xref: /openbmc/linux/fs/ext4/super.c (revision 349f631d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 					    unsigned int journal_inum);
88 
89 /*
90  * Lock ordering
91  *
92  * page fault path:
93  * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
94  *   -> page lock -> i_data_sem (rw)
95  *
96  * buffered write path:
97  * sb_start_write -> i_mutex -> mmap_lock
98  * sb_start_write -> i_mutex -> transaction start -> page lock ->
99  *   i_data_sem (rw)
100  *
101  * truncate:
102  * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
103  *   page lock
104  * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
105  *   i_data_sem (rw)
106  *
107  * direct IO:
108  * sb_start_write -> i_mutex -> mmap_lock
109  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
110  *
111  * writepages:
112  * transaction start -> page lock(s) -> i_data_sem (rw)
113  */
114 
115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
116 static struct file_system_type ext2_fs_type = {
117 	.owner		= THIS_MODULE,
118 	.name		= "ext2",
119 	.mount		= ext4_mount,
120 	.kill_sb	= kill_block_super,
121 	.fs_flags	= FS_REQUIRES_DEV,
122 };
123 MODULE_ALIAS_FS("ext2");
124 MODULE_ALIAS("ext2");
125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
126 #else
127 #define IS_EXT2_SB(sb) (0)
128 #endif
129 
130 
131 static struct file_system_type ext3_fs_type = {
132 	.owner		= THIS_MODULE,
133 	.name		= "ext3",
134 	.mount		= ext4_mount,
135 	.kill_sb	= kill_block_super,
136 	.fs_flags	= FS_REQUIRES_DEV,
137 };
138 MODULE_ALIAS_FS("ext3");
139 MODULE_ALIAS("ext3");
140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
141 
142 
143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
144 				  bh_end_io_t *end_io)
145 {
146 	/*
147 	 * buffer's verified bit is no longer valid after reading from
148 	 * disk again due to write out error, clear it to make sure we
149 	 * recheck the buffer contents.
150 	 */
151 	clear_buffer_verified(bh);
152 
153 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
154 	get_bh(bh);
155 	submit_bh(REQ_OP_READ, op_flags, bh);
156 }
157 
158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
159 			 bh_end_io_t *end_io)
160 {
161 	BUG_ON(!buffer_locked(bh));
162 
163 	if (ext4_buffer_uptodate(bh)) {
164 		unlock_buffer(bh);
165 		return;
166 	}
167 	__ext4_read_bh(bh, op_flags, end_io);
168 }
169 
170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
171 {
172 	BUG_ON(!buffer_locked(bh));
173 
174 	if (ext4_buffer_uptodate(bh)) {
175 		unlock_buffer(bh);
176 		return 0;
177 	}
178 
179 	__ext4_read_bh(bh, op_flags, end_io);
180 
181 	wait_on_buffer(bh);
182 	if (buffer_uptodate(bh))
183 		return 0;
184 	return -EIO;
185 }
186 
187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
188 {
189 	if (trylock_buffer(bh)) {
190 		if (wait)
191 			return ext4_read_bh(bh, op_flags, NULL);
192 		ext4_read_bh_nowait(bh, op_flags, NULL);
193 		return 0;
194 	}
195 	if (wait) {
196 		wait_on_buffer(bh);
197 		if (buffer_uptodate(bh))
198 			return 0;
199 		return -EIO;
200 	}
201 	return 0;
202 }
203 
204 /*
205  * This works like __bread_gfp() except it uses ERR_PTR for error
206  * returns.  Currently with sb_bread it's impossible to distinguish
207  * between ENOMEM and EIO situations (since both result in a NULL
208  * return.
209  */
210 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
211 					       sector_t block, int op_flags,
212 					       gfp_t gfp)
213 {
214 	struct buffer_head *bh;
215 	int ret;
216 
217 	bh = sb_getblk_gfp(sb, block, gfp);
218 	if (bh == NULL)
219 		return ERR_PTR(-ENOMEM);
220 	if (ext4_buffer_uptodate(bh))
221 		return bh;
222 
223 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
224 	if (ret) {
225 		put_bh(bh);
226 		return ERR_PTR(ret);
227 	}
228 	return bh;
229 }
230 
231 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
232 				   int op_flags)
233 {
234 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
235 }
236 
237 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
238 					    sector_t block)
239 {
240 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
241 }
242 
243 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
244 {
245 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
246 
247 	if (likely(bh)) {
248 		ext4_read_bh_lock(bh, REQ_RAHEAD, false);
249 		brelse(bh);
250 	}
251 }
252 
253 static int ext4_verify_csum_type(struct super_block *sb,
254 				 struct ext4_super_block *es)
255 {
256 	if (!ext4_has_feature_metadata_csum(sb))
257 		return 1;
258 
259 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
260 }
261 
262 static __le32 ext4_superblock_csum(struct super_block *sb,
263 				   struct ext4_super_block *es)
264 {
265 	struct ext4_sb_info *sbi = EXT4_SB(sb);
266 	int offset = offsetof(struct ext4_super_block, s_checksum);
267 	__u32 csum;
268 
269 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
270 
271 	return cpu_to_le32(csum);
272 }
273 
274 static int ext4_superblock_csum_verify(struct super_block *sb,
275 				       struct ext4_super_block *es)
276 {
277 	if (!ext4_has_metadata_csum(sb))
278 		return 1;
279 
280 	return es->s_checksum == ext4_superblock_csum(sb, es);
281 }
282 
283 void ext4_superblock_csum_set(struct super_block *sb)
284 {
285 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
286 
287 	if (!ext4_has_metadata_csum(sb))
288 		return;
289 
290 	es->s_checksum = ext4_superblock_csum(sb, es);
291 }
292 
293 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
294 			       struct ext4_group_desc *bg)
295 {
296 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
297 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
298 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
299 }
300 
301 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
302 			       struct ext4_group_desc *bg)
303 {
304 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
305 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
306 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
307 }
308 
309 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
310 			      struct ext4_group_desc *bg)
311 {
312 	return le32_to_cpu(bg->bg_inode_table_lo) |
313 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
314 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
315 }
316 
317 __u32 ext4_free_group_clusters(struct super_block *sb,
318 			       struct ext4_group_desc *bg)
319 {
320 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
321 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
322 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
323 }
324 
325 __u32 ext4_free_inodes_count(struct super_block *sb,
326 			      struct ext4_group_desc *bg)
327 {
328 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
329 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
330 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
331 }
332 
333 __u32 ext4_used_dirs_count(struct super_block *sb,
334 			      struct ext4_group_desc *bg)
335 {
336 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
337 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
338 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
339 }
340 
341 __u32 ext4_itable_unused_count(struct super_block *sb,
342 			      struct ext4_group_desc *bg)
343 {
344 	return le16_to_cpu(bg->bg_itable_unused_lo) |
345 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
346 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
347 }
348 
349 void ext4_block_bitmap_set(struct super_block *sb,
350 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
351 {
352 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
353 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
354 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
355 }
356 
357 void ext4_inode_bitmap_set(struct super_block *sb,
358 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
359 {
360 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
361 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
362 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
363 }
364 
365 void ext4_inode_table_set(struct super_block *sb,
366 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
367 {
368 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
369 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
370 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
371 }
372 
373 void ext4_free_group_clusters_set(struct super_block *sb,
374 				  struct ext4_group_desc *bg, __u32 count)
375 {
376 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
377 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
378 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
379 }
380 
381 void ext4_free_inodes_set(struct super_block *sb,
382 			  struct ext4_group_desc *bg, __u32 count)
383 {
384 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
385 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
386 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
387 }
388 
389 void ext4_used_dirs_set(struct super_block *sb,
390 			  struct ext4_group_desc *bg, __u32 count)
391 {
392 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
393 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
394 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
395 }
396 
397 void ext4_itable_unused_set(struct super_block *sb,
398 			  struct ext4_group_desc *bg, __u32 count)
399 {
400 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
401 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
402 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
403 }
404 
405 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
406 {
407 	now = clamp_val(now, 0, (1ull << 40) - 1);
408 
409 	*lo = cpu_to_le32(lower_32_bits(now));
410 	*hi = upper_32_bits(now);
411 }
412 
413 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
414 {
415 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
416 }
417 #define ext4_update_tstamp(es, tstamp) \
418 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
419 			     ktime_get_real_seconds())
420 #define ext4_get_tstamp(es, tstamp) \
421 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
422 
423 /*
424  * The del_gendisk() function uninitializes the disk-specific data
425  * structures, including the bdi structure, without telling anyone
426  * else.  Once this happens, any attempt to call mark_buffer_dirty()
427  * (for example, by ext4_commit_super), will cause a kernel OOPS.
428  * This is a kludge to prevent these oops until we can put in a proper
429  * hook in del_gendisk() to inform the VFS and file system layers.
430  */
431 static int block_device_ejected(struct super_block *sb)
432 {
433 	struct inode *bd_inode = sb->s_bdev->bd_inode;
434 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
435 
436 	return bdi->dev == NULL;
437 }
438 
439 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
440 {
441 	struct super_block		*sb = journal->j_private;
442 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
443 	int				error = is_journal_aborted(journal);
444 	struct ext4_journal_cb_entry	*jce;
445 
446 	BUG_ON(txn->t_state == T_FINISHED);
447 
448 	ext4_process_freed_data(sb, txn->t_tid);
449 
450 	spin_lock(&sbi->s_md_lock);
451 	while (!list_empty(&txn->t_private_list)) {
452 		jce = list_entry(txn->t_private_list.next,
453 				 struct ext4_journal_cb_entry, jce_list);
454 		list_del_init(&jce->jce_list);
455 		spin_unlock(&sbi->s_md_lock);
456 		jce->jce_func(sb, jce, error);
457 		spin_lock(&sbi->s_md_lock);
458 	}
459 	spin_unlock(&sbi->s_md_lock);
460 }
461 
462 /*
463  * This writepage callback for write_cache_pages()
464  * takes care of a few cases after page cleaning.
465  *
466  * write_cache_pages() already checks for dirty pages
467  * and calls clear_page_dirty_for_io(), which we want,
468  * to write protect the pages.
469  *
470  * However, we may have to redirty a page (see below.)
471  */
472 static int ext4_journalled_writepage_callback(struct page *page,
473 					      struct writeback_control *wbc,
474 					      void *data)
475 {
476 	transaction_t *transaction = (transaction_t *) data;
477 	struct buffer_head *bh, *head;
478 	struct journal_head *jh;
479 
480 	bh = head = page_buffers(page);
481 	do {
482 		/*
483 		 * We have to redirty a page in these cases:
484 		 * 1) If buffer is dirty, it means the page was dirty because it
485 		 * contains a buffer that needs checkpointing. So the dirty bit
486 		 * needs to be preserved so that checkpointing writes the buffer
487 		 * properly.
488 		 * 2) If buffer is not part of the committing transaction
489 		 * (we may have just accidentally come across this buffer because
490 		 * inode range tracking is not exact) or if the currently running
491 		 * transaction already contains this buffer as well, dirty bit
492 		 * needs to be preserved so that the buffer gets writeprotected
493 		 * properly on running transaction's commit.
494 		 */
495 		jh = bh2jh(bh);
496 		if (buffer_dirty(bh) ||
497 		    (jh && (jh->b_transaction != transaction ||
498 			    jh->b_next_transaction))) {
499 			redirty_page_for_writepage(wbc, page);
500 			goto out;
501 		}
502 	} while ((bh = bh->b_this_page) != head);
503 
504 out:
505 	return AOP_WRITEPAGE_ACTIVATE;
506 }
507 
508 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
509 {
510 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
511 	struct writeback_control wbc = {
512 		.sync_mode =  WB_SYNC_ALL,
513 		.nr_to_write = LONG_MAX,
514 		.range_start = jinode->i_dirty_start,
515 		.range_end = jinode->i_dirty_end,
516         };
517 
518 	return write_cache_pages(mapping, &wbc,
519 				 ext4_journalled_writepage_callback,
520 				 jinode->i_transaction);
521 }
522 
523 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
524 {
525 	int ret;
526 
527 	if (ext4_should_journal_data(jinode->i_vfs_inode))
528 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
529 	else
530 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
531 
532 	return ret;
533 }
534 
535 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
536 {
537 	int ret = 0;
538 
539 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
540 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
541 
542 	return ret;
543 }
544 
545 static bool system_going_down(void)
546 {
547 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
548 		|| system_state == SYSTEM_RESTART;
549 }
550 
551 struct ext4_err_translation {
552 	int code;
553 	int errno;
554 };
555 
556 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
557 
558 static struct ext4_err_translation err_translation[] = {
559 	EXT4_ERR_TRANSLATE(EIO),
560 	EXT4_ERR_TRANSLATE(ENOMEM),
561 	EXT4_ERR_TRANSLATE(EFSBADCRC),
562 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
563 	EXT4_ERR_TRANSLATE(ENOSPC),
564 	EXT4_ERR_TRANSLATE(ENOKEY),
565 	EXT4_ERR_TRANSLATE(EROFS),
566 	EXT4_ERR_TRANSLATE(EFBIG),
567 	EXT4_ERR_TRANSLATE(EEXIST),
568 	EXT4_ERR_TRANSLATE(ERANGE),
569 	EXT4_ERR_TRANSLATE(EOVERFLOW),
570 	EXT4_ERR_TRANSLATE(EBUSY),
571 	EXT4_ERR_TRANSLATE(ENOTDIR),
572 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
573 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
574 	EXT4_ERR_TRANSLATE(EFAULT),
575 };
576 
577 static int ext4_errno_to_code(int errno)
578 {
579 	int i;
580 
581 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
582 		if (err_translation[i].errno == errno)
583 			return err_translation[i].code;
584 	return EXT4_ERR_UNKNOWN;
585 }
586 
587 static void save_error_info(struct super_block *sb, int error,
588 			    __u32 ino, __u64 block,
589 			    const char *func, unsigned int line)
590 {
591 	struct ext4_sb_info *sbi = EXT4_SB(sb);
592 
593 	/* We default to EFSCORRUPTED error... */
594 	if (error == 0)
595 		error = EFSCORRUPTED;
596 
597 	spin_lock(&sbi->s_error_lock);
598 	sbi->s_add_error_count++;
599 	sbi->s_last_error_code = error;
600 	sbi->s_last_error_line = line;
601 	sbi->s_last_error_ino = ino;
602 	sbi->s_last_error_block = block;
603 	sbi->s_last_error_func = func;
604 	sbi->s_last_error_time = ktime_get_real_seconds();
605 	if (!sbi->s_first_error_time) {
606 		sbi->s_first_error_code = error;
607 		sbi->s_first_error_line = line;
608 		sbi->s_first_error_ino = ino;
609 		sbi->s_first_error_block = block;
610 		sbi->s_first_error_func = func;
611 		sbi->s_first_error_time = sbi->s_last_error_time;
612 	}
613 	spin_unlock(&sbi->s_error_lock);
614 }
615 
616 /* Deal with the reporting of failure conditions on a filesystem such as
617  * inconsistencies detected or read IO failures.
618  *
619  * On ext2, we can store the error state of the filesystem in the
620  * superblock.  That is not possible on ext4, because we may have other
621  * write ordering constraints on the superblock which prevent us from
622  * writing it out straight away; and given that the journal is about to
623  * be aborted, we can't rely on the current, or future, transactions to
624  * write out the superblock safely.
625  *
626  * We'll just use the jbd2_journal_abort() error code to record an error in
627  * the journal instead.  On recovery, the journal will complain about
628  * that error until we've noted it down and cleared it.
629  *
630  * If force_ro is set, we unconditionally force the filesystem into an
631  * ABORT|READONLY state, unless the error response on the fs has been set to
632  * panic in which case we take the easy way out and panic immediately. This is
633  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
634  * at a critical moment in log management.
635  */
636 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
637 			      __u32 ino, __u64 block,
638 			      const char *func, unsigned int line)
639 {
640 	journal_t *journal = EXT4_SB(sb)->s_journal;
641 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
642 
643 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
644 	if (test_opt(sb, WARN_ON_ERROR))
645 		WARN_ON_ONCE(1);
646 
647 	if (!continue_fs && !sb_rdonly(sb)) {
648 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
649 		if (journal)
650 			jbd2_journal_abort(journal, -EIO);
651 	}
652 
653 	if (!bdev_read_only(sb->s_bdev)) {
654 		save_error_info(sb, error, ino, block, func, line);
655 		/*
656 		 * In case the fs should keep running, we need to writeout
657 		 * superblock through the journal. Due to lock ordering
658 		 * constraints, it may not be safe to do it right here so we
659 		 * defer superblock flushing to a workqueue.
660 		 */
661 		if (continue_fs && journal)
662 			schedule_work(&EXT4_SB(sb)->s_error_work);
663 		else
664 			ext4_commit_super(sb);
665 	}
666 
667 	/*
668 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
669 	 * could panic during 'reboot -f' as the underlying device got already
670 	 * disabled.
671 	 */
672 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
673 		panic("EXT4-fs (device %s): panic forced after error\n",
674 			sb->s_id);
675 	}
676 
677 	if (sb_rdonly(sb) || continue_fs)
678 		return;
679 
680 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
681 	/*
682 	 * Make sure updated value of ->s_mount_flags will be visible before
683 	 * ->s_flags update
684 	 */
685 	smp_wmb();
686 	sb->s_flags |= SB_RDONLY;
687 }
688 
689 static void flush_stashed_error_work(struct work_struct *work)
690 {
691 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
692 						s_error_work);
693 	journal_t *journal = sbi->s_journal;
694 	handle_t *handle;
695 
696 	/*
697 	 * If the journal is still running, we have to write out superblock
698 	 * through the journal to avoid collisions of other journalled sb
699 	 * updates.
700 	 *
701 	 * We use directly jbd2 functions here to avoid recursing back into
702 	 * ext4 error handling code during handling of previous errors.
703 	 */
704 	if (!sb_rdonly(sbi->s_sb) && journal) {
705 		struct buffer_head *sbh = sbi->s_sbh;
706 		handle = jbd2_journal_start(journal, 1);
707 		if (IS_ERR(handle))
708 			goto write_directly;
709 		if (jbd2_journal_get_write_access(handle, sbh)) {
710 			jbd2_journal_stop(handle);
711 			goto write_directly;
712 		}
713 		ext4_update_super(sbi->s_sb);
714 		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
715 			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
716 				 "superblock detected");
717 			clear_buffer_write_io_error(sbh);
718 			set_buffer_uptodate(sbh);
719 		}
720 
721 		if (jbd2_journal_dirty_metadata(handle, sbh)) {
722 			jbd2_journal_stop(handle);
723 			goto write_directly;
724 		}
725 		jbd2_journal_stop(handle);
726 		ext4_notify_error_sysfs(sbi);
727 		return;
728 	}
729 write_directly:
730 	/*
731 	 * Write through journal failed. Write sb directly to get error info
732 	 * out and hope for the best.
733 	 */
734 	ext4_commit_super(sbi->s_sb);
735 	ext4_notify_error_sysfs(sbi);
736 }
737 
738 #define ext4_error_ratelimit(sb)					\
739 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
740 			     "EXT4-fs error")
741 
742 void __ext4_error(struct super_block *sb, const char *function,
743 		  unsigned int line, bool force_ro, int error, __u64 block,
744 		  const char *fmt, ...)
745 {
746 	struct va_format vaf;
747 	va_list args;
748 
749 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
750 		return;
751 
752 	trace_ext4_error(sb, function, line);
753 	if (ext4_error_ratelimit(sb)) {
754 		va_start(args, fmt);
755 		vaf.fmt = fmt;
756 		vaf.va = &args;
757 		printk(KERN_CRIT
758 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
759 		       sb->s_id, function, line, current->comm, &vaf);
760 		va_end(args);
761 	}
762 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
763 }
764 
765 void __ext4_error_inode(struct inode *inode, const char *function,
766 			unsigned int line, ext4_fsblk_t block, int error,
767 			const char *fmt, ...)
768 {
769 	va_list args;
770 	struct va_format vaf;
771 
772 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
773 		return;
774 
775 	trace_ext4_error(inode->i_sb, function, line);
776 	if (ext4_error_ratelimit(inode->i_sb)) {
777 		va_start(args, fmt);
778 		vaf.fmt = fmt;
779 		vaf.va = &args;
780 		if (block)
781 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
782 			       "inode #%lu: block %llu: comm %s: %pV\n",
783 			       inode->i_sb->s_id, function, line, inode->i_ino,
784 			       block, current->comm, &vaf);
785 		else
786 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
787 			       "inode #%lu: comm %s: %pV\n",
788 			       inode->i_sb->s_id, function, line, inode->i_ino,
789 			       current->comm, &vaf);
790 		va_end(args);
791 	}
792 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
793 			  function, line);
794 }
795 
796 void __ext4_error_file(struct file *file, const char *function,
797 		       unsigned int line, ext4_fsblk_t block,
798 		       const char *fmt, ...)
799 {
800 	va_list args;
801 	struct va_format vaf;
802 	struct inode *inode = file_inode(file);
803 	char pathname[80], *path;
804 
805 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
806 		return;
807 
808 	trace_ext4_error(inode->i_sb, function, line);
809 	if (ext4_error_ratelimit(inode->i_sb)) {
810 		path = file_path(file, pathname, sizeof(pathname));
811 		if (IS_ERR(path))
812 			path = "(unknown)";
813 		va_start(args, fmt);
814 		vaf.fmt = fmt;
815 		vaf.va = &args;
816 		if (block)
817 			printk(KERN_CRIT
818 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
819 			       "block %llu: comm %s: path %s: %pV\n",
820 			       inode->i_sb->s_id, function, line, inode->i_ino,
821 			       block, current->comm, path, &vaf);
822 		else
823 			printk(KERN_CRIT
824 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
825 			       "comm %s: path %s: %pV\n",
826 			       inode->i_sb->s_id, function, line, inode->i_ino,
827 			       current->comm, path, &vaf);
828 		va_end(args);
829 	}
830 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
831 			  function, line);
832 }
833 
834 const char *ext4_decode_error(struct super_block *sb, int errno,
835 			      char nbuf[16])
836 {
837 	char *errstr = NULL;
838 
839 	switch (errno) {
840 	case -EFSCORRUPTED:
841 		errstr = "Corrupt filesystem";
842 		break;
843 	case -EFSBADCRC:
844 		errstr = "Filesystem failed CRC";
845 		break;
846 	case -EIO:
847 		errstr = "IO failure";
848 		break;
849 	case -ENOMEM:
850 		errstr = "Out of memory";
851 		break;
852 	case -EROFS:
853 		if (!sb || (EXT4_SB(sb)->s_journal &&
854 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
855 			errstr = "Journal has aborted";
856 		else
857 			errstr = "Readonly filesystem";
858 		break;
859 	default:
860 		/* If the caller passed in an extra buffer for unknown
861 		 * errors, textualise them now.  Else we just return
862 		 * NULL. */
863 		if (nbuf) {
864 			/* Check for truncated error codes... */
865 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
866 				errstr = nbuf;
867 		}
868 		break;
869 	}
870 
871 	return errstr;
872 }
873 
874 /* __ext4_std_error decodes expected errors from journaling functions
875  * automatically and invokes the appropriate error response.  */
876 
877 void __ext4_std_error(struct super_block *sb, const char *function,
878 		      unsigned int line, int errno)
879 {
880 	char nbuf[16];
881 	const char *errstr;
882 
883 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
884 		return;
885 
886 	/* Special case: if the error is EROFS, and we're not already
887 	 * inside a transaction, then there's really no point in logging
888 	 * an error. */
889 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
890 		return;
891 
892 	if (ext4_error_ratelimit(sb)) {
893 		errstr = ext4_decode_error(sb, errno, nbuf);
894 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
895 		       sb->s_id, function, line, errstr);
896 	}
897 
898 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
899 }
900 
901 void __ext4_msg(struct super_block *sb,
902 		const char *prefix, const char *fmt, ...)
903 {
904 	struct va_format vaf;
905 	va_list args;
906 
907 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
908 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
909 		return;
910 
911 	va_start(args, fmt);
912 	vaf.fmt = fmt;
913 	vaf.va = &args;
914 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
915 	va_end(args);
916 }
917 
918 static int ext4_warning_ratelimit(struct super_block *sb)
919 {
920 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
921 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
922 			    "EXT4-fs warning");
923 }
924 
925 void __ext4_warning(struct super_block *sb, const char *function,
926 		    unsigned int line, const char *fmt, ...)
927 {
928 	struct va_format vaf;
929 	va_list args;
930 
931 	if (!ext4_warning_ratelimit(sb))
932 		return;
933 
934 	va_start(args, fmt);
935 	vaf.fmt = fmt;
936 	vaf.va = &args;
937 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
938 	       sb->s_id, function, line, &vaf);
939 	va_end(args);
940 }
941 
942 void __ext4_warning_inode(const struct inode *inode, const char *function,
943 			  unsigned int line, const char *fmt, ...)
944 {
945 	struct va_format vaf;
946 	va_list args;
947 
948 	if (!ext4_warning_ratelimit(inode->i_sb))
949 		return;
950 
951 	va_start(args, fmt);
952 	vaf.fmt = fmt;
953 	vaf.va = &args;
954 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
955 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
956 	       function, line, inode->i_ino, current->comm, &vaf);
957 	va_end(args);
958 }
959 
960 void __ext4_grp_locked_error(const char *function, unsigned int line,
961 			     struct super_block *sb, ext4_group_t grp,
962 			     unsigned long ino, ext4_fsblk_t block,
963 			     const char *fmt, ...)
964 __releases(bitlock)
965 __acquires(bitlock)
966 {
967 	struct va_format vaf;
968 	va_list args;
969 
970 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
971 		return;
972 
973 	trace_ext4_error(sb, function, line);
974 	if (ext4_error_ratelimit(sb)) {
975 		va_start(args, fmt);
976 		vaf.fmt = fmt;
977 		vaf.va = &args;
978 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
979 		       sb->s_id, function, line, grp);
980 		if (ino)
981 			printk(KERN_CONT "inode %lu: ", ino);
982 		if (block)
983 			printk(KERN_CONT "block %llu:",
984 			       (unsigned long long) block);
985 		printk(KERN_CONT "%pV\n", &vaf);
986 		va_end(args);
987 	}
988 
989 	if (test_opt(sb, ERRORS_CONT)) {
990 		if (test_opt(sb, WARN_ON_ERROR))
991 			WARN_ON_ONCE(1);
992 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
993 		if (!bdev_read_only(sb->s_bdev)) {
994 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
995 					line);
996 			schedule_work(&EXT4_SB(sb)->s_error_work);
997 		}
998 		return;
999 	}
1000 	ext4_unlock_group(sb, grp);
1001 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1002 	/*
1003 	 * We only get here in the ERRORS_RO case; relocking the group
1004 	 * may be dangerous, but nothing bad will happen since the
1005 	 * filesystem will have already been marked read/only and the
1006 	 * journal has been aborted.  We return 1 as a hint to callers
1007 	 * who might what to use the return value from
1008 	 * ext4_grp_locked_error() to distinguish between the
1009 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1010 	 * aggressively from the ext4 function in question, with a
1011 	 * more appropriate error code.
1012 	 */
1013 	ext4_lock_group(sb, grp);
1014 	return;
1015 }
1016 
1017 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1018 				     ext4_group_t group,
1019 				     unsigned int flags)
1020 {
1021 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1022 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1023 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1024 	int ret;
1025 
1026 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1027 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1028 					    &grp->bb_state);
1029 		if (!ret)
1030 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1031 					   grp->bb_free);
1032 	}
1033 
1034 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1035 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1036 					    &grp->bb_state);
1037 		if (!ret && gdp) {
1038 			int count;
1039 
1040 			count = ext4_free_inodes_count(sb, gdp);
1041 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1042 					   count);
1043 		}
1044 	}
1045 }
1046 
1047 void ext4_update_dynamic_rev(struct super_block *sb)
1048 {
1049 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1050 
1051 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1052 		return;
1053 
1054 	ext4_warning(sb,
1055 		     "updating to rev %d because of new feature flag, "
1056 		     "running e2fsck is recommended",
1057 		     EXT4_DYNAMIC_REV);
1058 
1059 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1060 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1061 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1062 	/* leave es->s_feature_*compat flags alone */
1063 	/* es->s_uuid will be set by e2fsck if empty */
1064 
1065 	/*
1066 	 * The rest of the superblock fields should be zero, and if not it
1067 	 * means they are likely already in use, so leave them alone.  We
1068 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1069 	 */
1070 }
1071 
1072 /*
1073  * Open the external journal device
1074  */
1075 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1076 {
1077 	struct block_device *bdev;
1078 
1079 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1080 	if (IS_ERR(bdev))
1081 		goto fail;
1082 	return bdev;
1083 
1084 fail:
1085 	ext4_msg(sb, KERN_ERR,
1086 		 "failed to open journal device unknown-block(%u,%u) %ld",
1087 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1088 	return NULL;
1089 }
1090 
1091 /*
1092  * Release the journal device
1093  */
1094 static void ext4_blkdev_put(struct block_device *bdev)
1095 {
1096 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1097 }
1098 
1099 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1100 {
1101 	struct block_device *bdev;
1102 	bdev = sbi->s_journal_bdev;
1103 	if (bdev) {
1104 		ext4_blkdev_put(bdev);
1105 		sbi->s_journal_bdev = NULL;
1106 	}
1107 }
1108 
1109 static inline struct inode *orphan_list_entry(struct list_head *l)
1110 {
1111 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1112 }
1113 
1114 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1115 {
1116 	struct list_head *l;
1117 
1118 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1119 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1120 
1121 	printk(KERN_ERR "sb_info orphan list:\n");
1122 	list_for_each(l, &sbi->s_orphan) {
1123 		struct inode *inode = orphan_list_entry(l);
1124 		printk(KERN_ERR "  "
1125 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1126 		       inode->i_sb->s_id, inode->i_ino, inode,
1127 		       inode->i_mode, inode->i_nlink,
1128 		       NEXT_ORPHAN(inode));
1129 	}
1130 }
1131 
1132 #ifdef CONFIG_QUOTA
1133 static int ext4_quota_off(struct super_block *sb, int type);
1134 
1135 static inline void ext4_quota_off_umount(struct super_block *sb)
1136 {
1137 	int type;
1138 
1139 	/* Use our quota_off function to clear inode flags etc. */
1140 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1141 		ext4_quota_off(sb, type);
1142 }
1143 
1144 /*
1145  * This is a helper function which is used in the mount/remount
1146  * codepaths (which holds s_umount) to fetch the quota file name.
1147  */
1148 static inline char *get_qf_name(struct super_block *sb,
1149 				struct ext4_sb_info *sbi,
1150 				int type)
1151 {
1152 	return rcu_dereference_protected(sbi->s_qf_names[type],
1153 					 lockdep_is_held(&sb->s_umount));
1154 }
1155 #else
1156 static inline void ext4_quota_off_umount(struct super_block *sb)
1157 {
1158 }
1159 #endif
1160 
1161 static void ext4_put_super(struct super_block *sb)
1162 {
1163 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1164 	struct ext4_super_block *es = sbi->s_es;
1165 	struct buffer_head **group_desc;
1166 	struct flex_groups **flex_groups;
1167 	int aborted = 0;
1168 	int i, err;
1169 
1170 	ext4_unregister_li_request(sb);
1171 	ext4_quota_off_umount(sb);
1172 
1173 	flush_work(&sbi->s_error_work);
1174 	destroy_workqueue(sbi->rsv_conversion_wq);
1175 	ext4_release_orphan_info(sb);
1176 
1177 	/*
1178 	 * Unregister sysfs before destroying jbd2 journal.
1179 	 * Since we could still access attr_journal_task attribute via sysfs
1180 	 * path which could have sbi->s_journal->j_task as NULL
1181 	 */
1182 	ext4_unregister_sysfs(sb);
1183 
1184 	if (sbi->s_journal) {
1185 		aborted = is_journal_aborted(sbi->s_journal);
1186 		err = jbd2_journal_destroy(sbi->s_journal);
1187 		sbi->s_journal = NULL;
1188 		if ((err < 0) && !aborted) {
1189 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1190 		}
1191 	}
1192 
1193 	ext4_es_unregister_shrinker(sbi);
1194 	del_timer_sync(&sbi->s_err_report);
1195 	ext4_release_system_zone(sb);
1196 	ext4_mb_release(sb);
1197 	ext4_ext_release(sb);
1198 
1199 	if (!sb_rdonly(sb) && !aborted) {
1200 		ext4_clear_feature_journal_needs_recovery(sb);
1201 		ext4_clear_feature_orphan_present(sb);
1202 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1203 	}
1204 	if (!sb_rdonly(sb))
1205 		ext4_commit_super(sb);
1206 
1207 	rcu_read_lock();
1208 	group_desc = rcu_dereference(sbi->s_group_desc);
1209 	for (i = 0; i < sbi->s_gdb_count; i++)
1210 		brelse(group_desc[i]);
1211 	kvfree(group_desc);
1212 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1213 	if (flex_groups) {
1214 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1215 			kvfree(flex_groups[i]);
1216 		kvfree(flex_groups);
1217 	}
1218 	rcu_read_unlock();
1219 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1220 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1221 	percpu_counter_destroy(&sbi->s_dirs_counter);
1222 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1223 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1224 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1225 #ifdef CONFIG_QUOTA
1226 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1227 		kfree(get_qf_name(sb, sbi, i));
1228 #endif
1229 
1230 	/* Debugging code just in case the in-memory inode orphan list
1231 	 * isn't empty.  The on-disk one can be non-empty if we've
1232 	 * detected an error and taken the fs readonly, but the
1233 	 * in-memory list had better be clean by this point. */
1234 	if (!list_empty(&sbi->s_orphan))
1235 		dump_orphan_list(sb, sbi);
1236 	ASSERT(list_empty(&sbi->s_orphan));
1237 
1238 	sync_blockdev(sb->s_bdev);
1239 	invalidate_bdev(sb->s_bdev);
1240 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1241 		/*
1242 		 * Invalidate the journal device's buffers.  We don't want them
1243 		 * floating about in memory - the physical journal device may
1244 		 * hotswapped, and it breaks the `ro-after' testing code.
1245 		 */
1246 		sync_blockdev(sbi->s_journal_bdev);
1247 		invalidate_bdev(sbi->s_journal_bdev);
1248 		ext4_blkdev_remove(sbi);
1249 	}
1250 
1251 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1252 	sbi->s_ea_inode_cache = NULL;
1253 
1254 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1255 	sbi->s_ea_block_cache = NULL;
1256 
1257 	ext4_stop_mmpd(sbi);
1258 
1259 	brelse(sbi->s_sbh);
1260 	sb->s_fs_info = NULL;
1261 	/*
1262 	 * Now that we are completely done shutting down the
1263 	 * superblock, we need to actually destroy the kobject.
1264 	 */
1265 	kobject_put(&sbi->s_kobj);
1266 	wait_for_completion(&sbi->s_kobj_unregister);
1267 	if (sbi->s_chksum_driver)
1268 		crypto_free_shash(sbi->s_chksum_driver);
1269 	kfree(sbi->s_blockgroup_lock);
1270 	fs_put_dax(sbi->s_daxdev);
1271 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1272 #ifdef CONFIG_UNICODE
1273 	utf8_unload(sb->s_encoding);
1274 #endif
1275 	kfree(sbi);
1276 }
1277 
1278 static struct kmem_cache *ext4_inode_cachep;
1279 
1280 /*
1281  * Called inside transaction, so use GFP_NOFS
1282  */
1283 static struct inode *ext4_alloc_inode(struct super_block *sb)
1284 {
1285 	struct ext4_inode_info *ei;
1286 
1287 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1288 	if (!ei)
1289 		return NULL;
1290 
1291 	inode_set_iversion(&ei->vfs_inode, 1);
1292 	spin_lock_init(&ei->i_raw_lock);
1293 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1294 	atomic_set(&ei->i_prealloc_active, 0);
1295 	spin_lock_init(&ei->i_prealloc_lock);
1296 	ext4_es_init_tree(&ei->i_es_tree);
1297 	rwlock_init(&ei->i_es_lock);
1298 	INIT_LIST_HEAD(&ei->i_es_list);
1299 	ei->i_es_all_nr = 0;
1300 	ei->i_es_shk_nr = 0;
1301 	ei->i_es_shrink_lblk = 0;
1302 	ei->i_reserved_data_blocks = 0;
1303 	spin_lock_init(&(ei->i_block_reservation_lock));
1304 	ext4_init_pending_tree(&ei->i_pending_tree);
1305 #ifdef CONFIG_QUOTA
1306 	ei->i_reserved_quota = 0;
1307 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1308 #endif
1309 	ei->jinode = NULL;
1310 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1311 	spin_lock_init(&ei->i_completed_io_lock);
1312 	ei->i_sync_tid = 0;
1313 	ei->i_datasync_tid = 0;
1314 	atomic_set(&ei->i_unwritten, 0);
1315 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1316 	ext4_fc_init_inode(&ei->vfs_inode);
1317 	mutex_init(&ei->i_fc_lock);
1318 	return &ei->vfs_inode;
1319 }
1320 
1321 static int ext4_drop_inode(struct inode *inode)
1322 {
1323 	int drop = generic_drop_inode(inode);
1324 
1325 	if (!drop)
1326 		drop = fscrypt_drop_inode(inode);
1327 
1328 	trace_ext4_drop_inode(inode, drop);
1329 	return drop;
1330 }
1331 
1332 static void ext4_free_in_core_inode(struct inode *inode)
1333 {
1334 	fscrypt_free_inode(inode);
1335 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1336 		pr_warn("%s: inode %ld still in fc list",
1337 			__func__, inode->i_ino);
1338 	}
1339 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1340 }
1341 
1342 static void ext4_destroy_inode(struct inode *inode)
1343 {
1344 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1345 		ext4_msg(inode->i_sb, KERN_ERR,
1346 			 "Inode %lu (%p): orphan list check failed!",
1347 			 inode->i_ino, EXT4_I(inode));
1348 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1349 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1350 				true);
1351 		dump_stack();
1352 	}
1353 
1354 	if (EXT4_I(inode)->i_reserved_data_blocks)
1355 		ext4_msg(inode->i_sb, KERN_ERR,
1356 			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1357 			 inode->i_ino, EXT4_I(inode),
1358 			 EXT4_I(inode)->i_reserved_data_blocks);
1359 }
1360 
1361 static void init_once(void *foo)
1362 {
1363 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1364 
1365 	INIT_LIST_HEAD(&ei->i_orphan);
1366 	init_rwsem(&ei->xattr_sem);
1367 	init_rwsem(&ei->i_data_sem);
1368 	inode_init_once(&ei->vfs_inode);
1369 	ext4_fc_init_inode(&ei->vfs_inode);
1370 }
1371 
1372 static int __init init_inodecache(void)
1373 {
1374 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1375 				sizeof(struct ext4_inode_info), 0,
1376 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1377 					SLAB_ACCOUNT),
1378 				offsetof(struct ext4_inode_info, i_data),
1379 				sizeof_field(struct ext4_inode_info, i_data),
1380 				init_once);
1381 	if (ext4_inode_cachep == NULL)
1382 		return -ENOMEM;
1383 	return 0;
1384 }
1385 
1386 static void destroy_inodecache(void)
1387 {
1388 	/*
1389 	 * Make sure all delayed rcu free inodes are flushed before we
1390 	 * destroy cache.
1391 	 */
1392 	rcu_barrier();
1393 	kmem_cache_destroy(ext4_inode_cachep);
1394 }
1395 
1396 void ext4_clear_inode(struct inode *inode)
1397 {
1398 	ext4_fc_del(inode);
1399 	invalidate_inode_buffers(inode);
1400 	clear_inode(inode);
1401 	ext4_discard_preallocations(inode, 0);
1402 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1403 	dquot_drop(inode);
1404 	if (EXT4_I(inode)->jinode) {
1405 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1406 					       EXT4_I(inode)->jinode);
1407 		jbd2_free_inode(EXT4_I(inode)->jinode);
1408 		EXT4_I(inode)->jinode = NULL;
1409 	}
1410 	fscrypt_put_encryption_info(inode);
1411 	fsverity_cleanup_inode(inode);
1412 }
1413 
1414 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1415 					u64 ino, u32 generation)
1416 {
1417 	struct inode *inode;
1418 
1419 	/*
1420 	 * Currently we don't know the generation for parent directory, so
1421 	 * a generation of 0 means "accept any"
1422 	 */
1423 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1424 	if (IS_ERR(inode))
1425 		return ERR_CAST(inode);
1426 	if (generation && inode->i_generation != generation) {
1427 		iput(inode);
1428 		return ERR_PTR(-ESTALE);
1429 	}
1430 
1431 	return inode;
1432 }
1433 
1434 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1435 					int fh_len, int fh_type)
1436 {
1437 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1438 				    ext4_nfs_get_inode);
1439 }
1440 
1441 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1442 					int fh_len, int fh_type)
1443 {
1444 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1445 				    ext4_nfs_get_inode);
1446 }
1447 
1448 static int ext4_nfs_commit_metadata(struct inode *inode)
1449 {
1450 	struct writeback_control wbc = {
1451 		.sync_mode = WB_SYNC_ALL
1452 	};
1453 
1454 	trace_ext4_nfs_commit_metadata(inode);
1455 	return ext4_write_inode(inode, &wbc);
1456 }
1457 
1458 #ifdef CONFIG_FS_ENCRYPTION
1459 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1460 {
1461 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1462 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1463 }
1464 
1465 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1466 							void *fs_data)
1467 {
1468 	handle_t *handle = fs_data;
1469 	int res, res2, credits, retries = 0;
1470 
1471 	/*
1472 	 * Encrypting the root directory is not allowed because e2fsck expects
1473 	 * lost+found to exist and be unencrypted, and encrypting the root
1474 	 * directory would imply encrypting the lost+found directory as well as
1475 	 * the filename "lost+found" itself.
1476 	 */
1477 	if (inode->i_ino == EXT4_ROOT_INO)
1478 		return -EPERM;
1479 
1480 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1481 		return -EINVAL;
1482 
1483 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1484 		return -EOPNOTSUPP;
1485 
1486 	res = ext4_convert_inline_data(inode);
1487 	if (res)
1488 		return res;
1489 
1490 	/*
1491 	 * If a journal handle was specified, then the encryption context is
1492 	 * being set on a new inode via inheritance and is part of a larger
1493 	 * transaction to create the inode.  Otherwise the encryption context is
1494 	 * being set on an existing inode in its own transaction.  Only in the
1495 	 * latter case should the "retry on ENOSPC" logic be used.
1496 	 */
1497 
1498 	if (handle) {
1499 		res = ext4_xattr_set_handle(handle, inode,
1500 					    EXT4_XATTR_INDEX_ENCRYPTION,
1501 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1502 					    ctx, len, 0);
1503 		if (!res) {
1504 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1505 			ext4_clear_inode_state(inode,
1506 					EXT4_STATE_MAY_INLINE_DATA);
1507 			/*
1508 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1509 			 * S_DAX may be disabled
1510 			 */
1511 			ext4_set_inode_flags(inode, false);
1512 		}
1513 		return res;
1514 	}
1515 
1516 	res = dquot_initialize(inode);
1517 	if (res)
1518 		return res;
1519 retry:
1520 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1521 				     &credits);
1522 	if (res)
1523 		return res;
1524 
1525 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1526 	if (IS_ERR(handle))
1527 		return PTR_ERR(handle);
1528 
1529 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1530 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1531 				    ctx, len, 0);
1532 	if (!res) {
1533 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1534 		/*
1535 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1536 		 * S_DAX may be disabled
1537 		 */
1538 		ext4_set_inode_flags(inode, false);
1539 		res = ext4_mark_inode_dirty(handle, inode);
1540 		if (res)
1541 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1542 	}
1543 	res2 = ext4_journal_stop(handle);
1544 
1545 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1546 		goto retry;
1547 	if (!res)
1548 		res = res2;
1549 	return res;
1550 }
1551 
1552 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1553 {
1554 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1555 }
1556 
1557 static bool ext4_has_stable_inodes(struct super_block *sb)
1558 {
1559 	return ext4_has_feature_stable_inodes(sb);
1560 }
1561 
1562 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1563 				       int *ino_bits_ret, int *lblk_bits_ret)
1564 {
1565 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1566 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1567 }
1568 
1569 static const struct fscrypt_operations ext4_cryptops = {
1570 	.key_prefix		= "ext4:",
1571 	.get_context		= ext4_get_context,
1572 	.set_context		= ext4_set_context,
1573 	.get_dummy_policy	= ext4_get_dummy_policy,
1574 	.empty_dir		= ext4_empty_dir,
1575 	.max_namelen		= EXT4_NAME_LEN,
1576 	.has_stable_inodes	= ext4_has_stable_inodes,
1577 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1578 };
1579 #endif
1580 
1581 #ifdef CONFIG_QUOTA
1582 static const char * const quotatypes[] = INITQFNAMES;
1583 #define QTYPE2NAME(t) (quotatypes[t])
1584 
1585 static int ext4_write_dquot(struct dquot *dquot);
1586 static int ext4_acquire_dquot(struct dquot *dquot);
1587 static int ext4_release_dquot(struct dquot *dquot);
1588 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1589 static int ext4_write_info(struct super_block *sb, int type);
1590 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1591 			 const struct path *path);
1592 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1593 			       size_t len, loff_t off);
1594 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1595 				const char *data, size_t len, loff_t off);
1596 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1597 			     unsigned int flags);
1598 
1599 static struct dquot **ext4_get_dquots(struct inode *inode)
1600 {
1601 	return EXT4_I(inode)->i_dquot;
1602 }
1603 
1604 static const struct dquot_operations ext4_quota_operations = {
1605 	.get_reserved_space	= ext4_get_reserved_space,
1606 	.write_dquot		= ext4_write_dquot,
1607 	.acquire_dquot		= ext4_acquire_dquot,
1608 	.release_dquot		= ext4_release_dquot,
1609 	.mark_dirty		= ext4_mark_dquot_dirty,
1610 	.write_info		= ext4_write_info,
1611 	.alloc_dquot		= dquot_alloc,
1612 	.destroy_dquot		= dquot_destroy,
1613 	.get_projid		= ext4_get_projid,
1614 	.get_inode_usage	= ext4_get_inode_usage,
1615 	.get_next_id		= dquot_get_next_id,
1616 };
1617 
1618 static const struct quotactl_ops ext4_qctl_operations = {
1619 	.quota_on	= ext4_quota_on,
1620 	.quota_off	= ext4_quota_off,
1621 	.quota_sync	= dquot_quota_sync,
1622 	.get_state	= dquot_get_state,
1623 	.set_info	= dquot_set_dqinfo,
1624 	.get_dqblk	= dquot_get_dqblk,
1625 	.set_dqblk	= dquot_set_dqblk,
1626 	.get_nextdqblk	= dquot_get_next_dqblk,
1627 };
1628 #endif
1629 
1630 static const struct super_operations ext4_sops = {
1631 	.alloc_inode	= ext4_alloc_inode,
1632 	.free_inode	= ext4_free_in_core_inode,
1633 	.destroy_inode	= ext4_destroy_inode,
1634 	.write_inode	= ext4_write_inode,
1635 	.dirty_inode	= ext4_dirty_inode,
1636 	.drop_inode	= ext4_drop_inode,
1637 	.evict_inode	= ext4_evict_inode,
1638 	.put_super	= ext4_put_super,
1639 	.sync_fs	= ext4_sync_fs,
1640 	.freeze_fs	= ext4_freeze,
1641 	.unfreeze_fs	= ext4_unfreeze,
1642 	.statfs		= ext4_statfs,
1643 	.remount_fs	= ext4_remount,
1644 	.show_options	= ext4_show_options,
1645 #ifdef CONFIG_QUOTA
1646 	.quota_read	= ext4_quota_read,
1647 	.quota_write	= ext4_quota_write,
1648 	.get_dquots	= ext4_get_dquots,
1649 #endif
1650 };
1651 
1652 static const struct export_operations ext4_export_ops = {
1653 	.fh_to_dentry = ext4_fh_to_dentry,
1654 	.fh_to_parent = ext4_fh_to_parent,
1655 	.get_parent = ext4_get_parent,
1656 	.commit_metadata = ext4_nfs_commit_metadata,
1657 };
1658 
1659 enum {
1660 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1661 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1662 	Opt_nouid32, Opt_debug, Opt_removed,
1663 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1664 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1665 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1666 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1667 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1668 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1669 	Opt_inlinecrypt,
1670 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1671 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1672 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1673 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1674 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1675 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1676 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1677 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1678 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1679 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1680 	Opt_dioread_nolock, Opt_dioread_lock,
1681 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1682 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1683 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1684 #ifdef CONFIG_EXT4_DEBUG
1685 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1686 #endif
1687 };
1688 
1689 static const match_table_t tokens = {
1690 	{Opt_bsd_df, "bsddf"},
1691 	{Opt_minix_df, "minixdf"},
1692 	{Opt_grpid, "grpid"},
1693 	{Opt_grpid, "bsdgroups"},
1694 	{Opt_nogrpid, "nogrpid"},
1695 	{Opt_nogrpid, "sysvgroups"},
1696 	{Opt_resgid, "resgid=%u"},
1697 	{Opt_resuid, "resuid=%u"},
1698 	{Opt_sb, "sb=%u"},
1699 	{Opt_err_cont, "errors=continue"},
1700 	{Opt_err_panic, "errors=panic"},
1701 	{Opt_err_ro, "errors=remount-ro"},
1702 	{Opt_nouid32, "nouid32"},
1703 	{Opt_debug, "debug"},
1704 	{Opt_removed, "oldalloc"},
1705 	{Opt_removed, "orlov"},
1706 	{Opt_user_xattr, "user_xattr"},
1707 	{Opt_nouser_xattr, "nouser_xattr"},
1708 	{Opt_acl, "acl"},
1709 	{Opt_noacl, "noacl"},
1710 	{Opt_noload, "norecovery"},
1711 	{Opt_noload, "noload"},
1712 	{Opt_removed, "nobh"},
1713 	{Opt_removed, "bh"},
1714 	{Opt_commit, "commit=%u"},
1715 	{Opt_min_batch_time, "min_batch_time=%u"},
1716 	{Opt_max_batch_time, "max_batch_time=%u"},
1717 	{Opt_journal_dev, "journal_dev=%u"},
1718 	{Opt_journal_path, "journal_path=%s"},
1719 	{Opt_journal_checksum, "journal_checksum"},
1720 	{Opt_nojournal_checksum, "nojournal_checksum"},
1721 	{Opt_journal_async_commit, "journal_async_commit"},
1722 	{Opt_abort, "abort"},
1723 	{Opt_data_journal, "data=journal"},
1724 	{Opt_data_ordered, "data=ordered"},
1725 	{Opt_data_writeback, "data=writeback"},
1726 	{Opt_data_err_abort, "data_err=abort"},
1727 	{Opt_data_err_ignore, "data_err=ignore"},
1728 	{Opt_offusrjquota, "usrjquota="},
1729 	{Opt_usrjquota, "usrjquota=%s"},
1730 	{Opt_offgrpjquota, "grpjquota="},
1731 	{Opt_grpjquota, "grpjquota=%s"},
1732 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1733 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1734 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1735 	{Opt_grpquota, "grpquota"},
1736 	{Opt_noquota, "noquota"},
1737 	{Opt_quota, "quota"},
1738 	{Opt_usrquota, "usrquota"},
1739 	{Opt_prjquota, "prjquota"},
1740 	{Opt_barrier, "barrier=%u"},
1741 	{Opt_barrier, "barrier"},
1742 	{Opt_nobarrier, "nobarrier"},
1743 	{Opt_i_version, "i_version"},
1744 	{Opt_dax, "dax"},
1745 	{Opt_dax_always, "dax=always"},
1746 	{Opt_dax_inode, "dax=inode"},
1747 	{Opt_dax_never, "dax=never"},
1748 	{Opt_stripe, "stripe=%u"},
1749 	{Opt_delalloc, "delalloc"},
1750 	{Opt_warn_on_error, "warn_on_error"},
1751 	{Opt_nowarn_on_error, "nowarn_on_error"},
1752 	{Opt_lazytime, "lazytime"},
1753 	{Opt_nolazytime, "nolazytime"},
1754 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1755 	{Opt_nodelalloc, "nodelalloc"},
1756 	{Opt_removed, "mblk_io_submit"},
1757 	{Opt_removed, "nomblk_io_submit"},
1758 	{Opt_block_validity, "block_validity"},
1759 	{Opt_noblock_validity, "noblock_validity"},
1760 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1761 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1762 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1763 	{Opt_auto_da_alloc, "auto_da_alloc"},
1764 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1765 	{Opt_dioread_nolock, "dioread_nolock"},
1766 	{Opt_dioread_lock, "nodioread_nolock"},
1767 	{Opt_dioread_lock, "dioread_lock"},
1768 	{Opt_discard, "discard"},
1769 	{Opt_nodiscard, "nodiscard"},
1770 	{Opt_init_itable, "init_itable=%u"},
1771 	{Opt_init_itable, "init_itable"},
1772 	{Opt_noinit_itable, "noinit_itable"},
1773 #ifdef CONFIG_EXT4_DEBUG
1774 	{Opt_fc_debug_force, "fc_debug_force"},
1775 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1776 #endif
1777 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1778 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1779 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1780 	{Opt_inlinecrypt, "inlinecrypt"},
1781 	{Opt_nombcache, "nombcache"},
1782 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1783 	{Opt_removed, "prefetch_block_bitmaps"},
1784 	{Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1785 	{Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1786 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1787 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1788 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1789 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1790 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1791 	{Opt_err, NULL},
1792 };
1793 
1794 static ext4_fsblk_t get_sb_block(void **data)
1795 {
1796 	ext4_fsblk_t	sb_block;
1797 	char		*options = (char *) *data;
1798 
1799 	if (!options || strncmp(options, "sb=", 3) != 0)
1800 		return 1;	/* Default location */
1801 
1802 	options += 3;
1803 	/* TODO: use simple_strtoll with >32bit ext4 */
1804 	sb_block = simple_strtoul(options, &options, 0);
1805 	if (*options && *options != ',') {
1806 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1807 		       (char *) *data);
1808 		return 1;
1809 	}
1810 	if (*options == ',')
1811 		options++;
1812 	*data = (void *) options;
1813 
1814 	return sb_block;
1815 }
1816 
1817 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1818 #define DEFAULT_MB_OPTIMIZE_SCAN	(-1)
1819 
1820 static const char deprecated_msg[] =
1821 	"Mount option \"%s\" will be removed by %s\n"
1822 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1823 
1824 #ifdef CONFIG_QUOTA
1825 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1826 {
1827 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1828 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1829 	int ret = -1;
1830 
1831 	if (sb_any_quota_loaded(sb) && !old_qname) {
1832 		ext4_msg(sb, KERN_ERR,
1833 			"Cannot change journaled "
1834 			"quota options when quota turned on");
1835 		return -1;
1836 	}
1837 	if (ext4_has_feature_quota(sb)) {
1838 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1839 			 "ignored when QUOTA feature is enabled");
1840 		return 1;
1841 	}
1842 	qname = match_strdup(args);
1843 	if (!qname) {
1844 		ext4_msg(sb, KERN_ERR,
1845 			"Not enough memory for storing quotafile name");
1846 		return -1;
1847 	}
1848 	if (old_qname) {
1849 		if (strcmp(old_qname, qname) == 0)
1850 			ret = 1;
1851 		else
1852 			ext4_msg(sb, KERN_ERR,
1853 				 "%s quota file already specified",
1854 				 QTYPE2NAME(qtype));
1855 		goto errout;
1856 	}
1857 	if (strchr(qname, '/')) {
1858 		ext4_msg(sb, KERN_ERR,
1859 			"quotafile must be on filesystem root");
1860 		goto errout;
1861 	}
1862 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1863 	set_opt(sb, QUOTA);
1864 	return 1;
1865 errout:
1866 	kfree(qname);
1867 	return ret;
1868 }
1869 
1870 static int clear_qf_name(struct super_block *sb, int qtype)
1871 {
1872 
1873 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1874 	char *old_qname = get_qf_name(sb, sbi, qtype);
1875 
1876 	if (sb_any_quota_loaded(sb) && old_qname) {
1877 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1878 			" when quota turned on");
1879 		return -1;
1880 	}
1881 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1882 	synchronize_rcu();
1883 	kfree(old_qname);
1884 	return 1;
1885 }
1886 #endif
1887 
1888 #define MOPT_SET	0x0001
1889 #define MOPT_CLEAR	0x0002
1890 #define MOPT_NOSUPPORT	0x0004
1891 #define MOPT_EXPLICIT	0x0008
1892 #define MOPT_CLEAR_ERR	0x0010
1893 #define MOPT_GTE0	0x0020
1894 #ifdef CONFIG_QUOTA
1895 #define MOPT_Q		0
1896 #define MOPT_QFMT	0x0040
1897 #else
1898 #define MOPT_Q		MOPT_NOSUPPORT
1899 #define MOPT_QFMT	MOPT_NOSUPPORT
1900 #endif
1901 #define MOPT_DATAJ	0x0080
1902 #define MOPT_NO_EXT2	0x0100
1903 #define MOPT_NO_EXT3	0x0200
1904 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1905 #define MOPT_STRING	0x0400
1906 #define MOPT_SKIP	0x0800
1907 #define	MOPT_2		0x1000
1908 
1909 static const struct mount_opts {
1910 	int	token;
1911 	int	mount_opt;
1912 	int	flags;
1913 } ext4_mount_opts[] = {
1914 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1915 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1916 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1917 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1918 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1919 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1920 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1921 	 MOPT_EXT4_ONLY | MOPT_SET},
1922 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1923 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1924 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1925 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1926 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1927 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1928 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1929 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1930 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1931 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1932 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1933 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1934 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1935 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1936 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1937 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1938 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1939 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1940 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1941 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1942 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1943 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1944 	 MOPT_NO_EXT2},
1945 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1946 	 MOPT_NO_EXT2},
1947 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1948 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1949 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1950 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1951 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1952 	{Opt_commit, 0, MOPT_GTE0},
1953 	{Opt_max_batch_time, 0, MOPT_GTE0},
1954 	{Opt_min_batch_time, 0, MOPT_GTE0},
1955 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1956 	{Opt_init_itable, 0, MOPT_GTE0},
1957 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1958 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1959 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1960 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1961 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1962 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1963 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1964 	{Opt_stripe, 0, MOPT_GTE0},
1965 	{Opt_resuid, 0, MOPT_GTE0},
1966 	{Opt_resgid, 0, MOPT_GTE0},
1967 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1968 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1969 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1970 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1971 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1972 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1973 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1974 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1975 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1976 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1977 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1978 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1979 #else
1980 	{Opt_acl, 0, MOPT_NOSUPPORT},
1981 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1982 #endif
1983 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1984 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1985 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1986 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1987 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1988 							MOPT_SET | MOPT_Q},
1989 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1990 							MOPT_SET | MOPT_Q},
1991 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1992 							MOPT_SET | MOPT_Q},
1993 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1994 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1995 							MOPT_CLEAR | MOPT_Q},
1996 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1997 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1998 	{Opt_offusrjquota, 0, MOPT_Q},
1999 	{Opt_offgrpjquota, 0, MOPT_Q},
2000 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2001 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2002 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2003 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2004 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2005 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2006 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2007 	 MOPT_SET},
2008 	{Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2009 #ifdef CONFIG_EXT4_DEBUG
2010 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2011 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2012 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2013 #endif
2014 	{Opt_err, 0, 0}
2015 };
2016 
2017 #ifdef CONFIG_UNICODE
2018 static const struct ext4_sb_encodings {
2019 	__u16 magic;
2020 	char *name;
2021 	char *version;
2022 } ext4_sb_encoding_map[] = {
2023 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2024 };
2025 
2026 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2027 				 const struct ext4_sb_encodings **encoding,
2028 				 __u16 *flags)
2029 {
2030 	__u16 magic = le16_to_cpu(es->s_encoding);
2031 	int i;
2032 
2033 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2034 		if (magic == ext4_sb_encoding_map[i].magic)
2035 			break;
2036 
2037 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2038 		return -EINVAL;
2039 
2040 	*encoding = &ext4_sb_encoding_map[i];
2041 	*flags = le16_to_cpu(es->s_encoding_flags);
2042 
2043 	return 0;
2044 }
2045 #endif
2046 
2047 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2048 					  const char *opt,
2049 					  const substring_t *arg,
2050 					  bool is_remount)
2051 {
2052 #ifdef CONFIG_FS_ENCRYPTION
2053 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2054 	int err;
2055 
2056 	/*
2057 	 * This mount option is just for testing, and it's not worthwhile to
2058 	 * implement the extra complexity (e.g. RCU protection) that would be
2059 	 * needed to allow it to be set or changed during remount.  We do allow
2060 	 * it to be specified during remount, but only if there is no change.
2061 	 */
2062 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2063 		ext4_msg(sb, KERN_WARNING,
2064 			 "Can't set test_dummy_encryption on remount");
2065 		return -1;
2066 	}
2067 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2068 						&sbi->s_dummy_enc_policy);
2069 	if (err) {
2070 		if (err == -EEXIST)
2071 			ext4_msg(sb, KERN_WARNING,
2072 				 "Can't change test_dummy_encryption on remount");
2073 		else if (err == -EINVAL)
2074 			ext4_msg(sb, KERN_WARNING,
2075 				 "Value of option \"%s\" is unrecognized", opt);
2076 		else
2077 			ext4_msg(sb, KERN_WARNING,
2078 				 "Error processing option \"%s\" [%d]",
2079 				 opt, err);
2080 		return -1;
2081 	}
2082 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2083 #else
2084 	ext4_msg(sb, KERN_WARNING,
2085 		 "Test dummy encryption mount option ignored");
2086 #endif
2087 	return 1;
2088 }
2089 
2090 struct ext4_parsed_options {
2091 	unsigned long journal_devnum;
2092 	unsigned int journal_ioprio;
2093 	int mb_optimize_scan;
2094 };
2095 
2096 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2097 			    substring_t *args, struct ext4_parsed_options *parsed_opts,
2098 			    int is_remount)
2099 {
2100 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2101 	const struct mount_opts *m;
2102 	kuid_t uid;
2103 	kgid_t gid;
2104 	int arg = 0;
2105 
2106 #ifdef CONFIG_QUOTA
2107 	if (token == Opt_usrjquota)
2108 		return set_qf_name(sb, USRQUOTA, &args[0]);
2109 	else if (token == Opt_grpjquota)
2110 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2111 	else if (token == Opt_offusrjquota)
2112 		return clear_qf_name(sb, USRQUOTA);
2113 	else if (token == Opt_offgrpjquota)
2114 		return clear_qf_name(sb, GRPQUOTA);
2115 #endif
2116 	switch (token) {
2117 	case Opt_noacl:
2118 	case Opt_nouser_xattr:
2119 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2120 		break;
2121 	case Opt_sb:
2122 		return 1;	/* handled by get_sb_block() */
2123 	case Opt_removed:
2124 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2125 		return 1;
2126 	case Opt_abort:
2127 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2128 		return 1;
2129 	case Opt_i_version:
2130 		sb->s_flags |= SB_I_VERSION;
2131 		return 1;
2132 	case Opt_lazytime:
2133 		sb->s_flags |= SB_LAZYTIME;
2134 		return 1;
2135 	case Opt_nolazytime:
2136 		sb->s_flags &= ~SB_LAZYTIME;
2137 		return 1;
2138 	case Opt_inlinecrypt:
2139 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2140 		sb->s_flags |= SB_INLINECRYPT;
2141 #else
2142 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2143 #endif
2144 		return 1;
2145 	}
2146 
2147 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2148 		if (token == m->token)
2149 			break;
2150 
2151 	if (m->token == Opt_err) {
2152 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2153 			 "or missing value", opt);
2154 		return -1;
2155 	}
2156 
2157 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2158 		ext4_msg(sb, KERN_ERR,
2159 			 "Mount option \"%s\" incompatible with ext2", opt);
2160 		return -1;
2161 	}
2162 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2163 		ext4_msg(sb, KERN_ERR,
2164 			 "Mount option \"%s\" incompatible with ext3", opt);
2165 		return -1;
2166 	}
2167 
2168 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2169 		return -1;
2170 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2171 		return -1;
2172 	if (m->flags & MOPT_EXPLICIT) {
2173 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2174 			set_opt2(sb, EXPLICIT_DELALLOC);
2175 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2176 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2177 		} else
2178 			return -1;
2179 	}
2180 	if (m->flags & MOPT_CLEAR_ERR)
2181 		clear_opt(sb, ERRORS_MASK);
2182 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2183 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2184 			 "options when quota turned on");
2185 		return -1;
2186 	}
2187 
2188 	if (m->flags & MOPT_NOSUPPORT) {
2189 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2190 	} else if (token == Opt_commit) {
2191 		if (arg == 0)
2192 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2193 		else if (arg > INT_MAX / HZ) {
2194 			ext4_msg(sb, KERN_ERR,
2195 				 "Invalid commit interval %d, "
2196 				 "must be smaller than %d",
2197 				 arg, INT_MAX / HZ);
2198 			return -1;
2199 		}
2200 		sbi->s_commit_interval = HZ * arg;
2201 	} else if (token == Opt_debug_want_extra_isize) {
2202 		if ((arg & 1) ||
2203 		    (arg < 4) ||
2204 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2205 			ext4_msg(sb, KERN_ERR,
2206 				 "Invalid want_extra_isize %d", arg);
2207 			return -1;
2208 		}
2209 		sbi->s_want_extra_isize = arg;
2210 	} else if (token == Opt_max_batch_time) {
2211 		sbi->s_max_batch_time = arg;
2212 	} else if (token == Opt_min_batch_time) {
2213 		sbi->s_min_batch_time = arg;
2214 	} else if (token == Opt_inode_readahead_blks) {
2215 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2216 			ext4_msg(sb, KERN_ERR,
2217 				 "EXT4-fs: inode_readahead_blks must be "
2218 				 "0 or a power of 2 smaller than 2^31");
2219 			return -1;
2220 		}
2221 		sbi->s_inode_readahead_blks = arg;
2222 	} else if (token == Opt_init_itable) {
2223 		set_opt(sb, INIT_INODE_TABLE);
2224 		if (!args->from)
2225 			arg = EXT4_DEF_LI_WAIT_MULT;
2226 		sbi->s_li_wait_mult = arg;
2227 	} else if (token == Opt_max_dir_size_kb) {
2228 		sbi->s_max_dir_size_kb = arg;
2229 #ifdef CONFIG_EXT4_DEBUG
2230 	} else if (token == Opt_fc_debug_max_replay) {
2231 		sbi->s_fc_debug_max_replay = arg;
2232 #endif
2233 	} else if (token == Opt_stripe) {
2234 		sbi->s_stripe = arg;
2235 	} else if (token == Opt_resuid) {
2236 		uid = make_kuid(current_user_ns(), arg);
2237 		if (!uid_valid(uid)) {
2238 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2239 			return -1;
2240 		}
2241 		sbi->s_resuid = uid;
2242 	} else if (token == Opt_resgid) {
2243 		gid = make_kgid(current_user_ns(), arg);
2244 		if (!gid_valid(gid)) {
2245 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2246 			return -1;
2247 		}
2248 		sbi->s_resgid = gid;
2249 	} else if (token == Opt_journal_dev) {
2250 		if (is_remount) {
2251 			ext4_msg(sb, KERN_ERR,
2252 				 "Cannot specify journal on remount");
2253 			return -1;
2254 		}
2255 		parsed_opts->journal_devnum = arg;
2256 	} else if (token == Opt_journal_path) {
2257 		char *journal_path;
2258 		struct inode *journal_inode;
2259 		struct path path;
2260 		int error;
2261 
2262 		if (is_remount) {
2263 			ext4_msg(sb, KERN_ERR,
2264 				 "Cannot specify journal on remount");
2265 			return -1;
2266 		}
2267 		journal_path = match_strdup(&args[0]);
2268 		if (!journal_path) {
2269 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2270 				"journal device string");
2271 			return -1;
2272 		}
2273 
2274 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2275 		if (error) {
2276 			ext4_msg(sb, KERN_ERR, "error: could not find "
2277 				"journal device path: error %d", error);
2278 			kfree(journal_path);
2279 			return -1;
2280 		}
2281 
2282 		journal_inode = d_inode(path.dentry);
2283 		if (!S_ISBLK(journal_inode->i_mode)) {
2284 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2285 				"is not a block device", journal_path);
2286 			path_put(&path);
2287 			kfree(journal_path);
2288 			return -1;
2289 		}
2290 
2291 		parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2292 		path_put(&path);
2293 		kfree(journal_path);
2294 	} else if (token == Opt_journal_ioprio) {
2295 		if (arg > 7) {
2296 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2297 				 " (must be 0-7)");
2298 			return -1;
2299 		}
2300 		parsed_opts->journal_ioprio =
2301 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2302 	} else if (token == Opt_test_dummy_encryption) {
2303 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2304 						      is_remount);
2305 	} else if (m->flags & MOPT_DATAJ) {
2306 		if (is_remount) {
2307 			if (!sbi->s_journal)
2308 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2309 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2310 				ext4_msg(sb, KERN_ERR,
2311 					 "Cannot change data mode on remount");
2312 				return -1;
2313 			}
2314 		} else {
2315 			clear_opt(sb, DATA_FLAGS);
2316 			sbi->s_mount_opt |= m->mount_opt;
2317 		}
2318 #ifdef CONFIG_QUOTA
2319 	} else if (m->flags & MOPT_QFMT) {
2320 		if (sb_any_quota_loaded(sb) &&
2321 		    sbi->s_jquota_fmt != m->mount_opt) {
2322 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2323 				 "quota options when quota turned on");
2324 			return -1;
2325 		}
2326 		if (ext4_has_feature_quota(sb)) {
2327 			ext4_msg(sb, KERN_INFO,
2328 				 "Quota format mount options ignored "
2329 				 "when QUOTA feature is enabled");
2330 			return 1;
2331 		}
2332 		sbi->s_jquota_fmt = m->mount_opt;
2333 #endif
2334 	} else if (token == Opt_dax || token == Opt_dax_always ||
2335 		   token == Opt_dax_inode || token == Opt_dax_never) {
2336 #ifdef CONFIG_FS_DAX
2337 		switch (token) {
2338 		case Opt_dax:
2339 		case Opt_dax_always:
2340 			if (is_remount &&
2341 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2342 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2343 			fail_dax_change_remount:
2344 				ext4_msg(sb, KERN_ERR, "can't change "
2345 					 "dax mount option while remounting");
2346 				return -1;
2347 			}
2348 			if (is_remount &&
2349 			    (test_opt(sb, DATA_FLAGS) ==
2350 			     EXT4_MOUNT_JOURNAL_DATA)) {
2351 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2352 					     "both data=journal and dax");
2353 				    return -1;
2354 			}
2355 			ext4_msg(sb, KERN_WARNING,
2356 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2357 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2358 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2359 			break;
2360 		case Opt_dax_never:
2361 			if (is_remount &&
2362 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2363 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2364 				goto fail_dax_change_remount;
2365 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2366 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2367 			break;
2368 		case Opt_dax_inode:
2369 			if (is_remount &&
2370 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2371 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2372 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2373 				goto fail_dax_change_remount;
2374 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2375 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2376 			/* Strictly for printing options */
2377 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2378 			break;
2379 		}
2380 #else
2381 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2382 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2383 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2384 		return -1;
2385 #endif
2386 	} else if (token == Opt_data_err_abort) {
2387 		sbi->s_mount_opt |= m->mount_opt;
2388 	} else if (token == Opt_data_err_ignore) {
2389 		sbi->s_mount_opt &= ~m->mount_opt;
2390 	} else if (token == Opt_mb_optimize_scan) {
2391 		if (arg != 0 && arg != 1) {
2392 			ext4_msg(sb, KERN_WARNING,
2393 				 "mb_optimize_scan should be set to 0 or 1.");
2394 			return -1;
2395 		}
2396 		parsed_opts->mb_optimize_scan = arg;
2397 	} else {
2398 		if (!args->from)
2399 			arg = 1;
2400 		if (m->flags & MOPT_CLEAR)
2401 			arg = !arg;
2402 		else if (unlikely(!(m->flags & MOPT_SET))) {
2403 			ext4_msg(sb, KERN_WARNING,
2404 				 "buggy handling of option %s", opt);
2405 			WARN_ON(1);
2406 			return -1;
2407 		}
2408 		if (m->flags & MOPT_2) {
2409 			if (arg != 0)
2410 				sbi->s_mount_opt2 |= m->mount_opt;
2411 			else
2412 				sbi->s_mount_opt2 &= ~m->mount_opt;
2413 		} else {
2414 			if (arg != 0)
2415 				sbi->s_mount_opt |= m->mount_opt;
2416 			else
2417 				sbi->s_mount_opt &= ~m->mount_opt;
2418 		}
2419 	}
2420 	return 1;
2421 }
2422 
2423 static int parse_options(char *options, struct super_block *sb,
2424 			 struct ext4_parsed_options *ret_opts,
2425 			 int is_remount)
2426 {
2427 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2428 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2429 	substring_t args[MAX_OPT_ARGS];
2430 	int token;
2431 
2432 	if (!options)
2433 		return 1;
2434 
2435 	while ((p = strsep(&options, ",")) != NULL) {
2436 		if (!*p)
2437 			continue;
2438 		/*
2439 		 * Initialize args struct so we know whether arg was
2440 		 * found; some options take optional arguments.
2441 		 */
2442 		args[0].to = args[0].from = NULL;
2443 		token = match_token(p, tokens, args);
2444 		if (handle_mount_opt(sb, p, token, args, ret_opts,
2445 				     is_remount) < 0)
2446 			return 0;
2447 	}
2448 #ifdef CONFIG_QUOTA
2449 	/*
2450 	 * We do the test below only for project quotas. 'usrquota' and
2451 	 * 'grpquota' mount options are allowed even without quota feature
2452 	 * to support legacy quotas in quota files.
2453 	 */
2454 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2455 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2456 			 "Cannot enable project quota enforcement.");
2457 		return 0;
2458 	}
2459 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2460 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2461 	if (usr_qf_name || grp_qf_name) {
2462 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2463 			clear_opt(sb, USRQUOTA);
2464 
2465 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2466 			clear_opt(sb, GRPQUOTA);
2467 
2468 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2469 			ext4_msg(sb, KERN_ERR, "old and new quota "
2470 					"format mixing");
2471 			return 0;
2472 		}
2473 
2474 		if (!sbi->s_jquota_fmt) {
2475 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2476 					"not specified");
2477 			return 0;
2478 		}
2479 	}
2480 #endif
2481 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2482 		int blocksize =
2483 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2484 		if (blocksize < PAGE_SIZE)
2485 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2486 				 "experimental mount option 'dioread_nolock' "
2487 				 "for blocksize < PAGE_SIZE");
2488 	}
2489 	return 1;
2490 }
2491 
2492 static inline void ext4_show_quota_options(struct seq_file *seq,
2493 					   struct super_block *sb)
2494 {
2495 #if defined(CONFIG_QUOTA)
2496 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2497 	char *usr_qf_name, *grp_qf_name;
2498 
2499 	if (sbi->s_jquota_fmt) {
2500 		char *fmtname = "";
2501 
2502 		switch (sbi->s_jquota_fmt) {
2503 		case QFMT_VFS_OLD:
2504 			fmtname = "vfsold";
2505 			break;
2506 		case QFMT_VFS_V0:
2507 			fmtname = "vfsv0";
2508 			break;
2509 		case QFMT_VFS_V1:
2510 			fmtname = "vfsv1";
2511 			break;
2512 		}
2513 		seq_printf(seq, ",jqfmt=%s", fmtname);
2514 	}
2515 
2516 	rcu_read_lock();
2517 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2518 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2519 	if (usr_qf_name)
2520 		seq_show_option(seq, "usrjquota", usr_qf_name);
2521 	if (grp_qf_name)
2522 		seq_show_option(seq, "grpjquota", grp_qf_name);
2523 	rcu_read_unlock();
2524 #endif
2525 }
2526 
2527 static const char *token2str(int token)
2528 {
2529 	const struct match_token *t;
2530 
2531 	for (t = tokens; t->token != Opt_err; t++)
2532 		if (t->token == token && !strchr(t->pattern, '='))
2533 			break;
2534 	return t->pattern;
2535 }
2536 
2537 /*
2538  * Show an option if
2539  *  - it's set to a non-default value OR
2540  *  - if the per-sb default is different from the global default
2541  */
2542 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2543 			      int nodefs)
2544 {
2545 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2546 	struct ext4_super_block *es = sbi->s_es;
2547 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2548 	const struct mount_opts *m;
2549 	char sep = nodefs ? '\n' : ',';
2550 
2551 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2552 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2553 
2554 	if (sbi->s_sb_block != 1)
2555 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2556 
2557 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2558 		int want_set = m->flags & MOPT_SET;
2559 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2560 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2561 			continue;
2562 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2563 			continue; /* skip if same as the default */
2564 		if ((want_set &&
2565 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2566 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2567 			continue; /* select Opt_noFoo vs Opt_Foo */
2568 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2569 	}
2570 
2571 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2572 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2573 		SEQ_OPTS_PRINT("resuid=%u",
2574 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2575 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2576 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2577 		SEQ_OPTS_PRINT("resgid=%u",
2578 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2579 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2580 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2581 		SEQ_OPTS_PUTS("errors=remount-ro");
2582 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2583 		SEQ_OPTS_PUTS("errors=continue");
2584 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2585 		SEQ_OPTS_PUTS("errors=panic");
2586 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2587 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2588 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2589 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2590 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2591 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2592 	if (sb->s_flags & SB_I_VERSION)
2593 		SEQ_OPTS_PUTS("i_version");
2594 	if (nodefs || sbi->s_stripe)
2595 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2596 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2597 			(sbi->s_mount_opt ^ def_mount_opt)) {
2598 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2599 			SEQ_OPTS_PUTS("data=journal");
2600 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2601 			SEQ_OPTS_PUTS("data=ordered");
2602 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2603 			SEQ_OPTS_PUTS("data=writeback");
2604 	}
2605 	if (nodefs ||
2606 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2607 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2608 			       sbi->s_inode_readahead_blks);
2609 
2610 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2611 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2612 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2613 	if (nodefs || sbi->s_max_dir_size_kb)
2614 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2615 	if (test_opt(sb, DATA_ERR_ABORT))
2616 		SEQ_OPTS_PUTS("data_err=abort");
2617 
2618 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2619 
2620 	if (sb->s_flags & SB_INLINECRYPT)
2621 		SEQ_OPTS_PUTS("inlinecrypt");
2622 
2623 	if (test_opt(sb, DAX_ALWAYS)) {
2624 		if (IS_EXT2_SB(sb))
2625 			SEQ_OPTS_PUTS("dax");
2626 		else
2627 			SEQ_OPTS_PUTS("dax=always");
2628 	} else if (test_opt2(sb, DAX_NEVER)) {
2629 		SEQ_OPTS_PUTS("dax=never");
2630 	} else if (test_opt2(sb, DAX_INODE)) {
2631 		SEQ_OPTS_PUTS("dax=inode");
2632 	}
2633 	ext4_show_quota_options(seq, sb);
2634 	return 0;
2635 }
2636 
2637 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2638 {
2639 	return _ext4_show_options(seq, root->d_sb, 0);
2640 }
2641 
2642 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2643 {
2644 	struct super_block *sb = seq->private;
2645 	int rc;
2646 
2647 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2648 	rc = _ext4_show_options(seq, sb, 1);
2649 	seq_puts(seq, "\n");
2650 	return rc;
2651 }
2652 
2653 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2654 			    int read_only)
2655 {
2656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2657 	int err = 0;
2658 
2659 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2660 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2661 			 "forcing read-only mode");
2662 		err = -EROFS;
2663 		goto done;
2664 	}
2665 	if (read_only)
2666 		goto done;
2667 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2668 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2669 			 "running e2fsck is recommended");
2670 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2671 		ext4_msg(sb, KERN_WARNING,
2672 			 "warning: mounting fs with errors, "
2673 			 "running e2fsck is recommended");
2674 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2675 		 le16_to_cpu(es->s_mnt_count) >=
2676 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2677 		ext4_msg(sb, KERN_WARNING,
2678 			 "warning: maximal mount count reached, "
2679 			 "running e2fsck is recommended");
2680 	else if (le32_to_cpu(es->s_checkinterval) &&
2681 		 (ext4_get_tstamp(es, s_lastcheck) +
2682 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2683 		ext4_msg(sb, KERN_WARNING,
2684 			 "warning: checktime reached, "
2685 			 "running e2fsck is recommended");
2686 	if (!sbi->s_journal)
2687 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2688 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2689 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2690 	le16_add_cpu(&es->s_mnt_count, 1);
2691 	ext4_update_tstamp(es, s_mtime);
2692 	if (sbi->s_journal) {
2693 		ext4_set_feature_journal_needs_recovery(sb);
2694 		if (ext4_has_feature_orphan_file(sb))
2695 			ext4_set_feature_orphan_present(sb);
2696 	}
2697 
2698 	err = ext4_commit_super(sb);
2699 done:
2700 	if (test_opt(sb, DEBUG))
2701 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2702 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2703 			sb->s_blocksize,
2704 			sbi->s_groups_count,
2705 			EXT4_BLOCKS_PER_GROUP(sb),
2706 			EXT4_INODES_PER_GROUP(sb),
2707 			sbi->s_mount_opt, sbi->s_mount_opt2);
2708 
2709 	cleancache_init_fs(sb);
2710 	return err;
2711 }
2712 
2713 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2714 {
2715 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2716 	struct flex_groups **old_groups, **new_groups;
2717 	int size, i, j;
2718 
2719 	if (!sbi->s_log_groups_per_flex)
2720 		return 0;
2721 
2722 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2723 	if (size <= sbi->s_flex_groups_allocated)
2724 		return 0;
2725 
2726 	new_groups = kvzalloc(roundup_pow_of_two(size *
2727 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2728 	if (!new_groups) {
2729 		ext4_msg(sb, KERN_ERR,
2730 			 "not enough memory for %d flex group pointers", size);
2731 		return -ENOMEM;
2732 	}
2733 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2734 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2735 					 sizeof(struct flex_groups)),
2736 					 GFP_KERNEL);
2737 		if (!new_groups[i]) {
2738 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2739 				kvfree(new_groups[j]);
2740 			kvfree(new_groups);
2741 			ext4_msg(sb, KERN_ERR,
2742 				 "not enough memory for %d flex groups", size);
2743 			return -ENOMEM;
2744 		}
2745 	}
2746 	rcu_read_lock();
2747 	old_groups = rcu_dereference(sbi->s_flex_groups);
2748 	if (old_groups)
2749 		memcpy(new_groups, old_groups,
2750 		       (sbi->s_flex_groups_allocated *
2751 			sizeof(struct flex_groups *)));
2752 	rcu_read_unlock();
2753 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2754 	sbi->s_flex_groups_allocated = size;
2755 	if (old_groups)
2756 		ext4_kvfree_array_rcu(old_groups);
2757 	return 0;
2758 }
2759 
2760 static int ext4_fill_flex_info(struct super_block *sb)
2761 {
2762 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2763 	struct ext4_group_desc *gdp = NULL;
2764 	struct flex_groups *fg;
2765 	ext4_group_t flex_group;
2766 	int i, err;
2767 
2768 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2769 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2770 		sbi->s_log_groups_per_flex = 0;
2771 		return 1;
2772 	}
2773 
2774 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2775 	if (err)
2776 		goto failed;
2777 
2778 	for (i = 0; i < sbi->s_groups_count; i++) {
2779 		gdp = ext4_get_group_desc(sb, i, NULL);
2780 
2781 		flex_group = ext4_flex_group(sbi, i);
2782 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2783 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2784 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2785 			     &fg->free_clusters);
2786 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2787 	}
2788 
2789 	return 1;
2790 failed:
2791 	return 0;
2792 }
2793 
2794 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2795 				   struct ext4_group_desc *gdp)
2796 {
2797 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2798 	__u16 crc = 0;
2799 	__le32 le_group = cpu_to_le32(block_group);
2800 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2801 
2802 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2803 		/* Use new metadata_csum algorithm */
2804 		__u32 csum32;
2805 		__u16 dummy_csum = 0;
2806 
2807 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2808 				     sizeof(le_group));
2809 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2810 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2811 				     sizeof(dummy_csum));
2812 		offset += sizeof(dummy_csum);
2813 		if (offset < sbi->s_desc_size)
2814 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2815 					     sbi->s_desc_size - offset);
2816 
2817 		crc = csum32 & 0xFFFF;
2818 		goto out;
2819 	}
2820 
2821 	/* old crc16 code */
2822 	if (!ext4_has_feature_gdt_csum(sb))
2823 		return 0;
2824 
2825 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2826 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2827 	crc = crc16(crc, (__u8 *)gdp, offset);
2828 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2829 	/* for checksum of struct ext4_group_desc do the rest...*/
2830 	if (ext4_has_feature_64bit(sb) &&
2831 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2832 		crc = crc16(crc, (__u8 *)gdp + offset,
2833 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2834 				offset);
2835 
2836 out:
2837 	return cpu_to_le16(crc);
2838 }
2839 
2840 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2841 				struct ext4_group_desc *gdp)
2842 {
2843 	if (ext4_has_group_desc_csum(sb) &&
2844 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2845 		return 0;
2846 
2847 	return 1;
2848 }
2849 
2850 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2851 			      struct ext4_group_desc *gdp)
2852 {
2853 	if (!ext4_has_group_desc_csum(sb))
2854 		return;
2855 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2856 }
2857 
2858 /* Called at mount-time, super-block is locked */
2859 static int ext4_check_descriptors(struct super_block *sb,
2860 				  ext4_fsblk_t sb_block,
2861 				  ext4_group_t *first_not_zeroed)
2862 {
2863 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2864 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2865 	ext4_fsblk_t last_block;
2866 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2867 	ext4_fsblk_t block_bitmap;
2868 	ext4_fsblk_t inode_bitmap;
2869 	ext4_fsblk_t inode_table;
2870 	int flexbg_flag = 0;
2871 	ext4_group_t i, grp = sbi->s_groups_count;
2872 
2873 	if (ext4_has_feature_flex_bg(sb))
2874 		flexbg_flag = 1;
2875 
2876 	ext4_debug("Checking group descriptors");
2877 
2878 	for (i = 0; i < sbi->s_groups_count; i++) {
2879 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2880 
2881 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2882 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2883 		else
2884 			last_block = first_block +
2885 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2886 
2887 		if ((grp == sbi->s_groups_count) &&
2888 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2889 			grp = i;
2890 
2891 		block_bitmap = ext4_block_bitmap(sb, gdp);
2892 		if (block_bitmap == sb_block) {
2893 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2894 				 "Block bitmap for group %u overlaps "
2895 				 "superblock", i);
2896 			if (!sb_rdonly(sb))
2897 				return 0;
2898 		}
2899 		if (block_bitmap >= sb_block + 1 &&
2900 		    block_bitmap <= last_bg_block) {
2901 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2902 				 "Block bitmap for group %u overlaps "
2903 				 "block group descriptors", i);
2904 			if (!sb_rdonly(sb))
2905 				return 0;
2906 		}
2907 		if (block_bitmap < first_block || block_bitmap > last_block) {
2908 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2909 			       "Block bitmap for group %u not in group "
2910 			       "(block %llu)!", i, block_bitmap);
2911 			return 0;
2912 		}
2913 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2914 		if (inode_bitmap == sb_block) {
2915 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2916 				 "Inode bitmap for group %u overlaps "
2917 				 "superblock", i);
2918 			if (!sb_rdonly(sb))
2919 				return 0;
2920 		}
2921 		if (inode_bitmap >= sb_block + 1 &&
2922 		    inode_bitmap <= last_bg_block) {
2923 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2924 				 "Inode bitmap for group %u overlaps "
2925 				 "block group descriptors", i);
2926 			if (!sb_rdonly(sb))
2927 				return 0;
2928 		}
2929 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2930 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2931 			       "Inode bitmap for group %u not in group "
2932 			       "(block %llu)!", i, inode_bitmap);
2933 			return 0;
2934 		}
2935 		inode_table = ext4_inode_table(sb, gdp);
2936 		if (inode_table == sb_block) {
2937 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2938 				 "Inode table for group %u overlaps "
2939 				 "superblock", i);
2940 			if (!sb_rdonly(sb))
2941 				return 0;
2942 		}
2943 		if (inode_table >= sb_block + 1 &&
2944 		    inode_table <= last_bg_block) {
2945 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2946 				 "Inode table for group %u overlaps "
2947 				 "block group descriptors", i);
2948 			if (!sb_rdonly(sb))
2949 				return 0;
2950 		}
2951 		if (inode_table < first_block ||
2952 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2953 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2954 			       "Inode table for group %u not in group "
2955 			       "(block %llu)!", i, inode_table);
2956 			return 0;
2957 		}
2958 		ext4_lock_group(sb, i);
2959 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2960 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2961 				 "Checksum for group %u failed (%u!=%u)",
2962 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2963 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2964 			if (!sb_rdonly(sb)) {
2965 				ext4_unlock_group(sb, i);
2966 				return 0;
2967 			}
2968 		}
2969 		ext4_unlock_group(sb, i);
2970 		if (!flexbg_flag)
2971 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2972 	}
2973 	if (NULL != first_not_zeroed)
2974 		*first_not_zeroed = grp;
2975 	return 1;
2976 }
2977 
2978 /*
2979  * Maximal extent format file size.
2980  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2981  * extent format containers, within a sector_t, and within i_blocks
2982  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2983  * so that won't be a limiting factor.
2984  *
2985  * However there is other limiting factor. We do store extents in the form
2986  * of starting block and length, hence the resulting length of the extent
2987  * covering maximum file size must fit into on-disk format containers as
2988  * well. Given that length is always by 1 unit bigger than max unit (because
2989  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2990  *
2991  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2992  */
2993 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2994 {
2995 	loff_t res;
2996 	loff_t upper_limit = MAX_LFS_FILESIZE;
2997 
2998 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2999 
3000 	if (!has_huge_files) {
3001 		upper_limit = (1LL << 32) - 1;
3002 
3003 		/* total blocks in file system block size */
3004 		upper_limit >>= (blkbits - 9);
3005 		upper_limit <<= blkbits;
3006 	}
3007 
3008 	/*
3009 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3010 	 * by one fs block, so ee_len can cover the extent of maximum file
3011 	 * size
3012 	 */
3013 	res = (1LL << 32) - 1;
3014 	res <<= blkbits;
3015 
3016 	/* Sanity check against vm- & vfs- imposed limits */
3017 	if (res > upper_limit)
3018 		res = upper_limit;
3019 
3020 	return res;
3021 }
3022 
3023 /*
3024  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3025  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3026  * We need to be 1 filesystem block less than the 2^48 sector limit.
3027  */
3028 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3029 {
3030 	unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3031 	int meta_blocks;
3032 
3033 	/*
3034 	 * This is calculated to be the largest file size for a dense, block
3035 	 * mapped file such that the file's total number of 512-byte sectors,
3036 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3037 	 *
3038 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3039 	 * number of 512-byte sectors of the file.
3040 	 */
3041 	if (!has_huge_files) {
3042 		/*
3043 		 * !has_huge_files or implies that the inode i_block field
3044 		 * represents total file blocks in 2^32 512-byte sectors ==
3045 		 * size of vfs inode i_blocks * 8
3046 		 */
3047 		upper_limit = (1LL << 32) - 1;
3048 
3049 		/* total blocks in file system block size */
3050 		upper_limit >>= (bits - 9);
3051 
3052 	} else {
3053 		/*
3054 		 * We use 48 bit ext4_inode i_blocks
3055 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3056 		 * represent total number of blocks in
3057 		 * file system block size
3058 		 */
3059 		upper_limit = (1LL << 48) - 1;
3060 
3061 	}
3062 
3063 	/* indirect blocks */
3064 	meta_blocks = 1;
3065 	/* double indirect blocks */
3066 	meta_blocks += 1 + (1LL << (bits-2));
3067 	/* tripple indirect blocks */
3068 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3069 
3070 	upper_limit -= meta_blocks;
3071 	upper_limit <<= bits;
3072 
3073 	res += 1LL << (bits-2);
3074 	res += 1LL << (2*(bits-2));
3075 	res += 1LL << (3*(bits-2));
3076 	res <<= bits;
3077 	if (res > upper_limit)
3078 		res = upper_limit;
3079 
3080 	if (res > MAX_LFS_FILESIZE)
3081 		res = MAX_LFS_FILESIZE;
3082 
3083 	return (loff_t)res;
3084 }
3085 
3086 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3087 				   ext4_fsblk_t logical_sb_block, int nr)
3088 {
3089 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3090 	ext4_group_t bg, first_meta_bg;
3091 	int has_super = 0;
3092 
3093 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3094 
3095 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3096 		return logical_sb_block + nr + 1;
3097 	bg = sbi->s_desc_per_block * nr;
3098 	if (ext4_bg_has_super(sb, bg))
3099 		has_super = 1;
3100 
3101 	/*
3102 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3103 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3104 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3105 	 * compensate.
3106 	 */
3107 	if (sb->s_blocksize == 1024 && nr == 0 &&
3108 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3109 		has_super++;
3110 
3111 	return (has_super + ext4_group_first_block_no(sb, bg));
3112 }
3113 
3114 /**
3115  * ext4_get_stripe_size: Get the stripe size.
3116  * @sbi: In memory super block info
3117  *
3118  * If we have specified it via mount option, then
3119  * use the mount option value. If the value specified at mount time is
3120  * greater than the blocks per group use the super block value.
3121  * If the super block value is greater than blocks per group return 0.
3122  * Allocator needs it be less than blocks per group.
3123  *
3124  */
3125 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3126 {
3127 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3128 	unsigned long stripe_width =
3129 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3130 	int ret;
3131 
3132 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3133 		ret = sbi->s_stripe;
3134 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3135 		ret = stripe_width;
3136 	else if (stride && stride <= sbi->s_blocks_per_group)
3137 		ret = stride;
3138 	else
3139 		ret = 0;
3140 
3141 	/*
3142 	 * If the stripe width is 1, this makes no sense and
3143 	 * we set it to 0 to turn off stripe handling code.
3144 	 */
3145 	if (ret <= 1)
3146 		ret = 0;
3147 
3148 	return ret;
3149 }
3150 
3151 /*
3152  * Check whether this filesystem can be mounted based on
3153  * the features present and the RDONLY/RDWR mount requested.
3154  * Returns 1 if this filesystem can be mounted as requested,
3155  * 0 if it cannot be.
3156  */
3157 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3158 {
3159 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3160 		ext4_msg(sb, KERN_ERR,
3161 			"Couldn't mount because of "
3162 			"unsupported optional features (%x)",
3163 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3164 			~EXT4_FEATURE_INCOMPAT_SUPP));
3165 		return 0;
3166 	}
3167 
3168 #ifndef CONFIG_UNICODE
3169 	if (ext4_has_feature_casefold(sb)) {
3170 		ext4_msg(sb, KERN_ERR,
3171 			 "Filesystem with casefold feature cannot be "
3172 			 "mounted without CONFIG_UNICODE");
3173 		return 0;
3174 	}
3175 #endif
3176 
3177 	if (readonly)
3178 		return 1;
3179 
3180 	if (ext4_has_feature_readonly(sb)) {
3181 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3182 		sb->s_flags |= SB_RDONLY;
3183 		return 1;
3184 	}
3185 
3186 	/* Check that feature set is OK for a read-write mount */
3187 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3188 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3189 			 "unsupported optional features (%x)",
3190 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3191 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3192 		return 0;
3193 	}
3194 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3195 		ext4_msg(sb, KERN_ERR,
3196 			 "Can't support bigalloc feature without "
3197 			 "extents feature\n");
3198 		return 0;
3199 	}
3200 
3201 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3202 	if (!readonly && (ext4_has_feature_quota(sb) ||
3203 			  ext4_has_feature_project(sb))) {
3204 		ext4_msg(sb, KERN_ERR,
3205 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3206 		return 0;
3207 	}
3208 #endif  /* CONFIG_QUOTA */
3209 	return 1;
3210 }
3211 
3212 /*
3213  * This function is called once a day if we have errors logged
3214  * on the file system
3215  */
3216 static void print_daily_error_info(struct timer_list *t)
3217 {
3218 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3219 	struct super_block *sb = sbi->s_sb;
3220 	struct ext4_super_block *es = sbi->s_es;
3221 
3222 	if (es->s_error_count)
3223 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3224 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3225 			 le32_to_cpu(es->s_error_count));
3226 	if (es->s_first_error_time) {
3227 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3228 		       sb->s_id,
3229 		       ext4_get_tstamp(es, s_first_error_time),
3230 		       (int) sizeof(es->s_first_error_func),
3231 		       es->s_first_error_func,
3232 		       le32_to_cpu(es->s_first_error_line));
3233 		if (es->s_first_error_ino)
3234 			printk(KERN_CONT ": inode %u",
3235 			       le32_to_cpu(es->s_first_error_ino));
3236 		if (es->s_first_error_block)
3237 			printk(KERN_CONT ": block %llu", (unsigned long long)
3238 			       le64_to_cpu(es->s_first_error_block));
3239 		printk(KERN_CONT "\n");
3240 	}
3241 	if (es->s_last_error_time) {
3242 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3243 		       sb->s_id,
3244 		       ext4_get_tstamp(es, s_last_error_time),
3245 		       (int) sizeof(es->s_last_error_func),
3246 		       es->s_last_error_func,
3247 		       le32_to_cpu(es->s_last_error_line));
3248 		if (es->s_last_error_ino)
3249 			printk(KERN_CONT ": inode %u",
3250 			       le32_to_cpu(es->s_last_error_ino));
3251 		if (es->s_last_error_block)
3252 			printk(KERN_CONT ": block %llu", (unsigned long long)
3253 			       le64_to_cpu(es->s_last_error_block));
3254 		printk(KERN_CONT "\n");
3255 	}
3256 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3257 }
3258 
3259 /* Find next suitable group and run ext4_init_inode_table */
3260 static int ext4_run_li_request(struct ext4_li_request *elr)
3261 {
3262 	struct ext4_group_desc *gdp = NULL;
3263 	struct super_block *sb = elr->lr_super;
3264 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3265 	ext4_group_t group = elr->lr_next_group;
3266 	unsigned long timeout = 0;
3267 	unsigned int prefetch_ios = 0;
3268 	int ret = 0;
3269 
3270 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3271 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3272 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3273 		if (prefetch_ios)
3274 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3275 					      prefetch_ios);
3276 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3277 					    prefetch_ios);
3278 		if (group >= elr->lr_next_group) {
3279 			ret = 1;
3280 			if (elr->lr_first_not_zeroed != ngroups &&
3281 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3282 				elr->lr_next_group = elr->lr_first_not_zeroed;
3283 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3284 				ret = 0;
3285 			}
3286 		}
3287 		return ret;
3288 	}
3289 
3290 	for (; group < ngroups; group++) {
3291 		gdp = ext4_get_group_desc(sb, group, NULL);
3292 		if (!gdp) {
3293 			ret = 1;
3294 			break;
3295 		}
3296 
3297 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3298 			break;
3299 	}
3300 
3301 	if (group >= ngroups)
3302 		ret = 1;
3303 
3304 	if (!ret) {
3305 		timeout = jiffies;
3306 		ret = ext4_init_inode_table(sb, group,
3307 					    elr->lr_timeout ? 0 : 1);
3308 		trace_ext4_lazy_itable_init(sb, group);
3309 		if (elr->lr_timeout == 0) {
3310 			timeout = (jiffies - timeout) *
3311 				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3312 			elr->lr_timeout = timeout;
3313 		}
3314 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3315 		elr->lr_next_group = group + 1;
3316 	}
3317 	return ret;
3318 }
3319 
3320 /*
3321  * Remove lr_request from the list_request and free the
3322  * request structure. Should be called with li_list_mtx held
3323  */
3324 static void ext4_remove_li_request(struct ext4_li_request *elr)
3325 {
3326 	if (!elr)
3327 		return;
3328 
3329 	list_del(&elr->lr_request);
3330 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3331 	kfree(elr);
3332 }
3333 
3334 static void ext4_unregister_li_request(struct super_block *sb)
3335 {
3336 	mutex_lock(&ext4_li_mtx);
3337 	if (!ext4_li_info) {
3338 		mutex_unlock(&ext4_li_mtx);
3339 		return;
3340 	}
3341 
3342 	mutex_lock(&ext4_li_info->li_list_mtx);
3343 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3344 	mutex_unlock(&ext4_li_info->li_list_mtx);
3345 	mutex_unlock(&ext4_li_mtx);
3346 }
3347 
3348 static struct task_struct *ext4_lazyinit_task;
3349 
3350 /*
3351  * This is the function where ext4lazyinit thread lives. It walks
3352  * through the request list searching for next scheduled filesystem.
3353  * When such a fs is found, run the lazy initialization request
3354  * (ext4_rn_li_request) and keep track of the time spend in this
3355  * function. Based on that time we compute next schedule time of
3356  * the request. When walking through the list is complete, compute
3357  * next waking time and put itself into sleep.
3358  */
3359 static int ext4_lazyinit_thread(void *arg)
3360 {
3361 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3362 	struct list_head *pos, *n;
3363 	struct ext4_li_request *elr;
3364 	unsigned long next_wakeup, cur;
3365 
3366 	BUG_ON(NULL == eli);
3367 
3368 cont_thread:
3369 	while (true) {
3370 		next_wakeup = MAX_JIFFY_OFFSET;
3371 
3372 		mutex_lock(&eli->li_list_mtx);
3373 		if (list_empty(&eli->li_request_list)) {
3374 			mutex_unlock(&eli->li_list_mtx);
3375 			goto exit_thread;
3376 		}
3377 		list_for_each_safe(pos, n, &eli->li_request_list) {
3378 			int err = 0;
3379 			int progress = 0;
3380 			elr = list_entry(pos, struct ext4_li_request,
3381 					 lr_request);
3382 
3383 			if (time_before(jiffies, elr->lr_next_sched)) {
3384 				if (time_before(elr->lr_next_sched, next_wakeup))
3385 					next_wakeup = elr->lr_next_sched;
3386 				continue;
3387 			}
3388 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3389 				if (sb_start_write_trylock(elr->lr_super)) {
3390 					progress = 1;
3391 					/*
3392 					 * We hold sb->s_umount, sb can not
3393 					 * be removed from the list, it is
3394 					 * now safe to drop li_list_mtx
3395 					 */
3396 					mutex_unlock(&eli->li_list_mtx);
3397 					err = ext4_run_li_request(elr);
3398 					sb_end_write(elr->lr_super);
3399 					mutex_lock(&eli->li_list_mtx);
3400 					n = pos->next;
3401 				}
3402 				up_read((&elr->lr_super->s_umount));
3403 			}
3404 			/* error, remove the lazy_init job */
3405 			if (err) {
3406 				ext4_remove_li_request(elr);
3407 				continue;
3408 			}
3409 			if (!progress) {
3410 				elr->lr_next_sched = jiffies +
3411 					(prandom_u32()
3412 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3413 			}
3414 			if (time_before(elr->lr_next_sched, next_wakeup))
3415 				next_wakeup = elr->lr_next_sched;
3416 		}
3417 		mutex_unlock(&eli->li_list_mtx);
3418 
3419 		try_to_freeze();
3420 
3421 		cur = jiffies;
3422 		if ((time_after_eq(cur, next_wakeup)) ||
3423 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3424 			cond_resched();
3425 			continue;
3426 		}
3427 
3428 		schedule_timeout_interruptible(next_wakeup - cur);
3429 
3430 		if (kthread_should_stop()) {
3431 			ext4_clear_request_list();
3432 			goto exit_thread;
3433 		}
3434 	}
3435 
3436 exit_thread:
3437 	/*
3438 	 * It looks like the request list is empty, but we need
3439 	 * to check it under the li_list_mtx lock, to prevent any
3440 	 * additions into it, and of course we should lock ext4_li_mtx
3441 	 * to atomically free the list and ext4_li_info, because at
3442 	 * this point another ext4 filesystem could be registering
3443 	 * new one.
3444 	 */
3445 	mutex_lock(&ext4_li_mtx);
3446 	mutex_lock(&eli->li_list_mtx);
3447 	if (!list_empty(&eli->li_request_list)) {
3448 		mutex_unlock(&eli->li_list_mtx);
3449 		mutex_unlock(&ext4_li_mtx);
3450 		goto cont_thread;
3451 	}
3452 	mutex_unlock(&eli->li_list_mtx);
3453 	kfree(ext4_li_info);
3454 	ext4_li_info = NULL;
3455 	mutex_unlock(&ext4_li_mtx);
3456 
3457 	return 0;
3458 }
3459 
3460 static void ext4_clear_request_list(void)
3461 {
3462 	struct list_head *pos, *n;
3463 	struct ext4_li_request *elr;
3464 
3465 	mutex_lock(&ext4_li_info->li_list_mtx);
3466 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3467 		elr = list_entry(pos, struct ext4_li_request,
3468 				 lr_request);
3469 		ext4_remove_li_request(elr);
3470 	}
3471 	mutex_unlock(&ext4_li_info->li_list_mtx);
3472 }
3473 
3474 static int ext4_run_lazyinit_thread(void)
3475 {
3476 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3477 					 ext4_li_info, "ext4lazyinit");
3478 	if (IS_ERR(ext4_lazyinit_task)) {
3479 		int err = PTR_ERR(ext4_lazyinit_task);
3480 		ext4_clear_request_list();
3481 		kfree(ext4_li_info);
3482 		ext4_li_info = NULL;
3483 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3484 				 "initialization thread\n",
3485 				 err);
3486 		return err;
3487 	}
3488 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3489 	return 0;
3490 }
3491 
3492 /*
3493  * Check whether it make sense to run itable init. thread or not.
3494  * If there is at least one uninitialized inode table, return
3495  * corresponding group number, else the loop goes through all
3496  * groups and return total number of groups.
3497  */
3498 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3499 {
3500 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3501 	struct ext4_group_desc *gdp = NULL;
3502 
3503 	if (!ext4_has_group_desc_csum(sb))
3504 		return ngroups;
3505 
3506 	for (group = 0; group < ngroups; group++) {
3507 		gdp = ext4_get_group_desc(sb, group, NULL);
3508 		if (!gdp)
3509 			continue;
3510 
3511 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3512 			break;
3513 	}
3514 
3515 	return group;
3516 }
3517 
3518 static int ext4_li_info_new(void)
3519 {
3520 	struct ext4_lazy_init *eli = NULL;
3521 
3522 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3523 	if (!eli)
3524 		return -ENOMEM;
3525 
3526 	INIT_LIST_HEAD(&eli->li_request_list);
3527 	mutex_init(&eli->li_list_mtx);
3528 
3529 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3530 
3531 	ext4_li_info = eli;
3532 
3533 	return 0;
3534 }
3535 
3536 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3537 					    ext4_group_t start)
3538 {
3539 	struct ext4_li_request *elr;
3540 
3541 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3542 	if (!elr)
3543 		return NULL;
3544 
3545 	elr->lr_super = sb;
3546 	elr->lr_first_not_zeroed = start;
3547 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3548 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3549 		elr->lr_next_group = start;
3550 	} else {
3551 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3552 	}
3553 
3554 	/*
3555 	 * Randomize first schedule time of the request to
3556 	 * spread the inode table initialization requests
3557 	 * better.
3558 	 */
3559 	elr->lr_next_sched = jiffies + (prandom_u32() %
3560 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3561 	return elr;
3562 }
3563 
3564 int ext4_register_li_request(struct super_block *sb,
3565 			     ext4_group_t first_not_zeroed)
3566 {
3567 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3568 	struct ext4_li_request *elr = NULL;
3569 	ext4_group_t ngroups = sbi->s_groups_count;
3570 	int ret = 0;
3571 
3572 	mutex_lock(&ext4_li_mtx);
3573 	if (sbi->s_li_request != NULL) {
3574 		/*
3575 		 * Reset timeout so it can be computed again, because
3576 		 * s_li_wait_mult might have changed.
3577 		 */
3578 		sbi->s_li_request->lr_timeout = 0;
3579 		goto out;
3580 	}
3581 
3582 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3583 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3584 	     !test_opt(sb, INIT_INODE_TABLE)))
3585 		goto out;
3586 
3587 	elr = ext4_li_request_new(sb, first_not_zeroed);
3588 	if (!elr) {
3589 		ret = -ENOMEM;
3590 		goto out;
3591 	}
3592 
3593 	if (NULL == ext4_li_info) {
3594 		ret = ext4_li_info_new();
3595 		if (ret)
3596 			goto out;
3597 	}
3598 
3599 	mutex_lock(&ext4_li_info->li_list_mtx);
3600 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3601 	mutex_unlock(&ext4_li_info->li_list_mtx);
3602 
3603 	sbi->s_li_request = elr;
3604 	/*
3605 	 * set elr to NULL here since it has been inserted to
3606 	 * the request_list and the removal and free of it is
3607 	 * handled by ext4_clear_request_list from now on.
3608 	 */
3609 	elr = NULL;
3610 
3611 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3612 		ret = ext4_run_lazyinit_thread();
3613 		if (ret)
3614 			goto out;
3615 	}
3616 out:
3617 	mutex_unlock(&ext4_li_mtx);
3618 	if (ret)
3619 		kfree(elr);
3620 	return ret;
3621 }
3622 
3623 /*
3624  * We do not need to lock anything since this is called on
3625  * module unload.
3626  */
3627 static void ext4_destroy_lazyinit_thread(void)
3628 {
3629 	/*
3630 	 * If thread exited earlier
3631 	 * there's nothing to be done.
3632 	 */
3633 	if (!ext4_li_info || !ext4_lazyinit_task)
3634 		return;
3635 
3636 	kthread_stop(ext4_lazyinit_task);
3637 }
3638 
3639 static int set_journal_csum_feature_set(struct super_block *sb)
3640 {
3641 	int ret = 1;
3642 	int compat, incompat;
3643 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3644 
3645 	if (ext4_has_metadata_csum(sb)) {
3646 		/* journal checksum v3 */
3647 		compat = 0;
3648 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3649 	} else {
3650 		/* journal checksum v1 */
3651 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3652 		incompat = 0;
3653 	}
3654 
3655 	jbd2_journal_clear_features(sbi->s_journal,
3656 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3657 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3658 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3659 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3660 		ret = jbd2_journal_set_features(sbi->s_journal,
3661 				compat, 0,
3662 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3663 				incompat);
3664 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3665 		ret = jbd2_journal_set_features(sbi->s_journal,
3666 				compat, 0,
3667 				incompat);
3668 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3669 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3670 	} else {
3671 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3672 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3673 	}
3674 
3675 	return ret;
3676 }
3677 
3678 /*
3679  * Note: calculating the overhead so we can be compatible with
3680  * historical BSD practice is quite difficult in the face of
3681  * clusters/bigalloc.  This is because multiple metadata blocks from
3682  * different block group can end up in the same allocation cluster.
3683  * Calculating the exact overhead in the face of clustered allocation
3684  * requires either O(all block bitmaps) in memory or O(number of block
3685  * groups**2) in time.  We will still calculate the superblock for
3686  * older file systems --- and if we come across with a bigalloc file
3687  * system with zero in s_overhead_clusters the estimate will be close to
3688  * correct especially for very large cluster sizes --- but for newer
3689  * file systems, it's better to calculate this figure once at mkfs
3690  * time, and store it in the superblock.  If the superblock value is
3691  * present (even for non-bigalloc file systems), we will use it.
3692  */
3693 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3694 			  char *buf)
3695 {
3696 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3697 	struct ext4_group_desc	*gdp;
3698 	ext4_fsblk_t		first_block, last_block, b;
3699 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3700 	int			s, j, count = 0;
3701 
3702 	if (!ext4_has_feature_bigalloc(sb))
3703 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3704 			sbi->s_itb_per_group + 2);
3705 
3706 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3707 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3708 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3709 	for (i = 0; i < ngroups; i++) {
3710 		gdp = ext4_get_group_desc(sb, i, NULL);
3711 		b = ext4_block_bitmap(sb, gdp);
3712 		if (b >= first_block && b <= last_block) {
3713 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3714 			count++;
3715 		}
3716 		b = ext4_inode_bitmap(sb, gdp);
3717 		if (b >= first_block && b <= last_block) {
3718 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3719 			count++;
3720 		}
3721 		b = ext4_inode_table(sb, gdp);
3722 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3723 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3724 				int c = EXT4_B2C(sbi, b - first_block);
3725 				ext4_set_bit(c, buf);
3726 				count++;
3727 			}
3728 		if (i != grp)
3729 			continue;
3730 		s = 0;
3731 		if (ext4_bg_has_super(sb, grp)) {
3732 			ext4_set_bit(s++, buf);
3733 			count++;
3734 		}
3735 		j = ext4_bg_num_gdb(sb, grp);
3736 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3737 			ext4_error(sb, "Invalid number of block group "
3738 				   "descriptor blocks: %d", j);
3739 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3740 		}
3741 		count += j;
3742 		for (; j > 0; j--)
3743 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3744 	}
3745 	if (!count)
3746 		return 0;
3747 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3748 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3749 }
3750 
3751 /*
3752  * Compute the overhead and stash it in sbi->s_overhead
3753  */
3754 int ext4_calculate_overhead(struct super_block *sb)
3755 {
3756 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3757 	struct ext4_super_block *es = sbi->s_es;
3758 	struct inode *j_inode;
3759 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3760 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3761 	ext4_fsblk_t overhead = 0;
3762 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3763 
3764 	if (!buf)
3765 		return -ENOMEM;
3766 
3767 	/*
3768 	 * Compute the overhead (FS structures).  This is constant
3769 	 * for a given filesystem unless the number of block groups
3770 	 * changes so we cache the previous value until it does.
3771 	 */
3772 
3773 	/*
3774 	 * All of the blocks before first_data_block are overhead
3775 	 */
3776 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3777 
3778 	/*
3779 	 * Add the overhead found in each block group
3780 	 */
3781 	for (i = 0; i < ngroups; i++) {
3782 		int blks;
3783 
3784 		blks = count_overhead(sb, i, buf);
3785 		overhead += blks;
3786 		if (blks)
3787 			memset(buf, 0, PAGE_SIZE);
3788 		cond_resched();
3789 	}
3790 
3791 	/*
3792 	 * Add the internal journal blocks whether the journal has been
3793 	 * loaded or not
3794 	 */
3795 	if (sbi->s_journal && !sbi->s_journal_bdev)
3796 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3797 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3798 		/* j_inum for internal journal is non-zero */
3799 		j_inode = ext4_get_journal_inode(sb, j_inum);
3800 		if (j_inode) {
3801 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3802 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3803 			iput(j_inode);
3804 		} else {
3805 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3806 		}
3807 	}
3808 	sbi->s_overhead = overhead;
3809 	smp_wmb();
3810 	free_page((unsigned long) buf);
3811 	return 0;
3812 }
3813 
3814 static void ext4_set_resv_clusters(struct super_block *sb)
3815 {
3816 	ext4_fsblk_t resv_clusters;
3817 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3818 
3819 	/*
3820 	 * There's no need to reserve anything when we aren't using extents.
3821 	 * The space estimates are exact, there are no unwritten extents,
3822 	 * hole punching doesn't need new metadata... This is needed especially
3823 	 * to keep ext2/3 backward compatibility.
3824 	 */
3825 	if (!ext4_has_feature_extents(sb))
3826 		return;
3827 	/*
3828 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3829 	 * This should cover the situations where we can not afford to run
3830 	 * out of space like for example punch hole, or converting
3831 	 * unwritten extents in delalloc path. In most cases such
3832 	 * allocation would require 1, or 2 blocks, higher numbers are
3833 	 * very rare.
3834 	 */
3835 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3836 			 sbi->s_cluster_bits);
3837 
3838 	do_div(resv_clusters, 50);
3839 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3840 
3841 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3842 }
3843 
3844 static const char *ext4_quota_mode(struct super_block *sb)
3845 {
3846 #ifdef CONFIG_QUOTA
3847 	if (!ext4_quota_capable(sb))
3848 		return "none";
3849 
3850 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3851 		return "journalled";
3852 	else
3853 		return "writeback";
3854 #else
3855 	return "disabled";
3856 #endif
3857 }
3858 
3859 static void ext4_setup_csum_trigger(struct super_block *sb,
3860 				    enum ext4_journal_trigger_type type,
3861 				    void (*trigger)(
3862 					struct jbd2_buffer_trigger_type *type,
3863 					struct buffer_head *bh,
3864 					void *mapped_data,
3865 					size_t size))
3866 {
3867 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3868 
3869 	sbi->s_journal_triggers[type].sb = sb;
3870 	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
3871 }
3872 
3873 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3874 {
3875 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3876 	char *orig_data = kstrdup(data, GFP_KERNEL);
3877 	struct buffer_head *bh, **group_desc;
3878 	struct ext4_super_block *es = NULL;
3879 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3880 	struct flex_groups **flex_groups;
3881 	ext4_fsblk_t block;
3882 	ext4_fsblk_t sb_block = get_sb_block(&data);
3883 	ext4_fsblk_t logical_sb_block;
3884 	unsigned long offset = 0;
3885 	unsigned long def_mount_opts;
3886 	struct inode *root;
3887 	const char *descr;
3888 	int ret = -ENOMEM;
3889 	int blocksize, clustersize;
3890 	unsigned int db_count;
3891 	unsigned int i;
3892 	int needs_recovery, has_huge_files;
3893 	__u64 blocks_count;
3894 	int err = 0;
3895 	ext4_group_t first_not_zeroed;
3896 	struct ext4_parsed_options parsed_opts;
3897 
3898 	/* Set defaults for the variables that will be set during parsing */
3899 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3900 	parsed_opts.journal_devnum = 0;
3901 	parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
3902 
3903 	if ((data && !orig_data) || !sbi)
3904 		goto out_free_base;
3905 
3906 	sbi->s_daxdev = dax_dev;
3907 	sbi->s_blockgroup_lock =
3908 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3909 	if (!sbi->s_blockgroup_lock)
3910 		goto out_free_base;
3911 
3912 	sb->s_fs_info = sbi;
3913 	sbi->s_sb = sb;
3914 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3915 	sbi->s_sb_block = sb_block;
3916 	sbi->s_sectors_written_start =
3917 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
3918 
3919 	/* Cleanup superblock name */
3920 	strreplace(sb->s_id, '/', '!');
3921 
3922 	/* -EINVAL is default */
3923 	ret = -EINVAL;
3924 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3925 	if (!blocksize) {
3926 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3927 		goto out_fail;
3928 	}
3929 
3930 	/*
3931 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3932 	 * block sizes.  We need to calculate the offset from buffer start.
3933 	 */
3934 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3935 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3936 		offset = do_div(logical_sb_block, blocksize);
3937 	} else {
3938 		logical_sb_block = sb_block;
3939 	}
3940 
3941 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
3942 	if (IS_ERR(bh)) {
3943 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3944 		ret = PTR_ERR(bh);
3945 		goto out_fail;
3946 	}
3947 	/*
3948 	 * Note: s_es must be initialized as soon as possible because
3949 	 *       some ext4 macro-instructions depend on its value
3950 	 */
3951 	es = (struct ext4_super_block *) (bh->b_data + offset);
3952 	sbi->s_es = es;
3953 	sb->s_magic = le16_to_cpu(es->s_magic);
3954 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3955 		goto cantfind_ext4;
3956 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3957 
3958 	/* Warn if metadata_csum and gdt_csum are both set. */
3959 	if (ext4_has_feature_metadata_csum(sb) &&
3960 	    ext4_has_feature_gdt_csum(sb))
3961 		ext4_warning(sb, "metadata_csum and uninit_bg are "
3962 			     "redundant flags; please run fsck.");
3963 
3964 	/* Check for a known checksum algorithm */
3965 	if (!ext4_verify_csum_type(sb, es)) {
3966 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3967 			 "unknown checksum algorithm.");
3968 		silent = 1;
3969 		goto cantfind_ext4;
3970 	}
3971 	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
3972 				ext4_orphan_file_block_trigger);
3973 
3974 	/* Load the checksum driver */
3975 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3976 	if (IS_ERR(sbi->s_chksum_driver)) {
3977 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3978 		ret = PTR_ERR(sbi->s_chksum_driver);
3979 		sbi->s_chksum_driver = NULL;
3980 		goto failed_mount;
3981 	}
3982 
3983 	/* Check superblock checksum */
3984 	if (!ext4_superblock_csum_verify(sb, es)) {
3985 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3986 			 "invalid superblock checksum.  Run e2fsck?");
3987 		silent = 1;
3988 		ret = -EFSBADCRC;
3989 		goto cantfind_ext4;
3990 	}
3991 
3992 	/* Precompute checksum seed for all metadata */
3993 	if (ext4_has_feature_csum_seed(sb))
3994 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3995 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3996 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3997 					       sizeof(es->s_uuid));
3998 
3999 	/* Set defaults before we parse the mount options */
4000 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4001 	set_opt(sb, INIT_INODE_TABLE);
4002 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4003 		set_opt(sb, DEBUG);
4004 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4005 		set_opt(sb, GRPID);
4006 	if (def_mount_opts & EXT4_DEFM_UID16)
4007 		set_opt(sb, NO_UID32);
4008 	/* xattr user namespace & acls are now defaulted on */
4009 	set_opt(sb, XATTR_USER);
4010 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4011 	set_opt(sb, POSIX_ACL);
4012 #endif
4013 	if (ext4_has_feature_fast_commit(sb))
4014 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4015 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4016 	if (ext4_has_metadata_csum(sb))
4017 		set_opt(sb, JOURNAL_CHECKSUM);
4018 
4019 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4020 		set_opt(sb, JOURNAL_DATA);
4021 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4022 		set_opt(sb, ORDERED_DATA);
4023 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4024 		set_opt(sb, WRITEBACK_DATA);
4025 
4026 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4027 		set_opt(sb, ERRORS_PANIC);
4028 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4029 		set_opt(sb, ERRORS_CONT);
4030 	else
4031 		set_opt(sb, ERRORS_RO);
4032 	/* block_validity enabled by default; disable with noblock_validity */
4033 	set_opt(sb, BLOCK_VALIDITY);
4034 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4035 		set_opt(sb, DISCARD);
4036 
4037 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4038 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4039 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4040 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4041 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4042 
4043 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4044 		set_opt(sb, BARRIER);
4045 
4046 	/*
4047 	 * enable delayed allocation by default
4048 	 * Use -o nodelalloc to turn it off
4049 	 */
4050 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4051 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4052 		set_opt(sb, DELALLOC);
4053 
4054 	/*
4055 	 * set default s_li_wait_mult for lazyinit, for the case there is
4056 	 * no mount option specified.
4057 	 */
4058 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4059 
4060 	if (le32_to_cpu(es->s_log_block_size) >
4061 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4062 		ext4_msg(sb, KERN_ERR,
4063 			 "Invalid log block size: %u",
4064 			 le32_to_cpu(es->s_log_block_size));
4065 		goto failed_mount;
4066 	}
4067 	if (le32_to_cpu(es->s_log_cluster_size) >
4068 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4069 		ext4_msg(sb, KERN_ERR,
4070 			 "Invalid log cluster size: %u",
4071 			 le32_to_cpu(es->s_log_cluster_size));
4072 		goto failed_mount;
4073 	}
4074 
4075 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4076 
4077 	if (blocksize == PAGE_SIZE)
4078 		set_opt(sb, DIOREAD_NOLOCK);
4079 
4080 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4081 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4082 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4083 	} else {
4084 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4085 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4086 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4087 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4088 				 sbi->s_first_ino);
4089 			goto failed_mount;
4090 		}
4091 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4092 		    (!is_power_of_2(sbi->s_inode_size)) ||
4093 		    (sbi->s_inode_size > blocksize)) {
4094 			ext4_msg(sb, KERN_ERR,
4095 			       "unsupported inode size: %d",
4096 			       sbi->s_inode_size);
4097 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4098 			goto failed_mount;
4099 		}
4100 		/*
4101 		 * i_atime_extra is the last extra field available for
4102 		 * [acm]times in struct ext4_inode. Checking for that
4103 		 * field should suffice to ensure we have extra space
4104 		 * for all three.
4105 		 */
4106 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4107 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4108 			sb->s_time_gran = 1;
4109 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4110 		} else {
4111 			sb->s_time_gran = NSEC_PER_SEC;
4112 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4113 		}
4114 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4115 	}
4116 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4117 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4118 			EXT4_GOOD_OLD_INODE_SIZE;
4119 		if (ext4_has_feature_extra_isize(sb)) {
4120 			unsigned v, max = (sbi->s_inode_size -
4121 					   EXT4_GOOD_OLD_INODE_SIZE);
4122 
4123 			v = le16_to_cpu(es->s_want_extra_isize);
4124 			if (v > max) {
4125 				ext4_msg(sb, KERN_ERR,
4126 					 "bad s_want_extra_isize: %d", v);
4127 				goto failed_mount;
4128 			}
4129 			if (sbi->s_want_extra_isize < v)
4130 				sbi->s_want_extra_isize = v;
4131 
4132 			v = le16_to_cpu(es->s_min_extra_isize);
4133 			if (v > max) {
4134 				ext4_msg(sb, KERN_ERR,
4135 					 "bad s_min_extra_isize: %d", v);
4136 				goto failed_mount;
4137 			}
4138 			if (sbi->s_want_extra_isize < v)
4139 				sbi->s_want_extra_isize = v;
4140 		}
4141 	}
4142 
4143 	if (sbi->s_es->s_mount_opts[0]) {
4144 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4145 					      sizeof(sbi->s_es->s_mount_opts),
4146 					      GFP_KERNEL);
4147 		if (!s_mount_opts)
4148 			goto failed_mount;
4149 		if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4150 			ext4_msg(sb, KERN_WARNING,
4151 				 "failed to parse options in superblock: %s",
4152 				 s_mount_opts);
4153 		}
4154 		kfree(s_mount_opts);
4155 	}
4156 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4157 	if (!parse_options((char *) data, sb, &parsed_opts, 0))
4158 		goto failed_mount;
4159 
4160 #ifdef CONFIG_UNICODE
4161 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4162 		const struct ext4_sb_encodings *encoding_info;
4163 		struct unicode_map *encoding;
4164 		__u16 encoding_flags;
4165 
4166 		if (ext4_sb_read_encoding(es, &encoding_info,
4167 					  &encoding_flags)) {
4168 			ext4_msg(sb, KERN_ERR,
4169 				 "Encoding requested by superblock is unknown");
4170 			goto failed_mount;
4171 		}
4172 
4173 		encoding = utf8_load(encoding_info->version);
4174 		if (IS_ERR(encoding)) {
4175 			ext4_msg(sb, KERN_ERR,
4176 				 "can't mount with superblock charset: %s-%s "
4177 				 "not supported by the kernel. flags: 0x%x.",
4178 				 encoding_info->name, encoding_info->version,
4179 				 encoding_flags);
4180 			goto failed_mount;
4181 		}
4182 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4183 			 "%s-%s with flags 0x%hx", encoding_info->name,
4184 			 encoding_info->version?:"\b", encoding_flags);
4185 
4186 		sb->s_encoding = encoding;
4187 		sb->s_encoding_flags = encoding_flags;
4188 	}
4189 #endif
4190 
4191 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4192 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4193 		/* can't mount with both data=journal and dioread_nolock. */
4194 		clear_opt(sb, DIOREAD_NOLOCK);
4195 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4196 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4197 			ext4_msg(sb, KERN_ERR, "can't mount with "
4198 				 "both data=journal and delalloc");
4199 			goto failed_mount;
4200 		}
4201 		if (test_opt(sb, DAX_ALWAYS)) {
4202 			ext4_msg(sb, KERN_ERR, "can't mount with "
4203 				 "both data=journal and dax");
4204 			goto failed_mount;
4205 		}
4206 		if (ext4_has_feature_encrypt(sb)) {
4207 			ext4_msg(sb, KERN_WARNING,
4208 				 "encrypted files will use data=ordered "
4209 				 "instead of data journaling mode");
4210 		}
4211 		if (test_opt(sb, DELALLOC))
4212 			clear_opt(sb, DELALLOC);
4213 	} else {
4214 		sb->s_iflags |= SB_I_CGROUPWB;
4215 	}
4216 
4217 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4218 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4219 
4220 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4221 	    (ext4_has_compat_features(sb) ||
4222 	     ext4_has_ro_compat_features(sb) ||
4223 	     ext4_has_incompat_features(sb)))
4224 		ext4_msg(sb, KERN_WARNING,
4225 		       "feature flags set on rev 0 fs, "
4226 		       "running e2fsck is recommended");
4227 
4228 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4229 		set_opt2(sb, HURD_COMPAT);
4230 		if (ext4_has_feature_64bit(sb)) {
4231 			ext4_msg(sb, KERN_ERR,
4232 				 "The Hurd can't support 64-bit file systems");
4233 			goto failed_mount;
4234 		}
4235 
4236 		/*
4237 		 * ea_inode feature uses l_i_version field which is not
4238 		 * available in HURD_COMPAT mode.
4239 		 */
4240 		if (ext4_has_feature_ea_inode(sb)) {
4241 			ext4_msg(sb, KERN_ERR,
4242 				 "ea_inode feature is not supported for Hurd");
4243 			goto failed_mount;
4244 		}
4245 	}
4246 
4247 	if (IS_EXT2_SB(sb)) {
4248 		if (ext2_feature_set_ok(sb))
4249 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4250 				 "using the ext4 subsystem");
4251 		else {
4252 			/*
4253 			 * If we're probing be silent, if this looks like
4254 			 * it's actually an ext[34] filesystem.
4255 			 */
4256 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4257 				goto failed_mount;
4258 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4259 				 "to feature incompatibilities");
4260 			goto failed_mount;
4261 		}
4262 	}
4263 
4264 	if (IS_EXT3_SB(sb)) {
4265 		if (ext3_feature_set_ok(sb))
4266 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4267 				 "using the ext4 subsystem");
4268 		else {
4269 			/*
4270 			 * If we're probing be silent, if this looks like
4271 			 * it's actually an ext4 filesystem.
4272 			 */
4273 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4274 				goto failed_mount;
4275 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4276 				 "to feature incompatibilities");
4277 			goto failed_mount;
4278 		}
4279 	}
4280 
4281 	/*
4282 	 * Check feature flags regardless of the revision level, since we
4283 	 * previously didn't change the revision level when setting the flags,
4284 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4285 	 */
4286 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4287 		goto failed_mount;
4288 
4289 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4290 		ext4_msg(sb, KERN_ERR,
4291 			 "Number of reserved GDT blocks insanely large: %d",
4292 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4293 		goto failed_mount;
4294 	}
4295 
4296 	if (dax_supported(dax_dev, sb->s_bdev, blocksize, 0,
4297 			bdev_nr_sectors(sb->s_bdev)))
4298 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4299 
4300 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4301 		if (ext4_has_feature_inline_data(sb)) {
4302 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4303 					" that may contain inline data");
4304 			goto failed_mount;
4305 		}
4306 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4307 			ext4_msg(sb, KERN_ERR,
4308 				"DAX unsupported by block device.");
4309 			goto failed_mount;
4310 		}
4311 	}
4312 
4313 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4314 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4315 			 es->s_encryption_level);
4316 		goto failed_mount;
4317 	}
4318 
4319 	if (sb->s_blocksize != blocksize) {
4320 		/*
4321 		 * bh must be released before kill_bdev(), otherwise
4322 		 * it won't be freed and its page also. kill_bdev()
4323 		 * is called by sb_set_blocksize().
4324 		 */
4325 		brelse(bh);
4326 		/* Validate the filesystem blocksize */
4327 		if (!sb_set_blocksize(sb, blocksize)) {
4328 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4329 					blocksize);
4330 			bh = NULL;
4331 			goto failed_mount;
4332 		}
4333 
4334 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4335 		offset = do_div(logical_sb_block, blocksize);
4336 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4337 		if (IS_ERR(bh)) {
4338 			ext4_msg(sb, KERN_ERR,
4339 			       "Can't read superblock on 2nd try");
4340 			ret = PTR_ERR(bh);
4341 			bh = NULL;
4342 			goto failed_mount;
4343 		}
4344 		es = (struct ext4_super_block *)(bh->b_data + offset);
4345 		sbi->s_es = es;
4346 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4347 			ext4_msg(sb, KERN_ERR,
4348 			       "Magic mismatch, very weird!");
4349 			goto failed_mount;
4350 		}
4351 	}
4352 
4353 	has_huge_files = ext4_has_feature_huge_file(sb);
4354 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4355 						      has_huge_files);
4356 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4357 
4358 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4359 	if (ext4_has_feature_64bit(sb)) {
4360 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4361 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4362 		    !is_power_of_2(sbi->s_desc_size)) {
4363 			ext4_msg(sb, KERN_ERR,
4364 			       "unsupported descriptor size %lu",
4365 			       sbi->s_desc_size);
4366 			goto failed_mount;
4367 		}
4368 	} else
4369 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4370 
4371 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4372 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4373 
4374 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4375 	if (sbi->s_inodes_per_block == 0)
4376 		goto cantfind_ext4;
4377 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4378 	    sbi->s_inodes_per_group > blocksize * 8) {
4379 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4380 			 sbi->s_inodes_per_group);
4381 		goto failed_mount;
4382 	}
4383 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4384 					sbi->s_inodes_per_block;
4385 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4386 	sbi->s_sbh = bh;
4387 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4388 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4389 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4390 
4391 	for (i = 0; i < 4; i++)
4392 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4393 	sbi->s_def_hash_version = es->s_def_hash_version;
4394 	if (ext4_has_feature_dir_index(sb)) {
4395 		i = le32_to_cpu(es->s_flags);
4396 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4397 			sbi->s_hash_unsigned = 3;
4398 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4399 #ifdef __CHAR_UNSIGNED__
4400 			if (!sb_rdonly(sb))
4401 				es->s_flags |=
4402 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4403 			sbi->s_hash_unsigned = 3;
4404 #else
4405 			if (!sb_rdonly(sb))
4406 				es->s_flags |=
4407 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4408 #endif
4409 		}
4410 	}
4411 
4412 	/* Handle clustersize */
4413 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4414 	if (ext4_has_feature_bigalloc(sb)) {
4415 		if (clustersize < blocksize) {
4416 			ext4_msg(sb, KERN_ERR,
4417 				 "cluster size (%d) smaller than "
4418 				 "block size (%d)", clustersize, blocksize);
4419 			goto failed_mount;
4420 		}
4421 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4422 			le32_to_cpu(es->s_log_block_size);
4423 		sbi->s_clusters_per_group =
4424 			le32_to_cpu(es->s_clusters_per_group);
4425 		if (sbi->s_clusters_per_group > blocksize * 8) {
4426 			ext4_msg(sb, KERN_ERR,
4427 				 "#clusters per group too big: %lu",
4428 				 sbi->s_clusters_per_group);
4429 			goto failed_mount;
4430 		}
4431 		if (sbi->s_blocks_per_group !=
4432 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4433 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4434 				 "clusters per group (%lu) inconsistent",
4435 				 sbi->s_blocks_per_group,
4436 				 sbi->s_clusters_per_group);
4437 			goto failed_mount;
4438 		}
4439 	} else {
4440 		if (clustersize != blocksize) {
4441 			ext4_msg(sb, KERN_ERR,
4442 				 "fragment/cluster size (%d) != "
4443 				 "block size (%d)", clustersize, blocksize);
4444 			goto failed_mount;
4445 		}
4446 		if (sbi->s_blocks_per_group > blocksize * 8) {
4447 			ext4_msg(sb, KERN_ERR,
4448 				 "#blocks per group too big: %lu",
4449 				 sbi->s_blocks_per_group);
4450 			goto failed_mount;
4451 		}
4452 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4453 		sbi->s_cluster_bits = 0;
4454 	}
4455 	sbi->s_cluster_ratio = clustersize / blocksize;
4456 
4457 	/* Do we have standard group size of clustersize * 8 blocks ? */
4458 	if (sbi->s_blocks_per_group == clustersize << 3)
4459 		set_opt2(sb, STD_GROUP_SIZE);
4460 
4461 	/*
4462 	 * Test whether we have more sectors than will fit in sector_t,
4463 	 * and whether the max offset is addressable by the page cache.
4464 	 */
4465 	err = generic_check_addressable(sb->s_blocksize_bits,
4466 					ext4_blocks_count(es));
4467 	if (err) {
4468 		ext4_msg(sb, KERN_ERR, "filesystem"
4469 			 " too large to mount safely on this system");
4470 		goto failed_mount;
4471 	}
4472 
4473 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4474 		goto cantfind_ext4;
4475 
4476 	/* check blocks count against device size */
4477 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4478 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4479 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4480 		       "exceeds size of device (%llu blocks)",
4481 		       ext4_blocks_count(es), blocks_count);
4482 		goto failed_mount;
4483 	}
4484 
4485 	/*
4486 	 * It makes no sense for the first data block to be beyond the end
4487 	 * of the filesystem.
4488 	 */
4489 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4490 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4491 			 "block %u is beyond end of filesystem (%llu)",
4492 			 le32_to_cpu(es->s_first_data_block),
4493 			 ext4_blocks_count(es));
4494 		goto failed_mount;
4495 	}
4496 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4497 	    (sbi->s_cluster_ratio == 1)) {
4498 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4499 			 "block is 0 with a 1k block and cluster size");
4500 		goto failed_mount;
4501 	}
4502 
4503 	blocks_count = (ext4_blocks_count(es) -
4504 			le32_to_cpu(es->s_first_data_block) +
4505 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4506 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4507 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4508 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4509 		       "(block count %llu, first data block %u, "
4510 		       "blocks per group %lu)", blocks_count,
4511 		       ext4_blocks_count(es),
4512 		       le32_to_cpu(es->s_first_data_block),
4513 		       EXT4_BLOCKS_PER_GROUP(sb));
4514 		goto failed_mount;
4515 	}
4516 	sbi->s_groups_count = blocks_count;
4517 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4518 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4519 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4520 	    le32_to_cpu(es->s_inodes_count)) {
4521 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4522 			 le32_to_cpu(es->s_inodes_count),
4523 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4524 		ret = -EINVAL;
4525 		goto failed_mount;
4526 	}
4527 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4528 		   EXT4_DESC_PER_BLOCK(sb);
4529 	if (ext4_has_feature_meta_bg(sb)) {
4530 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4531 			ext4_msg(sb, KERN_WARNING,
4532 				 "first meta block group too large: %u "
4533 				 "(group descriptor block count %u)",
4534 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4535 			goto failed_mount;
4536 		}
4537 	}
4538 	rcu_assign_pointer(sbi->s_group_desc,
4539 			   kvmalloc_array(db_count,
4540 					  sizeof(struct buffer_head *),
4541 					  GFP_KERNEL));
4542 	if (sbi->s_group_desc == NULL) {
4543 		ext4_msg(sb, KERN_ERR, "not enough memory");
4544 		ret = -ENOMEM;
4545 		goto failed_mount;
4546 	}
4547 
4548 	bgl_lock_init(sbi->s_blockgroup_lock);
4549 
4550 	/* Pre-read the descriptors into the buffer cache */
4551 	for (i = 0; i < db_count; i++) {
4552 		block = descriptor_loc(sb, logical_sb_block, i);
4553 		ext4_sb_breadahead_unmovable(sb, block);
4554 	}
4555 
4556 	for (i = 0; i < db_count; i++) {
4557 		struct buffer_head *bh;
4558 
4559 		block = descriptor_loc(sb, logical_sb_block, i);
4560 		bh = ext4_sb_bread_unmovable(sb, block);
4561 		if (IS_ERR(bh)) {
4562 			ext4_msg(sb, KERN_ERR,
4563 			       "can't read group descriptor %d", i);
4564 			db_count = i;
4565 			ret = PTR_ERR(bh);
4566 			goto failed_mount2;
4567 		}
4568 		rcu_read_lock();
4569 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4570 		rcu_read_unlock();
4571 	}
4572 	sbi->s_gdb_count = db_count;
4573 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4574 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4575 		ret = -EFSCORRUPTED;
4576 		goto failed_mount2;
4577 	}
4578 
4579 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4580 	spin_lock_init(&sbi->s_error_lock);
4581 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4582 
4583 	/* Register extent status tree shrinker */
4584 	if (ext4_es_register_shrinker(sbi))
4585 		goto failed_mount3;
4586 
4587 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4588 	sbi->s_extent_max_zeroout_kb = 32;
4589 
4590 	/*
4591 	 * set up enough so that it can read an inode
4592 	 */
4593 	sb->s_op = &ext4_sops;
4594 	sb->s_export_op = &ext4_export_ops;
4595 	sb->s_xattr = ext4_xattr_handlers;
4596 #ifdef CONFIG_FS_ENCRYPTION
4597 	sb->s_cop = &ext4_cryptops;
4598 #endif
4599 #ifdef CONFIG_FS_VERITY
4600 	sb->s_vop = &ext4_verityops;
4601 #endif
4602 #ifdef CONFIG_QUOTA
4603 	sb->dq_op = &ext4_quota_operations;
4604 	if (ext4_has_feature_quota(sb))
4605 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4606 	else
4607 		sb->s_qcop = &ext4_qctl_operations;
4608 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4609 #endif
4610 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4611 
4612 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4613 	mutex_init(&sbi->s_orphan_lock);
4614 
4615 	/* Initialize fast commit stuff */
4616 	atomic_set(&sbi->s_fc_subtid, 0);
4617 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4618 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4619 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4620 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4621 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4622 	sbi->s_fc_bytes = 0;
4623 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4624 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4625 	spin_lock_init(&sbi->s_fc_lock);
4626 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4627 	sbi->s_fc_replay_state.fc_regions = NULL;
4628 	sbi->s_fc_replay_state.fc_regions_size = 0;
4629 	sbi->s_fc_replay_state.fc_regions_used = 0;
4630 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4631 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4632 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4633 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4634 
4635 	sb->s_root = NULL;
4636 
4637 	needs_recovery = (es->s_last_orphan != 0 ||
4638 			  ext4_has_feature_orphan_present(sb) ||
4639 			  ext4_has_feature_journal_needs_recovery(sb));
4640 
4641 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4642 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4643 			goto failed_mount3a;
4644 
4645 	/*
4646 	 * The first inode we look at is the journal inode.  Don't try
4647 	 * root first: it may be modified in the journal!
4648 	 */
4649 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4650 		err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4651 		if (err)
4652 			goto failed_mount3a;
4653 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4654 		   ext4_has_feature_journal_needs_recovery(sb)) {
4655 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4656 		       "suppressed and not mounted read-only");
4657 		goto failed_mount_wq;
4658 	} else {
4659 		/* Nojournal mode, all journal mount options are illegal */
4660 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4661 			ext4_msg(sb, KERN_ERR, "can't mount with "
4662 				 "journal_checksum, fs mounted w/o journal");
4663 			goto failed_mount_wq;
4664 		}
4665 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4666 			ext4_msg(sb, KERN_ERR, "can't mount with "
4667 				 "journal_async_commit, fs mounted w/o journal");
4668 			goto failed_mount_wq;
4669 		}
4670 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4671 			ext4_msg(sb, KERN_ERR, "can't mount with "
4672 				 "commit=%lu, fs mounted w/o journal",
4673 				 sbi->s_commit_interval / HZ);
4674 			goto failed_mount_wq;
4675 		}
4676 		if (EXT4_MOUNT_DATA_FLAGS &
4677 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4678 			ext4_msg(sb, KERN_ERR, "can't mount with "
4679 				 "data=, fs mounted w/o journal");
4680 			goto failed_mount_wq;
4681 		}
4682 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4683 		clear_opt(sb, JOURNAL_CHECKSUM);
4684 		clear_opt(sb, DATA_FLAGS);
4685 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4686 		sbi->s_journal = NULL;
4687 		needs_recovery = 0;
4688 		goto no_journal;
4689 	}
4690 
4691 	if (ext4_has_feature_64bit(sb) &&
4692 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4693 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4694 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4695 		goto failed_mount_wq;
4696 	}
4697 
4698 	if (!set_journal_csum_feature_set(sb)) {
4699 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4700 			 "feature set");
4701 		goto failed_mount_wq;
4702 	}
4703 
4704 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4705 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4706 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4707 		ext4_msg(sb, KERN_ERR,
4708 			"Failed to set fast commit journal feature");
4709 		goto failed_mount_wq;
4710 	}
4711 
4712 	/* We have now updated the journal if required, so we can
4713 	 * validate the data journaling mode. */
4714 	switch (test_opt(sb, DATA_FLAGS)) {
4715 	case 0:
4716 		/* No mode set, assume a default based on the journal
4717 		 * capabilities: ORDERED_DATA if the journal can
4718 		 * cope, else JOURNAL_DATA
4719 		 */
4720 		if (jbd2_journal_check_available_features
4721 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4722 			set_opt(sb, ORDERED_DATA);
4723 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4724 		} else {
4725 			set_opt(sb, JOURNAL_DATA);
4726 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4727 		}
4728 		break;
4729 
4730 	case EXT4_MOUNT_ORDERED_DATA:
4731 	case EXT4_MOUNT_WRITEBACK_DATA:
4732 		if (!jbd2_journal_check_available_features
4733 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4734 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4735 			       "requested data journaling mode");
4736 			goto failed_mount_wq;
4737 		}
4738 		break;
4739 	default:
4740 		break;
4741 	}
4742 
4743 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4744 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4745 		ext4_msg(sb, KERN_ERR, "can't mount with "
4746 			"journal_async_commit in data=ordered mode");
4747 		goto failed_mount_wq;
4748 	}
4749 
4750 	set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4751 
4752 	sbi->s_journal->j_submit_inode_data_buffers =
4753 		ext4_journal_submit_inode_data_buffers;
4754 	sbi->s_journal->j_finish_inode_data_buffers =
4755 		ext4_journal_finish_inode_data_buffers;
4756 
4757 no_journal:
4758 	if (!test_opt(sb, NO_MBCACHE)) {
4759 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4760 		if (!sbi->s_ea_block_cache) {
4761 			ext4_msg(sb, KERN_ERR,
4762 				 "Failed to create ea_block_cache");
4763 			goto failed_mount_wq;
4764 		}
4765 
4766 		if (ext4_has_feature_ea_inode(sb)) {
4767 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4768 			if (!sbi->s_ea_inode_cache) {
4769 				ext4_msg(sb, KERN_ERR,
4770 					 "Failed to create ea_inode_cache");
4771 				goto failed_mount_wq;
4772 			}
4773 		}
4774 	}
4775 
4776 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4777 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4778 		goto failed_mount_wq;
4779 	}
4780 
4781 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4782 	    !ext4_has_feature_encrypt(sb)) {
4783 		ext4_set_feature_encrypt(sb);
4784 		ext4_commit_super(sb);
4785 	}
4786 
4787 	/*
4788 	 * Get the # of file system overhead blocks from the
4789 	 * superblock if present.
4790 	 */
4791 	if (es->s_overhead_clusters)
4792 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4793 	else {
4794 		err = ext4_calculate_overhead(sb);
4795 		if (err)
4796 			goto failed_mount_wq;
4797 	}
4798 
4799 	/*
4800 	 * The maximum number of concurrent works can be high and
4801 	 * concurrency isn't really necessary.  Limit it to 1.
4802 	 */
4803 	EXT4_SB(sb)->rsv_conversion_wq =
4804 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4805 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4806 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4807 		ret = -ENOMEM;
4808 		goto failed_mount4;
4809 	}
4810 
4811 	/*
4812 	 * The jbd2_journal_load will have done any necessary log recovery,
4813 	 * so we can safely mount the rest of the filesystem now.
4814 	 */
4815 
4816 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4817 	if (IS_ERR(root)) {
4818 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4819 		ret = PTR_ERR(root);
4820 		root = NULL;
4821 		goto failed_mount4;
4822 	}
4823 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4824 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4825 		iput(root);
4826 		goto failed_mount4;
4827 	}
4828 
4829 	sb->s_root = d_make_root(root);
4830 	if (!sb->s_root) {
4831 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4832 		ret = -ENOMEM;
4833 		goto failed_mount4;
4834 	}
4835 
4836 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4837 	if (ret == -EROFS) {
4838 		sb->s_flags |= SB_RDONLY;
4839 		ret = 0;
4840 	} else if (ret)
4841 		goto failed_mount4a;
4842 
4843 	ext4_set_resv_clusters(sb);
4844 
4845 	if (test_opt(sb, BLOCK_VALIDITY)) {
4846 		err = ext4_setup_system_zone(sb);
4847 		if (err) {
4848 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4849 				 "zone (%d)", err);
4850 			goto failed_mount4a;
4851 		}
4852 	}
4853 	ext4_fc_replay_cleanup(sb);
4854 
4855 	ext4_ext_init(sb);
4856 
4857 	/*
4858 	 * Enable optimize_scan if number of groups is > threshold. This can be
4859 	 * turned off by passing "mb_optimize_scan=0". This can also be
4860 	 * turned on forcefully by passing "mb_optimize_scan=1".
4861 	 */
4862 	if (parsed_opts.mb_optimize_scan == 1)
4863 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4864 	else if (parsed_opts.mb_optimize_scan == 0)
4865 		clear_opt2(sb, MB_OPTIMIZE_SCAN);
4866 	else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
4867 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4868 
4869 	err = ext4_mb_init(sb);
4870 	if (err) {
4871 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4872 			 err);
4873 		goto failed_mount5;
4874 	}
4875 
4876 	/*
4877 	 * We can only set up the journal commit callback once
4878 	 * mballoc is initialized
4879 	 */
4880 	if (sbi->s_journal)
4881 		sbi->s_journal->j_commit_callback =
4882 			ext4_journal_commit_callback;
4883 
4884 	block = ext4_count_free_clusters(sb);
4885 	ext4_free_blocks_count_set(sbi->s_es,
4886 				   EXT4_C2B(sbi, block));
4887 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4888 				  GFP_KERNEL);
4889 	if (!err) {
4890 		unsigned long freei = ext4_count_free_inodes(sb);
4891 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4892 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4893 					  GFP_KERNEL);
4894 	}
4895 	/*
4896 	 * Update the checksum after updating free space/inode
4897 	 * counters.  Otherwise the superblock can have an incorrect
4898 	 * checksum in the buffer cache until it is written out and
4899 	 * e2fsprogs programs trying to open a file system immediately
4900 	 * after it is mounted can fail.
4901 	 */
4902 	ext4_superblock_csum_set(sb);
4903 	if (!err)
4904 		err = percpu_counter_init(&sbi->s_dirs_counter,
4905 					  ext4_count_dirs(sb), GFP_KERNEL);
4906 	if (!err)
4907 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4908 					  GFP_KERNEL);
4909 	if (!err)
4910 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
4911 					  GFP_KERNEL);
4912 	if (!err)
4913 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
4914 
4915 	if (err) {
4916 		ext4_msg(sb, KERN_ERR, "insufficient memory");
4917 		goto failed_mount6;
4918 	}
4919 
4920 	if (ext4_has_feature_flex_bg(sb))
4921 		if (!ext4_fill_flex_info(sb)) {
4922 			ext4_msg(sb, KERN_ERR,
4923 			       "unable to initialize "
4924 			       "flex_bg meta info!");
4925 			ret = -ENOMEM;
4926 			goto failed_mount6;
4927 		}
4928 
4929 	err = ext4_register_li_request(sb, first_not_zeroed);
4930 	if (err)
4931 		goto failed_mount6;
4932 
4933 	err = ext4_register_sysfs(sb);
4934 	if (err)
4935 		goto failed_mount7;
4936 
4937 	err = ext4_init_orphan_info(sb);
4938 	if (err)
4939 		goto failed_mount8;
4940 #ifdef CONFIG_QUOTA
4941 	/* Enable quota usage during mount. */
4942 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4943 		err = ext4_enable_quotas(sb);
4944 		if (err)
4945 			goto failed_mount9;
4946 	}
4947 #endif  /* CONFIG_QUOTA */
4948 
4949 	/*
4950 	 * Save the original bdev mapping's wb_err value which could be
4951 	 * used to detect the metadata async write error.
4952 	 */
4953 	spin_lock_init(&sbi->s_bdev_wb_lock);
4954 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
4955 				 &sbi->s_bdev_wb_err);
4956 	sb->s_bdev->bd_super = sb;
4957 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4958 	ext4_orphan_cleanup(sb, es);
4959 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4960 	if (needs_recovery) {
4961 		ext4_msg(sb, KERN_INFO, "recovery complete");
4962 		err = ext4_mark_recovery_complete(sb, es);
4963 		if (err)
4964 			goto failed_mount9;
4965 	}
4966 	if (EXT4_SB(sb)->s_journal) {
4967 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4968 			descr = " journalled data mode";
4969 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4970 			descr = " ordered data mode";
4971 		else
4972 			descr = " writeback data mode";
4973 	} else
4974 		descr = "out journal";
4975 
4976 	if (test_opt(sb, DISCARD)) {
4977 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4978 		if (!blk_queue_discard(q))
4979 			ext4_msg(sb, KERN_WARNING,
4980 				 "mounting with \"discard\" option, but "
4981 				 "the device does not support discard");
4982 	}
4983 
4984 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4985 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4986 			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
4987 			 (int) sizeof(sbi->s_es->s_mount_opts),
4988 			 sbi->s_es->s_mount_opts,
4989 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
4990 			 ext4_quota_mode(sb));
4991 
4992 	if (es->s_error_count)
4993 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4994 
4995 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4996 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4997 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4998 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4999 	atomic_set(&sbi->s_warning_count, 0);
5000 	atomic_set(&sbi->s_msg_count, 0);
5001 
5002 	kfree(orig_data);
5003 	return 0;
5004 
5005 cantfind_ext4:
5006 	if (!silent)
5007 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5008 	goto failed_mount;
5009 
5010 failed_mount9:
5011 	ext4_release_orphan_info(sb);
5012 failed_mount8:
5013 	ext4_unregister_sysfs(sb);
5014 	kobject_put(&sbi->s_kobj);
5015 failed_mount7:
5016 	ext4_unregister_li_request(sb);
5017 failed_mount6:
5018 	ext4_mb_release(sb);
5019 	rcu_read_lock();
5020 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5021 	if (flex_groups) {
5022 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5023 			kvfree(flex_groups[i]);
5024 		kvfree(flex_groups);
5025 	}
5026 	rcu_read_unlock();
5027 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5028 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5029 	percpu_counter_destroy(&sbi->s_dirs_counter);
5030 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5031 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5032 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5033 failed_mount5:
5034 	ext4_ext_release(sb);
5035 	ext4_release_system_zone(sb);
5036 failed_mount4a:
5037 	dput(sb->s_root);
5038 	sb->s_root = NULL;
5039 failed_mount4:
5040 	ext4_msg(sb, KERN_ERR, "mount failed");
5041 	if (EXT4_SB(sb)->rsv_conversion_wq)
5042 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5043 failed_mount_wq:
5044 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5045 	sbi->s_ea_inode_cache = NULL;
5046 
5047 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5048 	sbi->s_ea_block_cache = NULL;
5049 
5050 	if (sbi->s_journal) {
5051 		/* flush s_error_work before journal destroy. */
5052 		flush_work(&sbi->s_error_work);
5053 		jbd2_journal_destroy(sbi->s_journal);
5054 		sbi->s_journal = NULL;
5055 	}
5056 failed_mount3a:
5057 	ext4_es_unregister_shrinker(sbi);
5058 failed_mount3:
5059 	/* flush s_error_work before sbi destroy */
5060 	flush_work(&sbi->s_error_work);
5061 	del_timer_sync(&sbi->s_err_report);
5062 	ext4_stop_mmpd(sbi);
5063 failed_mount2:
5064 	rcu_read_lock();
5065 	group_desc = rcu_dereference(sbi->s_group_desc);
5066 	for (i = 0; i < db_count; i++)
5067 		brelse(group_desc[i]);
5068 	kvfree(group_desc);
5069 	rcu_read_unlock();
5070 failed_mount:
5071 	if (sbi->s_chksum_driver)
5072 		crypto_free_shash(sbi->s_chksum_driver);
5073 
5074 #ifdef CONFIG_UNICODE
5075 	utf8_unload(sb->s_encoding);
5076 #endif
5077 
5078 #ifdef CONFIG_QUOTA
5079 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5080 		kfree(get_qf_name(sb, sbi, i));
5081 #endif
5082 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5083 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5084 	brelse(bh);
5085 	ext4_blkdev_remove(sbi);
5086 out_fail:
5087 	sb->s_fs_info = NULL;
5088 	kfree(sbi->s_blockgroup_lock);
5089 out_free_base:
5090 	kfree(sbi);
5091 	kfree(orig_data);
5092 	fs_put_dax(dax_dev);
5093 	return err ? err : ret;
5094 }
5095 
5096 /*
5097  * Setup any per-fs journal parameters now.  We'll do this both on
5098  * initial mount, once the journal has been initialised but before we've
5099  * done any recovery; and again on any subsequent remount.
5100  */
5101 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5102 {
5103 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5104 
5105 	journal->j_commit_interval = sbi->s_commit_interval;
5106 	journal->j_min_batch_time = sbi->s_min_batch_time;
5107 	journal->j_max_batch_time = sbi->s_max_batch_time;
5108 	ext4_fc_init(sb, journal);
5109 
5110 	write_lock(&journal->j_state_lock);
5111 	if (test_opt(sb, BARRIER))
5112 		journal->j_flags |= JBD2_BARRIER;
5113 	else
5114 		journal->j_flags &= ~JBD2_BARRIER;
5115 	if (test_opt(sb, DATA_ERR_ABORT))
5116 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5117 	else
5118 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5119 	write_unlock(&journal->j_state_lock);
5120 }
5121 
5122 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5123 					     unsigned int journal_inum)
5124 {
5125 	struct inode *journal_inode;
5126 
5127 	/*
5128 	 * Test for the existence of a valid inode on disk.  Bad things
5129 	 * happen if we iget() an unused inode, as the subsequent iput()
5130 	 * will try to delete it.
5131 	 */
5132 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5133 	if (IS_ERR(journal_inode)) {
5134 		ext4_msg(sb, KERN_ERR, "no journal found");
5135 		return NULL;
5136 	}
5137 	if (!journal_inode->i_nlink) {
5138 		make_bad_inode(journal_inode);
5139 		iput(journal_inode);
5140 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5141 		return NULL;
5142 	}
5143 
5144 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5145 		  journal_inode, journal_inode->i_size);
5146 	if (!S_ISREG(journal_inode->i_mode)) {
5147 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5148 		iput(journal_inode);
5149 		return NULL;
5150 	}
5151 	return journal_inode;
5152 }
5153 
5154 static journal_t *ext4_get_journal(struct super_block *sb,
5155 				   unsigned int journal_inum)
5156 {
5157 	struct inode *journal_inode;
5158 	journal_t *journal;
5159 
5160 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5161 		return NULL;
5162 
5163 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5164 	if (!journal_inode)
5165 		return NULL;
5166 
5167 	journal = jbd2_journal_init_inode(journal_inode);
5168 	if (!journal) {
5169 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5170 		iput(journal_inode);
5171 		return NULL;
5172 	}
5173 	journal->j_private = sb;
5174 	ext4_init_journal_params(sb, journal);
5175 	return journal;
5176 }
5177 
5178 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5179 				       dev_t j_dev)
5180 {
5181 	struct buffer_head *bh;
5182 	journal_t *journal;
5183 	ext4_fsblk_t start;
5184 	ext4_fsblk_t len;
5185 	int hblock, blocksize;
5186 	ext4_fsblk_t sb_block;
5187 	unsigned long offset;
5188 	struct ext4_super_block *es;
5189 	struct block_device *bdev;
5190 
5191 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5192 		return NULL;
5193 
5194 	bdev = ext4_blkdev_get(j_dev, sb);
5195 	if (bdev == NULL)
5196 		return NULL;
5197 
5198 	blocksize = sb->s_blocksize;
5199 	hblock = bdev_logical_block_size(bdev);
5200 	if (blocksize < hblock) {
5201 		ext4_msg(sb, KERN_ERR,
5202 			"blocksize too small for journal device");
5203 		goto out_bdev;
5204 	}
5205 
5206 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5207 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5208 	set_blocksize(bdev, blocksize);
5209 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5210 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5211 		       "external journal");
5212 		goto out_bdev;
5213 	}
5214 
5215 	es = (struct ext4_super_block *) (bh->b_data + offset);
5216 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5217 	    !(le32_to_cpu(es->s_feature_incompat) &
5218 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5219 		ext4_msg(sb, KERN_ERR, "external journal has "
5220 					"bad superblock");
5221 		brelse(bh);
5222 		goto out_bdev;
5223 	}
5224 
5225 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5226 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5227 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5228 		ext4_msg(sb, KERN_ERR, "external journal has "
5229 				       "corrupt superblock");
5230 		brelse(bh);
5231 		goto out_bdev;
5232 	}
5233 
5234 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5235 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5236 		brelse(bh);
5237 		goto out_bdev;
5238 	}
5239 
5240 	len = ext4_blocks_count(es);
5241 	start = sb_block + 1;
5242 	brelse(bh);	/* we're done with the superblock */
5243 
5244 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5245 					start, len, blocksize);
5246 	if (!journal) {
5247 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5248 		goto out_bdev;
5249 	}
5250 	journal->j_private = sb;
5251 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5252 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5253 		goto out_journal;
5254 	}
5255 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5256 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5257 					"user (unsupported) - %d",
5258 			be32_to_cpu(journal->j_superblock->s_nr_users));
5259 		goto out_journal;
5260 	}
5261 	EXT4_SB(sb)->s_journal_bdev = bdev;
5262 	ext4_init_journal_params(sb, journal);
5263 	return journal;
5264 
5265 out_journal:
5266 	jbd2_journal_destroy(journal);
5267 out_bdev:
5268 	ext4_blkdev_put(bdev);
5269 	return NULL;
5270 }
5271 
5272 static int ext4_load_journal(struct super_block *sb,
5273 			     struct ext4_super_block *es,
5274 			     unsigned long journal_devnum)
5275 {
5276 	journal_t *journal;
5277 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5278 	dev_t journal_dev;
5279 	int err = 0;
5280 	int really_read_only;
5281 	int journal_dev_ro;
5282 
5283 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5284 		return -EFSCORRUPTED;
5285 
5286 	if (journal_devnum &&
5287 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5288 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5289 			"numbers have changed");
5290 		journal_dev = new_decode_dev(journal_devnum);
5291 	} else
5292 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5293 
5294 	if (journal_inum && journal_dev) {
5295 		ext4_msg(sb, KERN_ERR,
5296 			 "filesystem has both journal inode and journal device!");
5297 		return -EINVAL;
5298 	}
5299 
5300 	if (journal_inum) {
5301 		journal = ext4_get_journal(sb, journal_inum);
5302 		if (!journal)
5303 			return -EINVAL;
5304 	} else {
5305 		journal = ext4_get_dev_journal(sb, journal_dev);
5306 		if (!journal)
5307 			return -EINVAL;
5308 	}
5309 
5310 	journal_dev_ro = bdev_read_only(journal->j_dev);
5311 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5312 
5313 	if (journal_dev_ro && !sb_rdonly(sb)) {
5314 		ext4_msg(sb, KERN_ERR,
5315 			 "journal device read-only, try mounting with '-o ro'");
5316 		err = -EROFS;
5317 		goto err_out;
5318 	}
5319 
5320 	/*
5321 	 * Are we loading a blank journal or performing recovery after a
5322 	 * crash?  For recovery, we need to check in advance whether we
5323 	 * can get read-write access to the device.
5324 	 */
5325 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5326 		if (sb_rdonly(sb)) {
5327 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5328 					"required on readonly filesystem");
5329 			if (really_read_only) {
5330 				ext4_msg(sb, KERN_ERR, "write access "
5331 					"unavailable, cannot proceed "
5332 					"(try mounting with noload)");
5333 				err = -EROFS;
5334 				goto err_out;
5335 			}
5336 			ext4_msg(sb, KERN_INFO, "write access will "
5337 			       "be enabled during recovery");
5338 		}
5339 	}
5340 
5341 	if (!(journal->j_flags & JBD2_BARRIER))
5342 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5343 
5344 	if (!ext4_has_feature_journal_needs_recovery(sb))
5345 		err = jbd2_journal_wipe(journal, !really_read_only);
5346 	if (!err) {
5347 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5348 		if (save)
5349 			memcpy(save, ((char *) es) +
5350 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5351 		err = jbd2_journal_load(journal);
5352 		if (save)
5353 			memcpy(((char *) es) + EXT4_S_ERR_START,
5354 			       save, EXT4_S_ERR_LEN);
5355 		kfree(save);
5356 	}
5357 
5358 	if (err) {
5359 		ext4_msg(sb, KERN_ERR, "error loading journal");
5360 		goto err_out;
5361 	}
5362 
5363 	EXT4_SB(sb)->s_journal = journal;
5364 	err = ext4_clear_journal_err(sb, es);
5365 	if (err) {
5366 		EXT4_SB(sb)->s_journal = NULL;
5367 		jbd2_journal_destroy(journal);
5368 		return err;
5369 	}
5370 
5371 	if (!really_read_only && journal_devnum &&
5372 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5373 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5374 
5375 		/* Make sure we flush the recovery flag to disk. */
5376 		ext4_commit_super(sb);
5377 	}
5378 
5379 	return 0;
5380 
5381 err_out:
5382 	jbd2_journal_destroy(journal);
5383 	return err;
5384 }
5385 
5386 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5387 static void ext4_update_super(struct super_block *sb)
5388 {
5389 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5390 	struct ext4_super_block *es = sbi->s_es;
5391 	struct buffer_head *sbh = sbi->s_sbh;
5392 
5393 	lock_buffer(sbh);
5394 	/*
5395 	 * If the file system is mounted read-only, don't update the
5396 	 * superblock write time.  This avoids updating the superblock
5397 	 * write time when we are mounting the root file system
5398 	 * read/only but we need to replay the journal; at that point,
5399 	 * for people who are east of GMT and who make their clock
5400 	 * tick in localtime for Windows bug-for-bug compatibility,
5401 	 * the clock is set in the future, and this will cause e2fsck
5402 	 * to complain and force a full file system check.
5403 	 */
5404 	if (!(sb->s_flags & SB_RDONLY))
5405 		ext4_update_tstamp(es, s_wtime);
5406 	es->s_kbytes_written =
5407 		cpu_to_le64(sbi->s_kbytes_written +
5408 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5409 		      sbi->s_sectors_written_start) >> 1));
5410 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5411 		ext4_free_blocks_count_set(es,
5412 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5413 				&sbi->s_freeclusters_counter)));
5414 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5415 		es->s_free_inodes_count =
5416 			cpu_to_le32(percpu_counter_sum_positive(
5417 				&sbi->s_freeinodes_counter));
5418 	/* Copy error information to the on-disk superblock */
5419 	spin_lock(&sbi->s_error_lock);
5420 	if (sbi->s_add_error_count > 0) {
5421 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5422 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5423 			__ext4_update_tstamp(&es->s_first_error_time,
5424 					     &es->s_first_error_time_hi,
5425 					     sbi->s_first_error_time);
5426 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5427 				sizeof(es->s_first_error_func));
5428 			es->s_first_error_line =
5429 				cpu_to_le32(sbi->s_first_error_line);
5430 			es->s_first_error_ino =
5431 				cpu_to_le32(sbi->s_first_error_ino);
5432 			es->s_first_error_block =
5433 				cpu_to_le64(sbi->s_first_error_block);
5434 			es->s_first_error_errcode =
5435 				ext4_errno_to_code(sbi->s_first_error_code);
5436 		}
5437 		__ext4_update_tstamp(&es->s_last_error_time,
5438 				     &es->s_last_error_time_hi,
5439 				     sbi->s_last_error_time);
5440 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5441 			sizeof(es->s_last_error_func));
5442 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5443 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5444 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5445 		es->s_last_error_errcode =
5446 				ext4_errno_to_code(sbi->s_last_error_code);
5447 		/*
5448 		 * Start the daily error reporting function if it hasn't been
5449 		 * started already
5450 		 */
5451 		if (!es->s_error_count)
5452 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5453 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5454 		sbi->s_add_error_count = 0;
5455 	}
5456 	spin_unlock(&sbi->s_error_lock);
5457 
5458 	ext4_superblock_csum_set(sb);
5459 	unlock_buffer(sbh);
5460 }
5461 
5462 static int ext4_commit_super(struct super_block *sb)
5463 {
5464 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5465 	int error = 0;
5466 
5467 	if (!sbh)
5468 		return -EINVAL;
5469 	if (block_device_ejected(sb))
5470 		return -ENODEV;
5471 
5472 	ext4_update_super(sb);
5473 
5474 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5475 		/*
5476 		 * Oh, dear.  A previous attempt to write the
5477 		 * superblock failed.  This could happen because the
5478 		 * USB device was yanked out.  Or it could happen to
5479 		 * be a transient write error and maybe the block will
5480 		 * be remapped.  Nothing we can do but to retry the
5481 		 * write and hope for the best.
5482 		 */
5483 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5484 		       "superblock detected");
5485 		clear_buffer_write_io_error(sbh);
5486 		set_buffer_uptodate(sbh);
5487 	}
5488 	BUFFER_TRACE(sbh, "marking dirty");
5489 	mark_buffer_dirty(sbh);
5490 	error = __sync_dirty_buffer(sbh,
5491 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5492 	if (buffer_write_io_error(sbh)) {
5493 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5494 		       "superblock");
5495 		clear_buffer_write_io_error(sbh);
5496 		set_buffer_uptodate(sbh);
5497 	}
5498 	return error;
5499 }
5500 
5501 /*
5502  * Have we just finished recovery?  If so, and if we are mounting (or
5503  * remounting) the filesystem readonly, then we will end up with a
5504  * consistent fs on disk.  Record that fact.
5505  */
5506 static int ext4_mark_recovery_complete(struct super_block *sb,
5507 				       struct ext4_super_block *es)
5508 {
5509 	int err;
5510 	journal_t *journal = EXT4_SB(sb)->s_journal;
5511 
5512 	if (!ext4_has_feature_journal(sb)) {
5513 		if (journal != NULL) {
5514 			ext4_error(sb, "Journal got removed while the fs was "
5515 				   "mounted!");
5516 			return -EFSCORRUPTED;
5517 		}
5518 		return 0;
5519 	}
5520 	jbd2_journal_lock_updates(journal);
5521 	err = jbd2_journal_flush(journal, 0);
5522 	if (err < 0)
5523 		goto out;
5524 
5525 	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
5526 	    ext4_has_feature_orphan_present(sb))) {
5527 		if (!ext4_orphan_file_empty(sb)) {
5528 			ext4_error(sb, "Orphan file not empty on read-only fs.");
5529 			err = -EFSCORRUPTED;
5530 			goto out;
5531 		}
5532 		ext4_clear_feature_journal_needs_recovery(sb);
5533 		ext4_clear_feature_orphan_present(sb);
5534 		ext4_commit_super(sb);
5535 	}
5536 out:
5537 	jbd2_journal_unlock_updates(journal);
5538 	return err;
5539 }
5540 
5541 /*
5542  * If we are mounting (or read-write remounting) a filesystem whose journal
5543  * has recorded an error from a previous lifetime, move that error to the
5544  * main filesystem now.
5545  */
5546 static int ext4_clear_journal_err(struct super_block *sb,
5547 				   struct ext4_super_block *es)
5548 {
5549 	journal_t *journal;
5550 	int j_errno;
5551 	const char *errstr;
5552 
5553 	if (!ext4_has_feature_journal(sb)) {
5554 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5555 		return -EFSCORRUPTED;
5556 	}
5557 
5558 	journal = EXT4_SB(sb)->s_journal;
5559 
5560 	/*
5561 	 * Now check for any error status which may have been recorded in the
5562 	 * journal by a prior ext4_error() or ext4_abort()
5563 	 */
5564 
5565 	j_errno = jbd2_journal_errno(journal);
5566 	if (j_errno) {
5567 		char nbuf[16];
5568 
5569 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5570 		ext4_warning(sb, "Filesystem error recorded "
5571 			     "from previous mount: %s", errstr);
5572 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5573 
5574 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5575 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5576 		ext4_commit_super(sb);
5577 
5578 		jbd2_journal_clear_err(journal);
5579 		jbd2_journal_update_sb_errno(journal);
5580 	}
5581 	return 0;
5582 }
5583 
5584 /*
5585  * Force the running and committing transactions to commit,
5586  * and wait on the commit.
5587  */
5588 int ext4_force_commit(struct super_block *sb)
5589 {
5590 	journal_t *journal;
5591 
5592 	if (sb_rdonly(sb))
5593 		return 0;
5594 
5595 	journal = EXT4_SB(sb)->s_journal;
5596 	return ext4_journal_force_commit(journal);
5597 }
5598 
5599 static int ext4_sync_fs(struct super_block *sb, int wait)
5600 {
5601 	int ret = 0;
5602 	tid_t target;
5603 	bool needs_barrier = false;
5604 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5605 
5606 	if (unlikely(ext4_forced_shutdown(sbi)))
5607 		return 0;
5608 
5609 	trace_ext4_sync_fs(sb, wait);
5610 	flush_workqueue(sbi->rsv_conversion_wq);
5611 	/*
5612 	 * Writeback quota in non-journalled quota case - journalled quota has
5613 	 * no dirty dquots
5614 	 */
5615 	dquot_writeback_dquots(sb, -1);
5616 	/*
5617 	 * Data writeback is possible w/o journal transaction, so barrier must
5618 	 * being sent at the end of the function. But we can skip it if
5619 	 * transaction_commit will do it for us.
5620 	 */
5621 	if (sbi->s_journal) {
5622 		target = jbd2_get_latest_transaction(sbi->s_journal);
5623 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5624 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5625 			needs_barrier = true;
5626 
5627 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5628 			if (wait)
5629 				ret = jbd2_log_wait_commit(sbi->s_journal,
5630 							   target);
5631 		}
5632 	} else if (wait && test_opt(sb, BARRIER))
5633 		needs_barrier = true;
5634 	if (needs_barrier) {
5635 		int err;
5636 		err = blkdev_issue_flush(sb->s_bdev);
5637 		if (!ret)
5638 			ret = err;
5639 	}
5640 
5641 	return ret;
5642 }
5643 
5644 /*
5645  * LVM calls this function before a (read-only) snapshot is created.  This
5646  * gives us a chance to flush the journal completely and mark the fs clean.
5647  *
5648  * Note that only this function cannot bring a filesystem to be in a clean
5649  * state independently. It relies on upper layer to stop all data & metadata
5650  * modifications.
5651  */
5652 static int ext4_freeze(struct super_block *sb)
5653 {
5654 	int error = 0;
5655 	journal_t *journal;
5656 
5657 	if (sb_rdonly(sb))
5658 		return 0;
5659 
5660 	journal = EXT4_SB(sb)->s_journal;
5661 
5662 	if (journal) {
5663 		/* Now we set up the journal barrier. */
5664 		jbd2_journal_lock_updates(journal);
5665 
5666 		/*
5667 		 * Don't clear the needs_recovery flag if we failed to
5668 		 * flush the journal.
5669 		 */
5670 		error = jbd2_journal_flush(journal, 0);
5671 		if (error < 0)
5672 			goto out;
5673 
5674 		/* Journal blocked and flushed, clear needs_recovery flag. */
5675 		ext4_clear_feature_journal_needs_recovery(sb);
5676 		if (ext4_orphan_file_empty(sb))
5677 			ext4_clear_feature_orphan_present(sb);
5678 	}
5679 
5680 	error = ext4_commit_super(sb);
5681 out:
5682 	if (journal)
5683 		/* we rely on upper layer to stop further updates */
5684 		jbd2_journal_unlock_updates(journal);
5685 	return error;
5686 }
5687 
5688 /*
5689  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5690  * flag here, even though the filesystem is not technically dirty yet.
5691  */
5692 static int ext4_unfreeze(struct super_block *sb)
5693 {
5694 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5695 		return 0;
5696 
5697 	if (EXT4_SB(sb)->s_journal) {
5698 		/* Reset the needs_recovery flag before the fs is unlocked. */
5699 		ext4_set_feature_journal_needs_recovery(sb);
5700 		if (ext4_has_feature_orphan_file(sb))
5701 			ext4_set_feature_orphan_present(sb);
5702 	}
5703 
5704 	ext4_commit_super(sb);
5705 	return 0;
5706 }
5707 
5708 /*
5709  * Structure to save mount options for ext4_remount's benefit
5710  */
5711 struct ext4_mount_options {
5712 	unsigned long s_mount_opt;
5713 	unsigned long s_mount_opt2;
5714 	kuid_t s_resuid;
5715 	kgid_t s_resgid;
5716 	unsigned long s_commit_interval;
5717 	u32 s_min_batch_time, s_max_batch_time;
5718 #ifdef CONFIG_QUOTA
5719 	int s_jquota_fmt;
5720 	char *s_qf_names[EXT4_MAXQUOTAS];
5721 #endif
5722 };
5723 
5724 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5725 {
5726 	struct ext4_super_block *es;
5727 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5728 	unsigned long old_sb_flags, vfs_flags;
5729 	struct ext4_mount_options old_opts;
5730 	int enable_quota = 0;
5731 	ext4_group_t g;
5732 	int err = 0;
5733 #ifdef CONFIG_QUOTA
5734 	int i, j;
5735 	char *to_free[EXT4_MAXQUOTAS];
5736 #endif
5737 	char *orig_data = kstrdup(data, GFP_KERNEL);
5738 	struct ext4_parsed_options parsed_opts;
5739 
5740 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5741 	parsed_opts.journal_devnum = 0;
5742 
5743 	if (data && !orig_data)
5744 		return -ENOMEM;
5745 
5746 	/* Store the original options */
5747 	old_sb_flags = sb->s_flags;
5748 	old_opts.s_mount_opt = sbi->s_mount_opt;
5749 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5750 	old_opts.s_resuid = sbi->s_resuid;
5751 	old_opts.s_resgid = sbi->s_resgid;
5752 	old_opts.s_commit_interval = sbi->s_commit_interval;
5753 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5754 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5755 #ifdef CONFIG_QUOTA
5756 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5757 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5758 		if (sbi->s_qf_names[i]) {
5759 			char *qf_name = get_qf_name(sb, sbi, i);
5760 
5761 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5762 			if (!old_opts.s_qf_names[i]) {
5763 				for (j = 0; j < i; j++)
5764 					kfree(old_opts.s_qf_names[j]);
5765 				kfree(orig_data);
5766 				return -ENOMEM;
5767 			}
5768 		} else
5769 			old_opts.s_qf_names[i] = NULL;
5770 #endif
5771 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5772 		parsed_opts.journal_ioprio =
5773 			sbi->s_journal->j_task->io_context->ioprio;
5774 
5775 	/*
5776 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5777 	 * either way we need to make sure it matches in both *flags and
5778 	 * s_flags. Copy those selected flags from *flags to s_flags
5779 	 */
5780 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5781 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5782 
5783 	if (!parse_options(data, sb, &parsed_opts, 1)) {
5784 		err = -EINVAL;
5785 		goto restore_opts;
5786 	}
5787 
5788 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5789 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5790 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5791 			 "during remount not supported; ignoring");
5792 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5793 	}
5794 
5795 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5796 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5797 			ext4_msg(sb, KERN_ERR, "can't mount with "
5798 				 "both data=journal and delalloc");
5799 			err = -EINVAL;
5800 			goto restore_opts;
5801 		}
5802 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5803 			ext4_msg(sb, KERN_ERR, "can't mount with "
5804 				 "both data=journal and dioread_nolock");
5805 			err = -EINVAL;
5806 			goto restore_opts;
5807 		}
5808 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5809 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5810 			ext4_msg(sb, KERN_ERR, "can't mount with "
5811 				"journal_async_commit in data=ordered mode");
5812 			err = -EINVAL;
5813 			goto restore_opts;
5814 		}
5815 	}
5816 
5817 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5818 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5819 		err = -EINVAL;
5820 		goto restore_opts;
5821 	}
5822 
5823 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5824 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5825 
5826 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5827 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5828 
5829 	es = sbi->s_es;
5830 
5831 	if (sbi->s_journal) {
5832 		ext4_init_journal_params(sb, sbi->s_journal);
5833 		set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5834 	}
5835 
5836 	/* Flush outstanding errors before changing fs state */
5837 	flush_work(&sbi->s_error_work);
5838 
5839 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5840 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5841 			err = -EROFS;
5842 			goto restore_opts;
5843 		}
5844 
5845 		if (*flags & SB_RDONLY) {
5846 			err = sync_filesystem(sb);
5847 			if (err < 0)
5848 				goto restore_opts;
5849 			err = dquot_suspend(sb, -1);
5850 			if (err < 0)
5851 				goto restore_opts;
5852 
5853 			/*
5854 			 * First of all, the unconditional stuff we have to do
5855 			 * to disable replay of the journal when we next remount
5856 			 */
5857 			sb->s_flags |= SB_RDONLY;
5858 
5859 			/*
5860 			 * OK, test if we are remounting a valid rw partition
5861 			 * readonly, and if so set the rdonly flag and then
5862 			 * mark the partition as valid again.
5863 			 */
5864 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5865 			    (sbi->s_mount_state & EXT4_VALID_FS))
5866 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5867 
5868 			if (sbi->s_journal) {
5869 				/*
5870 				 * We let remount-ro finish even if marking fs
5871 				 * as clean failed...
5872 				 */
5873 				ext4_mark_recovery_complete(sb, es);
5874 			}
5875 		} else {
5876 			/* Make sure we can mount this feature set readwrite */
5877 			if (ext4_has_feature_readonly(sb) ||
5878 			    !ext4_feature_set_ok(sb, 0)) {
5879 				err = -EROFS;
5880 				goto restore_opts;
5881 			}
5882 			/*
5883 			 * Make sure the group descriptor checksums
5884 			 * are sane.  If they aren't, refuse to remount r/w.
5885 			 */
5886 			for (g = 0; g < sbi->s_groups_count; g++) {
5887 				struct ext4_group_desc *gdp =
5888 					ext4_get_group_desc(sb, g, NULL);
5889 
5890 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5891 					ext4_msg(sb, KERN_ERR,
5892 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5893 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5894 					       le16_to_cpu(gdp->bg_checksum));
5895 					err = -EFSBADCRC;
5896 					goto restore_opts;
5897 				}
5898 			}
5899 
5900 			/*
5901 			 * If we have an unprocessed orphan list hanging
5902 			 * around from a previously readonly bdev mount,
5903 			 * require a full umount/remount for now.
5904 			 */
5905 			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
5906 				ext4_msg(sb, KERN_WARNING, "Couldn't "
5907 				       "remount RDWR because of unprocessed "
5908 				       "orphan inode list.  Please "
5909 				       "umount/remount instead");
5910 				err = -EINVAL;
5911 				goto restore_opts;
5912 			}
5913 
5914 			/*
5915 			 * Mounting a RDONLY partition read-write, so reread
5916 			 * and store the current valid flag.  (It may have
5917 			 * been changed by e2fsck since we originally mounted
5918 			 * the partition.)
5919 			 */
5920 			if (sbi->s_journal) {
5921 				err = ext4_clear_journal_err(sb, es);
5922 				if (err)
5923 					goto restore_opts;
5924 			}
5925 			sbi->s_mount_state = le16_to_cpu(es->s_state);
5926 
5927 			err = ext4_setup_super(sb, es, 0);
5928 			if (err)
5929 				goto restore_opts;
5930 
5931 			sb->s_flags &= ~SB_RDONLY;
5932 			if (ext4_has_feature_mmp(sb))
5933 				if (ext4_multi_mount_protect(sb,
5934 						le64_to_cpu(es->s_mmp_block))) {
5935 					err = -EROFS;
5936 					goto restore_opts;
5937 				}
5938 			enable_quota = 1;
5939 		}
5940 	}
5941 
5942 	/*
5943 	 * Reinitialize lazy itable initialization thread based on
5944 	 * current settings
5945 	 */
5946 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5947 		ext4_unregister_li_request(sb);
5948 	else {
5949 		ext4_group_t first_not_zeroed;
5950 		first_not_zeroed = ext4_has_uninit_itable(sb);
5951 		ext4_register_li_request(sb, first_not_zeroed);
5952 	}
5953 
5954 	/*
5955 	 * Handle creation of system zone data early because it can fail.
5956 	 * Releasing of existing data is done when we are sure remount will
5957 	 * succeed.
5958 	 */
5959 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
5960 		err = ext4_setup_system_zone(sb);
5961 		if (err)
5962 			goto restore_opts;
5963 	}
5964 
5965 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5966 		err = ext4_commit_super(sb);
5967 		if (err)
5968 			goto restore_opts;
5969 	}
5970 
5971 #ifdef CONFIG_QUOTA
5972 	/* Release old quota file names */
5973 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5974 		kfree(old_opts.s_qf_names[i]);
5975 	if (enable_quota) {
5976 		if (sb_any_quota_suspended(sb))
5977 			dquot_resume(sb, -1);
5978 		else if (ext4_has_feature_quota(sb)) {
5979 			err = ext4_enable_quotas(sb);
5980 			if (err)
5981 				goto restore_opts;
5982 		}
5983 	}
5984 #endif
5985 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
5986 		ext4_release_system_zone(sb);
5987 
5988 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
5989 		ext4_stop_mmpd(sbi);
5990 
5991 	/*
5992 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5993 	 * either way we need to make sure it matches in both *flags and
5994 	 * s_flags. Copy those selected flags from s_flags to *flags
5995 	 */
5996 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
5997 
5998 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
5999 		 orig_data, ext4_quota_mode(sb));
6000 	kfree(orig_data);
6001 	return 0;
6002 
6003 restore_opts:
6004 	sb->s_flags = old_sb_flags;
6005 	sbi->s_mount_opt = old_opts.s_mount_opt;
6006 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6007 	sbi->s_resuid = old_opts.s_resuid;
6008 	sbi->s_resgid = old_opts.s_resgid;
6009 	sbi->s_commit_interval = old_opts.s_commit_interval;
6010 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6011 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6012 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6013 		ext4_release_system_zone(sb);
6014 #ifdef CONFIG_QUOTA
6015 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6016 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6017 		to_free[i] = get_qf_name(sb, sbi, i);
6018 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6019 	}
6020 	synchronize_rcu();
6021 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6022 		kfree(to_free[i]);
6023 #endif
6024 	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6025 		ext4_stop_mmpd(sbi);
6026 	kfree(orig_data);
6027 	return err;
6028 }
6029 
6030 #ifdef CONFIG_QUOTA
6031 static int ext4_statfs_project(struct super_block *sb,
6032 			       kprojid_t projid, struct kstatfs *buf)
6033 {
6034 	struct kqid qid;
6035 	struct dquot *dquot;
6036 	u64 limit;
6037 	u64 curblock;
6038 
6039 	qid = make_kqid_projid(projid);
6040 	dquot = dqget(sb, qid);
6041 	if (IS_ERR(dquot))
6042 		return PTR_ERR(dquot);
6043 	spin_lock(&dquot->dq_dqb_lock);
6044 
6045 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6046 			     dquot->dq_dqb.dqb_bhardlimit);
6047 	limit >>= sb->s_blocksize_bits;
6048 
6049 	if (limit && buf->f_blocks > limit) {
6050 		curblock = (dquot->dq_dqb.dqb_curspace +
6051 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6052 		buf->f_blocks = limit;
6053 		buf->f_bfree = buf->f_bavail =
6054 			(buf->f_blocks > curblock) ?
6055 			 (buf->f_blocks - curblock) : 0;
6056 	}
6057 
6058 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6059 			     dquot->dq_dqb.dqb_ihardlimit);
6060 	if (limit && buf->f_files > limit) {
6061 		buf->f_files = limit;
6062 		buf->f_ffree =
6063 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6064 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6065 	}
6066 
6067 	spin_unlock(&dquot->dq_dqb_lock);
6068 	dqput(dquot);
6069 	return 0;
6070 }
6071 #endif
6072 
6073 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6074 {
6075 	struct super_block *sb = dentry->d_sb;
6076 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6077 	struct ext4_super_block *es = sbi->s_es;
6078 	ext4_fsblk_t overhead = 0, resv_blocks;
6079 	s64 bfree;
6080 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6081 
6082 	if (!test_opt(sb, MINIX_DF))
6083 		overhead = sbi->s_overhead;
6084 
6085 	buf->f_type = EXT4_SUPER_MAGIC;
6086 	buf->f_bsize = sb->s_blocksize;
6087 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6088 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6089 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6090 	/* prevent underflow in case that few free space is available */
6091 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6092 	buf->f_bavail = buf->f_bfree -
6093 			(ext4_r_blocks_count(es) + resv_blocks);
6094 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6095 		buf->f_bavail = 0;
6096 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6097 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6098 	buf->f_namelen = EXT4_NAME_LEN;
6099 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6100 
6101 #ifdef CONFIG_QUOTA
6102 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6103 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6104 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6105 #endif
6106 	return 0;
6107 }
6108 
6109 
6110 #ifdef CONFIG_QUOTA
6111 
6112 /*
6113  * Helper functions so that transaction is started before we acquire dqio_sem
6114  * to keep correct lock ordering of transaction > dqio_sem
6115  */
6116 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6117 {
6118 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6119 }
6120 
6121 static int ext4_write_dquot(struct dquot *dquot)
6122 {
6123 	int ret, err;
6124 	handle_t *handle;
6125 	struct inode *inode;
6126 
6127 	inode = dquot_to_inode(dquot);
6128 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6129 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6130 	if (IS_ERR(handle))
6131 		return PTR_ERR(handle);
6132 	ret = dquot_commit(dquot);
6133 	err = ext4_journal_stop(handle);
6134 	if (!ret)
6135 		ret = err;
6136 	return ret;
6137 }
6138 
6139 static int ext4_acquire_dquot(struct dquot *dquot)
6140 {
6141 	int ret, err;
6142 	handle_t *handle;
6143 
6144 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6145 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6146 	if (IS_ERR(handle))
6147 		return PTR_ERR(handle);
6148 	ret = dquot_acquire(dquot);
6149 	err = ext4_journal_stop(handle);
6150 	if (!ret)
6151 		ret = err;
6152 	return ret;
6153 }
6154 
6155 static int ext4_release_dquot(struct dquot *dquot)
6156 {
6157 	int ret, err;
6158 	handle_t *handle;
6159 
6160 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6161 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6162 	if (IS_ERR(handle)) {
6163 		/* Release dquot anyway to avoid endless cycle in dqput() */
6164 		dquot_release(dquot);
6165 		return PTR_ERR(handle);
6166 	}
6167 	ret = dquot_release(dquot);
6168 	err = ext4_journal_stop(handle);
6169 	if (!ret)
6170 		ret = err;
6171 	return ret;
6172 }
6173 
6174 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6175 {
6176 	struct super_block *sb = dquot->dq_sb;
6177 
6178 	if (ext4_is_quota_journalled(sb)) {
6179 		dquot_mark_dquot_dirty(dquot);
6180 		return ext4_write_dquot(dquot);
6181 	} else {
6182 		return dquot_mark_dquot_dirty(dquot);
6183 	}
6184 }
6185 
6186 static int ext4_write_info(struct super_block *sb, int type)
6187 {
6188 	int ret, err;
6189 	handle_t *handle;
6190 
6191 	/* Data block + inode block */
6192 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6193 	if (IS_ERR(handle))
6194 		return PTR_ERR(handle);
6195 	ret = dquot_commit_info(sb, type);
6196 	err = ext4_journal_stop(handle);
6197 	if (!ret)
6198 		ret = err;
6199 	return ret;
6200 }
6201 
6202 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6203 {
6204 	struct ext4_inode_info *ei = EXT4_I(inode);
6205 
6206 	/* The first argument of lockdep_set_subclass has to be
6207 	 * *exactly* the same as the argument to init_rwsem() --- in
6208 	 * this case, in init_once() --- or lockdep gets unhappy
6209 	 * because the name of the lock is set using the
6210 	 * stringification of the argument to init_rwsem().
6211 	 */
6212 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6213 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6214 }
6215 
6216 /*
6217  * Standard function to be called on quota_on
6218  */
6219 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6220 			 const struct path *path)
6221 {
6222 	int err;
6223 
6224 	if (!test_opt(sb, QUOTA))
6225 		return -EINVAL;
6226 
6227 	/* Quotafile not on the same filesystem? */
6228 	if (path->dentry->d_sb != sb)
6229 		return -EXDEV;
6230 
6231 	/* Quota already enabled for this file? */
6232 	if (IS_NOQUOTA(d_inode(path->dentry)))
6233 		return -EBUSY;
6234 
6235 	/* Journaling quota? */
6236 	if (EXT4_SB(sb)->s_qf_names[type]) {
6237 		/* Quotafile not in fs root? */
6238 		if (path->dentry->d_parent != sb->s_root)
6239 			ext4_msg(sb, KERN_WARNING,
6240 				"Quota file not on filesystem root. "
6241 				"Journaled quota will not work");
6242 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6243 	} else {
6244 		/*
6245 		 * Clear the flag just in case mount options changed since
6246 		 * last time.
6247 		 */
6248 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6249 	}
6250 
6251 	/*
6252 	 * When we journal data on quota file, we have to flush journal to see
6253 	 * all updates to the file when we bypass pagecache...
6254 	 */
6255 	if (EXT4_SB(sb)->s_journal &&
6256 	    ext4_should_journal_data(d_inode(path->dentry))) {
6257 		/*
6258 		 * We don't need to lock updates but journal_flush() could
6259 		 * otherwise be livelocked...
6260 		 */
6261 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6262 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6263 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6264 		if (err)
6265 			return err;
6266 	}
6267 
6268 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6269 	err = dquot_quota_on(sb, type, format_id, path);
6270 	if (err) {
6271 		lockdep_set_quota_inode(path->dentry->d_inode,
6272 					     I_DATA_SEM_NORMAL);
6273 	} else {
6274 		struct inode *inode = d_inode(path->dentry);
6275 		handle_t *handle;
6276 
6277 		/*
6278 		 * Set inode flags to prevent userspace from messing with quota
6279 		 * files. If this fails, we return success anyway since quotas
6280 		 * are already enabled and this is not a hard failure.
6281 		 */
6282 		inode_lock(inode);
6283 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6284 		if (IS_ERR(handle))
6285 			goto unlock_inode;
6286 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6287 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6288 				S_NOATIME | S_IMMUTABLE);
6289 		err = ext4_mark_inode_dirty(handle, inode);
6290 		ext4_journal_stop(handle);
6291 	unlock_inode:
6292 		inode_unlock(inode);
6293 	}
6294 	return err;
6295 }
6296 
6297 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6298 			     unsigned int flags)
6299 {
6300 	int err;
6301 	struct inode *qf_inode;
6302 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6303 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6304 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6305 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6306 	};
6307 
6308 	BUG_ON(!ext4_has_feature_quota(sb));
6309 
6310 	if (!qf_inums[type])
6311 		return -EPERM;
6312 
6313 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6314 	if (IS_ERR(qf_inode)) {
6315 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6316 		return PTR_ERR(qf_inode);
6317 	}
6318 
6319 	/* Don't account quota for quota files to avoid recursion */
6320 	qf_inode->i_flags |= S_NOQUOTA;
6321 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6322 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6323 	if (err)
6324 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6325 	iput(qf_inode);
6326 
6327 	return err;
6328 }
6329 
6330 /* Enable usage tracking for all quota types. */
6331 int ext4_enable_quotas(struct super_block *sb)
6332 {
6333 	int type, err = 0;
6334 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6335 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6336 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6337 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6338 	};
6339 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6340 		test_opt(sb, USRQUOTA),
6341 		test_opt(sb, GRPQUOTA),
6342 		test_opt(sb, PRJQUOTA),
6343 	};
6344 
6345 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6346 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6347 		if (qf_inums[type]) {
6348 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6349 				DQUOT_USAGE_ENABLED |
6350 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6351 			if (err) {
6352 				ext4_warning(sb,
6353 					"Failed to enable quota tracking "
6354 					"(type=%d, err=%d). Please run "
6355 					"e2fsck to fix.", type, err);
6356 				for (type--; type >= 0; type--)
6357 					dquot_quota_off(sb, type);
6358 
6359 				return err;
6360 			}
6361 		}
6362 	}
6363 	return 0;
6364 }
6365 
6366 static int ext4_quota_off(struct super_block *sb, int type)
6367 {
6368 	struct inode *inode = sb_dqopt(sb)->files[type];
6369 	handle_t *handle;
6370 	int err;
6371 
6372 	/* Force all delayed allocation blocks to be allocated.
6373 	 * Caller already holds s_umount sem */
6374 	if (test_opt(sb, DELALLOC))
6375 		sync_filesystem(sb);
6376 
6377 	if (!inode || !igrab(inode))
6378 		goto out;
6379 
6380 	err = dquot_quota_off(sb, type);
6381 	if (err || ext4_has_feature_quota(sb))
6382 		goto out_put;
6383 
6384 	inode_lock(inode);
6385 	/*
6386 	 * Update modification times of quota files when userspace can
6387 	 * start looking at them. If we fail, we return success anyway since
6388 	 * this is not a hard failure and quotas are already disabled.
6389 	 */
6390 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6391 	if (IS_ERR(handle)) {
6392 		err = PTR_ERR(handle);
6393 		goto out_unlock;
6394 	}
6395 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6396 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6397 	inode->i_mtime = inode->i_ctime = current_time(inode);
6398 	err = ext4_mark_inode_dirty(handle, inode);
6399 	ext4_journal_stop(handle);
6400 out_unlock:
6401 	inode_unlock(inode);
6402 out_put:
6403 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6404 	iput(inode);
6405 	return err;
6406 out:
6407 	return dquot_quota_off(sb, type);
6408 }
6409 
6410 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6411  * acquiring the locks... As quota files are never truncated and quota code
6412  * itself serializes the operations (and no one else should touch the files)
6413  * we don't have to be afraid of races */
6414 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6415 			       size_t len, loff_t off)
6416 {
6417 	struct inode *inode = sb_dqopt(sb)->files[type];
6418 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6419 	int offset = off & (sb->s_blocksize - 1);
6420 	int tocopy;
6421 	size_t toread;
6422 	struct buffer_head *bh;
6423 	loff_t i_size = i_size_read(inode);
6424 
6425 	if (off > i_size)
6426 		return 0;
6427 	if (off+len > i_size)
6428 		len = i_size-off;
6429 	toread = len;
6430 	while (toread > 0) {
6431 		tocopy = sb->s_blocksize - offset < toread ?
6432 				sb->s_blocksize - offset : toread;
6433 		bh = ext4_bread(NULL, inode, blk, 0);
6434 		if (IS_ERR(bh))
6435 			return PTR_ERR(bh);
6436 		if (!bh)	/* A hole? */
6437 			memset(data, 0, tocopy);
6438 		else
6439 			memcpy(data, bh->b_data+offset, tocopy);
6440 		brelse(bh);
6441 		offset = 0;
6442 		toread -= tocopy;
6443 		data += tocopy;
6444 		blk++;
6445 	}
6446 	return len;
6447 }
6448 
6449 /* Write to quotafile (we know the transaction is already started and has
6450  * enough credits) */
6451 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6452 				const char *data, size_t len, loff_t off)
6453 {
6454 	struct inode *inode = sb_dqopt(sb)->files[type];
6455 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6456 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6457 	int retries = 0;
6458 	struct buffer_head *bh;
6459 	handle_t *handle = journal_current_handle();
6460 
6461 	if (EXT4_SB(sb)->s_journal && !handle) {
6462 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6463 			" cancelled because transaction is not started",
6464 			(unsigned long long)off, (unsigned long long)len);
6465 		return -EIO;
6466 	}
6467 	/*
6468 	 * Since we account only one data block in transaction credits,
6469 	 * then it is impossible to cross a block boundary.
6470 	 */
6471 	if (sb->s_blocksize - offset < len) {
6472 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6473 			" cancelled because not block aligned",
6474 			(unsigned long long)off, (unsigned long long)len);
6475 		return -EIO;
6476 	}
6477 
6478 	do {
6479 		bh = ext4_bread(handle, inode, blk,
6480 				EXT4_GET_BLOCKS_CREATE |
6481 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6482 	} while (PTR_ERR(bh) == -ENOSPC &&
6483 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6484 	if (IS_ERR(bh))
6485 		return PTR_ERR(bh);
6486 	if (!bh)
6487 		goto out;
6488 	BUFFER_TRACE(bh, "get write access");
6489 	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6490 	if (err) {
6491 		brelse(bh);
6492 		return err;
6493 	}
6494 	lock_buffer(bh);
6495 	memcpy(bh->b_data+offset, data, len);
6496 	flush_dcache_page(bh->b_page);
6497 	unlock_buffer(bh);
6498 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6499 	brelse(bh);
6500 out:
6501 	if (inode->i_size < off + len) {
6502 		i_size_write(inode, off + len);
6503 		EXT4_I(inode)->i_disksize = inode->i_size;
6504 		err2 = ext4_mark_inode_dirty(handle, inode);
6505 		if (unlikely(err2 && !err))
6506 			err = err2;
6507 	}
6508 	return err ? err : len;
6509 }
6510 #endif
6511 
6512 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6513 		       const char *dev_name, void *data)
6514 {
6515 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6516 }
6517 
6518 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6519 static inline void register_as_ext2(void)
6520 {
6521 	int err = register_filesystem(&ext2_fs_type);
6522 	if (err)
6523 		printk(KERN_WARNING
6524 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6525 }
6526 
6527 static inline void unregister_as_ext2(void)
6528 {
6529 	unregister_filesystem(&ext2_fs_type);
6530 }
6531 
6532 static inline int ext2_feature_set_ok(struct super_block *sb)
6533 {
6534 	if (ext4_has_unknown_ext2_incompat_features(sb))
6535 		return 0;
6536 	if (sb_rdonly(sb))
6537 		return 1;
6538 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6539 		return 0;
6540 	return 1;
6541 }
6542 #else
6543 static inline void register_as_ext2(void) { }
6544 static inline void unregister_as_ext2(void) { }
6545 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6546 #endif
6547 
6548 static inline void register_as_ext3(void)
6549 {
6550 	int err = register_filesystem(&ext3_fs_type);
6551 	if (err)
6552 		printk(KERN_WARNING
6553 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6554 }
6555 
6556 static inline void unregister_as_ext3(void)
6557 {
6558 	unregister_filesystem(&ext3_fs_type);
6559 }
6560 
6561 static inline int ext3_feature_set_ok(struct super_block *sb)
6562 {
6563 	if (ext4_has_unknown_ext3_incompat_features(sb))
6564 		return 0;
6565 	if (!ext4_has_feature_journal(sb))
6566 		return 0;
6567 	if (sb_rdonly(sb))
6568 		return 1;
6569 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6570 		return 0;
6571 	return 1;
6572 }
6573 
6574 static struct file_system_type ext4_fs_type = {
6575 	.owner		= THIS_MODULE,
6576 	.name		= "ext4",
6577 	.mount		= ext4_mount,
6578 	.kill_sb	= kill_block_super,
6579 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6580 };
6581 MODULE_ALIAS_FS("ext4");
6582 
6583 /* Shared across all ext4 file systems */
6584 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6585 
6586 static int __init ext4_init_fs(void)
6587 {
6588 	int i, err;
6589 
6590 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6591 	ext4_li_info = NULL;
6592 
6593 	/* Build-time check for flags consistency */
6594 	ext4_check_flag_values();
6595 
6596 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6597 		init_waitqueue_head(&ext4__ioend_wq[i]);
6598 
6599 	err = ext4_init_es();
6600 	if (err)
6601 		return err;
6602 
6603 	err = ext4_init_pending();
6604 	if (err)
6605 		goto out7;
6606 
6607 	err = ext4_init_post_read_processing();
6608 	if (err)
6609 		goto out6;
6610 
6611 	err = ext4_init_pageio();
6612 	if (err)
6613 		goto out5;
6614 
6615 	err = ext4_init_system_zone();
6616 	if (err)
6617 		goto out4;
6618 
6619 	err = ext4_init_sysfs();
6620 	if (err)
6621 		goto out3;
6622 
6623 	err = ext4_init_mballoc();
6624 	if (err)
6625 		goto out2;
6626 	err = init_inodecache();
6627 	if (err)
6628 		goto out1;
6629 
6630 	err = ext4_fc_init_dentry_cache();
6631 	if (err)
6632 		goto out05;
6633 
6634 	register_as_ext3();
6635 	register_as_ext2();
6636 	err = register_filesystem(&ext4_fs_type);
6637 	if (err)
6638 		goto out;
6639 
6640 	return 0;
6641 out:
6642 	unregister_as_ext2();
6643 	unregister_as_ext3();
6644 out05:
6645 	destroy_inodecache();
6646 out1:
6647 	ext4_exit_mballoc();
6648 out2:
6649 	ext4_exit_sysfs();
6650 out3:
6651 	ext4_exit_system_zone();
6652 out4:
6653 	ext4_exit_pageio();
6654 out5:
6655 	ext4_exit_post_read_processing();
6656 out6:
6657 	ext4_exit_pending();
6658 out7:
6659 	ext4_exit_es();
6660 
6661 	return err;
6662 }
6663 
6664 static void __exit ext4_exit_fs(void)
6665 {
6666 	ext4_destroy_lazyinit_thread();
6667 	unregister_as_ext2();
6668 	unregister_as_ext3();
6669 	unregister_filesystem(&ext4_fs_type);
6670 	destroy_inodecache();
6671 	ext4_exit_mballoc();
6672 	ext4_exit_sysfs();
6673 	ext4_exit_system_zone();
6674 	ext4_exit_pageio();
6675 	ext4_exit_post_read_processing();
6676 	ext4_exit_es();
6677 	ext4_exit_pending();
6678 }
6679 
6680 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6681 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6682 MODULE_LICENSE("GPL");
6683 MODULE_SOFTDEP("pre: crc32c");
6684 module_init(ext4_init_fs)
6685 module_exit(ext4_exit_fs)
6686