1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static DEFINE_MUTEX(ext4_li_mtx); 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static void ext4_update_super(struct super_block *sb); 69 static int ext4_commit_super(struct super_block *sb); 70 static int ext4_mark_recovery_complete(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_clear_journal_err(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_sync_fs(struct super_block *sb, int wait); 75 static int ext4_remount(struct super_block *sb, int *flags, char *data); 76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 77 static int ext4_unfreeze(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * page fault path: 93 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 94 * -> page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_lock 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 103 * page lock 104 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 105 * i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> mmap_lock 109 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 110 * 111 * writepages: 112 * transaction start -> page lock(s) -> i_data_sem (rw) 113 */ 114 115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 116 static struct file_system_type ext2_fs_type = { 117 .owner = THIS_MODULE, 118 .name = "ext2", 119 .mount = ext4_mount, 120 .kill_sb = kill_block_super, 121 .fs_flags = FS_REQUIRES_DEV, 122 }; 123 MODULE_ALIAS_FS("ext2"); 124 MODULE_ALIAS("ext2"); 125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 126 #else 127 #define IS_EXT2_SB(sb) (0) 128 #endif 129 130 131 static struct file_system_type ext3_fs_type = { 132 .owner = THIS_MODULE, 133 .name = "ext3", 134 .mount = ext4_mount, 135 .kill_sb = kill_block_super, 136 .fs_flags = FS_REQUIRES_DEV, 137 }; 138 MODULE_ALIAS_FS("ext3"); 139 MODULE_ALIAS("ext3"); 140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 141 142 143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 144 bh_end_io_t *end_io) 145 { 146 /* 147 * buffer's verified bit is no longer valid after reading from 148 * disk again due to write out error, clear it to make sure we 149 * recheck the buffer contents. 150 */ 151 clear_buffer_verified(bh); 152 153 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 154 get_bh(bh); 155 submit_bh(REQ_OP_READ, op_flags, bh); 156 } 157 158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 159 bh_end_io_t *end_io) 160 { 161 BUG_ON(!buffer_locked(bh)); 162 163 if (ext4_buffer_uptodate(bh)) { 164 unlock_buffer(bh); 165 return; 166 } 167 __ext4_read_bh(bh, op_flags, end_io); 168 } 169 170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 171 { 172 BUG_ON(!buffer_locked(bh)); 173 174 if (ext4_buffer_uptodate(bh)) { 175 unlock_buffer(bh); 176 return 0; 177 } 178 179 __ext4_read_bh(bh, op_flags, end_io); 180 181 wait_on_buffer(bh); 182 if (buffer_uptodate(bh)) 183 return 0; 184 return -EIO; 185 } 186 187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 188 { 189 if (trylock_buffer(bh)) { 190 if (wait) 191 return ext4_read_bh(bh, op_flags, NULL); 192 ext4_read_bh_nowait(bh, op_flags, NULL); 193 return 0; 194 } 195 if (wait) { 196 wait_on_buffer(bh); 197 if (buffer_uptodate(bh)) 198 return 0; 199 return -EIO; 200 } 201 return 0; 202 } 203 204 /* 205 * This works like __bread_gfp() except it uses ERR_PTR for error 206 * returns. Currently with sb_bread it's impossible to distinguish 207 * between ENOMEM and EIO situations (since both result in a NULL 208 * return. 209 */ 210 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 211 sector_t block, int op_flags, 212 gfp_t gfp) 213 { 214 struct buffer_head *bh; 215 int ret; 216 217 bh = sb_getblk_gfp(sb, block, gfp); 218 if (bh == NULL) 219 return ERR_PTR(-ENOMEM); 220 if (ext4_buffer_uptodate(bh)) 221 return bh; 222 223 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 224 if (ret) { 225 put_bh(bh); 226 return ERR_PTR(ret); 227 } 228 return bh; 229 } 230 231 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 232 int op_flags) 233 { 234 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 235 } 236 237 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 238 sector_t block) 239 { 240 return __ext4_sb_bread_gfp(sb, block, 0, 0); 241 } 242 243 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 244 { 245 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 246 247 if (likely(bh)) { 248 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 249 brelse(bh); 250 } 251 } 252 253 static int ext4_verify_csum_type(struct super_block *sb, 254 struct ext4_super_block *es) 255 { 256 if (!ext4_has_feature_metadata_csum(sb)) 257 return 1; 258 259 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 260 } 261 262 static __le32 ext4_superblock_csum(struct super_block *sb, 263 struct ext4_super_block *es) 264 { 265 struct ext4_sb_info *sbi = EXT4_SB(sb); 266 int offset = offsetof(struct ext4_super_block, s_checksum); 267 __u32 csum; 268 269 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 270 271 return cpu_to_le32(csum); 272 } 273 274 static int ext4_superblock_csum_verify(struct super_block *sb, 275 struct ext4_super_block *es) 276 { 277 if (!ext4_has_metadata_csum(sb)) 278 return 1; 279 280 return es->s_checksum == ext4_superblock_csum(sb, es); 281 } 282 283 void ext4_superblock_csum_set(struct super_block *sb) 284 { 285 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 286 287 if (!ext4_has_metadata_csum(sb)) 288 return; 289 290 es->s_checksum = ext4_superblock_csum(sb, es); 291 } 292 293 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 294 struct ext4_group_desc *bg) 295 { 296 return le32_to_cpu(bg->bg_block_bitmap_lo) | 297 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 298 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 299 } 300 301 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 302 struct ext4_group_desc *bg) 303 { 304 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 305 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 306 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 307 } 308 309 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 310 struct ext4_group_desc *bg) 311 { 312 return le32_to_cpu(bg->bg_inode_table_lo) | 313 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 314 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 315 } 316 317 __u32 ext4_free_group_clusters(struct super_block *sb, 318 struct ext4_group_desc *bg) 319 { 320 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 321 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 322 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 323 } 324 325 __u32 ext4_free_inodes_count(struct super_block *sb, 326 struct ext4_group_desc *bg) 327 { 328 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 329 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 330 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 331 } 332 333 __u32 ext4_used_dirs_count(struct super_block *sb, 334 struct ext4_group_desc *bg) 335 { 336 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 337 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 338 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 339 } 340 341 __u32 ext4_itable_unused_count(struct super_block *sb, 342 struct ext4_group_desc *bg) 343 { 344 return le16_to_cpu(bg->bg_itable_unused_lo) | 345 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 346 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 347 } 348 349 void ext4_block_bitmap_set(struct super_block *sb, 350 struct ext4_group_desc *bg, ext4_fsblk_t blk) 351 { 352 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 353 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 354 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 355 } 356 357 void ext4_inode_bitmap_set(struct super_block *sb, 358 struct ext4_group_desc *bg, ext4_fsblk_t blk) 359 { 360 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 361 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 362 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 363 } 364 365 void ext4_inode_table_set(struct super_block *sb, 366 struct ext4_group_desc *bg, ext4_fsblk_t blk) 367 { 368 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 369 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 370 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 371 } 372 373 void ext4_free_group_clusters_set(struct super_block *sb, 374 struct ext4_group_desc *bg, __u32 count) 375 { 376 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 377 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 378 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 379 } 380 381 void ext4_free_inodes_set(struct super_block *sb, 382 struct ext4_group_desc *bg, __u32 count) 383 { 384 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 385 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 386 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 387 } 388 389 void ext4_used_dirs_set(struct super_block *sb, 390 struct ext4_group_desc *bg, __u32 count) 391 { 392 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 393 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 394 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 395 } 396 397 void ext4_itable_unused_set(struct super_block *sb, 398 struct ext4_group_desc *bg, __u32 count) 399 { 400 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 401 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 402 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 403 } 404 405 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 406 { 407 now = clamp_val(now, 0, (1ull << 40) - 1); 408 409 *lo = cpu_to_le32(lower_32_bits(now)); 410 *hi = upper_32_bits(now); 411 } 412 413 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 414 { 415 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 416 } 417 #define ext4_update_tstamp(es, tstamp) \ 418 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 419 ktime_get_real_seconds()) 420 #define ext4_get_tstamp(es, tstamp) \ 421 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 422 423 /* 424 * The del_gendisk() function uninitializes the disk-specific data 425 * structures, including the bdi structure, without telling anyone 426 * else. Once this happens, any attempt to call mark_buffer_dirty() 427 * (for example, by ext4_commit_super), will cause a kernel OOPS. 428 * This is a kludge to prevent these oops until we can put in a proper 429 * hook in del_gendisk() to inform the VFS and file system layers. 430 */ 431 static int block_device_ejected(struct super_block *sb) 432 { 433 struct inode *bd_inode = sb->s_bdev->bd_inode; 434 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 435 436 return bdi->dev == NULL; 437 } 438 439 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 440 { 441 struct super_block *sb = journal->j_private; 442 struct ext4_sb_info *sbi = EXT4_SB(sb); 443 int error = is_journal_aborted(journal); 444 struct ext4_journal_cb_entry *jce; 445 446 BUG_ON(txn->t_state == T_FINISHED); 447 448 ext4_process_freed_data(sb, txn->t_tid); 449 450 spin_lock(&sbi->s_md_lock); 451 while (!list_empty(&txn->t_private_list)) { 452 jce = list_entry(txn->t_private_list.next, 453 struct ext4_journal_cb_entry, jce_list); 454 list_del_init(&jce->jce_list); 455 spin_unlock(&sbi->s_md_lock); 456 jce->jce_func(sb, jce, error); 457 spin_lock(&sbi->s_md_lock); 458 } 459 spin_unlock(&sbi->s_md_lock); 460 } 461 462 /* 463 * This writepage callback for write_cache_pages() 464 * takes care of a few cases after page cleaning. 465 * 466 * write_cache_pages() already checks for dirty pages 467 * and calls clear_page_dirty_for_io(), which we want, 468 * to write protect the pages. 469 * 470 * However, we may have to redirty a page (see below.) 471 */ 472 static int ext4_journalled_writepage_callback(struct page *page, 473 struct writeback_control *wbc, 474 void *data) 475 { 476 transaction_t *transaction = (transaction_t *) data; 477 struct buffer_head *bh, *head; 478 struct journal_head *jh; 479 480 bh = head = page_buffers(page); 481 do { 482 /* 483 * We have to redirty a page in these cases: 484 * 1) If buffer is dirty, it means the page was dirty because it 485 * contains a buffer that needs checkpointing. So the dirty bit 486 * needs to be preserved so that checkpointing writes the buffer 487 * properly. 488 * 2) If buffer is not part of the committing transaction 489 * (we may have just accidentally come across this buffer because 490 * inode range tracking is not exact) or if the currently running 491 * transaction already contains this buffer as well, dirty bit 492 * needs to be preserved so that the buffer gets writeprotected 493 * properly on running transaction's commit. 494 */ 495 jh = bh2jh(bh); 496 if (buffer_dirty(bh) || 497 (jh && (jh->b_transaction != transaction || 498 jh->b_next_transaction))) { 499 redirty_page_for_writepage(wbc, page); 500 goto out; 501 } 502 } while ((bh = bh->b_this_page) != head); 503 504 out: 505 return AOP_WRITEPAGE_ACTIVATE; 506 } 507 508 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 509 { 510 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 511 struct writeback_control wbc = { 512 .sync_mode = WB_SYNC_ALL, 513 .nr_to_write = LONG_MAX, 514 .range_start = jinode->i_dirty_start, 515 .range_end = jinode->i_dirty_end, 516 }; 517 518 return write_cache_pages(mapping, &wbc, 519 ext4_journalled_writepage_callback, 520 jinode->i_transaction); 521 } 522 523 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 524 { 525 int ret; 526 527 if (ext4_should_journal_data(jinode->i_vfs_inode)) 528 ret = ext4_journalled_submit_inode_data_buffers(jinode); 529 else 530 ret = jbd2_journal_submit_inode_data_buffers(jinode); 531 532 return ret; 533 } 534 535 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 536 { 537 int ret = 0; 538 539 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 540 ret = jbd2_journal_finish_inode_data_buffers(jinode); 541 542 return ret; 543 } 544 545 static bool system_going_down(void) 546 { 547 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 548 || system_state == SYSTEM_RESTART; 549 } 550 551 struct ext4_err_translation { 552 int code; 553 int errno; 554 }; 555 556 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 557 558 static struct ext4_err_translation err_translation[] = { 559 EXT4_ERR_TRANSLATE(EIO), 560 EXT4_ERR_TRANSLATE(ENOMEM), 561 EXT4_ERR_TRANSLATE(EFSBADCRC), 562 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 563 EXT4_ERR_TRANSLATE(ENOSPC), 564 EXT4_ERR_TRANSLATE(ENOKEY), 565 EXT4_ERR_TRANSLATE(EROFS), 566 EXT4_ERR_TRANSLATE(EFBIG), 567 EXT4_ERR_TRANSLATE(EEXIST), 568 EXT4_ERR_TRANSLATE(ERANGE), 569 EXT4_ERR_TRANSLATE(EOVERFLOW), 570 EXT4_ERR_TRANSLATE(EBUSY), 571 EXT4_ERR_TRANSLATE(ENOTDIR), 572 EXT4_ERR_TRANSLATE(ENOTEMPTY), 573 EXT4_ERR_TRANSLATE(ESHUTDOWN), 574 EXT4_ERR_TRANSLATE(EFAULT), 575 }; 576 577 static int ext4_errno_to_code(int errno) 578 { 579 int i; 580 581 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 582 if (err_translation[i].errno == errno) 583 return err_translation[i].code; 584 return EXT4_ERR_UNKNOWN; 585 } 586 587 static void save_error_info(struct super_block *sb, int error, 588 __u32 ino, __u64 block, 589 const char *func, unsigned int line) 590 { 591 struct ext4_sb_info *sbi = EXT4_SB(sb); 592 593 /* We default to EFSCORRUPTED error... */ 594 if (error == 0) 595 error = EFSCORRUPTED; 596 597 spin_lock(&sbi->s_error_lock); 598 sbi->s_add_error_count++; 599 sbi->s_last_error_code = error; 600 sbi->s_last_error_line = line; 601 sbi->s_last_error_ino = ino; 602 sbi->s_last_error_block = block; 603 sbi->s_last_error_func = func; 604 sbi->s_last_error_time = ktime_get_real_seconds(); 605 if (!sbi->s_first_error_time) { 606 sbi->s_first_error_code = error; 607 sbi->s_first_error_line = line; 608 sbi->s_first_error_ino = ino; 609 sbi->s_first_error_block = block; 610 sbi->s_first_error_func = func; 611 sbi->s_first_error_time = sbi->s_last_error_time; 612 } 613 spin_unlock(&sbi->s_error_lock); 614 } 615 616 /* Deal with the reporting of failure conditions on a filesystem such as 617 * inconsistencies detected or read IO failures. 618 * 619 * On ext2, we can store the error state of the filesystem in the 620 * superblock. That is not possible on ext4, because we may have other 621 * write ordering constraints on the superblock which prevent us from 622 * writing it out straight away; and given that the journal is about to 623 * be aborted, we can't rely on the current, or future, transactions to 624 * write out the superblock safely. 625 * 626 * We'll just use the jbd2_journal_abort() error code to record an error in 627 * the journal instead. On recovery, the journal will complain about 628 * that error until we've noted it down and cleared it. 629 * 630 * If force_ro is set, we unconditionally force the filesystem into an 631 * ABORT|READONLY state, unless the error response on the fs has been set to 632 * panic in which case we take the easy way out and panic immediately. This is 633 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 634 * at a critical moment in log management. 635 */ 636 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 637 __u32 ino, __u64 block, 638 const char *func, unsigned int line) 639 { 640 journal_t *journal = EXT4_SB(sb)->s_journal; 641 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 642 643 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 644 if (test_opt(sb, WARN_ON_ERROR)) 645 WARN_ON_ONCE(1); 646 647 if (!continue_fs && !sb_rdonly(sb)) { 648 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 649 if (journal) 650 jbd2_journal_abort(journal, -EIO); 651 } 652 653 if (!bdev_read_only(sb->s_bdev)) { 654 save_error_info(sb, error, ino, block, func, line); 655 /* 656 * In case the fs should keep running, we need to writeout 657 * superblock through the journal. Due to lock ordering 658 * constraints, it may not be safe to do it right here so we 659 * defer superblock flushing to a workqueue. 660 */ 661 if (continue_fs && journal) 662 schedule_work(&EXT4_SB(sb)->s_error_work); 663 else 664 ext4_commit_super(sb); 665 } 666 667 /* 668 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 669 * could panic during 'reboot -f' as the underlying device got already 670 * disabled. 671 */ 672 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 673 panic("EXT4-fs (device %s): panic forced after error\n", 674 sb->s_id); 675 } 676 677 if (sb_rdonly(sb) || continue_fs) 678 return; 679 680 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 681 /* 682 * Make sure updated value of ->s_mount_flags will be visible before 683 * ->s_flags update 684 */ 685 smp_wmb(); 686 sb->s_flags |= SB_RDONLY; 687 } 688 689 static void flush_stashed_error_work(struct work_struct *work) 690 { 691 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 692 s_error_work); 693 journal_t *journal = sbi->s_journal; 694 handle_t *handle; 695 696 /* 697 * If the journal is still running, we have to write out superblock 698 * through the journal to avoid collisions of other journalled sb 699 * updates. 700 * 701 * We use directly jbd2 functions here to avoid recursing back into 702 * ext4 error handling code during handling of previous errors. 703 */ 704 if (!sb_rdonly(sbi->s_sb) && journal) { 705 struct buffer_head *sbh = sbi->s_sbh; 706 handle = jbd2_journal_start(journal, 1); 707 if (IS_ERR(handle)) 708 goto write_directly; 709 if (jbd2_journal_get_write_access(handle, sbh)) { 710 jbd2_journal_stop(handle); 711 goto write_directly; 712 } 713 ext4_update_super(sbi->s_sb); 714 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 715 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 716 "superblock detected"); 717 clear_buffer_write_io_error(sbh); 718 set_buffer_uptodate(sbh); 719 } 720 721 if (jbd2_journal_dirty_metadata(handle, sbh)) { 722 jbd2_journal_stop(handle); 723 goto write_directly; 724 } 725 jbd2_journal_stop(handle); 726 ext4_notify_error_sysfs(sbi); 727 return; 728 } 729 write_directly: 730 /* 731 * Write through journal failed. Write sb directly to get error info 732 * out and hope for the best. 733 */ 734 ext4_commit_super(sbi->s_sb); 735 ext4_notify_error_sysfs(sbi); 736 } 737 738 #define ext4_error_ratelimit(sb) \ 739 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 740 "EXT4-fs error") 741 742 void __ext4_error(struct super_block *sb, const char *function, 743 unsigned int line, bool force_ro, int error, __u64 block, 744 const char *fmt, ...) 745 { 746 struct va_format vaf; 747 va_list args; 748 749 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 750 return; 751 752 trace_ext4_error(sb, function, line); 753 if (ext4_error_ratelimit(sb)) { 754 va_start(args, fmt); 755 vaf.fmt = fmt; 756 vaf.va = &args; 757 printk(KERN_CRIT 758 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 759 sb->s_id, function, line, current->comm, &vaf); 760 va_end(args); 761 } 762 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 763 } 764 765 void __ext4_error_inode(struct inode *inode, const char *function, 766 unsigned int line, ext4_fsblk_t block, int error, 767 const char *fmt, ...) 768 { 769 va_list args; 770 struct va_format vaf; 771 772 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 773 return; 774 775 trace_ext4_error(inode->i_sb, function, line); 776 if (ext4_error_ratelimit(inode->i_sb)) { 777 va_start(args, fmt); 778 vaf.fmt = fmt; 779 vaf.va = &args; 780 if (block) 781 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 782 "inode #%lu: block %llu: comm %s: %pV\n", 783 inode->i_sb->s_id, function, line, inode->i_ino, 784 block, current->comm, &vaf); 785 else 786 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 787 "inode #%lu: comm %s: %pV\n", 788 inode->i_sb->s_id, function, line, inode->i_ino, 789 current->comm, &vaf); 790 va_end(args); 791 } 792 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 793 function, line); 794 } 795 796 void __ext4_error_file(struct file *file, const char *function, 797 unsigned int line, ext4_fsblk_t block, 798 const char *fmt, ...) 799 { 800 va_list args; 801 struct va_format vaf; 802 struct inode *inode = file_inode(file); 803 char pathname[80], *path; 804 805 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 806 return; 807 808 trace_ext4_error(inode->i_sb, function, line); 809 if (ext4_error_ratelimit(inode->i_sb)) { 810 path = file_path(file, pathname, sizeof(pathname)); 811 if (IS_ERR(path)) 812 path = "(unknown)"; 813 va_start(args, fmt); 814 vaf.fmt = fmt; 815 vaf.va = &args; 816 if (block) 817 printk(KERN_CRIT 818 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 819 "block %llu: comm %s: path %s: %pV\n", 820 inode->i_sb->s_id, function, line, inode->i_ino, 821 block, current->comm, path, &vaf); 822 else 823 printk(KERN_CRIT 824 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 825 "comm %s: path %s: %pV\n", 826 inode->i_sb->s_id, function, line, inode->i_ino, 827 current->comm, path, &vaf); 828 va_end(args); 829 } 830 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 831 function, line); 832 } 833 834 const char *ext4_decode_error(struct super_block *sb, int errno, 835 char nbuf[16]) 836 { 837 char *errstr = NULL; 838 839 switch (errno) { 840 case -EFSCORRUPTED: 841 errstr = "Corrupt filesystem"; 842 break; 843 case -EFSBADCRC: 844 errstr = "Filesystem failed CRC"; 845 break; 846 case -EIO: 847 errstr = "IO failure"; 848 break; 849 case -ENOMEM: 850 errstr = "Out of memory"; 851 break; 852 case -EROFS: 853 if (!sb || (EXT4_SB(sb)->s_journal && 854 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 855 errstr = "Journal has aborted"; 856 else 857 errstr = "Readonly filesystem"; 858 break; 859 default: 860 /* If the caller passed in an extra buffer for unknown 861 * errors, textualise them now. Else we just return 862 * NULL. */ 863 if (nbuf) { 864 /* Check for truncated error codes... */ 865 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 866 errstr = nbuf; 867 } 868 break; 869 } 870 871 return errstr; 872 } 873 874 /* __ext4_std_error decodes expected errors from journaling functions 875 * automatically and invokes the appropriate error response. */ 876 877 void __ext4_std_error(struct super_block *sb, const char *function, 878 unsigned int line, int errno) 879 { 880 char nbuf[16]; 881 const char *errstr; 882 883 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 884 return; 885 886 /* Special case: if the error is EROFS, and we're not already 887 * inside a transaction, then there's really no point in logging 888 * an error. */ 889 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 890 return; 891 892 if (ext4_error_ratelimit(sb)) { 893 errstr = ext4_decode_error(sb, errno, nbuf); 894 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 895 sb->s_id, function, line, errstr); 896 } 897 898 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 899 } 900 901 void __ext4_msg(struct super_block *sb, 902 const char *prefix, const char *fmt, ...) 903 { 904 struct va_format vaf; 905 va_list args; 906 907 atomic_inc(&EXT4_SB(sb)->s_msg_count); 908 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 909 return; 910 911 va_start(args, fmt); 912 vaf.fmt = fmt; 913 vaf.va = &args; 914 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 915 va_end(args); 916 } 917 918 static int ext4_warning_ratelimit(struct super_block *sb) 919 { 920 atomic_inc(&EXT4_SB(sb)->s_warning_count); 921 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 922 "EXT4-fs warning"); 923 } 924 925 void __ext4_warning(struct super_block *sb, const char *function, 926 unsigned int line, const char *fmt, ...) 927 { 928 struct va_format vaf; 929 va_list args; 930 931 if (!ext4_warning_ratelimit(sb)) 932 return; 933 934 va_start(args, fmt); 935 vaf.fmt = fmt; 936 vaf.va = &args; 937 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 938 sb->s_id, function, line, &vaf); 939 va_end(args); 940 } 941 942 void __ext4_warning_inode(const struct inode *inode, const char *function, 943 unsigned int line, const char *fmt, ...) 944 { 945 struct va_format vaf; 946 va_list args; 947 948 if (!ext4_warning_ratelimit(inode->i_sb)) 949 return; 950 951 va_start(args, fmt); 952 vaf.fmt = fmt; 953 vaf.va = &args; 954 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 955 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 956 function, line, inode->i_ino, current->comm, &vaf); 957 va_end(args); 958 } 959 960 void __ext4_grp_locked_error(const char *function, unsigned int line, 961 struct super_block *sb, ext4_group_t grp, 962 unsigned long ino, ext4_fsblk_t block, 963 const char *fmt, ...) 964 __releases(bitlock) 965 __acquires(bitlock) 966 { 967 struct va_format vaf; 968 va_list args; 969 970 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 971 return; 972 973 trace_ext4_error(sb, function, line); 974 if (ext4_error_ratelimit(sb)) { 975 va_start(args, fmt); 976 vaf.fmt = fmt; 977 vaf.va = &args; 978 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 979 sb->s_id, function, line, grp); 980 if (ino) 981 printk(KERN_CONT "inode %lu: ", ino); 982 if (block) 983 printk(KERN_CONT "block %llu:", 984 (unsigned long long) block); 985 printk(KERN_CONT "%pV\n", &vaf); 986 va_end(args); 987 } 988 989 if (test_opt(sb, ERRORS_CONT)) { 990 if (test_opt(sb, WARN_ON_ERROR)) 991 WARN_ON_ONCE(1); 992 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 993 if (!bdev_read_only(sb->s_bdev)) { 994 save_error_info(sb, EFSCORRUPTED, ino, block, function, 995 line); 996 schedule_work(&EXT4_SB(sb)->s_error_work); 997 } 998 return; 999 } 1000 ext4_unlock_group(sb, grp); 1001 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1002 /* 1003 * We only get here in the ERRORS_RO case; relocking the group 1004 * may be dangerous, but nothing bad will happen since the 1005 * filesystem will have already been marked read/only and the 1006 * journal has been aborted. We return 1 as a hint to callers 1007 * who might what to use the return value from 1008 * ext4_grp_locked_error() to distinguish between the 1009 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1010 * aggressively from the ext4 function in question, with a 1011 * more appropriate error code. 1012 */ 1013 ext4_lock_group(sb, grp); 1014 return; 1015 } 1016 1017 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1018 ext4_group_t group, 1019 unsigned int flags) 1020 { 1021 struct ext4_sb_info *sbi = EXT4_SB(sb); 1022 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1023 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1024 int ret; 1025 1026 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1027 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1028 &grp->bb_state); 1029 if (!ret) 1030 percpu_counter_sub(&sbi->s_freeclusters_counter, 1031 grp->bb_free); 1032 } 1033 1034 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1035 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1036 &grp->bb_state); 1037 if (!ret && gdp) { 1038 int count; 1039 1040 count = ext4_free_inodes_count(sb, gdp); 1041 percpu_counter_sub(&sbi->s_freeinodes_counter, 1042 count); 1043 } 1044 } 1045 } 1046 1047 void ext4_update_dynamic_rev(struct super_block *sb) 1048 { 1049 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1050 1051 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1052 return; 1053 1054 ext4_warning(sb, 1055 "updating to rev %d because of new feature flag, " 1056 "running e2fsck is recommended", 1057 EXT4_DYNAMIC_REV); 1058 1059 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1060 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1061 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1062 /* leave es->s_feature_*compat flags alone */ 1063 /* es->s_uuid will be set by e2fsck if empty */ 1064 1065 /* 1066 * The rest of the superblock fields should be zero, and if not it 1067 * means they are likely already in use, so leave them alone. We 1068 * can leave it up to e2fsck to clean up any inconsistencies there. 1069 */ 1070 } 1071 1072 /* 1073 * Open the external journal device 1074 */ 1075 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1076 { 1077 struct block_device *bdev; 1078 1079 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1080 if (IS_ERR(bdev)) 1081 goto fail; 1082 return bdev; 1083 1084 fail: 1085 ext4_msg(sb, KERN_ERR, 1086 "failed to open journal device unknown-block(%u,%u) %ld", 1087 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1088 return NULL; 1089 } 1090 1091 /* 1092 * Release the journal device 1093 */ 1094 static void ext4_blkdev_put(struct block_device *bdev) 1095 { 1096 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1097 } 1098 1099 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1100 { 1101 struct block_device *bdev; 1102 bdev = sbi->s_journal_bdev; 1103 if (bdev) { 1104 ext4_blkdev_put(bdev); 1105 sbi->s_journal_bdev = NULL; 1106 } 1107 } 1108 1109 static inline struct inode *orphan_list_entry(struct list_head *l) 1110 { 1111 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1112 } 1113 1114 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1115 { 1116 struct list_head *l; 1117 1118 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1119 le32_to_cpu(sbi->s_es->s_last_orphan)); 1120 1121 printk(KERN_ERR "sb_info orphan list:\n"); 1122 list_for_each(l, &sbi->s_orphan) { 1123 struct inode *inode = orphan_list_entry(l); 1124 printk(KERN_ERR " " 1125 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1126 inode->i_sb->s_id, inode->i_ino, inode, 1127 inode->i_mode, inode->i_nlink, 1128 NEXT_ORPHAN(inode)); 1129 } 1130 } 1131 1132 #ifdef CONFIG_QUOTA 1133 static int ext4_quota_off(struct super_block *sb, int type); 1134 1135 static inline void ext4_quota_off_umount(struct super_block *sb) 1136 { 1137 int type; 1138 1139 /* Use our quota_off function to clear inode flags etc. */ 1140 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1141 ext4_quota_off(sb, type); 1142 } 1143 1144 /* 1145 * This is a helper function which is used in the mount/remount 1146 * codepaths (which holds s_umount) to fetch the quota file name. 1147 */ 1148 static inline char *get_qf_name(struct super_block *sb, 1149 struct ext4_sb_info *sbi, 1150 int type) 1151 { 1152 return rcu_dereference_protected(sbi->s_qf_names[type], 1153 lockdep_is_held(&sb->s_umount)); 1154 } 1155 #else 1156 static inline void ext4_quota_off_umount(struct super_block *sb) 1157 { 1158 } 1159 #endif 1160 1161 static void ext4_put_super(struct super_block *sb) 1162 { 1163 struct ext4_sb_info *sbi = EXT4_SB(sb); 1164 struct ext4_super_block *es = sbi->s_es; 1165 struct buffer_head **group_desc; 1166 struct flex_groups **flex_groups; 1167 int aborted = 0; 1168 int i, err; 1169 1170 ext4_unregister_li_request(sb); 1171 ext4_quota_off_umount(sb); 1172 1173 flush_work(&sbi->s_error_work); 1174 destroy_workqueue(sbi->rsv_conversion_wq); 1175 ext4_release_orphan_info(sb); 1176 1177 /* 1178 * Unregister sysfs before destroying jbd2 journal. 1179 * Since we could still access attr_journal_task attribute via sysfs 1180 * path which could have sbi->s_journal->j_task as NULL 1181 */ 1182 ext4_unregister_sysfs(sb); 1183 1184 if (sbi->s_journal) { 1185 aborted = is_journal_aborted(sbi->s_journal); 1186 err = jbd2_journal_destroy(sbi->s_journal); 1187 sbi->s_journal = NULL; 1188 if ((err < 0) && !aborted) { 1189 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1190 } 1191 } 1192 1193 ext4_es_unregister_shrinker(sbi); 1194 del_timer_sync(&sbi->s_err_report); 1195 ext4_release_system_zone(sb); 1196 ext4_mb_release(sb); 1197 ext4_ext_release(sb); 1198 1199 if (!sb_rdonly(sb) && !aborted) { 1200 ext4_clear_feature_journal_needs_recovery(sb); 1201 ext4_clear_feature_orphan_present(sb); 1202 es->s_state = cpu_to_le16(sbi->s_mount_state); 1203 } 1204 if (!sb_rdonly(sb)) 1205 ext4_commit_super(sb); 1206 1207 rcu_read_lock(); 1208 group_desc = rcu_dereference(sbi->s_group_desc); 1209 for (i = 0; i < sbi->s_gdb_count; i++) 1210 brelse(group_desc[i]); 1211 kvfree(group_desc); 1212 flex_groups = rcu_dereference(sbi->s_flex_groups); 1213 if (flex_groups) { 1214 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1215 kvfree(flex_groups[i]); 1216 kvfree(flex_groups); 1217 } 1218 rcu_read_unlock(); 1219 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1220 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1221 percpu_counter_destroy(&sbi->s_dirs_counter); 1222 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1223 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1224 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1225 #ifdef CONFIG_QUOTA 1226 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1227 kfree(get_qf_name(sb, sbi, i)); 1228 #endif 1229 1230 /* Debugging code just in case the in-memory inode orphan list 1231 * isn't empty. The on-disk one can be non-empty if we've 1232 * detected an error and taken the fs readonly, but the 1233 * in-memory list had better be clean by this point. */ 1234 if (!list_empty(&sbi->s_orphan)) 1235 dump_orphan_list(sb, sbi); 1236 ASSERT(list_empty(&sbi->s_orphan)); 1237 1238 sync_blockdev(sb->s_bdev); 1239 invalidate_bdev(sb->s_bdev); 1240 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1241 /* 1242 * Invalidate the journal device's buffers. We don't want them 1243 * floating about in memory - the physical journal device may 1244 * hotswapped, and it breaks the `ro-after' testing code. 1245 */ 1246 sync_blockdev(sbi->s_journal_bdev); 1247 invalidate_bdev(sbi->s_journal_bdev); 1248 ext4_blkdev_remove(sbi); 1249 } 1250 1251 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1252 sbi->s_ea_inode_cache = NULL; 1253 1254 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1255 sbi->s_ea_block_cache = NULL; 1256 1257 ext4_stop_mmpd(sbi); 1258 1259 brelse(sbi->s_sbh); 1260 sb->s_fs_info = NULL; 1261 /* 1262 * Now that we are completely done shutting down the 1263 * superblock, we need to actually destroy the kobject. 1264 */ 1265 kobject_put(&sbi->s_kobj); 1266 wait_for_completion(&sbi->s_kobj_unregister); 1267 if (sbi->s_chksum_driver) 1268 crypto_free_shash(sbi->s_chksum_driver); 1269 kfree(sbi->s_blockgroup_lock); 1270 fs_put_dax(sbi->s_daxdev); 1271 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1272 #ifdef CONFIG_UNICODE 1273 utf8_unload(sb->s_encoding); 1274 #endif 1275 kfree(sbi); 1276 } 1277 1278 static struct kmem_cache *ext4_inode_cachep; 1279 1280 /* 1281 * Called inside transaction, so use GFP_NOFS 1282 */ 1283 static struct inode *ext4_alloc_inode(struct super_block *sb) 1284 { 1285 struct ext4_inode_info *ei; 1286 1287 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1288 if (!ei) 1289 return NULL; 1290 1291 inode_set_iversion(&ei->vfs_inode, 1); 1292 spin_lock_init(&ei->i_raw_lock); 1293 INIT_LIST_HEAD(&ei->i_prealloc_list); 1294 atomic_set(&ei->i_prealloc_active, 0); 1295 spin_lock_init(&ei->i_prealloc_lock); 1296 ext4_es_init_tree(&ei->i_es_tree); 1297 rwlock_init(&ei->i_es_lock); 1298 INIT_LIST_HEAD(&ei->i_es_list); 1299 ei->i_es_all_nr = 0; 1300 ei->i_es_shk_nr = 0; 1301 ei->i_es_shrink_lblk = 0; 1302 ei->i_reserved_data_blocks = 0; 1303 spin_lock_init(&(ei->i_block_reservation_lock)); 1304 ext4_init_pending_tree(&ei->i_pending_tree); 1305 #ifdef CONFIG_QUOTA 1306 ei->i_reserved_quota = 0; 1307 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1308 #endif 1309 ei->jinode = NULL; 1310 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1311 spin_lock_init(&ei->i_completed_io_lock); 1312 ei->i_sync_tid = 0; 1313 ei->i_datasync_tid = 0; 1314 atomic_set(&ei->i_unwritten, 0); 1315 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1316 ext4_fc_init_inode(&ei->vfs_inode); 1317 mutex_init(&ei->i_fc_lock); 1318 return &ei->vfs_inode; 1319 } 1320 1321 static int ext4_drop_inode(struct inode *inode) 1322 { 1323 int drop = generic_drop_inode(inode); 1324 1325 if (!drop) 1326 drop = fscrypt_drop_inode(inode); 1327 1328 trace_ext4_drop_inode(inode, drop); 1329 return drop; 1330 } 1331 1332 static void ext4_free_in_core_inode(struct inode *inode) 1333 { 1334 fscrypt_free_inode(inode); 1335 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1336 pr_warn("%s: inode %ld still in fc list", 1337 __func__, inode->i_ino); 1338 } 1339 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1340 } 1341 1342 static void ext4_destroy_inode(struct inode *inode) 1343 { 1344 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1345 ext4_msg(inode->i_sb, KERN_ERR, 1346 "Inode %lu (%p): orphan list check failed!", 1347 inode->i_ino, EXT4_I(inode)); 1348 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1349 EXT4_I(inode), sizeof(struct ext4_inode_info), 1350 true); 1351 dump_stack(); 1352 } 1353 1354 if (EXT4_I(inode)->i_reserved_data_blocks) 1355 ext4_msg(inode->i_sb, KERN_ERR, 1356 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!", 1357 inode->i_ino, EXT4_I(inode), 1358 EXT4_I(inode)->i_reserved_data_blocks); 1359 } 1360 1361 static void init_once(void *foo) 1362 { 1363 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1364 1365 INIT_LIST_HEAD(&ei->i_orphan); 1366 init_rwsem(&ei->xattr_sem); 1367 init_rwsem(&ei->i_data_sem); 1368 inode_init_once(&ei->vfs_inode); 1369 ext4_fc_init_inode(&ei->vfs_inode); 1370 } 1371 1372 static int __init init_inodecache(void) 1373 { 1374 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1375 sizeof(struct ext4_inode_info), 0, 1376 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1377 SLAB_ACCOUNT), 1378 offsetof(struct ext4_inode_info, i_data), 1379 sizeof_field(struct ext4_inode_info, i_data), 1380 init_once); 1381 if (ext4_inode_cachep == NULL) 1382 return -ENOMEM; 1383 return 0; 1384 } 1385 1386 static void destroy_inodecache(void) 1387 { 1388 /* 1389 * Make sure all delayed rcu free inodes are flushed before we 1390 * destroy cache. 1391 */ 1392 rcu_barrier(); 1393 kmem_cache_destroy(ext4_inode_cachep); 1394 } 1395 1396 void ext4_clear_inode(struct inode *inode) 1397 { 1398 ext4_fc_del(inode); 1399 invalidate_inode_buffers(inode); 1400 clear_inode(inode); 1401 ext4_discard_preallocations(inode, 0); 1402 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1403 dquot_drop(inode); 1404 if (EXT4_I(inode)->jinode) { 1405 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1406 EXT4_I(inode)->jinode); 1407 jbd2_free_inode(EXT4_I(inode)->jinode); 1408 EXT4_I(inode)->jinode = NULL; 1409 } 1410 fscrypt_put_encryption_info(inode); 1411 fsverity_cleanup_inode(inode); 1412 } 1413 1414 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1415 u64 ino, u32 generation) 1416 { 1417 struct inode *inode; 1418 1419 /* 1420 * Currently we don't know the generation for parent directory, so 1421 * a generation of 0 means "accept any" 1422 */ 1423 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1424 if (IS_ERR(inode)) 1425 return ERR_CAST(inode); 1426 if (generation && inode->i_generation != generation) { 1427 iput(inode); 1428 return ERR_PTR(-ESTALE); 1429 } 1430 1431 return inode; 1432 } 1433 1434 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1435 int fh_len, int fh_type) 1436 { 1437 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1438 ext4_nfs_get_inode); 1439 } 1440 1441 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1442 int fh_len, int fh_type) 1443 { 1444 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1445 ext4_nfs_get_inode); 1446 } 1447 1448 static int ext4_nfs_commit_metadata(struct inode *inode) 1449 { 1450 struct writeback_control wbc = { 1451 .sync_mode = WB_SYNC_ALL 1452 }; 1453 1454 trace_ext4_nfs_commit_metadata(inode); 1455 return ext4_write_inode(inode, &wbc); 1456 } 1457 1458 #ifdef CONFIG_FS_ENCRYPTION 1459 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1460 { 1461 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1462 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1463 } 1464 1465 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1466 void *fs_data) 1467 { 1468 handle_t *handle = fs_data; 1469 int res, res2, credits, retries = 0; 1470 1471 /* 1472 * Encrypting the root directory is not allowed because e2fsck expects 1473 * lost+found to exist and be unencrypted, and encrypting the root 1474 * directory would imply encrypting the lost+found directory as well as 1475 * the filename "lost+found" itself. 1476 */ 1477 if (inode->i_ino == EXT4_ROOT_INO) 1478 return -EPERM; 1479 1480 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1481 return -EINVAL; 1482 1483 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1484 return -EOPNOTSUPP; 1485 1486 res = ext4_convert_inline_data(inode); 1487 if (res) 1488 return res; 1489 1490 /* 1491 * If a journal handle was specified, then the encryption context is 1492 * being set on a new inode via inheritance and is part of a larger 1493 * transaction to create the inode. Otherwise the encryption context is 1494 * being set on an existing inode in its own transaction. Only in the 1495 * latter case should the "retry on ENOSPC" logic be used. 1496 */ 1497 1498 if (handle) { 1499 res = ext4_xattr_set_handle(handle, inode, 1500 EXT4_XATTR_INDEX_ENCRYPTION, 1501 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1502 ctx, len, 0); 1503 if (!res) { 1504 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1505 ext4_clear_inode_state(inode, 1506 EXT4_STATE_MAY_INLINE_DATA); 1507 /* 1508 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1509 * S_DAX may be disabled 1510 */ 1511 ext4_set_inode_flags(inode, false); 1512 } 1513 return res; 1514 } 1515 1516 res = dquot_initialize(inode); 1517 if (res) 1518 return res; 1519 retry: 1520 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1521 &credits); 1522 if (res) 1523 return res; 1524 1525 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1526 if (IS_ERR(handle)) 1527 return PTR_ERR(handle); 1528 1529 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1530 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1531 ctx, len, 0); 1532 if (!res) { 1533 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1534 /* 1535 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1536 * S_DAX may be disabled 1537 */ 1538 ext4_set_inode_flags(inode, false); 1539 res = ext4_mark_inode_dirty(handle, inode); 1540 if (res) 1541 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1542 } 1543 res2 = ext4_journal_stop(handle); 1544 1545 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1546 goto retry; 1547 if (!res) 1548 res = res2; 1549 return res; 1550 } 1551 1552 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1553 { 1554 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1555 } 1556 1557 static bool ext4_has_stable_inodes(struct super_block *sb) 1558 { 1559 return ext4_has_feature_stable_inodes(sb); 1560 } 1561 1562 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1563 int *ino_bits_ret, int *lblk_bits_ret) 1564 { 1565 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1566 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1567 } 1568 1569 static const struct fscrypt_operations ext4_cryptops = { 1570 .key_prefix = "ext4:", 1571 .get_context = ext4_get_context, 1572 .set_context = ext4_set_context, 1573 .get_dummy_policy = ext4_get_dummy_policy, 1574 .empty_dir = ext4_empty_dir, 1575 .max_namelen = EXT4_NAME_LEN, 1576 .has_stable_inodes = ext4_has_stable_inodes, 1577 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1578 }; 1579 #endif 1580 1581 #ifdef CONFIG_QUOTA 1582 static const char * const quotatypes[] = INITQFNAMES; 1583 #define QTYPE2NAME(t) (quotatypes[t]) 1584 1585 static int ext4_write_dquot(struct dquot *dquot); 1586 static int ext4_acquire_dquot(struct dquot *dquot); 1587 static int ext4_release_dquot(struct dquot *dquot); 1588 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1589 static int ext4_write_info(struct super_block *sb, int type); 1590 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1591 const struct path *path); 1592 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1593 size_t len, loff_t off); 1594 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1595 const char *data, size_t len, loff_t off); 1596 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1597 unsigned int flags); 1598 1599 static struct dquot **ext4_get_dquots(struct inode *inode) 1600 { 1601 return EXT4_I(inode)->i_dquot; 1602 } 1603 1604 static const struct dquot_operations ext4_quota_operations = { 1605 .get_reserved_space = ext4_get_reserved_space, 1606 .write_dquot = ext4_write_dquot, 1607 .acquire_dquot = ext4_acquire_dquot, 1608 .release_dquot = ext4_release_dquot, 1609 .mark_dirty = ext4_mark_dquot_dirty, 1610 .write_info = ext4_write_info, 1611 .alloc_dquot = dquot_alloc, 1612 .destroy_dquot = dquot_destroy, 1613 .get_projid = ext4_get_projid, 1614 .get_inode_usage = ext4_get_inode_usage, 1615 .get_next_id = dquot_get_next_id, 1616 }; 1617 1618 static const struct quotactl_ops ext4_qctl_operations = { 1619 .quota_on = ext4_quota_on, 1620 .quota_off = ext4_quota_off, 1621 .quota_sync = dquot_quota_sync, 1622 .get_state = dquot_get_state, 1623 .set_info = dquot_set_dqinfo, 1624 .get_dqblk = dquot_get_dqblk, 1625 .set_dqblk = dquot_set_dqblk, 1626 .get_nextdqblk = dquot_get_next_dqblk, 1627 }; 1628 #endif 1629 1630 static const struct super_operations ext4_sops = { 1631 .alloc_inode = ext4_alloc_inode, 1632 .free_inode = ext4_free_in_core_inode, 1633 .destroy_inode = ext4_destroy_inode, 1634 .write_inode = ext4_write_inode, 1635 .dirty_inode = ext4_dirty_inode, 1636 .drop_inode = ext4_drop_inode, 1637 .evict_inode = ext4_evict_inode, 1638 .put_super = ext4_put_super, 1639 .sync_fs = ext4_sync_fs, 1640 .freeze_fs = ext4_freeze, 1641 .unfreeze_fs = ext4_unfreeze, 1642 .statfs = ext4_statfs, 1643 .remount_fs = ext4_remount, 1644 .show_options = ext4_show_options, 1645 #ifdef CONFIG_QUOTA 1646 .quota_read = ext4_quota_read, 1647 .quota_write = ext4_quota_write, 1648 .get_dquots = ext4_get_dquots, 1649 #endif 1650 }; 1651 1652 static const struct export_operations ext4_export_ops = { 1653 .fh_to_dentry = ext4_fh_to_dentry, 1654 .fh_to_parent = ext4_fh_to_parent, 1655 .get_parent = ext4_get_parent, 1656 .commit_metadata = ext4_nfs_commit_metadata, 1657 }; 1658 1659 enum { 1660 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1661 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1662 Opt_nouid32, Opt_debug, Opt_removed, 1663 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1664 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1665 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1666 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1667 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1668 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1669 Opt_inlinecrypt, 1670 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1671 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1672 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1673 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1674 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1675 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1676 Opt_nowarn_on_error, Opt_mblk_io_submit, 1677 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1678 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1679 Opt_inode_readahead_blks, Opt_journal_ioprio, 1680 Opt_dioread_nolock, Opt_dioread_lock, 1681 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1682 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1683 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1684 #ifdef CONFIG_EXT4_DEBUG 1685 Opt_fc_debug_max_replay, Opt_fc_debug_force 1686 #endif 1687 }; 1688 1689 static const match_table_t tokens = { 1690 {Opt_bsd_df, "bsddf"}, 1691 {Opt_minix_df, "minixdf"}, 1692 {Opt_grpid, "grpid"}, 1693 {Opt_grpid, "bsdgroups"}, 1694 {Opt_nogrpid, "nogrpid"}, 1695 {Opt_nogrpid, "sysvgroups"}, 1696 {Opt_resgid, "resgid=%u"}, 1697 {Opt_resuid, "resuid=%u"}, 1698 {Opt_sb, "sb=%u"}, 1699 {Opt_err_cont, "errors=continue"}, 1700 {Opt_err_panic, "errors=panic"}, 1701 {Opt_err_ro, "errors=remount-ro"}, 1702 {Opt_nouid32, "nouid32"}, 1703 {Opt_debug, "debug"}, 1704 {Opt_removed, "oldalloc"}, 1705 {Opt_removed, "orlov"}, 1706 {Opt_user_xattr, "user_xattr"}, 1707 {Opt_nouser_xattr, "nouser_xattr"}, 1708 {Opt_acl, "acl"}, 1709 {Opt_noacl, "noacl"}, 1710 {Opt_noload, "norecovery"}, 1711 {Opt_noload, "noload"}, 1712 {Opt_removed, "nobh"}, 1713 {Opt_removed, "bh"}, 1714 {Opt_commit, "commit=%u"}, 1715 {Opt_min_batch_time, "min_batch_time=%u"}, 1716 {Opt_max_batch_time, "max_batch_time=%u"}, 1717 {Opt_journal_dev, "journal_dev=%u"}, 1718 {Opt_journal_path, "journal_path=%s"}, 1719 {Opt_journal_checksum, "journal_checksum"}, 1720 {Opt_nojournal_checksum, "nojournal_checksum"}, 1721 {Opt_journal_async_commit, "journal_async_commit"}, 1722 {Opt_abort, "abort"}, 1723 {Opt_data_journal, "data=journal"}, 1724 {Opt_data_ordered, "data=ordered"}, 1725 {Opt_data_writeback, "data=writeback"}, 1726 {Opt_data_err_abort, "data_err=abort"}, 1727 {Opt_data_err_ignore, "data_err=ignore"}, 1728 {Opt_offusrjquota, "usrjquota="}, 1729 {Opt_usrjquota, "usrjquota=%s"}, 1730 {Opt_offgrpjquota, "grpjquota="}, 1731 {Opt_grpjquota, "grpjquota=%s"}, 1732 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1733 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1734 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1735 {Opt_grpquota, "grpquota"}, 1736 {Opt_noquota, "noquota"}, 1737 {Opt_quota, "quota"}, 1738 {Opt_usrquota, "usrquota"}, 1739 {Opt_prjquota, "prjquota"}, 1740 {Opt_barrier, "barrier=%u"}, 1741 {Opt_barrier, "barrier"}, 1742 {Opt_nobarrier, "nobarrier"}, 1743 {Opt_i_version, "i_version"}, 1744 {Opt_dax, "dax"}, 1745 {Opt_dax_always, "dax=always"}, 1746 {Opt_dax_inode, "dax=inode"}, 1747 {Opt_dax_never, "dax=never"}, 1748 {Opt_stripe, "stripe=%u"}, 1749 {Opt_delalloc, "delalloc"}, 1750 {Opt_warn_on_error, "warn_on_error"}, 1751 {Opt_nowarn_on_error, "nowarn_on_error"}, 1752 {Opt_lazytime, "lazytime"}, 1753 {Opt_nolazytime, "nolazytime"}, 1754 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1755 {Opt_nodelalloc, "nodelalloc"}, 1756 {Opt_removed, "mblk_io_submit"}, 1757 {Opt_removed, "nomblk_io_submit"}, 1758 {Opt_block_validity, "block_validity"}, 1759 {Opt_noblock_validity, "noblock_validity"}, 1760 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1761 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1762 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1763 {Opt_auto_da_alloc, "auto_da_alloc"}, 1764 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1765 {Opt_dioread_nolock, "dioread_nolock"}, 1766 {Opt_dioread_lock, "nodioread_nolock"}, 1767 {Opt_dioread_lock, "dioread_lock"}, 1768 {Opt_discard, "discard"}, 1769 {Opt_nodiscard, "nodiscard"}, 1770 {Opt_init_itable, "init_itable=%u"}, 1771 {Opt_init_itable, "init_itable"}, 1772 {Opt_noinit_itable, "noinit_itable"}, 1773 #ifdef CONFIG_EXT4_DEBUG 1774 {Opt_fc_debug_force, "fc_debug_force"}, 1775 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1776 #endif 1777 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1778 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1779 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1780 {Opt_inlinecrypt, "inlinecrypt"}, 1781 {Opt_nombcache, "nombcache"}, 1782 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1783 {Opt_removed, "prefetch_block_bitmaps"}, 1784 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"}, 1785 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"}, 1786 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1787 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1788 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1789 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1790 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1791 {Opt_err, NULL}, 1792 }; 1793 1794 static ext4_fsblk_t get_sb_block(void **data) 1795 { 1796 ext4_fsblk_t sb_block; 1797 char *options = (char *) *data; 1798 1799 if (!options || strncmp(options, "sb=", 3) != 0) 1800 return 1; /* Default location */ 1801 1802 options += 3; 1803 /* TODO: use simple_strtoll with >32bit ext4 */ 1804 sb_block = simple_strtoul(options, &options, 0); 1805 if (*options && *options != ',') { 1806 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1807 (char *) *data); 1808 return 1; 1809 } 1810 if (*options == ',') 1811 options++; 1812 *data = (void *) options; 1813 1814 return sb_block; 1815 } 1816 1817 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1818 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1819 1820 static const char deprecated_msg[] = 1821 "Mount option \"%s\" will be removed by %s\n" 1822 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1823 1824 #ifdef CONFIG_QUOTA 1825 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1826 { 1827 struct ext4_sb_info *sbi = EXT4_SB(sb); 1828 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1829 int ret = -1; 1830 1831 if (sb_any_quota_loaded(sb) && !old_qname) { 1832 ext4_msg(sb, KERN_ERR, 1833 "Cannot change journaled " 1834 "quota options when quota turned on"); 1835 return -1; 1836 } 1837 if (ext4_has_feature_quota(sb)) { 1838 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1839 "ignored when QUOTA feature is enabled"); 1840 return 1; 1841 } 1842 qname = match_strdup(args); 1843 if (!qname) { 1844 ext4_msg(sb, KERN_ERR, 1845 "Not enough memory for storing quotafile name"); 1846 return -1; 1847 } 1848 if (old_qname) { 1849 if (strcmp(old_qname, qname) == 0) 1850 ret = 1; 1851 else 1852 ext4_msg(sb, KERN_ERR, 1853 "%s quota file already specified", 1854 QTYPE2NAME(qtype)); 1855 goto errout; 1856 } 1857 if (strchr(qname, '/')) { 1858 ext4_msg(sb, KERN_ERR, 1859 "quotafile must be on filesystem root"); 1860 goto errout; 1861 } 1862 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1863 set_opt(sb, QUOTA); 1864 return 1; 1865 errout: 1866 kfree(qname); 1867 return ret; 1868 } 1869 1870 static int clear_qf_name(struct super_block *sb, int qtype) 1871 { 1872 1873 struct ext4_sb_info *sbi = EXT4_SB(sb); 1874 char *old_qname = get_qf_name(sb, sbi, qtype); 1875 1876 if (sb_any_quota_loaded(sb) && old_qname) { 1877 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1878 " when quota turned on"); 1879 return -1; 1880 } 1881 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1882 synchronize_rcu(); 1883 kfree(old_qname); 1884 return 1; 1885 } 1886 #endif 1887 1888 #define MOPT_SET 0x0001 1889 #define MOPT_CLEAR 0x0002 1890 #define MOPT_NOSUPPORT 0x0004 1891 #define MOPT_EXPLICIT 0x0008 1892 #define MOPT_CLEAR_ERR 0x0010 1893 #define MOPT_GTE0 0x0020 1894 #ifdef CONFIG_QUOTA 1895 #define MOPT_Q 0 1896 #define MOPT_QFMT 0x0040 1897 #else 1898 #define MOPT_Q MOPT_NOSUPPORT 1899 #define MOPT_QFMT MOPT_NOSUPPORT 1900 #endif 1901 #define MOPT_DATAJ 0x0080 1902 #define MOPT_NO_EXT2 0x0100 1903 #define MOPT_NO_EXT3 0x0200 1904 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1905 #define MOPT_STRING 0x0400 1906 #define MOPT_SKIP 0x0800 1907 #define MOPT_2 0x1000 1908 1909 static const struct mount_opts { 1910 int token; 1911 int mount_opt; 1912 int flags; 1913 } ext4_mount_opts[] = { 1914 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1915 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1916 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1917 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1918 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1919 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1920 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1921 MOPT_EXT4_ONLY | MOPT_SET}, 1922 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1923 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1924 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1925 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1926 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1927 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1928 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1929 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1930 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1931 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1932 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1933 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1934 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1935 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1936 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1937 EXT4_MOUNT_JOURNAL_CHECKSUM), 1938 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1939 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1940 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1941 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1942 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1943 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1944 MOPT_NO_EXT2}, 1945 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1946 MOPT_NO_EXT2}, 1947 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1948 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1949 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1950 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1951 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1952 {Opt_commit, 0, MOPT_GTE0}, 1953 {Opt_max_batch_time, 0, MOPT_GTE0}, 1954 {Opt_min_batch_time, 0, MOPT_GTE0}, 1955 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1956 {Opt_init_itable, 0, MOPT_GTE0}, 1957 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1958 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1959 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1960 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1961 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1962 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1963 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1964 {Opt_stripe, 0, MOPT_GTE0}, 1965 {Opt_resuid, 0, MOPT_GTE0}, 1966 {Opt_resgid, 0, MOPT_GTE0}, 1967 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1968 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1969 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1970 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1971 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1972 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1973 MOPT_NO_EXT2 | MOPT_DATAJ}, 1974 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1975 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1976 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1977 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1978 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1979 #else 1980 {Opt_acl, 0, MOPT_NOSUPPORT}, 1981 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1982 #endif 1983 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1984 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1985 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1986 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1987 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1988 MOPT_SET | MOPT_Q}, 1989 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1990 MOPT_SET | MOPT_Q}, 1991 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1992 MOPT_SET | MOPT_Q}, 1993 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1994 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1995 MOPT_CLEAR | MOPT_Q}, 1996 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 1997 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 1998 {Opt_offusrjquota, 0, MOPT_Q}, 1999 {Opt_offgrpjquota, 0, MOPT_Q}, 2000 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 2001 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 2002 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 2003 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 2004 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 2005 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 2006 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 2007 MOPT_SET}, 2008 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0}, 2009 #ifdef CONFIG_EXT4_DEBUG 2010 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2011 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2012 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2013 #endif 2014 {Opt_err, 0, 0} 2015 }; 2016 2017 #ifdef CONFIG_UNICODE 2018 static const struct ext4_sb_encodings { 2019 __u16 magic; 2020 char *name; 2021 char *version; 2022 } ext4_sb_encoding_map[] = { 2023 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2024 }; 2025 2026 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2027 const struct ext4_sb_encodings **encoding, 2028 __u16 *flags) 2029 { 2030 __u16 magic = le16_to_cpu(es->s_encoding); 2031 int i; 2032 2033 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2034 if (magic == ext4_sb_encoding_map[i].magic) 2035 break; 2036 2037 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2038 return -EINVAL; 2039 2040 *encoding = &ext4_sb_encoding_map[i]; 2041 *flags = le16_to_cpu(es->s_encoding_flags); 2042 2043 return 0; 2044 } 2045 #endif 2046 2047 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2048 const char *opt, 2049 const substring_t *arg, 2050 bool is_remount) 2051 { 2052 #ifdef CONFIG_FS_ENCRYPTION 2053 struct ext4_sb_info *sbi = EXT4_SB(sb); 2054 int err; 2055 2056 /* 2057 * This mount option is just for testing, and it's not worthwhile to 2058 * implement the extra complexity (e.g. RCU protection) that would be 2059 * needed to allow it to be set or changed during remount. We do allow 2060 * it to be specified during remount, but only if there is no change. 2061 */ 2062 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2063 ext4_msg(sb, KERN_WARNING, 2064 "Can't set test_dummy_encryption on remount"); 2065 return -1; 2066 } 2067 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2068 &sbi->s_dummy_enc_policy); 2069 if (err) { 2070 if (err == -EEXIST) 2071 ext4_msg(sb, KERN_WARNING, 2072 "Can't change test_dummy_encryption on remount"); 2073 else if (err == -EINVAL) 2074 ext4_msg(sb, KERN_WARNING, 2075 "Value of option \"%s\" is unrecognized", opt); 2076 else 2077 ext4_msg(sb, KERN_WARNING, 2078 "Error processing option \"%s\" [%d]", 2079 opt, err); 2080 return -1; 2081 } 2082 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2083 #else 2084 ext4_msg(sb, KERN_WARNING, 2085 "Test dummy encryption mount option ignored"); 2086 #endif 2087 return 1; 2088 } 2089 2090 struct ext4_parsed_options { 2091 unsigned long journal_devnum; 2092 unsigned int journal_ioprio; 2093 int mb_optimize_scan; 2094 }; 2095 2096 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2097 substring_t *args, struct ext4_parsed_options *parsed_opts, 2098 int is_remount) 2099 { 2100 struct ext4_sb_info *sbi = EXT4_SB(sb); 2101 const struct mount_opts *m; 2102 kuid_t uid; 2103 kgid_t gid; 2104 int arg = 0; 2105 2106 #ifdef CONFIG_QUOTA 2107 if (token == Opt_usrjquota) 2108 return set_qf_name(sb, USRQUOTA, &args[0]); 2109 else if (token == Opt_grpjquota) 2110 return set_qf_name(sb, GRPQUOTA, &args[0]); 2111 else if (token == Opt_offusrjquota) 2112 return clear_qf_name(sb, USRQUOTA); 2113 else if (token == Opt_offgrpjquota) 2114 return clear_qf_name(sb, GRPQUOTA); 2115 #endif 2116 switch (token) { 2117 case Opt_noacl: 2118 case Opt_nouser_xattr: 2119 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2120 break; 2121 case Opt_sb: 2122 return 1; /* handled by get_sb_block() */ 2123 case Opt_removed: 2124 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2125 return 1; 2126 case Opt_abort: 2127 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2128 return 1; 2129 case Opt_i_version: 2130 sb->s_flags |= SB_I_VERSION; 2131 return 1; 2132 case Opt_lazytime: 2133 sb->s_flags |= SB_LAZYTIME; 2134 return 1; 2135 case Opt_nolazytime: 2136 sb->s_flags &= ~SB_LAZYTIME; 2137 return 1; 2138 case Opt_inlinecrypt: 2139 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2140 sb->s_flags |= SB_INLINECRYPT; 2141 #else 2142 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2143 #endif 2144 return 1; 2145 } 2146 2147 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2148 if (token == m->token) 2149 break; 2150 2151 if (m->token == Opt_err) { 2152 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2153 "or missing value", opt); 2154 return -1; 2155 } 2156 2157 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2158 ext4_msg(sb, KERN_ERR, 2159 "Mount option \"%s\" incompatible with ext2", opt); 2160 return -1; 2161 } 2162 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2163 ext4_msg(sb, KERN_ERR, 2164 "Mount option \"%s\" incompatible with ext3", opt); 2165 return -1; 2166 } 2167 2168 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2169 return -1; 2170 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2171 return -1; 2172 if (m->flags & MOPT_EXPLICIT) { 2173 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2174 set_opt2(sb, EXPLICIT_DELALLOC); 2175 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2176 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2177 } else 2178 return -1; 2179 } 2180 if (m->flags & MOPT_CLEAR_ERR) 2181 clear_opt(sb, ERRORS_MASK); 2182 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2183 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2184 "options when quota turned on"); 2185 return -1; 2186 } 2187 2188 if (m->flags & MOPT_NOSUPPORT) { 2189 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2190 } else if (token == Opt_commit) { 2191 if (arg == 0) 2192 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2193 else if (arg > INT_MAX / HZ) { 2194 ext4_msg(sb, KERN_ERR, 2195 "Invalid commit interval %d, " 2196 "must be smaller than %d", 2197 arg, INT_MAX / HZ); 2198 return -1; 2199 } 2200 sbi->s_commit_interval = HZ * arg; 2201 } else if (token == Opt_debug_want_extra_isize) { 2202 if ((arg & 1) || 2203 (arg < 4) || 2204 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2205 ext4_msg(sb, KERN_ERR, 2206 "Invalid want_extra_isize %d", arg); 2207 return -1; 2208 } 2209 sbi->s_want_extra_isize = arg; 2210 } else if (token == Opt_max_batch_time) { 2211 sbi->s_max_batch_time = arg; 2212 } else if (token == Opt_min_batch_time) { 2213 sbi->s_min_batch_time = arg; 2214 } else if (token == Opt_inode_readahead_blks) { 2215 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2216 ext4_msg(sb, KERN_ERR, 2217 "EXT4-fs: inode_readahead_blks must be " 2218 "0 or a power of 2 smaller than 2^31"); 2219 return -1; 2220 } 2221 sbi->s_inode_readahead_blks = arg; 2222 } else if (token == Opt_init_itable) { 2223 set_opt(sb, INIT_INODE_TABLE); 2224 if (!args->from) 2225 arg = EXT4_DEF_LI_WAIT_MULT; 2226 sbi->s_li_wait_mult = arg; 2227 } else if (token == Opt_max_dir_size_kb) { 2228 sbi->s_max_dir_size_kb = arg; 2229 #ifdef CONFIG_EXT4_DEBUG 2230 } else if (token == Opt_fc_debug_max_replay) { 2231 sbi->s_fc_debug_max_replay = arg; 2232 #endif 2233 } else if (token == Opt_stripe) { 2234 sbi->s_stripe = arg; 2235 } else if (token == Opt_resuid) { 2236 uid = make_kuid(current_user_ns(), arg); 2237 if (!uid_valid(uid)) { 2238 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2239 return -1; 2240 } 2241 sbi->s_resuid = uid; 2242 } else if (token == Opt_resgid) { 2243 gid = make_kgid(current_user_ns(), arg); 2244 if (!gid_valid(gid)) { 2245 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2246 return -1; 2247 } 2248 sbi->s_resgid = gid; 2249 } else if (token == Opt_journal_dev) { 2250 if (is_remount) { 2251 ext4_msg(sb, KERN_ERR, 2252 "Cannot specify journal on remount"); 2253 return -1; 2254 } 2255 parsed_opts->journal_devnum = arg; 2256 } else if (token == Opt_journal_path) { 2257 char *journal_path; 2258 struct inode *journal_inode; 2259 struct path path; 2260 int error; 2261 2262 if (is_remount) { 2263 ext4_msg(sb, KERN_ERR, 2264 "Cannot specify journal on remount"); 2265 return -1; 2266 } 2267 journal_path = match_strdup(&args[0]); 2268 if (!journal_path) { 2269 ext4_msg(sb, KERN_ERR, "error: could not dup " 2270 "journal device string"); 2271 return -1; 2272 } 2273 2274 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2275 if (error) { 2276 ext4_msg(sb, KERN_ERR, "error: could not find " 2277 "journal device path: error %d", error); 2278 kfree(journal_path); 2279 return -1; 2280 } 2281 2282 journal_inode = d_inode(path.dentry); 2283 if (!S_ISBLK(journal_inode->i_mode)) { 2284 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2285 "is not a block device", journal_path); 2286 path_put(&path); 2287 kfree(journal_path); 2288 return -1; 2289 } 2290 2291 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2292 path_put(&path); 2293 kfree(journal_path); 2294 } else if (token == Opt_journal_ioprio) { 2295 if (arg > 7) { 2296 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2297 " (must be 0-7)"); 2298 return -1; 2299 } 2300 parsed_opts->journal_ioprio = 2301 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2302 } else if (token == Opt_test_dummy_encryption) { 2303 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2304 is_remount); 2305 } else if (m->flags & MOPT_DATAJ) { 2306 if (is_remount) { 2307 if (!sbi->s_journal) 2308 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2309 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2310 ext4_msg(sb, KERN_ERR, 2311 "Cannot change data mode on remount"); 2312 return -1; 2313 } 2314 } else { 2315 clear_opt(sb, DATA_FLAGS); 2316 sbi->s_mount_opt |= m->mount_opt; 2317 } 2318 #ifdef CONFIG_QUOTA 2319 } else if (m->flags & MOPT_QFMT) { 2320 if (sb_any_quota_loaded(sb) && 2321 sbi->s_jquota_fmt != m->mount_opt) { 2322 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2323 "quota options when quota turned on"); 2324 return -1; 2325 } 2326 if (ext4_has_feature_quota(sb)) { 2327 ext4_msg(sb, KERN_INFO, 2328 "Quota format mount options ignored " 2329 "when QUOTA feature is enabled"); 2330 return 1; 2331 } 2332 sbi->s_jquota_fmt = m->mount_opt; 2333 #endif 2334 } else if (token == Opt_dax || token == Opt_dax_always || 2335 token == Opt_dax_inode || token == Opt_dax_never) { 2336 #ifdef CONFIG_FS_DAX 2337 switch (token) { 2338 case Opt_dax: 2339 case Opt_dax_always: 2340 if (is_remount && 2341 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2342 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2343 fail_dax_change_remount: 2344 ext4_msg(sb, KERN_ERR, "can't change " 2345 "dax mount option while remounting"); 2346 return -1; 2347 } 2348 if (is_remount && 2349 (test_opt(sb, DATA_FLAGS) == 2350 EXT4_MOUNT_JOURNAL_DATA)) { 2351 ext4_msg(sb, KERN_ERR, "can't mount with " 2352 "both data=journal and dax"); 2353 return -1; 2354 } 2355 ext4_msg(sb, KERN_WARNING, 2356 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2357 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2358 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2359 break; 2360 case Opt_dax_never: 2361 if (is_remount && 2362 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2363 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2364 goto fail_dax_change_remount; 2365 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2366 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2367 break; 2368 case Opt_dax_inode: 2369 if (is_remount && 2370 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2371 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2372 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2373 goto fail_dax_change_remount; 2374 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2375 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2376 /* Strictly for printing options */ 2377 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2378 break; 2379 } 2380 #else 2381 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2382 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2383 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2384 return -1; 2385 #endif 2386 } else if (token == Opt_data_err_abort) { 2387 sbi->s_mount_opt |= m->mount_opt; 2388 } else if (token == Opt_data_err_ignore) { 2389 sbi->s_mount_opt &= ~m->mount_opt; 2390 } else if (token == Opt_mb_optimize_scan) { 2391 if (arg != 0 && arg != 1) { 2392 ext4_msg(sb, KERN_WARNING, 2393 "mb_optimize_scan should be set to 0 or 1."); 2394 return -1; 2395 } 2396 parsed_opts->mb_optimize_scan = arg; 2397 } else { 2398 if (!args->from) 2399 arg = 1; 2400 if (m->flags & MOPT_CLEAR) 2401 arg = !arg; 2402 else if (unlikely(!(m->flags & MOPT_SET))) { 2403 ext4_msg(sb, KERN_WARNING, 2404 "buggy handling of option %s", opt); 2405 WARN_ON(1); 2406 return -1; 2407 } 2408 if (m->flags & MOPT_2) { 2409 if (arg != 0) 2410 sbi->s_mount_opt2 |= m->mount_opt; 2411 else 2412 sbi->s_mount_opt2 &= ~m->mount_opt; 2413 } else { 2414 if (arg != 0) 2415 sbi->s_mount_opt |= m->mount_opt; 2416 else 2417 sbi->s_mount_opt &= ~m->mount_opt; 2418 } 2419 } 2420 return 1; 2421 } 2422 2423 static int parse_options(char *options, struct super_block *sb, 2424 struct ext4_parsed_options *ret_opts, 2425 int is_remount) 2426 { 2427 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2428 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2429 substring_t args[MAX_OPT_ARGS]; 2430 int token; 2431 2432 if (!options) 2433 return 1; 2434 2435 while ((p = strsep(&options, ",")) != NULL) { 2436 if (!*p) 2437 continue; 2438 /* 2439 * Initialize args struct so we know whether arg was 2440 * found; some options take optional arguments. 2441 */ 2442 args[0].to = args[0].from = NULL; 2443 token = match_token(p, tokens, args); 2444 if (handle_mount_opt(sb, p, token, args, ret_opts, 2445 is_remount) < 0) 2446 return 0; 2447 } 2448 #ifdef CONFIG_QUOTA 2449 /* 2450 * We do the test below only for project quotas. 'usrquota' and 2451 * 'grpquota' mount options are allowed even without quota feature 2452 * to support legacy quotas in quota files. 2453 */ 2454 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2455 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2456 "Cannot enable project quota enforcement."); 2457 return 0; 2458 } 2459 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2460 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2461 if (usr_qf_name || grp_qf_name) { 2462 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2463 clear_opt(sb, USRQUOTA); 2464 2465 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2466 clear_opt(sb, GRPQUOTA); 2467 2468 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2469 ext4_msg(sb, KERN_ERR, "old and new quota " 2470 "format mixing"); 2471 return 0; 2472 } 2473 2474 if (!sbi->s_jquota_fmt) { 2475 ext4_msg(sb, KERN_ERR, "journaled quota format " 2476 "not specified"); 2477 return 0; 2478 } 2479 } 2480 #endif 2481 if (test_opt(sb, DIOREAD_NOLOCK)) { 2482 int blocksize = 2483 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2484 if (blocksize < PAGE_SIZE) 2485 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2486 "experimental mount option 'dioread_nolock' " 2487 "for blocksize < PAGE_SIZE"); 2488 } 2489 return 1; 2490 } 2491 2492 static inline void ext4_show_quota_options(struct seq_file *seq, 2493 struct super_block *sb) 2494 { 2495 #if defined(CONFIG_QUOTA) 2496 struct ext4_sb_info *sbi = EXT4_SB(sb); 2497 char *usr_qf_name, *grp_qf_name; 2498 2499 if (sbi->s_jquota_fmt) { 2500 char *fmtname = ""; 2501 2502 switch (sbi->s_jquota_fmt) { 2503 case QFMT_VFS_OLD: 2504 fmtname = "vfsold"; 2505 break; 2506 case QFMT_VFS_V0: 2507 fmtname = "vfsv0"; 2508 break; 2509 case QFMT_VFS_V1: 2510 fmtname = "vfsv1"; 2511 break; 2512 } 2513 seq_printf(seq, ",jqfmt=%s", fmtname); 2514 } 2515 2516 rcu_read_lock(); 2517 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2518 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2519 if (usr_qf_name) 2520 seq_show_option(seq, "usrjquota", usr_qf_name); 2521 if (grp_qf_name) 2522 seq_show_option(seq, "grpjquota", grp_qf_name); 2523 rcu_read_unlock(); 2524 #endif 2525 } 2526 2527 static const char *token2str(int token) 2528 { 2529 const struct match_token *t; 2530 2531 for (t = tokens; t->token != Opt_err; t++) 2532 if (t->token == token && !strchr(t->pattern, '=')) 2533 break; 2534 return t->pattern; 2535 } 2536 2537 /* 2538 * Show an option if 2539 * - it's set to a non-default value OR 2540 * - if the per-sb default is different from the global default 2541 */ 2542 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2543 int nodefs) 2544 { 2545 struct ext4_sb_info *sbi = EXT4_SB(sb); 2546 struct ext4_super_block *es = sbi->s_es; 2547 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2548 const struct mount_opts *m; 2549 char sep = nodefs ? '\n' : ','; 2550 2551 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2552 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2553 2554 if (sbi->s_sb_block != 1) 2555 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2556 2557 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2558 int want_set = m->flags & MOPT_SET; 2559 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2560 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2561 continue; 2562 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2563 continue; /* skip if same as the default */ 2564 if ((want_set && 2565 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2566 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2567 continue; /* select Opt_noFoo vs Opt_Foo */ 2568 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2569 } 2570 2571 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2572 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2573 SEQ_OPTS_PRINT("resuid=%u", 2574 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2575 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2576 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2577 SEQ_OPTS_PRINT("resgid=%u", 2578 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2579 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2580 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2581 SEQ_OPTS_PUTS("errors=remount-ro"); 2582 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2583 SEQ_OPTS_PUTS("errors=continue"); 2584 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2585 SEQ_OPTS_PUTS("errors=panic"); 2586 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2587 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2588 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2589 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2590 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2591 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2592 if (sb->s_flags & SB_I_VERSION) 2593 SEQ_OPTS_PUTS("i_version"); 2594 if (nodefs || sbi->s_stripe) 2595 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2596 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2597 (sbi->s_mount_opt ^ def_mount_opt)) { 2598 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2599 SEQ_OPTS_PUTS("data=journal"); 2600 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2601 SEQ_OPTS_PUTS("data=ordered"); 2602 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2603 SEQ_OPTS_PUTS("data=writeback"); 2604 } 2605 if (nodefs || 2606 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2607 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2608 sbi->s_inode_readahead_blks); 2609 2610 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2611 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2612 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2613 if (nodefs || sbi->s_max_dir_size_kb) 2614 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2615 if (test_opt(sb, DATA_ERR_ABORT)) 2616 SEQ_OPTS_PUTS("data_err=abort"); 2617 2618 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2619 2620 if (sb->s_flags & SB_INLINECRYPT) 2621 SEQ_OPTS_PUTS("inlinecrypt"); 2622 2623 if (test_opt(sb, DAX_ALWAYS)) { 2624 if (IS_EXT2_SB(sb)) 2625 SEQ_OPTS_PUTS("dax"); 2626 else 2627 SEQ_OPTS_PUTS("dax=always"); 2628 } else if (test_opt2(sb, DAX_NEVER)) { 2629 SEQ_OPTS_PUTS("dax=never"); 2630 } else if (test_opt2(sb, DAX_INODE)) { 2631 SEQ_OPTS_PUTS("dax=inode"); 2632 } 2633 ext4_show_quota_options(seq, sb); 2634 return 0; 2635 } 2636 2637 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2638 { 2639 return _ext4_show_options(seq, root->d_sb, 0); 2640 } 2641 2642 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2643 { 2644 struct super_block *sb = seq->private; 2645 int rc; 2646 2647 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2648 rc = _ext4_show_options(seq, sb, 1); 2649 seq_puts(seq, "\n"); 2650 return rc; 2651 } 2652 2653 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2654 int read_only) 2655 { 2656 struct ext4_sb_info *sbi = EXT4_SB(sb); 2657 int err = 0; 2658 2659 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2660 ext4_msg(sb, KERN_ERR, "revision level too high, " 2661 "forcing read-only mode"); 2662 err = -EROFS; 2663 goto done; 2664 } 2665 if (read_only) 2666 goto done; 2667 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2668 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2669 "running e2fsck is recommended"); 2670 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2671 ext4_msg(sb, KERN_WARNING, 2672 "warning: mounting fs with errors, " 2673 "running e2fsck is recommended"); 2674 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2675 le16_to_cpu(es->s_mnt_count) >= 2676 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2677 ext4_msg(sb, KERN_WARNING, 2678 "warning: maximal mount count reached, " 2679 "running e2fsck is recommended"); 2680 else if (le32_to_cpu(es->s_checkinterval) && 2681 (ext4_get_tstamp(es, s_lastcheck) + 2682 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2683 ext4_msg(sb, KERN_WARNING, 2684 "warning: checktime reached, " 2685 "running e2fsck is recommended"); 2686 if (!sbi->s_journal) 2687 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2688 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2689 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2690 le16_add_cpu(&es->s_mnt_count, 1); 2691 ext4_update_tstamp(es, s_mtime); 2692 if (sbi->s_journal) { 2693 ext4_set_feature_journal_needs_recovery(sb); 2694 if (ext4_has_feature_orphan_file(sb)) 2695 ext4_set_feature_orphan_present(sb); 2696 } 2697 2698 err = ext4_commit_super(sb); 2699 done: 2700 if (test_opt(sb, DEBUG)) 2701 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2702 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2703 sb->s_blocksize, 2704 sbi->s_groups_count, 2705 EXT4_BLOCKS_PER_GROUP(sb), 2706 EXT4_INODES_PER_GROUP(sb), 2707 sbi->s_mount_opt, sbi->s_mount_opt2); 2708 2709 cleancache_init_fs(sb); 2710 return err; 2711 } 2712 2713 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2714 { 2715 struct ext4_sb_info *sbi = EXT4_SB(sb); 2716 struct flex_groups **old_groups, **new_groups; 2717 int size, i, j; 2718 2719 if (!sbi->s_log_groups_per_flex) 2720 return 0; 2721 2722 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2723 if (size <= sbi->s_flex_groups_allocated) 2724 return 0; 2725 2726 new_groups = kvzalloc(roundup_pow_of_two(size * 2727 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2728 if (!new_groups) { 2729 ext4_msg(sb, KERN_ERR, 2730 "not enough memory for %d flex group pointers", size); 2731 return -ENOMEM; 2732 } 2733 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2734 new_groups[i] = kvzalloc(roundup_pow_of_two( 2735 sizeof(struct flex_groups)), 2736 GFP_KERNEL); 2737 if (!new_groups[i]) { 2738 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2739 kvfree(new_groups[j]); 2740 kvfree(new_groups); 2741 ext4_msg(sb, KERN_ERR, 2742 "not enough memory for %d flex groups", size); 2743 return -ENOMEM; 2744 } 2745 } 2746 rcu_read_lock(); 2747 old_groups = rcu_dereference(sbi->s_flex_groups); 2748 if (old_groups) 2749 memcpy(new_groups, old_groups, 2750 (sbi->s_flex_groups_allocated * 2751 sizeof(struct flex_groups *))); 2752 rcu_read_unlock(); 2753 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2754 sbi->s_flex_groups_allocated = size; 2755 if (old_groups) 2756 ext4_kvfree_array_rcu(old_groups); 2757 return 0; 2758 } 2759 2760 static int ext4_fill_flex_info(struct super_block *sb) 2761 { 2762 struct ext4_sb_info *sbi = EXT4_SB(sb); 2763 struct ext4_group_desc *gdp = NULL; 2764 struct flex_groups *fg; 2765 ext4_group_t flex_group; 2766 int i, err; 2767 2768 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2769 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2770 sbi->s_log_groups_per_flex = 0; 2771 return 1; 2772 } 2773 2774 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2775 if (err) 2776 goto failed; 2777 2778 for (i = 0; i < sbi->s_groups_count; i++) { 2779 gdp = ext4_get_group_desc(sb, i, NULL); 2780 2781 flex_group = ext4_flex_group(sbi, i); 2782 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2783 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2784 atomic64_add(ext4_free_group_clusters(sb, gdp), 2785 &fg->free_clusters); 2786 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2787 } 2788 2789 return 1; 2790 failed: 2791 return 0; 2792 } 2793 2794 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2795 struct ext4_group_desc *gdp) 2796 { 2797 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2798 __u16 crc = 0; 2799 __le32 le_group = cpu_to_le32(block_group); 2800 struct ext4_sb_info *sbi = EXT4_SB(sb); 2801 2802 if (ext4_has_metadata_csum(sbi->s_sb)) { 2803 /* Use new metadata_csum algorithm */ 2804 __u32 csum32; 2805 __u16 dummy_csum = 0; 2806 2807 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2808 sizeof(le_group)); 2809 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2810 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2811 sizeof(dummy_csum)); 2812 offset += sizeof(dummy_csum); 2813 if (offset < sbi->s_desc_size) 2814 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2815 sbi->s_desc_size - offset); 2816 2817 crc = csum32 & 0xFFFF; 2818 goto out; 2819 } 2820 2821 /* old crc16 code */ 2822 if (!ext4_has_feature_gdt_csum(sb)) 2823 return 0; 2824 2825 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2826 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2827 crc = crc16(crc, (__u8 *)gdp, offset); 2828 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2829 /* for checksum of struct ext4_group_desc do the rest...*/ 2830 if (ext4_has_feature_64bit(sb) && 2831 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2832 crc = crc16(crc, (__u8 *)gdp + offset, 2833 le16_to_cpu(sbi->s_es->s_desc_size) - 2834 offset); 2835 2836 out: 2837 return cpu_to_le16(crc); 2838 } 2839 2840 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2841 struct ext4_group_desc *gdp) 2842 { 2843 if (ext4_has_group_desc_csum(sb) && 2844 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2845 return 0; 2846 2847 return 1; 2848 } 2849 2850 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2851 struct ext4_group_desc *gdp) 2852 { 2853 if (!ext4_has_group_desc_csum(sb)) 2854 return; 2855 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2856 } 2857 2858 /* Called at mount-time, super-block is locked */ 2859 static int ext4_check_descriptors(struct super_block *sb, 2860 ext4_fsblk_t sb_block, 2861 ext4_group_t *first_not_zeroed) 2862 { 2863 struct ext4_sb_info *sbi = EXT4_SB(sb); 2864 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2865 ext4_fsblk_t last_block; 2866 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2867 ext4_fsblk_t block_bitmap; 2868 ext4_fsblk_t inode_bitmap; 2869 ext4_fsblk_t inode_table; 2870 int flexbg_flag = 0; 2871 ext4_group_t i, grp = sbi->s_groups_count; 2872 2873 if (ext4_has_feature_flex_bg(sb)) 2874 flexbg_flag = 1; 2875 2876 ext4_debug("Checking group descriptors"); 2877 2878 for (i = 0; i < sbi->s_groups_count; i++) { 2879 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2880 2881 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2882 last_block = ext4_blocks_count(sbi->s_es) - 1; 2883 else 2884 last_block = first_block + 2885 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2886 2887 if ((grp == sbi->s_groups_count) && 2888 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2889 grp = i; 2890 2891 block_bitmap = ext4_block_bitmap(sb, gdp); 2892 if (block_bitmap == sb_block) { 2893 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2894 "Block bitmap for group %u overlaps " 2895 "superblock", i); 2896 if (!sb_rdonly(sb)) 2897 return 0; 2898 } 2899 if (block_bitmap >= sb_block + 1 && 2900 block_bitmap <= last_bg_block) { 2901 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2902 "Block bitmap for group %u overlaps " 2903 "block group descriptors", i); 2904 if (!sb_rdonly(sb)) 2905 return 0; 2906 } 2907 if (block_bitmap < first_block || block_bitmap > last_block) { 2908 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2909 "Block bitmap for group %u not in group " 2910 "(block %llu)!", i, block_bitmap); 2911 return 0; 2912 } 2913 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2914 if (inode_bitmap == sb_block) { 2915 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2916 "Inode bitmap for group %u overlaps " 2917 "superblock", i); 2918 if (!sb_rdonly(sb)) 2919 return 0; 2920 } 2921 if (inode_bitmap >= sb_block + 1 && 2922 inode_bitmap <= last_bg_block) { 2923 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2924 "Inode bitmap for group %u overlaps " 2925 "block group descriptors", i); 2926 if (!sb_rdonly(sb)) 2927 return 0; 2928 } 2929 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2930 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2931 "Inode bitmap for group %u not in group " 2932 "(block %llu)!", i, inode_bitmap); 2933 return 0; 2934 } 2935 inode_table = ext4_inode_table(sb, gdp); 2936 if (inode_table == sb_block) { 2937 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2938 "Inode table for group %u overlaps " 2939 "superblock", i); 2940 if (!sb_rdonly(sb)) 2941 return 0; 2942 } 2943 if (inode_table >= sb_block + 1 && 2944 inode_table <= last_bg_block) { 2945 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2946 "Inode table for group %u overlaps " 2947 "block group descriptors", i); 2948 if (!sb_rdonly(sb)) 2949 return 0; 2950 } 2951 if (inode_table < first_block || 2952 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2953 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2954 "Inode table for group %u not in group " 2955 "(block %llu)!", i, inode_table); 2956 return 0; 2957 } 2958 ext4_lock_group(sb, i); 2959 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2960 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2961 "Checksum for group %u failed (%u!=%u)", 2962 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2963 gdp)), le16_to_cpu(gdp->bg_checksum)); 2964 if (!sb_rdonly(sb)) { 2965 ext4_unlock_group(sb, i); 2966 return 0; 2967 } 2968 } 2969 ext4_unlock_group(sb, i); 2970 if (!flexbg_flag) 2971 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2972 } 2973 if (NULL != first_not_zeroed) 2974 *first_not_zeroed = grp; 2975 return 1; 2976 } 2977 2978 /* 2979 * Maximal extent format file size. 2980 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2981 * extent format containers, within a sector_t, and within i_blocks 2982 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2983 * so that won't be a limiting factor. 2984 * 2985 * However there is other limiting factor. We do store extents in the form 2986 * of starting block and length, hence the resulting length of the extent 2987 * covering maximum file size must fit into on-disk format containers as 2988 * well. Given that length is always by 1 unit bigger than max unit (because 2989 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2990 * 2991 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2992 */ 2993 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2994 { 2995 loff_t res; 2996 loff_t upper_limit = MAX_LFS_FILESIZE; 2997 2998 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2999 3000 if (!has_huge_files) { 3001 upper_limit = (1LL << 32) - 1; 3002 3003 /* total blocks in file system block size */ 3004 upper_limit >>= (blkbits - 9); 3005 upper_limit <<= blkbits; 3006 } 3007 3008 /* 3009 * 32-bit extent-start container, ee_block. We lower the maxbytes 3010 * by one fs block, so ee_len can cover the extent of maximum file 3011 * size 3012 */ 3013 res = (1LL << 32) - 1; 3014 res <<= blkbits; 3015 3016 /* Sanity check against vm- & vfs- imposed limits */ 3017 if (res > upper_limit) 3018 res = upper_limit; 3019 3020 return res; 3021 } 3022 3023 /* 3024 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3025 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3026 * We need to be 1 filesystem block less than the 2^48 sector limit. 3027 */ 3028 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3029 { 3030 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS; 3031 int meta_blocks; 3032 3033 /* 3034 * This is calculated to be the largest file size for a dense, block 3035 * mapped file such that the file's total number of 512-byte sectors, 3036 * including data and all indirect blocks, does not exceed (2^48 - 1). 3037 * 3038 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3039 * number of 512-byte sectors of the file. 3040 */ 3041 if (!has_huge_files) { 3042 /* 3043 * !has_huge_files or implies that the inode i_block field 3044 * represents total file blocks in 2^32 512-byte sectors == 3045 * size of vfs inode i_blocks * 8 3046 */ 3047 upper_limit = (1LL << 32) - 1; 3048 3049 /* total blocks in file system block size */ 3050 upper_limit >>= (bits - 9); 3051 3052 } else { 3053 /* 3054 * We use 48 bit ext4_inode i_blocks 3055 * With EXT4_HUGE_FILE_FL set the i_blocks 3056 * represent total number of blocks in 3057 * file system block size 3058 */ 3059 upper_limit = (1LL << 48) - 1; 3060 3061 } 3062 3063 /* indirect blocks */ 3064 meta_blocks = 1; 3065 /* double indirect blocks */ 3066 meta_blocks += 1 + (1LL << (bits-2)); 3067 /* tripple indirect blocks */ 3068 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3069 3070 upper_limit -= meta_blocks; 3071 upper_limit <<= bits; 3072 3073 res += 1LL << (bits-2); 3074 res += 1LL << (2*(bits-2)); 3075 res += 1LL << (3*(bits-2)); 3076 res <<= bits; 3077 if (res > upper_limit) 3078 res = upper_limit; 3079 3080 if (res > MAX_LFS_FILESIZE) 3081 res = MAX_LFS_FILESIZE; 3082 3083 return (loff_t)res; 3084 } 3085 3086 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3087 ext4_fsblk_t logical_sb_block, int nr) 3088 { 3089 struct ext4_sb_info *sbi = EXT4_SB(sb); 3090 ext4_group_t bg, first_meta_bg; 3091 int has_super = 0; 3092 3093 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3094 3095 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3096 return logical_sb_block + nr + 1; 3097 bg = sbi->s_desc_per_block * nr; 3098 if (ext4_bg_has_super(sb, bg)) 3099 has_super = 1; 3100 3101 /* 3102 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3103 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3104 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3105 * compensate. 3106 */ 3107 if (sb->s_blocksize == 1024 && nr == 0 && 3108 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3109 has_super++; 3110 3111 return (has_super + ext4_group_first_block_no(sb, bg)); 3112 } 3113 3114 /** 3115 * ext4_get_stripe_size: Get the stripe size. 3116 * @sbi: In memory super block info 3117 * 3118 * If we have specified it via mount option, then 3119 * use the mount option value. If the value specified at mount time is 3120 * greater than the blocks per group use the super block value. 3121 * If the super block value is greater than blocks per group return 0. 3122 * Allocator needs it be less than blocks per group. 3123 * 3124 */ 3125 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3126 { 3127 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3128 unsigned long stripe_width = 3129 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3130 int ret; 3131 3132 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3133 ret = sbi->s_stripe; 3134 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3135 ret = stripe_width; 3136 else if (stride && stride <= sbi->s_blocks_per_group) 3137 ret = stride; 3138 else 3139 ret = 0; 3140 3141 /* 3142 * If the stripe width is 1, this makes no sense and 3143 * we set it to 0 to turn off stripe handling code. 3144 */ 3145 if (ret <= 1) 3146 ret = 0; 3147 3148 return ret; 3149 } 3150 3151 /* 3152 * Check whether this filesystem can be mounted based on 3153 * the features present and the RDONLY/RDWR mount requested. 3154 * Returns 1 if this filesystem can be mounted as requested, 3155 * 0 if it cannot be. 3156 */ 3157 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3158 { 3159 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3160 ext4_msg(sb, KERN_ERR, 3161 "Couldn't mount because of " 3162 "unsupported optional features (%x)", 3163 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3164 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3165 return 0; 3166 } 3167 3168 #ifndef CONFIG_UNICODE 3169 if (ext4_has_feature_casefold(sb)) { 3170 ext4_msg(sb, KERN_ERR, 3171 "Filesystem with casefold feature cannot be " 3172 "mounted without CONFIG_UNICODE"); 3173 return 0; 3174 } 3175 #endif 3176 3177 if (readonly) 3178 return 1; 3179 3180 if (ext4_has_feature_readonly(sb)) { 3181 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3182 sb->s_flags |= SB_RDONLY; 3183 return 1; 3184 } 3185 3186 /* Check that feature set is OK for a read-write mount */ 3187 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3188 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3189 "unsupported optional features (%x)", 3190 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3191 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3192 return 0; 3193 } 3194 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3195 ext4_msg(sb, KERN_ERR, 3196 "Can't support bigalloc feature without " 3197 "extents feature\n"); 3198 return 0; 3199 } 3200 3201 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3202 if (!readonly && (ext4_has_feature_quota(sb) || 3203 ext4_has_feature_project(sb))) { 3204 ext4_msg(sb, KERN_ERR, 3205 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3206 return 0; 3207 } 3208 #endif /* CONFIG_QUOTA */ 3209 return 1; 3210 } 3211 3212 /* 3213 * This function is called once a day if we have errors logged 3214 * on the file system 3215 */ 3216 static void print_daily_error_info(struct timer_list *t) 3217 { 3218 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3219 struct super_block *sb = sbi->s_sb; 3220 struct ext4_super_block *es = sbi->s_es; 3221 3222 if (es->s_error_count) 3223 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3224 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3225 le32_to_cpu(es->s_error_count)); 3226 if (es->s_first_error_time) { 3227 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3228 sb->s_id, 3229 ext4_get_tstamp(es, s_first_error_time), 3230 (int) sizeof(es->s_first_error_func), 3231 es->s_first_error_func, 3232 le32_to_cpu(es->s_first_error_line)); 3233 if (es->s_first_error_ino) 3234 printk(KERN_CONT ": inode %u", 3235 le32_to_cpu(es->s_first_error_ino)); 3236 if (es->s_first_error_block) 3237 printk(KERN_CONT ": block %llu", (unsigned long long) 3238 le64_to_cpu(es->s_first_error_block)); 3239 printk(KERN_CONT "\n"); 3240 } 3241 if (es->s_last_error_time) { 3242 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3243 sb->s_id, 3244 ext4_get_tstamp(es, s_last_error_time), 3245 (int) sizeof(es->s_last_error_func), 3246 es->s_last_error_func, 3247 le32_to_cpu(es->s_last_error_line)); 3248 if (es->s_last_error_ino) 3249 printk(KERN_CONT ": inode %u", 3250 le32_to_cpu(es->s_last_error_ino)); 3251 if (es->s_last_error_block) 3252 printk(KERN_CONT ": block %llu", (unsigned long long) 3253 le64_to_cpu(es->s_last_error_block)); 3254 printk(KERN_CONT "\n"); 3255 } 3256 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3257 } 3258 3259 /* Find next suitable group and run ext4_init_inode_table */ 3260 static int ext4_run_li_request(struct ext4_li_request *elr) 3261 { 3262 struct ext4_group_desc *gdp = NULL; 3263 struct super_block *sb = elr->lr_super; 3264 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3265 ext4_group_t group = elr->lr_next_group; 3266 unsigned long timeout = 0; 3267 unsigned int prefetch_ios = 0; 3268 int ret = 0; 3269 3270 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3271 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3272 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3273 if (prefetch_ios) 3274 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3275 prefetch_ios); 3276 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3277 prefetch_ios); 3278 if (group >= elr->lr_next_group) { 3279 ret = 1; 3280 if (elr->lr_first_not_zeroed != ngroups && 3281 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3282 elr->lr_next_group = elr->lr_first_not_zeroed; 3283 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3284 ret = 0; 3285 } 3286 } 3287 return ret; 3288 } 3289 3290 for (; group < ngroups; group++) { 3291 gdp = ext4_get_group_desc(sb, group, NULL); 3292 if (!gdp) { 3293 ret = 1; 3294 break; 3295 } 3296 3297 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3298 break; 3299 } 3300 3301 if (group >= ngroups) 3302 ret = 1; 3303 3304 if (!ret) { 3305 timeout = jiffies; 3306 ret = ext4_init_inode_table(sb, group, 3307 elr->lr_timeout ? 0 : 1); 3308 trace_ext4_lazy_itable_init(sb, group); 3309 if (elr->lr_timeout == 0) { 3310 timeout = (jiffies - timeout) * 3311 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3312 elr->lr_timeout = timeout; 3313 } 3314 elr->lr_next_sched = jiffies + elr->lr_timeout; 3315 elr->lr_next_group = group + 1; 3316 } 3317 return ret; 3318 } 3319 3320 /* 3321 * Remove lr_request from the list_request and free the 3322 * request structure. Should be called with li_list_mtx held 3323 */ 3324 static void ext4_remove_li_request(struct ext4_li_request *elr) 3325 { 3326 if (!elr) 3327 return; 3328 3329 list_del(&elr->lr_request); 3330 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3331 kfree(elr); 3332 } 3333 3334 static void ext4_unregister_li_request(struct super_block *sb) 3335 { 3336 mutex_lock(&ext4_li_mtx); 3337 if (!ext4_li_info) { 3338 mutex_unlock(&ext4_li_mtx); 3339 return; 3340 } 3341 3342 mutex_lock(&ext4_li_info->li_list_mtx); 3343 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3344 mutex_unlock(&ext4_li_info->li_list_mtx); 3345 mutex_unlock(&ext4_li_mtx); 3346 } 3347 3348 static struct task_struct *ext4_lazyinit_task; 3349 3350 /* 3351 * This is the function where ext4lazyinit thread lives. It walks 3352 * through the request list searching for next scheduled filesystem. 3353 * When such a fs is found, run the lazy initialization request 3354 * (ext4_rn_li_request) and keep track of the time spend in this 3355 * function. Based on that time we compute next schedule time of 3356 * the request. When walking through the list is complete, compute 3357 * next waking time and put itself into sleep. 3358 */ 3359 static int ext4_lazyinit_thread(void *arg) 3360 { 3361 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3362 struct list_head *pos, *n; 3363 struct ext4_li_request *elr; 3364 unsigned long next_wakeup, cur; 3365 3366 BUG_ON(NULL == eli); 3367 3368 cont_thread: 3369 while (true) { 3370 next_wakeup = MAX_JIFFY_OFFSET; 3371 3372 mutex_lock(&eli->li_list_mtx); 3373 if (list_empty(&eli->li_request_list)) { 3374 mutex_unlock(&eli->li_list_mtx); 3375 goto exit_thread; 3376 } 3377 list_for_each_safe(pos, n, &eli->li_request_list) { 3378 int err = 0; 3379 int progress = 0; 3380 elr = list_entry(pos, struct ext4_li_request, 3381 lr_request); 3382 3383 if (time_before(jiffies, elr->lr_next_sched)) { 3384 if (time_before(elr->lr_next_sched, next_wakeup)) 3385 next_wakeup = elr->lr_next_sched; 3386 continue; 3387 } 3388 if (down_read_trylock(&elr->lr_super->s_umount)) { 3389 if (sb_start_write_trylock(elr->lr_super)) { 3390 progress = 1; 3391 /* 3392 * We hold sb->s_umount, sb can not 3393 * be removed from the list, it is 3394 * now safe to drop li_list_mtx 3395 */ 3396 mutex_unlock(&eli->li_list_mtx); 3397 err = ext4_run_li_request(elr); 3398 sb_end_write(elr->lr_super); 3399 mutex_lock(&eli->li_list_mtx); 3400 n = pos->next; 3401 } 3402 up_read((&elr->lr_super->s_umount)); 3403 } 3404 /* error, remove the lazy_init job */ 3405 if (err) { 3406 ext4_remove_li_request(elr); 3407 continue; 3408 } 3409 if (!progress) { 3410 elr->lr_next_sched = jiffies + 3411 (prandom_u32() 3412 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3413 } 3414 if (time_before(elr->lr_next_sched, next_wakeup)) 3415 next_wakeup = elr->lr_next_sched; 3416 } 3417 mutex_unlock(&eli->li_list_mtx); 3418 3419 try_to_freeze(); 3420 3421 cur = jiffies; 3422 if ((time_after_eq(cur, next_wakeup)) || 3423 (MAX_JIFFY_OFFSET == next_wakeup)) { 3424 cond_resched(); 3425 continue; 3426 } 3427 3428 schedule_timeout_interruptible(next_wakeup - cur); 3429 3430 if (kthread_should_stop()) { 3431 ext4_clear_request_list(); 3432 goto exit_thread; 3433 } 3434 } 3435 3436 exit_thread: 3437 /* 3438 * It looks like the request list is empty, but we need 3439 * to check it under the li_list_mtx lock, to prevent any 3440 * additions into it, and of course we should lock ext4_li_mtx 3441 * to atomically free the list and ext4_li_info, because at 3442 * this point another ext4 filesystem could be registering 3443 * new one. 3444 */ 3445 mutex_lock(&ext4_li_mtx); 3446 mutex_lock(&eli->li_list_mtx); 3447 if (!list_empty(&eli->li_request_list)) { 3448 mutex_unlock(&eli->li_list_mtx); 3449 mutex_unlock(&ext4_li_mtx); 3450 goto cont_thread; 3451 } 3452 mutex_unlock(&eli->li_list_mtx); 3453 kfree(ext4_li_info); 3454 ext4_li_info = NULL; 3455 mutex_unlock(&ext4_li_mtx); 3456 3457 return 0; 3458 } 3459 3460 static void ext4_clear_request_list(void) 3461 { 3462 struct list_head *pos, *n; 3463 struct ext4_li_request *elr; 3464 3465 mutex_lock(&ext4_li_info->li_list_mtx); 3466 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3467 elr = list_entry(pos, struct ext4_li_request, 3468 lr_request); 3469 ext4_remove_li_request(elr); 3470 } 3471 mutex_unlock(&ext4_li_info->li_list_mtx); 3472 } 3473 3474 static int ext4_run_lazyinit_thread(void) 3475 { 3476 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3477 ext4_li_info, "ext4lazyinit"); 3478 if (IS_ERR(ext4_lazyinit_task)) { 3479 int err = PTR_ERR(ext4_lazyinit_task); 3480 ext4_clear_request_list(); 3481 kfree(ext4_li_info); 3482 ext4_li_info = NULL; 3483 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3484 "initialization thread\n", 3485 err); 3486 return err; 3487 } 3488 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3489 return 0; 3490 } 3491 3492 /* 3493 * Check whether it make sense to run itable init. thread or not. 3494 * If there is at least one uninitialized inode table, return 3495 * corresponding group number, else the loop goes through all 3496 * groups and return total number of groups. 3497 */ 3498 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3499 { 3500 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3501 struct ext4_group_desc *gdp = NULL; 3502 3503 if (!ext4_has_group_desc_csum(sb)) 3504 return ngroups; 3505 3506 for (group = 0; group < ngroups; group++) { 3507 gdp = ext4_get_group_desc(sb, group, NULL); 3508 if (!gdp) 3509 continue; 3510 3511 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3512 break; 3513 } 3514 3515 return group; 3516 } 3517 3518 static int ext4_li_info_new(void) 3519 { 3520 struct ext4_lazy_init *eli = NULL; 3521 3522 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3523 if (!eli) 3524 return -ENOMEM; 3525 3526 INIT_LIST_HEAD(&eli->li_request_list); 3527 mutex_init(&eli->li_list_mtx); 3528 3529 eli->li_state |= EXT4_LAZYINIT_QUIT; 3530 3531 ext4_li_info = eli; 3532 3533 return 0; 3534 } 3535 3536 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3537 ext4_group_t start) 3538 { 3539 struct ext4_li_request *elr; 3540 3541 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3542 if (!elr) 3543 return NULL; 3544 3545 elr->lr_super = sb; 3546 elr->lr_first_not_zeroed = start; 3547 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3548 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3549 elr->lr_next_group = start; 3550 } else { 3551 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3552 } 3553 3554 /* 3555 * Randomize first schedule time of the request to 3556 * spread the inode table initialization requests 3557 * better. 3558 */ 3559 elr->lr_next_sched = jiffies + (prandom_u32() % 3560 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3561 return elr; 3562 } 3563 3564 int ext4_register_li_request(struct super_block *sb, 3565 ext4_group_t first_not_zeroed) 3566 { 3567 struct ext4_sb_info *sbi = EXT4_SB(sb); 3568 struct ext4_li_request *elr = NULL; 3569 ext4_group_t ngroups = sbi->s_groups_count; 3570 int ret = 0; 3571 3572 mutex_lock(&ext4_li_mtx); 3573 if (sbi->s_li_request != NULL) { 3574 /* 3575 * Reset timeout so it can be computed again, because 3576 * s_li_wait_mult might have changed. 3577 */ 3578 sbi->s_li_request->lr_timeout = 0; 3579 goto out; 3580 } 3581 3582 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3583 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3584 !test_opt(sb, INIT_INODE_TABLE))) 3585 goto out; 3586 3587 elr = ext4_li_request_new(sb, first_not_zeroed); 3588 if (!elr) { 3589 ret = -ENOMEM; 3590 goto out; 3591 } 3592 3593 if (NULL == ext4_li_info) { 3594 ret = ext4_li_info_new(); 3595 if (ret) 3596 goto out; 3597 } 3598 3599 mutex_lock(&ext4_li_info->li_list_mtx); 3600 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3601 mutex_unlock(&ext4_li_info->li_list_mtx); 3602 3603 sbi->s_li_request = elr; 3604 /* 3605 * set elr to NULL here since it has been inserted to 3606 * the request_list and the removal and free of it is 3607 * handled by ext4_clear_request_list from now on. 3608 */ 3609 elr = NULL; 3610 3611 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3612 ret = ext4_run_lazyinit_thread(); 3613 if (ret) 3614 goto out; 3615 } 3616 out: 3617 mutex_unlock(&ext4_li_mtx); 3618 if (ret) 3619 kfree(elr); 3620 return ret; 3621 } 3622 3623 /* 3624 * We do not need to lock anything since this is called on 3625 * module unload. 3626 */ 3627 static void ext4_destroy_lazyinit_thread(void) 3628 { 3629 /* 3630 * If thread exited earlier 3631 * there's nothing to be done. 3632 */ 3633 if (!ext4_li_info || !ext4_lazyinit_task) 3634 return; 3635 3636 kthread_stop(ext4_lazyinit_task); 3637 } 3638 3639 static int set_journal_csum_feature_set(struct super_block *sb) 3640 { 3641 int ret = 1; 3642 int compat, incompat; 3643 struct ext4_sb_info *sbi = EXT4_SB(sb); 3644 3645 if (ext4_has_metadata_csum(sb)) { 3646 /* journal checksum v3 */ 3647 compat = 0; 3648 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3649 } else { 3650 /* journal checksum v1 */ 3651 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3652 incompat = 0; 3653 } 3654 3655 jbd2_journal_clear_features(sbi->s_journal, 3656 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3657 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3658 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3659 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3660 ret = jbd2_journal_set_features(sbi->s_journal, 3661 compat, 0, 3662 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3663 incompat); 3664 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3665 ret = jbd2_journal_set_features(sbi->s_journal, 3666 compat, 0, 3667 incompat); 3668 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3669 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3670 } else { 3671 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3672 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3673 } 3674 3675 return ret; 3676 } 3677 3678 /* 3679 * Note: calculating the overhead so we can be compatible with 3680 * historical BSD practice is quite difficult in the face of 3681 * clusters/bigalloc. This is because multiple metadata blocks from 3682 * different block group can end up in the same allocation cluster. 3683 * Calculating the exact overhead in the face of clustered allocation 3684 * requires either O(all block bitmaps) in memory or O(number of block 3685 * groups**2) in time. We will still calculate the superblock for 3686 * older file systems --- and if we come across with a bigalloc file 3687 * system with zero in s_overhead_clusters the estimate will be close to 3688 * correct especially for very large cluster sizes --- but for newer 3689 * file systems, it's better to calculate this figure once at mkfs 3690 * time, and store it in the superblock. If the superblock value is 3691 * present (even for non-bigalloc file systems), we will use it. 3692 */ 3693 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3694 char *buf) 3695 { 3696 struct ext4_sb_info *sbi = EXT4_SB(sb); 3697 struct ext4_group_desc *gdp; 3698 ext4_fsblk_t first_block, last_block, b; 3699 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3700 int s, j, count = 0; 3701 3702 if (!ext4_has_feature_bigalloc(sb)) 3703 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3704 sbi->s_itb_per_group + 2); 3705 3706 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3707 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3708 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3709 for (i = 0; i < ngroups; i++) { 3710 gdp = ext4_get_group_desc(sb, i, NULL); 3711 b = ext4_block_bitmap(sb, gdp); 3712 if (b >= first_block && b <= last_block) { 3713 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3714 count++; 3715 } 3716 b = ext4_inode_bitmap(sb, gdp); 3717 if (b >= first_block && b <= last_block) { 3718 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3719 count++; 3720 } 3721 b = ext4_inode_table(sb, gdp); 3722 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3723 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3724 int c = EXT4_B2C(sbi, b - first_block); 3725 ext4_set_bit(c, buf); 3726 count++; 3727 } 3728 if (i != grp) 3729 continue; 3730 s = 0; 3731 if (ext4_bg_has_super(sb, grp)) { 3732 ext4_set_bit(s++, buf); 3733 count++; 3734 } 3735 j = ext4_bg_num_gdb(sb, grp); 3736 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3737 ext4_error(sb, "Invalid number of block group " 3738 "descriptor blocks: %d", j); 3739 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3740 } 3741 count += j; 3742 for (; j > 0; j--) 3743 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3744 } 3745 if (!count) 3746 return 0; 3747 return EXT4_CLUSTERS_PER_GROUP(sb) - 3748 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3749 } 3750 3751 /* 3752 * Compute the overhead and stash it in sbi->s_overhead 3753 */ 3754 int ext4_calculate_overhead(struct super_block *sb) 3755 { 3756 struct ext4_sb_info *sbi = EXT4_SB(sb); 3757 struct ext4_super_block *es = sbi->s_es; 3758 struct inode *j_inode; 3759 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3760 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3761 ext4_fsblk_t overhead = 0; 3762 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3763 3764 if (!buf) 3765 return -ENOMEM; 3766 3767 /* 3768 * Compute the overhead (FS structures). This is constant 3769 * for a given filesystem unless the number of block groups 3770 * changes so we cache the previous value until it does. 3771 */ 3772 3773 /* 3774 * All of the blocks before first_data_block are overhead 3775 */ 3776 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3777 3778 /* 3779 * Add the overhead found in each block group 3780 */ 3781 for (i = 0; i < ngroups; i++) { 3782 int blks; 3783 3784 blks = count_overhead(sb, i, buf); 3785 overhead += blks; 3786 if (blks) 3787 memset(buf, 0, PAGE_SIZE); 3788 cond_resched(); 3789 } 3790 3791 /* 3792 * Add the internal journal blocks whether the journal has been 3793 * loaded or not 3794 */ 3795 if (sbi->s_journal && !sbi->s_journal_bdev) 3796 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3797 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3798 /* j_inum for internal journal is non-zero */ 3799 j_inode = ext4_get_journal_inode(sb, j_inum); 3800 if (j_inode) { 3801 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3802 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3803 iput(j_inode); 3804 } else { 3805 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3806 } 3807 } 3808 sbi->s_overhead = overhead; 3809 smp_wmb(); 3810 free_page((unsigned long) buf); 3811 return 0; 3812 } 3813 3814 static void ext4_set_resv_clusters(struct super_block *sb) 3815 { 3816 ext4_fsblk_t resv_clusters; 3817 struct ext4_sb_info *sbi = EXT4_SB(sb); 3818 3819 /* 3820 * There's no need to reserve anything when we aren't using extents. 3821 * The space estimates are exact, there are no unwritten extents, 3822 * hole punching doesn't need new metadata... This is needed especially 3823 * to keep ext2/3 backward compatibility. 3824 */ 3825 if (!ext4_has_feature_extents(sb)) 3826 return; 3827 /* 3828 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3829 * This should cover the situations where we can not afford to run 3830 * out of space like for example punch hole, or converting 3831 * unwritten extents in delalloc path. In most cases such 3832 * allocation would require 1, or 2 blocks, higher numbers are 3833 * very rare. 3834 */ 3835 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3836 sbi->s_cluster_bits); 3837 3838 do_div(resv_clusters, 50); 3839 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3840 3841 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3842 } 3843 3844 static const char *ext4_quota_mode(struct super_block *sb) 3845 { 3846 #ifdef CONFIG_QUOTA 3847 if (!ext4_quota_capable(sb)) 3848 return "none"; 3849 3850 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 3851 return "journalled"; 3852 else 3853 return "writeback"; 3854 #else 3855 return "disabled"; 3856 #endif 3857 } 3858 3859 static void ext4_setup_csum_trigger(struct super_block *sb, 3860 enum ext4_journal_trigger_type type, 3861 void (*trigger)( 3862 struct jbd2_buffer_trigger_type *type, 3863 struct buffer_head *bh, 3864 void *mapped_data, 3865 size_t size)) 3866 { 3867 struct ext4_sb_info *sbi = EXT4_SB(sb); 3868 3869 sbi->s_journal_triggers[type].sb = sb; 3870 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 3871 } 3872 3873 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3874 { 3875 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3876 char *orig_data = kstrdup(data, GFP_KERNEL); 3877 struct buffer_head *bh, **group_desc; 3878 struct ext4_super_block *es = NULL; 3879 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3880 struct flex_groups **flex_groups; 3881 ext4_fsblk_t block; 3882 ext4_fsblk_t sb_block = get_sb_block(&data); 3883 ext4_fsblk_t logical_sb_block; 3884 unsigned long offset = 0; 3885 unsigned long def_mount_opts; 3886 struct inode *root; 3887 const char *descr; 3888 int ret = -ENOMEM; 3889 int blocksize, clustersize; 3890 unsigned int db_count; 3891 unsigned int i; 3892 int needs_recovery, has_huge_files; 3893 __u64 blocks_count; 3894 int err = 0; 3895 ext4_group_t first_not_zeroed; 3896 struct ext4_parsed_options parsed_opts; 3897 3898 /* Set defaults for the variables that will be set during parsing */ 3899 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3900 parsed_opts.journal_devnum = 0; 3901 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN; 3902 3903 if ((data && !orig_data) || !sbi) 3904 goto out_free_base; 3905 3906 sbi->s_daxdev = dax_dev; 3907 sbi->s_blockgroup_lock = 3908 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3909 if (!sbi->s_blockgroup_lock) 3910 goto out_free_base; 3911 3912 sb->s_fs_info = sbi; 3913 sbi->s_sb = sb; 3914 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3915 sbi->s_sb_block = sb_block; 3916 sbi->s_sectors_written_start = 3917 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 3918 3919 /* Cleanup superblock name */ 3920 strreplace(sb->s_id, '/', '!'); 3921 3922 /* -EINVAL is default */ 3923 ret = -EINVAL; 3924 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3925 if (!blocksize) { 3926 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3927 goto out_fail; 3928 } 3929 3930 /* 3931 * The ext4 superblock will not be buffer aligned for other than 1kB 3932 * block sizes. We need to calculate the offset from buffer start. 3933 */ 3934 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3935 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3936 offset = do_div(logical_sb_block, blocksize); 3937 } else { 3938 logical_sb_block = sb_block; 3939 } 3940 3941 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 3942 if (IS_ERR(bh)) { 3943 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3944 ret = PTR_ERR(bh); 3945 goto out_fail; 3946 } 3947 /* 3948 * Note: s_es must be initialized as soon as possible because 3949 * some ext4 macro-instructions depend on its value 3950 */ 3951 es = (struct ext4_super_block *) (bh->b_data + offset); 3952 sbi->s_es = es; 3953 sb->s_magic = le16_to_cpu(es->s_magic); 3954 if (sb->s_magic != EXT4_SUPER_MAGIC) 3955 goto cantfind_ext4; 3956 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3957 3958 /* Warn if metadata_csum and gdt_csum are both set. */ 3959 if (ext4_has_feature_metadata_csum(sb) && 3960 ext4_has_feature_gdt_csum(sb)) 3961 ext4_warning(sb, "metadata_csum and uninit_bg are " 3962 "redundant flags; please run fsck."); 3963 3964 /* Check for a known checksum algorithm */ 3965 if (!ext4_verify_csum_type(sb, es)) { 3966 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3967 "unknown checksum algorithm."); 3968 silent = 1; 3969 goto cantfind_ext4; 3970 } 3971 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 3972 ext4_orphan_file_block_trigger); 3973 3974 /* Load the checksum driver */ 3975 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3976 if (IS_ERR(sbi->s_chksum_driver)) { 3977 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3978 ret = PTR_ERR(sbi->s_chksum_driver); 3979 sbi->s_chksum_driver = NULL; 3980 goto failed_mount; 3981 } 3982 3983 /* Check superblock checksum */ 3984 if (!ext4_superblock_csum_verify(sb, es)) { 3985 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3986 "invalid superblock checksum. Run e2fsck?"); 3987 silent = 1; 3988 ret = -EFSBADCRC; 3989 goto cantfind_ext4; 3990 } 3991 3992 /* Precompute checksum seed for all metadata */ 3993 if (ext4_has_feature_csum_seed(sb)) 3994 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3995 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3996 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3997 sizeof(es->s_uuid)); 3998 3999 /* Set defaults before we parse the mount options */ 4000 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4001 set_opt(sb, INIT_INODE_TABLE); 4002 if (def_mount_opts & EXT4_DEFM_DEBUG) 4003 set_opt(sb, DEBUG); 4004 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4005 set_opt(sb, GRPID); 4006 if (def_mount_opts & EXT4_DEFM_UID16) 4007 set_opt(sb, NO_UID32); 4008 /* xattr user namespace & acls are now defaulted on */ 4009 set_opt(sb, XATTR_USER); 4010 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4011 set_opt(sb, POSIX_ACL); 4012 #endif 4013 if (ext4_has_feature_fast_commit(sb)) 4014 set_opt2(sb, JOURNAL_FAST_COMMIT); 4015 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4016 if (ext4_has_metadata_csum(sb)) 4017 set_opt(sb, JOURNAL_CHECKSUM); 4018 4019 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4020 set_opt(sb, JOURNAL_DATA); 4021 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4022 set_opt(sb, ORDERED_DATA); 4023 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4024 set_opt(sb, WRITEBACK_DATA); 4025 4026 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4027 set_opt(sb, ERRORS_PANIC); 4028 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4029 set_opt(sb, ERRORS_CONT); 4030 else 4031 set_opt(sb, ERRORS_RO); 4032 /* block_validity enabled by default; disable with noblock_validity */ 4033 set_opt(sb, BLOCK_VALIDITY); 4034 if (def_mount_opts & EXT4_DEFM_DISCARD) 4035 set_opt(sb, DISCARD); 4036 4037 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4038 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4039 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4040 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4041 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4042 4043 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4044 set_opt(sb, BARRIER); 4045 4046 /* 4047 * enable delayed allocation by default 4048 * Use -o nodelalloc to turn it off 4049 */ 4050 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4051 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4052 set_opt(sb, DELALLOC); 4053 4054 /* 4055 * set default s_li_wait_mult for lazyinit, for the case there is 4056 * no mount option specified. 4057 */ 4058 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4059 4060 if (le32_to_cpu(es->s_log_block_size) > 4061 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4062 ext4_msg(sb, KERN_ERR, 4063 "Invalid log block size: %u", 4064 le32_to_cpu(es->s_log_block_size)); 4065 goto failed_mount; 4066 } 4067 if (le32_to_cpu(es->s_log_cluster_size) > 4068 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4069 ext4_msg(sb, KERN_ERR, 4070 "Invalid log cluster size: %u", 4071 le32_to_cpu(es->s_log_cluster_size)); 4072 goto failed_mount; 4073 } 4074 4075 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4076 4077 if (blocksize == PAGE_SIZE) 4078 set_opt(sb, DIOREAD_NOLOCK); 4079 4080 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4081 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4082 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4083 } else { 4084 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4085 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4086 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4087 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4088 sbi->s_first_ino); 4089 goto failed_mount; 4090 } 4091 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4092 (!is_power_of_2(sbi->s_inode_size)) || 4093 (sbi->s_inode_size > blocksize)) { 4094 ext4_msg(sb, KERN_ERR, 4095 "unsupported inode size: %d", 4096 sbi->s_inode_size); 4097 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4098 goto failed_mount; 4099 } 4100 /* 4101 * i_atime_extra is the last extra field available for 4102 * [acm]times in struct ext4_inode. Checking for that 4103 * field should suffice to ensure we have extra space 4104 * for all three. 4105 */ 4106 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4107 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4108 sb->s_time_gran = 1; 4109 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4110 } else { 4111 sb->s_time_gran = NSEC_PER_SEC; 4112 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4113 } 4114 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4115 } 4116 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4117 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4118 EXT4_GOOD_OLD_INODE_SIZE; 4119 if (ext4_has_feature_extra_isize(sb)) { 4120 unsigned v, max = (sbi->s_inode_size - 4121 EXT4_GOOD_OLD_INODE_SIZE); 4122 4123 v = le16_to_cpu(es->s_want_extra_isize); 4124 if (v > max) { 4125 ext4_msg(sb, KERN_ERR, 4126 "bad s_want_extra_isize: %d", v); 4127 goto failed_mount; 4128 } 4129 if (sbi->s_want_extra_isize < v) 4130 sbi->s_want_extra_isize = v; 4131 4132 v = le16_to_cpu(es->s_min_extra_isize); 4133 if (v > max) { 4134 ext4_msg(sb, KERN_ERR, 4135 "bad s_min_extra_isize: %d", v); 4136 goto failed_mount; 4137 } 4138 if (sbi->s_want_extra_isize < v) 4139 sbi->s_want_extra_isize = v; 4140 } 4141 } 4142 4143 if (sbi->s_es->s_mount_opts[0]) { 4144 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4145 sizeof(sbi->s_es->s_mount_opts), 4146 GFP_KERNEL); 4147 if (!s_mount_opts) 4148 goto failed_mount; 4149 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) { 4150 ext4_msg(sb, KERN_WARNING, 4151 "failed to parse options in superblock: %s", 4152 s_mount_opts); 4153 } 4154 kfree(s_mount_opts); 4155 } 4156 sbi->s_def_mount_opt = sbi->s_mount_opt; 4157 if (!parse_options((char *) data, sb, &parsed_opts, 0)) 4158 goto failed_mount; 4159 4160 #ifdef CONFIG_UNICODE 4161 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4162 const struct ext4_sb_encodings *encoding_info; 4163 struct unicode_map *encoding; 4164 __u16 encoding_flags; 4165 4166 if (ext4_sb_read_encoding(es, &encoding_info, 4167 &encoding_flags)) { 4168 ext4_msg(sb, KERN_ERR, 4169 "Encoding requested by superblock is unknown"); 4170 goto failed_mount; 4171 } 4172 4173 encoding = utf8_load(encoding_info->version); 4174 if (IS_ERR(encoding)) { 4175 ext4_msg(sb, KERN_ERR, 4176 "can't mount with superblock charset: %s-%s " 4177 "not supported by the kernel. flags: 0x%x.", 4178 encoding_info->name, encoding_info->version, 4179 encoding_flags); 4180 goto failed_mount; 4181 } 4182 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4183 "%s-%s with flags 0x%hx", encoding_info->name, 4184 encoding_info->version?:"\b", encoding_flags); 4185 4186 sb->s_encoding = encoding; 4187 sb->s_encoding_flags = encoding_flags; 4188 } 4189 #endif 4190 4191 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4192 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4193 /* can't mount with both data=journal and dioread_nolock. */ 4194 clear_opt(sb, DIOREAD_NOLOCK); 4195 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4196 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4197 ext4_msg(sb, KERN_ERR, "can't mount with " 4198 "both data=journal and delalloc"); 4199 goto failed_mount; 4200 } 4201 if (test_opt(sb, DAX_ALWAYS)) { 4202 ext4_msg(sb, KERN_ERR, "can't mount with " 4203 "both data=journal and dax"); 4204 goto failed_mount; 4205 } 4206 if (ext4_has_feature_encrypt(sb)) { 4207 ext4_msg(sb, KERN_WARNING, 4208 "encrypted files will use data=ordered " 4209 "instead of data journaling mode"); 4210 } 4211 if (test_opt(sb, DELALLOC)) 4212 clear_opt(sb, DELALLOC); 4213 } else { 4214 sb->s_iflags |= SB_I_CGROUPWB; 4215 } 4216 4217 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4218 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4219 4220 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4221 (ext4_has_compat_features(sb) || 4222 ext4_has_ro_compat_features(sb) || 4223 ext4_has_incompat_features(sb))) 4224 ext4_msg(sb, KERN_WARNING, 4225 "feature flags set on rev 0 fs, " 4226 "running e2fsck is recommended"); 4227 4228 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4229 set_opt2(sb, HURD_COMPAT); 4230 if (ext4_has_feature_64bit(sb)) { 4231 ext4_msg(sb, KERN_ERR, 4232 "The Hurd can't support 64-bit file systems"); 4233 goto failed_mount; 4234 } 4235 4236 /* 4237 * ea_inode feature uses l_i_version field which is not 4238 * available in HURD_COMPAT mode. 4239 */ 4240 if (ext4_has_feature_ea_inode(sb)) { 4241 ext4_msg(sb, KERN_ERR, 4242 "ea_inode feature is not supported for Hurd"); 4243 goto failed_mount; 4244 } 4245 } 4246 4247 if (IS_EXT2_SB(sb)) { 4248 if (ext2_feature_set_ok(sb)) 4249 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4250 "using the ext4 subsystem"); 4251 else { 4252 /* 4253 * If we're probing be silent, if this looks like 4254 * it's actually an ext[34] filesystem. 4255 */ 4256 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4257 goto failed_mount; 4258 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4259 "to feature incompatibilities"); 4260 goto failed_mount; 4261 } 4262 } 4263 4264 if (IS_EXT3_SB(sb)) { 4265 if (ext3_feature_set_ok(sb)) 4266 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4267 "using the ext4 subsystem"); 4268 else { 4269 /* 4270 * If we're probing be silent, if this looks like 4271 * it's actually an ext4 filesystem. 4272 */ 4273 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4274 goto failed_mount; 4275 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4276 "to feature incompatibilities"); 4277 goto failed_mount; 4278 } 4279 } 4280 4281 /* 4282 * Check feature flags regardless of the revision level, since we 4283 * previously didn't change the revision level when setting the flags, 4284 * so there is a chance incompat flags are set on a rev 0 filesystem. 4285 */ 4286 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4287 goto failed_mount; 4288 4289 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4290 ext4_msg(sb, KERN_ERR, 4291 "Number of reserved GDT blocks insanely large: %d", 4292 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4293 goto failed_mount; 4294 } 4295 4296 if (dax_supported(dax_dev, sb->s_bdev, blocksize, 0, 4297 bdev_nr_sectors(sb->s_bdev))) 4298 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4299 4300 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4301 if (ext4_has_feature_inline_data(sb)) { 4302 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4303 " that may contain inline data"); 4304 goto failed_mount; 4305 } 4306 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4307 ext4_msg(sb, KERN_ERR, 4308 "DAX unsupported by block device."); 4309 goto failed_mount; 4310 } 4311 } 4312 4313 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4314 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4315 es->s_encryption_level); 4316 goto failed_mount; 4317 } 4318 4319 if (sb->s_blocksize != blocksize) { 4320 /* 4321 * bh must be released before kill_bdev(), otherwise 4322 * it won't be freed and its page also. kill_bdev() 4323 * is called by sb_set_blocksize(). 4324 */ 4325 brelse(bh); 4326 /* Validate the filesystem blocksize */ 4327 if (!sb_set_blocksize(sb, blocksize)) { 4328 ext4_msg(sb, KERN_ERR, "bad block size %d", 4329 blocksize); 4330 bh = NULL; 4331 goto failed_mount; 4332 } 4333 4334 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4335 offset = do_div(logical_sb_block, blocksize); 4336 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4337 if (IS_ERR(bh)) { 4338 ext4_msg(sb, KERN_ERR, 4339 "Can't read superblock on 2nd try"); 4340 ret = PTR_ERR(bh); 4341 bh = NULL; 4342 goto failed_mount; 4343 } 4344 es = (struct ext4_super_block *)(bh->b_data + offset); 4345 sbi->s_es = es; 4346 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4347 ext4_msg(sb, KERN_ERR, 4348 "Magic mismatch, very weird!"); 4349 goto failed_mount; 4350 } 4351 } 4352 4353 has_huge_files = ext4_has_feature_huge_file(sb); 4354 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4355 has_huge_files); 4356 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4357 4358 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4359 if (ext4_has_feature_64bit(sb)) { 4360 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4361 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4362 !is_power_of_2(sbi->s_desc_size)) { 4363 ext4_msg(sb, KERN_ERR, 4364 "unsupported descriptor size %lu", 4365 sbi->s_desc_size); 4366 goto failed_mount; 4367 } 4368 } else 4369 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4370 4371 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4372 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4373 4374 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4375 if (sbi->s_inodes_per_block == 0) 4376 goto cantfind_ext4; 4377 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4378 sbi->s_inodes_per_group > blocksize * 8) { 4379 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4380 sbi->s_inodes_per_group); 4381 goto failed_mount; 4382 } 4383 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4384 sbi->s_inodes_per_block; 4385 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4386 sbi->s_sbh = bh; 4387 sbi->s_mount_state = le16_to_cpu(es->s_state); 4388 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4389 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4390 4391 for (i = 0; i < 4; i++) 4392 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4393 sbi->s_def_hash_version = es->s_def_hash_version; 4394 if (ext4_has_feature_dir_index(sb)) { 4395 i = le32_to_cpu(es->s_flags); 4396 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4397 sbi->s_hash_unsigned = 3; 4398 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4399 #ifdef __CHAR_UNSIGNED__ 4400 if (!sb_rdonly(sb)) 4401 es->s_flags |= 4402 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4403 sbi->s_hash_unsigned = 3; 4404 #else 4405 if (!sb_rdonly(sb)) 4406 es->s_flags |= 4407 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4408 #endif 4409 } 4410 } 4411 4412 /* Handle clustersize */ 4413 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4414 if (ext4_has_feature_bigalloc(sb)) { 4415 if (clustersize < blocksize) { 4416 ext4_msg(sb, KERN_ERR, 4417 "cluster size (%d) smaller than " 4418 "block size (%d)", clustersize, blocksize); 4419 goto failed_mount; 4420 } 4421 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4422 le32_to_cpu(es->s_log_block_size); 4423 sbi->s_clusters_per_group = 4424 le32_to_cpu(es->s_clusters_per_group); 4425 if (sbi->s_clusters_per_group > blocksize * 8) { 4426 ext4_msg(sb, KERN_ERR, 4427 "#clusters per group too big: %lu", 4428 sbi->s_clusters_per_group); 4429 goto failed_mount; 4430 } 4431 if (sbi->s_blocks_per_group != 4432 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4433 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4434 "clusters per group (%lu) inconsistent", 4435 sbi->s_blocks_per_group, 4436 sbi->s_clusters_per_group); 4437 goto failed_mount; 4438 } 4439 } else { 4440 if (clustersize != blocksize) { 4441 ext4_msg(sb, KERN_ERR, 4442 "fragment/cluster size (%d) != " 4443 "block size (%d)", clustersize, blocksize); 4444 goto failed_mount; 4445 } 4446 if (sbi->s_blocks_per_group > blocksize * 8) { 4447 ext4_msg(sb, KERN_ERR, 4448 "#blocks per group too big: %lu", 4449 sbi->s_blocks_per_group); 4450 goto failed_mount; 4451 } 4452 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4453 sbi->s_cluster_bits = 0; 4454 } 4455 sbi->s_cluster_ratio = clustersize / blocksize; 4456 4457 /* Do we have standard group size of clustersize * 8 blocks ? */ 4458 if (sbi->s_blocks_per_group == clustersize << 3) 4459 set_opt2(sb, STD_GROUP_SIZE); 4460 4461 /* 4462 * Test whether we have more sectors than will fit in sector_t, 4463 * and whether the max offset is addressable by the page cache. 4464 */ 4465 err = generic_check_addressable(sb->s_blocksize_bits, 4466 ext4_blocks_count(es)); 4467 if (err) { 4468 ext4_msg(sb, KERN_ERR, "filesystem" 4469 " too large to mount safely on this system"); 4470 goto failed_mount; 4471 } 4472 4473 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4474 goto cantfind_ext4; 4475 4476 /* check blocks count against device size */ 4477 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4478 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4479 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4480 "exceeds size of device (%llu blocks)", 4481 ext4_blocks_count(es), blocks_count); 4482 goto failed_mount; 4483 } 4484 4485 /* 4486 * It makes no sense for the first data block to be beyond the end 4487 * of the filesystem. 4488 */ 4489 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4490 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4491 "block %u is beyond end of filesystem (%llu)", 4492 le32_to_cpu(es->s_first_data_block), 4493 ext4_blocks_count(es)); 4494 goto failed_mount; 4495 } 4496 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4497 (sbi->s_cluster_ratio == 1)) { 4498 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4499 "block is 0 with a 1k block and cluster size"); 4500 goto failed_mount; 4501 } 4502 4503 blocks_count = (ext4_blocks_count(es) - 4504 le32_to_cpu(es->s_first_data_block) + 4505 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4506 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4507 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4508 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4509 "(block count %llu, first data block %u, " 4510 "blocks per group %lu)", blocks_count, 4511 ext4_blocks_count(es), 4512 le32_to_cpu(es->s_first_data_block), 4513 EXT4_BLOCKS_PER_GROUP(sb)); 4514 goto failed_mount; 4515 } 4516 sbi->s_groups_count = blocks_count; 4517 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4518 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4519 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4520 le32_to_cpu(es->s_inodes_count)) { 4521 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4522 le32_to_cpu(es->s_inodes_count), 4523 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4524 ret = -EINVAL; 4525 goto failed_mount; 4526 } 4527 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4528 EXT4_DESC_PER_BLOCK(sb); 4529 if (ext4_has_feature_meta_bg(sb)) { 4530 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4531 ext4_msg(sb, KERN_WARNING, 4532 "first meta block group too large: %u " 4533 "(group descriptor block count %u)", 4534 le32_to_cpu(es->s_first_meta_bg), db_count); 4535 goto failed_mount; 4536 } 4537 } 4538 rcu_assign_pointer(sbi->s_group_desc, 4539 kvmalloc_array(db_count, 4540 sizeof(struct buffer_head *), 4541 GFP_KERNEL)); 4542 if (sbi->s_group_desc == NULL) { 4543 ext4_msg(sb, KERN_ERR, "not enough memory"); 4544 ret = -ENOMEM; 4545 goto failed_mount; 4546 } 4547 4548 bgl_lock_init(sbi->s_blockgroup_lock); 4549 4550 /* Pre-read the descriptors into the buffer cache */ 4551 for (i = 0; i < db_count; i++) { 4552 block = descriptor_loc(sb, logical_sb_block, i); 4553 ext4_sb_breadahead_unmovable(sb, block); 4554 } 4555 4556 for (i = 0; i < db_count; i++) { 4557 struct buffer_head *bh; 4558 4559 block = descriptor_loc(sb, logical_sb_block, i); 4560 bh = ext4_sb_bread_unmovable(sb, block); 4561 if (IS_ERR(bh)) { 4562 ext4_msg(sb, KERN_ERR, 4563 "can't read group descriptor %d", i); 4564 db_count = i; 4565 ret = PTR_ERR(bh); 4566 goto failed_mount2; 4567 } 4568 rcu_read_lock(); 4569 rcu_dereference(sbi->s_group_desc)[i] = bh; 4570 rcu_read_unlock(); 4571 } 4572 sbi->s_gdb_count = db_count; 4573 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4574 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4575 ret = -EFSCORRUPTED; 4576 goto failed_mount2; 4577 } 4578 4579 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4580 spin_lock_init(&sbi->s_error_lock); 4581 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4582 4583 /* Register extent status tree shrinker */ 4584 if (ext4_es_register_shrinker(sbi)) 4585 goto failed_mount3; 4586 4587 sbi->s_stripe = ext4_get_stripe_size(sbi); 4588 sbi->s_extent_max_zeroout_kb = 32; 4589 4590 /* 4591 * set up enough so that it can read an inode 4592 */ 4593 sb->s_op = &ext4_sops; 4594 sb->s_export_op = &ext4_export_ops; 4595 sb->s_xattr = ext4_xattr_handlers; 4596 #ifdef CONFIG_FS_ENCRYPTION 4597 sb->s_cop = &ext4_cryptops; 4598 #endif 4599 #ifdef CONFIG_FS_VERITY 4600 sb->s_vop = &ext4_verityops; 4601 #endif 4602 #ifdef CONFIG_QUOTA 4603 sb->dq_op = &ext4_quota_operations; 4604 if (ext4_has_feature_quota(sb)) 4605 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4606 else 4607 sb->s_qcop = &ext4_qctl_operations; 4608 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4609 #endif 4610 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4611 4612 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4613 mutex_init(&sbi->s_orphan_lock); 4614 4615 /* Initialize fast commit stuff */ 4616 atomic_set(&sbi->s_fc_subtid, 0); 4617 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4618 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4619 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4620 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4621 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4622 sbi->s_fc_bytes = 0; 4623 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4624 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4625 spin_lock_init(&sbi->s_fc_lock); 4626 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4627 sbi->s_fc_replay_state.fc_regions = NULL; 4628 sbi->s_fc_replay_state.fc_regions_size = 0; 4629 sbi->s_fc_replay_state.fc_regions_used = 0; 4630 sbi->s_fc_replay_state.fc_regions_valid = 0; 4631 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4632 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4633 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4634 4635 sb->s_root = NULL; 4636 4637 needs_recovery = (es->s_last_orphan != 0 || 4638 ext4_has_feature_orphan_present(sb) || 4639 ext4_has_feature_journal_needs_recovery(sb)); 4640 4641 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4642 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4643 goto failed_mount3a; 4644 4645 /* 4646 * The first inode we look at is the journal inode. Don't try 4647 * root first: it may be modified in the journal! 4648 */ 4649 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4650 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum); 4651 if (err) 4652 goto failed_mount3a; 4653 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4654 ext4_has_feature_journal_needs_recovery(sb)) { 4655 ext4_msg(sb, KERN_ERR, "required journal recovery " 4656 "suppressed and not mounted read-only"); 4657 goto failed_mount_wq; 4658 } else { 4659 /* Nojournal mode, all journal mount options are illegal */ 4660 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4661 ext4_msg(sb, KERN_ERR, "can't mount with " 4662 "journal_checksum, fs mounted w/o journal"); 4663 goto failed_mount_wq; 4664 } 4665 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4666 ext4_msg(sb, KERN_ERR, "can't mount with " 4667 "journal_async_commit, fs mounted w/o journal"); 4668 goto failed_mount_wq; 4669 } 4670 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4671 ext4_msg(sb, KERN_ERR, "can't mount with " 4672 "commit=%lu, fs mounted w/o journal", 4673 sbi->s_commit_interval / HZ); 4674 goto failed_mount_wq; 4675 } 4676 if (EXT4_MOUNT_DATA_FLAGS & 4677 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4678 ext4_msg(sb, KERN_ERR, "can't mount with " 4679 "data=, fs mounted w/o journal"); 4680 goto failed_mount_wq; 4681 } 4682 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4683 clear_opt(sb, JOURNAL_CHECKSUM); 4684 clear_opt(sb, DATA_FLAGS); 4685 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4686 sbi->s_journal = NULL; 4687 needs_recovery = 0; 4688 goto no_journal; 4689 } 4690 4691 if (ext4_has_feature_64bit(sb) && 4692 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4693 JBD2_FEATURE_INCOMPAT_64BIT)) { 4694 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4695 goto failed_mount_wq; 4696 } 4697 4698 if (!set_journal_csum_feature_set(sb)) { 4699 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4700 "feature set"); 4701 goto failed_mount_wq; 4702 } 4703 4704 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4705 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4706 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4707 ext4_msg(sb, KERN_ERR, 4708 "Failed to set fast commit journal feature"); 4709 goto failed_mount_wq; 4710 } 4711 4712 /* We have now updated the journal if required, so we can 4713 * validate the data journaling mode. */ 4714 switch (test_opt(sb, DATA_FLAGS)) { 4715 case 0: 4716 /* No mode set, assume a default based on the journal 4717 * capabilities: ORDERED_DATA if the journal can 4718 * cope, else JOURNAL_DATA 4719 */ 4720 if (jbd2_journal_check_available_features 4721 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4722 set_opt(sb, ORDERED_DATA); 4723 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4724 } else { 4725 set_opt(sb, JOURNAL_DATA); 4726 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4727 } 4728 break; 4729 4730 case EXT4_MOUNT_ORDERED_DATA: 4731 case EXT4_MOUNT_WRITEBACK_DATA: 4732 if (!jbd2_journal_check_available_features 4733 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4734 ext4_msg(sb, KERN_ERR, "Journal does not support " 4735 "requested data journaling mode"); 4736 goto failed_mount_wq; 4737 } 4738 break; 4739 default: 4740 break; 4741 } 4742 4743 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4744 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4745 ext4_msg(sb, KERN_ERR, "can't mount with " 4746 "journal_async_commit in data=ordered mode"); 4747 goto failed_mount_wq; 4748 } 4749 4750 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 4751 4752 sbi->s_journal->j_submit_inode_data_buffers = 4753 ext4_journal_submit_inode_data_buffers; 4754 sbi->s_journal->j_finish_inode_data_buffers = 4755 ext4_journal_finish_inode_data_buffers; 4756 4757 no_journal: 4758 if (!test_opt(sb, NO_MBCACHE)) { 4759 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4760 if (!sbi->s_ea_block_cache) { 4761 ext4_msg(sb, KERN_ERR, 4762 "Failed to create ea_block_cache"); 4763 goto failed_mount_wq; 4764 } 4765 4766 if (ext4_has_feature_ea_inode(sb)) { 4767 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4768 if (!sbi->s_ea_inode_cache) { 4769 ext4_msg(sb, KERN_ERR, 4770 "Failed to create ea_inode_cache"); 4771 goto failed_mount_wq; 4772 } 4773 } 4774 } 4775 4776 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4777 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4778 goto failed_mount_wq; 4779 } 4780 4781 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4782 !ext4_has_feature_encrypt(sb)) { 4783 ext4_set_feature_encrypt(sb); 4784 ext4_commit_super(sb); 4785 } 4786 4787 /* 4788 * Get the # of file system overhead blocks from the 4789 * superblock if present. 4790 */ 4791 if (es->s_overhead_clusters) 4792 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4793 else { 4794 err = ext4_calculate_overhead(sb); 4795 if (err) 4796 goto failed_mount_wq; 4797 } 4798 4799 /* 4800 * The maximum number of concurrent works can be high and 4801 * concurrency isn't really necessary. Limit it to 1. 4802 */ 4803 EXT4_SB(sb)->rsv_conversion_wq = 4804 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4805 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4806 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4807 ret = -ENOMEM; 4808 goto failed_mount4; 4809 } 4810 4811 /* 4812 * The jbd2_journal_load will have done any necessary log recovery, 4813 * so we can safely mount the rest of the filesystem now. 4814 */ 4815 4816 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4817 if (IS_ERR(root)) { 4818 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4819 ret = PTR_ERR(root); 4820 root = NULL; 4821 goto failed_mount4; 4822 } 4823 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4824 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4825 iput(root); 4826 goto failed_mount4; 4827 } 4828 4829 sb->s_root = d_make_root(root); 4830 if (!sb->s_root) { 4831 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4832 ret = -ENOMEM; 4833 goto failed_mount4; 4834 } 4835 4836 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4837 if (ret == -EROFS) { 4838 sb->s_flags |= SB_RDONLY; 4839 ret = 0; 4840 } else if (ret) 4841 goto failed_mount4a; 4842 4843 ext4_set_resv_clusters(sb); 4844 4845 if (test_opt(sb, BLOCK_VALIDITY)) { 4846 err = ext4_setup_system_zone(sb); 4847 if (err) { 4848 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4849 "zone (%d)", err); 4850 goto failed_mount4a; 4851 } 4852 } 4853 ext4_fc_replay_cleanup(sb); 4854 4855 ext4_ext_init(sb); 4856 4857 /* 4858 * Enable optimize_scan if number of groups is > threshold. This can be 4859 * turned off by passing "mb_optimize_scan=0". This can also be 4860 * turned on forcefully by passing "mb_optimize_scan=1". 4861 */ 4862 if (parsed_opts.mb_optimize_scan == 1) 4863 set_opt2(sb, MB_OPTIMIZE_SCAN); 4864 else if (parsed_opts.mb_optimize_scan == 0) 4865 clear_opt2(sb, MB_OPTIMIZE_SCAN); 4866 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 4867 set_opt2(sb, MB_OPTIMIZE_SCAN); 4868 4869 err = ext4_mb_init(sb); 4870 if (err) { 4871 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4872 err); 4873 goto failed_mount5; 4874 } 4875 4876 /* 4877 * We can only set up the journal commit callback once 4878 * mballoc is initialized 4879 */ 4880 if (sbi->s_journal) 4881 sbi->s_journal->j_commit_callback = 4882 ext4_journal_commit_callback; 4883 4884 block = ext4_count_free_clusters(sb); 4885 ext4_free_blocks_count_set(sbi->s_es, 4886 EXT4_C2B(sbi, block)); 4887 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4888 GFP_KERNEL); 4889 if (!err) { 4890 unsigned long freei = ext4_count_free_inodes(sb); 4891 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4892 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4893 GFP_KERNEL); 4894 } 4895 /* 4896 * Update the checksum after updating free space/inode 4897 * counters. Otherwise the superblock can have an incorrect 4898 * checksum in the buffer cache until it is written out and 4899 * e2fsprogs programs trying to open a file system immediately 4900 * after it is mounted can fail. 4901 */ 4902 ext4_superblock_csum_set(sb); 4903 if (!err) 4904 err = percpu_counter_init(&sbi->s_dirs_counter, 4905 ext4_count_dirs(sb), GFP_KERNEL); 4906 if (!err) 4907 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4908 GFP_KERNEL); 4909 if (!err) 4910 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 4911 GFP_KERNEL); 4912 if (!err) 4913 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4914 4915 if (err) { 4916 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4917 goto failed_mount6; 4918 } 4919 4920 if (ext4_has_feature_flex_bg(sb)) 4921 if (!ext4_fill_flex_info(sb)) { 4922 ext4_msg(sb, KERN_ERR, 4923 "unable to initialize " 4924 "flex_bg meta info!"); 4925 ret = -ENOMEM; 4926 goto failed_mount6; 4927 } 4928 4929 err = ext4_register_li_request(sb, first_not_zeroed); 4930 if (err) 4931 goto failed_mount6; 4932 4933 err = ext4_register_sysfs(sb); 4934 if (err) 4935 goto failed_mount7; 4936 4937 err = ext4_init_orphan_info(sb); 4938 if (err) 4939 goto failed_mount8; 4940 #ifdef CONFIG_QUOTA 4941 /* Enable quota usage during mount. */ 4942 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4943 err = ext4_enable_quotas(sb); 4944 if (err) 4945 goto failed_mount9; 4946 } 4947 #endif /* CONFIG_QUOTA */ 4948 4949 /* 4950 * Save the original bdev mapping's wb_err value which could be 4951 * used to detect the metadata async write error. 4952 */ 4953 spin_lock_init(&sbi->s_bdev_wb_lock); 4954 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 4955 &sbi->s_bdev_wb_err); 4956 sb->s_bdev->bd_super = sb; 4957 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4958 ext4_orphan_cleanup(sb, es); 4959 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4960 if (needs_recovery) { 4961 ext4_msg(sb, KERN_INFO, "recovery complete"); 4962 err = ext4_mark_recovery_complete(sb, es); 4963 if (err) 4964 goto failed_mount9; 4965 } 4966 if (EXT4_SB(sb)->s_journal) { 4967 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4968 descr = " journalled data mode"; 4969 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4970 descr = " ordered data mode"; 4971 else 4972 descr = " writeback data mode"; 4973 } else 4974 descr = "out journal"; 4975 4976 if (test_opt(sb, DISCARD)) { 4977 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4978 if (!blk_queue_discard(q)) 4979 ext4_msg(sb, KERN_WARNING, 4980 "mounting with \"discard\" option, but " 4981 "the device does not support discard"); 4982 } 4983 4984 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4985 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4986 "Opts: %.*s%s%s. Quota mode: %s.", descr, 4987 (int) sizeof(sbi->s_es->s_mount_opts), 4988 sbi->s_es->s_mount_opts, 4989 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 4990 ext4_quota_mode(sb)); 4991 4992 if (es->s_error_count) 4993 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4994 4995 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4996 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4997 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4998 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4999 atomic_set(&sbi->s_warning_count, 0); 5000 atomic_set(&sbi->s_msg_count, 0); 5001 5002 kfree(orig_data); 5003 return 0; 5004 5005 cantfind_ext4: 5006 if (!silent) 5007 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5008 goto failed_mount; 5009 5010 failed_mount9: 5011 ext4_release_orphan_info(sb); 5012 failed_mount8: 5013 ext4_unregister_sysfs(sb); 5014 kobject_put(&sbi->s_kobj); 5015 failed_mount7: 5016 ext4_unregister_li_request(sb); 5017 failed_mount6: 5018 ext4_mb_release(sb); 5019 rcu_read_lock(); 5020 flex_groups = rcu_dereference(sbi->s_flex_groups); 5021 if (flex_groups) { 5022 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5023 kvfree(flex_groups[i]); 5024 kvfree(flex_groups); 5025 } 5026 rcu_read_unlock(); 5027 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5028 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5029 percpu_counter_destroy(&sbi->s_dirs_counter); 5030 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5031 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5032 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5033 failed_mount5: 5034 ext4_ext_release(sb); 5035 ext4_release_system_zone(sb); 5036 failed_mount4a: 5037 dput(sb->s_root); 5038 sb->s_root = NULL; 5039 failed_mount4: 5040 ext4_msg(sb, KERN_ERR, "mount failed"); 5041 if (EXT4_SB(sb)->rsv_conversion_wq) 5042 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5043 failed_mount_wq: 5044 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5045 sbi->s_ea_inode_cache = NULL; 5046 5047 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5048 sbi->s_ea_block_cache = NULL; 5049 5050 if (sbi->s_journal) { 5051 /* flush s_error_work before journal destroy. */ 5052 flush_work(&sbi->s_error_work); 5053 jbd2_journal_destroy(sbi->s_journal); 5054 sbi->s_journal = NULL; 5055 } 5056 failed_mount3a: 5057 ext4_es_unregister_shrinker(sbi); 5058 failed_mount3: 5059 /* flush s_error_work before sbi destroy */ 5060 flush_work(&sbi->s_error_work); 5061 del_timer_sync(&sbi->s_err_report); 5062 ext4_stop_mmpd(sbi); 5063 failed_mount2: 5064 rcu_read_lock(); 5065 group_desc = rcu_dereference(sbi->s_group_desc); 5066 for (i = 0; i < db_count; i++) 5067 brelse(group_desc[i]); 5068 kvfree(group_desc); 5069 rcu_read_unlock(); 5070 failed_mount: 5071 if (sbi->s_chksum_driver) 5072 crypto_free_shash(sbi->s_chksum_driver); 5073 5074 #ifdef CONFIG_UNICODE 5075 utf8_unload(sb->s_encoding); 5076 #endif 5077 5078 #ifdef CONFIG_QUOTA 5079 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5080 kfree(get_qf_name(sb, sbi, i)); 5081 #endif 5082 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5083 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5084 brelse(bh); 5085 ext4_blkdev_remove(sbi); 5086 out_fail: 5087 sb->s_fs_info = NULL; 5088 kfree(sbi->s_blockgroup_lock); 5089 out_free_base: 5090 kfree(sbi); 5091 kfree(orig_data); 5092 fs_put_dax(dax_dev); 5093 return err ? err : ret; 5094 } 5095 5096 /* 5097 * Setup any per-fs journal parameters now. We'll do this both on 5098 * initial mount, once the journal has been initialised but before we've 5099 * done any recovery; and again on any subsequent remount. 5100 */ 5101 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5102 { 5103 struct ext4_sb_info *sbi = EXT4_SB(sb); 5104 5105 journal->j_commit_interval = sbi->s_commit_interval; 5106 journal->j_min_batch_time = sbi->s_min_batch_time; 5107 journal->j_max_batch_time = sbi->s_max_batch_time; 5108 ext4_fc_init(sb, journal); 5109 5110 write_lock(&journal->j_state_lock); 5111 if (test_opt(sb, BARRIER)) 5112 journal->j_flags |= JBD2_BARRIER; 5113 else 5114 journal->j_flags &= ~JBD2_BARRIER; 5115 if (test_opt(sb, DATA_ERR_ABORT)) 5116 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5117 else 5118 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5119 write_unlock(&journal->j_state_lock); 5120 } 5121 5122 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5123 unsigned int journal_inum) 5124 { 5125 struct inode *journal_inode; 5126 5127 /* 5128 * Test for the existence of a valid inode on disk. Bad things 5129 * happen if we iget() an unused inode, as the subsequent iput() 5130 * will try to delete it. 5131 */ 5132 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5133 if (IS_ERR(journal_inode)) { 5134 ext4_msg(sb, KERN_ERR, "no journal found"); 5135 return NULL; 5136 } 5137 if (!journal_inode->i_nlink) { 5138 make_bad_inode(journal_inode); 5139 iput(journal_inode); 5140 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5141 return NULL; 5142 } 5143 5144 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5145 journal_inode, journal_inode->i_size); 5146 if (!S_ISREG(journal_inode->i_mode)) { 5147 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5148 iput(journal_inode); 5149 return NULL; 5150 } 5151 return journal_inode; 5152 } 5153 5154 static journal_t *ext4_get_journal(struct super_block *sb, 5155 unsigned int journal_inum) 5156 { 5157 struct inode *journal_inode; 5158 journal_t *journal; 5159 5160 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5161 return NULL; 5162 5163 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5164 if (!journal_inode) 5165 return NULL; 5166 5167 journal = jbd2_journal_init_inode(journal_inode); 5168 if (!journal) { 5169 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5170 iput(journal_inode); 5171 return NULL; 5172 } 5173 journal->j_private = sb; 5174 ext4_init_journal_params(sb, journal); 5175 return journal; 5176 } 5177 5178 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5179 dev_t j_dev) 5180 { 5181 struct buffer_head *bh; 5182 journal_t *journal; 5183 ext4_fsblk_t start; 5184 ext4_fsblk_t len; 5185 int hblock, blocksize; 5186 ext4_fsblk_t sb_block; 5187 unsigned long offset; 5188 struct ext4_super_block *es; 5189 struct block_device *bdev; 5190 5191 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5192 return NULL; 5193 5194 bdev = ext4_blkdev_get(j_dev, sb); 5195 if (bdev == NULL) 5196 return NULL; 5197 5198 blocksize = sb->s_blocksize; 5199 hblock = bdev_logical_block_size(bdev); 5200 if (blocksize < hblock) { 5201 ext4_msg(sb, KERN_ERR, 5202 "blocksize too small for journal device"); 5203 goto out_bdev; 5204 } 5205 5206 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5207 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5208 set_blocksize(bdev, blocksize); 5209 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5210 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5211 "external journal"); 5212 goto out_bdev; 5213 } 5214 5215 es = (struct ext4_super_block *) (bh->b_data + offset); 5216 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5217 !(le32_to_cpu(es->s_feature_incompat) & 5218 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5219 ext4_msg(sb, KERN_ERR, "external journal has " 5220 "bad superblock"); 5221 brelse(bh); 5222 goto out_bdev; 5223 } 5224 5225 if ((le32_to_cpu(es->s_feature_ro_compat) & 5226 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5227 es->s_checksum != ext4_superblock_csum(sb, es)) { 5228 ext4_msg(sb, KERN_ERR, "external journal has " 5229 "corrupt superblock"); 5230 brelse(bh); 5231 goto out_bdev; 5232 } 5233 5234 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5235 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5236 brelse(bh); 5237 goto out_bdev; 5238 } 5239 5240 len = ext4_blocks_count(es); 5241 start = sb_block + 1; 5242 brelse(bh); /* we're done with the superblock */ 5243 5244 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5245 start, len, blocksize); 5246 if (!journal) { 5247 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5248 goto out_bdev; 5249 } 5250 journal->j_private = sb; 5251 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5252 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5253 goto out_journal; 5254 } 5255 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5256 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5257 "user (unsupported) - %d", 5258 be32_to_cpu(journal->j_superblock->s_nr_users)); 5259 goto out_journal; 5260 } 5261 EXT4_SB(sb)->s_journal_bdev = bdev; 5262 ext4_init_journal_params(sb, journal); 5263 return journal; 5264 5265 out_journal: 5266 jbd2_journal_destroy(journal); 5267 out_bdev: 5268 ext4_blkdev_put(bdev); 5269 return NULL; 5270 } 5271 5272 static int ext4_load_journal(struct super_block *sb, 5273 struct ext4_super_block *es, 5274 unsigned long journal_devnum) 5275 { 5276 journal_t *journal; 5277 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5278 dev_t journal_dev; 5279 int err = 0; 5280 int really_read_only; 5281 int journal_dev_ro; 5282 5283 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5284 return -EFSCORRUPTED; 5285 5286 if (journal_devnum && 5287 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5288 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5289 "numbers have changed"); 5290 journal_dev = new_decode_dev(journal_devnum); 5291 } else 5292 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5293 5294 if (journal_inum && journal_dev) { 5295 ext4_msg(sb, KERN_ERR, 5296 "filesystem has both journal inode and journal device!"); 5297 return -EINVAL; 5298 } 5299 5300 if (journal_inum) { 5301 journal = ext4_get_journal(sb, journal_inum); 5302 if (!journal) 5303 return -EINVAL; 5304 } else { 5305 journal = ext4_get_dev_journal(sb, journal_dev); 5306 if (!journal) 5307 return -EINVAL; 5308 } 5309 5310 journal_dev_ro = bdev_read_only(journal->j_dev); 5311 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5312 5313 if (journal_dev_ro && !sb_rdonly(sb)) { 5314 ext4_msg(sb, KERN_ERR, 5315 "journal device read-only, try mounting with '-o ro'"); 5316 err = -EROFS; 5317 goto err_out; 5318 } 5319 5320 /* 5321 * Are we loading a blank journal or performing recovery after a 5322 * crash? For recovery, we need to check in advance whether we 5323 * can get read-write access to the device. 5324 */ 5325 if (ext4_has_feature_journal_needs_recovery(sb)) { 5326 if (sb_rdonly(sb)) { 5327 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5328 "required on readonly filesystem"); 5329 if (really_read_only) { 5330 ext4_msg(sb, KERN_ERR, "write access " 5331 "unavailable, cannot proceed " 5332 "(try mounting with noload)"); 5333 err = -EROFS; 5334 goto err_out; 5335 } 5336 ext4_msg(sb, KERN_INFO, "write access will " 5337 "be enabled during recovery"); 5338 } 5339 } 5340 5341 if (!(journal->j_flags & JBD2_BARRIER)) 5342 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5343 5344 if (!ext4_has_feature_journal_needs_recovery(sb)) 5345 err = jbd2_journal_wipe(journal, !really_read_only); 5346 if (!err) { 5347 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5348 if (save) 5349 memcpy(save, ((char *) es) + 5350 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5351 err = jbd2_journal_load(journal); 5352 if (save) 5353 memcpy(((char *) es) + EXT4_S_ERR_START, 5354 save, EXT4_S_ERR_LEN); 5355 kfree(save); 5356 } 5357 5358 if (err) { 5359 ext4_msg(sb, KERN_ERR, "error loading journal"); 5360 goto err_out; 5361 } 5362 5363 EXT4_SB(sb)->s_journal = journal; 5364 err = ext4_clear_journal_err(sb, es); 5365 if (err) { 5366 EXT4_SB(sb)->s_journal = NULL; 5367 jbd2_journal_destroy(journal); 5368 return err; 5369 } 5370 5371 if (!really_read_only && journal_devnum && 5372 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5373 es->s_journal_dev = cpu_to_le32(journal_devnum); 5374 5375 /* Make sure we flush the recovery flag to disk. */ 5376 ext4_commit_super(sb); 5377 } 5378 5379 return 0; 5380 5381 err_out: 5382 jbd2_journal_destroy(journal); 5383 return err; 5384 } 5385 5386 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5387 static void ext4_update_super(struct super_block *sb) 5388 { 5389 struct ext4_sb_info *sbi = EXT4_SB(sb); 5390 struct ext4_super_block *es = sbi->s_es; 5391 struct buffer_head *sbh = sbi->s_sbh; 5392 5393 lock_buffer(sbh); 5394 /* 5395 * If the file system is mounted read-only, don't update the 5396 * superblock write time. This avoids updating the superblock 5397 * write time when we are mounting the root file system 5398 * read/only but we need to replay the journal; at that point, 5399 * for people who are east of GMT and who make their clock 5400 * tick in localtime for Windows bug-for-bug compatibility, 5401 * the clock is set in the future, and this will cause e2fsck 5402 * to complain and force a full file system check. 5403 */ 5404 if (!(sb->s_flags & SB_RDONLY)) 5405 ext4_update_tstamp(es, s_wtime); 5406 es->s_kbytes_written = 5407 cpu_to_le64(sbi->s_kbytes_written + 5408 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5409 sbi->s_sectors_written_start) >> 1)); 5410 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5411 ext4_free_blocks_count_set(es, 5412 EXT4_C2B(sbi, percpu_counter_sum_positive( 5413 &sbi->s_freeclusters_counter))); 5414 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5415 es->s_free_inodes_count = 5416 cpu_to_le32(percpu_counter_sum_positive( 5417 &sbi->s_freeinodes_counter)); 5418 /* Copy error information to the on-disk superblock */ 5419 spin_lock(&sbi->s_error_lock); 5420 if (sbi->s_add_error_count > 0) { 5421 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5422 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5423 __ext4_update_tstamp(&es->s_first_error_time, 5424 &es->s_first_error_time_hi, 5425 sbi->s_first_error_time); 5426 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5427 sizeof(es->s_first_error_func)); 5428 es->s_first_error_line = 5429 cpu_to_le32(sbi->s_first_error_line); 5430 es->s_first_error_ino = 5431 cpu_to_le32(sbi->s_first_error_ino); 5432 es->s_first_error_block = 5433 cpu_to_le64(sbi->s_first_error_block); 5434 es->s_first_error_errcode = 5435 ext4_errno_to_code(sbi->s_first_error_code); 5436 } 5437 __ext4_update_tstamp(&es->s_last_error_time, 5438 &es->s_last_error_time_hi, 5439 sbi->s_last_error_time); 5440 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5441 sizeof(es->s_last_error_func)); 5442 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5443 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5444 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5445 es->s_last_error_errcode = 5446 ext4_errno_to_code(sbi->s_last_error_code); 5447 /* 5448 * Start the daily error reporting function if it hasn't been 5449 * started already 5450 */ 5451 if (!es->s_error_count) 5452 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5453 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5454 sbi->s_add_error_count = 0; 5455 } 5456 spin_unlock(&sbi->s_error_lock); 5457 5458 ext4_superblock_csum_set(sb); 5459 unlock_buffer(sbh); 5460 } 5461 5462 static int ext4_commit_super(struct super_block *sb) 5463 { 5464 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5465 int error = 0; 5466 5467 if (!sbh) 5468 return -EINVAL; 5469 if (block_device_ejected(sb)) 5470 return -ENODEV; 5471 5472 ext4_update_super(sb); 5473 5474 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5475 /* 5476 * Oh, dear. A previous attempt to write the 5477 * superblock failed. This could happen because the 5478 * USB device was yanked out. Or it could happen to 5479 * be a transient write error and maybe the block will 5480 * be remapped. Nothing we can do but to retry the 5481 * write and hope for the best. 5482 */ 5483 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5484 "superblock detected"); 5485 clear_buffer_write_io_error(sbh); 5486 set_buffer_uptodate(sbh); 5487 } 5488 BUFFER_TRACE(sbh, "marking dirty"); 5489 mark_buffer_dirty(sbh); 5490 error = __sync_dirty_buffer(sbh, 5491 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5492 if (buffer_write_io_error(sbh)) { 5493 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5494 "superblock"); 5495 clear_buffer_write_io_error(sbh); 5496 set_buffer_uptodate(sbh); 5497 } 5498 return error; 5499 } 5500 5501 /* 5502 * Have we just finished recovery? If so, and if we are mounting (or 5503 * remounting) the filesystem readonly, then we will end up with a 5504 * consistent fs on disk. Record that fact. 5505 */ 5506 static int ext4_mark_recovery_complete(struct super_block *sb, 5507 struct ext4_super_block *es) 5508 { 5509 int err; 5510 journal_t *journal = EXT4_SB(sb)->s_journal; 5511 5512 if (!ext4_has_feature_journal(sb)) { 5513 if (journal != NULL) { 5514 ext4_error(sb, "Journal got removed while the fs was " 5515 "mounted!"); 5516 return -EFSCORRUPTED; 5517 } 5518 return 0; 5519 } 5520 jbd2_journal_lock_updates(journal); 5521 err = jbd2_journal_flush(journal, 0); 5522 if (err < 0) 5523 goto out; 5524 5525 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 5526 ext4_has_feature_orphan_present(sb))) { 5527 if (!ext4_orphan_file_empty(sb)) { 5528 ext4_error(sb, "Orphan file not empty on read-only fs."); 5529 err = -EFSCORRUPTED; 5530 goto out; 5531 } 5532 ext4_clear_feature_journal_needs_recovery(sb); 5533 ext4_clear_feature_orphan_present(sb); 5534 ext4_commit_super(sb); 5535 } 5536 out: 5537 jbd2_journal_unlock_updates(journal); 5538 return err; 5539 } 5540 5541 /* 5542 * If we are mounting (or read-write remounting) a filesystem whose journal 5543 * has recorded an error from a previous lifetime, move that error to the 5544 * main filesystem now. 5545 */ 5546 static int ext4_clear_journal_err(struct super_block *sb, 5547 struct ext4_super_block *es) 5548 { 5549 journal_t *journal; 5550 int j_errno; 5551 const char *errstr; 5552 5553 if (!ext4_has_feature_journal(sb)) { 5554 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5555 return -EFSCORRUPTED; 5556 } 5557 5558 journal = EXT4_SB(sb)->s_journal; 5559 5560 /* 5561 * Now check for any error status which may have been recorded in the 5562 * journal by a prior ext4_error() or ext4_abort() 5563 */ 5564 5565 j_errno = jbd2_journal_errno(journal); 5566 if (j_errno) { 5567 char nbuf[16]; 5568 5569 errstr = ext4_decode_error(sb, j_errno, nbuf); 5570 ext4_warning(sb, "Filesystem error recorded " 5571 "from previous mount: %s", errstr); 5572 ext4_warning(sb, "Marking fs in need of filesystem check."); 5573 5574 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5575 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5576 ext4_commit_super(sb); 5577 5578 jbd2_journal_clear_err(journal); 5579 jbd2_journal_update_sb_errno(journal); 5580 } 5581 return 0; 5582 } 5583 5584 /* 5585 * Force the running and committing transactions to commit, 5586 * and wait on the commit. 5587 */ 5588 int ext4_force_commit(struct super_block *sb) 5589 { 5590 journal_t *journal; 5591 5592 if (sb_rdonly(sb)) 5593 return 0; 5594 5595 journal = EXT4_SB(sb)->s_journal; 5596 return ext4_journal_force_commit(journal); 5597 } 5598 5599 static int ext4_sync_fs(struct super_block *sb, int wait) 5600 { 5601 int ret = 0; 5602 tid_t target; 5603 bool needs_barrier = false; 5604 struct ext4_sb_info *sbi = EXT4_SB(sb); 5605 5606 if (unlikely(ext4_forced_shutdown(sbi))) 5607 return 0; 5608 5609 trace_ext4_sync_fs(sb, wait); 5610 flush_workqueue(sbi->rsv_conversion_wq); 5611 /* 5612 * Writeback quota in non-journalled quota case - journalled quota has 5613 * no dirty dquots 5614 */ 5615 dquot_writeback_dquots(sb, -1); 5616 /* 5617 * Data writeback is possible w/o journal transaction, so barrier must 5618 * being sent at the end of the function. But we can skip it if 5619 * transaction_commit will do it for us. 5620 */ 5621 if (sbi->s_journal) { 5622 target = jbd2_get_latest_transaction(sbi->s_journal); 5623 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5624 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5625 needs_barrier = true; 5626 5627 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5628 if (wait) 5629 ret = jbd2_log_wait_commit(sbi->s_journal, 5630 target); 5631 } 5632 } else if (wait && test_opt(sb, BARRIER)) 5633 needs_barrier = true; 5634 if (needs_barrier) { 5635 int err; 5636 err = blkdev_issue_flush(sb->s_bdev); 5637 if (!ret) 5638 ret = err; 5639 } 5640 5641 return ret; 5642 } 5643 5644 /* 5645 * LVM calls this function before a (read-only) snapshot is created. This 5646 * gives us a chance to flush the journal completely and mark the fs clean. 5647 * 5648 * Note that only this function cannot bring a filesystem to be in a clean 5649 * state independently. It relies on upper layer to stop all data & metadata 5650 * modifications. 5651 */ 5652 static int ext4_freeze(struct super_block *sb) 5653 { 5654 int error = 0; 5655 journal_t *journal; 5656 5657 if (sb_rdonly(sb)) 5658 return 0; 5659 5660 journal = EXT4_SB(sb)->s_journal; 5661 5662 if (journal) { 5663 /* Now we set up the journal barrier. */ 5664 jbd2_journal_lock_updates(journal); 5665 5666 /* 5667 * Don't clear the needs_recovery flag if we failed to 5668 * flush the journal. 5669 */ 5670 error = jbd2_journal_flush(journal, 0); 5671 if (error < 0) 5672 goto out; 5673 5674 /* Journal blocked and flushed, clear needs_recovery flag. */ 5675 ext4_clear_feature_journal_needs_recovery(sb); 5676 if (ext4_orphan_file_empty(sb)) 5677 ext4_clear_feature_orphan_present(sb); 5678 } 5679 5680 error = ext4_commit_super(sb); 5681 out: 5682 if (journal) 5683 /* we rely on upper layer to stop further updates */ 5684 jbd2_journal_unlock_updates(journal); 5685 return error; 5686 } 5687 5688 /* 5689 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5690 * flag here, even though the filesystem is not technically dirty yet. 5691 */ 5692 static int ext4_unfreeze(struct super_block *sb) 5693 { 5694 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5695 return 0; 5696 5697 if (EXT4_SB(sb)->s_journal) { 5698 /* Reset the needs_recovery flag before the fs is unlocked. */ 5699 ext4_set_feature_journal_needs_recovery(sb); 5700 if (ext4_has_feature_orphan_file(sb)) 5701 ext4_set_feature_orphan_present(sb); 5702 } 5703 5704 ext4_commit_super(sb); 5705 return 0; 5706 } 5707 5708 /* 5709 * Structure to save mount options for ext4_remount's benefit 5710 */ 5711 struct ext4_mount_options { 5712 unsigned long s_mount_opt; 5713 unsigned long s_mount_opt2; 5714 kuid_t s_resuid; 5715 kgid_t s_resgid; 5716 unsigned long s_commit_interval; 5717 u32 s_min_batch_time, s_max_batch_time; 5718 #ifdef CONFIG_QUOTA 5719 int s_jquota_fmt; 5720 char *s_qf_names[EXT4_MAXQUOTAS]; 5721 #endif 5722 }; 5723 5724 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5725 { 5726 struct ext4_super_block *es; 5727 struct ext4_sb_info *sbi = EXT4_SB(sb); 5728 unsigned long old_sb_flags, vfs_flags; 5729 struct ext4_mount_options old_opts; 5730 int enable_quota = 0; 5731 ext4_group_t g; 5732 int err = 0; 5733 #ifdef CONFIG_QUOTA 5734 int i, j; 5735 char *to_free[EXT4_MAXQUOTAS]; 5736 #endif 5737 char *orig_data = kstrdup(data, GFP_KERNEL); 5738 struct ext4_parsed_options parsed_opts; 5739 5740 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5741 parsed_opts.journal_devnum = 0; 5742 5743 if (data && !orig_data) 5744 return -ENOMEM; 5745 5746 /* Store the original options */ 5747 old_sb_flags = sb->s_flags; 5748 old_opts.s_mount_opt = sbi->s_mount_opt; 5749 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5750 old_opts.s_resuid = sbi->s_resuid; 5751 old_opts.s_resgid = sbi->s_resgid; 5752 old_opts.s_commit_interval = sbi->s_commit_interval; 5753 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5754 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5755 #ifdef CONFIG_QUOTA 5756 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5757 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5758 if (sbi->s_qf_names[i]) { 5759 char *qf_name = get_qf_name(sb, sbi, i); 5760 5761 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5762 if (!old_opts.s_qf_names[i]) { 5763 for (j = 0; j < i; j++) 5764 kfree(old_opts.s_qf_names[j]); 5765 kfree(orig_data); 5766 return -ENOMEM; 5767 } 5768 } else 5769 old_opts.s_qf_names[i] = NULL; 5770 #endif 5771 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5772 parsed_opts.journal_ioprio = 5773 sbi->s_journal->j_task->io_context->ioprio; 5774 5775 /* 5776 * Some options can be enabled by ext4 and/or by VFS mount flag 5777 * either way we need to make sure it matches in both *flags and 5778 * s_flags. Copy those selected flags from *flags to s_flags 5779 */ 5780 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5781 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5782 5783 if (!parse_options(data, sb, &parsed_opts, 1)) { 5784 err = -EINVAL; 5785 goto restore_opts; 5786 } 5787 5788 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5789 test_opt(sb, JOURNAL_CHECKSUM)) { 5790 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5791 "during remount not supported; ignoring"); 5792 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5793 } 5794 5795 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5796 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5797 ext4_msg(sb, KERN_ERR, "can't mount with " 5798 "both data=journal and delalloc"); 5799 err = -EINVAL; 5800 goto restore_opts; 5801 } 5802 if (test_opt(sb, DIOREAD_NOLOCK)) { 5803 ext4_msg(sb, KERN_ERR, "can't mount with " 5804 "both data=journal and dioread_nolock"); 5805 err = -EINVAL; 5806 goto restore_opts; 5807 } 5808 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5809 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5810 ext4_msg(sb, KERN_ERR, "can't mount with " 5811 "journal_async_commit in data=ordered mode"); 5812 err = -EINVAL; 5813 goto restore_opts; 5814 } 5815 } 5816 5817 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5818 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5819 err = -EINVAL; 5820 goto restore_opts; 5821 } 5822 5823 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5824 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5825 5826 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5827 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5828 5829 es = sbi->s_es; 5830 5831 if (sbi->s_journal) { 5832 ext4_init_journal_params(sb, sbi->s_journal); 5833 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 5834 } 5835 5836 /* Flush outstanding errors before changing fs state */ 5837 flush_work(&sbi->s_error_work); 5838 5839 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5840 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5841 err = -EROFS; 5842 goto restore_opts; 5843 } 5844 5845 if (*flags & SB_RDONLY) { 5846 err = sync_filesystem(sb); 5847 if (err < 0) 5848 goto restore_opts; 5849 err = dquot_suspend(sb, -1); 5850 if (err < 0) 5851 goto restore_opts; 5852 5853 /* 5854 * First of all, the unconditional stuff we have to do 5855 * to disable replay of the journal when we next remount 5856 */ 5857 sb->s_flags |= SB_RDONLY; 5858 5859 /* 5860 * OK, test if we are remounting a valid rw partition 5861 * readonly, and if so set the rdonly flag and then 5862 * mark the partition as valid again. 5863 */ 5864 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5865 (sbi->s_mount_state & EXT4_VALID_FS)) 5866 es->s_state = cpu_to_le16(sbi->s_mount_state); 5867 5868 if (sbi->s_journal) { 5869 /* 5870 * We let remount-ro finish even if marking fs 5871 * as clean failed... 5872 */ 5873 ext4_mark_recovery_complete(sb, es); 5874 } 5875 } else { 5876 /* Make sure we can mount this feature set readwrite */ 5877 if (ext4_has_feature_readonly(sb) || 5878 !ext4_feature_set_ok(sb, 0)) { 5879 err = -EROFS; 5880 goto restore_opts; 5881 } 5882 /* 5883 * Make sure the group descriptor checksums 5884 * are sane. If they aren't, refuse to remount r/w. 5885 */ 5886 for (g = 0; g < sbi->s_groups_count; g++) { 5887 struct ext4_group_desc *gdp = 5888 ext4_get_group_desc(sb, g, NULL); 5889 5890 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5891 ext4_msg(sb, KERN_ERR, 5892 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5893 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5894 le16_to_cpu(gdp->bg_checksum)); 5895 err = -EFSBADCRC; 5896 goto restore_opts; 5897 } 5898 } 5899 5900 /* 5901 * If we have an unprocessed orphan list hanging 5902 * around from a previously readonly bdev mount, 5903 * require a full umount/remount for now. 5904 */ 5905 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 5906 ext4_msg(sb, KERN_WARNING, "Couldn't " 5907 "remount RDWR because of unprocessed " 5908 "orphan inode list. Please " 5909 "umount/remount instead"); 5910 err = -EINVAL; 5911 goto restore_opts; 5912 } 5913 5914 /* 5915 * Mounting a RDONLY partition read-write, so reread 5916 * and store the current valid flag. (It may have 5917 * been changed by e2fsck since we originally mounted 5918 * the partition.) 5919 */ 5920 if (sbi->s_journal) { 5921 err = ext4_clear_journal_err(sb, es); 5922 if (err) 5923 goto restore_opts; 5924 } 5925 sbi->s_mount_state = le16_to_cpu(es->s_state); 5926 5927 err = ext4_setup_super(sb, es, 0); 5928 if (err) 5929 goto restore_opts; 5930 5931 sb->s_flags &= ~SB_RDONLY; 5932 if (ext4_has_feature_mmp(sb)) 5933 if (ext4_multi_mount_protect(sb, 5934 le64_to_cpu(es->s_mmp_block))) { 5935 err = -EROFS; 5936 goto restore_opts; 5937 } 5938 enable_quota = 1; 5939 } 5940 } 5941 5942 /* 5943 * Reinitialize lazy itable initialization thread based on 5944 * current settings 5945 */ 5946 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5947 ext4_unregister_li_request(sb); 5948 else { 5949 ext4_group_t first_not_zeroed; 5950 first_not_zeroed = ext4_has_uninit_itable(sb); 5951 ext4_register_li_request(sb, first_not_zeroed); 5952 } 5953 5954 /* 5955 * Handle creation of system zone data early because it can fail. 5956 * Releasing of existing data is done when we are sure remount will 5957 * succeed. 5958 */ 5959 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 5960 err = ext4_setup_system_zone(sb); 5961 if (err) 5962 goto restore_opts; 5963 } 5964 5965 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5966 err = ext4_commit_super(sb); 5967 if (err) 5968 goto restore_opts; 5969 } 5970 5971 #ifdef CONFIG_QUOTA 5972 /* Release old quota file names */ 5973 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5974 kfree(old_opts.s_qf_names[i]); 5975 if (enable_quota) { 5976 if (sb_any_quota_suspended(sb)) 5977 dquot_resume(sb, -1); 5978 else if (ext4_has_feature_quota(sb)) { 5979 err = ext4_enable_quotas(sb); 5980 if (err) 5981 goto restore_opts; 5982 } 5983 } 5984 #endif 5985 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 5986 ext4_release_system_zone(sb); 5987 5988 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 5989 ext4_stop_mmpd(sbi); 5990 5991 /* 5992 * Some options can be enabled by ext4 and/or by VFS mount flag 5993 * either way we need to make sure it matches in both *flags and 5994 * s_flags. Copy those selected flags from s_flags to *flags 5995 */ 5996 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 5997 5998 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 5999 orig_data, ext4_quota_mode(sb)); 6000 kfree(orig_data); 6001 return 0; 6002 6003 restore_opts: 6004 sb->s_flags = old_sb_flags; 6005 sbi->s_mount_opt = old_opts.s_mount_opt; 6006 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6007 sbi->s_resuid = old_opts.s_resuid; 6008 sbi->s_resgid = old_opts.s_resgid; 6009 sbi->s_commit_interval = old_opts.s_commit_interval; 6010 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6011 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6012 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6013 ext4_release_system_zone(sb); 6014 #ifdef CONFIG_QUOTA 6015 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6016 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6017 to_free[i] = get_qf_name(sb, sbi, i); 6018 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6019 } 6020 synchronize_rcu(); 6021 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6022 kfree(to_free[i]); 6023 #endif 6024 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6025 ext4_stop_mmpd(sbi); 6026 kfree(orig_data); 6027 return err; 6028 } 6029 6030 #ifdef CONFIG_QUOTA 6031 static int ext4_statfs_project(struct super_block *sb, 6032 kprojid_t projid, struct kstatfs *buf) 6033 { 6034 struct kqid qid; 6035 struct dquot *dquot; 6036 u64 limit; 6037 u64 curblock; 6038 6039 qid = make_kqid_projid(projid); 6040 dquot = dqget(sb, qid); 6041 if (IS_ERR(dquot)) 6042 return PTR_ERR(dquot); 6043 spin_lock(&dquot->dq_dqb_lock); 6044 6045 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6046 dquot->dq_dqb.dqb_bhardlimit); 6047 limit >>= sb->s_blocksize_bits; 6048 6049 if (limit && buf->f_blocks > limit) { 6050 curblock = (dquot->dq_dqb.dqb_curspace + 6051 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6052 buf->f_blocks = limit; 6053 buf->f_bfree = buf->f_bavail = 6054 (buf->f_blocks > curblock) ? 6055 (buf->f_blocks - curblock) : 0; 6056 } 6057 6058 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6059 dquot->dq_dqb.dqb_ihardlimit); 6060 if (limit && buf->f_files > limit) { 6061 buf->f_files = limit; 6062 buf->f_ffree = 6063 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6064 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6065 } 6066 6067 spin_unlock(&dquot->dq_dqb_lock); 6068 dqput(dquot); 6069 return 0; 6070 } 6071 #endif 6072 6073 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6074 { 6075 struct super_block *sb = dentry->d_sb; 6076 struct ext4_sb_info *sbi = EXT4_SB(sb); 6077 struct ext4_super_block *es = sbi->s_es; 6078 ext4_fsblk_t overhead = 0, resv_blocks; 6079 s64 bfree; 6080 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6081 6082 if (!test_opt(sb, MINIX_DF)) 6083 overhead = sbi->s_overhead; 6084 6085 buf->f_type = EXT4_SUPER_MAGIC; 6086 buf->f_bsize = sb->s_blocksize; 6087 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6088 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6089 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6090 /* prevent underflow in case that few free space is available */ 6091 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6092 buf->f_bavail = buf->f_bfree - 6093 (ext4_r_blocks_count(es) + resv_blocks); 6094 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6095 buf->f_bavail = 0; 6096 buf->f_files = le32_to_cpu(es->s_inodes_count); 6097 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6098 buf->f_namelen = EXT4_NAME_LEN; 6099 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6100 6101 #ifdef CONFIG_QUOTA 6102 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6103 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6104 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6105 #endif 6106 return 0; 6107 } 6108 6109 6110 #ifdef CONFIG_QUOTA 6111 6112 /* 6113 * Helper functions so that transaction is started before we acquire dqio_sem 6114 * to keep correct lock ordering of transaction > dqio_sem 6115 */ 6116 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6117 { 6118 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6119 } 6120 6121 static int ext4_write_dquot(struct dquot *dquot) 6122 { 6123 int ret, err; 6124 handle_t *handle; 6125 struct inode *inode; 6126 6127 inode = dquot_to_inode(dquot); 6128 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6129 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6130 if (IS_ERR(handle)) 6131 return PTR_ERR(handle); 6132 ret = dquot_commit(dquot); 6133 err = ext4_journal_stop(handle); 6134 if (!ret) 6135 ret = err; 6136 return ret; 6137 } 6138 6139 static int ext4_acquire_dquot(struct dquot *dquot) 6140 { 6141 int ret, err; 6142 handle_t *handle; 6143 6144 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6145 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6146 if (IS_ERR(handle)) 6147 return PTR_ERR(handle); 6148 ret = dquot_acquire(dquot); 6149 err = ext4_journal_stop(handle); 6150 if (!ret) 6151 ret = err; 6152 return ret; 6153 } 6154 6155 static int ext4_release_dquot(struct dquot *dquot) 6156 { 6157 int ret, err; 6158 handle_t *handle; 6159 6160 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6161 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6162 if (IS_ERR(handle)) { 6163 /* Release dquot anyway to avoid endless cycle in dqput() */ 6164 dquot_release(dquot); 6165 return PTR_ERR(handle); 6166 } 6167 ret = dquot_release(dquot); 6168 err = ext4_journal_stop(handle); 6169 if (!ret) 6170 ret = err; 6171 return ret; 6172 } 6173 6174 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6175 { 6176 struct super_block *sb = dquot->dq_sb; 6177 6178 if (ext4_is_quota_journalled(sb)) { 6179 dquot_mark_dquot_dirty(dquot); 6180 return ext4_write_dquot(dquot); 6181 } else { 6182 return dquot_mark_dquot_dirty(dquot); 6183 } 6184 } 6185 6186 static int ext4_write_info(struct super_block *sb, int type) 6187 { 6188 int ret, err; 6189 handle_t *handle; 6190 6191 /* Data block + inode block */ 6192 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6193 if (IS_ERR(handle)) 6194 return PTR_ERR(handle); 6195 ret = dquot_commit_info(sb, type); 6196 err = ext4_journal_stop(handle); 6197 if (!ret) 6198 ret = err; 6199 return ret; 6200 } 6201 6202 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6203 { 6204 struct ext4_inode_info *ei = EXT4_I(inode); 6205 6206 /* The first argument of lockdep_set_subclass has to be 6207 * *exactly* the same as the argument to init_rwsem() --- in 6208 * this case, in init_once() --- or lockdep gets unhappy 6209 * because the name of the lock is set using the 6210 * stringification of the argument to init_rwsem(). 6211 */ 6212 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6213 lockdep_set_subclass(&ei->i_data_sem, subclass); 6214 } 6215 6216 /* 6217 * Standard function to be called on quota_on 6218 */ 6219 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6220 const struct path *path) 6221 { 6222 int err; 6223 6224 if (!test_opt(sb, QUOTA)) 6225 return -EINVAL; 6226 6227 /* Quotafile not on the same filesystem? */ 6228 if (path->dentry->d_sb != sb) 6229 return -EXDEV; 6230 6231 /* Quota already enabled for this file? */ 6232 if (IS_NOQUOTA(d_inode(path->dentry))) 6233 return -EBUSY; 6234 6235 /* Journaling quota? */ 6236 if (EXT4_SB(sb)->s_qf_names[type]) { 6237 /* Quotafile not in fs root? */ 6238 if (path->dentry->d_parent != sb->s_root) 6239 ext4_msg(sb, KERN_WARNING, 6240 "Quota file not on filesystem root. " 6241 "Journaled quota will not work"); 6242 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6243 } else { 6244 /* 6245 * Clear the flag just in case mount options changed since 6246 * last time. 6247 */ 6248 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6249 } 6250 6251 /* 6252 * When we journal data on quota file, we have to flush journal to see 6253 * all updates to the file when we bypass pagecache... 6254 */ 6255 if (EXT4_SB(sb)->s_journal && 6256 ext4_should_journal_data(d_inode(path->dentry))) { 6257 /* 6258 * We don't need to lock updates but journal_flush() could 6259 * otherwise be livelocked... 6260 */ 6261 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6262 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6263 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6264 if (err) 6265 return err; 6266 } 6267 6268 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6269 err = dquot_quota_on(sb, type, format_id, path); 6270 if (err) { 6271 lockdep_set_quota_inode(path->dentry->d_inode, 6272 I_DATA_SEM_NORMAL); 6273 } else { 6274 struct inode *inode = d_inode(path->dentry); 6275 handle_t *handle; 6276 6277 /* 6278 * Set inode flags to prevent userspace from messing with quota 6279 * files. If this fails, we return success anyway since quotas 6280 * are already enabled and this is not a hard failure. 6281 */ 6282 inode_lock(inode); 6283 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6284 if (IS_ERR(handle)) 6285 goto unlock_inode; 6286 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6287 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6288 S_NOATIME | S_IMMUTABLE); 6289 err = ext4_mark_inode_dirty(handle, inode); 6290 ext4_journal_stop(handle); 6291 unlock_inode: 6292 inode_unlock(inode); 6293 } 6294 return err; 6295 } 6296 6297 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6298 unsigned int flags) 6299 { 6300 int err; 6301 struct inode *qf_inode; 6302 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6303 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6304 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6305 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6306 }; 6307 6308 BUG_ON(!ext4_has_feature_quota(sb)); 6309 6310 if (!qf_inums[type]) 6311 return -EPERM; 6312 6313 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6314 if (IS_ERR(qf_inode)) { 6315 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6316 return PTR_ERR(qf_inode); 6317 } 6318 6319 /* Don't account quota for quota files to avoid recursion */ 6320 qf_inode->i_flags |= S_NOQUOTA; 6321 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6322 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6323 if (err) 6324 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6325 iput(qf_inode); 6326 6327 return err; 6328 } 6329 6330 /* Enable usage tracking for all quota types. */ 6331 int ext4_enable_quotas(struct super_block *sb) 6332 { 6333 int type, err = 0; 6334 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6335 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6336 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6337 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6338 }; 6339 bool quota_mopt[EXT4_MAXQUOTAS] = { 6340 test_opt(sb, USRQUOTA), 6341 test_opt(sb, GRPQUOTA), 6342 test_opt(sb, PRJQUOTA), 6343 }; 6344 6345 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6346 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6347 if (qf_inums[type]) { 6348 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6349 DQUOT_USAGE_ENABLED | 6350 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6351 if (err) { 6352 ext4_warning(sb, 6353 "Failed to enable quota tracking " 6354 "(type=%d, err=%d). Please run " 6355 "e2fsck to fix.", type, err); 6356 for (type--; type >= 0; type--) 6357 dquot_quota_off(sb, type); 6358 6359 return err; 6360 } 6361 } 6362 } 6363 return 0; 6364 } 6365 6366 static int ext4_quota_off(struct super_block *sb, int type) 6367 { 6368 struct inode *inode = sb_dqopt(sb)->files[type]; 6369 handle_t *handle; 6370 int err; 6371 6372 /* Force all delayed allocation blocks to be allocated. 6373 * Caller already holds s_umount sem */ 6374 if (test_opt(sb, DELALLOC)) 6375 sync_filesystem(sb); 6376 6377 if (!inode || !igrab(inode)) 6378 goto out; 6379 6380 err = dquot_quota_off(sb, type); 6381 if (err || ext4_has_feature_quota(sb)) 6382 goto out_put; 6383 6384 inode_lock(inode); 6385 /* 6386 * Update modification times of quota files when userspace can 6387 * start looking at them. If we fail, we return success anyway since 6388 * this is not a hard failure and quotas are already disabled. 6389 */ 6390 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6391 if (IS_ERR(handle)) { 6392 err = PTR_ERR(handle); 6393 goto out_unlock; 6394 } 6395 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6396 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6397 inode->i_mtime = inode->i_ctime = current_time(inode); 6398 err = ext4_mark_inode_dirty(handle, inode); 6399 ext4_journal_stop(handle); 6400 out_unlock: 6401 inode_unlock(inode); 6402 out_put: 6403 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6404 iput(inode); 6405 return err; 6406 out: 6407 return dquot_quota_off(sb, type); 6408 } 6409 6410 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6411 * acquiring the locks... As quota files are never truncated and quota code 6412 * itself serializes the operations (and no one else should touch the files) 6413 * we don't have to be afraid of races */ 6414 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6415 size_t len, loff_t off) 6416 { 6417 struct inode *inode = sb_dqopt(sb)->files[type]; 6418 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6419 int offset = off & (sb->s_blocksize - 1); 6420 int tocopy; 6421 size_t toread; 6422 struct buffer_head *bh; 6423 loff_t i_size = i_size_read(inode); 6424 6425 if (off > i_size) 6426 return 0; 6427 if (off+len > i_size) 6428 len = i_size-off; 6429 toread = len; 6430 while (toread > 0) { 6431 tocopy = sb->s_blocksize - offset < toread ? 6432 sb->s_blocksize - offset : toread; 6433 bh = ext4_bread(NULL, inode, blk, 0); 6434 if (IS_ERR(bh)) 6435 return PTR_ERR(bh); 6436 if (!bh) /* A hole? */ 6437 memset(data, 0, tocopy); 6438 else 6439 memcpy(data, bh->b_data+offset, tocopy); 6440 brelse(bh); 6441 offset = 0; 6442 toread -= tocopy; 6443 data += tocopy; 6444 blk++; 6445 } 6446 return len; 6447 } 6448 6449 /* Write to quotafile (we know the transaction is already started and has 6450 * enough credits) */ 6451 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6452 const char *data, size_t len, loff_t off) 6453 { 6454 struct inode *inode = sb_dqopt(sb)->files[type]; 6455 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6456 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6457 int retries = 0; 6458 struct buffer_head *bh; 6459 handle_t *handle = journal_current_handle(); 6460 6461 if (EXT4_SB(sb)->s_journal && !handle) { 6462 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6463 " cancelled because transaction is not started", 6464 (unsigned long long)off, (unsigned long long)len); 6465 return -EIO; 6466 } 6467 /* 6468 * Since we account only one data block in transaction credits, 6469 * then it is impossible to cross a block boundary. 6470 */ 6471 if (sb->s_blocksize - offset < len) { 6472 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6473 " cancelled because not block aligned", 6474 (unsigned long long)off, (unsigned long long)len); 6475 return -EIO; 6476 } 6477 6478 do { 6479 bh = ext4_bread(handle, inode, blk, 6480 EXT4_GET_BLOCKS_CREATE | 6481 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6482 } while (PTR_ERR(bh) == -ENOSPC && 6483 ext4_should_retry_alloc(inode->i_sb, &retries)); 6484 if (IS_ERR(bh)) 6485 return PTR_ERR(bh); 6486 if (!bh) 6487 goto out; 6488 BUFFER_TRACE(bh, "get write access"); 6489 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 6490 if (err) { 6491 brelse(bh); 6492 return err; 6493 } 6494 lock_buffer(bh); 6495 memcpy(bh->b_data+offset, data, len); 6496 flush_dcache_page(bh->b_page); 6497 unlock_buffer(bh); 6498 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6499 brelse(bh); 6500 out: 6501 if (inode->i_size < off + len) { 6502 i_size_write(inode, off + len); 6503 EXT4_I(inode)->i_disksize = inode->i_size; 6504 err2 = ext4_mark_inode_dirty(handle, inode); 6505 if (unlikely(err2 && !err)) 6506 err = err2; 6507 } 6508 return err ? err : len; 6509 } 6510 #endif 6511 6512 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6513 const char *dev_name, void *data) 6514 { 6515 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6516 } 6517 6518 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6519 static inline void register_as_ext2(void) 6520 { 6521 int err = register_filesystem(&ext2_fs_type); 6522 if (err) 6523 printk(KERN_WARNING 6524 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6525 } 6526 6527 static inline void unregister_as_ext2(void) 6528 { 6529 unregister_filesystem(&ext2_fs_type); 6530 } 6531 6532 static inline int ext2_feature_set_ok(struct super_block *sb) 6533 { 6534 if (ext4_has_unknown_ext2_incompat_features(sb)) 6535 return 0; 6536 if (sb_rdonly(sb)) 6537 return 1; 6538 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6539 return 0; 6540 return 1; 6541 } 6542 #else 6543 static inline void register_as_ext2(void) { } 6544 static inline void unregister_as_ext2(void) { } 6545 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6546 #endif 6547 6548 static inline void register_as_ext3(void) 6549 { 6550 int err = register_filesystem(&ext3_fs_type); 6551 if (err) 6552 printk(KERN_WARNING 6553 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6554 } 6555 6556 static inline void unregister_as_ext3(void) 6557 { 6558 unregister_filesystem(&ext3_fs_type); 6559 } 6560 6561 static inline int ext3_feature_set_ok(struct super_block *sb) 6562 { 6563 if (ext4_has_unknown_ext3_incompat_features(sb)) 6564 return 0; 6565 if (!ext4_has_feature_journal(sb)) 6566 return 0; 6567 if (sb_rdonly(sb)) 6568 return 1; 6569 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6570 return 0; 6571 return 1; 6572 } 6573 6574 static struct file_system_type ext4_fs_type = { 6575 .owner = THIS_MODULE, 6576 .name = "ext4", 6577 .mount = ext4_mount, 6578 .kill_sb = kill_block_super, 6579 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 6580 }; 6581 MODULE_ALIAS_FS("ext4"); 6582 6583 /* Shared across all ext4 file systems */ 6584 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6585 6586 static int __init ext4_init_fs(void) 6587 { 6588 int i, err; 6589 6590 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6591 ext4_li_info = NULL; 6592 6593 /* Build-time check for flags consistency */ 6594 ext4_check_flag_values(); 6595 6596 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6597 init_waitqueue_head(&ext4__ioend_wq[i]); 6598 6599 err = ext4_init_es(); 6600 if (err) 6601 return err; 6602 6603 err = ext4_init_pending(); 6604 if (err) 6605 goto out7; 6606 6607 err = ext4_init_post_read_processing(); 6608 if (err) 6609 goto out6; 6610 6611 err = ext4_init_pageio(); 6612 if (err) 6613 goto out5; 6614 6615 err = ext4_init_system_zone(); 6616 if (err) 6617 goto out4; 6618 6619 err = ext4_init_sysfs(); 6620 if (err) 6621 goto out3; 6622 6623 err = ext4_init_mballoc(); 6624 if (err) 6625 goto out2; 6626 err = init_inodecache(); 6627 if (err) 6628 goto out1; 6629 6630 err = ext4_fc_init_dentry_cache(); 6631 if (err) 6632 goto out05; 6633 6634 register_as_ext3(); 6635 register_as_ext2(); 6636 err = register_filesystem(&ext4_fs_type); 6637 if (err) 6638 goto out; 6639 6640 return 0; 6641 out: 6642 unregister_as_ext2(); 6643 unregister_as_ext3(); 6644 out05: 6645 destroy_inodecache(); 6646 out1: 6647 ext4_exit_mballoc(); 6648 out2: 6649 ext4_exit_sysfs(); 6650 out3: 6651 ext4_exit_system_zone(); 6652 out4: 6653 ext4_exit_pageio(); 6654 out5: 6655 ext4_exit_post_read_processing(); 6656 out6: 6657 ext4_exit_pending(); 6658 out7: 6659 ext4_exit_es(); 6660 6661 return err; 6662 } 6663 6664 static void __exit ext4_exit_fs(void) 6665 { 6666 ext4_destroy_lazyinit_thread(); 6667 unregister_as_ext2(); 6668 unregister_as_ext3(); 6669 unregister_filesystem(&ext4_fs_type); 6670 destroy_inodecache(); 6671 ext4_exit_mballoc(); 6672 ext4_exit_sysfs(); 6673 ext4_exit_system_zone(); 6674 ext4_exit_pageio(); 6675 ext4_exit_post_read_processing(); 6676 ext4_exit_es(); 6677 ext4_exit_pending(); 6678 } 6679 6680 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6681 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6682 MODULE_LICENSE("GPL"); 6683 MODULE_SOFTDEP("pre: crc32c"); 6684 module_init(ext4_init_fs) 6685 module_exit(ext4_exit_fs) 6686