1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/jbd2.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/proc_fs.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/cleancache.h> 42 #include <asm/uaccess.h> 43 44 #include <linux/kthread.h> 45 #include <linux/freezer.h> 46 47 #include "ext4.h" 48 #include "ext4_extents.h" /* Needed for trace points definition */ 49 #include "ext4_jbd2.h" 50 #include "xattr.h" 51 #include "acl.h" 52 #include "mballoc.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/ext4.h> 56 57 static struct proc_dir_entry *ext4_proc_root; 58 static struct kset *ext4_kset; 59 static struct ext4_lazy_init *ext4_li_info; 60 static struct mutex ext4_li_mtx; 61 static struct ext4_features *ext4_feat; 62 63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66 static int ext4_commit_super(struct super_block *sb, int sync); 67 static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69 static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71 static int ext4_sync_fs(struct super_block *sb, int wait); 72 static int ext4_remount(struct super_block *sb, int *flags, char *data); 73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74 static int ext4_unfreeze(struct super_block *sb); 75 static int ext4_freeze(struct super_block *sb); 76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data); 78 static inline int ext2_feature_set_ok(struct super_block *sb); 79 static inline int ext3_feature_set_ok(struct super_block *sb); 80 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 81 static void ext4_destroy_lazyinit_thread(void); 82 static void ext4_unregister_li_request(struct super_block *sb); 83 static void ext4_clear_request_list(void); 84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t); 85 86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 87 static struct file_system_type ext2_fs_type = { 88 .owner = THIS_MODULE, 89 .name = "ext2", 90 .mount = ext4_mount, 91 .kill_sb = kill_block_super, 92 .fs_flags = FS_REQUIRES_DEV, 93 }; 94 MODULE_ALIAS_FS("ext2"); 95 MODULE_ALIAS("ext2"); 96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 97 #else 98 #define IS_EXT2_SB(sb) (0) 99 #endif 100 101 102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 103 static struct file_system_type ext3_fs_type = { 104 .owner = THIS_MODULE, 105 .name = "ext3", 106 .mount = ext4_mount, 107 .kill_sb = kill_block_super, 108 .fs_flags = FS_REQUIRES_DEV, 109 }; 110 MODULE_ALIAS_FS("ext3"); 111 MODULE_ALIAS("ext3"); 112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 113 #else 114 #define IS_EXT3_SB(sb) (0) 115 #endif 116 117 static int ext4_verify_csum_type(struct super_block *sb, 118 struct ext4_super_block *es) 119 { 120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 122 return 1; 123 124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 125 } 126 127 static __le32 ext4_superblock_csum(struct super_block *sb, 128 struct ext4_super_block *es) 129 { 130 struct ext4_sb_info *sbi = EXT4_SB(sb); 131 int offset = offsetof(struct ext4_super_block, s_checksum); 132 __u32 csum; 133 134 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 135 136 return cpu_to_le32(csum); 137 } 138 139 int ext4_superblock_csum_verify(struct super_block *sb, 140 struct ext4_super_block *es) 141 { 142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 144 return 1; 145 146 return es->s_checksum == ext4_superblock_csum(sb, es); 147 } 148 149 void ext4_superblock_csum_set(struct super_block *sb) 150 { 151 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 152 153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 155 return; 156 157 es->s_checksum = ext4_superblock_csum(sb, es); 158 } 159 160 void *ext4_kvmalloc(size_t size, gfp_t flags) 161 { 162 void *ret; 163 164 ret = kmalloc(size, flags); 165 if (!ret) 166 ret = __vmalloc(size, flags, PAGE_KERNEL); 167 return ret; 168 } 169 170 void *ext4_kvzalloc(size_t size, gfp_t flags) 171 { 172 void *ret; 173 174 ret = kzalloc(size, flags); 175 if (!ret) 176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 177 return ret; 178 } 179 180 void ext4_kvfree(void *ptr) 181 { 182 if (is_vmalloc_addr(ptr)) 183 vfree(ptr); 184 else 185 kfree(ptr); 186 187 } 188 189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 190 struct ext4_group_desc *bg) 191 { 192 return le32_to_cpu(bg->bg_block_bitmap_lo) | 193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 195 } 196 197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 198 struct ext4_group_desc *bg) 199 { 200 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 203 } 204 205 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 206 struct ext4_group_desc *bg) 207 { 208 return le32_to_cpu(bg->bg_inode_table_lo) | 209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 211 } 212 213 __u32 ext4_free_group_clusters(struct super_block *sb, 214 struct ext4_group_desc *bg) 215 { 216 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 219 } 220 221 __u32 ext4_free_inodes_count(struct super_block *sb, 222 struct ext4_group_desc *bg) 223 { 224 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 227 } 228 229 __u32 ext4_used_dirs_count(struct super_block *sb, 230 struct ext4_group_desc *bg) 231 { 232 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 235 } 236 237 __u32 ext4_itable_unused_count(struct super_block *sb, 238 struct ext4_group_desc *bg) 239 { 240 return le16_to_cpu(bg->bg_itable_unused_lo) | 241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 243 } 244 245 void ext4_block_bitmap_set(struct super_block *sb, 246 struct ext4_group_desc *bg, ext4_fsblk_t blk) 247 { 248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 251 } 252 253 void ext4_inode_bitmap_set(struct super_block *sb, 254 struct ext4_group_desc *bg, ext4_fsblk_t blk) 255 { 256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 259 } 260 261 void ext4_inode_table_set(struct super_block *sb, 262 struct ext4_group_desc *bg, ext4_fsblk_t blk) 263 { 264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 267 } 268 269 void ext4_free_group_clusters_set(struct super_block *sb, 270 struct ext4_group_desc *bg, __u32 count) 271 { 272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 275 } 276 277 void ext4_free_inodes_set(struct super_block *sb, 278 struct ext4_group_desc *bg, __u32 count) 279 { 280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 283 } 284 285 void ext4_used_dirs_set(struct super_block *sb, 286 struct ext4_group_desc *bg, __u32 count) 287 { 288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 291 } 292 293 void ext4_itable_unused_set(struct super_block *sb, 294 struct ext4_group_desc *bg, __u32 count) 295 { 296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 299 } 300 301 302 static void __save_error_info(struct super_block *sb, const char *func, 303 unsigned int line) 304 { 305 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 306 307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 309 es->s_last_error_time = cpu_to_le32(get_seconds()); 310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 311 es->s_last_error_line = cpu_to_le32(line); 312 if (!es->s_first_error_time) { 313 es->s_first_error_time = es->s_last_error_time; 314 strncpy(es->s_first_error_func, func, 315 sizeof(es->s_first_error_func)); 316 es->s_first_error_line = cpu_to_le32(line); 317 es->s_first_error_ino = es->s_last_error_ino; 318 es->s_first_error_block = es->s_last_error_block; 319 } 320 /* 321 * Start the daily error reporting function if it hasn't been 322 * started already 323 */ 324 if (!es->s_error_count) 325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 326 le32_add_cpu(&es->s_error_count, 1); 327 } 328 329 static void save_error_info(struct super_block *sb, const char *func, 330 unsigned int line) 331 { 332 __save_error_info(sb, func, line); 333 ext4_commit_super(sb, 1); 334 } 335 336 /* 337 * The del_gendisk() function uninitializes the disk-specific data 338 * structures, including the bdi structure, without telling anyone 339 * else. Once this happens, any attempt to call mark_buffer_dirty() 340 * (for example, by ext4_commit_super), will cause a kernel OOPS. 341 * This is a kludge to prevent these oops until we can put in a proper 342 * hook in del_gendisk() to inform the VFS and file system layers. 343 */ 344 static int block_device_ejected(struct super_block *sb) 345 { 346 struct inode *bd_inode = sb->s_bdev->bd_inode; 347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 348 349 return bdi->dev == NULL; 350 } 351 352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 353 { 354 struct super_block *sb = journal->j_private; 355 struct ext4_sb_info *sbi = EXT4_SB(sb); 356 int error = is_journal_aborted(journal); 357 struct ext4_journal_cb_entry *jce; 358 359 BUG_ON(txn->t_state == T_FINISHED); 360 spin_lock(&sbi->s_md_lock); 361 while (!list_empty(&txn->t_private_list)) { 362 jce = list_entry(txn->t_private_list.next, 363 struct ext4_journal_cb_entry, jce_list); 364 list_del_init(&jce->jce_list); 365 spin_unlock(&sbi->s_md_lock); 366 jce->jce_func(sb, jce, error); 367 spin_lock(&sbi->s_md_lock); 368 } 369 spin_unlock(&sbi->s_md_lock); 370 } 371 372 /* Deal with the reporting of failure conditions on a filesystem such as 373 * inconsistencies detected or read IO failures. 374 * 375 * On ext2, we can store the error state of the filesystem in the 376 * superblock. That is not possible on ext4, because we may have other 377 * write ordering constraints on the superblock which prevent us from 378 * writing it out straight away; and given that the journal is about to 379 * be aborted, we can't rely on the current, or future, transactions to 380 * write out the superblock safely. 381 * 382 * We'll just use the jbd2_journal_abort() error code to record an error in 383 * the journal instead. On recovery, the journal will complain about 384 * that error until we've noted it down and cleared it. 385 */ 386 387 static void ext4_handle_error(struct super_block *sb) 388 { 389 if (sb->s_flags & MS_RDONLY) 390 return; 391 392 if (!test_opt(sb, ERRORS_CONT)) { 393 journal_t *journal = EXT4_SB(sb)->s_journal; 394 395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 396 if (journal) 397 jbd2_journal_abort(journal, -EIO); 398 } 399 if (test_opt(sb, ERRORS_RO)) { 400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 401 sb->s_flags |= MS_RDONLY; 402 } 403 if (test_opt(sb, ERRORS_PANIC)) 404 panic("EXT4-fs (device %s): panic forced after error\n", 405 sb->s_id); 406 } 407 408 void __ext4_error(struct super_block *sb, const char *function, 409 unsigned int line, const char *fmt, ...) 410 { 411 struct va_format vaf; 412 va_list args; 413 414 va_start(args, fmt); 415 vaf.fmt = fmt; 416 vaf.va = &args; 417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 418 sb->s_id, function, line, current->comm, &vaf); 419 va_end(args); 420 save_error_info(sb, function, line); 421 422 ext4_handle_error(sb); 423 } 424 425 void ext4_error_inode(struct inode *inode, const char *function, 426 unsigned int line, ext4_fsblk_t block, 427 const char *fmt, ...) 428 { 429 va_list args; 430 struct va_format vaf; 431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 432 433 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 434 es->s_last_error_block = cpu_to_le64(block); 435 save_error_info(inode->i_sb, function, line); 436 va_start(args, fmt); 437 vaf.fmt = fmt; 438 vaf.va = &args; 439 if (block) 440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 441 "inode #%lu: block %llu: comm %s: %pV\n", 442 inode->i_sb->s_id, function, line, inode->i_ino, 443 block, current->comm, &vaf); 444 else 445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 446 "inode #%lu: comm %s: %pV\n", 447 inode->i_sb->s_id, function, line, inode->i_ino, 448 current->comm, &vaf); 449 va_end(args); 450 451 ext4_handle_error(inode->i_sb); 452 } 453 454 void ext4_error_file(struct file *file, const char *function, 455 unsigned int line, ext4_fsblk_t block, 456 const char *fmt, ...) 457 { 458 va_list args; 459 struct va_format vaf; 460 struct ext4_super_block *es; 461 struct inode *inode = file_inode(file); 462 char pathname[80], *path; 463 464 es = EXT4_SB(inode->i_sb)->s_es; 465 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 466 save_error_info(inode->i_sb, function, line); 467 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 468 if (IS_ERR(path)) 469 path = "(unknown)"; 470 va_start(args, fmt); 471 vaf.fmt = fmt; 472 vaf.va = &args; 473 if (block) 474 printk(KERN_CRIT 475 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 476 "block %llu: comm %s: path %s: %pV\n", 477 inode->i_sb->s_id, function, line, inode->i_ino, 478 block, current->comm, path, &vaf); 479 else 480 printk(KERN_CRIT 481 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 482 "comm %s: path %s: %pV\n", 483 inode->i_sb->s_id, function, line, inode->i_ino, 484 current->comm, path, &vaf); 485 va_end(args); 486 487 ext4_handle_error(inode->i_sb); 488 } 489 490 const char *ext4_decode_error(struct super_block *sb, int errno, 491 char nbuf[16]) 492 { 493 char *errstr = NULL; 494 495 switch (errno) { 496 case -EIO: 497 errstr = "IO failure"; 498 break; 499 case -ENOMEM: 500 errstr = "Out of memory"; 501 break; 502 case -EROFS: 503 if (!sb || (EXT4_SB(sb)->s_journal && 504 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 505 errstr = "Journal has aborted"; 506 else 507 errstr = "Readonly filesystem"; 508 break; 509 default: 510 /* If the caller passed in an extra buffer for unknown 511 * errors, textualise them now. Else we just return 512 * NULL. */ 513 if (nbuf) { 514 /* Check for truncated error codes... */ 515 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 516 errstr = nbuf; 517 } 518 break; 519 } 520 521 return errstr; 522 } 523 524 /* __ext4_std_error decodes expected errors from journaling functions 525 * automatically and invokes the appropriate error response. */ 526 527 void __ext4_std_error(struct super_block *sb, const char *function, 528 unsigned int line, int errno) 529 { 530 char nbuf[16]; 531 const char *errstr; 532 533 /* Special case: if the error is EROFS, and we're not already 534 * inside a transaction, then there's really no point in logging 535 * an error. */ 536 if (errno == -EROFS && journal_current_handle() == NULL && 537 (sb->s_flags & MS_RDONLY)) 538 return; 539 540 errstr = ext4_decode_error(sb, errno, nbuf); 541 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 542 sb->s_id, function, line, errstr); 543 save_error_info(sb, function, line); 544 545 ext4_handle_error(sb); 546 } 547 548 /* 549 * ext4_abort is a much stronger failure handler than ext4_error. The 550 * abort function may be used to deal with unrecoverable failures such 551 * as journal IO errors or ENOMEM at a critical moment in log management. 552 * 553 * We unconditionally force the filesystem into an ABORT|READONLY state, 554 * unless the error response on the fs has been set to panic in which 555 * case we take the easy way out and panic immediately. 556 */ 557 558 void __ext4_abort(struct super_block *sb, const char *function, 559 unsigned int line, const char *fmt, ...) 560 { 561 va_list args; 562 563 save_error_info(sb, function, line); 564 va_start(args, fmt); 565 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 566 function, line); 567 vprintk(fmt, args); 568 printk("\n"); 569 va_end(args); 570 571 if ((sb->s_flags & MS_RDONLY) == 0) { 572 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 573 sb->s_flags |= MS_RDONLY; 574 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 575 if (EXT4_SB(sb)->s_journal) 576 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 577 save_error_info(sb, function, line); 578 } 579 if (test_opt(sb, ERRORS_PANIC)) 580 panic("EXT4-fs panic from previous error\n"); 581 } 582 583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 584 { 585 struct va_format vaf; 586 va_list args; 587 588 va_start(args, fmt); 589 vaf.fmt = fmt; 590 vaf.va = &args; 591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 592 va_end(args); 593 } 594 595 void __ext4_warning(struct super_block *sb, const char *function, 596 unsigned int line, const char *fmt, ...) 597 { 598 struct va_format vaf; 599 va_list args; 600 601 va_start(args, fmt); 602 vaf.fmt = fmt; 603 vaf.va = &args; 604 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 605 sb->s_id, function, line, &vaf); 606 va_end(args); 607 } 608 609 void __ext4_grp_locked_error(const char *function, unsigned int line, 610 struct super_block *sb, ext4_group_t grp, 611 unsigned long ino, ext4_fsblk_t block, 612 const char *fmt, ...) 613 __releases(bitlock) 614 __acquires(bitlock) 615 { 616 struct va_format vaf; 617 va_list args; 618 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 619 620 es->s_last_error_ino = cpu_to_le32(ino); 621 es->s_last_error_block = cpu_to_le64(block); 622 __save_error_info(sb, function, line); 623 624 va_start(args, fmt); 625 626 vaf.fmt = fmt; 627 vaf.va = &args; 628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 629 sb->s_id, function, line, grp); 630 if (ino) 631 printk(KERN_CONT "inode %lu: ", ino); 632 if (block) 633 printk(KERN_CONT "block %llu:", (unsigned long long) block); 634 printk(KERN_CONT "%pV\n", &vaf); 635 va_end(args); 636 637 if (test_opt(sb, ERRORS_CONT)) { 638 ext4_commit_super(sb, 0); 639 return; 640 } 641 642 ext4_unlock_group(sb, grp); 643 ext4_handle_error(sb); 644 /* 645 * We only get here in the ERRORS_RO case; relocking the group 646 * may be dangerous, but nothing bad will happen since the 647 * filesystem will have already been marked read/only and the 648 * journal has been aborted. We return 1 as a hint to callers 649 * who might what to use the return value from 650 * ext4_grp_locked_error() to distinguish between the 651 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 652 * aggressively from the ext4 function in question, with a 653 * more appropriate error code. 654 */ 655 ext4_lock_group(sb, grp); 656 return; 657 } 658 659 void ext4_update_dynamic_rev(struct super_block *sb) 660 { 661 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 662 663 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 664 return; 665 666 ext4_warning(sb, 667 "updating to rev %d because of new feature flag, " 668 "running e2fsck is recommended", 669 EXT4_DYNAMIC_REV); 670 671 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 672 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 673 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 674 /* leave es->s_feature_*compat flags alone */ 675 /* es->s_uuid will be set by e2fsck if empty */ 676 677 /* 678 * The rest of the superblock fields should be zero, and if not it 679 * means they are likely already in use, so leave them alone. We 680 * can leave it up to e2fsck to clean up any inconsistencies there. 681 */ 682 } 683 684 /* 685 * Open the external journal device 686 */ 687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 688 { 689 struct block_device *bdev; 690 char b[BDEVNAME_SIZE]; 691 692 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 693 if (IS_ERR(bdev)) 694 goto fail; 695 return bdev; 696 697 fail: 698 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 699 __bdevname(dev, b), PTR_ERR(bdev)); 700 return NULL; 701 } 702 703 /* 704 * Release the journal device 705 */ 706 static void ext4_blkdev_put(struct block_device *bdev) 707 { 708 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 709 } 710 711 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 712 { 713 struct block_device *bdev; 714 bdev = sbi->journal_bdev; 715 if (bdev) { 716 ext4_blkdev_put(bdev); 717 sbi->journal_bdev = NULL; 718 } 719 } 720 721 static inline struct inode *orphan_list_entry(struct list_head *l) 722 { 723 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 724 } 725 726 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 727 { 728 struct list_head *l; 729 730 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 731 le32_to_cpu(sbi->s_es->s_last_orphan)); 732 733 printk(KERN_ERR "sb_info orphan list:\n"); 734 list_for_each(l, &sbi->s_orphan) { 735 struct inode *inode = orphan_list_entry(l); 736 printk(KERN_ERR " " 737 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 738 inode->i_sb->s_id, inode->i_ino, inode, 739 inode->i_mode, inode->i_nlink, 740 NEXT_ORPHAN(inode)); 741 } 742 } 743 744 static void ext4_put_super(struct super_block *sb) 745 { 746 struct ext4_sb_info *sbi = EXT4_SB(sb); 747 struct ext4_super_block *es = sbi->s_es; 748 int i, err; 749 750 ext4_unregister_li_request(sb); 751 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 752 753 flush_workqueue(sbi->dio_unwritten_wq); 754 destroy_workqueue(sbi->dio_unwritten_wq); 755 756 if (sbi->s_journal) { 757 err = jbd2_journal_destroy(sbi->s_journal); 758 sbi->s_journal = NULL; 759 if (err < 0) 760 ext4_abort(sb, "Couldn't clean up the journal"); 761 } 762 763 ext4_es_unregister_shrinker(sb); 764 del_timer(&sbi->s_err_report); 765 ext4_release_system_zone(sb); 766 ext4_mb_release(sb); 767 ext4_ext_release(sb); 768 ext4_xattr_put_super(sb); 769 770 if (!(sb->s_flags & MS_RDONLY)) { 771 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 772 es->s_state = cpu_to_le16(sbi->s_mount_state); 773 } 774 if (!(sb->s_flags & MS_RDONLY)) 775 ext4_commit_super(sb, 1); 776 777 if (sbi->s_proc) { 778 remove_proc_entry("options", sbi->s_proc); 779 remove_proc_entry(sb->s_id, ext4_proc_root); 780 } 781 kobject_del(&sbi->s_kobj); 782 783 for (i = 0; i < sbi->s_gdb_count; i++) 784 brelse(sbi->s_group_desc[i]); 785 ext4_kvfree(sbi->s_group_desc); 786 ext4_kvfree(sbi->s_flex_groups); 787 percpu_counter_destroy(&sbi->s_freeclusters_counter); 788 percpu_counter_destroy(&sbi->s_freeinodes_counter); 789 percpu_counter_destroy(&sbi->s_dirs_counter); 790 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 791 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 792 brelse(sbi->s_sbh); 793 #ifdef CONFIG_QUOTA 794 for (i = 0; i < MAXQUOTAS; i++) 795 kfree(sbi->s_qf_names[i]); 796 #endif 797 798 /* Debugging code just in case the in-memory inode orphan list 799 * isn't empty. The on-disk one can be non-empty if we've 800 * detected an error and taken the fs readonly, but the 801 * in-memory list had better be clean by this point. */ 802 if (!list_empty(&sbi->s_orphan)) 803 dump_orphan_list(sb, sbi); 804 J_ASSERT(list_empty(&sbi->s_orphan)); 805 806 invalidate_bdev(sb->s_bdev); 807 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 808 /* 809 * Invalidate the journal device's buffers. We don't want them 810 * floating about in memory - the physical journal device may 811 * hotswapped, and it breaks the `ro-after' testing code. 812 */ 813 sync_blockdev(sbi->journal_bdev); 814 invalidate_bdev(sbi->journal_bdev); 815 ext4_blkdev_remove(sbi); 816 } 817 if (sbi->s_mmp_tsk) 818 kthread_stop(sbi->s_mmp_tsk); 819 sb->s_fs_info = NULL; 820 /* 821 * Now that we are completely done shutting down the 822 * superblock, we need to actually destroy the kobject. 823 */ 824 kobject_put(&sbi->s_kobj); 825 wait_for_completion(&sbi->s_kobj_unregister); 826 if (sbi->s_chksum_driver) 827 crypto_free_shash(sbi->s_chksum_driver); 828 kfree(sbi->s_blockgroup_lock); 829 kfree(sbi); 830 } 831 832 static struct kmem_cache *ext4_inode_cachep; 833 834 /* 835 * Called inside transaction, so use GFP_NOFS 836 */ 837 static struct inode *ext4_alloc_inode(struct super_block *sb) 838 { 839 struct ext4_inode_info *ei; 840 841 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 842 if (!ei) 843 return NULL; 844 845 ei->vfs_inode.i_version = 1; 846 INIT_LIST_HEAD(&ei->i_prealloc_list); 847 spin_lock_init(&ei->i_prealloc_lock); 848 ext4_es_init_tree(&ei->i_es_tree); 849 rwlock_init(&ei->i_es_lock); 850 INIT_LIST_HEAD(&ei->i_es_lru); 851 ei->i_es_lru_nr = 0; 852 ei->i_reserved_data_blocks = 0; 853 ei->i_reserved_meta_blocks = 0; 854 ei->i_allocated_meta_blocks = 0; 855 ei->i_da_metadata_calc_len = 0; 856 ei->i_da_metadata_calc_last_lblock = 0; 857 spin_lock_init(&(ei->i_block_reservation_lock)); 858 #ifdef CONFIG_QUOTA 859 ei->i_reserved_quota = 0; 860 #endif 861 ei->jinode = NULL; 862 INIT_LIST_HEAD(&ei->i_completed_io_list); 863 spin_lock_init(&ei->i_completed_io_lock); 864 ei->i_sync_tid = 0; 865 ei->i_datasync_tid = 0; 866 atomic_set(&ei->i_ioend_count, 0); 867 atomic_set(&ei->i_unwritten, 0); 868 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work); 869 870 return &ei->vfs_inode; 871 } 872 873 static int ext4_drop_inode(struct inode *inode) 874 { 875 int drop = generic_drop_inode(inode); 876 877 trace_ext4_drop_inode(inode, drop); 878 return drop; 879 } 880 881 static void ext4_i_callback(struct rcu_head *head) 882 { 883 struct inode *inode = container_of(head, struct inode, i_rcu); 884 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 885 } 886 887 static void ext4_destroy_inode(struct inode *inode) 888 { 889 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 890 ext4_msg(inode->i_sb, KERN_ERR, 891 "Inode %lu (%p): orphan list check failed!", 892 inode->i_ino, EXT4_I(inode)); 893 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 894 EXT4_I(inode), sizeof(struct ext4_inode_info), 895 true); 896 dump_stack(); 897 } 898 call_rcu(&inode->i_rcu, ext4_i_callback); 899 } 900 901 static void init_once(void *foo) 902 { 903 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 904 905 INIT_LIST_HEAD(&ei->i_orphan); 906 init_rwsem(&ei->xattr_sem); 907 init_rwsem(&ei->i_data_sem); 908 inode_init_once(&ei->vfs_inode); 909 } 910 911 static int init_inodecache(void) 912 { 913 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 914 sizeof(struct ext4_inode_info), 915 0, (SLAB_RECLAIM_ACCOUNT| 916 SLAB_MEM_SPREAD), 917 init_once); 918 if (ext4_inode_cachep == NULL) 919 return -ENOMEM; 920 return 0; 921 } 922 923 static void destroy_inodecache(void) 924 { 925 /* 926 * Make sure all delayed rcu free inodes are flushed before we 927 * destroy cache. 928 */ 929 rcu_barrier(); 930 kmem_cache_destroy(ext4_inode_cachep); 931 } 932 933 void ext4_clear_inode(struct inode *inode) 934 { 935 invalidate_inode_buffers(inode); 936 clear_inode(inode); 937 dquot_drop(inode); 938 ext4_discard_preallocations(inode); 939 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 940 ext4_es_lru_del(inode); 941 if (EXT4_I(inode)->jinode) { 942 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 943 EXT4_I(inode)->jinode); 944 jbd2_free_inode(EXT4_I(inode)->jinode); 945 EXT4_I(inode)->jinode = NULL; 946 } 947 } 948 949 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 950 u64 ino, u32 generation) 951 { 952 struct inode *inode; 953 954 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 955 return ERR_PTR(-ESTALE); 956 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 957 return ERR_PTR(-ESTALE); 958 959 /* iget isn't really right if the inode is currently unallocated!! 960 * 961 * ext4_read_inode will return a bad_inode if the inode had been 962 * deleted, so we should be safe. 963 * 964 * Currently we don't know the generation for parent directory, so 965 * a generation of 0 means "accept any" 966 */ 967 inode = ext4_iget(sb, ino); 968 if (IS_ERR(inode)) 969 return ERR_CAST(inode); 970 if (generation && inode->i_generation != generation) { 971 iput(inode); 972 return ERR_PTR(-ESTALE); 973 } 974 975 return inode; 976 } 977 978 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 979 int fh_len, int fh_type) 980 { 981 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 982 ext4_nfs_get_inode); 983 } 984 985 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 986 int fh_len, int fh_type) 987 { 988 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 989 ext4_nfs_get_inode); 990 } 991 992 /* 993 * Try to release metadata pages (indirect blocks, directories) which are 994 * mapped via the block device. Since these pages could have journal heads 995 * which would prevent try_to_free_buffers() from freeing them, we must use 996 * jbd2 layer's try_to_free_buffers() function to release them. 997 */ 998 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 999 gfp_t wait) 1000 { 1001 journal_t *journal = EXT4_SB(sb)->s_journal; 1002 1003 WARN_ON(PageChecked(page)); 1004 if (!page_has_buffers(page)) 1005 return 0; 1006 if (journal) 1007 return jbd2_journal_try_to_free_buffers(journal, page, 1008 wait & ~__GFP_WAIT); 1009 return try_to_free_buffers(page); 1010 } 1011 1012 #ifdef CONFIG_QUOTA 1013 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1014 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1015 1016 static int ext4_write_dquot(struct dquot *dquot); 1017 static int ext4_acquire_dquot(struct dquot *dquot); 1018 static int ext4_release_dquot(struct dquot *dquot); 1019 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1020 static int ext4_write_info(struct super_block *sb, int type); 1021 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1022 struct path *path); 1023 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1024 int format_id); 1025 static int ext4_quota_off(struct super_block *sb, int type); 1026 static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1027 static int ext4_quota_on_mount(struct super_block *sb, int type); 1028 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1029 size_t len, loff_t off); 1030 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1031 const char *data, size_t len, loff_t off); 1032 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1033 unsigned int flags); 1034 static int ext4_enable_quotas(struct super_block *sb); 1035 1036 static const struct dquot_operations ext4_quota_operations = { 1037 .get_reserved_space = ext4_get_reserved_space, 1038 .write_dquot = ext4_write_dquot, 1039 .acquire_dquot = ext4_acquire_dquot, 1040 .release_dquot = ext4_release_dquot, 1041 .mark_dirty = ext4_mark_dquot_dirty, 1042 .write_info = ext4_write_info, 1043 .alloc_dquot = dquot_alloc, 1044 .destroy_dquot = dquot_destroy, 1045 }; 1046 1047 static const struct quotactl_ops ext4_qctl_operations = { 1048 .quota_on = ext4_quota_on, 1049 .quota_off = ext4_quota_off, 1050 .quota_sync = dquot_quota_sync, 1051 .get_info = dquot_get_dqinfo, 1052 .set_info = dquot_set_dqinfo, 1053 .get_dqblk = dquot_get_dqblk, 1054 .set_dqblk = dquot_set_dqblk 1055 }; 1056 1057 static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1058 .quota_on_meta = ext4_quota_on_sysfile, 1059 .quota_off = ext4_quota_off_sysfile, 1060 .quota_sync = dquot_quota_sync, 1061 .get_info = dquot_get_dqinfo, 1062 .set_info = dquot_set_dqinfo, 1063 .get_dqblk = dquot_get_dqblk, 1064 .set_dqblk = dquot_set_dqblk 1065 }; 1066 #endif 1067 1068 static const struct super_operations ext4_sops = { 1069 .alloc_inode = ext4_alloc_inode, 1070 .destroy_inode = ext4_destroy_inode, 1071 .write_inode = ext4_write_inode, 1072 .dirty_inode = ext4_dirty_inode, 1073 .drop_inode = ext4_drop_inode, 1074 .evict_inode = ext4_evict_inode, 1075 .put_super = ext4_put_super, 1076 .sync_fs = ext4_sync_fs, 1077 .freeze_fs = ext4_freeze, 1078 .unfreeze_fs = ext4_unfreeze, 1079 .statfs = ext4_statfs, 1080 .remount_fs = ext4_remount, 1081 .show_options = ext4_show_options, 1082 #ifdef CONFIG_QUOTA 1083 .quota_read = ext4_quota_read, 1084 .quota_write = ext4_quota_write, 1085 #endif 1086 .bdev_try_to_free_page = bdev_try_to_free_page, 1087 }; 1088 1089 static const struct super_operations ext4_nojournal_sops = { 1090 .alloc_inode = ext4_alloc_inode, 1091 .destroy_inode = ext4_destroy_inode, 1092 .write_inode = ext4_write_inode, 1093 .dirty_inode = ext4_dirty_inode, 1094 .drop_inode = ext4_drop_inode, 1095 .evict_inode = ext4_evict_inode, 1096 .put_super = ext4_put_super, 1097 .statfs = ext4_statfs, 1098 .remount_fs = ext4_remount, 1099 .show_options = ext4_show_options, 1100 #ifdef CONFIG_QUOTA 1101 .quota_read = ext4_quota_read, 1102 .quota_write = ext4_quota_write, 1103 #endif 1104 .bdev_try_to_free_page = bdev_try_to_free_page, 1105 }; 1106 1107 static const struct export_operations ext4_export_ops = { 1108 .fh_to_dentry = ext4_fh_to_dentry, 1109 .fh_to_parent = ext4_fh_to_parent, 1110 .get_parent = ext4_get_parent, 1111 }; 1112 1113 enum { 1114 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1115 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1116 Opt_nouid32, Opt_debug, Opt_removed, 1117 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1118 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1119 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1120 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1121 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1122 Opt_data_err_abort, Opt_data_err_ignore, 1123 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1124 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1125 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1126 Opt_usrquota, Opt_grpquota, Opt_i_version, 1127 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1128 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1129 Opt_inode_readahead_blks, Opt_journal_ioprio, 1130 Opt_dioread_nolock, Opt_dioread_lock, 1131 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1132 Opt_max_dir_size_kb, 1133 }; 1134 1135 static const match_table_t tokens = { 1136 {Opt_bsd_df, "bsddf"}, 1137 {Opt_minix_df, "minixdf"}, 1138 {Opt_grpid, "grpid"}, 1139 {Opt_grpid, "bsdgroups"}, 1140 {Opt_nogrpid, "nogrpid"}, 1141 {Opt_nogrpid, "sysvgroups"}, 1142 {Opt_resgid, "resgid=%u"}, 1143 {Opt_resuid, "resuid=%u"}, 1144 {Opt_sb, "sb=%u"}, 1145 {Opt_err_cont, "errors=continue"}, 1146 {Opt_err_panic, "errors=panic"}, 1147 {Opt_err_ro, "errors=remount-ro"}, 1148 {Opt_nouid32, "nouid32"}, 1149 {Opt_debug, "debug"}, 1150 {Opt_removed, "oldalloc"}, 1151 {Opt_removed, "orlov"}, 1152 {Opt_user_xattr, "user_xattr"}, 1153 {Opt_nouser_xattr, "nouser_xattr"}, 1154 {Opt_acl, "acl"}, 1155 {Opt_noacl, "noacl"}, 1156 {Opt_noload, "norecovery"}, 1157 {Opt_noload, "noload"}, 1158 {Opt_removed, "nobh"}, 1159 {Opt_removed, "bh"}, 1160 {Opt_commit, "commit=%u"}, 1161 {Opt_min_batch_time, "min_batch_time=%u"}, 1162 {Opt_max_batch_time, "max_batch_time=%u"}, 1163 {Opt_journal_dev, "journal_dev=%u"}, 1164 {Opt_journal_checksum, "journal_checksum"}, 1165 {Opt_journal_async_commit, "journal_async_commit"}, 1166 {Opt_abort, "abort"}, 1167 {Opt_data_journal, "data=journal"}, 1168 {Opt_data_ordered, "data=ordered"}, 1169 {Opt_data_writeback, "data=writeback"}, 1170 {Opt_data_err_abort, "data_err=abort"}, 1171 {Opt_data_err_ignore, "data_err=ignore"}, 1172 {Opt_offusrjquota, "usrjquota="}, 1173 {Opt_usrjquota, "usrjquota=%s"}, 1174 {Opt_offgrpjquota, "grpjquota="}, 1175 {Opt_grpjquota, "grpjquota=%s"}, 1176 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1177 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1178 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1179 {Opt_grpquota, "grpquota"}, 1180 {Opt_noquota, "noquota"}, 1181 {Opt_quota, "quota"}, 1182 {Opt_usrquota, "usrquota"}, 1183 {Opt_barrier, "barrier=%u"}, 1184 {Opt_barrier, "barrier"}, 1185 {Opt_nobarrier, "nobarrier"}, 1186 {Opt_i_version, "i_version"}, 1187 {Opt_stripe, "stripe=%u"}, 1188 {Opt_delalloc, "delalloc"}, 1189 {Opt_nodelalloc, "nodelalloc"}, 1190 {Opt_removed, "mblk_io_submit"}, 1191 {Opt_removed, "nomblk_io_submit"}, 1192 {Opt_block_validity, "block_validity"}, 1193 {Opt_noblock_validity, "noblock_validity"}, 1194 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1195 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1196 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1197 {Opt_auto_da_alloc, "auto_da_alloc"}, 1198 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1199 {Opt_dioread_nolock, "dioread_nolock"}, 1200 {Opt_dioread_lock, "dioread_lock"}, 1201 {Opt_discard, "discard"}, 1202 {Opt_nodiscard, "nodiscard"}, 1203 {Opt_init_itable, "init_itable=%u"}, 1204 {Opt_init_itable, "init_itable"}, 1205 {Opt_noinit_itable, "noinit_itable"}, 1206 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1207 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1208 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1209 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1210 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1211 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1212 {Opt_err, NULL}, 1213 }; 1214 1215 static ext4_fsblk_t get_sb_block(void **data) 1216 { 1217 ext4_fsblk_t sb_block; 1218 char *options = (char *) *data; 1219 1220 if (!options || strncmp(options, "sb=", 3) != 0) 1221 return 1; /* Default location */ 1222 1223 options += 3; 1224 /* TODO: use simple_strtoll with >32bit ext4 */ 1225 sb_block = simple_strtoul(options, &options, 0); 1226 if (*options && *options != ',') { 1227 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1228 (char *) *data); 1229 return 1; 1230 } 1231 if (*options == ',') 1232 options++; 1233 *data = (void *) options; 1234 1235 return sb_block; 1236 } 1237 1238 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1239 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1240 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1241 1242 #ifdef CONFIG_QUOTA 1243 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1244 { 1245 struct ext4_sb_info *sbi = EXT4_SB(sb); 1246 char *qname; 1247 int ret = -1; 1248 1249 if (sb_any_quota_loaded(sb) && 1250 !sbi->s_qf_names[qtype]) { 1251 ext4_msg(sb, KERN_ERR, 1252 "Cannot change journaled " 1253 "quota options when quota turned on"); 1254 return -1; 1255 } 1256 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1257 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1258 "when QUOTA feature is enabled"); 1259 return -1; 1260 } 1261 qname = match_strdup(args); 1262 if (!qname) { 1263 ext4_msg(sb, KERN_ERR, 1264 "Not enough memory for storing quotafile name"); 1265 return -1; 1266 } 1267 if (sbi->s_qf_names[qtype]) { 1268 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1269 ret = 1; 1270 else 1271 ext4_msg(sb, KERN_ERR, 1272 "%s quota file already specified", 1273 QTYPE2NAME(qtype)); 1274 goto errout; 1275 } 1276 if (strchr(qname, '/')) { 1277 ext4_msg(sb, KERN_ERR, 1278 "quotafile must be on filesystem root"); 1279 goto errout; 1280 } 1281 sbi->s_qf_names[qtype] = qname; 1282 set_opt(sb, QUOTA); 1283 return 1; 1284 errout: 1285 kfree(qname); 1286 return ret; 1287 } 1288 1289 static int clear_qf_name(struct super_block *sb, int qtype) 1290 { 1291 1292 struct ext4_sb_info *sbi = EXT4_SB(sb); 1293 1294 if (sb_any_quota_loaded(sb) && 1295 sbi->s_qf_names[qtype]) { 1296 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1297 " when quota turned on"); 1298 return -1; 1299 } 1300 kfree(sbi->s_qf_names[qtype]); 1301 sbi->s_qf_names[qtype] = NULL; 1302 return 1; 1303 } 1304 #endif 1305 1306 #define MOPT_SET 0x0001 1307 #define MOPT_CLEAR 0x0002 1308 #define MOPT_NOSUPPORT 0x0004 1309 #define MOPT_EXPLICIT 0x0008 1310 #define MOPT_CLEAR_ERR 0x0010 1311 #define MOPT_GTE0 0x0020 1312 #ifdef CONFIG_QUOTA 1313 #define MOPT_Q 0 1314 #define MOPT_QFMT 0x0040 1315 #else 1316 #define MOPT_Q MOPT_NOSUPPORT 1317 #define MOPT_QFMT MOPT_NOSUPPORT 1318 #endif 1319 #define MOPT_DATAJ 0x0080 1320 #define MOPT_NO_EXT2 0x0100 1321 #define MOPT_NO_EXT3 0x0200 1322 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1323 1324 static const struct mount_opts { 1325 int token; 1326 int mount_opt; 1327 int flags; 1328 } ext4_mount_opts[] = { 1329 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1330 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1331 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1332 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1333 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1334 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1335 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1336 MOPT_EXT4_ONLY | MOPT_SET}, 1337 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1338 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1339 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1340 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1341 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1342 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1343 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1344 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT}, 1345 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1346 MOPT_EXT4_ONLY | MOPT_SET}, 1347 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1348 EXT4_MOUNT_JOURNAL_CHECKSUM), 1349 MOPT_EXT4_ONLY | MOPT_SET}, 1350 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1351 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1352 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1353 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1354 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1355 MOPT_NO_EXT2 | MOPT_SET}, 1356 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1357 MOPT_NO_EXT2 | MOPT_CLEAR}, 1358 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1359 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1360 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1361 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1362 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1363 {Opt_commit, 0, MOPT_GTE0}, 1364 {Opt_max_batch_time, 0, MOPT_GTE0}, 1365 {Opt_min_batch_time, 0, MOPT_GTE0}, 1366 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1367 {Opt_init_itable, 0, MOPT_GTE0}, 1368 {Opt_stripe, 0, MOPT_GTE0}, 1369 {Opt_resuid, 0, MOPT_GTE0}, 1370 {Opt_resgid, 0, MOPT_GTE0}, 1371 {Opt_journal_dev, 0, MOPT_GTE0}, 1372 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1373 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1374 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1375 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1376 MOPT_NO_EXT2 | MOPT_DATAJ}, 1377 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1378 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1379 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1380 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1381 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1382 #else 1383 {Opt_acl, 0, MOPT_NOSUPPORT}, 1384 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1385 #endif 1386 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1387 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1388 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1389 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1390 MOPT_SET | MOPT_Q}, 1391 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1392 MOPT_SET | MOPT_Q}, 1393 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1394 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1395 {Opt_usrjquota, 0, MOPT_Q}, 1396 {Opt_grpjquota, 0, MOPT_Q}, 1397 {Opt_offusrjquota, 0, MOPT_Q}, 1398 {Opt_offgrpjquota, 0, MOPT_Q}, 1399 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1400 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1401 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1402 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1403 {Opt_err, 0, 0} 1404 }; 1405 1406 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1407 substring_t *args, unsigned long *journal_devnum, 1408 unsigned int *journal_ioprio, int is_remount) 1409 { 1410 struct ext4_sb_info *sbi = EXT4_SB(sb); 1411 const struct mount_opts *m; 1412 kuid_t uid; 1413 kgid_t gid; 1414 int arg = 0; 1415 1416 #ifdef CONFIG_QUOTA 1417 if (token == Opt_usrjquota) 1418 return set_qf_name(sb, USRQUOTA, &args[0]); 1419 else if (token == Opt_grpjquota) 1420 return set_qf_name(sb, GRPQUOTA, &args[0]); 1421 else if (token == Opt_offusrjquota) 1422 return clear_qf_name(sb, USRQUOTA); 1423 else if (token == Opt_offgrpjquota) 1424 return clear_qf_name(sb, GRPQUOTA); 1425 #endif 1426 switch (token) { 1427 case Opt_noacl: 1428 case Opt_nouser_xattr: 1429 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1430 break; 1431 case Opt_sb: 1432 return 1; /* handled by get_sb_block() */ 1433 case Opt_removed: 1434 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1435 return 1; 1436 case Opt_abort: 1437 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1438 return 1; 1439 case Opt_i_version: 1440 sb->s_flags |= MS_I_VERSION; 1441 return 1; 1442 } 1443 1444 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1445 if (token == m->token) 1446 break; 1447 1448 if (m->token == Opt_err) { 1449 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1450 "or missing value", opt); 1451 return -1; 1452 } 1453 1454 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1455 ext4_msg(sb, KERN_ERR, 1456 "Mount option \"%s\" incompatible with ext2", opt); 1457 return -1; 1458 } 1459 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1460 ext4_msg(sb, KERN_ERR, 1461 "Mount option \"%s\" incompatible with ext3", opt); 1462 return -1; 1463 } 1464 1465 if (args->from && match_int(args, &arg)) 1466 return -1; 1467 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1468 return -1; 1469 if (m->flags & MOPT_EXPLICIT) 1470 set_opt2(sb, EXPLICIT_DELALLOC); 1471 if (m->flags & MOPT_CLEAR_ERR) 1472 clear_opt(sb, ERRORS_MASK); 1473 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1474 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1475 "options when quota turned on"); 1476 return -1; 1477 } 1478 1479 if (m->flags & MOPT_NOSUPPORT) { 1480 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1481 } else if (token == Opt_commit) { 1482 if (arg == 0) 1483 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1484 sbi->s_commit_interval = HZ * arg; 1485 } else if (token == Opt_max_batch_time) { 1486 if (arg == 0) 1487 arg = EXT4_DEF_MAX_BATCH_TIME; 1488 sbi->s_max_batch_time = arg; 1489 } else if (token == Opt_min_batch_time) { 1490 sbi->s_min_batch_time = arg; 1491 } else if (token == Opt_inode_readahead_blks) { 1492 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1493 ext4_msg(sb, KERN_ERR, 1494 "EXT4-fs: inode_readahead_blks must be " 1495 "0 or a power of 2 smaller than 2^31"); 1496 return -1; 1497 } 1498 sbi->s_inode_readahead_blks = arg; 1499 } else if (token == Opt_init_itable) { 1500 set_opt(sb, INIT_INODE_TABLE); 1501 if (!args->from) 1502 arg = EXT4_DEF_LI_WAIT_MULT; 1503 sbi->s_li_wait_mult = arg; 1504 } else if (token == Opt_max_dir_size_kb) { 1505 sbi->s_max_dir_size_kb = arg; 1506 } else if (token == Opt_stripe) { 1507 sbi->s_stripe = arg; 1508 } else if (token == Opt_resuid) { 1509 uid = make_kuid(current_user_ns(), arg); 1510 if (!uid_valid(uid)) { 1511 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1512 return -1; 1513 } 1514 sbi->s_resuid = uid; 1515 } else if (token == Opt_resgid) { 1516 gid = make_kgid(current_user_ns(), arg); 1517 if (!gid_valid(gid)) { 1518 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1519 return -1; 1520 } 1521 sbi->s_resgid = gid; 1522 } else if (token == Opt_journal_dev) { 1523 if (is_remount) { 1524 ext4_msg(sb, KERN_ERR, 1525 "Cannot specify journal on remount"); 1526 return -1; 1527 } 1528 *journal_devnum = arg; 1529 } else if (token == Opt_journal_ioprio) { 1530 if (arg > 7) { 1531 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1532 " (must be 0-7)"); 1533 return -1; 1534 } 1535 *journal_ioprio = 1536 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1537 } else if (m->flags & MOPT_DATAJ) { 1538 if (is_remount) { 1539 if (!sbi->s_journal) 1540 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1541 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1542 ext4_msg(sb, KERN_ERR, 1543 "Cannot change data mode on remount"); 1544 return -1; 1545 } 1546 } else { 1547 clear_opt(sb, DATA_FLAGS); 1548 sbi->s_mount_opt |= m->mount_opt; 1549 } 1550 #ifdef CONFIG_QUOTA 1551 } else if (m->flags & MOPT_QFMT) { 1552 if (sb_any_quota_loaded(sb) && 1553 sbi->s_jquota_fmt != m->mount_opt) { 1554 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1555 "quota options when quota turned on"); 1556 return -1; 1557 } 1558 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1559 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1560 ext4_msg(sb, KERN_ERR, 1561 "Cannot set journaled quota options " 1562 "when QUOTA feature is enabled"); 1563 return -1; 1564 } 1565 sbi->s_jquota_fmt = m->mount_opt; 1566 #endif 1567 } else { 1568 if (!args->from) 1569 arg = 1; 1570 if (m->flags & MOPT_CLEAR) 1571 arg = !arg; 1572 else if (unlikely(!(m->flags & MOPT_SET))) { 1573 ext4_msg(sb, KERN_WARNING, 1574 "buggy handling of option %s", opt); 1575 WARN_ON(1); 1576 return -1; 1577 } 1578 if (arg != 0) 1579 sbi->s_mount_opt |= m->mount_opt; 1580 else 1581 sbi->s_mount_opt &= ~m->mount_opt; 1582 } 1583 return 1; 1584 } 1585 1586 static int parse_options(char *options, struct super_block *sb, 1587 unsigned long *journal_devnum, 1588 unsigned int *journal_ioprio, 1589 int is_remount) 1590 { 1591 struct ext4_sb_info *sbi = EXT4_SB(sb); 1592 char *p; 1593 substring_t args[MAX_OPT_ARGS]; 1594 int token; 1595 1596 if (!options) 1597 return 1; 1598 1599 while ((p = strsep(&options, ",")) != NULL) { 1600 if (!*p) 1601 continue; 1602 /* 1603 * Initialize args struct so we know whether arg was 1604 * found; some options take optional arguments. 1605 */ 1606 args[0].to = args[0].from = NULL; 1607 token = match_token(p, tokens, args); 1608 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1609 journal_ioprio, is_remount) < 0) 1610 return 0; 1611 } 1612 #ifdef CONFIG_QUOTA 1613 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1614 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1615 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1616 "feature is enabled"); 1617 return 0; 1618 } 1619 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1620 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1621 clear_opt(sb, USRQUOTA); 1622 1623 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1624 clear_opt(sb, GRPQUOTA); 1625 1626 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1627 ext4_msg(sb, KERN_ERR, "old and new quota " 1628 "format mixing"); 1629 return 0; 1630 } 1631 1632 if (!sbi->s_jquota_fmt) { 1633 ext4_msg(sb, KERN_ERR, "journaled quota format " 1634 "not specified"); 1635 return 0; 1636 } 1637 } else { 1638 if (sbi->s_jquota_fmt) { 1639 ext4_msg(sb, KERN_ERR, "journaled quota format " 1640 "specified with no journaling " 1641 "enabled"); 1642 return 0; 1643 } 1644 } 1645 #endif 1646 if (test_opt(sb, DIOREAD_NOLOCK)) { 1647 int blocksize = 1648 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1649 1650 if (blocksize < PAGE_CACHE_SIZE) { 1651 ext4_msg(sb, KERN_ERR, "can't mount with " 1652 "dioread_nolock if block size != PAGE_SIZE"); 1653 return 0; 1654 } 1655 } 1656 return 1; 1657 } 1658 1659 static inline void ext4_show_quota_options(struct seq_file *seq, 1660 struct super_block *sb) 1661 { 1662 #if defined(CONFIG_QUOTA) 1663 struct ext4_sb_info *sbi = EXT4_SB(sb); 1664 1665 if (sbi->s_jquota_fmt) { 1666 char *fmtname = ""; 1667 1668 switch (sbi->s_jquota_fmt) { 1669 case QFMT_VFS_OLD: 1670 fmtname = "vfsold"; 1671 break; 1672 case QFMT_VFS_V0: 1673 fmtname = "vfsv0"; 1674 break; 1675 case QFMT_VFS_V1: 1676 fmtname = "vfsv1"; 1677 break; 1678 } 1679 seq_printf(seq, ",jqfmt=%s", fmtname); 1680 } 1681 1682 if (sbi->s_qf_names[USRQUOTA]) 1683 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1684 1685 if (sbi->s_qf_names[GRPQUOTA]) 1686 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1687 1688 if (test_opt(sb, USRQUOTA)) 1689 seq_puts(seq, ",usrquota"); 1690 1691 if (test_opt(sb, GRPQUOTA)) 1692 seq_puts(seq, ",grpquota"); 1693 #endif 1694 } 1695 1696 static const char *token2str(int token) 1697 { 1698 const struct match_token *t; 1699 1700 for (t = tokens; t->token != Opt_err; t++) 1701 if (t->token == token && !strchr(t->pattern, '=')) 1702 break; 1703 return t->pattern; 1704 } 1705 1706 /* 1707 * Show an option if 1708 * - it's set to a non-default value OR 1709 * - if the per-sb default is different from the global default 1710 */ 1711 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1712 int nodefs) 1713 { 1714 struct ext4_sb_info *sbi = EXT4_SB(sb); 1715 struct ext4_super_block *es = sbi->s_es; 1716 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1717 const struct mount_opts *m; 1718 char sep = nodefs ? '\n' : ','; 1719 1720 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1721 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1722 1723 if (sbi->s_sb_block != 1) 1724 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1725 1726 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1727 int want_set = m->flags & MOPT_SET; 1728 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1729 (m->flags & MOPT_CLEAR_ERR)) 1730 continue; 1731 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1732 continue; /* skip if same as the default */ 1733 if ((want_set && 1734 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1735 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1736 continue; /* select Opt_noFoo vs Opt_Foo */ 1737 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1738 } 1739 1740 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1741 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1742 SEQ_OPTS_PRINT("resuid=%u", 1743 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1744 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1745 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1746 SEQ_OPTS_PRINT("resgid=%u", 1747 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1748 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1749 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1750 SEQ_OPTS_PUTS("errors=remount-ro"); 1751 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1752 SEQ_OPTS_PUTS("errors=continue"); 1753 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1754 SEQ_OPTS_PUTS("errors=panic"); 1755 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1756 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1757 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1758 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1759 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1760 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1761 if (sb->s_flags & MS_I_VERSION) 1762 SEQ_OPTS_PUTS("i_version"); 1763 if (nodefs || sbi->s_stripe) 1764 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1765 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1766 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1767 SEQ_OPTS_PUTS("data=journal"); 1768 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1769 SEQ_OPTS_PUTS("data=ordered"); 1770 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1771 SEQ_OPTS_PUTS("data=writeback"); 1772 } 1773 if (nodefs || 1774 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1775 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1776 sbi->s_inode_readahead_blks); 1777 1778 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1779 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1780 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1781 if (nodefs || sbi->s_max_dir_size_kb) 1782 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1783 1784 ext4_show_quota_options(seq, sb); 1785 return 0; 1786 } 1787 1788 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1789 { 1790 return _ext4_show_options(seq, root->d_sb, 0); 1791 } 1792 1793 static int options_seq_show(struct seq_file *seq, void *offset) 1794 { 1795 struct super_block *sb = seq->private; 1796 int rc; 1797 1798 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1799 rc = _ext4_show_options(seq, sb, 1); 1800 seq_puts(seq, "\n"); 1801 return rc; 1802 } 1803 1804 static int options_open_fs(struct inode *inode, struct file *file) 1805 { 1806 return single_open(file, options_seq_show, PDE_DATA(inode)); 1807 } 1808 1809 static const struct file_operations ext4_seq_options_fops = { 1810 .owner = THIS_MODULE, 1811 .open = options_open_fs, 1812 .read = seq_read, 1813 .llseek = seq_lseek, 1814 .release = single_release, 1815 }; 1816 1817 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1818 int read_only) 1819 { 1820 struct ext4_sb_info *sbi = EXT4_SB(sb); 1821 int res = 0; 1822 1823 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1824 ext4_msg(sb, KERN_ERR, "revision level too high, " 1825 "forcing read-only mode"); 1826 res = MS_RDONLY; 1827 } 1828 if (read_only) 1829 goto done; 1830 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1831 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1832 "running e2fsck is recommended"); 1833 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1834 ext4_msg(sb, KERN_WARNING, 1835 "warning: mounting fs with errors, " 1836 "running e2fsck is recommended"); 1837 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1838 le16_to_cpu(es->s_mnt_count) >= 1839 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1840 ext4_msg(sb, KERN_WARNING, 1841 "warning: maximal mount count reached, " 1842 "running e2fsck is recommended"); 1843 else if (le32_to_cpu(es->s_checkinterval) && 1844 (le32_to_cpu(es->s_lastcheck) + 1845 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1846 ext4_msg(sb, KERN_WARNING, 1847 "warning: checktime reached, " 1848 "running e2fsck is recommended"); 1849 if (!sbi->s_journal) 1850 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1851 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1852 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1853 le16_add_cpu(&es->s_mnt_count, 1); 1854 es->s_mtime = cpu_to_le32(get_seconds()); 1855 ext4_update_dynamic_rev(sb); 1856 if (sbi->s_journal) 1857 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1858 1859 ext4_commit_super(sb, 1); 1860 done: 1861 if (test_opt(sb, DEBUG)) 1862 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1863 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1864 sb->s_blocksize, 1865 sbi->s_groups_count, 1866 EXT4_BLOCKS_PER_GROUP(sb), 1867 EXT4_INODES_PER_GROUP(sb), 1868 sbi->s_mount_opt, sbi->s_mount_opt2); 1869 1870 cleancache_init_fs(sb); 1871 return res; 1872 } 1873 1874 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1875 { 1876 struct ext4_sb_info *sbi = EXT4_SB(sb); 1877 struct flex_groups *new_groups; 1878 int size; 1879 1880 if (!sbi->s_log_groups_per_flex) 1881 return 0; 1882 1883 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1884 if (size <= sbi->s_flex_groups_allocated) 1885 return 0; 1886 1887 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1888 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1889 if (!new_groups) { 1890 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1891 size / (int) sizeof(struct flex_groups)); 1892 return -ENOMEM; 1893 } 1894 1895 if (sbi->s_flex_groups) { 1896 memcpy(new_groups, sbi->s_flex_groups, 1897 (sbi->s_flex_groups_allocated * 1898 sizeof(struct flex_groups))); 1899 ext4_kvfree(sbi->s_flex_groups); 1900 } 1901 sbi->s_flex_groups = new_groups; 1902 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1903 return 0; 1904 } 1905 1906 static int ext4_fill_flex_info(struct super_block *sb) 1907 { 1908 struct ext4_sb_info *sbi = EXT4_SB(sb); 1909 struct ext4_group_desc *gdp = NULL; 1910 ext4_group_t flex_group; 1911 unsigned int groups_per_flex = 0; 1912 int i, err; 1913 1914 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1915 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1916 sbi->s_log_groups_per_flex = 0; 1917 return 1; 1918 } 1919 groups_per_flex = 1U << sbi->s_log_groups_per_flex; 1920 1921 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1922 if (err) 1923 goto failed; 1924 1925 for (i = 0; i < sbi->s_groups_count; i++) { 1926 gdp = ext4_get_group_desc(sb, i, NULL); 1927 1928 flex_group = ext4_flex_group(sbi, i); 1929 atomic_add(ext4_free_inodes_count(sb, gdp), 1930 &sbi->s_flex_groups[flex_group].free_inodes); 1931 atomic64_add(ext4_free_group_clusters(sb, gdp), 1932 &sbi->s_flex_groups[flex_group].free_clusters); 1933 atomic_add(ext4_used_dirs_count(sb, gdp), 1934 &sbi->s_flex_groups[flex_group].used_dirs); 1935 } 1936 1937 return 1; 1938 failed: 1939 return 0; 1940 } 1941 1942 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1943 struct ext4_group_desc *gdp) 1944 { 1945 int offset; 1946 __u16 crc = 0; 1947 __le32 le_group = cpu_to_le32(block_group); 1948 1949 if ((sbi->s_es->s_feature_ro_compat & 1950 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1951 /* Use new metadata_csum algorithm */ 1952 __le16 save_csum; 1953 __u32 csum32; 1954 1955 save_csum = gdp->bg_checksum; 1956 gdp->bg_checksum = 0; 1957 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1958 sizeof(le_group)); 1959 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 1960 sbi->s_desc_size); 1961 gdp->bg_checksum = save_csum; 1962 1963 crc = csum32 & 0xFFFF; 1964 goto out; 1965 } 1966 1967 /* old crc16 code */ 1968 offset = offsetof(struct ext4_group_desc, bg_checksum); 1969 1970 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1971 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1972 crc = crc16(crc, (__u8 *)gdp, offset); 1973 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1974 /* for checksum of struct ext4_group_desc do the rest...*/ 1975 if ((sbi->s_es->s_feature_incompat & 1976 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1977 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1978 crc = crc16(crc, (__u8 *)gdp + offset, 1979 le16_to_cpu(sbi->s_es->s_desc_size) - 1980 offset); 1981 1982 out: 1983 return cpu_to_le16(crc); 1984 } 1985 1986 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 1987 struct ext4_group_desc *gdp) 1988 { 1989 if (ext4_has_group_desc_csum(sb) && 1990 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 1991 block_group, gdp))) 1992 return 0; 1993 1994 return 1; 1995 } 1996 1997 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 1998 struct ext4_group_desc *gdp) 1999 { 2000 if (!ext4_has_group_desc_csum(sb)) 2001 return; 2002 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2003 } 2004 2005 /* Called at mount-time, super-block is locked */ 2006 static int ext4_check_descriptors(struct super_block *sb, 2007 ext4_group_t *first_not_zeroed) 2008 { 2009 struct ext4_sb_info *sbi = EXT4_SB(sb); 2010 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2011 ext4_fsblk_t last_block; 2012 ext4_fsblk_t block_bitmap; 2013 ext4_fsblk_t inode_bitmap; 2014 ext4_fsblk_t inode_table; 2015 int flexbg_flag = 0; 2016 ext4_group_t i, grp = sbi->s_groups_count; 2017 2018 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2019 flexbg_flag = 1; 2020 2021 ext4_debug("Checking group descriptors"); 2022 2023 for (i = 0; i < sbi->s_groups_count; i++) { 2024 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2025 2026 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2027 last_block = ext4_blocks_count(sbi->s_es) - 1; 2028 else 2029 last_block = first_block + 2030 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2031 2032 if ((grp == sbi->s_groups_count) && 2033 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2034 grp = i; 2035 2036 block_bitmap = ext4_block_bitmap(sb, gdp); 2037 if (block_bitmap < first_block || block_bitmap > last_block) { 2038 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2039 "Block bitmap for group %u not in group " 2040 "(block %llu)!", i, block_bitmap); 2041 return 0; 2042 } 2043 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2044 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2045 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2046 "Inode bitmap for group %u not in group " 2047 "(block %llu)!", i, inode_bitmap); 2048 return 0; 2049 } 2050 inode_table = ext4_inode_table(sb, gdp); 2051 if (inode_table < first_block || 2052 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2053 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2054 "Inode table for group %u not in group " 2055 "(block %llu)!", i, inode_table); 2056 return 0; 2057 } 2058 ext4_lock_group(sb, i); 2059 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2060 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2061 "Checksum for group %u failed (%u!=%u)", 2062 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2063 gdp)), le16_to_cpu(gdp->bg_checksum)); 2064 if (!(sb->s_flags & MS_RDONLY)) { 2065 ext4_unlock_group(sb, i); 2066 return 0; 2067 } 2068 } 2069 ext4_unlock_group(sb, i); 2070 if (!flexbg_flag) 2071 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2072 } 2073 if (NULL != first_not_zeroed) 2074 *first_not_zeroed = grp; 2075 2076 ext4_free_blocks_count_set(sbi->s_es, 2077 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2078 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2079 return 1; 2080 } 2081 2082 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2083 * the superblock) which were deleted from all directories, but held open by 2084 * a process at the time of a crash. We walk the list and try to delete these 2085 * inodes at recovery time (only with a read-write filesystem). 2086 * 2087 * In order to keep the orphan inode chain consistent during traversal (in 2088 * case of crash during recovery), we link each inode into the superblock 2089 * orphan list_head and handle it the same way as an inode deletion during 2090 * normal operation (which journals the operations for us). 2091 * 2092 * We only do an iget() and an iput() on each inode, which is very safe if we 2093 * accidentally point at an in-use or already deleted inode. The worst that 2094 * can happen in this case is that we get a "bit already cleared" message from 2095 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2096 * e2fsck was run on this filesystem, and it must have already done the orphan 2097 * inode cleanup for us, so we can safely abort without any further action. 2098 */ 2099 static void ext4_orphan_cleanup(struct super_block *sb, 2100 struct ext4_super_block *es) 2101 { 2102 unsigned int s_flags = sb->s_flags; 2103 int nr_orphans = 0, nr_truncates = 0; 2104 #ifdef CONFIG_QUOTA 2105 int i; 2106 #endif 2107 if (!es->s_last_orphan) { 2108 jbd_debug(4, "no orphan inodes to clean up\n"); 2109 return; 2110 } 2111 2112 if (bdev_read_only(sb->s_bdev)) { 2113 ext4_msg(sb, KERN_ERR, "write access " 2114 "unavailable, skipping orphan cleanup"); 2115 return; 2116 } 2117 2118 /* Check if feature set would not allow a r/w mount */ 2119 if (!ext4_feature_set_ok(sb, 0)) { 2120 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2121 "unknown ROCOMPAT features"); 2122 return; 2123 } 2124 2125 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2126 /* don't clear list on RO mount w/ errors */ 2127 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2128 jbd_debug(1, "Errors on filesystem, " 2129 "clearing orphan list.\n"); 2130 es->s_last_orphan = 0; 2131 } 2132 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2133 return; 2134 } 2135 2136 if (s_flags & MS_RDONLY) { 2137 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2138 sb->s_flags &= ~MS_RDONLY; 2139 } 2140 #ifdef CONFIG_QUOTA 2141 /* Needed for iput() to work correctly and not trash data */ 2142 sb->s_flags |= MS_ACTIVE; 2143 /* Turn on quotas so that they are updated correctly */ 2144 for (i = 0; i < MAXQUOTAS; i++) { 2145 if (EXT4_SB(sb)->s_qf_names[i]) { 2146 int ret = ext4_quota_on_mount(sb, i); 2147 if (ret < 0) 2148 ext4_msg(sb, KERN_ERR, 2149 "Cannot turn on journaled " 2150 "quota: error %d", ret); 2151 } 2152 } 2153 #endif 2154 2155 while (es->s_last_orphan) { 2156 struct inode *inode; 2157 2158 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2159 if (IS_ERR(inode)) { 2160 es->s_last_orphan = 0; 2161 break; 2162 } 2163 2164 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2165 dquot_initialize(inode); 2166 if (inode->i_nlink) { 2167 ext4_msg(sb, KERN_DEBUG, 2168 "%s: truncating inode %lu to %lld bytes", 2169 __func__, inode->i_ino, inode->i_size); 2170 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2171 inode->i_ino, inode->i_size); 2172 mutex_lock(&inode->i_mutex); 2173 ext4_truncate(inode); 2174 mutex_unlock(&inode->i_mutex); 2175 nr_truncates++; 2176 } else { 2177 ext4_msg(sb, KERN_DEBUG, 2178 "%s: deleting unreferenced inode %lu", 2179 __func__, inode->i_ino); 2180 jbd_debug(2, "deleting unreferenced inode %lu\n", 2181 inode->i_ino); 2182 nr_orphans++; 2183 } 2184 iput(inode); /* The delete magic happens here! */ 2185 } 2186 2187 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2188 2189 if (nr_orphans) 2190 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2191 PLURAL(nr_orphans)); 2192 if (nr_truncates) 2193 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2194 PLURAL(nr_truncates)); 2195 #ifdef CONFIG_QUOTA 2196 /* Turn quotas off */ 2197 for (i = 0; i < MAXQUOTAS; i++) { 2198 if (sb_dqopt(sb)->files[i]) 2199 dquot_quota_off(sb, i); 2200 } 2201 #endif 2202 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2203 } 2204 2205 /* 2206 * Maximal extent format file size. 2207 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2208 * extent format containers, within a sector_t, and within i_blocks 2209 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2210 * so that won't be a limiting factor. 2211 * 2212 * However there is other limiting factor. We do store extents in the form 2213 * of starting block and length, hence the resulting length of the extent 2214 * covering maximum file size must fit into on-disk format containers as 2215 * well. Given that length is always by 1 unit bigger than max unit (because 2216 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2217 * 2218 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2219 */ 2220 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2221 { 2222 loff_t res; 2223 loff_t upper_limit = MAX_LFS_FILESIZE; 2224 2225 /* small i_blocks in vfs inode? */ 2226 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2227 /* 2228 * CONFIG_LBDAF is not enabled implies the inode 2229 * i_block represent total blocks in 512 bytes 2230 * 32 == size of vfs inode i_blocks * 8 2231 */ 2232 upper_limit = (1LL << 32) - 1; 2233 2234 /* total blocks in file system block size */ 2235 upper_limit >>= (blkbits - 9); 2236 upper_limit <<= blkbits; 2237 } 2238 2239 /* 2240 * 32-bit extent-start container, ee_block. We lower the maxbytes 2241 * by one fs block, so ee_len can cover the extent of maximum file 2242 * size 2243 */ 2244 res = (1LL << 32) - 1; 2245 res <<= blkbits; 2246 2247 /* Sanity check against vm- & vfs- imposed limits */ 2248 if (res > upper_limit) 2249 res = upper_limit; 2250 2251 return res; 2252 } 2253 2254 /* 2255 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2256 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2257 * We need to be 1 filesystem block less than the 2^48 sector limit. 2258 */ 2259 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2260 { 2261 loff_t res = EXT4_NDIR_BLOCKS; 2262 int meta_blocks; 2263 loff_t upper_limit; 2264 /* This is calculated to be the largest file size for a dense, block 2265 * mapped file such that the file's total number of 512-byte sectors, 2266 * including data and all indirect blocks, does not exceed (2^48 - 1). 2267 * 2268 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2269 * number of 512-byte sectors of the file. 2270 */ 2271 2272 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2273 /* 2274 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2275 * the inode i_block field represents total file blocks in 2276 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2277 */ 2278 upper_limit = (1LL << 32) - 1; 2279 2280 /* total blocks in file system block size */ 2281 upper_limit >>= (bits - 9); 2282 2283 } else { 2284 /* 2285 * We use 48 bit ext4_inode i_blocks 2286 * With EXT4_HUGE_FILE_FL set the i_blocks 2287 * represent total number of blocks in 2288 * file system block size 2289 */ 2290 upper_limit = (1LL << 48) - 1; 2291 2292 } 2293 2294 /* indirect blocks */ 2295 meta_blocks = 1; 2296 /* double indirect blocks */ 2297 meta_blocks += 1 + (1LL << (bits-2)); 2298 /* tripple indirect blocks */ 2299 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2300 2301 upper_limit -= meta_blocks; 2302 upper_limit <<= bits; 2303 2304 res += 1LL << (bits-2); 2305 res += 1LL << (2*(bits-2)); 2306 res += 1LL << (3*(bits-2)); 2307 res <<= bits; 2308 if (res > upper_limit) 2309 res = upper_limit; 2310 2311 if (res > MAX_LFS_FILESIZE) 2312 res = MAX_LFS_FILESIZE; 2313 2314 return res; 2315 } 2316 2317 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2318 ext4_fsblk_t logical_sb_block, int nr) 2319 { 2320 struct ext4_sb_info *sbi = EXT4_SB(sb); 2321 ext4_group_t bg, first_meta_bg; 2322 int has_super = 0; 2323 2324 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2325 2326 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2327 nr < first_meta_bg) 2328 return logical_sb_block + nr + 1; 2329 bg = sbi->s_desc_per_block * nr; 2330 if (ext4_bg_has_super(sb, bg)) 2331 has_super = 1; 2332 2333 return (has_super + ext4_group_first_block_no(sb, bg)); 2334 } 2335 2336 /** 2337 * ext4_get_stripe_size: Get the stripe size. 2338 * @sbi: In memory super block info 2339 * 2340 * If we have specified it via mount option, then 2341 * use the mount option value. If the value specified at mount time is 2342 * greater than the blocks per group use the super block value. 2343 * If the super block value is greater than blocks per group return 0. 2344 * Allocator needs it be less than blocks per group. 2345 * 2346 */ 2347 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2348 { 2349 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2350 unsigned long stripe_width = 2351 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2352 int ret; 2353 2354 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2355 ret = sbi->s_stripe; 2356 else if (stripe_width <= sbi->s_blocks_per_group) 2357 ret = stripe_width; 2358 else if (stride <= sbi->s_blocks_per_group) 2359 ret = stride; 2360 else 2361 ret = 0; 2362 2363 /* 2364 * If the stripe width is 1, this makes no sense and 2365 * we set it to 0 to turn off stripe handling code. 2366 */ 2367 if (ret <= 1) 2368 ret = 0; 2369 2370 return ret; 2371 } 2372 2373 /* sysfs supprt */ 2374 2375 struct ext4_attr { 2376 struct attribute attr; 2377 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2378 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2379 const char *, size_t); 2380 int offset; 2381 }; 2382 2383 static int parse_strtoull(const char *buf, 2384 unsigned long long max, unsigned long long *value) 2385 { 2386 int ret; 2387 2388 ret = kstrtoull(skip_spaces(buf), 0, value); 2389 if (!ret && *value > max) 2390 ret = -EINVAL; 2391 return ret; 2392 } 2393 2394 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2395 struct ext4_sb_info *sbi, 2396 char *buf) 2397 { 2398 return snprintf(buf, PAGE_SIZE, "%llu\n", 2399 (s64) EXT4_C2B(sbi, 2400 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2401 } 2402 2403 static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2404 struct ext4_sb_info *sbi, char *buf) 2405 { 2406 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2407 2408 if (!sb->s_bdev->bd_part) 2409 return snprintf(buf, PAGE_SIZE, "0\n"); 2410 return snprintf(buf, PAGE_SIZE, "%lu\n", 2411 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2412 sbi->s_sectors_written_start) >> 1); 2413 } 2414 2415 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2416 struct ext4_sb_info *sbi, char *buf) 2417 { 2418 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2419 2420 if (!sb->s_bdev->bd_part) 2421 return snprintf(buf, PAGE_SIZE, "0\n"); 2422 return snprintf(buf, PAGE_SIZE, "%llu\n", 2423 (unsigned long long)(sbi->s_kbytes_written + 2424 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2425 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2426 } 2427 2428 static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2429 struct ext4_sb_info *sbi, 2430 const char *buf, size_t count) 2431 { 2432 unsigned long t; 2433 int ret; 2434 2435 ret = kstrtoul(skip_spaces(buf), 0, &t); 2436 if (ret) 2437 return ret; 2438 2439 if (t && (!is_power_of_2(t) || t > 0x40000000)) 2440 return -EINVAL; 2441 2442 sbi->s_inode_readahead_blks = t; 2443 return count; 2444 } 2445 2446 static ssize_t sbi_ui_show(struct ext4_attr *a, 2447 struct ext4_sb_info *sbi, char *buf) 2448 { 2449 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2450 2451 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2452 } 2453 2454 static ssize_t sbi_ui_store(struct ext4_attr *a, 2455 struct ext4_sb_info *sbi, 2456 const char *buf, size_t count) 2457 { 2458 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2459 unsigned long t; 2460 int ret; 2461 2462 ret = kstrtoul(skip_spaces(buf), 0, &t); 2463 if (ret) 2464 return ret; 2465 *ui = t; 2466 return count; 2467 } 2468 2469 static ssize_t reserved_clusters_show(struct ext4_attr *a, 2470 struct ext4_sb_info *sbi, char *buf) 2471 { 2472 return snprintf(buf, PAGE_SIZE, "%llu\n", 2473 (unsigned long long) atomic64_read(&sbi->s_resv_clusters)); 2474 } 2475 2476 static ssize_t reserved_clusters_store(struct ext4_attr *a, 2477 struct ext4_sb_info *sbi, 2478 const char *buf, size_t count) 2479 { 2480 unsigned long long val; 2481 int ret; 2482 2483 if (parse_strtoull(buf, -1ULL, &val)) 2484 return -EINVAL; 2485 ret = ext4_reserve_clusters(sbi, val); 2486 2487 return ret ? ret : count; 2488 } 2489 2490 static ssize_t trigger_test_error(struct ext4_attr *a, 2491 struct ext4_sb_info *sbi, 2492 const char *buf, size_t count) 2493 { 2494 int len = count; 2495 2496 if (!capable(CAP_SYS_ADMIN)) 2497 return -EPERM; 2498 2499 if (len && buf[len-1] == '\n') 2500 len--; 2501 2502 if (len) 2503 ext4_error(sbi->s_sb, "%.*s", len, buf); 2504 return count; 2505 } 2506 2507 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2508 static struct ext4_attr ext4_attr_##_name = { \ 2509 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2510 .show = _show, \ 2511 .store = _store, \ 2512 .offset = offsetof(struct ext4_sb_info, _elname), \ 2513 } 2514 #define EXT4_ATTR(name, mode, show, store) \ 2515 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2516 2517 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2518 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2519 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2520 #define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2521 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2522 #define ATTR_LIST(name) &ext4_attr_##name.attr 2523 2524 EXT4_RO_ATTR(delayed_allocation_blocks); 2525 EXT4_RO_ATTR(session_write_kbytes); 2526 EXT4_RO_ATTR(lifetime_write_kbytes); 2527 EXT4_RW_ATTR(reserved_clusters); 2528 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2529 inode_readahead_blks_store, s_inode_readahead_blks); 2530 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2531 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2532 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2533 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2534 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2535 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2536 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2537 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2538 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2539 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2540 2541 static struct attribute *ext4_attrs[] = { 2542 ATTR_LIST(delayed_allocation_blocks), 2543 ATTR_LIST(session_write_kbytes), 2544 ATTR_LIST(lifetime_write_kbytes), 2545 ATTR_LIST(reserved_clusters), 2546 ATTR_LIST(inode_readahead_blks), 2547 ATTR_LIST(inode_goal), 2548 ATTR_LIST(mb_stats), 2549 ATTR_LIST(mb_max_to_scan), 2550 ATTR_LIST(mb_min_to_scan), 2551 ATTR_LIST(mb_order2_req), 2552 ATTR_LIST(mb_stream_req), 2553 ATTR_LIST(mb_group_prealloc), 2554 ATTR_LIST(max_writeback_mb_bump), 2555 ATTR_LIST(extent_max_zeroout_kb), 2556 ATTR_LIST(trigger_fs_error), 2557 NULL, 2558 }; 2559 2560 /* Features this copy of ext4 supports */ 2561 EXT4_INFO_ATTR(lazy_itable_init); 2562 EXT4_INFO_ATTR(batched_discard); 2563 EXT4_INFO_ATTR(meta_bg_resize); 2564 2565 static struct attribute *ext4_feat_attrs[] = { 2566 ATTR_LIST(lazy_itable_init), 2567 ATTR_LIST(batched_discard), 2568 ATTR_LIST(meta_bg_resize), 2569 NULL, 2570 }; 2571 2572 static ssize_t ext4_attr_show(struct kobject *kobj, 2573 struct attribute *attr, char *buf) 2574 { 2575 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2576 s_kobj); 2577 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2578 2579 return a->show ? a->show(a, sbi, buf) : 0; 2580 } 2581 2582 static ssize_t ext4_attr_store(struct kobject *kobj, 2583 struct attribute *attr, 2584 const char *buf, size_t len) 2585 { 2586 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2587 s_kobj); 2588 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2589 2590 return a->store ? a->store(a, sbi, buf, len) : 0; 2591 } 2592 2593 static void ext4_sb_release(struct kobject *kobj) 2594 { 2595 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2596 s_kobj); 2597 complete(&sbi->s_kobj_unregister); 2598 } 2599 2600 static const struct sysfs_ops ext4_attr_ops = { 2601 .show = ext4_attr_show, 2602 .store = ext4_attr_store, 2603 }; 2604 2605 static struct kobj_type ext4_ktype = { 2606 .default_attrs = ext4_attrs, 2607 .sysfs_ops = &ext4_attr_ops, 2608 .release = ext4_sb_release, 2609 }; 2610 2611 static void ext4_feat_release(struct kobject *kobj) 2612 { 2613 complete(&ext4_feat->f_kobj_unregister); 2614 } 2615 2616 static struct kobj_type ext4_feat_ktype = { 2617 .default_attrs = ext4_feat_attrs, 2618 .sysfs_ops = &ext4_attr_ops, 2619 .release = ext4_feat_release, 2620 }; 2621 2622 /* 2623 * Check whether this filesystem can be mounted based on 2624 * the features present and the RDONLY/RDWR mount requested. 2625 * Returns 1 if this filesystem can be mounted as requested, 2626 * 0 if it cannot be. 2627 */ 2628 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2629 { 2630 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2631 ext4_msg(sb, KERN_ERR, 2632 "Couldn't mount because of " 2633 "unsupported optional features (%x)", 2634 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2635 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2636 return 0; 2637 } 2638 2639 if (readonly) 2640 return 1; 2641 2642 /* Check that feature set is OK for a read-write mount */ 2643 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2644 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2645 "unsupported optional features (%x)", 2646 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2647 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2648 return 0; 2649 } 2650 /* 2651 * Large file size enabled file system can only be mounted 2652 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2653 */ 2654 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2655 if (sizeof(blkcnt_t) < sizeof(u64)) { 2656 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2657 "cannot be mounted RDWR without " 2658 "CONFIG_LBDAF"); 2659 return 0; 2660 } 2661 } 2662 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2663 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2664 ext4_msg(sb, KERN_ERR, 2665 "Can't support bigalloc feature without " 2666 "extents feature\n"); 2667 return 0; 2668 } 2669 2670 #ifndef CONFIG_QUOTA 2671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2672 !readonly) { 2673 ext4_msg(sb, KERN_ERR, 2674 "Filesystem with quota feature cannot be mounted RDWR " 2675 "without CONFIG_QUOTA"); 2676 return 0; 2677 } 2678 #endif /* CONFIG_QUOTA */ 2679 return 1; 2680 } 2681 2682 /* 2683 * This function is called once a day if we have errors logged 2684 * on the file system 2685 */ 2686 static void print_daily_error_info(unsigned long arg) 2687 { 2688 struct super_block *sb = (struct super_block *) arg; 2689 struct ext4_sb_info *sbi; 2690 struct ext4_super_block *es; 2691 2692 sbi = EXT4_SB(sb); 2693 es = sbi->s_es; 2694 2695 if (es->s_error_count) 2696 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2697 le32_to_cpu(es->s_error_count)); 2698 if (es->s_first_error_time) { 2699 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2700 sb->s_id, le32_to_cpu(es->s_first_error_time), 2701 (int) sizeof(es->s_first_error_func), 2702 es->s_first_error_func, 2703 le32_to_cpu(es->s_first_error_line)); 2704 if (es->s_first_error_ino) 2705 printk(": inode %u", 2706 le32_to_cpu(es->s_first_error_ino)); 2707 if (es->s_first_error_block) 2708 printk(": block %llu", (unsigned long long) 2709 le64_to_cpu(es->s_first_error_block)); 2710 printk("\n"); 2711 } 2712 if (es->s_last_error_time) { 2713 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2714 sb->s_id, le32_to_cpu(es->s_last_error_time), 2715 (int) sizeof(es->s_last_error_func), 2716 es->s_last_error_func, 2717 le32_to_cpu(es->s_last_error_line)); 2718 if (es->s_last_error_ino) 2719 printk(": inode %u", 2720 le32_to_cpu(es->s_last_error_ino)); 2721 if (es->s_last_error_block) 2722 printk(": block %llu", (unsigned long long) 2723 le64_to_cpu(es->s_last_error_block)); 2724 printk("\n"); 2725 } 2726 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2727 } 2728 2729 /* Find next suitable group and run ext4_init_inode_table */ 2730 static int ext4_run_li_request(struct ext4_li_request *elr) 2731 { 2732 struct ext4_group_desc *gdp = NULL; 2733 ext4_group_t group, ngroups; 2734 struct super_block *sb; 2735 unsigned long timeout = 0; 2736 int ret = 0; 2737 2738 sb = elr->lr_super; 2739 ngroups = EXT4_SB(sb)->s_groups_count; 2740 2741 sb_start_write(sb); 2742 for (group = elr->lr_next_group; group < ngroups; group++) { 2743 gdp = ext4_get_group_desc(sb, group, NULL); 2744 if (!gdp) { 2745 ret = 1; 2746 break; 2747 } 2748 2749 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2750 break; 2751 } 2752 2753 if (group >= ngroups) 2754 ret = 1; 2755 2756 if (!ret) { 2757 timeout = jiffies; 2758 ret = ext4_init_inode_table(sb, group, 2759 elr->lr_timeout ? 0 : 1); 2760 if (elr->lr_timeout == 0) { 2761 timeout = (jiffies - timeout) * 2762 elr->lr_sbi->s_li_wait_mult; 2763 elr->lr_timeout = timeout; 2764 } 2765 elr->lr_next_sched = jiffies + elr->lr_timeout; 2766 elr->lr_next_group = group + 1; 2767 } 2768 sb_end_write(sb); 2769 2770 return ret; 2771 } 2772 2773 /* 2774 * Remove lr_request from the list_request and free the 2775 * request structure. Should be called with li_list_mtx held 2776 */ 2777 static void ext4_remove_li_request(struct ext4_li_request *elr) 2778 { 2779 struct ext4_sb_info *sbi; 2780 2781 if (!elr) 2782 return; 2783 2784 sbi = elr->lr_sbi; 2785 2786 list_del(&elr->lr_request); 2787 sbi->s_li_request = NULL; 2788 kfree(elr); 2789 } 2790 2791 static void ext4_unregister_li_request(struct super_block *sb) 2792 { 2793 mutex_lock(&ext4_li_mtx); 2794 if (!ext4_li_info) { 2795 mutex_unlock(&ext4_li_mtx); 2796 return; 2797 } 2798 2799 mutex_lock(&ext4_li_info->li_list_mtx); 2800 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2801 mutex_unlock(&ext4_li_info->li_list_mtx); 2802 mutex_unlock(&ext4_li_mtx); 2803 } 2804 2805 static struct task_struct *ext4_lazyinit_task; 2806 2807 /* 2808 * This is the function where ext4lazyinit thread lives. It walks 2809 * through the request list searching for next scheduled filesystem. 2810 * When such a fs is found, run the lazy initialization request 2811 * (ext4_rn_li_request) and keep track of the time spend in this 2812 * function. Based on that time we compute next schedule time of 2813 * the request. When walking through the list is complete, compute 2814 * next waking time and put itself into sleep. 2815 */ 2816 static int ext4_lazyinit_thread(void *arg) 2817 { 2818 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2819 struct list_head *pos, *n; 2820 struct ext4_li_request *elr; 2821 unsigned long next_wakeup, cur; 2822 2823 BUG_ON(NULL == eli); 2824 2825 cont_thread: 2826 while (true) { 2827 next_wakeup = MAX_JIFFY_OFFSET; 2828 2829 mutex_lock(&eli->li_list_mtx); 2830 if (list_empty(&eli->li_request_list)) { 2831 mutex_unlock(&eli->li_list_mtx); 2832 goto exit_thread; 2833 } 2834 2835 list_for_each_safe(pos, n, &eli->li_request_list) { 2836 elr = list_entry(pos, struct ext4_li_request, 2837 lr_request); 2838 2839 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2840 if (ext4_run_li_request(elr) != 0) { 2841 /* error, remove the lazy_init job */ 2842 ext4_remove_li_request(elr); 2843 continue; 2844 } 2845 } 2846 2847 if (time_before(elr->lr_next_sched, next_wakeup)) 2848 next_wakeup = elr->lr_next_sched; 2849 } 2850 mutex_unlock(&eli->li_list_mtx); 2851 2852 try_to_freeze(); 2853 2854 cur = jiffies; 2855 if ((time_after_eq(cur, next_wakeup)) || 2856 (MAX_JIFFY_OFFSET == next_wakeup)) { 2857 cond_resched(); 2858 continue; 2859 } 2860 2861 schedule_timeout_interruptible(next_wakeup - cur); 2862 2863 if (kthread_should_stop()) { 2864 ext4_clear_request_list(); 2865 goto exit_thread; 2866 } 2867 } 2868 2869 exit_thread: 2870 /* 2871 * It looks like the request list is empty, but we need 2872 * to check it under the li_list_mtx lock, to prevent any 2873 * additions into it, and of course we should lock ext4_li_mtx 2874 * to atomically free the list and ext4_li_info, because at 2875 * this point another ext4 filesystem could be registering 2876 * new one. 2877 */ 2878 mutex_lock(&ext4_li_mtx); 2879 mutex_lock(&eli->li_list_mtx); 2880 if (!list_empty(&eli->li_request_list)) { 2881 mutex_unlock(&eli->li_list_mtx); 2882 mutex_unlock(&ext4_li_mtx); 2883 goto cont_thread; 2884 } 2885 mutex_unlock(&eli->li_list_mtx); 2886 kfree(ext4_li_info); 2887 ext4_li_info = NULL; 2888 mutex_unlock(&ext4_li_mtx); 2889 2890 return 0; 2891 } 2892 2893 static void ext4_clear_request_list(void) 2894 { 2895 struct list_head *pos, *n; 2896 struct ext4_li_request *elr; 2897 2898 mutex_lock(&ext4_li_info->li_list_mtx); 2899 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2900 elr = list_entry(pos, struct ext4_li_request, 2901 lr_request); 2902 ext4_remove_li_request(elr); 2903 } 2904 mutex_unlock(&ext4_li_info->li_list_mtx); 2905 } 2906 2907 static int ext4_run_lazyinit_thread(void) 2908 { 2909 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2910 ext4_li_info, "ext4lazyinit"); 2911 if (IS_ERR(ext4_lazyinit_task)) { 2912 int err = PTR_ERR(ext4_lazyinit_task); 2913 ext4_clear_request_list(); 2914 kfree(ext4_li_info); 2915 ext4_li_info = NULL; 2916 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2917 "initialization thread\n", 2918 err); 2919 return err; 2920 } 2921 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2922 return 0; 2923 } 2924 2925 /* 2926 * Check whether it make sense to run itable init. thread or not. 2927 * If there is at least one uninitialized inode table, return 2928 * corresponding group number, else the loop goes through all 2929 * groups and return total number of groups. 2930 */ 2931 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2932 { 2933 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2934 struct ext4_group_desc *gdp = NULL; 2935 2936 for (group = 0; group < ngroups; group++) { 2937 gdp = ext4_get_group_desc(sb, group, NULL); 2938 if (!gdp) 2939 continue; 2940 2941 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2942 break; 2943 } 2944 2945 return group; 2946 } 2947 2948 static int ext4_li_info_new(void) 2949 { 2950 struct ext4_lazy_init *eli = NULL; 2951 2952 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2953 if (!eli) 2954 return -ENOMEM; 2955 2956 INIT_LIST_HEAD(&eli->li_request_list); 2957 mutex_init(&eli->li_list_mtx); 2958 2959 eli->li_state |= EXT4_LAZYINIT_QUIT; 2960 2961 ext4_li_info = eli; 2962 2963 return 0; 2964 } 2965 2966 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2967 ext4_group_t start) 2968 { 2969 struct ext4_sb_info *sbi = EXT4_SB(sb); 2970 struct ext4_li_request *elr; 2971 unsigned long rnd; 2972 2973 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2974 if (!elr) 2975 return NULL; 2976 2977 elr->lr_super = sb; 2978 elr->lr_sbi = sbi; 2979 elr->lr_next_group = start; 2980 2981 /* 2982 * Randomize first schedule time of the request to 2983 * spread the inode table initialization requests 2984 * better. 2985 */ 2986 get_random_bytes(&rnd, sizeof(rnd)); 2987 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2988 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2989 2990 return elr; 2991 } 2992 2993 int ext4_register_li_request(struct super_block *sb, 2994 ext4_group_t first_not_zeroed) 2995 { 2996 struct ext4_sb_info *sbi = EXT4_SB(sb); 2997 struct ext4_li_request *elr = NULL; 2998 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2999 int ret = 0; 3000 3001 mutex_lock(&ext4_li_mtx); 3002 if (sbi->s_li_request != NULL) { 3003 /* 3004 * Reset timeout so it can be computed again, because 3005 * s_li_wait_mult might have changed. 3006 */ 3007 sbi->s_li_request->lr_timeout = 0; 3008 goto out; 3009 } 3010 3011 if (first_not_zeroed == ngroups || 3012 (sb->s_flags & MS_RDONLY) || 3013 !test_opt(sb, INIT_INODE_TABLE)) 3014 goto out; 3015 3016 elr = ext4_li_request_new(sb, first_not_zeroed); 3017 if (!elr) { 3018 ret = -ENOMEM; 3019 goto out; 3020 } 3021 3022 if (NULL == ext4_li_info) { 3023 ret = ext4_li_info_new(); 3024 if (ret) 3025 goto out; 3026 } 3027 3028 mutex_lock(&ext4_li_info->li_list_mtx); 3029 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3030 mutex_unlock(&ext4_li_info->li_list_mtx); 3031 3032 sbi->s_li_request = elr; 3033 /* 3034 * set elr to NULL here since it has been inserted to 3035 * the request_list and the removal and free of it is 3036 * handled by ext4_clear_request_list from now on. 3037 */ 3038 elr = NULL; 3039 3040 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3041 ret = ext4_run_lazyinit_thread(); 3042 if (ret) 3043 goto out; 3044 } 3045 out: 3046 mutex_unlock(&ext4_li_mtx); 3047 if (ret) 3048 kfree(elr); 3049 return ret; 3050 } 3051 3052 /* 3053 * We do not need to lock anything since this is called on 3054 * module unload. 3055 */ 3056 static void ext4_destroy_lazyinit_thread(void) 3057 { 3058 /* 3059 * If thread exited earlier 3060 * there's nothing to be done. 3061 */ 3062 if (!ext4_li_info || !ext4_lazyinit_task) 3063 return; 3064 3065 kthread_stop(ext4_lazyinit_task); 3066 } 3067 3068 static int set_journal_csum_feature_set(struct super_block *sb) 3069 { 3070 int ret = 1; 3071 int compat, incompat; 3072 struct ext4_sb_info *sbi = EXT4_SB(sb); 3073 3074 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3075 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3076 /* journal checksum v2 */ 3077 compat = 0; 3078 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3079 } else { 3080 /* journal checksum v1 */ 3081 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3082 incompat = 0; 3083 } 3084 3085 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3086 ret = jbd2_journal_set_features(sbi->s_journal, 3087 compat, 0, 3088 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3089 incompat); 3090 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3091 ret = jbd2_journal_set_features(sbi->s_journal, 3092 compat, 0, 3093 incompat); 3094 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3095 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3096 } else { 3097 jbd2_journal_clear_features(sbi->s_journal, 3098 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3099 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3100 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3101 } 3102 3103 return ret; 3104 } 3105 3106 /* 3107 * Note: calculating the overhead so we can be compatible with 3108 * historical BSD practice is quite difficult in the face of 3109 * clusters/bigalloc. This is because multiple metadata blocks from 3110 * different block group can end up in the same allocation cluster. 3111 * Calculating the exact overhead in the face of clustered allocation 3112 * requires either O(all block bitmaps) in memory or O(number of block 3113 * groups**2) in time. We will still calculate the superblock for 3114 * older file systems --- and if we come across with a bigalloc file 3115 * system with zero in s_overhead_clusters the estimate will be close to 3116 * correct especially for very large cluster sizes --- but for newer 3117 * file systems, it's better to calculate this figure once at mkfs 3118 * time, and store it in the superblock. If the superblock value is 3119 * present (even for non-bigalloc file systems), we will use it. 3120 */ 3121 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3122 char *buf) 3123 { 3124 struct ext4_sb_info *sbi = EXT4_SB(sb); 3125 struct ext4_group_desc *gdp; 3126 ext4_fsblk_t first_block, last_block, b; 3127 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3128 int s, j, count = 0; 3129 3130 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3131 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3132 sbi->s_itb_per_group + 2); 3133 3134 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3135 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3136 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3137 for (i = 0; i < ngroups; i++) { 3138 gdp = ext4_get_group_desc(sb, i, NULL); 3139 b = ext4_block_bitmap(sb, gdp); 3140 if (b >= first_block && b <= last_block) { 3141 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3142 count++; 3143 } 3144 b = ext4_inode_bitmap(sb, gdp); 3145 if (b >= first_block && b <= last_block) { 3146 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3147 count++; 3148 } 3149 b = ext4_inode_table(sb, gdp); 3150 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3151 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3152 int c = EXT4_B2C(sbi, b - first_block); 3153 ext4_set_bit(c, buf); 3154 count++; 3155 } 3156 if (i != grp) 3157 continue; 3158 s = 0; 3159 if (ext4_bg_has_super(sb, grp)) { 3160 ext4_set_bit(s++, buf); 3161 count++; 3162 } 3163 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3164 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3165 count++; 3166 } 3167 } 3168 if (!count) 3169 return 0; 3170 return EXT4_CLUSTERS_PER_GROUP(sb) - 3171 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3172 } 3173 3174 /* 3175 * Compute the overhead and stash it in sbi->s_overhead 3176 */ 3177 int ext4_calculate_overhead(struct super_block *sb) 3178 { 3179 struct ext4_sb_info *sbi = EXT4_SB(sb); 3180 struct ext4_super_block *es = sbi->s_es; 3181 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3182 ext4_fsblk_t overhead = 0; 3183 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3184 3185 if (!buf) 3186 return -ENOMEM; 3187 3188 /* 3189 * Compute the overhead (FS structures). This is constant 3190 * for a given filesystem unless the number of block groups 3191 * changes so we cache the previous value until it does. 3192 */ 3193 3194 /* 3195 * All of the blocks before first_data_block are overhead 3196 */ 3197 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3198 3199 /* 3200 * Add the overhead found in each block group 3201 */ 3202 for (i = 0; i < ngroups; i++) { 3203 int blks; 3204 3205 blks = count_overhead(sb, i, buf); 3206 overhead += blks; 3207 if (blks) 3208 memset(buf, 0, PAGE_SIZE); 3209 cond_resched(); 3210 } 3211 /* Add the journal blocks as well */ 3212 if (sbi->s_journal) 3213 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3214 3215 sbi->s_overhead = overhead; 3216 smp_wmb(); 3217 free_page((unsigned long) buf); 3218 return 0; 3219 } 3220 3221 3222 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi) 3223 { 3224 ext4_fsblk_t resv_clusters; 3225 3226 /* 3227 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3228 * This should cover the situations where we can not afford to run 3229 * out of space like for example punch hole, or converting 3230 * uninitialized extents in delalloc path. In most cases such 3231 * allocation would require 1, or 2 blocks, higher numbers are 3232 * very rare. 3233 */ 3234 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits; 3235 3236 do_div(resv_clusters, 50); 3237 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3238 3239 return resv_clusters; 3240 } 3241 3242 3243 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count) 3244 { 3245 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >> 3246 sbi->s_cluster_bits; 3247 3248 if (count >= clusters) 3249 return -EINVAL; 3250 3251 atomic64_set(&sbi->s_resv_clusters, count); 3252 return 0; 3253 } 3254 3255 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3256 { 3257 char *orig_data = kstrdup(data, GFP_KERNEL); 3258 struct buffer_head *bh; 3259 struct ext4_super_block *es = NULL; 3260 struct ext4_sb_info *sbi; 3261 ext4_fsblk_t block; 3262 ext4_fsblk_t sb_block = get_sb_block(&data); 3263 ext4_fsblk_t logical_sb_block; 3264 unsigned long offset = 0; 3265 unsigned long journal_devnum = 0; 3266 unsigned long def_mount_opts; 3267 struct inode *root; 3268 char *cp; 3269 const char *descr; 3270 int ret = -ENOMEM; 3271 int blocksize, clustersize; 3272 unsigned int db_count; 3273 unsigned int i; 3274 int needs_recovery, has_huge_files, has_bigalloc; 3275 __u64 blocks_count; 3276 int err = 0; 3277 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3278 ext4_group_t first_not_zeroed; 3279 3280 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3281 if (!sbi) 3282 goto out_free_orig; 3283 3284 sbi->s_blockgroup_lock = 3285 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3286 if (!sbi->s_blockgroup_lock) { 3287 kfree(sbi); 3288 goto out_free_orig; 3289 } 3290 sb->s_fs_info = sbi; 3291 sbi->s_sb = sb; 3292 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3293 sbi->s_sb_block = sb_block; 3294 if (sb->s_bdev->bd_part) 3295 sbi->s_sectors_written_start = 3296 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3297 3298 /* Cleanup superblock name */ 3299 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3300 *cp = '!'; 3301 3302 /* -EINVAL is default */ 3303 ret = -EINVAL; 3304 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3305 if (!blocksize) { 3306 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3307 goto out_fail; 3308 } 3309 3310 /* 3311 * The ext4 superblock will not be buffer aligned for other than 1kB 3312 * block sizes. We need to calculate the offset from buffer start. 3313 */ 3314 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3315 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3316 offset = do_div(logical_sb_block, blocksize); 3317 } else { 3318 logical_sb_block = sb_block; 3319 } 3320 3321 if (!(bh = sb_bread(sb, logical_sb_block))) { 3322 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3323 goto out_fail; 3324 } 3325 /* 3326 * Note: s_es must be initialized as soon as possible because 3327 * some ext4 macro-instructions depend on its value 3328 */ 3329 es = (struct ext4_super_block *) (bh->b_data + offset); 3330 sbi->s_es = es; 3331 sb->s_magic = le16_to_cpu(es->s_magic); 3332 if (sb->s_magic != EXT4_SUPER_MAGIC) 3333 goto cantfind_ext4; 3334 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3335 3336 /* Warn if metadata_csum and gdt_csum are both set. */ 3337 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3338 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3339 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3340 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3341 "redundant flags; please run fsck."); 3342 3343 /* Check for a known checksum algorithm */ 3344 if (!ext4_verify_csum_type(sb, es)) { 3345 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3346 "unknown checksum algorithm."); 3347 silent = 1; 3348 goto cantfind_ext4; 3349 } 3350 3351 /* Load the checksum driver */ 3352 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3353 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3354 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3355 if (IS_ERR(sbi->s_chksum_driver)) { 3356 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3357 ret = PTR_ERR(sbi->s_chksum_driver); 3358 sbi->s_chksum_driver = NULL; 3359 goto failed_mount; 3360 } 3361 } 3362 3363 /* Check superblock checksum */ 3364 if (!ext4_superblock_csum_verify(sb, es)) { 3365 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3366 "invalid superblock checksum. Run e2fsck?"); 3367 silent = 1; 3368 goto cantfind_ext4; 3369 } 3370 3371 /* Precompute checksum seed for all metadata */ 3372 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3373 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3374 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3375 sizeof(es->s_uuid)); 3376 3377 /* Set defaults before we parse the mount options */ 3378 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3379 set_opt(sb, INIT_INODE_TABLE); 3380 if (def_mount_opts & EXT4_DEFM_DEBUG) 3381 set_opt(sb, DEBUG); 3382 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3383 set_opt(sb, GRPID); 3384 if (def_mount_opts & EXT4_DEFM_UID16) 3385 set_opt(sb, NO_UID32); 3386 /* xattr user namespace & acls are now defaulted on */ 3387 set_opt(sb, XATTR_USER); 3388 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3389 set_opt(sb, POSIX_ACL); 3390 #endif 3391 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3392 set_opt(sb, JOURNAL_DATA); 3393 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3394 set_opt(sb, ORDERED_DATA); 3395 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3396 set_opt(sb, WRITEBACK_DATA); 3397 3398 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3399 set_opt(sb, ERRORS_PANIC); 3400 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3401 set_opt(sb, ERRORS_CONT); 3402 else 3403 set_opt(sb, ERRORS_RO); 3404 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3405 set_opt(sb, BLOCK_VALIDITY); 3406 if (def_mount_opts & EXT4_DEFM_DISCARD) 3407 set_opt(sb, DISCARD); 3408 3409 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3410 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3411 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3412 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3413 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3414 3415 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3416 set_opt(sb, BARRIER); 3417 3418 /* 3419 * enable delayed allocation by default 3420 * Use -o nodelalloc to turn it off 3421 */ 3422 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3423 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3424 set_opt(sb, DELALLOC); 3425 3426 /* 3427 * set default s_li_wait_mult for lazyinit, for the case there is 3428 * no mount option specified. 3429 */ 3430 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3431 3432 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3433 &journal_devnum, &journal_ioprio, 0)) { 3434 ext4_msg(sb, KERN_WARNING, 3435 "failed to parse options in superblock: %s", 3436 sbi->s_es->s_mount_opts); 3437 } 3438 sbi->s_def_mount_opt = sbi->s_mount_opt; 3439 if (!parse_options((char *) data, sb, &journal_devnum, 3440 &journal_ioprio, 0)) 3441 goto failed_mount; 3442 3443 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3444 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3445 "with data=journal disables delayed " 3446 "allocation and O_DIRECT support!\n"); 3447 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3448 ext4_msg(sb, KERN_ERR, "can't mount with " 3449 "both data=journal and delalloc"); 3450 goto failed_mount; 3451 } 3452 if (test_opt(sb, DIOREAD_NOLOCK)) { 3453 ext4_msg(sb, KERN_ERR, "can't mount with " 3454 "both data=journal and delalloc"); 3455 goto failed_mount; 3456 } 3457 if (test_opt(sb, DELALLOC)) 3458 clear_opt(sb, DELALLOC); 3459 } 3460 3461 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3462 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3463 3464 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3465 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3466 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3467 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3468 ext4_msg(sb, KERN_WARNING, 3469 "feature flags set on rev 0 fs, " 3470 "running e2fsck is recommended"); 3471 3472 if (IS_EXT2_SB(sb)) { 3473 if (ext2_feature_set_ok(sb)) 3474 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3475 "using the ext4 subsystem"); 3476 else { 3477 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3478 "to feature incompatibilities"); 3479 goto failed_mount; 3480 } 3481 } 3482 3483 if (IS_EXT3_SB(sb)) { 3484 if (ext3_feature_set_ok(sb)) 3485 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3486 "using the ext4 subsystem"); 3487 else { 3488 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3489 "to feature incompatibilities"); 3490 goto failed_mount; 3491 } 3492 } 3493 3494 /* 3495 * Check feature flags regardless of the revision level, since we 3496 * previously didn't change the revision level when setting the flags, 3497 * so there is a chance incompat flags are set on a rev 0 filesystem. 3498 */ 3499 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3500 goto failed_mount; 3501 3502 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3503 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3504 blocksize > EXT4_MAX_BLOCK_SIZE) { 3505 ext4_msg(sb, KERN_ERR, 3506 "Unsupported filesystem blocksize %d", blocksize); 3507 goto failed_mount; 3508 } 3509 3510 if (sb->s_blocksize != blocksize) { 3511 /* Validate the filesystem blocksize */ 3512 if (!sb_set_blocksize(sb, blocksize)) { 3513 ext4_msg(sb, KERN_ERR, "bad block size %d", 3514 blocksize); 3515 goto failed_mount; 3516 } 3517 3518 brelse(bh); 3519 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3520 offset = do_div(logical_sb_block, blocksize); 3521 bh = sb_bread(sb, logical_sb_block); 3522 if (!bh) { 3523 ext4_msg(sb, KERN_ERR, 3524 "Can't read superblock on 2nd try"); 3525 goto failed_mount; 3526 } 3527 es = (struct ext4_super_block *)(bh->b_data + offset); 3528 sbi->s_es = es; 3529 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3530 ext4_msg(sb, KERN_ERR, 3531 "Magic mismatch, very weird!"); 3532 goto failed_mount; 3533 } 3534 } 3535 3536 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3537 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3538 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3539 has_huge_files); 3540 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3541 3542 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3543 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3544 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3545 } else { 3546 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3547 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3548 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3549 (!is_power_of_2(sbi->s_inode_size)) || 3550 (sbi->s_inode_size > blocksize)) { 3551 ext4_msg(sb, KERN_ERR, 3552 "unsupported inode size: %d", 3553 sbi->s_inode_size); 3554 goto failed_mount; 3555 } 3556 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3557 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3558 } 3559 3560 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3561 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3562 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3563 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3564 !is_power_of_2(sbi->s_desc_size)) { 3565 ext4_msg(sb, KERN_ERR, 3566 "unsupported descriptor size %lu", 3567 sbi->s_desc_size); 3568 goto failed_mount; 3569 } 3570 } else 3571 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3572 3573 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3574 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3575 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3576 goto cantfind_ext4; 3577 3578 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3579 if (sbi->s_inodes_per_block == 0) 3580 goto cantfind_ext4; 3581 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3582 sbi->s_inodes_per_block; 3583 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3584 sbi->s_sbh = bh; 3585 sbi->s_mount_state = le16_to_cpu(es->s_state); 3586 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3587 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3588 3589 /* Do we have standard group size of blocksize * 8 blocks ? */ 3590 if (sbi->s_blocks_per_group == blocksize << 3) 3591 set_opt2(sb, STD_GROUP_SIZE); 3592 3593 for (i = 0; i < 4; i++) 3594 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3595 sbi->s_def_hash_version = es->s_def_hash_version; 3596 i = le32_to_cpu(es->s_flags); 3597 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3598 sbi->s_hash_unsigned = 3; 3599 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3600 #ifdef __CHAR_UNSIGNED__ 3601 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3602 sbi->s_hash_unsigned = 3; 3603 #else 3604 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3605 #endif 3606 } 3607 3608 /* Handle clustersize */ 3609 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3610 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3611 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3612 if (has_bigalloc) { 3613 if (clustersize < blocksize) { 3614 ext4_msg(sb, KERN_ERR, 3615 "cluster size (%d) smaller than " 3616 "block size (%d)", clustersize, blocksize); 3617 goto failed_mount; 3618 } 3619 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3620 le32_to_cpu(es->s_log_block_size); 3621 sbi->s_clusters_per_group = 3622 le32_to_cpu(es->s_clusters_per_group); 3623 if (sbi->s_clusters_per_group > blocksize * 8) { 3624 ext4_msg(sb, KERN_ERR, 3625 "#clusters per group too big: %lu", 3626 sbi->s_clusters_per_group); 3627 goto failed_mount; 3628 } 3629 if (sbi->s_blocks_per_group != 3630 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3631 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3632 "clusters per group (%lu) inconsistent", 3633 sbi->s_blocks_per_group, 3634 sbi->s_clusters_per_group); 3635 goto failed_mount; 3636 } 3637 } else { 3638 if (clustersize != blocksize) { 3639 ext4_warning(sb, "fragment/cluster size (%d) != " 3640 "block size (%d)", clustersize, 3641 blocksize); 3642 clustersize = blocksize; 3643 } 3644 if (sbi->s_blocks_per_group > blocksize * 8) { 3645 ext4_msg(sb, KERN_ERR, 3646 "#blocks per group too big: %lu", 3647 sbi->s_blocks_per_group); 3648 goto failed_mount; 3649 } 3650 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3651 sbi->s_cluster_bits = 0; 3652 } 3653 sbi->s_cluster_ratio = clustersize / blocksize; 3654 3655 if (sbi->s_inodes_per_group > blocksize * 8) { 3656 ext4_msg(sb, KERN_ERR, 3657 "#inodes per group too big: %lu", 3658 sbi->s_inodes_per_group); 3659 goto failed_mount; 3660 } 3661 3662 /* 3663 * Test whether we have more sectors than will fit in sector_t, 3664 * and whether the max offset is addressable by the page cache. 3665 */ 3666 err = generic_check_addressable(sb->s_blocksize_bits, 3667 ext4_blocks_count(es)); 3668 if (err) { 3669 ext4_msg(sb, KERN_ERR, "filesystem" 3670 " too large to mount safely on this system"); 3671 if (sizeof(sector_t) < 8) 3672 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3673 goto failed_mount; 3674 } 3675 3676 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3677 goto cantfind_ext4; 3678 3679 /* check blocks count against device size */ 3680 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3681 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3682 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3683 "exceeds size of device (%llu blocks)", 3684 ext4_blocks_count(es), blocks_count); 3685 goto failed_mount; 3686 } 3687 3688 /* 3689 * It makes no sense for the first data block to be beyond the end 3690 * of the filesystem. 3691 */ 3692 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3693 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3694 "block %u is beyond end of filesystem (%llu)", 3695 le32_to_cpu(es->s_first_data_block), 3696 ext4_blocks_count(es)); 3697 goto failed_mount; 3698 } 3699 blocks_count = (ext4_blocks_count(es) - 3700 le32_to_cpu(es->s_first_data_block) + 3701 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3702 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3703 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3704 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3705 "(block count %llu, first data block %u, " 3706 "blocks per group %lu)", sbi->s_groups_count, 3707 ext4_blocks_count(es), 3708 le32_to_cpu(es->s_first_data_block), 3709 EXT4_BLOCKS_PER_GROUP(sb)); 3710 goto failed_mount; 3711 } 3712 sbi->s_groups_count = blocks_count; 3713 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3714 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3715 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3716 EXT4_DESC_PER_BLOCK(sb); 3717 sbi->s_group_desc = ext4_kvmalloc(db_count * 3718 sizeof(struct buffer_head *), 3719 GFP_KERNEL); 3720 if (sbi->s_group_desc == NULL) { 3721 ext4_msg(sb, KERN_ERR, "not enough memory"); 3722 ret = -ENOMEM; 3723 goto failed_mount; 3724 } 3725 3726 if (ext4_proc_root) 3727 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3728 3729 if (sbi->s_proc) 3730 proc_create_data("options", S_IRUGO, sbi->s_proc, 3731 &ext4_seq_options_fops, sb); 3732 3733 bgl_lock_init(sbi->s_blockgroup_lock); 3734 3735 for (i = 0; i < db_count; i++) { 3736 block = descriptor_loc(sb, logical_sb_block, i); 3737 sbi->s_group_desc[i] = sb_bread(sb, block); 3738 if (!sbi->s_group_desc[i]) { 3739 ext4_msg(sb, KERN_ERR, 3740 "can't read group descriptor %d", i); 3741 db_count = i; 3742 goto failed_mount2; 3743 } 3744 } 3745 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3746 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3747 goto failed_mount2; 3748 } 3749 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3750 if (!ext4_fill_flex_info(sb)) { 3751 ext4_msg(sb, KERN_ERR, 3752 "unable to initialize " 3753 "flex_bg meta info!"); 3754 goto failed_mount2; 3755 } 3756 3757 sbi->s_gdb_count = db_count; 3758 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3759 spin_lock_init(&sbi->s_next_gen_lock); 3760 3761 init_timer(&sbi->s_err_report); 3762 sbi->s_err_report.function = print_daily_error_info; 3763 sbi->s_err_report.data = (unsigned long) sb; 3764 3765 /* Register extent status tree shrinker */ 3766 ext4_es_register_shrinker(sb); 3767 3768 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3769 ext4_count_free_clusters(sb)); 3770 if (!err) { 3771 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3772 ext4_count_free_inodes(sb)); 3773 } 3774 if (!err) { 3775 err = percpu_counter_init(&sbi->s_dirs_counter, 3776 ext4_count_dirs(sb)); 3777 } 3778 if (!err) { 3779 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3780 } 3781 if (!err) { 3782 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0); 3783 } 3784 if (err) { 3785 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3786 goto failed_mount3; 3787 } 3788 3789 sbi->s_stripe = ext4_get_stripe_size(sbi); 3790 sbi->s_max_writeback_mb_bump = 128; 3791 sbi->s_extent_max_zeroout_kb = 32; 3792 3793 /* 3794 * set up enough so that it can read an inode 3795 */ 3796 if (!test_opt(sb, NOLOAD) && 3797 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3798 sb->s_op = &ext4_sops; 3799 else 3800 sb->s_op = &ext4_nojournal_sops; 3801 sb->s_export_op = &ext4_export_ops; 3802 sb->s_xattr = ext4_xattr_handlers; 3803 #ifdef CONFIG_QUOTA 3804 sb->dq_op = &ext4_quota_operations; 3805 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3806 sb->s_qcop = &ext4_qctl_sysfile_operations; 3807 else 3808 sb->s_qcop = &ext4_qctl_operations; 3809 #endif 3810 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3811 3812 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3813 mutex_init(&sbi->s_orphan_lock); 3814 3815 sb->s_root = NULL; 3816 3817 needs_recovery = (es->s_last_orphan != 0 || 3818 EXT4_HAS_INCOMPAT_FEATURE(sb, 3819 EXT4_FEATURE_INCOMPAT_RECOVER)); 3820 3821 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3822 !(sb->s_flags & MS_RDONLY)) 3823 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3824 goto failed_mount3; 3825 3826 /* 3827 * The first inode we look at is the journal inode. Don't try 3828 * root first: it may be modified in the journal! 3829 */ 3830 if (!test_opt(sb, NOLOAD) && 3831 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3832 if (ext4_load_journal(sb, es, journal_devnum)) 3833 goto failed_mount3; 3834 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3835 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3836 ext4_msg(sb, KERN_ERR, "required journal recovery " 3837 "suppressed and not mounted read-only"); 3838 goto failed_mount_wq; 3839 } else { 3840 clear_opt(sb, DATA_FLAGS); 3841 sbi->s_journal = NULL; 3842 needs_recovery = 0; 3843 goto no_journal; 3844 } 3845 3846 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3847 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3848 JBD2_FEATURE_INCOMPAT_64BIT)) { 3849 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3850 goto failed_mount_wq; 3851 } 3852 3853 if (!set_journal_csum_feature_set(sb)) { 3854 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3855 "feature set"); 3856 goto failed_mount_wq; 3857 } 3858 3859 /* We have now updated the journal if required, so we can 3860 * validate the data journaling mode. */ 3861 switch (test_opt(sb, DATA_FLAGS)) { 3862 case 0: 3863 /* No mode set, assume a default based on the journal 3864 * capabilities: ORDERED_DATA if the journal can 3865 * cope, else JOURNAL_DATA 3866 */ 3867 if (jbd2_journal_check_available_features 3868 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3869 set_opt(sb, ORDERED_DATA); 3870 else 3871 set_opt(sb, JOURNAL_DATA); 3872 break; 3873 3874 case EXT4_MOUNT_ORDERED_DATA: 3875 case EXT4_MOUNT_WRITEBACK_DATA: 3876 if (!jbd2_journal_check_available_features 3877 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3878 ext4_msg(sb, KERN_ERR, "Journal does not support " 3879 "requested data journaling mode"); 3880 goto failed_mount_wq; 3881 } 3882 default: 3883 break; 3884 } 3885 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3886 3887 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3888 3889 /* 3890 * The journal may have updated the bg summary counts, so we 3891 * need to update the global counters. 3892 */ 3893 percpu_counter_set(&sbi->s_freeclusters_counter, 3894 ext4_count_free_clusters(sb)); 3895 percpu_counter_set(&sbi->s_freeinodes_counter, 3896 ext4_count_free_inodes(sb)); 3897 percpu_counter_set(&sbi->s_dirs_counter, 3898 ext4_count_dirs(sb)); 3899 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3900 3901 no_journal: 3902 /* 3903 * Get the # of file system overhead blocks from the 3904 * superblock if present. 3905 */ 3906 if (es->s_overhead_clusters) 3907 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3908 else { 3909 err = ext4_calculate_overhead(sb); 3910 if (err) 3911 goto failed_mount_wq; 3912 } 3913 3914 /* 3915 * The maximum number of concurrent works can be high and 3916 * concurrency isn't really necessary. Limit it to 1. 3917 */ 3918 EXT4_SB(sb)->dio_unwritten_wq = 3919 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3920 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3921 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3922 ret = -ENOMEM; 3923 goto failed_mount_wq; 3924 } 3925 3926 /* 3927 * The jbd2_journal_load will have done any necessary log recovery, 3928 * so we can safely mount the rest of the filesystem now. 3929 */ 3930 3931 root = ext4_iget(sb, EXT4_ROOT_INO); 3932 if (IS_ERR(root)) { 3933 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3934 ret = PTR_ERR(root); 3935 root = NULL; 3936 goto failed_mount4; 3937 } 3938 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3939 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3940 iput(root); 3941 goto failed_mount4; 3942 } 3943 sb->s_root = d_make_root(root); 3944 if (!sb->s_root) { 3945 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3946 ret = -ENOMEM; 3947 goto failed_mount4; 3948 } 3949 3950 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3951 sb->s_flags |= MS_RDONLY; 3952 3953 /* determine the minimum size of new large inodes, if present */ 3954 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3955 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3956 EXT4_GOOD_OLD_INODE_SIZE; 3957 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3958 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3959 if (sbi->s_want_extra_isize < 3960 le16_to_cpu(es->s_want_extra_isize)) 3961 sbi->s_want_extra_isize = 3962 le16_to_cpu(es->s_want_extra_isize); 3963 if (sbi->s_want_extra_isize < 3964 le16_to_cpu(es->s_min_extra_isize)) 3965 sbi->s_want_extra_isize = 3966 le16_to_cpu(es->s_min_extra_isize); 3967 } 3968 } 3969 /* Check if enough inode space is available */ 3970 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3971 sbi->s_inode_size) { 3972 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3973 EXT4_GOOD_OLD_INODE_SIZE; 3974 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3975 "available"); 3976 } 3977 3978 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi)); 3979 if (err) { 3980 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for " 3981 "reserved pool", ext4_calculate_resv_clusters(sbi)); 3982 goto failed_mount4a; 3983 } 3984 3985 err = ext4_setup_system_zone(sb); 3986 if (err) { 3987 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3988 "zone (%d)", err); 3989 goto failed_mount4a; 3990 } 3991 3992 ext4_ext_init(sb); 3993 err = ext4_mb_init(sb); 3994 if (err) { 3995 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3996 err); 3997 goto failed_mount5; 3998 } 3999 4000 err = ext4_register_li_request(sb, first_not_zeroed); 4001 if (err) 4002 goto failed_mount6; 4003 4004 sbi->s_kobj.kset = ext4_kset; 4005 init_completion(&sbi->s_kobj_unregister); 4006 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 4007 "%s", sb->s_id); 4008 if (err) 4009 goto failed_mount7; 4010 4011 #ifdef CONFIG_QUOTA 4012 /* Enable quota usage during mount. */ 4013 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 4014 !(sb->s_flags & MS_RDONLY)) { 4015 err = ext4_enable_quotas(sb); 4016 if (err) 4017 goto failed_mount8; 4018 } 4019 #endif /* CONFIG_QUOTA */ 4020 4021 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4022 ext4_orphan_cleanup(sb, es); 4023 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4024 if (needs_recovery) { 4025 ext4_msg(sb, KERN_INFO, "recovery complete"); 4026 ext4_mark_recovery_complete(sb, es); 4027 } 4028 if (EXT4_SB(sb)->s_journal) { 4029 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4030 descr = " journalled data mode"; 4031 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4032 descr = " ordered data mode"; 4033 else 4034 descr = " writeback data mode"; 4035 } else 4036 descr = "out journal"; 4037 4038 if (test_opt(sb, DISCARD)) { 4039 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4040 if (!blk_queue_discard(q)) 4041 ext4_msg(sb, KERN_WARNING, 4042 "mounting with \"discard\" option, but " 4043 "the device does not support discard"); 4044 } 4045 4046 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4047 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 4048 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4049 4050 if (es->s_error_count) 4051 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4052 4053 kfree(orig_data); 4054 return 0; 4055 4056 cantfind_ext4: 4057 if (!silent) 4058 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4059 goto failed_mount; 4060 4061 #ifdef CONFIG_QUOTA 4062 failed_mount8: 4063 kobject_del(&sbi->s_kobj); 4064 #endif 4065 failed_mount7: 4066 ext4_unregister_li_request(sb); 4067 failed_mount6: 4068 ext4_mb_release(sb); 4069 failed_mount5: 4070 ext4_ext_release(sb); 4071 ext4_release_system_zone(sb); 4072 failed_mount4a: 4073 dput(sb->s_root); 4074 sb->s_root = NULL; 4075 failed_mount4: 4076 ext4_msg(sb, KERN_ERR, "mount failed"); 4077 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4078 failed_mount_wq: 4079 if (sbi->s_journal) { 4080 jbd2_journal_destroy(sbi->s_journal); 4081 sbi->s_journal = NULL; 4082 } 4083 failed_mount3: 4084 ext4_es_unregister_shrinker(sb); 4085 del_timer(&sbi->s_err_report); 4086 if (sbi->s_flex_groups) 4087 ext4_kvfree(sbi->s_flex_groups); 4088 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4089 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4090 percpu_counter_destroy(&sbi->s_dirs_counter); 4091 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4092 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 4093 if (sbi->s_mmp_tsk) 4094 kthread_stop(sbi->s_mmp_tsk); 4095 failed_mount2: 4096 for (i = 0; i < db_count; i++) 4097 brelse(sbi->s_group_desc[i]); 4098 ext4_kvfree(sbi->s_group_desc); 4099 failed_mount: 4100 if (sbi->s_chksum_driver) 4101 crypto_free_shash(sbi->s_chksum_driver); 4102 if (sbi->s_proc) { 4103 remove_proc_entry("options", sbi->s_proc); 4104 remove_proc_entry(sb->s_id, ext4_proc_root); 4105 } 4106 #ifdef CONFIG_QUOTA 4107 for (i = 0; i < MAXQUOTAS; i++) 4108 kfree(sbi->s_qf_names[i]); 4109 #endif 4110 ext4_blkdev_remove(sbi); 4111 brelse(bh); 4112 out_fail: 4113 sb->s_fs_info = NULL; 4114 kfree(sbi->s_blockgroup_lock); 4115 kfree(sbi); 4116 out_free_orig: 4117 kfree(orig_data); 4118 return err ? err : ret; 4119 } 4120 4121 /* 4122 * Setup any per-fs journal parameters now. We'll do this both on 4123 * initial mount, once the journal has been initialised but before we've 4124 * done any recovery; and again on any subsequent remount. 4125 */ 4126 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4127 { 4128 struct ext4_sb_info *sbi = EXT4_SB(sb); 4129 4130 journal->j_commit_interval = sbi->s_commit_interval; 4131 journal->j_min_batch_time = sbi->s_min_batch_time; 4132 journal->j_max_batch_time = sbi->s_max_batch_time; 4133 4134 write_lock(&journal->j_state_lock); 4135 if (test_opt(sb, BARRIER)) 4136 journal->j_flags |= JBD2_BARRIER; 4137 else 4138 journal->j_flags &= ~JBD2_BARRIER; 4139 if (test_opt(sb, DATA_ERR_ABORT)) 4140 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4141 else 4142 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4143 write_unlock(&journal->j_state_lock); 4144 } 4145 4146 static journal_t *ext4_get_journal(struct super_block *sb, 4147 unsigned int journal_inum) 4148 { 4149 struct inode *journal_inode; 4150 journal_t *journal; 4151 4152 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4153 4154 /* First, test for the existence of a valid inode on disk. Bad 4155 * things happen if we iget() an unused inode, as the subsequent 4156 * iput() will try to delete it. */ 4157 4158 journal_inode = ext4_iget(sb, journal_inum); 4159 if (IS_ERR(journal_inode)) { 4160 ext4_msg(sb, KERN_ERR, "no journal found"); 4161 return NULL; 4162 } 4163 if (!journal_inode->i_nlink) { 4164 make_bad_inode(journal_inode); 4165 iput(journal_inode); 4166 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4167 return NULL; 4168 } 4169 4170 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4171 journal_inode, journal_inode->i_size); 4172 if (!S_ISREG(journal_inode->i_mode)) { 4173 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4174 iput(journal_inode); 4175 return NULL; 4176 } 4177 4178 journal = jbd2_journal_init_inode(journal_inode); 4179 if (!journal) { 4180 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4181 iput(journal_inode); 4182 return NULL; 4183 } 4184 journal->j_private = sb; 4185 ext4_init_journal_params(sb, journal); 4186 return journal; 4187 } 4188 4189 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4190 dev_t j_dev) 4191 { 4192 struct buffer_head *bh; 4193 journal_t *journal; 4194 ext4_fsblk_t start; 4195 ext4_fsblk_t len; 4196 int hblock, blocksize; 4197 ext4_fsblk_t sb_block; 4198 unsigned long offset; 4199 struct ext4_super_block *es; 4200 struct block_device *bdev; 4201 4202 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4203 4204 bdev = ext4_blkdev_get(j_dev, sb); 4205 if (bdev == NULL) 4206 return NULL; 4207 4208 blocksize = sb->s_blocksize; 4209 hblock = bdev_logical_block_size(bdev); 4210 if (blocksize < hblock) { 4211 ext4_msg(sb, KERN_ERR, 4212 "blocksize too small for journal device"); 4213 goto out_bdev; 4214 } 4215 4216 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4217 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4218 set_blocksize(bdev, blocksize); 4219 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4220 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4221 "external journal"); 4222 goto out_bdev; 4223 } 4224 4225 es = (struct ext4_super_block *) (bh->b_data + offset); 4226 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4227 !(le32_to_cpu(es->s_feature_incompat) & 4228 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4229 ext4_msg(sb, KERN_ERR, "external journal has " 4230 "bad superblock"); 4231 brelse(bh); 4232 goto out_bdev; 4233 } 4234 4235 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4236 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4237 brelse(bh); 4238 goto out_bdev; 4239 } 4240 4241 len = ext4_blocks_count(es); 4242 start = sb_block + 1; 4243 brelse(bh); /* we're done with the superblock */ 4244 4245 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4246 start, len, blocksize); 4247 if (!journal) { 4248 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4249 goto out_bdev; 4250 } 4251 journal->j_private = sb; 4252 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4253 wait_on_buffer(journal->j_sb_buffer); 4254 if (!buffer_uptodate(journal->j_sb_buffer)) { 4255 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4256 goto out_journal; 4257 } 4258 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4259 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4260 "user (unsupported) - %d", 4261 be32_to_cpu(journal->j_superblock->s_nr_users)); 4262 goto out_journal; 4263 } 4264 EXT4_SB(sb)->journal_bdev = bdev; 4265 ext4_init_journal_params(sb, journal); 4266 return journal; 4267 4268 out_journal: 4269 jbd2_journal_destroy(journal); 4270 out_bdev: 4271 ext4_blkdev_put(bdev); 4272 return NULL; 4273 } 4274 4275 static int ext4_load_journal(struct super_block *sb, 4276 struct ext4_super_block *es, 4277 unsigned long journal_devnum) 4278 { 4279 journal_t *journal; 4280 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4281 dev_t journal_dev; 4282 int err = 0; 4283 int really_read_only; 4284 4285 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4286 4287 if (journal_devnum && 4288 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4289 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4290 "numbers have changed"); 4291 journal_dev = new_decode_dev(journal_devnum); 4292 } else 4293 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4294 4295 really_read_only = bdev_read_only(sb->s_bdev); 4296 4297 /* 4298 * Are we loading a blank journal or performing recovery after a 4299 * crash? For recovery, we need to check in advance whether we 4300 * can get read-write access to the device. 4301 */ 4302 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4303 if (sb->s_flags & MS_RDONLY) { 4304 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4305 "required on readonly filesystem"); 4306 if (really_read_only) { 4307 ext4_msg(sb, KERN_ERR, "write access " 4308 "unavailable, cannot proceed"); 4309 return -EROFS; 4310 } 4311 ext4_msg(sb, KERN_INFO, "write access will " 4312 "be enabled during recovery"); 4313 } 4314 } 4315 4316 if (journal_inum && journal_dev) { 4317 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4318 "and inode journals!"); 4319 return -EINVAL; 4320 } 4321 4322 if (journal_inum) { 4323 if (!(journal = ext4_get_journal(sb, journal_inum))) 4324 return -EINVAL; 4325 } else { 4326 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4327 return -EINVAL; 4328 } 4329 4330 if (!(journal->j_flags & JBD2_BARRIER)) 4331 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4332 4333 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4334 err = jbd2_journal_wipe(journal, !really_read_only); 4335 if (!err) { 4336 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4337 if (save) 4338 memcpy(save, ((char *) es) + 4339 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4340 err = jbd2_journal_load(journal); 4341 if (save) 4342 memcpy(((char *) es) + EXT4_S_ERR_START, 4343 save, EXT4_S_ERR_LEN); 4344 kfree(save); 4345 } 4346 4347 if (err) { 4348 ext4_msg(sb, KERN_ERR, "error loading journal"); 4349 jbd2_journal_destroy(journal); 4350 return err; 4351 } 4352 4353 EXT4_SB(sb)->s_journal = journal; 4354 ext4_clear_journal_err(sb, es); 4355 4356 if (!really_read_only && journal_devnum && 4357 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4358 es->s_journal_dev = cpu_to_le32(journal_devnum); 4359 4360 /* Make sure we flush the recovery flag to disk. */ 4361 ext4_commit_super(sb, 1); 4362 } 4363 4364 return 0; 4365 } 4366 4367 static int ext4_commit_super(struct super_block *sb, int sync) 4368 { 4369 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4370 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4371 int error = 0; 4372 4373 if (!sbh || block_device_ejected(sb)) 4374 return error; 4375 if (buffer_write_io_error(sbh)) { 4376 /* 4377 * Oh, dear. A previous attempt to write the 4378 * superblock failed. This could happen because the 4379 * USB device was yanked out. Or it could happen to 4380 * be a transient write error and maybe the block will 4381 * be remapped. Nothing we can do but to retry the 4382 * write and hope for the best. 4383 */ 4384 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4385 "superblock detected"); 4386 clear_buffer_write_io_error(sbh); 4387 set_buffer_uptodate(sbh); 4388 } 4389 /* 4390 * If the file system is mounted read-only, don't update the 4391 * superblock write time. This avoids updating the superblock 4392 * write time when we are mounting the root file system 4393 * read/only but we need to replay the journal; at that point, 4394 * for people who are east of GMT and who make their clock 4395 * tick in localtime for Windows bug-for-bug compatibility, 4396 * the clock is set in the future, and this will cause e2fsck 4397 * to complain and force a full file system check. 4398 */ 4399 if (!(sb->s_flags & MS_RDONLY)) 4400 es->s_wtime = cpu_to_le32(get_seconds()); 4401 if (sb->s_bdev->bd_part) 4402 es->s_kbytes_written = 4403 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4404 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4405 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4406 else 4407 es->s_kbytes_written = 4408 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4409 ext4_free_blocks_count_set(es, 4410 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4411 &EXT4_SB(sb)->s_freeclusters_counter))); 4412 es->s_free_inodes_count = 4413 cpu_to_le32(percpu_counter_sum_positive( 4414 &EXT4_SB(sb)->s_freeinodes_counter)); 4415 BUFFER_TRACE(sbh, "marking dirty"); 4416 ext4_superblock_csum_set(sb); 4417 mark_buffer_dirty(sbh); 4418 if (sync) { 4419 error = sync_dirty_buffer(sbh); 4420 if (error) 4421 return error; 4422 4423 error = buffer_write_io_error(sbh); 4424 if (error) { 4425 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4426 "superblock"); 4427 clear_buffer_write_io_error(sbh); 4428 set_buffer_uptodate(sbh); 4429 } 4430 } 4431 return error; 4432 } 4433 4434 /* 4435 * Have we just finished recovery? If so, and if we are mounting (or 4436 * remounting) the filesystem readonly, then we will end up with a 4437 * consistent fs on disk. Record that fact. 4438 */ 4439 static void ext4_mark_recovery_complete(struct super_block *sb, 4440 struct ext4_super_block *es) 4441 { 4442 journal_t *journal = EXT4_SB(sb)->s_journal; 4443 4444 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4445 BUG_ON(journal != NULL); 4446 return; 4447 } 4448 jbd2_journal_lock_updates(journal); 4449 if (jbd2_journal_flush(journal) < 0) 4450 goto out; 4451 4452 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4453 sb->s_flags & MS_RDONLY) { 4454 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4455 ext4_commit_super(sb, 1); 4456 } 4457 4458 out: 4459 jbd2_journal_unlock_updates(journal); 4460 } 4461 4462 /* 4463 * If we are mounting (or read-write remounting) a filesystem whose journal 4464 * has recorded an error from a previous lifetime, move that error to the 4465 * main filesystem now. 4466 */ 4467 static void ext4_clear_journal_err(struct super_block *sb, 4468 struct ext4_super_block *es) 4469 { 4470 journal_t *journal; 4471 int j_errno; 4472 const char *errstr; 4473 4474 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4475 4476 journal = EXT4_SB(sb)->s_journal; 4477 4478 /* 4479 * Now check for any error status which may have been recorded in the 4480 * journal by a prior ext4_error() or ext4_abort() 4481 */ 4482 4483 j_errno = jbd2_journal_errno(journal); 4484 if (j_errno) { 4485 char nbuf[16]; 4486 4487 errstr = ext4_decode_error(sb, j_errno, nbuf); 4488 ext4_warning(sb, "Filesystem error recorded " 4489 "from previous mount: %s", errstr); 4490 ext4_warning(sb, "Marking fs in need of filesystem check."); 4491 4492 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4493 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4494 ext4_commit_super(sb, 1); 4495 4496 jbd2_journal_clear_err(journal); 4497 jbd2_journal_update_sb_errno(journal); 4498 } 4499 } 4500 4501 /* 4502 * Force the running and committing transactions to commit, 4503 * and wait on the commit. 4504 */ 4505 int ext4_force_commit(struct super_block *sb) 4506 { 4507 journal_t *journal; 4508 4509 if (sb->s_flags & MS_RDONLY) 4510 return 0; 4511 4512 journal = EXT4_SB(sb)->s_journal; 4513 return ext4_journal_force_commit(journal); 4514 } 4515 4516 static int ext4_sync_fs(struct super_block *sb, int wait) 4517 { 4518 int ret = 0; 4519 tid_t target; 4520 struct ext4_sb_info *sbi = EXT4_SB(sb); 4521 4522 trace_ext4_sync_fs(sb, wait); 4523 flush_workqueue(sbi->dio_unwritten_wq); 4524 /* 4525 * Writeback quota in non-journalled quota case - journalled quota has 4526 * no dirty dquots 4527 */ 4528 dquot_writeback_dquots(sb, -1); 4529 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4530 if (wait) 4531 jbd2_log_wait_commit(sbi->s_journal, target); 4532 } 4533 return ret; 4534 } 4535 4536 /* 4537 * LVM calls this function before a (read-only) snapshot is created. This 4538 * gives us a chance to flush the journal completely and mark the fs clean. 4539 * 4540 * Note that only this function cannot bring a filesystem to be in a clean 4541 * state independently. It relies on upper layer to stop all data & metadata 4542 * modifications. 4543 */ 4544 static int ext4_freeze(struct super_block *sb) 4545 { 4546 int error = 0; 4547 journal_t *journal; 4548 4549 if (sb->s_flags & MS_RDONLY) 4550 return 0; 4551 4552 journal = EXT4_SB(sb)->s_journal; 4553 4554 /* Now we set up the journal barrier. */ 4555 jbd2_journal_lock_updates(journal); 4556 4557 /* 4558 * Don't clear the needs_recovery flag if we failed to flush 4559 * the journal. 4560 */ 4561 error = jbd2_journal_flush(journal); 4562 if (error < 0) 4563 goto out; 4564 4565 /* Journal blocked and flushed, clear needs_recovery flag. */ 4566 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4567 error = ext4_commit_super(sb, 1); 4568 out: 4569 /* we rely on upper layer to stop further updates */ 4570 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4571 return error; 4572 } 4573 4574 /* 4575 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4576 * flag here, even though the filesystem is not technically dirty yet. 4577 */ 4578 static int ext4_unfreeze(struct super_block *sb) 4579 { 4580 if (sb->s_flags & MS_RDONLY) 4581 return 0; 4582 4583 /* Reset the needs_recovery flag before the fs is unlocked. */ 4584 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4585 ext4_commit_super(sb, 1); 4586 return 0; 4587 } 4588 4589 /* 4590 * Structure to save mount options for ext4_remount's benefit 4591 */ 4592 struct ext4_mount_options { 4593 unsigned long s_mount_opt; 4594 unsigned long s_mount_opt2; 4595 kuid_t s_resuid; 4596 kgid_t s_resgid; 4597 unsigned long s_commit_interval; 4598 u32 s_min_batch_time, s_max_batch_time; 4599 #ifdef CONFIG_QUOTA 4600 int s_jquota_fmt; 4601 char *s_qf_names[MAXQUOTAS]; 4602 #endif 4603 }; 4604 4605 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4606 { 4607 struct ext4_super_block *es; 4608 struct ext4_sb_info *sbi = EXT4_SB(sb); 4609 unsigned long old_sb_flags; 4610 struct ext4_mount_options old_opts; 4611 int enable_quota = 0; 4612 ext4_group_t g; 4613 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4614 int err = 0; 4615 #ifdef CONFIG_QUOTA 4616 int i, j; 4617 #endif 4618 char *orig_data = kstrdup(data, GFP_KERNEL); 4619 4620 /* Store the original options */ 4621 old_sb_flags = sb->s_flags; 4622 old_opts.s_mount_opt = sbi->s_mount_opt; 4623 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4624 old_opts.s_resuid = sbi->s_resuid; 4625 old_opts.s_resgid = sbi->s_resgid; 4626 old_opts.s_commit_interval = sbi->s_commit_interval; 4627 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4628 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4629 #ifdef CONFIG_QUOTA 4630 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4631 for (i = 0; i < MAXQUOTAS; i++) 4632 if (sbi->s_qf_names[i]) { 4633 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4634 GFP_KERNEL); 4635 if (!old_opts.s_qf_names[i]) { 4636 for (j = 0; j < i; j++) 4637 kfree(old_opts.s_qf_names[j]); 4638 kfree(orig_data); 4639 return -ENOMEM; 4640 } 4641 } else 4642 old_opts.s_qf_names[i] = NULL; 4643 #endif 4644 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4645 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4646 4647 /* 4648 * Allow the "check" option to be passed as a remount option. 4649 */ 4650 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4651 err = -EINVAL; 4652 goto restore_opts; 4653 } 4654 4655 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4656 ext4_abort(sb, "Abort forced by user"); 4657 4658 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4659 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4660 4661 es = sbi->s_es; 4662 4663 if (sbi->s_journal) { 4664 ext4_init_journal_params(sb, sbi->s_journal); 4665 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4666 } 4667 4668 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4669 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4670 err = -EROFS; 4671 goto restore_opts; 4672 } 4673 4674 if (*flags & MS_RDONLY) { 4675 err = dquot_suspend(sb, -1); 4676 if (err < 0) 4677 goto restore_opts; 4678 4679 /* 4680 * First of all, the unconditional stuff we have to do 4681 * to disable replay of the journal when we next remount 4682 */ 4683 sb->s_flags |= MS_RDONLY; 4684 4685 /* 4686 * OK, test if we are remounting a valid rw partition 4687 * readonly, and if so set the rdonly flag and then 4688 * mark the partition as valid again. 4689 */ 4690 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4691 (sbi->s_mount_state & EXT4_VALID_FS)) 4692 es->s_state = cpu_to_le16(sbi->s_mount_state); 4693 4694 if (sbi->s_journal) 4695 ext4_mark_recovery_complete(sb, es); 4696 } else { 4697 /* Make sure we can mount this feature set readwrite */ 4698 if (!ext4_feature_set_ok(sb, 0)) { 4699 err = -EROFS; 4700 goto restore_opts; 4701 } 4702 /* 4703 * Make sure the group descriptor checksums 4704 * are sane. If they aren't, refuse to remount r/w. 4705 */ 4706 for (g = 0; g < sbi->s_groups_count; g++) { 4707 struct ext4_group_desc *gdp = 4708 ext4_get_group_desc(sb, g, NULL); 4709 4710 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4711 ext4_msg(sb, KERN_ERR, 4712 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4713 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4714 le16_to_cpu(gdp->bg_checksum)); 4715 err = -EINVAL; 4716 goto restore_opts; 4717 } 4718 } 4719 4720 /* 4721 * If we have an unprocessed orphan list hanging 4722 * around from a previously readonly bdev mount, 4723 * require a full umount/remount for now. 4724 */ 4725 if (es->s_last_orphan) { 4726 ext4_msg(sb, KERN_WARNING, "Couldn't " 4727 "remount RDWR because of unprocessed " 4728 "orphan inode list. Please " 4729 "umount/remount instead"); 4730 err = -EINVAL; 4731 goto restore_opts; 4732 } 4733 4734 /* 4735 * Mounting a RDONLY partition read-write, so reread 4736 * and store the current valid flag. (It may have 4737 * been changed by e2fsck since we originally mounted 4738 * the partition.) 4739 */ 4740 if (sbi->s_journal) 4741 ext4_clear_journal_err(sb, es); 4742 sbi->s_mount_state = le16_to_cpu(es->s_state); 4743 if (!ext4_setup_super(sb, es, 0)) 4744 sb->s_flags &= ~MS_RDONLY; 4745 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4746 EXT4_FEATURE_INCOMPAT_MMP)) 4747 if (ext4_multi_mount_protect(sb, 4748 le64_to_cpu(es->s_mmp_block))) { 4749 err = -EROFS; 4750 goto restore_opts; 4751 } 4752 enable_quota = 1; 4753 } 4754 } 4755 4756 /* 4757 * Reinitialize lazy itable initialization thread based on 4758 * current settings 4759 */ 4760 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4761 ext4_unregister_li_request(sb); 4762 else { 4763 ext4_group_t first_not_zeroed; 4764 first_not_zeroed = ext4_has_uninit_itable(sb); 4765 ext4_register_li_request(sb, first_not_zeroed); 4766 } 4767 4768 ext4_setup_system_zone(sb); 4769 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4770 ext4_commit_super(sb, 1); 4771 4772 #ifdef CONFIG_QUOTA 4773 /* Release old quota file names */ 4774 for (i = 0; i < MAXQUOTAS; i++) 4775 kfree(old_opts.s_qf_names[i]); 4776 if (enable_quota) { 4777 if (sb_any_quota_suspended(sb)) 4778 dquot_resume(sb, -1); 4779 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4780 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4781 err = ext4_enable_quotas(sb); 4782 if (err) 4783 goto restore_opts; 4784 } 4785 } 4786 #endif 4787 4788 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4789 kfree(orig_data); 4790 return 0; 4791 4792 restore_opts: 4793 sb->s_flags = old_sb_flags; 4794 sbi->s_mount_opt = old_opts.s_mount_opt; 4795 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4796 sbi->s_resuid = old_opts.s_resuid; 4797 sbi->s_resgid = old_opts.s_resgid; 4798 sbi->s_commit_interval = old_opts.s_commit_interval; 4799 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4800 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4801 #ifdef CONFIG_QUOTA 4802 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4803 for (i = 0; i < MAXQUOTAS; i++) { 4804 kfree(sbi->s_qf_names[i]); 4805 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4806 } 4807 #endif 4808 kfree(orig_data); 4809 return err; 4810 } 4811 4812 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4813 { 4814 struct super_block *sb = dentry->d_sb; 4815 struct ext4_sb_info *sbi = EXT4_SB(sb); 4816 struct ext4_super_block *es = sbi->s_es; 4817 ext4_fsblk_t overhead = 0, resv_blocks; 4818 u64 fsid; 4819 s64 bfree; 4820 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4821 4822 if (!test_opt(sb, MINIX_DF)) 4823 overhead = sbi->s_overhead; 4824 4825 buf->f_type = EXT4_SUPER_MAGIC; 4826 buf->f_bsize = sb->s_blocksize; 4827 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4828 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4829 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4830 /* prevent underflow in case that few free space is available */ 4831 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4832 buf->f_bavail = buf->f_bfree - 4833 (ext4_r_blocks_count(es) + resv_blocks); 4834 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4835 buf->f_bavail = 0; 4836 buf->f_files = le32_to_cpu(es->s_inodes_count); 4837 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4838 buf->f_namelen = EXT4_NAME_LEN; 4839 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4840 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4841 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4842 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4843 4844 return 0; 4845 } 4846 4847 /* Helper function for writing quotas on sync - we need to start transaction 4848 * before quota file is locked for write. Otherwise the are possible deadlocks: 4849 * Process 1 Process 2 4850 * ext4_create() quota_sync() 4851 * jbd2_journal_start() write_dquot() 4852 * dquot_initialize() down(dqio_mutex) 4853 * down(dqio_mutex) jbd2_journal_start() 4854 * 4855 */ 4856 4857 #ifdef CONFIG_QUOTA 4858 4859 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4860 { 4861 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4862 } 4863 4864 static int ext4_write_dquot(struct dquot *dquot) 4865 { 4866 int ret, err; 4867 handle_t *handle; 4868 struct inode *inode; 4869 4870 inode = dquot_to_inode(dquot); 4871 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4872 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4873 if (IS_ERR(handle)) 4874 return PTR_ERR(handle); 4875 ret = dquot_commit(dquot); 4876 err = ext4_journal_stop(handle); 4877 if (!ret) 4878 ret = err; 4879 return ret; 4880 } 4881 4882 static int ext4_acquire_dquot(struct dquot *dquot) 4883 { 4884 int ret, err; 4885 handle_t *handle; 4886 4887 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4888 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4889 if (IS_ERR(handle)) 4890 return PTR_ERR(handle); 4891 ret = dquot_acquire(dquot); 4892 err = ext4_journal_stop(handle); 4893 if (!ret) 4894 ret = err; 4895 return ret; 4896 } 4897 4898 static int ext4_release_dquot(struct dquot *dquot) 4899 { 4900 int ret, err; 4901 handle_t *handle; 4902 4903 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4904 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4905 if (IS_ERR(handle)) { 4906 /* Release dquot anyway to avoid endless cycle in dqput() */ 4907 dquot_release(dquot); 4908 return PTR_ERR(handle); 4909 } 4910 ret = dquot_release(dquot); 4911 err = ext4_journal_stop(handle); 4912 if (!ret) 4913 ret = err; 4914 return ret; 4915 } 4916 4917 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4918 { 4919 struct super_block *sb = dquot->dq_sb; 4920 struct ext4_sb_info *sbi = EXT4_SB(sb); 4921 4922 /* Are we journaling quotas? */ 4923 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 4924 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4925 dquot_mark_dquot_dirty(dquot); 4926 return ext4_write_dquot(dquot); 4927 } else { 4928 return dquot_mark_dquot_dirty(dquot); 4929 } 4930 } 4931 4932 static int ext4_write_info(struct super_block *sb, int type) 4933 { 4934 int ret, err; 4935 handle_t *handle; 4936 4937 /* Data block + inode block */ 4938 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 4939 if (IS_ERR(handle)) 4940 return PTR_ERR(handle); 4941 ret = dquot_commit_info(sb, type); 4942 err = ext4_journal_stop(handle); 4943 if (!ret) 4944 ret = err; 4945 return ret; 4946 } 4947 4948 /* 4949 * Turn on quotas during mount time - we need to find 4950 * the quota file and such... 4951 */ 4952 static int ext4_quota_on_mount(struct super_block *sb, int type) 4953 { 4954 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4955 EXT4_SB(sb)->s_jquota_fmt, type); 4956 } 4957 4958 /* 4959 * Standard function to be called on quota_on 4960 */ 4961 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4962 struct path *path) 4963 { 4964 int err; 4965 4966 if (!test_opt(sb, QUOTA)) 4967 return -EINVAL; 4968 4969 /* Quotafile not on the same filesystem? */ 4970 if (path->dentry->d_sb != sb) 4971 return -EXDEV; 4972 /* Journaling quota? */ 4973 if (EXT4_SB(sb)->s_qf_names[type]) { 4974 /* Quotafile not in fs root? */ 4975 if (path->dentry->d_parent != sb->s_root) 4976 ext4_msg(sb, KERN_WARNING, 4977 "Quota file not on filesystem root. " 4978 "Journaled quota will not work"); 4979 } 4980 4981 /* 4982 * When we journal data on quota file, we have to flush journal to see 4983 * all updates to the file when we bypass pagecache... 4984 */ 4985 if (EXT4_SB(sb)->s_journal && 4986 ext4_should_journal_data(path->dentry->d_inode)) { 4987 /* 4988 * We don't need to lock updates but journal_flush() could 4989 * otherwise be livelocked... 4990 */ 4991 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4992 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4993 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4994 if (err) 4995 return err; 4996 } 4997 4998 return dquot_quota_on(sb, type, format_id, path); 4999 } 5000 5001 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5002 unsigned int flags) 5003 { 5004 int err; 5005 struct inode *qf_inode; 5006 unsigned long qf_inums[MAXQUOTAS] = { 5007 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5008 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5009 }; 5010 5011 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 5012 5013 if (!qf_inums[type]) 5014 return -EPERM; 5015 5016 qf_inode = ext4_iget(sb, qf_inums[type]); 5017 if (IS_ERR(qf_inode)) { 5018 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5019 return PTR_ERR(qf_inode); 5020 } 5021 5022 /* Don't account quota for quota files to avoid recursion */ 5023 qf_inode->i_flags |= S_NOQUOTA; 5024 err = dquot_enable(qf_inode, type, format_id, flags); 5025 iput(qf_inode); 5026 5027 return err; 5028 } 5029 5030 /* Enable usage tracking for all quota types. */ 5031 static int ext4_enable_quotas(struct super_block *sb) 5032 { 5033 int type, err = 0; 5034 unsigned long qf_inums[MAXQUOTAS] = { 5035 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5036 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5037 }; 5038 5039 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5040 for (type = 0; type < MAXQUOTAS; type++) { 5041 if (qf_inums[type]) { 5042 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5043 DQUOT_USAGE_ENABLED); 5044 if (err) { 5045 ext4_warning(sb, 5046 "Failed to enable quota tracking " 5047 "(type=%d, err=%d). Please run " 5048 "e2fsck to fix.", type, err); 5049 return err; 5050 } 5051 } 5052 } 5053 return 0; 5054 } 5055 5056 /* 5057 * quota_on function that is used when QUOTA feature is set. 5058 */ 5059 static int ext4_quota_on_sysfile(struct super_block *sb, int type, 5060 int format_id) 5061 { 5062 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5063 return -EINVAL; 5064 5065 /* 5066 * USAGE was enabled at mount time. Only need to enable LIMITS now. 5067 */ 5068 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 5069 } 5070 5071 static int ext4_quota_off(struct super_block *sb, int type) 5072 { 5073 struct inode *inode = sb_dqopt(sb)->files[type]; 5074 handle_t *handle; 5075 5076 /* Force all delayed allocation blocks to be allocated. 5077 * Caller already holds s_umount sem */ 5078 if (test_opt(sb, DELALLOC)) 5079 sync_filesystem(sb); 5080 5081 if (!inode) 5082 goto out; 5083 5084 /* Update modification times of quota files when userspace can 5085 * start looking at them */ 5086 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5087 if (IS_ERR(handle)) 5088 goto out; 5089 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5090 ext4_mark_inode_dirty(handle, inode); 5091 ext4_journal_stop(handle); 5092 5093 out: 5094 return dquot_quota_off(sb, type); 5095 } 5096 5097 /* 5098 * quota_off function that is used when QUOTA feature is set. 5099 */ 5100 static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5101 { 5102 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5103 return -EINVAL; 5104 5105 /* Disable only the limits. */ 5106 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5107 } 5108 5109 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5110 * acquiring the locks... As quota files are never truncated and quota code 5111 * itself serializes the operations (and no one else should touch the files) 5112 * we don't have to be afraid of races */ 5113 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5114 size_t len, loff_t off) 5115 { 5116 struct inode *inode = sb_dqopt(sb)->files[type]; 5117 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5118 int err = 0; 5119 int offset = off & (sb->s_blocksize - 1); 5120 int tocopy; 5121 size_t toread; 5122 struct buffer_head *bh; 5123 loff_t i_size = i_size_read(inode); 5124 5125 if (off > i_size) 5126 return 0; 5127 if (off+len > i_size) 5128 len = i_size-off; 5129 toread = len; 5130 while (toread > 0) { 5131 tocopy = sb->s_blocksize - offset < toread ? 5132 sb->s_blocksize - offset : toread; 5133 bh = ext4_bread(NULL, inode, blk, 0, &err); 5134 if (err) 5135 return err; 5136 if (!bh) /* A hole? */ 5137 memset(data, 0, tocopy); 5138 else 5139 memcpy(data, bh->b_data+offset, tocopy); 5140 brelse(bh); 5141 offset = 0; 5142 toread -= tocopy; 5143 data += tocopy; 5144 blk++; 5145 } 5146 return len; 5147 } 5148 5149 /* Write to quotafile (we know the transaction is already started and has 5150 * enough credits) */ 5151 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5152 const char *data, size_t len, loff_t off) 5153 { 5154 struct inode *inode = sb_dqopt(sb)->files[type]; 5155 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5156 int err = 0; 5157 int offset = off & (sb->s_blocksize - 1); 5158 struct buffer_head *bh; 5159 handle_t *handle = journal_current_handle(); 5160 5161 if (EXT4_SB(sb)->s_journal && !handle) { 5162 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5163 " cancelled because transaction is not started", 5164 (unsigned long long)off, (unsigned long long)len); 5165 return -EIO; 5166 } 5167 /* 5168 * Since we account only one data block in transaction credits, 5169 * then it is impossible to cross a block boundary. 5170 */ 5171 if (sb->s_blocksize - offset < len) { 5172 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5173 " cancelled because not block aligned", 5174 (unsigned long long)off, (unsigned long long)len); 5175 return -EIO; 5176 } 5177 5178 bh = ext4_bread(handle, inode, blk, 1, &err); 5179 if (!bh) 5180 goto out; 5181 err = ext4_journal_get_write_access(handle, bh); 5182 if (err) { 5183 brelse(bh); 5184 goto out; 5185 } 5186 lock_buffer(bh); 5187 memcpy(bh->b_data+offset, data, len); 5188 flush_dcache_page(bh->b_page); 5189 unlock_buffer(bh); 5190 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5191 brelse(bh); 5192 out: 5193 if (err) 5194 return err; 5195 if (inode->i_size < off + len) { 5196 i_size_write(inode, off + len); 5197 EXT4_I(inode)->i_disksize = inode->i_size; 5198 ext4_mark_inode_dirty(handle, inode); 5199 } 5200 return len; 5201 } 5202 5203 #endif 5204 5205 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5206 const char *dev_name, void *data) 5207 { 5208 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5209 } 5210 5211 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5212 static inline void register_as_ext2(void) 5213 { 5214 int err = register_filesystem(&ext2_fs_type); 5215 if (err) 5216 printk(KERN_WARNING 5217 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5218 } 5219 5220 static inline void unregister_as_ext2(void) 5221 { 5222 unregister_filesystem(&ext2_fs_type); 5223 } 5224 5225 static inline int ext2_feature_set_ok(struct super_block *sb) 5226 { 5227 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5228 return 0; 5229 if (sb->s_flags & MS_RDONLY) 5230 return 1; 5231 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5232 return 0; 5233 return 1; 5234 } 5235 #else 5236 static inline void register_as_ext2(void) { } 5237 static inline void unregister_as_ext2(void) { } 5238 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5239 #endif 5240 5241 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5242 static inline void register_as_ext3(void) 5243 { 5244 int err = register_filesystem(&ext3_fs_type); 5245 if (err) 5246 printk(KERN_WARNING 5247 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5248 } 5249 5250 static inline void unregister_as_ext3(void) 5251 { 5252 unregister_filesystem(&ext3_fs_type); 5253 } 5254 5255 static inline int ext3_feature_set_ok(struct super_block *sb) 5256 { 5257 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5258 return 0; 5259 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5260 return 0; 5261 if (sb->s_flags & MS_RDONLY) 5262 return 1; 5263 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5264 return 0; 5265 return 1; 5266 } 5267 #else 5268 static inline void register_as_ext3(void) { } 5269 static inline void unregister_as_ext3(void) { } 5270 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5271 #endif 5272 5273 static struct file_system_type ext4_fs_type = { 5274 .owner = THIS_MODULE, 5275 .name = "ext4", 5276 .mount = ext4_mount, 5277 .kill_sb = kill_block_super, 5278 .fs_flags = FS_REQUIRES_DEV, 5279 }; 5280 MODULE_ALIAS_FS("ext4"); 5281 5282 static int __init ext4_init_feat_adverts(void) 5283 { 5284 struct ext4_features *ef; 5285 int ret = -ENOMEM; 5286 5287 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5288 if (!ef) 5289 goto out; 5290 5291 ef->f_kobj.kset = ext4_kset; 5292 init_completion(&ef->f_kobj_unregister); 5293 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5294 "features"); 5295 if (ret) { 5296 kfree(ef); 5297 goto out; 5298 } 5299 5300 ext4_feat = ef; 5301 ret = 0; 5302 out: 5303 return ret; 5304 } 5305 5306 static void ext4_exit_feat_adverts(void) 5307 { 5308 kobject_put(&ext4_feat->f_kobj); 5309 wait_for_completion(&ext4_feat->f_kobj_unregister); 5310 kfree(ext4_feat); 5311 } 5312 5313 /* Shared across all ext4 file systems */ 5314 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5315 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5316 5317 static int __init ext4_init_fs(void) 5318 { 5319 int i, err; 5320 5321 ext4_li_info = NULL; 5322 mutex_init(&ext4_li_mtx); 5323 5324 /* Build-time check for flags consistency */ 5325 ext4_check_flag_values(); 5326 5327 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5328 mutex_init(&ext4__aio_mutex[i]); 5329 init_waitqueue_head(&ext4__ioend_wq[i]); 5330 } 5331 5332 err = ext4_init_es(); 5333 if (err) 5334 return err; 5335 5336 err = ext4_init_pageio(); 5337 if (err) 5338 goto out7; 5339 5340 err = ext4_init_system_zone(); 5341 if (err) 5342 goto out6; 5343 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5344 if (!ext4_kset) { 5345 err = -ENOMEM; 5346 goto out5; 5347 } 5348 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5349 5350 err = ext4_init_feat_adverts(); 5351 if (err) 5352 goto out4; 5353 5354 err = ext4_init_mballoc(); 5355 if (err) 5356 goto out3; 5357 5358 err = ext4_init_xattr(); 5359 if (err) 5360 goto out2; 5361 err = init_inodecache(); 5362 if (err) 5363 goto out1; 5364 register_as_ext3(); 5365 register_as_ext2(); 5366 err = register_filesystem(&ext4_fs_type); 5367 if (err) 5368 goto out; 5369 5370 return 0; 5371 out: 5372 unregister_as_ext2(); 5373 unregister_as_ext3(); 5374 destroy_inodecache(); 5375 out1: 5376 ext4_exit_xattr(); 5377 out2: 5378 ext4_exit_mballoc(); 5379 out3: 5380 ext4_exit_feat_adverts(); 5381 out4: 5382 if (ext4_proc_root) 5383 remove_proc_entry("fs/ext4", NULL); 5384 kset_unregister(ext4_kset); 5385 out5: 5386 ext4_exit_system_zone(); 5387 out6: 5388 ext4_exit_pageio(); 5389 out7: 5390 ext4_exit_es(); 5391 5392 return err; 5393 } 5394 5395 static void __exit ext4_exit_fs(void) 5396 { 5397 ext4_destroy_lazyinit_thread(); 5398 unregister_as_ext2(); 5399 unregister_as_ext3(); 5400 unregister_filesystem(&ext4_fs_type); 5401 destroy_inodecache(); 5402 ext4_exit_xattr(); 5403 ext4_exit_mballoc(); 5404 ext4_exit_feat_adverts(); 5405 remove_proc_entry("fs/ext4", NULL); 5406 kset_unregister(ext4_kset); 5407 ext4_exit_system_zone(); 5408 ext4_exit_pageio(); 5409 } 5410 5411 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5412 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5413 MODULE_LICENSE("GPL"); 5414 module_init(ext4_init_fs) 5415 module_exit(ext4_exit_fs) 5416