224 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4225 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4226 ext4_msg(sb, KERN_ERR, "can't mount with " 4227 "journal_async_commit in data=ordered mode"); 4228 goto failed_mount_wq; 4229 } 4230 4231 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4232 4233 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4234 4235 no_journal: 4236 if (!test_opt(sb, NO_MBCACHE)) { 4237 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4238 if (!sbi->s_ea_block_cache) { 4239 ext4_msg(sb, KERN_ERR, 4240 "Failed to create ea_block_cache"); 4241 goto failed_mount_wq; 4242 } 4243 4244 if (ext4_has_feature_ea_inode(sb)) { 4245 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4246 if (!sbi->s_ea_inode_cache) { 4247 ext4_msg(sb, KERN_ERR, 4248 "Failed to create ea_inode_cache"); 4249 goto failed_mount_wq; 4250 } 4251 } 4252 } 4253 4254 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4255 (blocksize != PAGE_SIZE)) { 4256 ext4_msg(sb, KERN_ERR, 4257 "Unsupported blocksize for fs encryption"); 4258 goto failed_mount_wq; 4259 } 4260 4261 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4262 !ext4_has_feature_encrypt(sb)) { 4263 ext4_set_feature_encrypt(sb); 4264 ext4_commit_super(sb, 1); 4265 } 4266 4267 /* 4268 * Get the # of file system overhead blocks from the 4269 * superblock if present. 4270 */ 4271 if (es->s_overhead_clusters) 4272 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4273 else { 4274 err = ext4_calculate_overhead(sb); 4275 if (err) 4276 goto failed_mount_wq; 4277 } 4278 4279 /* 4280 * The maximum number of concurrent works can be high and 4281 * concurrency isn't really necessary. Limit it to 1. 4282 */ 4283 EXT4_SB(sb)->rsv_conversion_wq = 4284 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4285 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4286 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4287 ret = -ENOMEM; 4288 goto failed_mount4; 4289 } 4290 4291 /* 4292 * The jbd2_journal_load will have done any necessary log recovery, 4293 * so we can safely mount the rest of the filesystem now. 4294 */ 4295 4296 root = ext4_iget(sb, EXT4_ROOT_INO); 4297 if (IS_ERR(root)) { 4298 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4299 ret = PTR_ERR(root); 4300 root = NULL; 4301 goto failed_mount4; 4302 } 4303 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4304 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4305 iput(root); 4306 goto failed_mount4; 4307 } 4308 sb->s_root = d_make_root(root); 4309 if (!sb->s_root) { 4310 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4311 ret = -ENOMEM; 4312 goto failed_mount4; 4313 } 4314 4315 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4316 if (ret == -EROFS) { 4317 sb->s_flags |= SB_RDONLY; 4318 ret = 0; 4319 } else if (ret) 4320 goto failed_mount4a; 4321 4322 /* determine the minimum size of new large inodes, if present */ 4323 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4324 sbi->s_want_extra_isize == 0) { 4325 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4326 EXT4_GOOD_OLD_INODE_SIZE; 4327 if (ext4_has_feature_extra_isize(sb)) { 4328 if (sbi->s_want_extra_isize < 4329 le16_to_cpu(es->s_want_extra_isize)) 4330 sbi->s_want_extra_isize = 4331 le16_to_cpu(es->s_want_extra_isize); 4332 if (sbi->s_want_extra_isize < 4333 le16_to_cpu(es->s_min_extra_isize)) 4334 sbi->s_want_extra_isize = 4335 le16_to_cpu(es->s_min_extra_isize); 4336 } 4337 } 4338 /* Check if enough inode space is available */ 4339 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4340 sbi->s_inode_size) { 4341 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4342 EXT4_GOOD_OLD_INODE_SIZE; 4343 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4344 "available"); 4345 } 4346 4347 ext4_set_resv_clusters(sb); 4348 4349 err = ext4_setup_system_zone(sb); 4350 if (err) { 4351 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4352 "zone (%d)", err); 4353 goto failed_mount4a; 4354 } 4355 4356 ext4_ext_init(sb); 4357 err = ext4_mb_init(sb); 4358 if (err) { 4359 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4360 err); 4361 goto failed_mount5; 4362 } 4363 4364 block = ext4_count_free_clusters(sb); 4365 ext4_free_blocks_count_set(sbi->s_es, 4366 EXT4_C2B(sbi, block)); 4367 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4368 GFP_KERNEL); 4369 if (!err) { 4370 unsigned long freei = ext4_count_free_inodes(sb); 4371 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4372 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4373 GFP_KERNEL); 4374 } 4375 if (!err) 4376 err = percpu_counter_init(&sbi->s_dirs_counter, 4377 ext4_count_dirs(sb), GFP_KERNEL); 4378 if (!err) 4379 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4380 GFP_KERNEL); 4381 if (!err) 4382 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4383 4384 if (err) { 4385 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4386 goto failed_mount6; 4387 } 4388 4389 if (ext4_has_feature_flex_bg(sb)) 4390 if (!ext4_fill_flex_info(sb)) { 4391 ext4_msg(sb, KERN_ERR, 4392 "unable to initialize " 4393 "flex_bg meta info!"); 4394 goto failed_mount6; 4395 } 4396 4397 err = ext4_register_li_request(sb, first_not_zeroed); 4398 if (err) 4399 goto failed_mount6; 4400 4401 err = ext4_register_sysfs(sb); 4402 if (err) 4403 goto failed_mount7; 4404 4405 #ifdef CONFIG_QUOTA 4406 /* Enable quota usage during mount. */ 4407 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4408 err = ext4_enable_quotas(sb); 4409 if (err) 4410 goto failed_mount8; 4411 } 4412 #endif /* CONFIG_QUOTA */ 4413 4414 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4415 ext4_orphan_cleanup(sb, es); 4416 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4417 if (needs_recovery) { 4418 ext4_msg(sb, KERN_INFO, "recovery complete"); 4419 ext4_mark_recovery_complete(sb, es); 4420 } 4421 if (EXT4_SB(sb)->s_journal) { 4422 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4423 descr = " journalled data mode"; 4424 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4425 descr = " ordered data mode"; 4426 else 4427 descr = " writeback data mode"; 4428 } else 4429 descr = "out journal"; 4430 4431 if (test_opt(sb, DISCARD)) { 4432 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4433 if (!blk_queue_discard(q)) 4434 ext4_msg(sb, KERN_WARNING, 4435 "mounting with \"discard\" option, but " 4436 "the device does not support discard"); 4437 } 4438 4439 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4440 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4441 "Opts: %.*s%s%s", descr, 4442 (int) sizeof(sbi->s_es->s_mount_opts), 4443 sbi->s_es->s_mount_opts, 4444 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4445 4446 if (es->s_error_count) 4447 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4448 4449 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4450 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4451 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4452 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4453 4454 kfree(orig_data); 4455 return 0; 4456 4457 cantfind_ext4: 4458 if (!silent) 4459 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4460 goto failed_mount; 4461 4462 #ifdef CONFIG_QUOTA 4463 failed_mount8: 4464 ext4_unregister_sysfs(sb); 4465 #endif 4466 failed_mount7: 4467 ext4_unregister_li_request(sb); 4468 failed_mount6: 4469 ext4_mb_release(sb); 4470 if (sbi->s_flex_groups) 4471 kvfree(sbi->s_flex_groups); 4472 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4473 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4474 percpu_counter_destroy(&sbi->s_dirs_counter); 4475 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4476 failed_mount5: 4477 ext4_ext_release(sb); 4478 ext4_release_system_zone(sb); 4479 failed_mount4a: 4480 dput(sb->s_root); 4481 sb->s_root = NULL; 4482 failed_mount4: 4483 ext4_msg(sb, KERN_ERR, "mount failed"); 4484 if (EXT4_SB(sb)->rsv_conversion_wq) 4485 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4486 failed_mount_wq: 4487 if (sbi->s_ea_inode_cache) { 4488 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4489 sbi->s_ea_inode_cache = NULL; 4490 } 4491 if (sbi->s_ea_block_cache) { 4492 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4493 sbi->s_ea_block_cache = NULL; 4494 } 4495 if (sbi->s_journal) { 4496 jbd2_journal_destroy(sbi->s_journal); 4497 sbi->s_journal = NULL; 4498 } 4499 failed_mount3a: 4500 ext4_es_unregister_shrinker(sbi); 4501 failed_mount3: 4502 del_timer_sync(&sbi->s_err_report); 4503 if (sbi->s_mmp_tsk) 4504 kthread_stop(sbi->s_mmp_tsk); 4505 failed_mount2: 4506 for (i = 0; i < db_count; i++) 4507 brelse(sbi->s_group_desc[i]); 4508 kvfree(sbi->s_group_desc); 4509 failed_mount: 4510 if (sbi->s_chksum_driver) 4511 crypto_free_shash(sbi->s_chksum_driver); 4512 #ifdef CONFIG_QUOTA 4513 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4514 kfree(sbi->s_qf_names[i]); 4515 #endif 4516 ext4_blkdev_remove(sbi); 4517 brelse(bh); 4518 out_fail: 4519 sb->s_fs_info = NULL; 4520 kfree(sbi->s_blockgroup_lock); 4521 out_free_base: 4522 kfree(sbi); 4523 kfree(orig_data); 4524 fs_put_dax(dax_dev); 4525 return err ? err : ret; 4526 } 4527 4528 /* 4529 * Setup any per-fs journal parameters now. We'll do this both on 4530 * initial mount, once the journal has been initialised but before we've 4531 * done any recovery; and again on any subsequent remount. 4532 */ 4533 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4534 { 4535 struct ext4_sb_info *sbi = EXT4_SB(sb); 4536 4537 journal->j_commit_interval = sbi->s_commit_interval; 4538 journal->j_min_batch_time = sbi->s_min_batch_time; 4539 journal->j_max_batch_time = sbi->s_max_batch_time; 4540 4541 write_lock(&journal->j_state_lock); 4542 if (test_opt(sb, BARRIER)) 4543 journal->j_flags |= JBD2_BARRIER; 4544 else 4545 journal->j_flags &= ~JBD2_BARRIER; 4546 if (test_opt(sb, DATA_ERR_ABORT)) 4547 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4548 else 4549 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4550 write_unlock(&journal->j_state_lock); 4551 } 4552 4553 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4554 unsigned int journal_inum) 4555 { 4556 struct inode *journal_inode; 4557 4558 /* 4559 * Test for the existence of a valid inode on disk. Bad things 4560 * happen if we iget() an unused inode, as the subsequent iput() 4561 * will try to delete it. 4562 */ 4563 journal_inode = ext4_iget(sb, journal_inum); 4564 if (IS_ERR(journal_inode)) { 4565 ext4_msg(sb, KERN_ERR, "no journal found"); 4566 return NULL; 4567 } 4568 if (!journal_inode->i_nlink) { 4569 make_bad_inode(journal_inode); 4570 iput(journal_inode); 4571 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4572 return NULL; 4573 } 4574 4575 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4576 journal_inode, journal_inode->i_size); 4577 if (!S_ISREG(journal_inode->i_mode)) { 4578 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4579 iput(journal_inode); 4580 return NULL; 4581 } 4582 return journal_inode; 4583 } 4584 4585 static journal_t *ext4_get_journal(struct super_block *sb, 4586 unsigned int journal_inum) 4587 { 4588 struct inode *journal_inode; 4589 journal_t *journal; 4590 4591 BUG_ON(!ext4_has_feature_journal(sb)); 4592 4593 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4594 if (!journal_inode) 4595 return NULL; 4596 4597 journal = jbd2_journal_init_inode(journal_inode); 4598 if (!journal) { 4599 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4600 iput(journal_inode); 4601 return NULL; 4602 } 4603 journal->j_private = sb; 4604 ext4_init_journal_params(sb, journal); 4605 return journal; 4606 } 4607 4608 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4609 dev_t j_dev) 4610 { 4611 struct buffer_head *bh; 4612 journal_t *journal; 4613 ext4_fsblk_t start; 4614 ext4_fsblk_t len; 4615 int hblock, blocksize; 4616 ext4_fsblk_t sb_block; 4617 unsigned long offset; 4618 struct ext4_super_block *es; 4619 struct block_device *bdev; 4620 4621 BUG_ON(!ext4_has_feature_journal(sb)); 4622 4623 bdev = ext4_blkdev_get(j_dev, sb); 4624 if (bdev == NULL) 4625 return NULL; 4626 4627 blocksize = sb->s_blocksize; 4628 hblock = bdev_logical_block_size(bdev); 4629 if (blocksize < hblock) { 4630 ext4_msg(sb, KERN_ERR, 4631 "blocksize too small for journal device"); 4632 goto out_bdev; 4633 } 4634 4635 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4636 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4637 set_blocksize(bdev, blocksize); 4638 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4639 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4640 "external journal"); 4641 goto out_bdev; 4642 } 4643 4644 es = (struct ext4_super_block *) (bh->b_data + offset); 4645 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4646 !(le32_to_cpu(es->s_feature_incompat) & 4647 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4648 ext4_msg(sb, KERN_ERR, "external journal has " 4649 "bad superblock"); 4650 brelse(bh); 4651 goto out_bdev; 4652 } 4653 4654 if ((le32_to_cpu(es->s_feature_ro_compat) & 4655 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4656 es->s_checksum != ext4_superblock_csum(sb, es)) { 4657 ext4_msg(sb, KERN_ERR, "external journal has " 4658 "corrupt superblock"); 4659 brelse(bh); 4660 goto out_bdev; 4661 } 4662 4663 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4664 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4665 brelse(bh); 4666 goto out_bdev; 4667 } 4668 4669 len = ext4_blocks_count(es); 4670 start = sb_block + 1; 4671 brelse(bh); /* we're done with the superblock */ 4672 4673 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4674 start, len, blocksize); 4675 if (!journal) { 4676 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4677 goto out_bdev; 4678 } 4679 journal->j_private = sb; 4680 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4681 wait_on_buffer(journal->j_sb_buffer); 4682 if (!buffer_uptodate(journal->j_sb_buffer)) { 4683 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4684 goto out_journal; 4685 } 4686 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4687 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4688 "user (unsupported) - %d", 4689 be32_to_cpu(journal->j_superblock->s_nr_users)); 4690 goto out_journal; 4691 } 4692 EXT4_SB(sb)->journal_bdev = bdev; 4693 ext4_init_journal_params(sb, journal); 4694 return journal; 4695 4696 out_journal: 4697 jbd2_journal_destroy(journal); 4698 out_bdev: 4699 ext4_blkdev_put(bdev); 4700 return NULL; 4701 } 4702 4703 static int ext4_load_journal(struct super_block *sb, 4704 struct ext4_super_block *es, 4705 unsigned long journal_devnum) 4706 { 4707 journal_t *journal; 4708 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4709 dev_t journal_dev; 4710 int err = 0; 4711 int really_read_only; 4712 4713 BUG_ON(!ext4_has_feature_journal(sb)); 4714 4715 if (journal_devnum && 4716 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4717 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4718 "numbers have changed"); 4719 journal_dev = new_decode_dev(journal_devnum); 4720 } else 4721 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4722 4723 really_read_only = bdev_read_only(sb->s_bdev); 4724 4725 /* 4726 * Are we loading a blank journal or performing recovery after a 4727 * crash? For recovery, we need to check in advance whether we 4728 * can get read-write access to the device. 4729 */ 4730 if (ext4_has_feature_journal_needs_recovery(sb)) { 4731 if (sb_rdonly(sb)) { 4732 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4733 "required on readonly filesystem"); 4734 if (really_read_only) { 4735 ext4_msg(sb, KERN_ERR, "write access " 4736 "unavailable, cannot proceed " 4737 "(try mounting with noload)"); 4738 return -EROFS; 4739 } 4740 ext4_msg(sb, KERN_INFO, "write access will " 4741 "be enabled during recovery"); 4742 } 4743 } 4744 4745 if (journal_inum && journal_dev) { 4746 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4747 "and inode journals!"); 4748 return -EINVAL; 4749 } 4750 4751 if (journal_inum) { 4752 if (!(journal = ext4_get_journal(sb, journal_inum))) 4753 return -EINVAL; 4754 } else { 4755 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4756 return -EINVAL; 4757 } 4758 4759 if (!(journal->j_flags & JBD2_BARRIER)) 4760 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4761 4762 if (!ext4_has_feature_journal_needs_recovery(sb)) 4763 err = jbd2_journal_wipe(journal, !really_read_only); 4764 if (!err) { 4765 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4766 if (save) 4767 memcpy(save, ((char *) es) + 4768 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4769 err = jbd2_journal_load(journal); 4770 if (save) 4771 memcpy(((char *) es) + EXT4_S_ERR_START, 4772 save, EXT4_S_ERR_LEN); 4773 kfree(save); 4774 } 4775 4776 if (err) { 4777 ext4_msg(sb, KERN_ERR, "error loading journal"); 4778 jbd2_journal_destroy(journal); 4779 return err; 4780 } 4781 4782 EXT4_SB(sb)->s_journal = journal; 4783 ext4_clear_journal_err(sb, es); 4784 4785 if (!really_read_only && journal_devnum && 4786 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4787 es->s_journal_dev = cpu_to_le32(journal_devnum); 4788 4789 /* Make sure we flush the recovery flag to disk. */ 4790 ext4_commit_super(sb, 1); 4791 } 4792 4793 return 0; 4794 } 4795 4796 static int ext4_commit_super(struct super_block *sb, int sync) 4797 { 4798 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4799 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4800 int error = 0; 4801 4802 if (!sbh || block_device_ejected(sb)) 4803 return error; 4804 4805 /* 4806 * The superblock bh should be mapped, but it might not be if the 4807 * device was hot-removed. Not much we can do but fail the I/O. 4808 */ 4809 if (!buffer_mapped(sbh)) 4810 return error; 4811 4812 /* 4813 * If the file system is mounted read-only, don't update the 4814 * superblock write time. This avoids updating the superblock 4815 * write time when we are mounting the root file system 4816 * read/only but we need to replay the journal; at that point, 4817 * for people who are east of GMT and who make their clock 4818 * tick in localtime for Windows bug-for-bug compatibility, 4819 * the clock is set in the future, and this will cause e2fsck 4820 * to complain and force a full file system check. 4821 */ 4822 if (!(sb->s_flags & SB_RDONLY)) 4823 es->s_wtime = cpu_to_le32(get_seconds()); 4824 if (sb->s_bdev->bd_part) 4825 es->s_kbytes_written = 4826 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4827 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4828 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4829 else 4830 es->s_kbytes_written = 4831 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4832 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4833 ext4_free_blocks_count_set(es, 4834 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4835 &EXT4_SB(sb)->s_freeclusters_counter))); 4836 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4837 es->s_free_inodes_count = 4838 cpu_to_le32(percpu_counter_sum_positive( 4839 &EXT4_SB(sb)->s_freeinodes_counter)); 4840 BUFFER_TRACE(sbh, "marking dirty"); 4841 ext4_superblock_csum_set(sb); 4842 if (sync) 4843 lock_buffer(sbh); 4844 if (buffer_write_io_error(sbh)) { 4845 /* 4846 * Oh, dear. A previous attempt to write the 4847 * superblock failed. This could happen because the 4848 * USB device was yanked out. Or it could happen to 4849 * be a transient write error and maybe the block will 4850 * be remapped. Nothing we can do but to retry the 4851 * write and hope for the best. 4852 */ 4853 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4854 "superblock detected"); 4855 clear_buffer_write_io_error(sbh); 4856 set_buffer_uptodate(sbh); 4857 } 4858 mark_buffer_dirty(sbh); 4859 if (sync) { 4860 unlock_buffer(sbh); 4861 error = __sync_dirty_buffer(sbh, 4862 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4863 if (buffer_write_io_error(sbh)) { 4864 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4865 "superblock"); 4866 clear_buffer_write_io_error(sbh); 4867 set_buffer_uptodate(sbh); 4868 } 4869 } 4870 return error; 4871 } 4872 4873 /* 4874 * Have we just finished recovery? If so, and if we are mounting (or 4875 * remounting) the filesystem readonly, then we will end up with a 4876 * consistent fs on disk. Record that fact. 4877 */ 4878 static void ext4_mark_recovery_complete(struct super_block *sb, 4879 struct ext4_super_block *es) 4880 { 4881 journal_t *journal = EXT4_SB(sb)->s_journal; 4882 4883 if (!ext4_has_feature_journal(sb)) { 4884 BUG_ON(journal != NULL); 4885 return; 4886 } 4887 jbd2_journal_lock_updates(journal); 4888 if (jbd2_journal_flush(journal) < 0) 4889 goto out; 4890 4891 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4892 ext4_clear_feature_journal_needs_recovery(sb); 4893 ext4_commit_super(sb, 1); 4894 } 4895 4896 out: 4897 jbd2_journal_unlock_updates(journal); 4898 } 4899 4900 /* 4901 * If we are mounting (or read-write remounting) a filesystem whose journal 4902 * has recorded an error from a previous lifetime, move that error to the 4903 * main filesystem now. 4904 */ 4905 static void ext4_clear_journal_err(struct super_block *sb, 4906 struct ext4_super_block *es) 4907 { 4908 journal_t *journal; 4909 int j_errno; 4910 const char *errstr; 4911 4912 BUG_ON(!ext4_has_feature_journal(sb)); 4913 4914 journal = EXT4_SB(sb)->s_journal; 4915 4916 /* 4917 * Now check for any error status which may have been recorded in the 4918 * journal by a prior ext4_error() or ext4_abort() 4919 */ 4920 4921 j_errno = jbd2_journal_errno(journal); 4922 if (j_errno) { 4923 char nbuf[16]; 4924 4925 errstr = ext4_decode_error(sb, j_errno, nbuf); 4926 ext4_warning(sb, "Filesystem error recorded " 4927 "from previous mount: %s", errstr); 4928 ext4_warning(sb, "Marking fs in need of filesystem check."); 4929 4930 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4931 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4932 ext4_commit_super(sb, 1); 4933 4934 jbd2_journal_clear_err(journal); 4935 jbd2_journal_update_sb_errno(journal); 4936 } 4937 } 4938 4939 /* 4940 * Force the running and committing transactions to commit, 4941 * and wait on the commit. 4942 */ 4943 int ext4_force_commit(struct super_block *sb) 4944 { 4945 journal_t *journal; 4946 4947 if (sb_rdonly(sb)) 4948 return 0; 4949 4950 journal = EXT4_SB(sb)->s_journal; 4951 return ext4_journal_force_commit(journal); 4952 } 4953 4954 static int ext4_sync_fs(struct super_block *sb, int wait) 4955 { 4956 int ret = 0; 4957 tid_t target; 4958 bool needs_barrier = false; 4959 struct ext4_sb_info *sbi = EXT4_SB(sb); 4960 4961 if (unlikely(ext4_forced_shutdown(sbi))) 4962 return 0; 4963 4964 trace_ext4_sync_fs(sb, wait); 4965 flush_workqueue(sbi->rsv_conversion_wq); 4966 /* 4967 * Writeback quota in non-journalled quota case - journalled quota has 4968 * no dirty dquots 4969 */ 4970 dquot_writeback_dquots(sb, -1); 4971 /* 4972 * Data writeback is possible w/o journal transaction, so barrier must 4973 * being sent at the end of the function. But we can skip it if 4974 * transaction_commit will do it for us. 4975 */ 4976 if (sbi->s_journal) { 4977 target = jbd2_get_latest_transaction(sbi->s_journal); 4978 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4979 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4980 needs_barrier = true; 4981 4982 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4983 if (wait) 4984 ret = jbd2_log_wait_commit(sbi->s_journal, 4985 target); 4986 } 4987 } else if (wait && test_opt(sb, BARRIER)) 4988 needs_barrier = true; 4989 if (needs_barrier) { 4990 int err; 4991 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4992 if (!ret) 4993 ret = err; 4994 } 4995 4996 return ret; 4997 } 4998 4999 /* 5000 * LVM calls this function before a (read-only) snapshot is created. This 5001 * gives us a chance to flush the journal completely and mark the fs clean. 5002 * 5003 * Note that only this function cannot bring a filesystem to be in a clean 5004 * state independently. It relies on upper layer to stop all data & metadata 5005 * modifications. 5006 */ 5007 static int ext4_freeze(struct super_block *sb) 5008 { 5009 int error = 0; 5010 journal_t *journal; 5011 5012 if (sb_rdonly(sb)) 5013 return 0; 5014 5015 journal = EXT4_SB(sb)->s_journal; 5016 5017 if (journal) { 5018 /* Now we set up the journal barrier. */ 5019 jbd2_journal_lock_updates(journal); 5020 5021 /* 5022 * Don't clear the needs_recovery flag if we failed to 5023 * flush the journal. 5024 */ 5025 error = jbd2_journal_flush(journal); 5026 if (error < 0) 5027 goto out; 5028 5029 /* Journal blocked and flushed, clear needs_recovery flag. */ 5030 ext4_clear_feature_journal_needs_recovery(sb); 5031 } 5032 5033 error = ext4_commit_super(sb, 1); 5034 out: 5035 if (journal) 5036 /* we rely on upper layer to stop further updates */ 5037 jbd2_journal_unlock_updates(journal); 5038 return error; 5039 } 5040 5041 /* 5042 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5043 * flag here, even though the filesystem is not technically dirty yet. 5044 */ 5045 static int ext4_unfreeze(struct super_block *sb) 5046 { 5047 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5048 return 0; 5049 5050 if (EXT4_SB(sb)->s_journal) { 5051 /* Reset the needs_recovery flag before the fs is unlocked. */ 5052 ext4_set_feature_journal_needs_recovery(sb); 5053 } 5054 5055 ext4_commit_super(sb, 1); 5056 return 0; 5057 } 5058 5059 /* 5060 * Structure to save mount options for ext4_remount's benefit 5061 */ 5062 struct ext4_mount_options { 5063 unsigned long s_mount_opt; 5064 unsigned long s_mount_opt2; 5065 kuid_t s_resuid; 5066 kgid_t s_resgid; 5067 unsigned long s_commit_interval; 5068 u32 s_min_batch_time, s_max_batch_time; 5069 #ifdef CONFIG_QUOTA 5070 int s_jquota_fmt; 5071 char *s_qf_names[EXT4_MAXQUOTAS]; 5072 #endif 5073 }; 5074 5075 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5076 { 5077 struct ext4_super_block *es; 5078 struct ext4_sb_info *sbi = EXT4_SB(sb); 5079 unsigned long old_sb_flags; 5080 struct ext4_mount_options old_opts; 5081 int enable_quota = 0; 5082 ext4_group_t g; 5083 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5084 int err = 0; 5085 #ifdef CONFIG_QUOTA 5086 int i, j; 5087 #endif 5088 char *orig_data = kstrdup(data, GFP_KERNEL); 5089 5090 /* Store the original options */ 5091 old_sb_flags = sb->s_flags; 5092 old_opts.s_mount_opt = sbi->s_mount_opt; 5093 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5094 old_opts.s_resuid = sbi->s_resuid; 5095 old_opts.s_resgid = sbi->s_resgid; 5096 old_opts.s_commit_interval = sbi->s_commit_interval; 5097 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5098 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5099 #ifdef CONFIG_QUOTA 5100 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5101 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5102 if (sbi->s_qf_names[i]) { 5103 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 5104 GFP_KERNEL); 5105 if (!old_opts.s_qf_names[i]) { 5106 for (j = 0; j < i; j++) 5107 kfree(old_opts.s_qf_names[j]); 5108 kfree(orig_data); 5109 return -ENOMEM; 5110 } 5111 } else 5112 old_opts.s_qf_names[i] = NULL; 5113 #endif 5114 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5115 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5116 5117 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5118 err = -EINVAL; 5119 goto restore_opts; 5120 } 5121 5122 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5123 test_opt(sb, JOURNAL_CHECKSUM)) { 5124 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5125 "during remount not supported; ignoring"); 5126 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5127 } 5128 5129 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5130 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5131 ext4_msg(sb, KERN_ERR, "can't mount with " 5132 "both data=journal and delalloc"); 5133 err = -EINVAL; 5134 goto restore_opts; 5135 } 5136 if (test_opt(sb, DIOREAD_NOLOCK)) { 5137 ext4_msg(sb, KERN_ERR, "can't mount with " 5138 "both data=journal and dioread_nolock"); 5139 err = -EINVAL; 5140 goto restore_opts; 5141 } 5142 if (test_opt(sb, DAX)) { 5143 ext4_msg(sb, KERN_ERR, "can't mount with " 5144 "both data=journal and dax"); 5145 err = -EINVAL; 5146 goto restore_opts; 5147 } 5148 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5149 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5150 ext4_msg(sb, KERN_ERR, "can't mount with " 5151 "journal_async_commit in data=ordered mode"); 5152 err = -EINVAL; 5153 goto restore_opts; 5154 } 5155 } 5156 5157 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5158 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5159 err = -EINVAL; 5160 goto restore_opts; 5161 } 5162 5163 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5164 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5165 "dax flag with busy inodes while remounting"); 5166 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5167 } 5168 5169 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5170 ext4_abort(sb, "Abort forced by user"); 5171 5172 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5173 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5174 5175 es = sbi->s_es; 5176 5177 if (sbi->s_journal) { 5178 ext4_init_journal_params(sb, sbi->s_journal); 5179 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5180 } 5181 5182 if (*flags & SB_LAZYTIME) 5183 sb->s_flags |= SB_LAZYTIME; 5184 5185 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5186 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5187 err = -EROFS; 5188 goto restore_opts; 5189 } 5190 5191 if (*flags & SB_RDONLY) { 5192 err = sync_filesystem(sb); 5193 if (err < 0) 5194 goto restore_opts; 5195 err = dquot_suspend(sb, -1); 5196 if (err < 0) 5197 goto restore_opts; 5198 5199 /* 5200 * First of all, the unconditional stuff we have to do 5201 * to disable replay of the journal when we next remount 5202 */ 5203 sb->s_flags |= SB_RDONLY; 5204 5205 /* 5206 * OK, test if we are remounting a valid rw partition 5207 * readonly, and if so set the rdonly flag and then 5208 * mark the partition as valid again. 5209 */ 5210 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5211 (sbi->s_mount_state & EXT4_VALID_FS)) 5212 es->s_state = cpu_to_le16(sbi->s_mount_state); 5213 5214 if (sbi->s_journal) 5215 ext4_mark_recovery_complete(sb, es); 5216 } else { 5217 /* Make sure we can mount this feature set readwrite */ 5218 if (ext4_has_feature_readonly(sb) || 5219 !ext4_feature_set_ok(sb, 0)) { 5220 err = -EROFS; 5221 goto restore_opts; 5222 } 5223 /* 5224 * Make sure the group descriptor checksums 5225 * are sane. If they aren't, refuse to remount r/w. 5226 */ 5227 for (g = 0; g < sbi->s_groups_count; g++) { 5228 struct ext4_group_desc *gdp = 5229 ext4_get_group_desc(sb, g, NULL); 5230 5231 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5232 ext4_msg(sb, KERN_ERR, 5233 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5234 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5235 le16_to_cpu(gdp->bg_checksum)); 5236 err = -EFSBADCRC; 5237 goto restore_opts; 5238 } 5239 } 5240 5241 /* 5242 * If we have an unprocessed orphan list hanging 5243 * around from a previously readonly bdev mount, 5244 * require a full umount/remount for now. 5245 */ 5246 if (es->s_last_orphan) { 5247 ext4_msg(sb, KERN_WARNING, "Couldn't " 5248 "remount RDWR because of unprocessed " 5249 "orphan inode list. Please " 5250 "umount/remount instead"); 5251 err = -EINVAL; 5252 goto restore_opts; 5253 } 5254 5255 /* 5256 * Mounting a RDONLY partition read-write, so reread 5257 * and store the current valid flag. (It may have 5258 * been changed by e2fsck since we originally mounted 5259 * the partition.) 5260 */ 5261 if (sbi->s_journal) 5262 ext4_clear_journal_err(sb, es); 5263 sbi->s_mount_state = le16_to_cpu(es->s_state); 5264 5265 err = ext4_setup_super(sb, es, 0); 5266 if (err) 5267 goto restore_opts; 5268 5269 sb->s_flags &= ~SB_RDONLY; 5270 if (ext4_has_feature_mmp(sb)) 5271 if (ext4_multi_mount_protect(sb, 5272 le64_to_cpu(es->s_mmp_block))) { 5273 err = -EROFS; 5274 goto restore_opts; 5275 } 5276 enable_quota = 1; 5277 } 5278 } 5279 5280 /* 5281 * Reinitialize lazy itable initialization thread based on 5282 * current settings 5283 */ 5284 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5285 ext4_unregister_li_request(sb); 5286 else { 5287 ext4_group_t first_not_zeroed; 5288 first_not_zeroed = ext4_has_uninit_itable(sb); 5289 ext4_register_li_request(sb, first_not_zeroed); 5290 } 5291 5292 ext4_setup_system_zone(sb); 5293 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5294 err = ext4_commit_super(sb, 1); 5295 if (err) 5296 goto restore_opts; 5297 } 5298 5299 #ifdef CONFIG_QUOTA 5300 /* Release old quota file names */ 5301 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5302 kfree(old_opts.s_qf_names[i]); 5303 if (enable_quota) { 5304 if (sb_any_quota_suspended(sb)) 5305 dquot_resume(sb, -1); 5306 else if (ext4_has_feature_quota(sb)) { 5307 err = ext4_enable_quotas(sb); 5308 if (err) 5309 goto restore_opts; 5310 } 5311 } 5312 #endif 5313 5314 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5315 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5316 kfree(orig_data); 5317 return 0; 5318 5319 restore_opts: 5320 sb->s_flags = old_sb_flags; 5321 sbi->s_mount_opt = old_opts.s_mount_opt; 5322 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5323 sbi->s_resuid = old_opts.s_resuid; 5324 sbi->s_resgid = old_opts.s_resgid; 5325 sbi->s_commit_interval = old_opts.s_commit_interval; 5326 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5327 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5328 #ifdef CONFIG_QUOTA 5329 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5330 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5331 kfree(sbi->s_qf_names[i]); 5332 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5333 } 5334 #endif 5335 kfree(orig_data); 5336 return err; 5337 } 5338 5339 #ifdef CONFIG_QUOTA 5340 static int ext4_statfs_project(struct super_block *sb, 5341 kprojid_t projid, struct kstatfs *buf) 5342 { 5343 struct kqid qid; 5344 struct dquot *dquot; 5345 u64 limit; 5346 u64 curblock; 5347 5348 qid = make_kqid_projid(projid); 5349 dquot = dqget(sb, qid); 5350 if (IS_ERR(dquot)) 5351 return PTR_ERR(dquot); 5352 spin_lock(&dquot->dq_dqb_lock); 5353 5354 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5355 dquot->dq_dqb.dqb_bsoftlimit : 5356 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5357 if (limit && buf->f_blocks > limit) { 5358 curblock = (dquot->dq_dqb.dqb_curspace + 5359 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5360 buf->f_blocks = limit; 5361 buf->f_bfree = buf->f_bavail = 5362 (buf->f_blocks > curblock) ? 5363 (buf->f_blocks - curblock) : 0; 5364 } 5365 5366 limit = dquot->dq_dqb.dqb_isoftlimit ? 5367 dquot->dq_dqb.dqb_isoftlimit : 5368 dquot->dq_dqb.dqb_ihardlimit; 5369 if (limit && buf->f_files > limit) { 5370 buf->f_files = limit; 5371 buf->f_ffree = 5372 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5373 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5374 } 5375 5376 spin_unlock(&dquot->dq_dqb_lock); 5377 dqput(dquot); 5378 return 0; 5379 } 5380 #endif 5381 5382 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5383 { 5384 struct super_block *sb = dentry->d_sb; 5385 struct ext4_sb_info *sbi = EXT4_SB(sb); 5386 struct ext4_super_block *es = sbi->s_es; 5387 ext4_fsblk_t overhead = 0, resv_blocks; 5388 u64 fsid; 5389 s64 bfree; 5390 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5391 5392 if (!test_opt(sb, MINIX_DF)) 5393 overhead = sbi->s_overhead; 5394 5395 buf->f_type = EXT4_SUPER_MAGIC; 5396 buf->f_bsize = sb->s_blocksize; 5397 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5398 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5399 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5400 /* prevent underflow in case that few free space is available */ 5401 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5402 buf->f_bavail = buf->f_bfree - 5403 (ext4_r_blocks_count(es) + resv_blocks); 5404 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5405 buf->f_bavail = 0; 5406 buf->f_files = le32_to_cpu(es->s_inodes_count); 5407 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5408 buf->f_namelen = EXT4_NAME_LEN; 5409 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5410 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5411 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5412 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5413 5414 #ifdef CONFIG_QUOTA 5415 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5416 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5417 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5418 #endif 5419 return 0; 5420 } 5421 5422 5423 #ifdef CONFIG_QUOTA 5424 5425 /* 5426 * Helper functions so that transaction is started before we acquire dqio_sem 5427 * to keep correct lock ordering of transaction > dqio_sem 5428 */ 5429 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5430 { 5431 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5432 } 5433 5434 static int ext4_write_dquot(struct dquot *dquot) 5435 { 5436 int ret, err; 5437 handle_t *handle; 5438 struct inode *inode; 5439 5440 inode = dquot_to_inode(dquot); 5441 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5442 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5443 if (IS_ERR(handle)) 5444 return PTR_ERR(handle); 5445 ret = dquot_commit(dquot); 5446 err = ext4_journal_stop(handle); 5447 if (!ret) 5448 ret = err; 5449 return ret; 5450 } 5451 5452 static int ext4_acquire_dquot(struct dquot *dquot) 5453 { 5454 int ret, err; 5455 handle_t *handle; 5456 5457 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5458 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5459 if (IS_ERR(handle)) 5460 return PTR_ERR(handle); 5461 ret = dquot_acquire(dquot); 5462 err = ext4_journal_stop(handle); 5463 if (!ret) 5464 ret = err; 5465 return ret; 5466 } 5467 5468 static int ext4_release_dquot(struct dquot *dquot) 5469 { 5470 int ret, err; 5471 handle_t *handle; 5472 5473 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5474 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5475 if (IS_ERR(handle)) { 5476 /* Release dquot anyway to avoid endless cycle in dqput() */ 5477 dquot_release(dquot); 5478 return PTR_ERR(handle); 5479 } 5480 ret = dquot_release(dquot); 5481 err = ext4_journal_stop(handle); 5482 if (!ret) 5483 ret = err; 5484 return ret; 5485 } 5486 5487 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5488 { 5489 struct super_block *sb = dquot->dq_sb; 5490 struct ext4_sb_info *sbi = EXT4_SB(sb); 5491 5492 /* Are we journaling quotas? */ 5493 if (ext4_has_feature_quota(sb) || 5494 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5495 dquot_mark_dquot_dirty(dquot); 5496 return ext4_write_dquot(dquot); 5497 } else { 5498 return dquot_mark_dquot_dirty(dquot); 5499 } 5500 } 5501 5502 static int ext4_write_info(struct super_block *sb, int type) 5503 { 5504 int ret, err; 5505 handle_t *handle; 5506 5507 /* Data block + inode block */ 5508 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5509 if (IS_ERR(handle)) 5510 return PTR_ERR(handle); 5511 ret = dquot_commit_info(sb, type); 5512 err = ext4_journal_stop(handle); 5513 if (!ret) 5514 ret = err; 5515 return ret; 5516 } 5517 5518 /* 5519 * Turn on quotas during mount time - we need to find 5520 * the quota file and such... 5521 */ 5522 static int ext4_quota_on_mount(struct super_block *sb, int type) 5523 { 5524 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5525 EXT4_SB(sb)->s_jquota_fmt, type); 5526 } 5527 5528 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5529 { 5530 struct ext4_inode_info *ei = EXT4_I(inode); 5531 5532 /* The first argument of lockdep_set_subclass has to be 5533 * *exactly* the same as the argument to init_rwsem() --- in 5534 * this case, in init_once() --- or lockdep gets unhappy 5535 * because the name of the lock is set using the 5536 * stringification of the argument to init_rwsem(). 5537 */ 5538 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5539 lockdep_set_subclass(&ei->i_data_sem, subclass); 5540 } 5541 5542 /* 5543 * Standard function to be called on quota_on 5544 */ 5545 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5546 const struct path *path) 5547 { 5548 int err; 5549 5550 if (!test_opt(sb, QUOTA)) 5551 return -EINVAL; 5552 5553 /* Quotafile not on the same filesystem? */ 5554 if (path->dentry->d_sb != sb) 5555 return -EXDEV; 5556 /* Journaling quota? */ 5557 if (EXT4_SB(sb)->s_qf_names[type]) { 5558 /* Quotafile not in fs root? */ 5559 if (path->dentry->d_parent != sb->s_root) 5560 ext4_msg(sb, KERN_WARNING, 5561 "Quota file not on filesystem root. " 5562 "Journaled quota will not work"); 5563 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5564 } else { 5565 /* 5566 * Clear the flag just in case mount options changed since 5567 * last time. 5568 */ 5569 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5570 } 5571 5572 /* 5573 * When we journal data on quota file, we have to flush journal to see 5574 * all updates to the file when we bypass pagecache... 5575 */ 5576 if (EXT4_SB(sb)->s_journal && 5577 ext4_should_journal_data(d_inode(path->dentry))) { 5578 /* 5579 * We don't need to lock updates but journal_flush() could 5580 * otherwise be livelocked... 5581 */ 5582 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5583 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5584 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5585 if (err) 5586 return err; 5587 } 5588 5589 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5590 err = dquot_quota_on(sb, type, format_id, path); 5591 if (err) { 5592 lockdep_set_quota_inode(path->dentry->d_inode, 5593 I_DATA_SEM_NORMAL); 5594 } else { 5595 struct inode *inode = d_inode(path->dentry); 5596 handle_t *handle; 5597 5598 /* 5599 * Set inode flags to prevent userspace from messing with quota 5600 * files. If this fails, we return success anyway since quotas 5601 * are already enabled and this is not a hard failure. 5602 */ 5603 inode_lock(inode); 5604 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5605 if (IS_ERR(handle)) 5606 goto unlock_inode; 5607 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5608 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5609 S_NOATIME | S_IMMUTABLE); 5610 ext4_mark_inode_dirty(handle, inode); 5611 ext4_journal_stop(handle); 5612 unlock_inode: 5613 inode_unlock(inode); 5614 } 5615 return err; 5616 } 5617 5618 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5619 unsigned int flags) 5620 { 5621 int err; 5622 struct inode *qf_inode; 5623 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5624 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5625 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5626 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5627 }; 5628 5629 BUG_ON(!ext4_has_feature_quota(sb)); 5630 5631 if (!qf_inums[type]) 5632 return -EPERM; 5633 5634 qf_inode = ext4_iget(sb, qf_inums[type]); 5635 if (IS_ERR(qf_inode)) { 5636 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5637 return PTR_ERR(qf_inode); 5638 } 5639 5640 /* Don't account quota for quota files to avoid recursion */ 5641 qf_inode->i_flags |= S_NOQUOTA; 5642 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5643 err = dquot_enable(qf_inode, type, format_id, flags); 5644 iput(qf_inode); 5645 if (err) 5646 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5647 5648 return err; 5649 } 5650 5651 /* Enable usage tracking for all quota types. */ 5652 static int ext4_enable_quotas(struct super_block *sb) 5653 { 5654 int type, err = 0; 5655 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5656 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5657 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5658 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5659 }; 5660 bool quota_mopt[EXT4_MAXQUOTAS] = { 5661 test_opt(sb, USRQUOTA), 5662 test_opt(sb, GRPQUOTA), 5663 test_opt(sb, PRJQUOTA), 5664 }; 5665 5666 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5667 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5668 if (qf_inums[type]) { 5669 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5670 DQUOT_USAGE_ENABLED | 5671 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5672 if (err) { 5673 for (type--; type >= 0; type--) 5674 dquot_quota_off(sb, type); 5675 5676 ext4_warning(sb, 5677 "Failed to enable quota tracking " 5678 "(type=%d, err=%d). Please run " 5679 "e2fsck to fix.", type, err); 5680 return err; 5681 } 5682 } 5683 } 5684 return 0; 5685 } 5686 5687 static int ext4_quota_off(struct super_block *sb, int type) 5688 { 5689 struct inode *inode = sb_dqopt(sb)->files[type]; 5690 handle_t *handle; 5691 int err; 5692 5693 /* Force all delayed allocation blocks to be allocated. 5694 * Caller already holds s_umount sem */ 5695 if (test_opt(sb, DELALLOC)) 5696 sync_filesystem(sb); 5697 5698 if (!inode || !igrab(inode)) 5699 goto out; 5700 5701 err = dquot_quota_off(sb, type); 5702 if (err || ext4_has_feature_quota(sb)) 5703 goto out_put; 5704 5705 inode_lock(inode); 5706 /* 5707 * Update modification times of quota files when userspace can 5708 * start looking at them. If we fail, we return success anyway since 5709 * this is not a hard failure and quotas are already disabled. 5710 */ 5711 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5712 if (IS_ERR(handle)) 5713 goto out_unlock; 5714 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5715 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5716 inode->i_mtime = inode->i_ctime = current_time(inode); 5717 ext4_mark_inode_dirty(handle, inode); 5718 ext4_journal_stop(handle); 5719 out_unlock: 5720 inode_unlock(inode); 5721 out_put: 5722 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5723 iput(inode); 5724 return err; 5725 out: 5726 return dquot_quota_off(sb, type); 5727 } 5728 5729 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5730 * acquiring the locks... As quota files are never truncated and quota code 5731 * itself serializes the operations (and no one else should touch the files) 5732 * we don't have to be afraid of races */ 5733 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5734 size_t len, loff_t off) 5735 { 5736 struct inode *inode = sb_dqopt(sb)->files[type]; 5737 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5738 int offset = off & (sb->s_blocksize - 1); 5739 int tocopy; 5740 size_t toread; 5741 struct buffer_head *bh; 5742 loff_t i_size = i_size_read(inode); 5743 5744 if (off > i_size) 5745 return 0; 5746 if (off+len > i_size) 5747 len = i_size-off; 5748 toread = len; 5749 while (toread > 0) { 5750 tocopy = sb->s_blocksize - offset < toread ? 5751 sb->s_blocksize - offset : toread; 5752 bh = ext4_bread(NULL, inode, blk, 0); 5753 if (IS_ERR(bh)) 5754 return PTR_ERR(bh); 5755 if (!bh) /* A hole? */ 5756 memset(data, 0, tocopy); 5757 else 5758 memcpy(data, bh->b_data+offset, tocopy); 5759 brelse(bh); 5760 offset = 0; 5761 toread -= tocopy; 5762 data += tocopy; 5763 blk++; 5764 } 5765 return len; 5766 } 5767 5768 /* Write to quotafile (we know the transaction is already started and has 5769 * enough credits) */ 5770 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5771 const char *data, size_t len, loff_t off) 5772 { 5773 struct inode *inode = sb_dqopt(sb)->files[type]; 5774 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5775 int err, offset = off & (sb->s_blocksize - 1); 5776 int retries = 0; 5777 struct buffer_head *bh; 5778 handle_t *handle = journal_current_handle(); 5779 5780 if (EXT4_SB(sb)->s_journal && !handle) { 5781 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5782 " cancelled because transaction is not started", 5783 (unsigned long long)off, (unsigned long long)len); 5784 return -EIO; 5785 } 5786 /* 5787 * Since we account only one data block in transaction credits, 5788 * then it is impossible to cross a block boundary. 5789 */ 5790 if (sb->s_blocksize - offset < len) { 5791 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5792 " cancelled because not block aligned", 5793 (unsigned long long)off, (unsigned long long)len); 5794 return -EIO; 5795 } 5796 5797 do { 5798 bh = ext4_bread(handle, inode, blk, 5799 EXT4_GET_BLOCKS_CREATE | 5800 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5801 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5802 ext4_should_retry_alloc(inode->i_sb, &retries)); 5803 if (IS_ERR(bh)) 5804 return PTR_ERR(bh); 5805 if (!bh) 5806 goto out; 5807 BUFFER_TRACE(bh, "get write access"); 5808 err = ext4_journal_get_write_access(handle, bh); 5809 if (err) { 5810 brelse(bh); 5811 return err; 5812 } 5813 lock_buffer(bh); 5814 memcpy(bh->b_data+offset, data, len); 5815 flush_dcache_page(bh->b_page); 5816 unlock_buffer(bh); 5817 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5818 brelse(bh); 5819 out: 5820 if (inode->i_size < off + len) { 5821 i_size_write(inode, off + len); 5822 EXT4_I(inode)->i_disksize = inode->i_size; 5823 ext4_mark_inode_dirty(handle, inode); 5824 } 5825 return len; 5826 } 5827 5828 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5829 { 5830 const struct quota_format_ops *ops; 5831 5832 if (!sb_has_quota_loaded(sb, qid->type)) 5833 return -ESRCH; 5834 ops = sb_dqopt(sb)->ops[qid->type]; 5835 if (!ops || !ops->get_next_id) 5836 return -ENOSYS; 5837 return dquot_get_next_id(sb, qid); 5838 } 5839 #endif 5840 5841 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5842 const char *dev_name, void *data) 5843 { 5844 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5845 } 5846 5847 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5848 static inline void register_as_ext2(void) 5849 { 5850 int err = register_filesystem(&ext2_fs_type); 5851 if (err) 5852 printk(KERN_WARNING 5853 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5854 } 5855 5856 static inline void unregister_as_ext2(void) 5857 { 5858 unregister_filesystem(&ext2_fs_type); 5859 } 5860 5861 static inline int ext2_feature_set_ok(struct super_block *sb) 5862 { 5863 if (ext4_has_unknown_ext2_incompat_features(sb)) 5864 return 0; 5865 if (sb_rdonly(sb)) 5866 return 1; 5867 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5868 return 0; 5869 return 1; 5870 } 5871 #else 5872 static inline void register_as_ext2(void) { } 5873 static inline void unregister_as_ext2(void) { } 5874 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5875 #endif 5876 5877 static inline void register_as_ext3(void) 5878 { 5879 int err = register_filesystem(&ext3_fs_type); 5880 if (err) 5881 printk(KERN_WARNING 5882 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5883 } 5884 5885 static inline void unregister_as_ext3(void) 5886 { 5887 unregister_filesystem(&ext3_fs_type); 5888 } 5889 5890 static inline int ext3_feature_set_ok(struct super_block *sb) 5891 { 5892 if (ext4_has_unknown_ext3_incompat_features(sb)) 5893 return 0; 5894 if (!ext4_has_feature_journal(sb)) 5895 return 0; 5896 if (sb_rdonly(sb)) 5897 return 1; 5898 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5899 return 0; 5900 return 1; 5901 } 5902 5903 static struct file_system_type ext4_fs_type = { 5904 .owner = THIS_MODULE, 5905 .name = "ext4", 5906 .mount = ext4_mount, 5907 .kill_sb = kill_block_super, 5908 .fs_flags = FS_REQUIRES_DEV, 5909 }; 5910 MODULE_ALIAS_FS("ext4"); 5911 5912 /* Shared across all ext4 file systems */ 5913 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5914 5915 static int __init ext4_init_fs(void) 5916 { 5917 int i, err; 5918 5919 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5920 ext4_li_info = NULL; 5921 mutex_init(&ext4_li_mtx); 5922 5923 /* Build-time check for flags consistency */ 5924 ext4_check_flag_values(); 5925 5926 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5927 init_waitqueue_head(&ext4__ioend_wq[i]); 5928 5929 err = ext4_init_es(); 5930 if (err) 5931 return err; 5932 5933 err = ext4_init_pageio(); 5934 if (err) 5935 goto out5; 5936 5937 err = ext4_init_system_zone(); 5938 if (err) 5939 goto out4; 5940 5941 err = ext4_init_sysfs(); 5942 if (err) 5943 goto out3; 5944 5945 err = ext4_init_mballoc(); 5946 if (err) 5947 goto out2; 5948 err = init_inodecache(); 5949 if (err) 5950 goto out1; 5951 register_as_ext3(); 5952 register_as_ext2(); 5953 err = register_filesystem(&ext4_fs_type); 5954 if (err) 5955 goto out; 5956 5957 return 0; 5958 out: 5959 unregister_as_ext2(); 5960 unregister_as_ext3(); 5961 destroy_inodecache(); 5962 out1: 5963 ext4_exit_mballoc(); 5964 out2: 5965 ext4_exit_sysfs(); 5966 out3: 5967 ext4_exit_system_zone(); 5968 out4: 5969 ext4_exit_pageio(); 5970 out5: 5971 ext4_exit_es(); 5972 5973 return err; 5974 } 5975 5976 static void __exit ext4_exit_fs(void) 5977 { 5978 ext4_destroy_lazyinit_thread(); 5979 unregister_as_ext2(); 5980 unregister_as_ext3(); 5981 unregister_filesystem(&ext4_fs_type); 5982 destroy_inodecache(); 5983 ext4_exit_mballoc(); 5984 ext4_exit_sysfs(); 5985 ext4_exit_system_zone(); 5986 ext4_exit_pageio(); 5987 ext4_exit_es(); 5988 } 5989 5990 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5991 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5992 MODULE_LICENSE("GPL"); 5993 MODULE_SOFTDEP("pre: crc32c"); 5994 module_init(ext4_init_fs) 5995 module_exit(ext4_exit_fs) 5996