xref: /openbmc/linux/fs/ext4/super.c (revision 36bccb11)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43 
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46 
47 #include "ext4.h"
48 #include "ext4_extents.h"	/* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56 
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63 
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 			     unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 					struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 				   struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 		       const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
87 
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90 	.owner		= THIS_MODULE,
91 	.name		= "ext2",
92 	.mount		= ext4_mount,
93 	.kill_sb	= kill_block_super,
94 	.fs_flags	= FS_REQUIRES_DEV,
95 };
96 MODULE_ALIAS_FS("ext2");
97 MODULE_ALIAS("ext2");
98 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
99 #else
100 #define IS_EXT2_SB(sb) (0)
101 #endif
102 
103 
104 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
105 static struct file_system_type ext3_fs_type = {
106 	.owner		= THIS_MODULE,
107 	.name		= "ext3",
108 	.mount		= ext4_mount,
109 	.kill_sb	= kill_block_super,
110 	.fs_flags	= FS_REQUIRES_DEV,
111 };
112 MODULE_ALIAS_FS("ext3");
113 MODULE_ALIAS("ext3");
114 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
115 #else
116 #define IS_EXT3_SB(sb) (0)
117 #endif
118 
119 static int ext4_verify_csum_type(struct super_block *sb,
120 				 struct ext4_super_block *es)
121 {
122 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
123 					EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
124 		return 1;
125 
126 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
127 }
128 
129 static __le32 ext4_superblock_csum(struct super_block *sb,
130 				   struct ext4_super_block *es)
131 {
132 	struct ext4_sb_info *sbi = EXT4_SB(sb);
133 	int offset = offsetof(struct ext4_super_block, s_checksum);
134 	__u32 csum;
135 
136 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
137 
138 	return cpu_to_le32(csum);
139 }
140 
141 int ext4_superblock_csum_verify(struct super_block *sb,
142 				struct ext4_super_block *es)
143 {
144 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
145 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
146 		return 1;
147 
148 	return es->s_checksum == ext4_superblock_csum(sb, es);
149 }
150 
151 void ext4_superblock_csum_set(struct super_block *sb)
152 {
153 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
154 
155 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
156 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
157 		return;
158 
159 	es->s_checksum = ext4_superblock_csum(sb, es);
160 }
161 
162 void *ext4_kvmalloc(size_t size, gfp_t flags)
163 {
164 	void *ret;
165 
166 	ret = kmalloc(size, flags | __GFP_NOWARN);
167 	if (!ret)
168 		ret = __vmalloc(size, flags, PAGE_KERNEL);
169 	return ret;
170 }
171 
172 void *ext4_kvzalloc(size_t size, gfp_t flags)
173 {
174 	void *ret;
175 
176 	ret = kzalloc(size, flags | __GFP_NOWARN);
177 	if (!ret)
178 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
179 	return ret;
180 }
181 
182 void ext4_kvfree(void *ptr)
183 {
184 	if (is_vmalloc_addr(ptr))
185 		vfree(ptr);
186 	else
187 		kfree(ptr);
188 
189 }
190 
191 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
192 			       struct ext4_group_desc *bg)
193 {
194 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
195 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
196 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
197 }
198 
199 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
200 			       struct ext4_group_desc *bg)
201 {
202 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
203 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
205 }
206 
207 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
208 			      struct ext4_group_desc *bg)
209 {
210 	return le32_to_cpu(bg->bg_inode_table_lo) |
211 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
213 }
214 
215 __u32 ext4_free_group_clusters(struct super_block *sb,
216 			       struct ext4_group_desc *bg)
217 {
218 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
219 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
221 }
222 
223 __u32 ext4_free_inodes_count(struct super_block *sb,
224 			      struct ext4_group_desc *bg)
225 {
226 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
227 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
229 }
230 
231 __u32 ext4_used_dirs_count(struct super_block *sb,
232 			      struct ext4_group_desc *bg)
233 {
234 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
235 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
237 }
238 
239 __u32 ext4_itable_unused_count(struct super_block *sb,
240 			      struct ext4_group_desc *bg)
241 {
242 	return le16_to_cpu(bg->bg_itable_unused_lo) |
243 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
245 }
246 
247 void ext4_block_bitmap_set(struct super_block *sb,
248 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
249 {
250 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
251 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
252 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
253 }
254 
255 void ext4_inode_bitmap_set(struct super_block *sb,
256 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
257 {
258 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
259 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
261 }
262 
263 void ext4_inode_table_set(struct super_block *sb,
264 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
265 {
266 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
267 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
269 }
270 
271 void ext4_free_group_clusters_set(struct super_block *sb,
272 				  struct ext4_group_desc *bg, __u32 count)
273 {
274 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
275 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
277 }
278 
279 void ext4_free_inodes_set(struct super_block *sb,
280 			  struct ext4_group_desc *bg, __u32 count)
281 {
282 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
283 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
285 }
286 
287 void ext4_used_dirs_set(struct super_block *sb,
288 			  struct ext4_group_desc *bg, __u32 count)
289 {
290 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
291 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
293 }
294 
295 void ext4_itable_unused_set(struct super_block *sb,
296 			  struct ext4_group_desc *bg, __u32 count)
297 {
298 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
299 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
301 }
302 
303 
304 static void __save_error_info(struct super_block *sb, const char *func,
305 			    unsigned int line)
306 {
307 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
308 
309 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
310 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
311 	es->s_last_error_time = cpu_to_le32(get_seconds());
312 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
313 	es->s_last_error_line = cpu_to_le32(line);
314 	if (!es->s_first_error_time) {
315 		es->s_first_error_time = es->s_last_error_time;
316 		strncpy(es->s_first_error_func, func,
317 			sizeof(es->s_first_error_func));
318 		es->s_first_error_line = cpu_to_le32(line);
319 		es->s_first_error_ino = es->s_last_error_ino;
320 		es->s_first_error_block = es->s_last_error_block;
321 	}
322 	/*
323 	 * Start the daily error reporting function if it hasn't been
324 	 * started already
325 	 */
326 	if (!es->s_error_count)
327 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
328 	le32_add_cpu(&es->s_error_count, 1);
329 }
330 
331 static void save_error_info(struct super_block *sb, const char *func,
332 			    unsigned int line)
333 {
334 	__save_error_info(sb, func, line);
335 	ext4_commit_super(sb, 1);
336 }
337 
338 /*
339  * The del_gendisk() function uninitializes the disk-specific data
340  * structures, including the bdi structure, without telling anyone
341  * else.  Once this happens, any attempt to call mark_buffer_dirty()
342  * (for example, by ext4_commit_super), will cause a kernel OOPS.
343  * This is a kludge to prevent these oops until we can put in a proper
344  * hook in del_gendisk() to inform the VFS and file system layers.
345  */
346 static int block_device_ejected(struct super_block *sb)
347 {
348 	struct inode *bd_inode = sb->s_bdev->bd_inode;
349 	struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
350 
351 	return bdi->dev == NULL;
352 }
353 
354 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
355 {
356 	struct super_block		*sb = journal->j_private;
357 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
358 	int				error = is_journal_aborted(journal);
359 	struct ext4_journal_cb_entry	*jce;
360 
361 	BUG_ON(txn->t_state == T_FINISHED);
362 	spin_lock(&sbi->s_md_lock);
363 	while (!list_empty(&txn->t_private_list)) {
364 		jce = list_entry(txn->t_private_list.next,
365 				 struct ext4_journal_cb_entry, jce_list);
366 		list_del_init(&jce->jce_list);
367 		spin_unlock(&sbi->s_md_lock);
368 		jce->jce_func(sb, jce, error);
369 		spin_lock(&sbi->s_md_lock);
370 	}
371 	spin_unlock(&sbi->s_md_lock);
372 }
373 
374 /* Deal with the reporting of failure conditions on a filesystem such as
375  * inconsistencies detected or read IO failures.
376  *
377  * On ext2, we can store the error state of the filesystem in the
378  * superblock.  That is not possible on ext4, because we may have other
379  * write ordering constraints on the superblock which prevent us from
380  * writing it out straight away; and given that the journal is about to
381  * be aborted, we can't rely on the current, or future, transactions to
382  * write out the superblock safely.
383  *
384  * We'll just use the jbd2_journal_abort() error code to record an error in
385  * the journal instead.  On recovery, the journal will complain about
386  * that error until we've noted it down and cleared it.
387  */
388 
389 static void ext4_handle_error(struct super_block *sb)
390 {
391 	if (sb->s_flags & MS_RDONLY)
392 		return;
393 
394 	if (!test_opt(sb, ERRORS_CONT)) {
395 		journal_t *journal = EXT4_SB(sb)->s_journal;
396 
397 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
398 		if (journal)
399 			jbd2_journal_abort(journal, -EIO);
400 	}
401 	if (test_opt(sb, ERRORS_RO)) {
402 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
403 		/*
404 		 * Make sure updated value of ->s_mount_flags will be visible
405 		 * before ->s_flags update
406 		 */
407 		smp_wmb();
408 		sb->s_flags |= MS_RDONLY;
409 	}
410 	if (test_opt(sb, ERRORS_PANIC))
411 		panic("EXT4-fs (device %s): panic forced after error\n",
412 			sb->s_id);
413 }
414 
415 #define ext4_error_ratelimit(sb)					\
416 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
417 			     "EXT4-fs error")
418 
419 void __ext4_error(struct super_block *sb, const char *function,
420 		  unsigned int line, const char *fmt, ...)
421 {
422 	struct va_format vaf;
423 	va_list args;
424 
425 	if (ext4_error_ratelimit(sb)) {
426 		va_start(args, fmt);
427 		vaf.fmt = fmt;
428 		vaf.va = &args;
429 		printk(KERN_CRIT
430 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
431 		       sb->s_id, function, line, current->comm, &vaf);
432 		va_end(args);
433 	}
434 	save_error_info(sb, function, line);
435 	ext4_handle_error(sb);
436 }
437 
438 void __ext4_error_inode(struct inode *inode, const char *function,
439 			unsigned int line, ext4_fsblk_t block,
440 			const char *fmt, ...)
441 {
442 	va_list args;
443 	struct va_format vaf;
444 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
445 
446 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
447 	es->s_last_error_block = cpu_to_le64(block);
448 	if (ext4_error_ratelimit(inode->i_sb)) {
449 		va_start(args, fmt);
450 		vaf.fmt = fmt;
451 		vaf.va = &args;
452 		if (block)
453 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
454 			       "inode #%lu: block %llu: comm %s: %pV\n",
455 			       inode->i_sb->s_id, function, line, inode->i_ino,
456 			       block, current->comm, &vaf);
457 		else
458 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
459 			       "inode #%lu: comm %s: %pV\n",
460 			       inode->i_sb->s_id, function, line, inode->i_ino,
461 			       current->comm, &vaf);
462 		va_end(args);
463 	}
464 	save_error_info(inode->i_sb, function, line);
465 	ext4_handle_error(inode->i_sb);
466 }
467 
468 void __ext4_error_file(struct file *file, const char *function,
469 		       unsigned int line, ext4_fsblk_t block,
470 		       const char *fmt, ...)
471 {
472 	va_list args;
473 	struct va_format vaf;
474 	struct ext4_super_block *es;
475 	struct inode *inode = file_inode(file);
476 	char pathname[80], *path;
477 
478 	es = EXT4_SB(inode->i_sb)->s_es;
479 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
480 	if (ext4_error_ratelimit(inode->i_sb)) {
481 		path = d_path(&(file->f_path), pathname, sizeof(pathname));
482 		if (IS_ERR(path))
483 			path = "(unknown)";
484 		va_start(args, fmt);
485 		vaf.fmt = fmt;
486 		vaf.va = &args;
487 		if (block)
488 			printk(KERN_CRIT
489 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
490 			       "block %llu: comm %s: path %s: %pV\n",
491 			       inode->i_sb->s_id, function, line, inode->i_ino,
492 			       block, current->comm, path, &vaf);
493 		else
494 			printk(KERN_CRIT
495 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
496 			       "comm %s: path %s: %pV\n",
497 			       inode->i_sb->s_id, function, line, inode->i_ino,
498 			       current->comm, path, &vaf);
499 		va_end(args);
500 	}
501 	save_error_info(inode->i_sb, function, line);
502 	ext4_handle_error(inode->i_sb);
503 }
504 
505 const char *ext4_decode_error(struct super_block *sb, int errno,
506 			      char nbuf[16])
507 {
508 	char *errstr = NULL;
509 
510 	switch (errno) {
511 	case -EIO:
512 		errstr = "IO failure";
513 		break;
514 	case -ENOMEM:
515 		errstr = "Out of memory";
516 		break;
517 	case -EROFS:
518 		if (!sb || (EXT4_SB(sb)->s_journal &&
519 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
520 			errstr = "Journal has aborted";
521 		else
522 			errstr = "Readonly filesystem";
523 		break;
524 	default:
525 		/* If the caller passed in an extra buffer for unknown
526 		 * errors, textualise them now.  Else we just return
527 		 * NULL. */
528 		if (nbuf) {
529 			/* Check for truncated error codes... */
530 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
531 				errstr = nbuf;
532 		}
533 		break;
534 	}
535 
536 	return errstr;
537 }
538 
539 /* __ext4_std_error decodes expected errors from journaling functions
540  * automatically and invokes the appropriate error response.  */
541 
542 void __ext4_std_error(struct super_block *sb, const char *function,
543 		      unsigned int line, int errno)
544 {
545 	char nbuf[16];
546 	const char *errstr;
547 
548 	/* Special case: if the error is EROFS, and we're not already
549 	 * inside a transaction, then there's really no point in logging
550 	 * an error. */
551 	if (errno == -EROFS && journal_current_handle() == NULL &&
552 	    (sb->s_flags & MS_RDONLY))
553 		return;
554 
555 	if (ext4_error_ratelimit(sb)) {
556 		errstr = ext4_decode_error(sb, errno, nbuf);
557 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
558 		       sb->s_id, function, line, errstr);
559 	}
560 
561 	save_error_info(sb, function, line);
562 	ext4_handle_error(sb);
563 }
564 
565 /*
566  * ext4_abort is a much stronger failure handler than ext4_error.  The
567  * abort function may be used to deal with unrecoverable failures such
568  * as journal IO errors or ENOMEM at a critical moment in log management.
569  *
570  * We unconditionally force the filesystem into an ABORT|READONLY state,
571  * unless the error response on the fs has been set to panic in which
572  * case we take the easy way out and panic immediately.
573  */
574 
575 void __ext4_abort(struct super_block *sb, const char *function,
576 		unsigned int line, const char *fmt, ...)
577 {
578 	va_list args;
579 
580 	save_error_info(sb, function, line);
581 	va_start(args, fmt);
582 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
583 	       function, line);
584 	vprintk(fmt, args);
585 	printk("\n");
586 	va_end(args);
587 
588 	if ((sb->s_flags & MS_RDONLY) == 0) {
589 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
590 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
591 		/*
592 		 * Make sure updated value of ->s_mount_flags will be visible
593 		 * before ->s_flags update
594 		 */
595 		smp_wmb();
596 		sb->s_flags |= MS_RDONLY;
597 		if (EXT4_SB(sb)->s_journal)
598 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
599 		save_error_info(sb, function, line);
600 	}
601 	if (test_opt(sb, ERRORS_PANIC))
602 		panic("EXT4-fs panic from previous error\n");
603 }
604 
605 void __ext4_msg(struct super_block *sb,
606 		const char *prefix, const char *fmt, ...)
607 {
608 	struct va_format vaf;
609 	va_list args;
610 
611 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
612 		return;
613 
614 	va_start(args, fmt);
615 	vaf.fmt = fmt;
616 	vaf.va = &args;
617 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
618 	va_end(args);
619 }
620 
621 void __ext4_warning(struct super_block *sb, const char *function,
622 		    unsigned int line, const char *fmt, ...)
623 {
624 	struct va_format vaf;
625 	va_list args;
626 
627 	if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
628 			  "EXT4-fs warning"))
629 		return;
630 
631 	va_start(args, fmt);
632 	vaf.fmt = fmt;
633 	vaf.va = &args;
634 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
635 	       sb->s_id, function, line, &vaf);
636 	va_end(args);
637 }
638 
639 void __ext4_grp_locked_error(const char *function, unsigned int line,
640 			     struct super_block *sb, ext4_group_t grp,
641 			     unsigned long ino, ext4_fsblk_t block,
642 			     const char *fmt, ...)
643 __releases(bitlock)
644 __acquires(bitlock)
645 {
646 	struct va_format vaf;
647 	va_list args;
648 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
649 
650 	es->s_last_error_ino = cpu_to_le32(ino);
651 	es->s_last_error_block = cpu_to_le64(block);
652 	__save_error_info(sb, function, line);
653 
654 	if (ext4_error_ratelimit(sb)) {
655 		va_start(args, fmt);
656 		vaf.fmt = fmt;
657 		vaf.va = &args;
658 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
659 		       sb->s_id, function, line, grp);
660 		if (ino)
661 			printk(KERN_CONT "inode %lu: ", ino);
662 		if (block)
663 			printk(KERN_CONT "block %llu:",
664 			       (unsigned long long) block);
665 		printk(KERN_CONT "%pV\n", &vaf);
666 		va_end(args);
667 	}
668 
669 	if (test_opt(sb, ERRORS_CONT)) {
670 		ext4_commit_super(sb, 0);
671 		return;
672 	}
673 
674 	ext4_unlock_group(sb, grp);
675 	ext4_handle_error(sb);
676 	/*
677 	 * We only get here in the ERRORS_RO case; relocking the group
678 	 * may be dangerous, but nothing bad will happen since the
679 	 * filesystem will have already been marked read/only and the
680 	 * journal has been aborted.  We return 1 as a hint to callers
681 	 * who might what to use the return value from
682 	 * ext4_grp_locked_error() to distinguish between the
683 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
684 	 * aggressively from the ext4 function in question, with a
685 	 * more appropriate error code.
686 	 */
687 	ext4_lock_group(sb, grp);
688 	return;
689 }
690 
691 void ext4_update_dynamic_rev(struct super_block *sb)
692 {
693 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694 
695 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
696 		return;
697 
698 	ext4_warning(sb,
699 		     "updating to rev %d because of new feature flag, "
700 		     "running e2fsck is recommended",
701 		     EXT4_DYNAMIC_REV);
702 
703 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
704 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
705 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
706 	/* leave es->s_feature_*compat flags alone */
707 	/* es->s_uuid will be set by e2fsck if empty */
708 
709 	/*
710 	 * The rest of the superblock fields should be zero, and if not it
711 	 * means they are likely already in use, so leave them alone.  We
712 	 * can leave it up to e2fsck to clean up any inconsistencies there.
713 	 */
714 }
715 
716 /*
717  * Open the external journal device
718  */
719 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
720 {
721 	struct block_device *bdev;
722 	char b[BDEVNAME_SIZE];
723 
724 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
725 	if (IS_ERR(bdev))
726 		goto fail;
727 	return bdev;
728 
729 fail:
730 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
731 			__bdevname(dev, b), PTR_ERR(bdev));
732 	return NULL;
733 }
734 
735 /*
736  * Release the journal device
737  */
738 static void ext4_blkdev_put(struct block_device *bdev)
739 {
740 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
741 }
742 
743 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
744 {
745 	struct block_device *bdev;
746 	bdev = sbi->journal_bdev;
747 	if (bdev) {
748 		ext4_blkdev_put(bdev);
749 		sbi->journal_bdev = NULL;
750 	}
751 }
752 
753 static inline struct inode *orphan_list_entry(struct list_head *l)
754 {
755 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
756 }
757 
758 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
759 {
760 	struct list_head *l;
761 
762 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
763 		 le32_to_cpu(sbi->s_es->s_last_orphan));
764 
765 	printk(KERN_ERR "sb_info orphan list:\n");
766 	list_for_each(l, &sbi->s_orphan) {
767 		struct inode *inode = orphan_list_entry(l);
768 		printk(KERN_ERR "  "
769 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
770 		       inode->i_sb->s_id, inode->i_ino, inode,
771 		       inode->i_mode, inode->i_nlink,
772 		       NEXT_ORPHAN(inode));
773 	}
774 }
775 
776 static void ext4_put_super(struct super_block *sb)
777 {
778 	struct ext4_sb_info *sbi = EXT4_SB(sb);
779 	struct ext4_super_block *es = sbi->s_es;
780 	int i, err;
781 
782 	ext4_unregister_li_request(sb);
783 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
784 
785 	flush_workqueue(sbi->rsv_conversion_wq);
786 	destroy_workqueue(sbi->rsv_conversion_wq);
787 
788 	if (sbi->s_journal) {
789 		err = jbd2_journal_destroy(sbi->s_journal);
790 		sbi->s_journal = NULL;
791 		if (err < 0)
792 			ext4_abort(sb, "Couldn't clean up the journal");
793 	}
794 
795 	ext4_es_unregister_shrinker(sbi);
796 	del_timer_sync(&sbi->s_err_report);
797 	ext4_release_system_zone(sb);
798 	ext4_mb_release(sb);
799 	ext4_ext_release(sb);
800 	ext4_xattr_put_super(sb);
801 
802 	if (!(sb->s_flags & MS_RDONLY)) {
803 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
804 		es->s_state = cpu_to_le16(sbi->s_mount_state);
805 	}
806 	if (!(sb->s_flags & MS_RDONLY))
807 		ext4_commit_super(sb, 1);
808 
809 	if (sbi->s_proc) {
810 		remove_proc_entry("options", sbi->s_proc);
811 		remove_proc_entry(sb->s_id, ext4_proc_root);
812 	}
813 	kobject_del(&sbi->s_kobj);
814 
815 	for (i = 0; i < sbi->s_gdb_count; i++)
816 		brelse(sbi->s_group_desc[i]);
817 	ext4_kvfree(sbi->s_group_desc);
818 	ext4_kvfree(sbi->s_flex_groups);
819 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
820 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
821 	percpu_counter_destroy(&sbi->s_dirs_counter);
822 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
823 	percpu_counter_destroy(&sbi->s_extent_cache_cnt);
824 	brelse(sbi->s_sbh);
825 #ifdef CONFIG_QUOTA
826 	for (i = 0; i < MAXQUOTAS; i++)
827 		kfree(sbi->s_qf_names[i]);
828 #endif
829 
830 	/* Debugging code just in case the in-memory inode orphan list
831 	 * isn't empty.  The on-disk one can be non-empty if we've
832 	 * detected an error and taken the fs readonly, but the
833 	 * in-memory list had better be clean by this point. */
834 	if (!list_empty(&sbi->s_orphan))
835 		dump_orphan_list(sb, sbi);
836 	J_ASSERT(list_empty(&sbi->s_orphan));
837 
838 	invalidate_bdev(sb->s_bdev);
839 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
840 		/*
841 		 * Invalidate the journal device's buffers.  We don't want them
842 		 * floating about in memory - the physical journal device may
843 		 * hotswapped, and it breaks the `ro-after' testing code.
844 		 */
845 		sync_blockdev(sbi->journal_bdev);
846 		invalidate_bdev(sbi->journal_bdev);
847 		ext4_blkdev_remove(sbi);
848 	}
849 	if (sbi->s_mb_cache) {
850 		ext4_xattr_destroy_cache(sbi->s_mb_cache);
851 		sbi->s_mb_cache = NULL;
852 	}
853 	if (sbi->s_mmp_tsk)
854 		kthread_stop(sbi->s_mmp_tsk);
855 	sb->s_fs_info = NULL;
856 	/*
857 	 * Now that we are completely done shutting down the
858 	 * superblock, we need to actually destroy the kobject.
859 	 */
860 	kobject_put(&sbi->s_kobj);
861 	wait_for_completion(&sbi->s_kobj_unregister);
862 	if (sbi->s_chksum_driver)
863 		crypto_free_shash(sbi->s_chksum_driver);
864 	kfree(sbi->s_blockgroup_lock);
865 	kfree(sbi);
866 }
867 
868 static struct kmem_cache *ext4_inode_cachep;
869 
870 /*
871  * Called inside transaction, so use GFP_NOFS
872  */
873 static struct inode *ext4_alloc_inode(struct super_block *sb)
874 {
875 	struct ext4_inode_info *ei;
876 
877 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
878 	if (!ei)
879 		return NULL;
880 
881 	ei->vfs_inode.i_version = 1;
882 	INIT_LIST_HEAD(&ei->i_prealloc_list);
883 	spin_lock_init(&ei->i_prealloc_lock);
884 	ext4_es_init_tree(&ei->i_es_tree);
885 	rwlock_init(&ei->i_es_lock);
886 	INIT_LIST_HEAD(&ei->i_es_lru);
887 	ei->i_es_lru_nr = 0;
888 	ei->i_touch_when = 0;
889 	ei->i_reserved_data_blocks = 0;
890 	ei->i_reserved_meta_blocks = 0;
891 	ei->i_allocated_meta_blocks = 0;
892 	ei->i_da_metadata_calc_len = 0;
893 	ei->i_da_metadata_calc_last_lblock = 0;
894 	spin_lock_init(&(ei->i_block_reservation_lock));
895 #ifdef CONFIG_QUOTA
896 	ei->i_reserved_quota = 0;
897 #endif
898 	ei->jinode = NULL;
899 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
900 	spin_lock_init(&ei->i_completed_io_lock);
901 	ei->i_sync_tid = 0;
902 	ei->i_datasync_tid = 0;
903 	atomic_set(&ei->i_ioend_count, 0);
904 	atomic_set(&ei->i_unwritten, 0);
905 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
906 
907 	return &ei->vfs_inode;
908 }
909 
910 static int ext4_drop_inode(struct inode *inode)
911 {
912 	int drop = generic_drop_inode(inode);
913 
914 	trace_ext4_drop_inode(inode, drop);
915 	return drop;
916 }
917 
918 static void ext4_i_callback(struct rcu_head *head)
919 {
920 	struct inode *inode = container_of(head, struct inode, i_rcu);
921 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
922 }
923 
924 static void ext4_destroy_inode(struct inode *inode)
925 {
926 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
927 		ext4_msg(inode->i_sb, KERN_ERR,
928 			 "Inode %lu (%p): orphan list check failed!",
929 			 inode->i_ino, EXT4_I(inode));
930 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
931 				EXT4_I(inode), sizeof(struct ext4_inode_info),
932 				true);
933 		dump_stack();
934 	}
935 	call_rcu(&inode->i_rcu, ext4_i_callback);
936 }
937 
938 static void init_once(void *foo)
939 {
940 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
941 
942 	INIT_LIST_HEAD(&ei->i_orphan);
943 	init_rwsem(&ei->xattr_sem);
944 	init_rwsem(&ei->i_data_sem);
945 	inode_init_once(&ei->vfs_inode);
946 }
947 
948 static int __init init_inodecache(void)
949 {
950 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
951 					     sizeof(struct ext4_inode_info),
952 					     0, (SLAB_RECLAIM_ACCOUNT|
953 						SLAB_MEM_SPREAD),
954 					     init_once);
955 	if (ext4_inode_cachep == NULL)
956 		return -ENOMEM;
957 	return 0;
958 }
959 
960 static void destroy_inodecache(void)
961 {
962 	/*
963 	 * Make sure all delayed rcu free inodes are flushed before we
964 	 * destroy cache.
965 	 */
966 	rcu_barrier();
967 	kmem_cache_destroy(ext4_inode_cachep);
968 }
969 
970 void ext4_clear_inode(struct inode *inode)
971 {
972 	invalidate_inode_buffers(inode);
973 	clear_inode(inode);
974 	dquot_drop(inode);
975 	ext4_discard_preallocations(inode);
976 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
977 	ext4_es_lru_del(inode);
978 	if (EXT4_I(inode)->jinode) {
979 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
980 					       EXT4_I(inode)->jinode);
981 		jbd2_free_inode(EXT4_I(inode)->jinode);
982 		EXT4_I(inode)->jinode = NULL;
983 	}
984 }
985 
986 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
987 					u64 ino, u32 generation)
988 {
989 	struct inode *inode;
990 
991 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
992 		return ERR_PTR(-ESTALE);
993 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
994 		return ERR_PTR(-ESTALE);
995 
996 	/* iget isn't really right if the inode is currently unallocated!!
997 	 *
998 	 * ext4_read_inode will return a bad_inode if the inode had been
999 	 * deleted, so we should be safe.
1000 	 *
1001 	 * Currently we don't know the generation for parent directory, so
1002 	 * a generation of 0 means "accept any"
1003 	 */
1004 	inode = ext4_iget(sb, ino);
1005 	if (IS_ERR(inode))
1006 		return ERR_CAST(inode);
1007 	if (generation && inode->i_generation != generation) {
1008 		iput(inode);
1009 		return ERR_PTR(-ESTALE);
1010 	}
1011 
1012 	return inode;
1013 }
1014 
1015 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1016 					int fh_len, int fh_type)
1017 {
1018 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1019 				    ext4_nfs_get_inode);
1020 }
1021 
1022 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1023 					int fh_len, int fh_type)
1024 {
1025 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1026 				    ext4_nfs_get_inode);
1027 }
1028 
1029 /*
1030  * Try to release metadata pages (indirect blocks, directories) which are
1031  * mapped via the block device.  Since these pages could have journal heads
1032  * which would prevent try_to_free_buffers() from freeing them, we must use
1033  * jbd2 layer's try_to_free_buffers() function to release them.
1034  */
1035 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1036 				 gfp_t wait)
1037 {
1038 	journal_t *journal = EXT4_SB(sb)->s_journal;
1039 
1040 	WARN_ON(PageChecked(page));
1041 	if (!page_has_buffers(page))
1042 		return 0;
1043 	if (journal)
1044 		return jbd2_journal_try_to_free_buffers(journal, page,
1045 							wait & ~__GFP_WAIT);
1046 	return try_to_free_buffers(page);
1047 }
1048 
1049 #ifdef CONFIG_QUOTA
1050 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1051 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1052 
1053 static int ext4_write_dquot(struct dquot *dquot);
1054 static int ext4_acquire_dquot(struct dquot *dquot);
1055 static int ext4_release_dquot(struct dquot *dquot);
1056 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1057 static int ext4_write_info(struct super_block *sb, int type);
1058 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1059 			 struct path *path);
1060 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1061 				 int format_id);
1062 static int ext4_quota_off(struct super_block *sb, int type);
1063 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1064 static int ext4_quota_on_mount(struct super_block *sb, int type);
1065 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1066 			       size_t len, loff_t off);
1067 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1068 				const char *data, size_t len, loff_t off);
1069 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1070 			     unsigned int flags);
1071 static int ext4_enable_quotas(struct super_block *sb);
1072 
1073 static const struct dquot_operations ext4_quota_operations = {
1074 	.get_reserved_space = ext4_get_reserved_space,
1075 	.write_dquot	= ext4_write_dquot,
1076 	.acquire_dquot	= ext4_acquire_dquot,
1077 	.release_dquot	= ext4_release_dquot,
1078 	.mark_dirty	= ext4_mark_dquot_dirty,
1079 	.write_info	= ext4_write_info,
1080 	.alloc_dquot	= dquot_alloc,
1081 	.destroy_dquot	= dquot_destroy,
1082 };
1083 
1084 static const struct quotactl_ops ext4_qctl_operations = {
1085 	.quota_on	= ext4_quota_on,
1086 	.quota_off	= ext4_quota_off,
1087 	.quota_sync	= dquot_quota_sync,
1088 	.get_info	= dquot_get_dqinfo,
1089 	.set_info	= dquot_set_dqinfo,
1090 	.get_dqblk	= dquot_get_dqblk,
1091 	.set_dqblk	= dquot_set_dqblk
1092 };
1093 
1094 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1095 	.quota_on_meta	= ext4_quota_on_sysfile,
1096 	.quota_off	= ext4_quota_off_sysfile,
1097 	.quota_sync	= dquot_quota_sync,
1098 	.get_info	= dquot_get_dqinfo,
1099 	.set_info	= dquot_set_dqinfo,
1100 	.get_dqblk	= dquot_get_dqblk,
1101 	.set_dqblk	= dquot_set_dqblk
1102 };
1103 #endif
1104 
1105 static const struct super_operations ext4_sops = {
1106 	.alloc_inode	= ext4_alloc_inode,
1107 	.destroy_inode	= ext4_destroy_inode,
1108 	.write_inode	= ext4_write_inode,
1109 	.dirty_inode	= ext4_dirty_inode,
1110 	.drop_inode	= ext4_drop_inode,
1111 	.evict_inode	= ext4_evict_inode,
1112 	.put_super	= ext4_put_super,
1113 	.sync_fs	= ext4_sync_fs,
1114 	.freeze_fs	= ext4_freeze,
1115 	.unfreeze_fs	= ext4_unfreeze,
1116 	.statfs		= ext4_statfs,
1117 	.remount_fs	= ext4_remount,
1118 	.show_options	= ext4_show_options,
1119 #ifdef CONFIG_QUOTA
1120 	.quota_read	= ext4_quota_read,
1121 	.quota_write	= ext4_quota_write,
1122 #endif
1123 	.bdev_try_to_free_page = bdev_try_to_free_page,
1124 };
1125 
1126 static const struct super_operations ext4_nojournal_sops = {
1127 	.alloc_inode	= ext4_alloc_inode,
1128 	.destroy_inode	= ext4_destroy_inode,
1129 	.write_inode	= ext4_write_inode,
1130 	.dirty_inode	= ext4_dirty_inode,
1131 	.drop_inode	= ext4_drop_inode,
1132 	.evict_inode	= ext4_evict_inode,
1133 	.sync_fs	= ext4_sync_fs_nojournal,
1134 	.put_super	= ext4_put_super,
1135 	.statfs		= ext4_statfs,
1136 	.remount_fs	= ext4_remount,
1137 	.show_options	= ext4_show_options,
1138 #ifdef CONFIG_QUOTA
1139 	.quota_read	= ext4_quota_read,
1140 	.quota_write	= ext4_quota_write,
1141 #endif
1142 	.bdev_try_to_free_page = bdev_try_to_free_page,
1143 };
1144 
1145 static const struct export_operations ext4_export_ops = {
1146 	.fh_to_dentry = ext4_fh_to_dentry,
1147 	.fh_to_parent = ext4_fh_to_parent,
1148 	.get_parent = ext4_get_parent,
1149 };
1150 
1151 enum {
1152 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1153 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1154 	Opt_nouid32, Opt_debug, Opt_removed,
1155 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1156 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1157 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1158 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1159 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1160 	Opt_data_err_abort, Opt_data_err_ignore,
1161 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1162 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1163 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1164 	Opt_usrquota, Opt_grpquota, Opt_i_version,
1165 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1166 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1167 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1168 	Opt_dioread_nolock, Opt_dioread_lock,
1169 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1170 	Opt_max_dir_size_kb,
1171 };
1172 
1173 static const match_table_t tokens = {
1174 	{Opt_bsd_df, "bsddf"},
1175 	{Opt_minix_df, "minixdf"},
1176 	{Opt_grpid, "grpid"},
1177 	{Opt_grpid, "bsdgroups"},
1178 	{Opt_nogrpid, "nogrpid"},
1179 	{Opt_nogrpid, "sysvgroups"},
1180 	{Opt_resgid, "resgid=%u"},
1181 	{Opt_resuid, "resuid=%u"},
1182 	{Opt_sb, "sb=%u"},
1183 	{Opt_err_cont, "errors=continue"},
1184 	{Opt_err_panic, "errors=panic"},
1185 	{Opt_err_ro, "errors=remount-ro"},
1186 	{Opt_nouid32, "nouid32"},
1187 	{Opt_debug, "debug"},
1188 	{Opt_removed, "oldalloc"},
1189 	{Opt_removed, "orlov"},
1190 	{Opt_user_xattr, "user_xattr"},
1191 	{Opt_nouser_xattr, "nouser_xattr"},
1192 	{Opt_acl, "acl"},
1193 	{Opt_noacl, "noacl"},
1194 	{Opt_noload, "norecovery"},
1195 	{Opt_noload, "noload"},
1196 	{Opt_removed, "nobh"},
1197 	{Opt_removed, "bh"},
1198 	{Opt_commit, "commit=%u"},
1199 	{Opt_min_batch_time, "min_batch_time=%u"},
1200 	{Opt_max_batch_time, "max_batch_time=%u"},
1201 	{Opt_journal_dev, "journal_dev=%u"},
1202 	{Opt_journal_path, "journal_path=%s"},
1203 	{Opt_journal_checksum, "journal_checksum"},
1204 	{Opt_journal_async_commit, "journal_async_commit"},
1205 	{Opt_abort, "abort"},
1206 	{Opt_data_journal, "data=journal"},
1207 	{Opt_data_ordered, "data=ordered"},
1208 	{Opt_data_writeback, "data=writeback"},
1209 	{Opt_data_err_abort, "data_err=abort"},
1210 	{Opt_data_err_ignore, "data_err=ignore"},
1211 	{Opt_offusrjquota, "usrjquota="},
1212 	{Opt_usrjquota, "usrjquota=%s"},
1213 	{Opt_offgrpjquota, "grpjquota="},
1214 	{Opt_grpjquota, "grpjquota=%s"},
1215 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1216 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1217 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1218 	{Opt_grpquota, "grpquota"},
1219 	{Opt_noquota, "noquota"},
1220 	{Opt_quota, "quota"},
1221 	{Opt_usrquota, "usrquota"},
1222 	{Opt_barrier, "barrier=%u"},
1223 	{Opt_barrier, "barrier"},
1224 	{Opt_nobarrier, "nobarrier"},
1225 	{Opt_i_version, "i_version"},
1226 	{Opt_stripe, "stripe=%u"},
1227 	{Opt_delalloc, "delalloc"},
1228 	{Opt_nodelalloc, "nodelalloc"},
1229 	{Opt_removed, "mblk_io_submit"},
1230 	{Opt_removed, "nomblk_io_submit"},
1231 	{Opt_block_validity, "block_validity"},
1232 	{Opt_noblock_validity, "noblock_validity"},
1233 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1234 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1235 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1236 	{Opt_auto_da_alloc, "auto_da_alloc"},
1237 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1238 	{Opt_dioread_nolock, "dioread_nolock"},
1239 	{Opt_dioread_lock, "dioread_lock"},
1240 	{Opt_discard, "discard"},
1241 	{Opt_nodiscard, "nodiscard"},
1242 	{Opt_init_itable, "init_itable=%u"},
1243 	{Opt_init_itable, "init_itable"},
1244 	{Opt_noinit_itable, "noinit_itable"},
1245 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1246 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1247 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1248 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1249 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1250 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1251 	{Opt_err, NULL},
1252 };
1253 
1254 static ext4_fsblk_t get_sb_block(void **data)
1255 {
1256 	ext4_fsblk_t	sb_block;
1257 	char		*options = (char *) *data;
1258 
1259 	if (!options || strncmp(options, "sb=", 3) != 0)
1260 		return 1;	/* Default location */
1261 
1262 	options += 3;
1263 	/* TODO: use simple_strtoll with >32bit ext4 */
1264 	sb_block = simple_strtoul(options, &options, 0);
1265 	if (*options && *options != ',') {
1266 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1267 		       (char *) *data);
1268 		return 1;
1269 	}
1270 	if (*options == ',')
1271 		options++;
1272 	*data = (void *) options;
1273 
1274 	return sb_block;
1275 }
1276 
1277 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1278 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1279 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1280 
1281 #ifdef CONFIG_QUOTA
1282 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1283 {
1284 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1285 	char *qname;
1286 	int ret = -1;
1287 
1288 	if (sb_any_quota_loaded(sb) &&
1289 		!sbi->s_qf_names[qtype]) {
1290 		ext4_msg(sb, KERN_ERR,
1291 			"Cannot change journaled "
1292 			"quota options when quota turned on");
1293 		return -1;
1294 	}
1295 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1296 		ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1297 			 "when QUOTA feature is enabled");
1298 		return -1;
1299 	}
1300 	qname = match_strdup(args);
1301 	if (!qname) {
1302 		ext4_msg(sb, KERN_ERR,
1303 			"Not enough memory for storing quotafile name");
1304 		return -1;
1305 	}
1306 	if (sbi->s_qf_names[qtype]) {
1307 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1308 			ret = 1;
1309 		else
1310 			ext4_msg(sb, KERN_ERR,
1311 				 "%s quota file already specified",
1312 				 QTYPE2NAME(qtype));
1313 		goto errout;
1314 	}
1315 	if (strchr(qname, '/')) {
1316 		ext4_msg(sb, KERN_ERR,
1317 			"quotafile must be on filesystem root");
1318 		goto errout;
1319 	}
1320 	sbi->s_qf_names[qtype] = qname;
1321 	set_opt(sb, QUOTA);
1322 	return 1;
1323 errout:
1324 	kfree(qname);
1325 	return ret;
1326 }
1327 
1328 static int clear_qf_name(struct super_block *sb, int qtype)
1329 {
1330 
1331 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1332 
1333 	if (sb_any_quota_loaded(sb) &&
1334 		sbi->s_qf_names[qtype]) {
1335 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1336 			" when quota turned on");
1337 		return -1;
1338 	}
1339 	kfree(sbi->s_qf_names[qtype]);
1340 	sbi->s_qf_names[qtype] = NULL;
1341 	return 1;
1342 }
1343 #endif
1344 
1345 #define MOPT_SET	0x0001
1346 #define MOPT_CLEAR	0x0002
1347 #define MOPT_NOSUPPORT	0x0004
1348 #define MOPT_EXPLICIT	0x0008
1349 #define MOPT_CLEAR_ERR	0x0010
1350 #define MOPT_GTE0	0x0020
1351 #ifdef CONFIG_QUOTA
1352 #define MOPT_Q		0
1353 #define MOPT_QFMT	0x0040
1354 #else
1355 #define MOPT_Q		MOPT_NOSUPPORT
1356 #define MOPT_QFMT	MOPT_NOSUPPORT
1357 #endif
1358 #define MOPT_DATAJ	0x0080
1359 #define MOPT_NO_EXT2	0x0100
1360 #define MOPT_NO_EXT3	0x0200
1361 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1362 #define MOPT_STRING	0x0400
1363 
1364 static const struct mount_opts {
1365 	int	token;
1366 	int	mount_opt;
1367 	int	flags;
1368 } ext4_mount_opts[] = {
1369 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1370 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1371 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1372 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1373 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1374 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1375 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1376 	 MOPT_EXT4_ONLY | MOPT_SET},
1377 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1378 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1379 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1380 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1381 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1382 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1383 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1384 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1385 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1386 	 MOPT_EXT4_ONLY | MOPT_SET},
1387 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1388 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1389 	 MOPT_EXT4_ONLY | MOPT_SET},
1390 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1391 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1392 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1393 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1394 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1395 	 MOPT_NO_EXT2 | MOPT_SET},
1396 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1397 	 MOPT_NO_EXT2 | MOPT_CLEAR},
1398 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1399 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1400 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1401 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1402 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1403 	{Opt_commit, 0, MOPT_GTE0},
1404 	{Opt_max_batch_time, 0, MOPT_GTE0},
1405 	{Opt_min_batch_time, 0, MOPT_GTE0},
1406 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1407 	{Opt_init_itable, 0, MOPT_GTE0},
1408 	{Opt_stripe, 0, MOPT_GTE0},
1409 	{Opt_resuid, 0, MOPT_GTE0},
1410 	{Opt_resgid, 0, MOPT_GTE0},
1411 	{Opt_journal_dev, 0, MOPT_GTE0},
1412 	{Opt_journal_path, 0, MOPT_STRING},
1413 	{Opt_journal_ioprio, 0, MOPT_GTE0},
1414 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1415 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1416 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1417 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1418 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1419 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1420 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1421 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1422 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1423 #else
1424 	{Opt_acl, 0, MOPT_NOSUPPORT},
1425 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1426 #endif
1427 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1428 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1429 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1430 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1431 							MOPT_SET | MOPT_Q},
1432 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1433 							MOPT_SET | MOPT_Q},
1434 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1435 		       EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1436 	{Opt_usrjquota, 0, MOPT_Q},
1437 	{Opt_grpjquota, 0, MOPT_Q},
1438 	{Opt_offusrjquota, 0, MOPT_Q},
1439 	{Opt_offgrpjquota, 0, MOPT_Q},
1440 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1441 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1442 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1443 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1444 	{Opt_err, 0, 0}
1445 };
1446 
1447 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1448 			    substring_t *args, unsigned long *journal_devnum,
1449 			    unsigned int *journal_ioprio, int is_remount)
1450 {
1451 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1452 	const struct mount_opts *m;
1453 	kuid_t uid;
1454 	kgid_t gid;
1455 	int arg = 0;
1456 
1457 #ifdef CONFIG_QUOTA
1458 	if (token == Opt_usrjquota)
1459 		return set_qf_name(sb, USRQUOTA, &args[0]);
1460 	else if (token == Opt_grpjquota)
1461 		return set_qf_name(sb, GRPQUOTA, &args[0]);
1462 	else if (token == Opt_offusrjquota)
1463 		return clear_qf_name(sb, USRQUOTA);
1464 	else if (token == Opt_offgrpjquota)
1465 		return clear_qf_name(sb, GRPQUOTA);
1466 #endif
1467 	switch (token) {
1468 	case Opt_noacl:
1469 	case Opt_nouser_xattr:
1470 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1471 		break;
1472 	case Opt_sb:
1473 		return 1;	/* handled by get_sb_block() */
1474 	case Opt_removed:
1475 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1476 		return 1;
1477 	case Opt_abort:
1478 		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1479 		return 1;
1480 	case Opt_i_version:
1481 		sb->s_flags |= MS_I_VERSION;
1482 		return 1;
1483 	}
1484 
1485 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1486 		if (token == m->token)
1487 			break;
1488 
1489 	if (m->token == Opt_err) {
1490 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1491 			 "or missing value", opt);
1492 		return -1;
1493 	}
1494 
1495 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1496 		ext4_msg(sb, KERN_ERR,
1497 			 "Mount option \"%s\" incompatible with ext2", opt);
1498 		return -1;
1499 	}
1500 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1501 		ext4_msg(sb, KERN_ERR,
1502 			 "Mount option \"%s\" incompatible with ext3", opt);
1503 		return -1;
1504 	}
1505 
1506 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1507 		return -1;
1508 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1509 		return -1;
1510 	if (m->flags & MOPT_EXPLICIT)
1511 		set_opt2(sb, EXPLICIT_DELALLOC);
1512 	if (m->flags & MOPT_CLEAR_ERR)
1513 		clear_opt(sb, ERRORS_MASK);
1514 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1515 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1516 			 "options when quota turned on");
1517 		return -1;
1518 	}
1519 
1520 	if (m->flags & MOPT_NOSUPPORT) {
1521 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1522 	} else if (token == Opt_commit) {
1523 		if (arg == 0)
1524 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1525 		sbi->s_commit_interval = HZ * arg;
1526 	} else if (token == Opt_max_batch_time) {
1527 		if (arg == 0)
1528 			arg = EXT4_DEF_MAX_BATCH_TIME;
1529 		sbi->s_max_batch_time = arg;
1530 	} else if (token == Opt_min_batch_time) {
1531 		sbi->s_min_batch_time = arg;
1532 	} else if (token == Opt_inode_readahead_blks) {
1533 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1534 			ext4_msg(sb, KERN_ERR,
1535 				 "EXT4-fs: inode_readahead_blks must be "
1536 				 "0 or a power of 2 smaller than 2^31");
1537 			return -1;
1538 		}
1539 		sbi->s_inode_readahead_blks = arg;
1540 	} else if (token == Opt_init_itable) {
1541 		set_opt(sb, INIT_INODE_TABLE);
1542 		if (!args->from)
1543 			arg = EXT4_DEF_LI_WAIT_MULT;
1544 		sbi->s_li_wait_mult = arg;
1545 	} else if (token == Opt_max_dir_size_kb) {
1546 		sbi->s_max_dir_size_kb = arg;
1547 	} else if (token == Opt_stripe) {
1548 		sbi->s_stripe = arg;
1549 	} else if (token == Opt_resuid) {
1550 		uid = make_kuid(current_user_ns(), arg);
1551 		if (!uid_valid(uid)) {
1552 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1553 			return -1;
1554 		}
1555 		sbi->s_resuid = uid;
1556 	} else if (token == Opt_resgid) {
1557 		gid = make_kgid(current_user_ns(), arg);
1558 		if (!gid_valid(gid)) {
1559 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1560 			return -1;
1561 		}
1562 		sbi->s_resgid = gid;
1563 	} else if (token == Opt_journal_dev) {
1564 		if (is_remount) {
1565 			ext4_msg(sb, KERN_ERR,
1566 				 "Cannot specify journal on remount");
1567 			return -1;
1568 		}
1569 		*journal_devnum = arg;
1570 	} else if (token == Opt_journal_path) {
1571 		char *journal_path;
1572 		struct inode *journal_inode;
1573 		struct path path;
1574 		int error;
1575 
1576 		if (is_remount) {
1577 			ext4_msg(sb, KERN_ERR,
1578 				 "Cannot specify journal on remount");
1579 			return -1;
1580 		}
1581 		journal_path = match_strdup(&args[0]);
1582 		if (!journal_path) {
1583 			ext4_msg(sb, KERN_ERR, "error: could not dup "
1584 				"journal device string");
1585 			return -1;
1586 		}
1587 
1588 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1589 		if (error) {
1590 			ext4_msg(sb, KERN_ERR, "error: could not find "
1591 				"journal device path: error %d", error);
1592 			kfree(journal_path);
1593 			return -1;
1594 		}
1595 
1596 		journal_inode = path.dentry->d_inode;
1597 		if (!S_ISBLK(journal_inode->i_mode)) {
1598 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1599 				"is not a block device", journal_path);
1600 			path_put(&path);
1601 			kfree(journal_path);
1602 			return -1;
1603 		}
1604 
1605 		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1606 		path_put(&path);
1607 		kfree(journal_path);
1608 	} else if (token == Opt_journal_ioprio) {
1609 		if (arg > 7) {
1610 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1611 				 " (must be 0-7)");
1612 			return -1;
1613 		}
1614 		*journal_ioprio =
1615 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1616 	} else if (m->flags & MOPT_DATAJ) {
1617 		if (is_remount) {
1618 			if (!sbi->s_journal)
1619 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1620 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1621 				ext4_msg(sb, KERN_ERR,
1622 					 "Cannot change data mode on remount");
1623 				return -1;
1624 			}
1625 		} else {
1626 			clear_opt(sb, DATA_FLAGS);
1627 			sbi->s_mount_opt |= m->mount_opt;
1628 		}
1629 #ifdef CONFIG_QUOTA
1630 	} else if (m->flags & MOPT_QFMT) {
1631 		if (sb_any_quota_loaded(sb) &&
1632 		    sbi->s_jquota_fmt != m->mount_opt) {
1633 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1634 				 "quota options when quota turned on");
1635 			return -1;
1636 		}
1637 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1638 					       EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1639 			ext4_msg(sb, KERN_ERR,
1640 				 "Cannot set journaled quota options "
1641 				 "when QUOTA feature is enabled");
1642 			return -1;
1643 		}
1644 		sbi->s_jquota_fmt = m->mount_opt;
1645 #endif
1646 	} else {
1647 		if (!args->from)
1648 			arg = 1;
1649 		if (m->flags & MOPT_CLEAR)
1650 			arg = !arg;
1651 		else if (unlikely(!(m->flags & MOPT_SET))) {
1652 			ext4_msg(sb, KERN_WARNING,
1653 				 "buggy handling of option %s", opt);
1654 			WARN_ON(1);
1655 			return -1;
1656 		}
1657 		if (arg != 0)
1658 			sbi->s_mount_opt |= m->mount_opt;
1659 		else
1660 			sbi->s_mount_opt &= ~m->mount_opt;
1661 	}
1662 	return 1;
1663 }
1664 
1665 static int parse_options(char *options, struct super_block *sb,
1666 			 unsigned long *journal_devnum,
1667 			 unsigned int *journal_ioprio,
1668 			 int is_remount)
1669 {
1670 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1671 	char *p;
1672 	substring_t args[MAX_OPT_ARGS];
1673 	int token;
1674 
1675 	if (!options)
1676 		return 1;
1677 
1678 	while ((p = strsep(&options, ",")) != NULL) {
1679 		if (!*p)
1680 			continue;
1681 		/*
1682 		 * Initialize args struct so we know whether arg was
1683 		 * found; some options take optional arguments.
1684 		 */
1685 		args[0].to = args[0].from = NULL;
1686 		token = match_token(p, tokens, args);
1687 		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1688 				     journal_ioprio, is_remount) < 0)
1689 			return 0;
1690 	}
1691 #ifdef CONFIG_QUOTA
1692 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1693 	    (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1694 		ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1695 			 "feature is enabled");
1696 		return 0;
1697 	}
1698 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1699 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1700 			clear_opt(sb, USRQUOTA);
1701 
1702 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1703 			clear_opt(sb, GRPQUOTA);
1704 
1705 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1706 			ext4_msg(sb, KERN_ERR, "old and new quota "
1707 					"format mixing");
1708 			return 0;
1709 		}
1710 
1711 		if (!sbi->s_jquota_fmt) {
1712 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1713 					"not specified");
1714 			return 0;
1715 		}
1716 	} else {
1717 		if (sbi->s_jquota_fmt) {
1718 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1719 					"specified with no journaling "
1720 					"enabled");
1721 			return 0;
1722 		}
1723 	}
1724 #endif
1725 	if (test_opt(sb, DIOREAD_NOLOCK)) {
1726 		int blocksize =
1727 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1728 
1729 		if (blocksize < PAGE_CACHE_SIZE) {
1730 			ext4_msg(sb, KERN_ERR, "can't mount with "
1731 				 "dioread_nolock if block size != PAGE_SIZE");
1732 			return 0;
1733 		}
1734 	}
1735 	return 1;
1736 }
1737 
1738 static inline void ext4_show_quota_options(struct seq_file *seq,
1739 					   struct super_block *sb)
1740 {
1741 #if defined(CONFIG_QUOTA)
1742 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1743 
1744 	if (sbi->s_jquota_fmt) {
1745 		char *fmtname = "";
1746 
1747 		switch (sbi->s_jquota_fmt) {
1748 		case QFMT_VFS_OLD:
1749 			fmtname = "vfsold";
1750 			break;
1751 		case QFMT_VFS_V0:
1752 			fmtname = "vfsv0";
1753 			break;
1754 		case QFMT_VFS_V1:
1755 			fmtname = "vfsv1";
1756 			break;
1757 		}
1758 		seq_printf(seq, ",jqfmt=%s", fmtname);
1759 	}
1760 
1761 	if (sbi->s_qf_names[USRQUOTA])
1762 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1763 
1764 	if (sbi->s_qf_names[GRPQUOTA])
1765 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1766 #endif
1767 }
1768 
1769 static const char *token2str(int token)
1770 {
1771 	const struct match_token *t;
1772 
1773 	for (t = tokens; t->token != Opt_err; t++)
1774 		if (t->token == token && !strchr(t->pattern, '='))
1775 			break;
1776 	return t->pattern;
1777 }
1778 
1779 /*
1780  * Show an option if
1781  *  - it's set to a non-default value OR
1782  *  - if the per-sb default is different from the global default
1783  */
1784 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1785 			      int nodefs)
1786 {
1787 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1788 	struct ext4_super_block *es = sbi->s_es;
1789 	int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1790 	const struct mount_opts *m;
1791 	char sep = nodefs ? '\n' : ',';
1792 
1793 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1794 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1795 
1796 	if (sbi->s_sb_block != 1)
1797 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1798 
1799 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1800 		int want_set = m->flags & MOPT_SET;
1801 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1802 		    (m->flags & MOPT_CLEAR_ERR))
1803 			continue;
1804 		if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1805 			continue; /* skip if same as the default */
1806 		if ((want_set &&
1807 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1808 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1809 			continue; /* select Opt_noFoo vs Opt_Foo */
1810 		SEQ_OPTS_PRINT("%s", token2str(m->token));
1811 	}
1812 
1813 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1814 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1815 		SEQ_OPTS_PRINT("resuid=%u",
1816 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
1817 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1818 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1819 		SEQ_OPTS_PRINT("resgid=%u",
1820 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1821 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1822 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1823 		SEQ_OPTS_PUTS("errors=remount-ro");
1824 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1825 		SEQ_OPTS_PUTS("errors=continue");
1826 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1827 		SEQ_OPTS_PUTS("errors=panic");
1828 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1829 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1830 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1831 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1832 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1833 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1834 	if (sb->s_flags & MS_I_VERSION)
1835 		SEQ_OPTS_PUTS("i_version");
1836 	if (nodefs || sbi->s_stripe)
1837 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1838 	if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1839 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1840 			SEQ_OPTS_PUTS("data=journal");
1841 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1842 			SEQ_OPTS_PUTS("data=ordered");
1843 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1844 			SEQ_OPTS_PUTS("data=writeback");
1845 	}
1846 	if (nodefs ||
1847 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1848 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1849 			       sbi->s_inode_readahead_blks);
1850 
1851 	if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1852 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1853 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1854 	if (nodefs || sbi->s_max_dir_size_kb)
1855 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1856 
1857 	ext4_show_quota_options(seq, sb);
1858 	return 0;
1859 }
1860 
1861 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1862 {
1863 	return _ext4_show_options(seq, root->d_sb, 0);
1864 }
1865 
1866 static int options_seq_show(struct seq_file *seq, void *offset)
1867 {
1868 	struct super_block *sb = seq->private;
1869 	int rc;
1870 
1871 	seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1872 	rc = _ext4_show_options(seq, sb, 1);
1873 	seq_puts(seq, "\n");
1874 	return rc;
1875 }
1876 
1877 static int options_open_fs(struct inode *inode, struct file *file)
1878 {
1879 	return single_open(file, options_seq_show, PDE_DATA(inode));
1880 }
1881 
1882 static const struct file_operations ext4_seq_options_fops = {
1883 	.owner = THIS_MODULE,
1884 	.open = options_open_fs,
1885 	.read = seq_read,
1886 	.llseek = seq_lseek,
1887 	.release = single_release,
1888 };
1889 
1890 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1891 			    int read_only)
1892 {
1893 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1894 	int res = 0;
1895 
1896 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1897 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1898 			 "forcing read-only mode");
1899 		res = MS_RDONLY;
1900 	}
1901 	if (read_only)
1902 		goto done;
1903 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1904 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1905 			 "running e2fsck is recommended");
1906 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1907 		ext4_msg(sb, KERN_WARNING,
1908 			 "warning: mounting fs with errors, "
1909 			 "running e2fsck is recommended");
1910 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1911 		 le16_to_cpu(es->s_mnt_count) >=
1912 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1913 		ext4_msg(sb, KERN_WARNING,
1914 			 "warning: maximal mount count reached, "
1915 			 "running e2fsck is recommended");
1916 	else if (le32_to_cpu(es->s_checkinterval) &&
1917 		(le32_to_cpu(es->s_lastcheck) +
1918 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1919 		ext4_msg(sb, KERN_WARNING,
1920 			 "warning: checktime reached, "
1921 			 "running e2fsck is recommended");
1922 	if (!sbi->s_journal)
1923 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1924 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1925 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1926 	le16_add_cpu(&es->s_mnt_count, 1);
1927 	es->s_mtime = cpu_to_le32(get_seconds());
1928 	ext4_update_dynamic_rev(sb);
1929 	if (sbi->s_journal)
1930 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1931 
1932 	ext4_commit_super(sb, 1);
1933 done:
1934 	if (test_opt(sb, DEBUG))
1935 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1936 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1937 			sb->s_blocksize,
1938 			sbi->s_groups_count,
1939 			EXT4_BLOCKS_PER_GROUP(sb),
1940 			EXT4_INODES_PER_GROUP(sb),
1941 			sbi->s_mount_opt, sbi->s_mount_opt2);
1942 
1943 	cleancache_init_fs(sb);
1944 	return res;
1945 }
1946 
1947 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1948 {
1949 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1950 	struct flex_groups *new_groups;
1951 	int size;
1952 
1953 	if (!sbi->s_log_groups_per_flex)
1954 		return 0;
1955 
1956 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
1957 	if (size <= sbi->s_flex_groups_allocated)
1958 		return 0;
1959 
1960 	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1961 	new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1962 	if (!new_groups) {
1963 		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1964 			 size / (int) sizeof(struct flex_groups));
1965 		return -ENOMEM;
1966 	}
1967 
1968 	if (sbi->s_flex_groups) {
1969 		memcpy(new_groups, sbi->s_flex_groups,
1970 		       (sbi->s_flex_groups_allocated *
1971 			sizeof(struct flex_groups)));
1972 		ext4_kvfree(sbi->s_flex_groups);
1973 	}
1974 	sbi->s_flex_groups = new_groups;
1975 	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1976 	return 0;
1977 }
1978 
1979 static int ext4_fill_flex_info(struct super_block *sb)
1980 {
1981 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1982 	struct ext4_group_desc *gdp = NULL;
1983 	ext4_group_t flex_group;
1984 	int i, err;
1985 
1986 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1987 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1988 		sbi->s_log_groups_per_flex = 0;
1989 		return 1;
1990 	}
1991 
1992 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1993 	if (err)
1994 		goto failed;
1995 
1996 	for (i = 0; i < sbi->s_groups_count; i++) {
1997 		gdp = ext4_get_group_desc(sb, i, NULL);
1998 
1999 		flex_group = ext4_flex_group(sbi, i);
2000 		atomic_add(ext4_free_inodes_count(sb, gdp),
2001 			   &sbi->s_flex_groups[flex_group].free_inodes);
2002 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2003 			     &sbi->s_flex_groups[flex_group].free_clusters);
2004 		atomic_add(ext4_used_dirs_count(sb, gdp),
2005 			   &sbi->s_flex_groups[flex_group].used_dirs);
2006 	}
2007 
2008 	return 1;
2009 failed:
2010 	return 0;
2011 }
2012 
2013 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2014 				   struct ext4_group_desc *gdp)
2015 {
2016 	int offset;
2017 	__u16 crc = 0;
2018 	__le32 le_group = cpu_to_le32(block_group);
2019 
2020 	if ((sbi->s_es->s_feature_ro_compat &
2021 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
2022 		/* Use new metadata_csum algorithm */
2023 		__le16 save_csum;
2024 		__u32 csum32;
2025 
2026 		save_csum = gdp->bg_checksum;
2027 		gdp->bg_checksum = 0;
2028 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2029 				     sizeof(le_group));
2030 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2031 				     sbi->s_desc_size);
2032 		gdp->bg_checksum = save_csum;
2033 
2034 		crc = csum32 & 0xFFFF;
2035 		goto out;
2036 	}
2037 
2038 	/* old crc16 code */
2039 	offset = offsetof(struct ext4_group_desc, bg_checksum);
2040 
2041 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2042 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2043 	crc = crc16(crc, (__u8 *)gdp, offset);
2044 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2045 	/* for checksum of struct ext4_group_desc do the rest...*/
2046 	if ((sbi->s_es->s_feature_incompat &
2047 	     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2048 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2049 		crc = crc16(crc, (__u8 *)gdp + offset,
2050 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2051 				offset);
2052 
2053 out:
2054 	return cpu_to_le16(crc);
2055 }
2056 
2057 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2058 				struct ext4_group_desc *gdp)
2059 {
2060 	if (ext4_has_group_desc_csum(sb) &&
2061 	    (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2062 						      block_group, gdp)))
2063 		return 0;
2064 
2065 	return 1;
2066 }
2067 
2068 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2069 			      struct ext4_group_desc *gdp)
2070 {
2071 	if (!ext4_has_group_desc_csum(sb))
2072 		return;
2073 	gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2074 }
2075 
2076 /* Called at mount-time, super-block is locked */
2077 static int ext4_check_descriptors(struct super_block *sb,
2078 				  ext4_group_t *first_not_zeroed)
2079 {
2080 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2081 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2082 	ext4_fsblk_t last_block;
2083 	ext4_fsblk_t block_bitmap;
2084 	ext4_fsblk_t inode_bitmap;
2085 	ext4_fsblk_t inode_table;
2086 	int flexbg_flag = 0;
2087 	ext4_group_t i, grp = sbi->s_groups_count;
2088 
2089 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2090 		flexbg_flag = 1;
2091 
2092 	ext4_debug("Checking group descriptors");
2093 
2094 	for (i = 0; i < sbi->s_groups_count; i++) {
2095 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2096 
2097 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2098 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2099 		else
2100 			last_block = first_block +
2101 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2102 
2103 		if ((grp == sbi->s_groups_count) &&
2104 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2105 			grp = i;
2106 
2107 		block_bitmap = ext4_block_bitmap(sb, gdp);
2108 		if (block_bitmap < first_block || block_bitmap > last_block) {
2109 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2110 			       "Block bitmap for group %u not in group "
2111 			       "(block %llu)!", i, block_bitmap);
2112 			return 0;
2113 		}
2114 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2115 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2116 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 			       "Inode bitmap for group %u not in group "
2118 			       "(block %llu)!", i, inode_bitmap);
2119 			return 0;
2120 		}
2121 		inode_table = ext4_inode_table(sb, gdp);
2122 		if (inode_table < first_block ||
2123 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2124 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2125 			       "Inode table for group %u not in group "
2126 			       "(block %llu)!", i, inode_table);
2127 			return 0;
2128 		}
2129 		ext4_lock_group(sb, i);
2130 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2131 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2132 				 "Checksum for group %u failed (%u!=%u)",
2133 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2134 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2135 			if (!(sb->s_flags & MS_RDONLY)) {
2136 				ext4_unlock_group(sb, i);
2137 				return 0;
2138 			}
2139 		}
2140 		ext4_unlock_group(sb, i);
2141 		if (!flexbg_flag)
2142 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2143 	}
2144 	if (NULL != first_not_zeroed)
2145 		*first_not_zeroed = grp;
2146 
2147 	ext4_free_blocks_count_set(sbi->s_es,
2148 				   EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2149 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2150 	return 1;
2151 }
2152 
2153 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2154  * the superblock) which were deleted from all directories, but held open by
2155  * a process at the time of a crash.  We walk the list and try to delete these
2156  * inodes at recovery time (only with a read-write filesystem).
2157  *
2158  * In order to keep the orphan inode chain consistent during traversal (in
2159  * case of crash during recovery), we link each inode into the superblock
2160  * orphan list_head and handle it the same way as an inode deletion during
2161  * normal operation (which journals the operations for us).
2162  *
2163  * We only do an iget() and an iput() on each inode, which is very safe if we
2164  * accidentally point at an in-use or already deleted inode.  The worst that
2165  * can happen in this case is that we get a "bit already cleared" message from
2166  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2167  * e2fsck was run on this filesystem, and it must have already done the orphan
2168  * inode cleanup for us, so we can safely abort without any further action.
2169  */
2170 static void ext4_orphan_cleanup(struct super_block *sb,
2171 				struct ext4_super_block *es)
2172 {
2173 	unsigned int s_flags = sb->s_flags;
2174 	int nr_orphans = 0, nr_truncates = 0;
2175 #ifdef CONFIG_QUOTA
2176 	int i;
2177 #endif
2178 	if (!es->s_last_orphan) {
2179 		jbd_debug(4, "no orphan inodes to clean up\n");
2180 		return;
2181 	}
2182 
2183 	if (bdev_read_only(sb->s_bdev)) {
2184 		ext4_msg(sb, KERN_ERR, "write access "
2185 			"unavailable, skipping orphan cleanup");
2186 		return;
2187 	}
2188 
2189 	/* Check if feature set would not allow a r/w mount */
2190 	if (!ext4_feature_set_ok(sb, 0)) {
2191 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2192 			 "unknown ROCOMPAT features");
2193 		return;
2194 	}
2195 
2196 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2197 		/* don't clear list on RO mount w/ errors */
2198 		if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2199 			jbd_debug(1, "Errors on filesystem, "
2200 				  "clearing orphan list.\n");
2201 			es->s_last_orphan = 0;
2202 		}
2203 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2204 		return;
2205 	}
2206 
2207 	if (s_flags & MS_RDONLY) {
2208 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2209 		sb->s_flags &= ~MS_RDONLY;
2210 	}
2211 #ifdef CONFIG_QUOTA
2212 	/* Needed for iput() to work correctly and not trash data */
2213 	sb->s_flags |= MS_ACTIVE;
2214 	/* Turn on quotas so that they are updated correctly */
2215 	for (i = 0; i < MAXQUOTAS; i++) {
2216 		if (EXT4_SB(sb)->s_qf_names[i]) {
2217 			int ret = ext4_quota_on_mount(sb, i);
2218 			if (ret < 0)
2219 				ext4_msg(sb, KERN_ERR,
2220 					"Cannot turn on journaled "
2221 					"quota: error %d", ret);
2222 		}
2223 	}
2224 #endif
2225 
2226 	while (es->s_last_orphan) {
2227 		struct inode *inode;
2228 
2229 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2230 		if (IS_ERR(inode)) {
2231 			es->s_last_orphan = 0;
2232 			break;
2233 		}
2234 
2235 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2236 		dquot_initialize(inode);
2237 		if (inode->i_nlink) {
2238 			if (test_opt(sb, DEBUG))
2239 				ext4_msg(sb, KERN_DEBUG,
2240 					"%s: truncating inode %lu to %lld bytes",
2241 					__func__, inode->i_ino, inode->i_size);
2242 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2243 				  inode->i_ino, inode->i_size);
2244 			mutex_lock(&inode->i_mutex);
2245 			truncate_inode_pages(inode->i_mapping, inode->i_size);
2246 			ext4_truncate(inode);
2247 			mutex_unlock(&inode->i_mutex);
2248 			nr_truncates++;
2249 		} else {
2250 			if (test_opt(sb, DEBUG))
2251 				ext4_msg(sb, KERN_DEBUG,
2252 					"%s: deleting unreferenced inode %lu",
2253 					__func__, inode->i_ino);
2254 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2255 				  inode->i_ino);
2256 			nr_orphans++;
2257 		}
2258 		iput(inode);  /* The delete magic happens here! */
2259 	}
2260 
2261 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2262 
2263 	if (nr_orphans)
2264 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2265 		       PLURAL(nr_orphans));
2266 	if (nr_truncates)
2267 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2268 		       PLURAL(nr_truncates));
2269 #ifdef CONFIG_QUOTA
2270 	/* Turn quotas off */
2271 	for (i = 0; i < MAXQUOTAS; i++) {
2272 		if (sb_dqopt(sb)->files[i])
2273 			dquot_quota_off(sb, i);
2274 	}
2275 #endif
2276 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2277 }
2278 
2279 /*
2280  * Maximal extent format file size.
2281  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2282  * extent format containers, within a sector_t, and within i_blocks
2283  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2284  * so that won't be a limiting factor.
2285  *
2286  * However there is other limiting factor. We do store extents in the form
2287  * of starting block and length, hence the resulting length of the extent
2288  * covering maximum file size must fit into on-disk format containers as
2289  * well. Given that length is always by 1 unit bigger than max unit (because
2290  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2291  *
2292  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2293  */
2294 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2295 {
2296 	loff_t res;
2297 	loff_t upper_limit = MAX_LFS_FILESIZE;
2298 
2299 	/* small i_blocks in vfs inode? */
2300 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2301 		/*
2302 		 * CONFIG_LBDAF is not enabled implies the inode
2303 		 * i_block represent total blocks in 512 bytes
2304 		 * 32 == size of vfs inode i_blocks * 8
2305 		 */
2306 		upper_limit = (1LL << 32) - 1;
2307 
2308 		/* total blocks in file system block size */
2309 		upper_limit >>= (blkbits - 9);
2310 		upper_limit <<= blkbits;
2311 	}
2312 
2313 	/*
2314 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2315 	 * by one fs block, so ee_len can cover the extent of maximum file
2316 	 * size
2317 	 */
2318 	res = (1LL << 32) - 1;
2319 	res <<= blkbits;
2320 
2321 	/* Sanity check against vm- & vfs- imposed limits */
2322 	if (res > upper_limit)
2323 		res = upper_limit;
2324 
2325 	return res;
2326 }
2327 
2328 /*
2329  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2330  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2331  * We need to be 1 filesystem block less than the 2^48 sector limit.
2332  */
2333 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2334 {
2335 	loff_t res = EXT4_NDIR_BLOCKS;
2336 	int meta_blocks;
2337 	loff_t upper_limit;
2338 	/* This is calculated to be the largest file size for a dense, block
2339 	 * mapped file such that the file's total number of 512-byte sectors,
2340 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2341 	 *
2342 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2343 	 * number of 512-byte sectors of the file.
2344 	 */
2345 
2346 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2347 		/*
2348 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2349 		 * the inode i_block field represents total file blocks in
2350 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2351 		 */
2352 		upper_limit = (1LL << 32) - 1;
2353 
2354 		/* total blocks in file system block size */
2355 		upper_limit >>= (bits - 9);
2356 
2357 	} else {
2358 		/*
2359 		 * We use 48 bit ext4_inode i_blocks
2360 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2361 		 * represent total number of blocks in
2362 		 * file system block size
2363 		 */
2364 		upper_limit = (1LL << 48) - 1;
2365 
2366 	}
2367 
2368 	/* indirect blocks */
2369 	meta_blocks = 1;
2370 	/* double indirect blocks */
2371 	meta_blocks += 1 + (1LL << (bits-2));
2372 	/* tripple indirect blocks */
2373 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2374 
2375 	upper_limit -= meta_blocks;
2376 	upper_limit <<= bits;
2377 
2378 	res += 1LL << (bits-2);
2379 	res += 1LL << (2*(bits-2));
2380 	res += 1LL << (3*(bits-2));
2381 	res <<= bits;
2382 	if (res > upper_limit)
2383 		res = upper_limit;
2384 
2385 	if (res > MAX_LFS_FILESIZE)
2386 		res = MAX_LFS_FILESIZE;
2387 
2388 	return res;
2389 }
2390 
2391 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2392 				   ext4_fsblk_t logical_sb_block, int nr)
2393 {
2394 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2395 	ext4_group_t bg, first_meta_bg;
2396 	int has_super = 0;
2397 
2398 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2399 
2400 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2401 	    nr < first_meta_bg)
2402 		return logical_sb_block + nr + 1;
2403 	bg = sbi->s_desc_per_block * nr;
2404 	if (ext4_bg_has_super(sb, bg))
2405 		has_super = 1;
2406 
2407 	return (has_super + ext4_group_first_block_no(sb, bg));
2408 }
2409 
2410 /**
2411  * ext4_get_stripe_size: Get the stripe size.
2412  * @sbi: In memory super block info
2413  *
2414  * If we have specified it via mount option, then
2415  * use the mount option value. If the value specified at mount time is
2416  * greater than the blocks per group use the super block value.
2417  * If the super block value is greater than blocks per group return 0.
2418  * Allocator needs it be less than blocks per group.
2419  *
2420  */
2421 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2422 {
2423 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2424 	unsigned long stripe_width =
2425 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2426 	int ret;
2427 
2428 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2429 		ret = sbi->s_stripe;
2430 	else if (stripe_width <= sbi->s_blocks_per_group)
2431 		ret = stripe_width;
2432 	else if (stride <= sbi->s_blocks_per_group)
2433 		ret = stride;
2434 	else
2435 		ret = 0;
2436 
2437 	/*
2438 	 * If the stripe width is 1, this makes no sense and
2439 	 * we set it to 0 to turn off stripe handling code.
2440 	 */
2441 	if (ret <= 1)
2442 		ret = 0;
2443 
2444 	return ret;
2445 }
2446 
2447 /* sysfs supprt */
2448 
2449 struct ext4_attr {
2450 	struct attribute attr;
2451 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2452 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2453 			 const char *, size_t);
2454 	union {
2455 		int offset;
2456 		int deprecated_val;
2457 	} u;
2458 };
2459 
2460 static int parse_strtoull(const char *buf,
2461 		unsigned long long max, unsigned long long *value)
2462 {
2463 	int ret;
2464 
2465 	ret = kstrtoull(skip_spaces(buf), 0, value);
2466 	if (!ret && *value > max)
2467 		ret = -EINVAL;
2468 	return ret;
2469 }
2470 
2471 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2472 					      struct ext4_sb_info *sbi,
2473 					      char *buf)
2474 {
2475 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2476 		(s64) EXT4_C2B(sbi,
2477 			percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2478 }
2479 
2480 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2481 					 struct ext4_sb_info *sbi, char *buf)
2482 {
2483 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2484 
2485 	if (!sb->s_bdev->bd_part)
2486 		return snprintf(buf, PAGE_SIZE, "0\n");
2487 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2488 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2489 			 sbi->s_sectors_written_start) >> 1);
2490 }
2491 
2492 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2493 					  struct ext4_sb_info *sbi, char *buf)
2494 {
2495 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2496 
2497 	if (!sb->s_bdev->bd_part)
2498 		return snprintf(buf, PAGE_SIZE, "0\n");
2499 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2500 			(unsigned long long)(sbi->s_kbytes_written +
2501 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2502 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2503 }
2504 
2505 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2506 					  struct ext4_sb_info *sbi,
2507 					  const char *buf, size_t count)
2508 {
2509 	unsigned long t;
2510 	int ret;
2511 
2512 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2513 	if (ret)
2514 		return ret;
2515 
2516 	if (t && (!is_power_of_2(t) || t > 0x40000000))
2517 		return -EINVAL;
2518 
2519 	sbi->s_inode_readahead_blks = t;
2520 	return count;
2521 }
2522 
2523 static ssize_t sbi_ui_show(struct ext4_attr *a,
2524 			   struct ext4_sb_info *sbi, char *buf)
2525 {
2526 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2527 
2528 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2529 }
2530 
2531 static ssize_t sbi_ui_store(struct ext4_attr *a,
2532 			    struct ext4_sb_info *sbi,
2533 			    const char *buf, size_t count)
2534 {
2535 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2536 	unsigned long t;
2537 	int ret;
2538 
2539 	ret = kstrtoul(skip_spaces(buf), 0, &t);
2540 	if (ret)
2541 		return ret;
2542 	*ui = t;
2543 	return count;
2544 }
2545 
2546 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2547 				  struct ext4_sb_info *sbi, char *buf)
2548 {
2549 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2550 		(unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2551 }
2552 
2553 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2554 				   struct ext4_sb_info *sbi,
2555 				   const char *buf, size_t count)
2556 {
2557 	unsigned long long val;
2558 	int ret;
2559 
2560 	if (parse_strtoull(buf, -1ULL, &val))
2561 		return -EINVAL;
2562 	ret = ext4_reserve_clusters(sbi, val);
2563 
2564 	return ret ? ret : count;
2565 }
2566 
2567 static ssize_t trigger_test_error(struct ext4_attr *a,
2568 				  struct ext4_sb_info *sbi,
2569 				  const char *buf, size_t count)
2570 {
2571 	int len = count;
2572 
2573 	if (!capable(CAP_SYS_ADMIN))
2574 		return -EPERM;
2575 
2576 	if (len && buf[len-1] == '\n')
2577 		len--;
2578 
2579 	if (len)
2580 		ext4_error(sbi->s_sb, "%.*s", len, buf);
2581 	return count;
2582 }
2583 
2584 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2585 				   struct ext4_sb_info *sbi, char *buf)
2586 {
2587 	return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2588 }
2589 
2590 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2591 static struct ext4_attr ext4_attr_##_name = {			\
2592 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2593 	.show	= _show,					\
2594 	.store	= _store,					\
2595 	.u = {							\
2596 		.offset = offsetof(struct ext4_sb_info, _elname),\
2597 	},							\
2598 }
2599 #define EXT4_ATTR(name, mode, show, store) \
2600 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2601 
2602 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2603 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2604 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2605 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2606 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2607 #define ATTR_LIST(name) &ext4_attr_##name.attr
2608 #define EXT4_DEPRECATED_ATTR(_name, _val)	\
2609 static struct ext4_attr ext4_attr_##_name = {			\
2610 	.attr = {.name = __stringify(_name), .mode = 0444 },	\
2611 	.show	= sbi_deprecated_show,				\
2612 	.u = {							\
2613 		.deprecated_val = _val,				\
2614 	},							\
2615 }
2616 
2617 EXT4_RO_ATTR(delayed_allocation_blocks);
2618 EXT4_RO_ATTR(session_write_kbytes);
2619 EXT4_RO_ATTR(lifetime_write_kbytes);
2620 EXT4_RW_ATTR(reserved_clusters);
2621 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2622 		 inode_readahead_blks_store, s_inode_readahead_blks);
2623 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2624 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2625 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2626 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2627 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2628 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2629 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2630 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2631 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2632 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2633 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2634 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2635 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2636 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2637 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2638 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2639 
2640 static struct attribute *ext4_attrs[] = {
2641 	ATTR_LIST(delayed_allocation_blocks),
2642 	ATTR_LIST(session_write_kbytes),
2643 	ATTR_LIST(lifetime_write_kbytes),
2644 	ATTR_LIST(reserved_clusters),
2645 	ATTR_LIST(inode_readahead_blks),
2646 	ATTR_LIST(inode_goal),
2647 	ATTR_LIST(mb_stats),
2648 	ATTR_LIST(mb_max_to_scan),
2649 	ATTR_LIST(mb_min_to_scan),
2650 	ATTR_LIST(mb_order2_req),
2651 	ATTR_LIST(mb_stream_req),
2652 	ATTR_LIST(mb_group_prealloc),
2653 	ATTR_LIST(max_writeback_mb_bump),
2654 	ATTR_LIST(extent_max_zeroout_kb),
2655 	ATTR_LIST(trigger_fs_error),
2656 	ATTR_LIST(err_ratelimit_interval_ms),
2657 	ATTR_LIST(err_ratelimit_burst),
2658 	ATTR_LIST(warning_ratelimit_interval_ms),
2659 	ATTR_LIST(warning_ratelimit_burst),
2660 	ATTR_LIST(msg_ratelimit_interval_ms),
2661 	ATTR_LIST(msg_ratelimit_burst),
2662 	NULL,
2663 };
2664 
2665 /* Features this copy of ext4 supports */
2666 EXT4_INFO_ATTR(lazy_itable_init);
2667 EXT4_INFO_ATTR(batched_discard);
2668 EXT4_INFO_ATTR(meta_bg_resize);
2669 
2670 static struct attribute *ext4_feat_attrs[] = {
2671 	ATTR_LIST(lazy_itable_init),
2672 	ATTR_LIST(batched_discard),
2673 	ATTR_LIST(meta_bg_resize),
2674 	NULL,
2675 };
2676 
2677 static ssize_t ext4_attr_show(struct kobject *kobj,
2678 			      struct attribute *attr, char *buf)
2679 {
2680 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2681 						s_kobj);
2682 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2683 
2684 	return a->show ? a->show(a, sbi, buf) : 0;
2685 }
2686 
2687 static ssize_t ext4_attr_store(struct kobject *kobj,
2688 			       struct attribute *attr,
2689 			       const char *buf, size_t len)
2690 {
2691 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2692 						s_kobj);
2693 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2694 
2695 	return a->store ? a->store(a, sbi, buf, len) : 0;
2696 }
2697 
2698 static void ext4_sb_release(struct kobject *kobj)
2699 {
2700 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2701 						s_kobj);
2702 	complete(&sbi->s_kobj_unregister);
2703 }
2704 
2705 static const struct sysfs_ops ext4_attr_ops = {
2706 	.show	= ext4_attr_show,
2707 	.store	= ext4_attr_store,
2708 };
2709 
2710 static struct kobj_type ext4_ktype = {
2711 	.default_attrs	= ext4_attrs,
2712 	.sysfs_ops	= &ext4_attr_ops,
2713 	.release	= ext4_sb_release,
2714 };
2715 
2716 static void ext4_feat_release(struct kobject *kobj)
2717 {
2718 	complete(&ext4_feat->f_kobj_unregister);
2719 }
2720 
2721 static struct kobj_type ext4_feat_ktype = {
2722 	.default_attrs	= ext4_feat_attrs,
2723 	.sysfs_ops	= &ext4_attr_ops,
2724 	.release	= ext4_feat_release,
2725 };
2726 
2727 /*
2728  * Check whether this filesystem can be mounted based on
2729  * the features present and the RDONLY/RDWR mount requested.
2730  * Returns 1 if this filesystem can be mounted as requested,
2731  * 0 if it cannot be.
2732  */
2733 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2734 {
2735 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2736 		ext4_msg(sb, KERN_ERR,
2737 			"Couldn't mount because of "
2738 			"unsupported optional features (%x)",
2739 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2740 			~EXT4_FEATURE_INCOMPAT_SUPP));
2741 		return 0;
2742 	}
2743 
2744 	if (readonly)
2745 		return 1;
2746 
2747 	/* Check that feature set is OK for a read-write mount */
2748 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2749 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2750 			 "unsupported optional features (%x)",
2751 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2752 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2753 		return 0;
2754 	}
2755 	/*
2756 	 * Large file size enabled file system can only be mounted
2757 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2758 	 */
2759 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2760 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2761 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2762 				 "cannot be mounted RDWR without "
2763 				 "CONFIG_LBDAF");
2764 			return 0;
2765 		}
2766 	}
2767 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2768 	    !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2769 		ext4_msg(sb, KERN_ERR,
2770 			 "Can't support bigalloc feature without "
2771 			 "extents feature\n");
2772 		return 0;
2773 	}
2774 
2775 #ifndef CONFIG_QUOTA
2776 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2777 	    !readonly) {
2778 		ext4_msg(sb, KERN_ERR,
2779 			 "Filesystem with quota feature cannot be mounted RDWR "
2780 			 "without CONFIG_QUOTA");
2781 		return 0;
2782 	}
2783 #endif  /* CONFIG_QUOTA */
2784 	return 1;
2785 }
2786 
2787 /*
2788  * This function is called once a day if we have errors logged
2789  * on the file system
2790  */
2791 static void print_daily_error_info(unsigned long arg)
2792 {
2793 	struct super_block *sb = (struct super_block *) arg;
2794 	struct ext4_sb_info *sbi;
2795 	struct ext4_super_block *es;
2796 
2797 	sbi = EXT4_SB(sb);
2798 	es = sbi->s_es;
2799 
2800 	if (es->s_error_count)
2801 		ext4_msg(sb, KERN_NOTICE, "error count: %u",
2802 			 le32_to_cpu(es->s_error_count));
2803 	if (es->s_first_error_time) {
2804 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2805 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2806 		       (int) sizeof(es->s_first_error_func),
2807 		       es->s_first_error_func,
2808 		       le32_to_cpu(es->s_first_error_line));
2809 		if (es->s_first_error_ino)
2810 			printk(": inode %u",
2811 			       le32_to_cpu(es->s_first_error_ino));
2812 		if (es->s_first_error_block)
2813 			printk(": block %llu", (unsigned long long)
2814 			       le64_to_cpu(es->s_first_error_block));
2815 		printk("\n");
2816 	}
2817 	if (es->s_last_error_time) {
2818 		printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2819 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2820 		       (int) sizeof(es->s_last_error_func),
2821 		       es->s_last_error_func,
2822 		       le32_to_cpu(es->s_last_error_line));
2823 		if (es->s_last_error_ino)
2824 			printk(": inode %u",
2825 			       le32_to_cpu(es->s_last_error_ino));
2826 		if (es->s_last_error_block)
2827 			printk(": block %llu", (unsigned long long)
2828 			       le64_to_cpu(es->s_last_error_block));
2829 		printk("\n");
2830 	}
2831 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2832 }
2833 
2834 /* Find next suitable group and run ext4_init_inode_table */
2835 static int ext4_run_li_request(struct ext4_li_request *elr)
2836 {
2837 	struct ext4_group_desc *gdp = NULL;
2838 	ext4_group_t group, ngroups;
2839 	struct super_block *sb;
2840 	unsigned long timeout = 0;
2841 	int ret = 0;
2842 
2843 	sb = elr->lr_super;
2844 	ngroups = EXT4_SB(sb)->s_groups_count;
2845 
2846 	sb_start_write(sb);
2847 	for (group = elr->lr_next_group; group < ngroups; group++) {
2848 		gdp = ext4_get_group_desc(sb, group, NULL);
2849 		if (!gdp) {
2850 			ret = 1;
2851 			break;
2852 		}
2853 
2854 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2855 			break;
2856 	}
2857 
2858 	if (group >= ngroups)
2859 		ret = 1;
2860 
2861 	if (!ret) {
2862 		timeout = jiffies;
2863 		ret = ext4_init_inode_table(sb, group,
2864 					    elr->lr_timeout ? 0 : 1);
2865 		if (elr->lr_timeout == 0) {
2866 			timeout = (jiffies - timeout) *
2867 				  elr->lr_sbi->s_li_wait_mult;
2868 			elr->lr_timeout = timeout;
2869 		}
2870 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2871 		elr->lr_next_group = group + 1;
2872 	}
2873 	sb_end_write(sb);
2874 
2875 	return ret;
2876 }
2877 
2878 /*
2879  * Remove lr_request from the list_request and free the
2880  * request structure. Should be called with li_list_mtx held
2881  */
2882 static void ext4_remove_li_request(struct ext4_li_request *elr)
2883 {
2884 	struct ext4_sb_info *sbi;
2885 
2886 	if (!elr)
2887 		return;
2888 
2889 	sbi = elr->lr_sbi;
2890 
2891 	list_del(&elr->lr_request);
2892 	sbi->s_li_request = NULL;
2893 	kfree(elr);
2894 }
2895 
2896 static void ext4_unregister_li_request(struct super_block *sb)
2897 {
2898 	mutex_lock(&ext4_li_mtx);
2899 	if (!ext4_li_info) {
2900 		mutex_unlock(&ext4_li_mtx);
2901 		return;
2902 	}
2903 
2904 	mutex_lock(&ext4_li_info->li_list_mtx);
2905 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2906 	mutex_unlock(&ext4_li_info->li_list_mtx);
2907 	mutex_unlock(&ext4_li_mtx);
2908 }
2909 
2910 static struct task_struct *ext4_lazyinit_task;
2911 
2912 /*
2913  * This is the function where ext4lazyinit thread lives. It walks
2914  * through the request list searching for next scheduled filesystem.
2915  * When such a fs is found, run the lazy initialization request
2916  * (ext4_rn_li_request) and keep track of the time spend in this
2917  * function. Based on that time we compute next schedule time of
2918  * the request. When walking through the list is complete, compute
2919  * next waking time and put itself into sleep.
2920  */
2921 static int ext4_lazyinit_thread(void *arg)
2922 {
2923 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2924 	struct list_head *pos, *n;
2925 	struct ext4_li_request *elr;
2926 	unsigned long next_wakeup, cur;
2927 
2928 	BUG_ON(NULL == eli);
2929 
2930 cont_thread:
2931 	while (true) {
2932 		next_wakeup = MAX_JIFFY_OFFSET;
2933 
2934 		mutex_lock(&eli->li_list_mtx);
2935 		if (list_empty(&eli->li_request_list)) {
2936 			mutex_unlock(&eli->li_list_mtx);
2937 			goto exit_thread;
2938 		}
2939 
2940 		list_for_each_safe(pos, n, &eli->li_request_list) {
2941 			elr = list_entry(pos, struct ext4_li_request,
2942 					 lr_request);
2943 
2944 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2945 				if (ext4_run_li_request(elr) != 0) {
2946 					/* error, remove the lazy_init job */
2947 					ext4_remove_li_request(elr);
2948 					continue;
2949 				}
2950 			}
2951 
2952 			if (time_before(elr->lr_next_sched, next_wakeup))
2953 				next_wakeup = elr->lr_next_sched;
2954 		}
2955 		mutex_unlock(&eli->li_list_mtx);
2956 
2957 		try_to_freeze();
2958 
2959 		cur = jiffies;
2960 		if ((time_after_eq(cur, next_wakeup)) ||
2961 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2962 			cond_resched();
2963 			continue;
2964 		}
2965 
2966 		schedule_timeout_interruptible(next_wakeup - cur);
2967 
2968 		if (kthread_should_stop()) {
2969 			ext4_clear_request_list();
2970 			goto exit_thread;
2971 		}
2972 	}
2973 
2974 exit_thread:
2975 	/*
2976 	 * It looks like the request list is empty, but we need
2977 	 * to check it under the li_list_mtx lock, to prevent any
2978 	 * additions into it, and of course we should lock ext4_li_mtx
2979 	 * to atomically free the list and ext4_li_info, because at
2980 	 * this point another ext4 filesystem could be registering
2981 	 * new one.
2982 	 */
2983 	mutex_lock(&ext4_li_mtx);
2984 	mutex_lock(&eli->li_list_mtx);
2985 	if (!list_empty(&eli->li_request_list)) {
2986 		mutex_unlock(&eli->li_list_mtx);
2987 		mutex_unlock(&ext4_li_mtx);
2988 		goto cont_thread;
2989 	}
2990 	mutex_unlock(&eli->li_list_mtx);
2991 	kfree(ext4_li_info);
2992 	ext4_li_info = NULL;
2993 	mutex_unlock(&ext4_li_mtx);
2994 
2995 	return 0;
2996 }
2997 
2998 static void ext4_clear_request_list(void)
2999 {
3000 	struct list_head *pos, *n;
3001 	struct ext4_li_request *elr;
3002 
3003 	mutex_lock(&ext4_li_info->li_list_mtx);
3004 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3005 		elr = list_entry(pos, struct ext4_li_request,
3006 				 lr_request);
3007 		ext4_remove_li_request(elr);
3008 	}
3009 	mutex_unlock(&ext4_li_info->li_list_mtx);
3010 }
3011 
3012 static int ext4_run_lazyinit_thread(void)
3013 {
3014 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3015 					 ext4_li_info, "ext4lazyinit");
3016 	if (IS_ERR(ext4_lazyinit_task)) {
3017 		int err = PTR_ERR(ext4_lazyinit_task);
3018 		ext4_clear_request_list();
3019 		kfree(ext4_li_info);
3020 		ext4_li_info = NULL;
3021 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3022 				 "initialization thread\n",
3023 				 err);
3024 		return err;
3025 	}
3026 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3027 	return 0;
3028 }
3029 
3030 /*
3031  * Check whether it make sense to run itable init. thread or not.
3032  * If there is at least one uninitialized inode table, return
3033  * corresponding group number, else the loop goes through all
3034  * groups and return total number of groups.
3035  */
3036 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3037 {
3038 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3039 	struct ext4_group_desc *gdp = NULL;
3040 
3041 	for (group = 0; group < ngroups; group++) {
3042 		gdp = ext4_get_group_desc(sb, group, NULL);
3043 		if (!gdp)
3044 			continue;
3045 
3046 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3047 			break;
3048 	}
3049 
3050 	return group;
3051 }
3052 
3053 static int ext4_li_info_new(void)
3054 {
3055 	struct ext4_lazy_init *eli = NULL;
3056 
3057 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3058 	if (!eli)
3059 		return -ENOMEM;
3060 
3061 	INIT_LIST_HEAD(&eli->li_request_list);
3062 	mutex_init(&eli->li_list_mtx);
3063 
3064 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3065 
3066 	ext4_li_info = eli;
3067 
3068 	return 0;
3069 }
3070 
3071 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3072 					    ext4_group_t start)
3073 {
3074 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3075 	struct ext4_li_request *elr;
3076 
3077 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3078 	if (!elr)
3079 		return NULL;
3080 
3081 	elr->lr_super = sb;
3082 	elr->lr_sbi = sbi;
3083 	elr->lr_next_group = start;
3084 
3085 	/*
3086 	 * Randomize first schedule time of the request to
3087 	 * spread the inode table initialization requests
3088 	 * better.
3089 	 */
3090 	elr->lr_next_sched = jiffies + (prandom_u32() %
3091 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3092 	return elr;
3093 }
3094 
3095 int ext4_register_li_request(struct super_block *sb,
3096 			     ext4_group_t first_not_zeroed)
3097 {
3098 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3099 	struct ext4_li_request *elr = NULL;
3100 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3101 	int ret = 0;
3102 
3103 	mutex_lock(&ext4_li_mtx);
3104 	if (sbi->s_li_request != NULL) {
3105 		/*
3106 		 * Reset timeout so it can be computed again, because
3107 		 * s_li_wait_mult might have changed.
3108 		 */
3109 		sbi->s_li_request->lr_timeout = 0;
3110 		goto out;
3111 	}
3112 
3113 	if (first_not_zeroed == ngroups ||
3114 	    (sb->s_flags & MS_RDONLY) ||
3115 	    !test_opt(sb, INIT_INODE_TABLE))
3116 		goto out;
3117 
3118 	elr = ext4_li_request_new(sb, first_not_zeroed);
3119 	if (!elr) {
3120 		ret = -ENOMEM;
3121 		goto out;
3122 	}
3123 
3124 	if (NULL == ext4_li_info) {
3125 		ret = ext4_li_info_new();
3126 		if (ret)
3127 			goto out;
3128 	}
3129 
3130 	mutex_lock(&ext4_li_info->li_list_mtx);
3131 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3132 	mutex_unlock(&ext4_li_info->li_list_mtx);
3133 
3134 	sbi->s_li_request = elr;
3135 	/*
3136 	 * set elr to NULL here since it has been inserted to
3137 	 * the request_list and the removal and free of it is
3138 	 * handled by ext4_clear_request_list from now on.
3139 	 */
3140 	elr = NULL;
3141 
3142 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3143 		ret = ext4_run_lazyinit_thread();
3144 		if (ret)
3145 			goto out;
3146 	}
3147 out:
3148 	mutex_unlock(&ext4_li_mtx);
3149 	if (ret)
3150 		kfree(elr);
3151 	return ret;
3152 }
3153 
3154 /*
3155  * We do not need to lock anything since this is called on
3156  * module unload.
3157  */
3158 static void ext4_destroy_lazyinit_thread(void)
3159 {
3160 	/*
3161 	 * If thread exited earlier
3162 	 * there's nothing to be done.
3163 	 */
3164 	if (!ext4_li_info || !ext4_lazyinit_task)
3165 		return;
3166 
3167 	kthread_stop(ext4_lazyinit_task);
3168 }
3169 
3170 static int set_journal_csum_feature_set(struct super_block *sb)
3171 {
3172 	int ret = 1;
3173 	int compat, incompat;
3174 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3175 
3176 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3177 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3178 		/* journal checksum v2 */
3179 		compat = 0;
3180 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3181 	} else {
3182 		/* journal checksum v1 */
3183 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3184 		incompat = 0;
3185 	}
3186 
3187 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3188 		ret = jbd2_journal_set_features(sbi->s_journal,
3189 				compat, 0,
3190 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3191 				incompat);
3192 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3193 		ret = jbd2_journal_set_features(sbi->s_journal,
3194 				compat, 0,
3195 				incompat);
3196 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3197 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3198 	} else {
3199 		jbd2_journal_clear_features(sbi->s_journal,
3200 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3201 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3202 				JBD2_FEATURE_INCOMPAT_CSUM_V2);
3203 	}
3204 
3205 	return ret;
3206 }
3207 
3208 /*
3209  * Note: calculating the overhead so we can be compatible with
3210  * historical BSD practice is quite difficult in the face of
3211  * clusters/bigalloc.  This is because multiple metadata blocks from
3212  * different block group can end up in the same allocation cluster.
3213  * Calculating the exact overhead in the face of clustered allocation
3214  * requires either O(all block bitmaps) in memory or O(number of block
3215  * groups**2) in time.  We will still calculate the superblock for
3216  * older file systems --- and if we come across with a bigalloc file
3217  * system with zero in s_overhead_clusters the estimate will be close to
3218  * correct especially for very large cluster sizes --- but for newer
3219  * file systems, it's better to calculate this figure once at mkfs
3220  * time, and store it in the superblock.  If the superblock value is
3221  * present (even for non-bigalloc file systems), we will use it.
3222  */
3223 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3224 			  char *buf)
3225 {
3226 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3227 	struct ext4_group_desc	*gdp;
3228 	ext4_fsblk_t		first_block, last_block, b;
3229 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3230 	int			s, j, count = 0;
3231 
3232 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3233 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3234 			sbi->s_itb_per_group + 2);
3235 
3236 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3237 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3238 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3239 	for (i = 0; i < ngroups; i++) {
3240 		gdp = ext4_get_group_desc(sb, i, NULL);
3241 		b = ext4_block_bitmap(sb, gdp);
3242 		if (b >= first_block && b <= last_block) {
3243 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3244 			count++;
3245 		}
3246 		b = ext4_inode_bitmap(sb, gdp);
3247 		if (b >= first_block && b <= last_block) {
3248 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3249 			count++;
3250 		}
3251 		b = ext4_inode_table(sb, gdp);
3252 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3253 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3254 				int c = EXT4_B2C(sbi, b - first_block);
3255 				ext4_set_bit(c, buf);
3256 				count++;
3257 			}
3258 		if (i != grp)
3259 			continue;
3260 		s = 0;
3261 		if (ext4_bg_has_super(sb, grp)) {
3262 			ext4_set_bit(s++, buf);
3263 			count++;
3264 		}
3265 		for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3266 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3267 			count++;
3268 		}
3269 	}
3270 	if (!count)
3271 		return 0;
3272 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3273 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3274 }
3275 
3276 /*
3277  * Compute the overhead and stash it in sbi->s_overhead
3278  */
3279 int ext4_calculate_overhead(struct super_block *sb)
3280 {
3281 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3282 	struct ext4_super_block *es = sbi->s_es;
3283 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3284 	ext4_fsblk_t overhead = 0;
3285 	char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3286 
3287 	if (!buf)
3288 		return -ENOMEM;
3289 
3290 	/*
3291 	 * Compute the overhead (FS structures).  This is constant
3292 	 * for a given filesystem unless the number of block groups
3293 	 * changes so we cache the previous value until it does.
3294 	 */
3295 
3296 	/*
3297 	 * All of the blocks before first_data_block are overhead
3298 	 */
3299 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3300 
3301 	/*
3302 	 * Add the overhead found in each block group
3303 	 */
3304 	for (i = 0; i < ngroups; i++) {
3305 		int blks;
3306 
3307 		blks = count_overhead(sb, i, buf);
3308 		overhead += blks;
3309 		if (blks)
3310 			memset(buf, 0, PAGE_SIZE);
3311 		cond_resched();
3312 	}
3313 	/* Add the journal blocks as well */
3314 	if (sbi->s_journal)
3315 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3316 
3317 	sbi->s_overhead = overhead;
3318 	smp_wmb();
3319 	free_page((unsigned long) buf);
3320 	return 0;
3321 }
3322 
3323 
3324 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3325 {
3326 	ext4_fsblk_t resv_clusters;
3327 
3328 	/*
3329 	 * There's no need to reserve anything when we aren't using extents.
3330 	 * The space estimates are exact, there are no unwritten extents,
3331 	 * hole punching doesn't need new metadata... This is needed especially
3332 	 * to keep ext2/3 backward compatibility.
3333 	 */
3334 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3335 		return 0;
3336 	/*
3337 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3338 	 * This should cover the situations where we can not afford to run
3339 	 * out of space like for example punch hole, or converting
3340 	 * uninitialized extents in delalloc path. In most cases such
3341 	 * allocation would require 1, or 2 blocks, higher numbers are
3342 	 * very rare.
3343 	 */
3344 	resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3345 			EXT4_SB(sb)->s_cluster_bits;
3346 
3347 	do_div(resv_clusters, 50);
3348 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3349 
3350 	return resv_clusters;
3351 }
3352 
3353 
3354 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3355 {
3356 	ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3357 				sbi->s_cluster_bits;
3358 
3359 	if (count >= clusters)
3360 		return -EINVAL;
3361 
3362 	atomic64_set(&sbi->s_resv_clusters, count);
3363 	return 0;
3364 }
3365 
3366 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3367 {
3368 	char *orig_data = kstrdup(data, GFP_KERNEL);
3369 	struct buffer_head *bh;
3370 	struct ext4_super_block *es = NULL;
3371 	struct ext4_sb_info *sbi;
3372 	ext4_fsblk_t block;
3373 	ext4_fsblk_t sb_block = get_sb_block(&data);
3374 	ext4_fsblk_t logical_sb_block;
3375 	unsigned long offset = 0;
3376 	unsigned long journal_devnum = 0;
3377 	unsigned long def_mount_opts;
3378 	struct inode *root;
3379 	char *cp;
3380 	const char *descr;
3381 	int ret = -ENOMEM;
3382 	int blocksize, clustersize;
3383 	unsigned int db_count;
3384 	unsigned int i;
3385 	int needs_recovery, has_huge_files, has_bigalloc;
3386 	__u64 blocks_count;
3387 	int err = 0;
3388 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3389 	ext4_group_t first_not_zeroed;
3390 
3391 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3392 	if (!sbi)
3393 		goto out_free_orig;
3394 
3395 	sbi->s_blockgroup_lock =
3396 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3397 	if (!sbi->s_blockgroup_lock) {
3398 		kfree(sbi);
3399 		goto out_free_orig;
3400 	}
3401 	sb->s_fs_info = sbi;
3402 	sbi->s_sb = sb;
3403 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3404 	sbi->s_sb_block = sb_block;
3405 	if (sb->s_bdev->bd_part)
3406 		sbi->s_sectors_written_start =
3407 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3408 
3409 	/* Cleanup superblock name */
3410 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3411 		*cp = '!';
3412 
3413 	/* -EINVAL is default */
3414 	ret = -EINVAL;
3415 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3416 	if (!blocksize) {
3417 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3418 		goto out_fail;
3419 	}
3420 
3421 	/*
3422 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3423 	 * block sizes.  We need to calculate the offset from buffer start.
3424 	 */
3425 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3426 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3427 		offset = do_div(logical_sb_block, blocksize);
3428 	} else {
3429 		logical_sb_block = sb_block;
3430 	}
3431 
3432 	if (!(bh = sb_bread(sb, logical_sb_block))) {
3433 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3434 		goto out_fail;
3435 	}
3436 	/*
3437 	 * Note: s_es must be initialized as soon as possible because
3438 	 *       some ext4 macro-instructions depend on its value
3439 	 */
3440 	es = (struct ext4_super_block *) (bh->b_data + offset);
3441 	sbi->s_es = es;
3442 	sb->s_magic = le16_to_cpu(es->s_magic);
3443 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3444 		goto cantfind_ext4;
3445 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3446 
3447 	/* Warn if metadata_csum and gdt_csum are both set. */
3448 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3449 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3450 	    EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3451 		ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3452 			     "redundant flags; please run fsck.");
3453 
3454 	/* Check for a known checksum algorithm */
3455 	if (!ext4_verify_csum_type(sb, es)) {
3456 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3457 			 "unknown checksum algorithm.");
3458 		silent = 1;
3459 		goto cantfind_ext4;
3460 	}
3461 
3462 	/* Load the checksum driver */
3463 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3464 				       EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3465 		sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3466 		if (IS_ERR(sbi->s_chksum_driver)) {
3467 			ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3468 			ret = PTR_ERR(sbi->s_chksum_driver);
3469 			sbi->s_chksum_driver = NULL;
3470 			goto failed_mount;
3471 		}
3472 	}
3473 
3474 	/* Check superblock checksum */
3475 	if (!ext4_superblock_csum_verify(sb, es)) {
3476 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3477 			 "invalid superblock checksum.  Run e2fsck?");
3478 		silent = 1;
3479 		goto cantfind_ext4;
3480 	}
3481 
3482 	/* Precompute checksum seed for all metadata */
3483 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3484 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3485 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3486 					       sizeof(es->s_uuid));
3487 
3488 	/* Set defaults before we parse the mount options */
3489 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3490 	set_opt(sb, INIT_INODE_TABLE);
3491 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3492 		set_opt(sb, DEBUG);
3493 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3494 		set_opt(sb, GRPID);
3495 	if (def_mount_opts & EXT4_DEFM_UID16)
3496 		set_opt(sb, NO_UID32);
3497 	/* xattr user namespace & acls are now defaulted on */
3498 	set_opt(sb, XATTR_USER);
3499 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3500 	set_opt(sb, POSIX_ACL);
3501 #endif
3502 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3503 		set_opt(sb, JOURNAL_DATA);
3504 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3505 		set_opt(sb, ORDERED_DATA);
3506 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3507 		set_opt(sb, WRITEBACK_DATA);
3508 
3509 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3510 		set_opt(sb, ERRORS_PANIC);
3511 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3512 		set_opt(sb, ERRORS_CONT);
3513 	else
3514 		set_opt(sb, ERRORS_RO);
3515 	if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3516 		set_opt(sb, BLOCK_VALIDITY);
3517 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3518 		set_opt(sb, DISCARD);
3519 
3520 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3521 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3522 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3523 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3524 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3525 
3526 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3527 		set_opt(sb, BARRIER);
3528 
3529 	/*
3530 	 * enable delayed allocation by default
3531 	 * Use -o nodelalloc to turn it off
3532 	 */
3533 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3534 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3535 		set_opt(sb, DELALLOC);
3536 
3537 	/*
3538 	 * set default s_li_wait_mult for lazyinit, for the case there is
3539 	 * no mount option specified.
3540 	 */
3541 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3542 
3543 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3544 			   &journal_devnum, &journal_ioprio, 0)) {
3545 		ext4_msg(sb, KERN_WARNING,
3546 			 "failed to parse options in superblock: %s",
3547 			 sbi->s_es->s_mount_opts);
3548 	}
3549 	sbi->s_def_mount_opt = sbi->s_mount_opt;
3550 	if (!parse_options((char *) data, sb, &journal_devnum,
3551 			   &journal_ioprio, 0))
3552 		goto failed_mount;
3553 
3554 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3555 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3556 			    "with data=journal disables delayed "
3557 			    "allocation and O_DIRECT support!\n");
3558 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3559 			ext4_msg(sb, KERN_ERR, "can't mount with "
3560 				 "both data=journal and delalloc");
3561 			goto failed_mount;
3562 		}
3563 		if (test_opt(sb, DIOREAD_NOLOCK)) {
3564 			ext4_msg(sb, KERN_ERR, "can't mount with "
3565 				 "both data=journal and dioread_nolock");
3566 			goto failed_mount;
3567 		}
3568 		if (test_opt(sb, DELALLOC))
3569 			clear_opt(sb, DELALLOC);
3570 	}
3571 
3572 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3573 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3574 
3575 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3576 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3577 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3578 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3579 		ext4_msg(sb, KERN_WARNING,
3580 		       "feature flags set on rev 0 fs, "
3581 		       "running e2fsck is recommended");
3582 
3583 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3584 		set_opt2(sb, HURD_COMPAT);
3585 		if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3586 					      EXT4_FEATURE_INCOMPAT_64BIT)) {
3587 			ext4_msg(sb, KERN_ERR,
3588 				 "The Hurd can't support 64-bit file systems");
3589 			goto failed_mount;
3590 		}
3591 	}
3592 
3593 	if (IS_EXT2_SB(sb)) {
3594 		if (ext2_feature_set_ok(sb))
3595 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3596 				 "using the ext4 subsystem");
3597 		else {
3598 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3599 				 "to feature incompatibilities");
3600 			goto failed_mount;
3601 		}
3602 	}
3603 
3604 	if (IS_EXT3_SB(sb)) {
3605 		if (ext3_feature_set_ok(sb))
3606 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3607 				 "using the ext4 subsystem");
3608 		else {
3609 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3610 				 "to feature incompatibilities");
3611 			goto failed_mount;
3612 		}
3613 	}
3614 
3615 	/*
3616 	 * Check feature flags regardless of the revision level, since we
3617 	 * previously didn't change the revision level when setting the flags,
3618 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3619 	 */
3620 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3621 		goto failed_mount;
3622 
3623 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3624 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3625 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3626 		ext4_msg(sb, KERN_ERR,
3627 		       "Unsupported filesystem blocksize %d", blocksize);
3628 		goto failed_mount;
3629 	}
3630 
3631 	if (sb->s_blocksize != blocksize) {
3632 		/* Validate the filesystem blocksize */
3633 		if (!sb_set_blocksize(sb, blocksize)) {
3634 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3635 					blocksize);
3636 			goto failed_mount;
3637 		}
3638 
3639 		brelse(bh);
3640 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3641 		offset = do_div(logical_sb_block, blocksize);
3642 		bh = sb_bread(sb, logical_sb_block);
3643 		if (!bh) {
3644 			ext4_msg(sb, KERN_ERR,
3645 			       "Can't read superblock on 2nd try");
3646 			goto failed_mount;
3647 		}
3648 		es = (struct ext4_super_block *)(bh->b_data + offset);
3649 		sbi->s_es = es;
3650 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3651 			ext4_msg(sb, KERN_ERR,
3652 			       "Magic mismatch, very weird!");
3653 			goto failed_mount;
3654 		}
3655 	}
3656 
3657 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3658 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3659 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3660 						      has_huge_files);
3661 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3662 
3663 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3664 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3665 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3666 	} else {
3667 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3668 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3669 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3670 		    (!is_power_of_2(sbi->s_inode_size)) ||
3671 		    (sbi->s_inode_size > blocksize)) {
3672 			ext4_msg(sb, KERN_ERR,
3673 			       "unsupported inode size: %d",
3674 			       sbi->s_inode_size);
3675 			goto failed_mount;
3676 		}
3677 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3678 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3679 	}
3680 
3681 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3682 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3683 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3684 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3685 		    !is_power_of_2(sbi->s_desc_size)) {
3686 			ext4_msg(sb, KERN_ERR,
3687 			       "unsupported descriptor size %lu",
3688 			       sbi->s_desc_size);
3689 			goto failed_mount;
3690 		}
3691 	} else
3692 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3693 
3694 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3695 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3696 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3697 		goto cantfind_ext4;
3698 
3699 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3700 	if (sbi->s_inodes_per_block == 0)
3701 		goto cantfind_ext4;
3702 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3703 					sbi->s_inodes_per_block;
3704 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3705 	sbi->s_sbh = bh;
3706 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3707 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3708 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3709 
3710 	for (i = 0; i < 4; i++)
3711 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3712 	sbi->s_def_hash_version = es->s_def_hash_version;
3713 	if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3714 		i = le32_to_cpu(es->s_flags);
3715 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3716 			sbi->s_hash_unsigned = 3;
3717 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3718 #ifdef __CHAR_UNSIGNED__
3719 			if (!(sb->s_flags & MS_RDONLY))
3720 				es->s_flags |=
3721 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3722 			sbi->s_hash_unsigned = 3;
3723 #else
3724 			if (!(sb->s_flags & MS_RDONLY))
3725 				es->s_flags |=
3726 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3727 #endif
3728 		}
3729 	}
3730 
3731 	/* Handle clustersize */
3732 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3733 	has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3734 				EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3735 	if (has_bigalloc) {
3736 		if (clustersize < blocksize) {
3737 			ext4_msg(sb, KERN_ERR,
3738 				 "cluster size (%d) smaller than "
3739 				 "block size (%d)", clustersize, blocksize);
3740 			goto failed_mount;
3741 		}
3742 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3743 			le32_to_cpu(es->s_log_block_size);
3744 		sbi->s_clusters_per_group =
3745 			le32_to_cpu(es->s_clusters_per_group);
3746 		if (sbi->s_clusters_per_group > blocksize * 8) {
3747 			ext4_msg(sb, KERN_ERR,
3748 				 "#clusters per group too big: %lu",
3749 				 sbi->s_clusters_per_group);
3750 			goto failed_mount;
3751 		}
3752 		if (sbi->s_blocks_per_group !=
3753 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3754 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3755 				 "clusters per group (%lu) inconsistent",
3756 				 sbi->s_blocks_per_group,
3757 				 sbi->s_clusters_per_group);
3758 			goto failed_mount;
3759 		}
3760 	} else {
3761 		if (clustersize != blocksize) {
3762 			ext4_warning(sb, "fragment/cluster size (%d) != "
3763 				     "block size (%d)", clustersize,
3764 				     blocksize);
3765 			clustersize = blocksize;
3766 		}
3767 		if (sbi->s_blocks_per_group > blocksize * 8) {
3768 			ext4_msg(sb, KERN_ERR,
3769 				 "#blocks per group too big: %lu",
3770 				 sbi->s_blocks_per_group);
3771 			goto failed_mount;
3772 		}
3773 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3774 		sbi->s_cluster_bits = 0;
3775 	}
3776 	sbi->s_cluster_ratio = clustersize / blocksize;
3777 
3778 	if (sbi->s_inodes_per_group > blocksize * 8) {
3779 		ext4_msg(sb, KERN_ERR,
3780 		       "#inodes per group too big: %lu",
3781 		       sbi->s_inodes_per_group);
3782 		goto failed_mount;
3783 	}
3784 
3785 	/* Do we have standard group size of clustersize * 8 blocks ? */
3786 	if (sbi->s_blocks_per_group == clustersize << 3)
3787 		set_opt2(sb, STD_GROUP_SIZE);
3788 
3789 	/*
3790 	 * Test whether we have more sectors than will fit in sector_t,
3791 	 * and whether the max offset is addressable by the page cache.
3792 	 */
3793 	err = generic_check_addressable(sb->s_blocksize_bits,
3794 					ext4_blocks_count(es));
3795 	if (err) {
3796 		ext4_msg(sb, KERN_ERR, "filesystem"
3797 			 " too large to mount safely on this system");
3798 		if (sizeof(sector_t) < 8)
3799 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3800 		goto failed_mount;
3801 	}
3802 
3803 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3804 		goto cantfind_ext4;
3805 
3806 	/* check blocks count against device size */
3807 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3808 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3809 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3810 		       "exceeds size of device (%llu blocks)",
3811 		       ext4_blocks_count(es), blocks_count);
3812 		goto failed_mount;
3813 	}
3814 
3815 	/*
3816 	 * It makes no sense for the first data block to be beyond the end
3817 	 * of the filesystem.
3818 	 */
3819 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3820 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3821 			 "block %u is beyond end of filesystem (%llu)",
3822 			 le32_to_cpu(es->s_first_data_block),
3823 			 ext4_blocks_count(es));
3824 		goto failed_mount;
3825 	}
3826 	blocks_count = (ext4_blocks_count(es) -
3827 			le32_to_cpu(es->s_first_data_block) +
3828 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3829 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3830 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3831 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3832 		       "(block count %llu, first data block %u, "
3833 		       "blocks per group %lu)", sbi->s_groups_count,
3834 		       ext4_blocks_count(es),
3835 		       le32_to_cpu(es->s_first_data_block),
3836 		       EXT4_BLOCKS_PER_GROUP(sb));
3837 		goto failed_mount;
3838 	}
3839 	sbi->s_groups_count = blocks_count;
3840 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3841 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3842 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3843 		   EXT4_DESC_PER_BLOCK(sb);
3844 	sbi->s_group_desc = ext4_kvmalloc(db_count *
3845 					  sizeof(struct buffer_head *),
3846 					  GFP_KERNEL);
3847 	if (sbi->s_group_desc == NULL) {
3848 		ext4_msg(sb, KERN_ERR, "not enough memory");
3849 		ret = -ENOMEM;
3850 		goto failed_mount;
3851 	}
3852 
3853 	if (ext4_proc_root)
3854 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3855 
3856 	if (sbi->s_proc)
3857 		proc_create_data("options", S_IRUGO, sbi->s_proc,
3858 				 &ext4_seq_options_fops, sb);
3859 
3860 	bgl_lock_init(sbi->s_blockgroup_lock);
3861 
3862 	for (i = 0; i < db_count; i++) {
3863 		block = descriptor_loc(sb, logical_sb_block, i);
3864 		sbi->s_group_desc[i] = sb_bread(sb, block);
3865 		if (!sbi->s_group_desc[i]) {
3866 			ext4_msg(sb, KERN_ERR,
3867 			       "can't read group descriptor %d", i);
3868 			db_count = i;
3869 			goto failed_mount2;
3870 		}
3871 	}
3872 
3873 	/*
3874 	 * set up enough so that it can read an inode,
3875 	 * and create new inode for buddy allocator
3876 	 */
3877 	sbi->s_gdb_count = db_count;
3878 	if (!test_opt(sb, NOLOAD) &&
3879 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3880 		sb->s_op = &ext4_sops;
3881 	else
3882 		sb->s_op = &ext4_nojournal_sops;
3883 
3884 	ext4_ext_init(sb);
3885 	err = ext4_mb_init(sb);
3886 	if (err) {
3887 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3888 			 err);
3889 		goto failed_mount2;
3890 	}
3891 
3892 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3893 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3894 		goto failed_mount2a;
3895 	}
3896 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3897 		if (!ext4_fill_flex_info(sb)) {
3898 			ext4_msg(sb, KERN_ERR,
3899 			       "unable to initialize "
3900 			       "flex_bg meta info!");
3901 			goto failed_mount2a;
3902 		}
3903 
3904 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3905 	spin_lock_init(&sbi->s_next_gen_lock);
3906 
3907 	init_timer(&sbi->s_err_report);
3908 	sbi->s_err_report.function = print_daily_error_info;
3909 	sbi->s_err_report.data = (unsigned long) sb;
3910 
3911 	/* Register extent status tree shrinker */
3912 	ext4_es_register_shrinker(sbi);
3913 
3914 	err = percpu_counter_init(&sbi->s_freeclusters_counter,
3915 			ext4_count_free_clusters(sb));
3916 	if (!err) {
3917 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
3918 				ext4_count_free_inodes(sb));
3919 	}
3920 	if (!err) {
3921 		err = percpu_counter_init(&sbi->s_dirs_counter,
3922 				ext4_count_dirs(sb));
3923 	}
3924 	if (!err) {
3925 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3926 	}
3927 	if (!err) {
3928 		err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3929 	}
3930 	if (err) {
3931 		ext4_msg(sb, KERN_ERR, "insufficient memory");
3932 		goto failed_mount3;
3933 	}
3934 
3935 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3936 	sbi->s_extent_max_zeroout_kb = 32;
3937 
3938 	sb->s_export_op = &ext4_export_ops;
3939 	sb->s_xattr = ext4_xattr_handlers;
3940 #ifdef CONFIG_QUOTA
3941 	sb->dq_op = &ext4_quota_operations;
3942 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3943 		sb->s_qcop = &ext4_qctl_sysfile_operations;
3944 	else
3945 		sb->s_qcop = &ext4_qctl_operations;
3946 #endif
3947 	memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3948 
3949 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3950 	mutex_init(&sbi->s_orphan_lock);
3951 
3952 	sb->s_root = NULL;
3953 
3954 	needs_recovery = (es->s_last_orphan != 0 ||
3955 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3956 				    EXT4_FEATURE_INCOMPAT_RECOVER));
3957 
3958 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3959 	    !(sb->s_flags & MS_RDONLY))
3960 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3961 			goto failed_mount3;
3962 
3963 	/*
3964 	 * The first inode we look at is the journal inode.  Don't try
3965 	 * root first: it may be modified in the journal!
3966 	 */
3967 	if (!test_opt(sb, NOLOAD) &&
3968 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3969 		if (ext4_load_journal(sb, es, journal_devnum))
3970 			goto failed_mount3;
3971 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3972 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3973 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3974 		       "suppressed and not mounted read-only");
3975 		goto failed_mount_wq;
3976 	} else {
3977 		clear_opt(sb, DATA_FLAGS);
3978 		sbi->s_journal = NULL;
3979 		needs_recovery = 0;
3980 		goto no_journal;
3981 	}
3982 
3983 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3984 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3985 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3986 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3987 		goto failed_mount_wq;
3988 	}
3989 
3990 	if (!set_journal_csum_feature_set(sb)) {
3991 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3992 			 "feature set");
3993 		goto failed_mount_wq;
3994 	}
3995 
3996 	/* We have now updated the journal if required, so we can
3997 	 * validate the data journaling mode. */
3998 	switch (test_opt(sb, DATA_FLAGS)) {
3999 	case 0:
4000 		/* No mode set, assume a default based on the journal
4001 		 * capabilities: ORDERED_DATA if the journal can
4002 		 * cope, else JOURNAL_DATA
4003 		 */
4004 		if (jbd2_journal_check_available_features
4005 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4006 			set_opt(sb, ORDERED_DATA);
4007 		else
4008 			set_opt(sb, JOURNAL_DATA);
4009 		break;
4010 
4011 	case EXT4_MOUNT_ORDERED_DATA:
4012 	case EXT4_MOUNT_WRITEBACK_DATA:
4013 		if (!jbd2_journal_check_available_features
4014 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4015 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4016 			       "requested data journaling mode");
4017 			goto failed_mount_wq;
4018 		}
4019 	default:
4020 		break;
4021 	}
4022 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4023 
4024 	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4025 
4026 	/*
4027 	 * The journal may have updated the bg summary counts, so we
4028 	 * need to update the global counters.
4029 	 */
4030 	percpu_counter_set(&sbi->s_freeclusters_counter,
4031 			   ext4_count_free_clusters(sb));
4032 	percpu_counter_set(&sbi->s_freeinodes_counter,
4033 			   ext4_count_free_inodes(sb));
4034 	percpu_counter_set(&sbi->s_dirs_counter,
4035 			   ext4_count_dirs(sb));
4036 	percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
4037 
4038 no_journal:
4039 	if (ext4_mballoc_ready) {
4040 		sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4041 		if (!sbi->s_mb_cache) {
4042 			ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4043 			goto failed_mount_wq;
4044 		}
4045 	}
4046 
4047 	/*
4048 	 * Get the # of file system overhead blocks from the
4049 	 * superblock if present.
4050 	 */
4051 	if (es->s_overhead_clusters)
4052 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4053 	else {
4054 		err = ext4_calculate_overhead(sb);
4055 		if (err)
4056 			goto failed_mount_wq;
4057 	}
4058 
4059 	/*
4060 	 * The maximum number of concurrent works can be high and
4061 	 * concurrency isn't really necessary.  Limit it to 1.
4062 	 */
4063 	EXT4_SB(sb)->rsv_conversion_wq =
4064 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4065 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4066 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4067 		ret = -ENOMEM;
4068 		goto failed_mount4;
4069 	}
4070 
4071 	/*
4072 	 * The jbd2_journal_load will have done any necessary log recovery,
4073 	 * so we can safely mount the rest of the filesystem now.
4074 	 */
4075 
4076 	root = ext4_iget(sb, EXT4_ROOT_INO);
4077 	if (IS_ERR(root)) {
4078 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4079 		ret = PTR_ERR(root);
4080 		root = NULL;
4081 		goto failed_mount4;
4082 	}
4083 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4084 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4085 		iput(root);
4086 		goto failed_mount4;
4087 	}
4088 	sb->s_root = d_make_root(root);
4089 	if (!sb->s_root) {
4090 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4091 		ret = -ENOMEM;
4092 		goto failed_mount4;
4093 	}
4094 
4095 	if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4096 		sb->s_flags |= MS_RDONLY;
4097 
4098 	/* determine the minimum size of new large inodes, if present */
4099 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4100 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4101 						     EXT4_GOOD_OLD_INODE_SIZE;
4102 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4103 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4104 			if (sbi->s_want_extra_isize <
4105 			    le16_to_cpu(es->s_want_extra_isize))
4106 				sbi->s_want_extra_isize =
4107 					le16_to_cpu(es->s_want_extra_isize);
4108 			if (sbi->s_want_extra_isize <
4109 			    le16_to_cpu(es->s_min_extra_isize))
4110 				sbi->s_want_extra_isize =
4111 					le16_to_cpu(es->s_min_extra_isize);
4112 		}
4113 	}
4114 	/* Check if enough inode space is available */
4115 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4116 							sbi->s_inode_size) {
4117 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4118 						       EXT4_GOOD_OLD_INODE_SIZE;
4119 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4120 			 "available");
4121 	}
4122 
4123 	err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4124 	if (err) {
4125 		ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4126 			 "reserved pool", ext4_calculate_resv_clusters(sb));
4127 		goto failed_mount5;
4128 	}
4129 
4130 	err = ext4_setup_system_zone(sb);
4131 	if (err) {
4132 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4133 			 "zone (%d)", err);
4134 		goto failed_mount5;
4135 	}
4136 
4137 	err = ext4_register_li_request(sb, first_not_zeroed);
4138 	if (err)
4139 		goto failed_mount6;
4140 
4141 	sbi->s_kobj.kset = ext4_kset;
4142 	init_completion(&sbi->s_kobj_unregister);
4143 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4144 				   "%s", sb->s_id);
4145 	if (err)
4146 		goto failed_mount7;
4147 
4148 #ifdef CONFIG_QUOTA
4149 	/* Enable quota usage during mount. */
4150 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4151 	    !(sb->s_flags & MS_RDONLY)) {
4152 		err = ext4_enable_quotas(sb);
4153 		if (err)
4154 			goto failed_mount8;
4155 	}
4156 #endif  /* CONFIG_QUOTA */
4157 
4158 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4159 	ext4_orphan_cleanup(sb, es);
4160 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4161 	if (needs_recovery) {
4162 		ext4_msg(sb, KERN_INFO, "recovery complete");
4163 		ext4_mark_recovery_complete(sb, es);
4164 	}
4165 	if (EXT4_SB(sb)->s_journal) {
4166 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4167 			descr = " journalled data mode";
4168 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4169 			descr = " ordered data mode";
4170 		else
4171 			descr = " writeback data mode";
4172 	} else
4173 		descr = "out journal";
4174 
4175 	if (test_opt(sb, DISCARD)) {
4176 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4177 		if (!blk_queue_discard(q))
4178 			ext4_msg(sb, KERN_WARNING,
4179 				 "mounting with \"discard\" option, but "
4180 				 "the device does not support discard");
4181 	}
4182 
4183 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4184 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4185 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4186 
4187 	if (es->s_error_count)
4188 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4189 
4190 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4191 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4192 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4193 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4194 
4195 	kfree(orig_data);
4196 	return 0;
4197 
4198 cantfind_ext4:
4199 	if (!silent)
4200 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4201 	goto failed_mount;
4202 
4203 #ifdef CONFIG_QUOTA
4204 failed_mount8:
4205 	kobject_del(&sbi->s_kobj);
4206 #endif
4207 failed_mount7:
4208 	ext4_unregister_li_request(sb);
4209 failed_mount6:
4210 	ext4_release_system_zone(sb);
4211 failed_mount5:
4212 	dput(sb->s_root);
4213 	sb->s_root = NULL;
4214 failed_mount4:
4215 	ext4_msg(sb, KERN_ERR, "mount failed");
4216 	if (EXT4_SB(sb)->rsv_conversion_wq)
4217 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4218 failed_mount_wq:
4219 	if (sbi->s_journal) {
4220 		jbd2_journal_destroy(sbi->s_journal);
4221 		sbi->s_journal = NULL;
4222 	}
4223 failed_mount3:
4224 	ext4_es_unregister_shrinker(sbi);
4225 	del_timer_sync(&sbi->s_err_report);
4226 	if (sbi->s_flex_groups)
4227 		ext4_kvfree(sbi->s_flex_groups);
4228 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4229 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4230 	percpu_counter_destroy(&sbi->s_dirs_counter);
4231 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4232 	percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4233 	if (sbi->s_mmp_tsk)
4234 		kthread_stop(sbi->s_mmp_tsk);
4235 failed_mount2a:
4236 	ext4_mb_release(sb);
4237 failed_mount2:
4238 	for (i = 0; i < db_count; i++)
4239 		brelse(sbi->s_group_desc[i]);
4240 	ext4_kvfree(sbi->s_group_desc);
4241 failed_mount:
4242 	ext4_ext_release(sb);
4243 	if (sbi->s_chksum_driver)
4244 		crypto_free_shash(sbi->s_chksum_driver);
4245 	if (sbi->s_proc) {
4246 		remove_proc_entry("options", sbi->s_proc);
4247 		remove_proc_entry(sb->s_id, ext4_proc_root);
4248 	}
4249 #ifdef CONFIG_QUOTA
4250 	for (i = 0; i < MAXQUOTAS; i++)
4251 		kfree(sbi->s_qf_names[i]);
4252 #endif
4253 	ext4_blkdev_remove(sbi);
4254 	brelse(bh);
4255 out_fail:
4256 	sb->s_fs_info = NULL;
4257 	kfree(sbi->s_blockgroup_lock);
4258 	kfree(sbi);
4259 out_free_orig:
4260 	kfree(orig_data);
4261 	return err ? err : ret;
4262 }
4263 
4264 /*
4265  * Setup any per-fs journal parameters now.  We'll do this both on
4266  * initial mount, once the journal has been initialised but before we've
4267  * done any recovery; and again on any subsequent remount.
4268  */
4269 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4270 {
4271 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4272 
4273 	journal->j_commit_interval = sbi->s_commit_interval;
4274 	journal->j_min_batch_time = sbi->s_min_batch_time;
4275 	journal->j_max_batch_time = sbi->s_max_batch_time;
4276 
4277 	write_lock(&journal->j_state_lock);
4278 	if (test_opt(sb, BARRIER))
4279 		journal->j_flags |= JBD2_BARRIER;
4280 	else
4281 		journal->j_flags &= ~JBD2_BARRIER;
4282 	if (test_opt(sb, DATA_ERR_ABORT))
4283 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4284 	else
4285 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4286 	write_unlock(&journal->j_state_lock);
4287 }
4288 
4289 static journal_t *ext4_get_journal(struct super_block *sb,
4290 				   unsigned int journal_inum)
4291 {
4292 	struct inode *journal_inode;
4293 	journal_t *journal;
4294 
4295 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4296 
4297 	/* First, test for the existence of a valid inode on disk.  Bad
4298 	 * things happen if we iget() an unused inode, as the subsequent
4299 	 * iput() will try to delete it. */
4300 
4301 	journal_inode = ext4_iget(sb, journal_inum);
4302 	if (IS_ERR(journal_inode)) {
4303 		ext4_msg(sb, KERN_ERR, "no journal found");
4304 		return NULL;
4305 	}
4306 	if (!journal_inode->i_nlink) {
4307 		make_bad_inode(journal_inode);
4308 		iput(journal_inode);
4309 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4310 		return NULL;
4311 	}
4312 
4313 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4314 		  journal_inode, journal_inode->i_size);
4315 	if (!S_ISREG(journal_inode->i_mode)) {
4316 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4317 		iput(journal_inode);
4318 		return NULL;
4319 	}
4320 
4321 	journal = jbd2_journal_init_inode(journal_inode);
4322 	if (!journal) {
4323 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4324 		iput(journal_inode);
4325 		return NULL;
4326 	}
4327 	journal->j_private = sb;
4328 	ext4_init_journal_params(sb, journal);
4329 	return journal;
4330 }
4331 
4332 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4333 				       dev_t j_dev)
4334 {
4335 	struct buffer_head *bh;
4336 	journal_t *journal;
4337 	ext4_fsblk_t start;
4338 	ext4_fsblk_t len;
4339 	int hblock, blocksize;
4340 	ext4_fsblk_t sb_block;
4341 	unsigned long offset;
4342 	struct ext4_super_block *es;
4343 	struct block_device *bdev;
4344 
4345 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4346 
4347 	bdev = ext4_blkdev_get(j_dev, sb);
4348 	if (bdev == NULL)
4349 		return NULL;
4350 
4351 	blocksize = sb->s_blocksize;
4352 	hblock = bdev_logical_block_size(bdev);
4353 	if (blocksize < hblock) {
4354 		ext4_msg(sb, KERN_ERR,
4355 			"blocksize too small for journal device");
4356 		goto out_bdev;
4357 	}
4358 
4359 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4360 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4361 	set_blocksize(bdev, blocksize);
4362 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4363 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4364 		       "external journal");
4365 		goto out_bdev;
4366 	}
4367 
4368 	es = (struct ext4_super_block *) (bh->b_data + offset);
4369 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4370 	    !(le32_to_cpu(es->s_feature_incompat) &
4371 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4372 		ext4_msg(sb, KERN_ERR, "external journal has "
4373 					"bad superblock");
4374 		brelse(bh);
4375 		goto out_bdev;
4376 	}
4377 
4378 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4379 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4380 		brelse(bh);
4381 		goto out_bdev;
4382 	}
4383 
4384 	len = ext4_blocks_count(es);
4385 	start = sb_block + 1;
4386 	brelse(bh);	/* we're done with the superblock */
4387 
4388 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4389 					start, len, blocksize);
4390 	if (!journal) {
4391 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4392 		goto out_bdev;
4393 	}
4394 	journal->j_private = sb;
4395 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4396 	wait_on_buffer(journal->j_sb_buffer);
4397 	if (!buffer_uptodate(journal->j_sb_buffer)) {
4398 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4399 		goto out_journal;
4400 	}
4401 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4402 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4403 					"user (unsupported) - %d",
4404 			be32_to_cpu(journal->j_superblock->s_nr_users));
4405 		goto out_journal;
4406 	}
4407 	EXT4_SB(sb)->journal_bdev = bdev;
4408 	ext4_init_journal_params(sb, journal);
4409 	return journal;
4410 
4411 out_journal:
4412 	jbd2_journal_destroy(journal);
4413 out_bdev:
4414 	ext4_blkdev_put(bdev);
4415 	return NULL;
4416 }
4417 
4418 static int ext4_load_journal(struct super_block *sb,
4419 			     struct ext4_super_block *es,
4420 			     unsigned long journal_devnum)
4421 {
4422 	journal_t *journal;
4423 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4424 	dev_t journal_dev;
4425 	int err = 0;
4426 	int really_read_only;
4427 
4428 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4429 
4430 	if (journal_devnum &&
4431 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4432 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4433 			"numbers have changed");
4434 		journal_dev = new_decode_dev(journal_devnum);
4435 	} else
4436 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4437 
4438 	really_read_only = bdev_read_only(sb->s_bdev);
4439 
4440 	/*
4441 	 * Are we loading a blank journal or performing recovery after a
4442 	 * crash?  For recovery, we need to check in advance whether we
4443 	 * can get read-write access to the device.
4444 	 */
4445 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4446 		if (sb->s_flags & MS_RDONLY) {
4447 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4448 					"required on readonly filesystem");
4449 			if (really_read_only) {
4450 				ext4_msg(sb, KERN_ERR, "write access "
4451 					"unavailable, cannot proceed");
4452 				return -EROFS;
4453 			}
4454 			ext4_msg(sb, KERN_INFO, "write access will "
4455 			       "be enabled during recovery");
4456 		}
4457 	}
4458 
4459 	if (journal_inum && journal_dev) {
4460 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4461 		       "and inode journals!");
4462 		return -EINVAL;
4463 	}
4464 
4465 	if (journal_inum) {
4466 		if (!(journal = ext4_get_journal(sb, journal_inum)))
4467 			return -EINVAL;
4468 	} else {
4469 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4470 			return -EINVAL;
4471 	}
4472 
4473 	if (!(journal->j_flags & JBD2_BARRIER))
4474 		ext4_msg(sb, KERN_INFO, "barriers disabled");
4475 
4476 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4477 		err = jbd2_journal_wipe(journal, !really_read_only);
4478 	if (!err) {
4479 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4480 		if (save)
4481 			memcpy(save, ((char *) es) +
4482 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4483 		err = jbd2_journal_load(journal);
4484 		if (save)
4485 			memcpy(((char *) es) + EXT4_S_ERR_START,
4486 			       save, EXT4_S_ERR_LEN);
4487 		kfree(save);
4488 	}
4489 
4490 	if (err) {
4491 		ext4_msg(sb, KERN_ERR, "error loading journal");
4492 		jbd2_journal_destroy(journal);
4493 		return err;
4494 	}
4495 
4496 	EXT4_SB(sb)->s_journal = journal;
4497 	ext4_clear_journal_err(sb, es);
4498 
4499 	if (!really_read_only && journal_devnum &&
4500 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4501 		es->s_journal_dev = cpu_to_le32(journal_devnum);
4502 
4503 		/* Make sure we flush the recovery flag to disk. */
4504 		ext4_commit_super(sb, 1);
4505 	}
4506 
4507 	return 0;
4508 }
4509 
4510 static int ext4_commit_super(struct super_block *sb, int sync)
4511 {
4512 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4513 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4514 	int error = 0;
4515 
4516 	if (!sbh || block_device_ejected(sb))
4517 		return error;
4518 	if (buffer_write_io_error(sbh)) {
4519 		/*
4520 		 * Oh, dear.  A previous attempt to write the
4521 		 * superblock failed.  This could happen because the
4522 		 * USB device was yanked out.  Or it could happen to
4523 		 * be a transient write error and maybe the block will
4524 		 * be remapped.  Nothing we can do but to retry the
4525 		 * write and hope for the best.
4526 		 */
4527 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4528 		       "superblock detected");
4529 		clear_buffer_write_io_error(sbh);
4530 		set_buffer_uptodate(sbh);
4531 	}
4532 	/*
4533 	 * If the file system is mounted read-only, don't update the
4534 	 * superblock write time.  This avoids updating the superblock
4535 	 * write time when we are mounting the root file system
4536 	 * read/only but we need to replay the journal; at that point,
4537 	 * for people who are east of GMT and who make their clock
4538 	 * tick in localtime for Windows bug-for-bug compatibility,
4539 	 * the clock is set in the future, and this will cause e2fsck
4540 	 * to complain and force a full file system check.
4541 	 */
4542 	if (!(sb->s_flags & MS_RDONLY))
4543 		es->s_wtime = cpu_to_le32(get_seconds());
4544 	if (sb->s_bdev->bd_part)
4545 		es->s_kbytes_written =
4546 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4547 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4548 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4549 	else
4550 		es->s_kbytes_written =
4551 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4552 	ext4_free_blocks_count_set(es,
4553 			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4554 				&EXT4_SB(sb)->s_freeclusters_counter)));
4555 	es->s_free_inodes_count =
4556 		cpu_to_le32(percpu_counter_sum_positive(
4557 				&EXT4_SB(sb)->s_freeinodes_counter));
4558 	BUFFER_TRACE(sbh, "marking dirty");
4559 	ext4_superblock_csum_set(sb);
4560 	mark_buffer_dirty(sbh);
4561 	if (sync) {
4562 		error = sync_dirty_buffer(sbh);
4563 		if (error)
4564 			return error;
4565 
4566 		error = buffer_write_io_error(sbh);
4567 		if (error) {
4568 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4569 			       "superblock");
4570 			clear_buffer_write_io_error(sbh);
4571 			set_buffer_uptodate(sbh);
4572 		}
4573 	}
4574 	return error;
4575 }
4576 
4577 /*
4578  * Have we just finished recovery?  If so, and if we are mounting (or
4579  * remounting) the filesystem readonly, then we will end up with a
4580  * consistent fs on disk.  Record that fact.
4581  */
4582 static void ext4_mark_recovery_complete(struct super_block *sb,
4583 					struct ext4_super_block *es)
4584 {
4585 	journal_t *journal = EXT4_SB(sb)->s_journal;
4586 
4587 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4588 		BUG_ON(journal != NULL);
4589 		return;
4590 	}
4591 	jbd2_journal_lock_updates(journal);
4592 	if (jbd2_journal_flush(journal) < 0)
4593 		goto out;
4594 
4595 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4596 	    sb->s_flags & MS_RDONLY) {
4597 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4598 		ext4_commit_super(sb, 1);
4599 	}
4600 
4601 out:
4602 	jbd2_journal_unlock_updates(journal);
4603 }
4604 
4605 /*
4606  * If we are mounting (or read-write remounting) a filesystem whose journal
4607  * has recorded an error from a previous lifetime, move that error to the
4608  * main filesystem now.
4609  */
4610 static void ext4_clear_journal_err(struct super_block *sb,
4611 				   struct ext4_super_block *es)
4612 {
4613 	journal_t *journal;
4614 	int j_errno;
4615 	const char *errstr;
4616 
4617 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4618 
4619 	journal = EXT4_SB(sb)->s_journal;
4620 
4621 	/*
4622 	 * Now check for any error status which may have been recorded in the
4623 	 * journal by a prior ext4_error() or ext4_abort()
4624 	 */
4625 
4626 	j_errno = jbd2_journal_errno(journal);
4627 	if (j_errno) {
4628 		char nbuf[16];
4629 
4630 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4631 		ext4_warning(sb, "Filesystem error recorded "
4632 			     "from previous mount: %s", errstr);
4633 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4634 
4635 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4636 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4637 		ext4_commit_super(sb, 1);
4638 
4639 		jbd2_journal_clear_err(journal);
4640 		jbd2_journal_update_sb_errno(journal);
4641 	}
4642 }
4643 
4644 /*
4645  * Force the running and committing transactions to commit,
4646  * and wait on the commit.
4647  */
4648 int ext4_force_commit(struct super_block *sb)
4649 {
4650 	journal_t *journal;
4651 
4652 	if (sb->s_flags & MS_RDONLY)
4653 		return 0;
4654 
4655 	journal = EXT4_SB(sb)->s_journal;
4656 	return ext4_journal_force_commit(journal);
4657 }
4658 
4659 static int ext4_sync_fs(struct super_block *sb, int wait)
4660 {
4661 	int ret = 0;
4662 	tid_t target;
4663 	bool needs_barrier = false;
4664 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4665 
4666 	trace_ext4_sync_fs(sb, wait);
4667 	flush_workqueue(sbi->rsv_conversion_wq);
4668 	/*
4669 	 * Writeback quota in non-journalled quota case - journalled quota has
4670 	 * no dirty dquots
4671 	 */
4672 	dquot_writeback_dquots(sb, -1);
4673 	/*
4674 	 * Data writeback is possible w/o journal transaction, so barrier must
4675 	 * being sent at the end of the function. But we can skip it if
4676 	 * transaction_commit will do it for us.
4677 	 */
4678 	target = jbd2_get_latest_transaction(sbi->s_journal);
4679 	if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4680 	    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4681 		needs_barrier = true;
4682 
4683 	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4684 		if (wait)
4685 			ret = jbd2_log_wait_commit(sbi->s_journal, target);
4686 	}
4687 	if (needs_barrier) {
4688 		int err;
4689 		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4690 		if (!ret)
4691 			ret = err;
4692 	}
4693 
4694 	return ret;
4695 }
4696 
4697 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait)
4698 {
4699 	int ret = 0;
4700 
4701 	trace_ext4_sync_fs(sb, wait);
4702 	flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4703 	dquot_writeback_dquots(sb, -1);
4704 	if (wait && test_opt(sb, BARRIER))
4705 		ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4706 
4707 	return ret;
4708 }
4709 
4710 /*
4711  * LVM calls this function before a (read-only) snapshot is created.  This
4712  * gives us a chance to flush the journal completely and mark the fs clean.
4713  *
4714  * Note that only this function cannot bring a filesystem to be in a clean
4715  * state independently. It relies on upper layer to stop all data & metadata
4716  * modifications.
4717  */
4718 static int ext4_freeze(struct super_block *sb)
4719 {
4720 	int error = 0;
4721 	journal_t *journal;
4722 
4723 	if (sb->s_flags & MS_RDONLY)
4724 		return 0;
4725 
4726 	journal = EXT4_SB(sb)->s_journal;
4727 
4728 	/* Now we set up the journal barrier. */
4729 	jbd2_journal_lock_updates(journal);
4730 
4731 	/*
4732 	 * Don't clear the needs_recovery flag if we failed to flush
4733 	 * the journal.
4734 	 */
4735 	error = jbd2_journal_flush(journal);
4736 	if (error < 0)
4737 		goto out;
4738 
4739 	/* Journal blocked and flushed, clear needs_recovery flag. */
4740 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4741 	error = ext4_commit_super(sb, 1);
4742 out:
4743 	/* we rely on upper layer to stop further updates */
4744 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4745 	return error;
4746 }
4747 
4748 /*
4749  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4750  * flag here, even though the filesystem is not technically dirty yet.
4751  */
4752 static int ext4_unfreeze(struct super_block *sb)
4753 {
4754 	if (sb->s_flags & MS_RDONLY)
4755 		return 0;
4756 
4757 	/* Reset the needs_recovery flag before the fs is unlocked. */
4758 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4759 	ext4_commit_super(sb, 1);
4760 	return 0;
4761 }
4762 
4763 /*
4764  * Structure to save mount options for ext4_remount's benefit
4765  */
4766 struct ext4_mount_options {
4767 	unsigned long s_mount_opt;
4768 	unsigned long s_mount_opt2;
4769 	kuid_t s_resuid;
4770 	kgid_t s_resgid;
4771 	unsigned long s_commit_interval;
4772 	u32 s_min_batch_time, s_max_batch_time;
4773 #ifdef CONFIG_QUOTA
4774 	int s_jquota_fmt;
4775 	char *s_qf_names[MAXQUOTAS];
4776 #endif
4777 };
4778 
4779 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4780 {
4781 	struct ext4_super_block *es;
4782 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4783 	unsigned long old_sb_flags;
4784 	struct ext4_mount_options old_opts;
4785 	int enable_quota = 0;
4786 	ext4_group_t g;
4787 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4788 	int err = 0;
4789 #ifdef CONFIG_QUOTA
4790 	int i, j;
4791 #endif
4792 	char *orig_data = kstrdup(data, GFP_KERNEL);
4793 
4794 	/* Store the original options */
4795 	old_sb_flags = sb->s_flags;
4796 	old_opts.s_mount_opt = sbi->s_mount_opt;
4797 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4798 	old_opts.s_resuid = sbi->s_resuid;
4799 	old_opts.s_resgid = sbi->s_resgid;
4800 	old_opts.s_commit_interval = sbi->s_commit_interval;
4801 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4802 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4803 #ifdef CONFIG_QUOTA
4804 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4805 	for (i = 0; i < MAXQUOTAS; i++)
4806 		if (sbi->s_qf_names[i]) {
4807 			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4808 							 GFP_KERNEL);
4809 			if (!old_opts.s_qf_names[i]) {
4810 				for (j = 0; j < i; j++)
4811 					kfree(old_opts.s_qf_names[j]);
4812 				kfree(orig_data);
4813 				return -ENOMEM;
4814 			}
4815 		} else
4816 			old_opts.s_qf_names[i] = NULL;
4817 #endif
4818 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4819 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4820 
4821 	/*
4822 	 * Allow the "check" option to be passed as a remount option.
4823 	 */
4824 	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4825 		err = -EINVAL;
4826 		goto restore_opts;
4827 	}
4828 
4829 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4830 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4831 			ext4_msg(sb, KERN_ERR, "can't mount with "
4832 				 "both data=journal and delalloc");
4833 			err = -EINVAL;
4834 			goto restore_opts;
4835 		}
4836 		if (test_opt(sb, DIOREAD_NOLOCK)) {
4837 			ext4_msg(sb, KERN_ERR, "can't mount with "
4838 				 "both data=journal and dioread_nolock");
4839 			err = -EINVAL;
4840 			goto restore_opts;
4841 		}
4842 	}
4843 
4844 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4845 		ext4_abort(sb, "Abort forced by user");
4846 
4847 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4848 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4849 
4850 	es = sbi->s_es;
4851 
4852 	if (sbi->s_journal) {
4853 		ext4_init_journal_params(sb, sbi->s_journal);
4854 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4855 	}
4856 
4857 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4858 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4859 			err = -EROFS;
4860 			goto restore_opts;
4861 		}
4862 
4863 		if (*flags & MS_RDONLY) {
4864 			err = sync_filesystem(sb);
4865 			if (err < 0)
4866 				goto restore_opts;
4867 			err = dquot_suspend(sb, -1);
4868 			if (err < 0)
4869 				goto restore_opts;
4870 
4871 			/*
4872 			 * First of all, the unconditional stuff we have to do
4873 			 * to disable replay of the journal when we next remount
4874 			 */
4875 			sb->s_flags |= MS_RDONLY;
4876 
4877 			/*
4878 			 * OK, test if we are remounting a valid rw partition
4879 			 * readonly, and if so set the rdonly flag and then
4880 			 * mark the partition as valid again.
4881 			 */
4882 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4883 			    (sbi->s_mount_state & EXT4_VALID_FS))
4884 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4885 
4886 			if (sbi->s_journal)
4887 				ext4_mark_recovery_complete(sb, es);
4888 		} else {
4889 			/* Make sure we can mount this feature set readwrite */
4890 			if (!ext4_feature_set_ok(sb, 0)) {
4891 				err = -EROFS;
4892 				goto restore_opts;
4893 			}
4894 			/*
4895 			 * Make sure the group descriptor checksums
4896 			 * are sane.  If they aren't, refuse to remount r/w.
4897 			 */
4898 			for (g = 0; g < sbi->s_groups_count; g++) {
4899 				struct ext4_group_desc *gdp =
4900 					ext4_get_group_desc(sb, g, NULL);
4901 
4902 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4903 					ext4_msg(sb, KERN_ERR,
4904 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4905 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4906 					       le16_to_cpu(gdp->bg_checksum));
4907 					err = -EINVAL;
4908 					goto restore_opts;
4909 				}
4910 			}
4911 
4912 			/*
4913 			 * If we have an unprocessed orphan list hanging
4914 			 * around from a previously readonly bdev mount,
4915 			 * require a full umount/remount for now.
4916 			 */
4917 			if (es->s_last_orphan) {
4918 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4919 				       "remount RDWR because of unprocessed "
4920 				       "orphan inode list.  Please "
4921 				       "umount/remount instead");
4922 				err = -EINVAL;
4923 				goto restore_opts;
4924 			}
4925 
4926 			/*
4927 			 * Mounting a RDONLY partition read-write, so reread
4928 			 * and store the current valid flag.  (It may have
4929 			 * been changed by e2fsck since we originally mounted
4930 			 * the partition.)
4931 			 */
4932 			if (sbi->s_journal)
4933 				ext4_clear_journal_err(sb, es);
4934 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4935 			if (!ext4_setup_super(sb, es, 0))
4936 				sb->s_flags &= ~MS_RDONLY;
4937 			if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4938 						     EXT4_FEATURE_INCOMPAT_MMP))
4939 				if (ext4_multi_mount_protect(sb,
4940 						le64_to_cpu(es->s_mmp_block))) {
4941 					err = -EROFS;
4942 					goto restore_opts;
4943 				}
4944 			enable_quota = 1;
4945 		}
4946 	}
4947 
4948 	/*
4949 	 * Reinitialize lazy itable initialization thread based on
4950 	 * current settings
4951 	 */
4952 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4953 		ext4_unregister_li_request(sb);
4954 	else {
4955 		ext4_group_t first_not_zeroed;
4956 		first_not_zeroed = ext4_has_uninit_itable(sb);
4957 		ext4_register_li_request(sb, first_not_zeroed);
4958 	}
4959 
4960 	ext4_setup_system_zone(sb);
4961 	if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4962 		ext4_commit_super(sb, 1);
4963 
4964 #ifdef CONFIG_QUOTA
4965 	/* Release old quota file names */
4966 	for (i = 0; i < MAXQUOTAS; i++)
4967 		kfree(old_opts.s_qf_names[i]);
4968 	if (enable_quota) {
4969 		if (sb_any_quota_suspended(sb))
4970 			dquot_resume(sb, -1);
4971 		else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4972 					EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4973 			err = ext4_enable_quotas(sb);
4974 			if (err)
4975 				goto restore_opts;
4976 		}
4977 	}
4978 #endif
4979 
4980 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4981 	kfree(orig_data);
4982 	return 0;
4983 
4984 restore_opts:
4985 	sb->s_flags = old_sb_flags;
4986 	sbi->s_mount_opt = old_opts.s_mount_opt;
4987 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4988 	sbi->s_resuid = old_opts.s_resuid;
4989 	sbi->s_resgid = old_opts.s_resgid;
4990 	sbi->s_commit_interval = old_opts.s_commit_interval;
4991 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4992 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
4993 #ifdef CONFIG_QUOTA
4994 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4995 	for (i = 0; i < MAXQUOTAS; i++) {
4996 		kfree(sbi->s_qf_names[i]);
4997 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4998 	}
4999 #endif
5000 	kfree(orig_data);
5001 	return err;
5002 }
5003 
5004 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5005 {
5006 	struct super_block *sb = dentry->d_sb;
5007 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5008 	struct ext4_super_block *es = sbi->s_es;
5009 	ext4_fsblk_t overhead = 0, resv_blocks;
5010 	u64 fsid;
5011 	s64 bfree;
5012 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5013 
5014 	if (!test_opt(sb, MINIX_DF))
5015 		overhead = sbi->s_overhead;
5016 
5017 	buf->f_type = EXT4_SUPER_MAGIC;
5018 	buf->f_bsize = sb->s_blocksize;
5019 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5020 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5021 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5022 	/* prevent underflow in case that few free space is available */
5023 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5024 	buf->f_bavail = buf->f_bfree -
5025 			(ext4_r_blocks_count(es) + resv_blocks);
5026 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5027 		buf->f_bavail = 0;
5028 	buf->f_files = le32_to_cpu(es->s_inodes_count);
5029 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5030 	buf->f_namelen = EXT4_NAME_LEN;
5031 	fsid = le64_to_cpup((void *)es->s_uuid) ^
5032 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5033 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5034 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5035 
5036 	return 0;
5037 }
5038 
5039 /* Helper function for writing quotas on sync - we need to start transaction
5040  * before quota file is locked for write. Otherwise the are possible deadlocks:
5041  * Process 1                         Process 2
5042  * ext4_create()                     quota_sync()
5043  *   jbd2_journal_start()                  write_dquot()
5044  *   dquot_initialize()                         down(dqio_mutex)
5045  *     down(dqio_mutex)                    jbd2_journal_start()
5046  *
5047  */
5048 
5049 #ifdef CONFIG_QUOTA
5050 
5051 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5052 {
5053 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5054 }
5055 
5056 static int ext4_write_dquot(struct dquot *dquot)
5057 {
5058 	int ret, err;
5059 	handle_t *handle;
5060 	struct inode *inode;
5061 
5062 	inode = dquot_to_inode(dquot);
5063 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5064 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5065 	if (IS_ERR(handle))
5066 		return PTR_ERR(handle);
5067 	ret = dquot_commit(dquot);
5068 	err = ext4_journal_stop(handle);
5069 	if (!ret)
5070 		ret = err;
5071 	return ret;
5072 }
5073 
5074 static int ext4_acquire_dquot(struct dquot *dquot)
5075 {
5076 	int ret, err;
5077 	handle_t *handle;
5078 
5079 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5080 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5081 	if (IS_ERR(handle))
5082 		return PTR_ERR(handle);
5083 	ret = dquot_acquire(dquot);
5084 	err = ext4_journal_stop(handle);
5085 	if (!ret)
5086 		ret = err;
5087 	return ret;
5088 }
5089 
5090 static int ext4_release_dquot(struct dquot *dquot)
5091 {
5092 	int ret, err;
5093 	handle_t *handle;
5094 
5095 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5096 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5097 	if (IS_ERR(handle)) {
5098 		/* Release dquot anyway to avoid endless cycle in dqput() */
5099 		dquot_release(dquot);
5100 		return PTR_ERR(handle);
5101 	}
5102 	ret = dquot_release(dquot);
5103 	err = ext4_journal_stop(handle);
5104 	if (!ret)
5105 		ret = err;
5106 	return ret;
5107 }
5108 
5109 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5110 {
5111 	struct super_block *sb = dquot->dq_sb;
5112 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5113 
5114 	/* Are we journaling quotas? */
5115 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5116 	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5117 		dquot_mark_dquot_dirty(dquot);
5118 		return ext4_write_dquot(dquot);
5119 	} else {
5120 		return dquot_mark_dquot_dirty(dquot);
5121 	}
5122 }
5123 
5124 static int ext4_write_info(struct super_block *sb, int type)
5125 {
5126 	int ret, err;
5127 	handle_t *handle;
5128 
5129 	/* Data block + inode block */
5130 	handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5131 	if (IS_ERR(handle))
5132 		return PTR_ERR(handle);
5133 	ret = dquot_commit_info(sb, type);
5134 	err = ext4_journal_stop(handle);
5135 	if (!ret)
5136 		ret = err;
5137 	return ret;
5138 }
5139 
5140 /*
5141  * Turn on quotas during mount time - we need to find
5142  * the quota file and such...
5143  */
5144 static int ext4_quota_on_mount(struct super_block *sb, int type)
5145 {
5146 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5147 					EXT4_SB(sb)->s_jquota_fmt, type);
5148 }
5149 
5150 /*
5151  * Standard function to be called on quota_on
5152  */
5153 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5154 			 struct path *path)
5155 {
5156 	int err;
5157 
5158 	if (!test_opt(sb, QUOTA))
5159 		return -EINVAL;
5160 
5161 	/* Quotafile not on the same filesystem? */
5162 	if (path->dentry->d_sb != sb)
5163 		return -EXDEV;
5164 	/* Journaling quota? */
5165 	if (EXT4_SB(sb)->s_qf_names[type]) {
5166 		/* Quotafile not in fs root? */
5167 		if (path->dentry->d_parent != sb->s_root)
5168 			ext4_msg(sb, KERN_WARNING,
5169 				"Quota file not on filesystem root. "
5170 				"Journaled quota will not work");
5171 	}
5172 
5173 	/*
5174 	 * When we journal data on quota file, we have to flush journal to see
5175 	 * all updates to the file when we bypass pagecache...
5176 	 */
5177 	if (EXT4_SB(sb)->s_journal &&
5178 	    ext4_should_journal_data(path->dentry->d_inode)) {
5179 		/*
5180 		 * We don't need to lock updates but journal_flush() could
5181 		 * otherwise be livelocked...
5182 		 */
5183 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5184 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5185 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5186 		if (err)
5187 			return err;
5188 	}
5189 
5190 	return dquot_quota_on(sb, type, format_id, path);
5191 }
5192 
5193 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5194 			     unsigned int flags)
5195 {
5196 	int err;
5197 	struct inode *qf_inode;
5198 	unsigned long qf_inums[MAXQUOTAS] = {
5199 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5200 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5201 	};
5202 
5203 	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5204 
5205 	if (!qf_inums[type])
5206 		return -EPERM;
5207 
5208 	qf_inode = ext4_iget(sb, qf_inums[type]);
5209 	if (IS_ERR(qf_inode)) {
5210 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5211 		return PTR_ERR(qf_inode);
5212 	}
5213 
5214 	/* Don't account quota for quota files to avoid recursion */
5215 	qf_inode->i_flags |= S_NOQUOTA;
5216 	err = dquot_enable(qf_inode, type, format_id, flags);
5217 	iput(qf_inode);
5218 
5219 	return err;
5220 }
5221 
5222 /* Enable usage tracking for all quota types. */
5223 static int ext4_enable_quotas(struct super_block *sb)
5224 {
5225 	int type, err = 0;
5226 	unsigned long qf_inums[MAXQUOTAS] = {
5227 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5228 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5229 	};
5230 
5231 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5232 	for (type = 0; type < MAXQUOTAS; type++) {
5233 		if (qf_inums[type]) {
5234 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5235 						DQUOT_USAGE_ENABLED);
5236 			if (err) {
5237 				ext4_warning(sb,
5238 					"Failed to enable quota tracking "
5239 					"(type=%d, err=%d). Please run "
5240 					"e2fsck to fix.", type, err);
5241 				return err;
5242 			}
5243 		}
5244 	}
5245 	return 0;
5246 }
5247 
5248 /*
5249  * quota_on function that is used when QUOTA feature is set.
5250  */
5251 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5252 				 int format_id)
5253 {
5254 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5255 		return -EINVAL;
5256 
5257 	/*
5258 	 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5259 	 */
5260 	return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5261 }
5262 
5263 static int ext4_quota_off(struct super_block *sb, int type)
5264 {
5265 	struct inode *inode = sb_dqopt(sb)->files[type];
5266 	handle_t *handle;
5267 
5268 	/* Force all delayed allocation blocks to be allocated.
5269 	 * Caller already holds s_umount sem */
5270 	if (test_opt(sb, DELALLOC))
5271 		sync_filesystem(sb);
5272 
5273 	if (!inode)
5274 		goto out;
5275 
5276 	/* Update modification times of quota files when userspace can
5277 	 * start looking at them */
5278 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5279 	if (IS_ERR(handle))
5280 		goto out;
5281 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5282 	ext4_mark_inode_dirty(handle, inode);
5283 	ext4_journal_stop(handle);
5284 
5285 out:
5286 	return dquot_quota_off(sb, type);
5287 }
5288 
5289 /*
5290  * quota_off function that is used when QUOTA feature is set.
5291  */
5292 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5293 {
5294 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5295 		return -EINVAL;
5296 
5297 	/* Disable only the limits. */
5298 	return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5299 }
5300 
5301 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5302  * acquiring the locks... As quota files are never truncated and quota code
5303  * itself serializes the operations (and no one else should touch the files)
5304  * we don't have to be afraid of races */
5305 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5306 			       size_t len, loff_t off)
5307 {
5308 	struct inode *inode = sb_dqopt(sb)->files[type];
5309 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5310 	int err = 0;
5311 	int offset = off & (sb->s_blocksize - 1);
5312 	int tocopy;
5313 	size_t toread;
5314 	struct buffer_head *bh;
5315 	loff_t i_size = i_size_read(inode);
5316 
5317 	if (off > i_size)
5318 		return 0;
5319 	if (off+len > i_size)
5320 		len = i_size-off;
5321 	toread = len;
5322 	while (toread > 0) {
5323 		tocopy = sb->s_blocksize - offset < toread ?
5324 				sb->s_blocksize - offset : toread;
5325 		bh = ext4_bread(NULL, inode, blk, 0, &err);
5326 		if (err)
5327 			return err;
5328 		if (!bh)	/* A hole? */
5329 			memset(data, 0, tocopy);
5330 		else
5331 			memcpy(data, bh->b_data+offset, tocopy);
5332 		brelse(bh);
5333 		offset = 0;
5334 		toread -= tocopy;
5335 		data += tocopy;
5336 		blk++;
5337 	}
5338 	return len;
5339 }
5340 
5341 /* Write to quotafile (we know the transaction is already started and has
5342  * enough credits) */
5343 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5344 				const char *data, size_t len, loff_t off)
5345 {
5346 	struct inode *inode = sb_dqopt(sb)->files[type];
5347 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5348 	int err = 0;
5349 	int offset = off & (sb->s_blocksize - 1);
5350 	struct buffer_head *bh;
5351 	handle_t *handle = journal_current_handle();
5352 
5353 	if (EXT4_SB(sb)->s_journal && !handle) {
5354 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5355 			" cancelled because transaction is not started",
5356 			(unsigned long long)off, (unsigned long long)len);
5357 		return -EIO;
5358 	}
5359 	/*
5360 	 * Since we account only one data block in transaction credits,
5361 	 * then it is impossible to cross a block boundary.
5362 	 */
5363 	if (sb->s_blocksize - offset < len) {
5364 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5365 			" cancelled because not block aligned",
5366 			(unsigned long long)off, (unsigned long long)len);
5367 		return -EIO;
5368 	}
5369 
5370 	bh = ext4_bread(handle, inode, blk, 1, &err);
5371 	if (!bh)
5372 		goto out;
5373 	err = ext4_journal_get_write_access(handle, bh);
5374 	if (err) {
5375 		brelse(bh);
5376 		goto out;
5377 	}
5378 	lock_buffer(bh);
5379 	memcpy(bh->b_data+offset, data, len);
5380 	flush_dcache_page(bh->b_page);
5381 	unlock_buffer(bh);
5382 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5383 	brelse(bh);
5384 out:
5385 	if (err)
5386 		return err;
5387 	if (inode->i_size < off + len) {
5388 		i_size_write(inode, off + len);
5389 		EXT4_I(inode)->i_disksize = inode->i_size;
5390 		ext4_mark_inode_dirty(handle, inode);
5391 	}
5392 	return len;
5393 }
5394 
5395 #endif
5396 
5397 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5398 		       const char *dev_name, void *data)
5399 {
5400 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5401 }
5402 
5403 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5404 static inline void register_as_ext2(void)
5405 {
5406 	int err = register_filesystem(&ext2_fs_type);
5407 	if (err)
5408 		printk(KERN_WARNING
5409 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5410 }
5411 
5412 static inline void unregister_as_ext2(void)
5413 {
5414 	unregister_filesystem(&ext2_fs_type);
5415 }
5416 
5417 static inline int ext2_feature_set_ok(struct super_block *sb)
5418 {
5419 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5420 		return 0;
5421 	if (sb->s_flags & MS_RDONLY)
5422 		return 1;
5423 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5424 		return 0;
5425 	return 1;
5426 }
5427 #else
5428 static inline void register_as_ext2(void) { }
5429 static inline void unregister_as_ext2(void) { }
5430 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5431 #endif
5432 
5433 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5434 static inline void register_as_ext3(void)
5435 {
5436 	int err = register_filesystem(&ext3_fs_type);
5437 	if (err)
5438 		printk(KERN_WARNING
5439 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5440 }
5441 
5442 static inline void unregister_as_ext3(void)
5443 {
5444 	unregister_filesystem(&ext3_fs_type);
5445 }
5446 
5447 static inline int ext3_feature_set_ok(struct super_block *sb)
5448 {
5449 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5450 		return 0;
5451 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5452 		return 0;
5453 	if (sb->s_flags & MS_RDONLY)
5454 		return 1;
5455 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5456 		return 0;
5457 	return 1;
5458 }
5459 #else
5460 static inline void register_as_ext3(void) { }
5461 static inline void unregister_as_ext3(void) { }
5462 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5463 #endif
5464 
5465 static struct file_system_type ext4_fs_type = {
5466 	.owner		= THIS_MODULE,
5467 	.name		= "ext4",
5468 	.mount		= ext4_mount,
5469 	.kill_sb	= kill_block_super,
5470 	.fs_flags	= FS_REQUIRES_DEV,
5471 };
5472 MODULE_ALIAS_FS("ext4");
5473 
5474 static int __init ext4_init_feat_adverts(void)
5475 {
5476 	struct ext4_features *ef;
5477 	int ret = -ENOMEM;
5478 
5479 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5480 	if (!ef)
5481 		goto out;
5482 
5483 	ef->f_kobj.kset = ext4_kset;
5484 	init_completion(&ef->f_kobj_unregister);
5485 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5486 				   "features");
5487 	if (ret) {
5488 		kfree(ef);
5489 		goto out;
5490 	}
5491 
5492 	ext4_feat = ef;
5493 	ret = 0;
5494 out:
5495 	return ret;
5496 }
5497 
5498 static void ext4_exit_feat_adverts(void)
5499 {
5500 	kobject_put(&ext4_feat->f_kobj);
5501 	wait_for_completion(&ext4_feat->f_kobj_unregister);
5502 	kfree(ext4_feat);
5503 }
5504 
5505 /* Shared across all ext4 file systems */
5506 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5507 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5508 
5509 static int __init ext4_init_fs(void)
5510 {
5511 	int i, err;
5512 
5513 	ext4_li_info = NULL;
5514 	mutex_init(&ext4_li_mtx);
5515 
5516 	/* Build-time check for flags consistency */
5517 	ext4_check_flag_values();
5518 
5519 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5520 		mutex_init(&ext4__aio_mutex[i]);
5521 		init_waitqueue_head(&ext4__ioend_wq[i]);
5522 	}
5523 
5524 	err = ext4_init_es();
5525 	if (err)
5526 		return err;
5527 
5528 	err = ext4_init_pageio();
5529 	if (err)
5530 		goto out7;
5531 
5532 	err = ext4_init_system_zone();
5533 	if (err)
5534 		goto out6;
5535 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5536 	if (!ext4_kset) {
5537 		err = -ENOMEM;
5538 		goto out5;
5539 	}
5540 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5541 
5542 	err = ext4_init_feat_adverts();
5543 	if (err)
5544 		goto out4;
5545 
5546 	err = ext4_init_mballoc();
5547 	if (err)
5548 		goto out2;
5549 	else
5550 		ext4_mballoc_ready = 1;
5551 	err = init_inodecache();
5552 	if (err)
5553 		goto out1;
5554 	register_as_ext3();
5555 	register_as_ext2();
5556 	err = register_filesystem(&ext4_fs_type);
5557 	if (err)
5558 		goto out;
5559 
5560 	return 0;
5561 out:
5562 	unregister_as_ext2();
5563 	unregister_as_ext3();
5564 	destroy_inodecache();
5565 out1:
5566 	ext4_mballoc_ready = 0;
5567 	ext4_exit_mballoc();
5568 out2:
5569 	ext4_exit_feat_adverts();
5570 out4:
5571 	if (ext4_proc_root)
5572 		remove_proc_entry("fs/ext4", NULL);
5573 	kset_unregister(ext4_kset);
5574 out5:
5575 	ext4_exit_system_zone();
5576 out6:
5577 	ext4_exit_pageio();
5578 out7:
5579 	ext4_exit_es();
5580 
5581 	return err;
5582 }
5583 
5584 static void __exit ext4_exit_fs(void)
5585 {
5586 	ext4_destroy_lazyinit_thread();
5587 	unregister_as_ext2();
5588 	unregister_as_ext3();
5589 	unregister_filesystem(&ext4_fs_type);
5590 	destroy_inodecache();
5591 	ext4_exit_mballoc();
5592 	ext4_exit_feat_adverts();
5593 	remove_proc_entry("fs/ext4", NULL);
5594 	kset_unregister(ext4_kset);
5595 	ext4_exit_system_zone();
5596 	ext4_exit_pageio();
5597 	ext4_exit_es();
5598 }
5599 
5600 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5601 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5602 MODULE_LICENSE("GPL");
5603 module_init(ext4_init_fs)
5604 module_exit(ext4_exit_fs)
5605