1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <linux/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static struct ratelimit_state ext4_mount_msg_ratelimit; 59 60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 61 unsigned long journal_devnum); 62 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static int ext4_remount(struct super_block *sb, int *flags, char *data); 70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 71 static int ext4_unfreeze(struct super_block *sb); 72 static int ext4_freeze(struct super_block *sb); 73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 74 const char *dev_name, void *data); 75 static inline int ext2_feature_set_ok(struct super_block *sb); 76 static inline int ext3_feature_set_ok(struct super_block *sb); 77 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 static void ext4_clear_request_list(void); 81 static struct inode *ext4_get_journal_inode(struct super_block *sb, 82 unsigned int journal_inum); 83 84 /* 85 * Lock ordering 86 * 87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 88 * i_mmap_rwsem (inode->i_mmap_rwsem)! 89 * 90 * page fault path: 91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 92 * page lock -> i_data_sem (rw) 93 * 94 * buffered write path: 95 * sb_start_write -> i_mutex -> mmap_sem 96 * sb_start_write -> i_mutex -> transaction start -> page lock -> 97 * i_data_sem (rw) 98 * 99 * truncate: 100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 101 * i_mmap_rwsem (w) -> page lock 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * transaction start -> i_data_sem (rw) 104 * 105 * direct IO: 106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 108 * transaction start -> i_data_sem (rw) 109 * 110 * writepages: 111 * transaction start -> page lock(s) -> i_data_sem (rw) 112 */ 113 114 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 115 static struct file_system_type ext2_fs_type = { 116 .owner = THIS_MODULE, 117 .name = "ext2", 118 .mount = ext4_mount, 119 .kill_sb = kill_block_super, 120 .fs_flags = FS_REQUIRES_DEV, 121 }; 122 MODULE_ALIAS_FS("ext2"); 123 MODULE_ALIAS("ext2"); 124 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 125 #else 126 #define IS_EXT2_SB(sb) (0) 127 #endif 128 129 130 static struct file_system_type ext3_fs_type = { 131 .owner = THIS_MODULE, 132 .name = "ext3", 133 .mount = ext4_mount, 134 .kill_sb = kill_block_super, 135 .fs_flags = FS_REQUIRES_DEV, 136 }; 137 MODULE_ALIAS_FS("ext3"); 138 MODULE_ALIAS("ext3"); 139 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 140 141 static int ext4_verify_csum_type(struct super_block *sb, 142 struct ext4_super_block *es) 143 { 144 if (!ext4_has_feature_metadata_csum(sb)) 145 return 1; 146 147 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 148 } 149 150 static __le32 ext4_superblock_csum(struct super_block *sb, 151 struct ext4_super_block *es) 152 { 153 struct ext4_sb_info *sbi = EXT4_SB(sb); 154 int offset = offsetof(struct ext4_super_block, s_checksum); 155 __u32 csum; 156 157 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 158 159 return cpu_to_le32(csum); 160 } 161 162 static int ext4_superblock_csum_verify(struct super_block *sb, 163 struct ext4_super_block *es) 164 { 165 if (!ext4_has_metadata_csum(sb)) 166 return 1; 167 168 return es->s_checksum == ext4_superblock_csum(sb, es); 169 } 170 171 void ext4_superblock_csum_set(struct super_block *sb) 172 { 173 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 174 175 if (!ext4_has_metadata_csum(sb)) 176 return; 177 178 es->s_checksum = ext4_superblock_csum(sb, es); 179 } 180 181 void *ext4_kvmalloc(size_t size, gfp_t flags) 182 { 183 void *ret; 184 185 ret = kmalloc(size, flags | __GFP_NOWARN); 186 if (!ret) 187 ret = __vmalloc(size, flags, PAGE_KERNEL); 188 return ret; 189 } 190 191 void *ext4_kvzalloc(size_t size, gfp_t flags) 192 { 193 void *ret; 194 195 ret = kzalloc(size, flags | __GFP_NOWARN); 196 if (!ret) 197 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 198 return ret; 199 } 200 201 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 202 struct ext4_group_desc *bg) 203 { 204 return le32_to_cpu(bg->bg_block_bitmap_lo) | 205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 206 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 207 } 208 209 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 210 struct ext4_group_desc *bg) 211 { 212 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 214 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 215 } 216 217 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 218 struct ext4_group_desc *bg) 219 { 220 return le32_to_cpu(bg->bg_inode_table_lo) | 221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 222 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 223 } 224 225 __u32 ext4_free_group_clusters(struct super_block *sb, 226 struct ext4_group_desc *bg) 227 { 228 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 230 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 231 } 232 233 __u32 ext4_free_inodes_count(struct super_block *sb, 234 struct ext4_group_desc *bg) 235 { 236 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 238 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 239 } 240 241 __u32 ext4_used_dirs_count(struct super_block *sb, 242 struct ext4_group_desc *bg) 243 { 244 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 245 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 246 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 247 } 248 249 __u32 ext4_itable_unused_count(struct super_block *sb, 250 struct ext4_group_desc *bg) 251 { 252 return le16_to_cpu(bg->bg_itable_unused_lo) | 253 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 254 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 255 } 256 257 void ext4_block_bitmap_set(struct super_block *sb, 258 struct ext4_group_desc *bg, ext4_fsblk_t blk) 259 { 260 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 262 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 263 } 264 265 void ext4_inode_bitmap_set(struct super_block *sb, 266 struct ext4_group_desc *bg, ext4_fsblk_t blk) 267 { 268 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 270 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 271 } 272 273 void ext4_inode_table_set(struct super_block *sb, 274 struct ext4_group_desc *bg, ext4_fsblk_t blk) 275 { 276 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 278 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 279 } 280 281 void ext4_free_group_clusters_set(struct super_block *sb, 282 struct ext4_group_desc *bg, __u32 count) 283 { 284 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 286 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 287 } 288 289 void ext4_free_inodes_set(struct super_block *sb, 290 struct ext4_group_desc *bg, __u32 count) 291 { 292 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 294 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 295 } 296 297 void ext4_used_dirs_set(struct super_block *sb, 298 struct ext4_group_desc *bg, __u32 count) 299 { 300 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 301 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 302 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 303 } 304 305 void ext4_itable_unused_set(struct super_block *sb, 306 struct ext4_group_desc *bg, __u32 count) 307 { 308 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 309 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 310 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 311 } 312 313 314 static void __save_error_info(struct super_block *sb, const char *func, 315 unsigned int line) 316 { 317 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 318 319 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 320 if (bdev_read_only(sb->s_bdev)) 321 return; 322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 323 es->s_last_error_time = cpu_to_le32(get_seconds()); 324 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 325 es->s_last_error_line = cpu_to_le32(line); 326 if (!es->s_first_error_time) { 327 es->s_first_error_time = es->s_last_error_time; 328 strncpy(es->s_first_error_func, func, 329 sizeof(es->s_first_error_func)); 330 es->s_first_error_line = cpu_to_le32(line); 331 es->s_first_error_ino = es->s_last_error_ino; 332 es->s_first_error_block = es->s_last_error_block; 333 } 334 /* 335 * Start the daily error reporting function if it hasn't been 336 * started already 337 */ 338 if (!es->s_error_count) 339 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 340 le32_add_cpu(&es->s_error_count, 1); 341 } 342 343 static void save_error_info(struct super_block *sb, const char *func, 344 unsigned int line) 345 { 346 __save_error_info(sb, func, line); 347 ext4_commit_super(sb, 1); 348 } 349 350 /* 351 * The del_gendisk() function uninitializes the disk-specific data 352 * structures, including the bdi structure, without telling anyone 353 * else. Once this happens, any attempt to call mark_buffer_dirty() 354 * (for example, by ext4_commit_super), will cause a kernel OOPS. 355 * This is a kludge to prevent these oops until we can put in a proper 356 * hook in del_gendisk() to inform the VFS and file system layers. 357 */ 358 static int block_device_ejected(struct super_block *sb) 359 { 360 struct inode *bd_inode = sb->s_bdev->bd_inode; 361 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 362 363 return bdi->dev == NULL; 364 } 365 366 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 367 { 368 struct super_block *sb = journal->j_private; 369 struct ext4_sb_info *sbi = EXT4_SB(sb); 370 int error = is_journal_aborted(journal); 371 struct ext4_journal_cb_entry *jce; 372 373 BUG_ON(txn->t_state == T_FINISHED); 374 spin_lock(&sbi->s_md_lock); 375 while (!list_empty(&txn->t_private_list)) { 376 jce = list_entry(txn->t_private_list.next, 377 struct ext4_journal_cb_entry, jce_list); 378 list_del_init(&jce->jce_list); 379 spin_unlock(&sbi->s_md_lock); 380 jce->jce_func(sb, jce, error); 381 spin_lock(&sbi->s_md_lock); 382 } 383 spin_unlock(&sbi->s_md_lock); 384 } 385 386 /* Deal with the reporting of failure conditions on a filesystem such as 387 * inconsistencies detected or read IO failures. 388 * 389 * On ext2, we can store the error state of the filesystem in the 390 * superblock. That is not possible on ext4, because we may have other 391 * write ordering constraints on the superblock which prevent us from 392 * writing it out straight away; and given that the journal is about to 393 * be aborted, we can't rely on the current, or future, transactions to 394 * write out the superblock safely. 395 * 396 * We'll just use the jbd2_journal_abort() error code to record an error in 397 * the journal instead. On recovery, the journal will complain about 398 * that error until we've noted it down and cleared it. 399 */ 400 401 static void ext4_handle_error(struct super_block *sb) 402 { 403 if (sb->s_flags & MS_RDONLY) 404 return; 405 406 if (!test_opt(sb, ERRORS_CONT)) { 407 journal_t *journal = EXT4_SB(sb)->s_journal; 408 409 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 410 if (journal) 411 jbd2_journal_abort(journal, -EIO); 412 } 413 if (test_opt(sb, ERRORS_RO)) { 414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 415 /* 416 * Make sure updated value of ->s_mount_flags will be visible 417 * before ->s_flags update 418 */ 419 smp_wmb(); 420 sb->s_flags |= MS_RDONLY; 421 } 422 if (test_opt(sb, ERRORS_PANIC)) { 423 if (EXT4_SB(sb)->s_journal && 424 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 425 return; 426 panic("EXT4-fs (device %s): panic forced after error\n", 427 sb->s_id); 428 } 429 } 430 431 #define ext4_error_ratelimit(sb) \ 432 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 433 "EXT4-fs error") 434 435 void __ext4_error(struct super_block *sb, const char *function, 436 unsigned int line, const char *fmt, ...) 437 { 438 struct va_format vaf; 439 va_list args; 440 441 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 442 return; 443 444 if (ext4_error_ratelimit(sb)) { 445 va_start(args, fmt); 446 vaf.fmt = fmt; 447 vaf.va = &args; 448 printk(KERN_CRIT 449 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 450 sb->s_id, function, line, current->comm, &vaf); 451 va_end(args); 452 } 453 save_error_info(sb, function, line); 454 ext4_handle_error(sb); 455 } 456 457 void __ext4_error_inode(struct inode *inode, const char *function, 458 unsigned int line, ext4_fsblk_t block, 459 const char *fmt, ...) 460 { 461 va_list args; 462 struct va_format vaf; 463 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 464 465 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 466 return; 467 468 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 469 es->s_last_error_block = cpu_to_le64(block); 470 if (ext4_error_ratelimit(inode->i_sb)) { 471 va_start(args, fmt); 472 vaf.fmt = fmt; 473 vaf.va = &args; 474 if (block) 475 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 476 "inode #%lu: block %llu: comm %s: %pV\n", 477 inode->i_sb->s_id, function, line, inode->i_ino, 478 block, current->comm, &vaf); 479 else 480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 481 "inode #%lu: comm %s: %pV\n", 482 inode->i_sb->s_id, function, line, inode->i_ino, 483 current->comm, &vaf); 484 va_end(args); 485 } 486 save_error_info(inode->i_sb, function, line); 487 ext4_handle_error(inode->i_sb); 488 } 489 490 void __ext4_error_file(struct file *file, const char *function, 491 unsigned int line, ext4_fsblk_t block, 492 const char *fmt, ...) 493 { 494 va_list args; 495 struct va_format vaf; 496 struct ext4_super_block *es; 497 struct inode *inode = file_inode(file); 498 char pathname[80], *path; 499 500 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 501 return; 502 503 es = EXT4_SB(inode->i_sb)->s_es; 504 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 505 if (ext4_error_ratelimit(inode->i_sb)) { 506 path = file_path(file, pathname, sizeof(pathname)); 507 if (IS_ERR(path)) 508 path = "(unknown)"; 509 va_start(args, fmt); 510 vaf.fmt = fmt; 511 vaf.va = &args; 512 if (block) 513 printk(KERN_CRIT 514 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 515 "block %llu: comm %s: path %s: %pV\n", 516 inode->i_sb->s_id, function, line, inode->i_ino, 517 block, current->comm, path, &vaf); 518 else 519 printk(KERN_CRIT 520 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 521 "comm %s: path %s: %pV\n", 522 inode->i_sb->s_id, function, line, inode->i_ino, 523 current->comm, path, &vaf); 524 va_end(args); 525 } 526 save_error_info(inode->i_sb, function, line); 527 ext4_handle_error(inode->i_sb); 528 } 529 530 const char *ext4_decode_error(struct super_block *sb, int errno, 531 char nbuf[16]) 532 { 533 char *errstr = NULL; 534 535 switch (errno) { 536 case -EFSCORRUPTED: 537 errstr = "Corrupt filesystem"; 538 break; 539 case -EFSBADCRC: 540 errstr = "Filesystem failed CRC"; 541 break; 542 case -EIO: 543 errstr = "IO failure"; 544 break; 545 case -ENOMEM: 546 errstr = "Out of memory"; 547 break; 548 case -EROFS: 549 if (!sb || (EXT4_SB(sb)->s_journal && 550 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 551 errstr = "Journal has aborted"; 552 else 553 errstr = "Readonly filesystem"; 554 break; 555 default: 556 /* If the caller passed in an extra buffer for unknown 557 * errors, textualise them now. Else we just return 558 * NULL. */ 559 if (nbuf) { 560 /* Check for truncated error codes... */ 561 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 562 errstr = nbuf; 563 } 564 break; 565 } 566 567 return errstr; 568 } 569 570 /* __ext4_std_error decodes expected errors from journaling functions 571 * automatically and invokes the appropriate error response. */ 572 573 void __ext4_std_error(struct super_block *sb, const char *function, 574 unsigned int line, int errno) 575 { 576 char nbuf[16]; 577 const char *errstr; 578 579 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 580 return; 581 582 /* Special case: if the error is EROFS, and we're not already 583 * inside a transaction, then there's really no point in logging 584 * an error. */ 585 if (errno == -EROFS && journal_current_handle() == NULL && 586 (sb->s_flags & MS_RDONLY)) 587 return; 588 589 if (ext4_error_ratelimit(sb)) { 590 errstr = ext4_decode_error(sb, errno, nbuf); 591 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 592 sb->s_id, function, line, errstr); 593 } 594 595 save_error_info(sb, function, line); 596 ext4_handle_error(sb); 597 } 598 599 /* 600 * ext4_abort is a much stronger failure handler than ext4_error. The 601 * abort function may be used to deal with unrecoverable failures such 602 * as journal IO errors or ENOMEM at a critical moment in log management. 603 * 604 * We unconditionally force the filesystem into an ABORT|READONLY state, 605 * unless the error response on the fs has been set to panic in which 606 * case we take the easy way out and panic immediately. 607 */ 608 609 void __ext4_abort(struct super_block *sb, const char *function, 610 unsigned int line, const char *fmt, ...) 611 { 612 struct va_format vaf; 613 va_list args; 614 615 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 616 return; 617 618 save_error_info(sb, function, line); 619 va_start(args, fmt); 620 vaf.fmt = fmt; 621 vaf.va = &args; 622 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 623 sb->s_id, function, line, &vaf); 624 va_end(args); 625 626 if ((sb->s_flags & MS_RDONLY) == 0) { 627 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 628 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 629 /* 630 * Make sure updated value of ->s_mount_flags will be visible 631 * before ->s_flags update 632 */ 633 smp_wmb(); 634 sb->s_flags |= MS_RDONLY; 635 if (EXT4_SB(sb)->s_journal) 636 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 637 save_error_info(sb, function, line); 638 } 639 if (test_opt(sb, ERRORS_PANIC)) { 640 if (EXT4_SB(sb)->s_journal && 641 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 642 return; 643 panic("EXT4-fs panic from previous error\n"); 644 } 645 } 646 647 void __ext4_msg(struct super_block *sb, 648 const char *prefix, const char *fmt, ...) 649 { 650 struct va_format vaf; 651 va_list args; 652 653 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 654 return; 655 656 va_start(args, fmt); 657 vaf.fmt = fmt; 658 vaf.va = &args; 659 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 660 va_end(args); 661 } 662 663 #define ext4_warning_ratelimit(sb) \ 664 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 665 "EXT4-fs warning") 666 667 void __ext4_warning(struct super_block *sb, const char *function, 668 unsigned int line, const char *fmt, ...) 669 { 670 struct va_format vaf; 671 va_list args; 672 673 if (!ext4_warning_ratelimit(sb)) 674 return; 675 676 va_start(args, fmt); 677 vaf.fmt = fmt; 678 vaf.va = &args; 679 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 680 sb->s_id, function, line, &vaf); 681 va_end(args); 682 } 683 684 void __ext4_warning_inode(const struct inode *inode, const char *function, 685 unsigned int line, const char *fmt, ...) 686 { 687 struct va_format vaf; 688 va_list args; 689 690 if (!ext4_warning_ratelimit(inode->i_sb)) 691 return; 692 693 va_start(args, fmt); 694 vaf.fmt = fmt; 695 vaf.va = &args; 696 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 697 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 698 function, line, inode->i_ino, current->comm, &vaf); 699 va_end(args); 700 } 701 702 void __ext4_grp_locked_error(const char *function, unsigned int line, 703 struct super_block *sb, ext4_group_t grp, 704 unsigned long ino, ext4_fsblk_t block, 705 const char *fmt, ...) 706 __releases(bitlock) 707 __acquires(bitlock) 708 { 709 struct va_format vaf; 710 va_list args; 711 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 712 713 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 714 return; 715 716 es->s_last_error_ino = cpu_to_le32(ino); 717 es->s_last_error_block = cpu_to_le64(block); 718 __save_error_info(sb, function, line); 719 720 if (ext4_error_ratelimit(sb)) { 721 va_start(args, fmt); 722 vaf.fmt = fmt; 723 vaf.va = &args; 724 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 725 sb->s_id, function, line, grp); 726 if (ino) 727 printk(KERN_CONT "inode %lu: ", ino); 728 if (block) 729 printk(KERN_CONT "block %llu:", 730 (unsigned long long) block); 731 printk(KERN_CONT "%pV\n", &vaf); 732 va_end(args); 733 } 734 735 if (test_opt(sb, ERRORS_CONT)) { 736 ext4_commit_super(sb, 0); 737 return; 738 } 739 740 ext4_unlock_group(sb, grp); 741 ext4_handle_error(sb); 742 /* 743 * We only get here in the ERRORS_RO case; relocking the group 744 * may be dangerous, but nothing bad will happen since the 745 * filesystem will have already been marked read/only and the 746 * journal has been aborted. We return 1 as a hint to callers 747 * who might what to use the return value from 748 * ext4_grp_locked_error() to distinguish between the 749 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 750 * aggressively from the ext4 function in question, with a 751 * more appropriate error code. 752 */ 753 ext4_lock_group(sb, grp); 754 return; 755 } 756 757 void ext4_update_dynamic_rev(struct super_block *sb) 758 { 759 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 760 761 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 762 return; 763 764 ext4_warning(sb, 765 "updating to rev %d because of new feature flag, " 766 "running e2fsck is recommended", 767 EXT4_DYNAMIC_REV); 768 769 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 770 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 771 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 772 /* leave es->s_feature_*compat flags alone */ 773 /* es->s_uuid will be set by e2fsck if empty */ 774 775 /* 776 * The rest of the superblock fields should be zero, and if not it 777 * means they are likely already in use, so leave them alone. We 778 * can leave it up to e2fsck to clean up any inconsistencies there. 779 */ 780 } 781 782 /* 783 * Open the external journal device 784 */ 785 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 786 { 787 struct block_device *bdev; 788 char b[BDEVNAME_SIZE]; 789 790 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 791 if (IS_ERR(bdev)) 792 goto fail; 793 return bdev; 794 795 fail: 796 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 797 __bdevname(dev, b), PTR_ERR(bdev)); 798 return NULL; 799 } 800 801 /* 802 * Release the journal device 803 */ 804 static void ext4_blkdev_put(struct block_device *bdev) 805 { 806 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 807 } 808 809 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 810 { 811 struct block_device *bdev; 812 bdev = sbi->journal_bdev; 813 if (bdev) { 814 ext4_blkdev_put(bdev); 815 sbi->journal_bdev = NULL; 816 } 817 } 818 819 static inline struct inode *orphan_list_entry(struct list_head *l) 820 { 821 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 822 } 823 824 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 825 { 826 struct list_head *l; 827 828 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 829 le32_to_cpu(sbi->s_es->s_last_orphan)); 830 831 printk(KERN_ERR "sb_info orphan list:\n"); 832 list_for_each(l, &sbi->s_orphan) { 833 struct inode *inode = orphan_list_entry(l); 834 printk(KERN_ERR " " 835 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 836 inode->i_sb->s_id, inode->i_ino, inode, 837 inode->i_mode, inode->i_nlink, 838 NEXT_ORPHAN(inode)); 839 } 840 } 841 842 static void ext4_put_super(struct super_block *sb) 843 { 844 struct ext4_sb_info *sbi = EXT4_SB(sb); 845 struct ext4_super_block *es = sbi->s_es; 846 int aborted = 0; 847 int i, err; 848 849 ext4_unregister_li_request(sb); 850 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 851 852 flush_workqueue(sbi->rsv_conversion_wq); 853 destroy_workqueue(sbi->rsv_conversion_wq); 854 855 if (sbi->s_journal) { 856 aborted = is_journal_aborted(sbi->s_journal); 857 err = jbd2_journal_destroy(sbi->s_journal); 858 sbi->s_journal = NULL; 859 if ((err < 0) && !aborted) 860 ext4_abort(sb, "Couldn't clean up the journal"); 861 } 862 863 ext4_unregister_sysfs(sb); 864 ext4_es_unregister_shrinker(sbi); 865 del_timer_sync(&sbi->s_err_report); 866 ext4_release_system_zone(sb); 867 ext4_mb_release(sb); 868 ext4_ext_release(sb); 869 870 if (!(sb->s_flags & MS_RDONLY) && !aborted) { 871 ext4_clear_feature_journal_needs_recovery(sb); 872 es->s_state = cpu_to_le16(sbi->s_mount_state); 873 } 874 if (!(sb->s_flags & MS_RDONLY)) 875 ext4_commit_super(sb, 1); 876 877 for (i = 0; i < sbi->s_gdb_count; i++) 878 brelse(sbi->s_group_desc[i]); 879 kvfree(sbi->s_group_desc); 880 kvfree(sbi->s_flex_groups); 881 percpu_counter_destroy(&sbi->s_freeclusters_counter); 882 percpu_counter_destroy(&sbi->s_freeinodes_counter); 883 percpu_counter_destroy(&sbi->s_dirs_counter); 884 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 885 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 886 #ifdef CONFIG_QUOTA 887 for (i = 0; i < EXT4_MAXQUOTAS; i++) 888 kfree(sbi->s_qf_names[i]); 889 #endif 890 891 /* Debugging code just in case the in-memory inode orphan list 892 * isn't empty. The on-disk one can be non-empty if we've 893 * detected an error and taken the fs readonly, but the 894 * in-memory list had better be clean by this point. */ 895 if (!list_empty(&sbi->s_orphan)) 896 dump_orphan_list(sb, sbi); 897 J_ASSERT(list_empty(&sbi->s_orphan)); 898 899 sync_blockdev(sb->s_bdev); 900 invalidate_bdev(sb->s_bdev); 901 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 902 /* 903 * Invalidate the journal device's buffers. We don't want them 904 * floating about in memory - the physical journal device may 905 * hotswapped, and it breaks the `ro-after' testing code. 906 */ 907 sync_blockdev(sbi->journal_bdev); 908 invalidate_bdev(sbi->journal_bdev); 909 ext4_blkdev_remove(sbi); 910 } 911 if (sbi->s_mb_cache) { 912 ext4_xattr_destroy_cache(sbi->s_mb_cache); 913 sbi->s_mb_cache = NULL; 914 } 915 if (sbi->s_mmp_tsk) 916 kthread_stop(sbi->s_mmp_tsk); 917 brelse(sbi->s_sbh); 918 sb->s_fs_info = NULL; 919 /* 920 * Now that we are completely done shutting down the 921 * superblock, we need to actually destroy the kobject. 922 */ 923 kobject_put(&sbi->s_kobj); 924 wait_for_completion(&sbi->s_kobj_unregister); 925 if (sbi->s_chksum_driver) 926 crypto_free_shash(sbi->s_chksum_driver); 927 kfree(sbi->s_blockgroup_lock); 928 kfree(sbi); 929 } 930 931 static struct kmem_cache *ext4_inode_cachep; 932 933 /* 934 * Called inside transaction, so use GFP_NOFS 935 */ 936 static struct inode *ext4_alloc_inode(struct super_block *sb) 937 { 938 struct ext4_inode_info *ei; 939 940 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 941 if (!ei) 942 return NULL; 943 944 ei->vfs_inode.i_version = 1; 945 spin_lock_init(&ei->i_raw_lock); 946 INIT_LIST_HEAD(&ei->i_prealloc_list); 947 spin_lock_init(&ei->i_prealloc_lock); 948 ext4_es_init_tree(&ei->i_es_tree); 949 rwlock_init(&ei->i_es_lock); 950 INIT_LIST_HEAD(&ei->i_es_list); 951 ei->i_es_all_nr = 0; 952 ei->i_es_shk_nr = 0; 953 ei->i_es_shrink_lblk = 0; 954 ei->i_reserved_data_blocks = 0; 955 ei->i_reserved_meta_blocks = 0; 956 ei->i_allocated_meta_blocks = 0; 957 ei->i_da_metadata_calc_len = 0; 958 ei->i_da_metadata_calc_last_lblock = 0; 959 spin_lock_init(&(ei->i_block_reservation_lock)); 960 #ifdef CONFIG_QUOTA 961 ei->i_reserved_quota = 0; 962 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 963 #endif 964 ei->jinode = NULL; 965 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 966 spin_lock_init(&ei->i_completed_io_lock); 967 ei->i_sync_tid = 0; 968 ei->i_datasync_tid = 0; 969 atomic_set(&ei->i_unwritten, 0); 970 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 971 return &ei->vfs_inode; 972 } 973 974 static int ext4_drop_inode(struct inode *inode) 975 { 976 int drop = generic_drop_inode(inode); 977 978 trace_ext4_drop_inode(inode, drop); 979 return drop; 980 } 981 982 static void ext4_i_callback(struct rcu_head *head) 983 { 984 struct inode *inode = container_of(head, struct inode, i_rcu); 985 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 986 } 987 988 static void ext4_destroy_inode(struct inode *inode) 989 { 990 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 991 ext4_msg(inode->i_sb, KERN_ERR, 992 "Inode %lu (%p): orphan list check failed!", 993 inode->i_ino, EXT4_I(inode)); 994 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 995 EXT4_I(inode), sizeof(struct ext4_inode_info), 996 true); 997 dump_stack(); 998 } 999 call_rcu(&inode->i_rcu, ext4_i_callback); 1000 } 1001 1002 static void init_once(void *foo) 1003 { 1004 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1005 1006 INIT_LIST_HEAD(&ei->i_orphan); 1007 init_rwsem(&ei->xattr_sem); 1008 init_rwsem(&ei->i_data_sem); 1009 init_rwsem(&ei->i_mmap_sem); 1010 inode_init_once(&ei->vfs_inode); 1011 } 1012 1013 static int __init init_inodecache(void) 1014 { 1015 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1016 sizeof(struct ext4_inode_info), 1017 0, (SLAB_RECLAIM_ACCOUNT| 1018 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1019 init_once); 1020 if (ext4_inode_cachep == NULL) 1021 return -ENOMEM; 1022 return 0; 1023 } 1024 1025 static void destroy_inodecache(void) 1026 { 1027 /* 1028 * Make sure all delayed rcu free inodes are flushed before we 1029 * destroy cache. 1030 */ 1031 rcu_barrier(); 1032 kmem_cache_destroy(ext4_inode_cachep); 1033 } 1034 1035 void ext4_clear_inode(struct inode *inode) 1036 { 1037 invalidate_inode_buffers(inode); 1038 clear_inode(inode); 1039 dquot_drop(inode); 1040 ext4_discard_preallocations(inode); 1041 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1042 if (EXT4_I(inode)->jinode) { 1043 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1044 EXT4_I(inode)->jinode); 1045 jbd2_free_inode(EXT4_I(inode)->jinode); 1046 EXT4_I(inode)->jinode = NULL; 1047 } 1048 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1049 fscrypt_put_encryption_info(inode, NULL); 1050 #endif 1051 } 1052 1053 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1054 u64 ino, u32 generation) 1055 { 1056 struct inode *inode; 1057 1058 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1059 return ERR_PTR(-ESTALE); 1060 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1061 return ERR_PTR(-ESTALE); 1062 1063 /* iget isn't really right if the inode is currently unallocated!! 1064 * 1065 * ext4_read_inode will return a bad_inode if the inode had been 1066 * deleted, so we should be safe. 1067 * 1068 * Currently we don't know the generation for parent directory, so 1069 * a generation of 0 means "accept any" 1070 */ 1071 inode = ext4_iget_normal(sb, ino); 1072 if (IS_ERR(inode)) 1073 return ERR_CAST(inode); 1074 if (generation && inode->i_generation != generation) { 1075 iput(inode); 1076 return ERR_PTR(-ESTALE); 1077 } 1078 1079 return inode; 1080 } 1081 1082 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1083 int fh_len, int fh_type) 1084 { 1085 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1086 ext4_nfs_get_inode); 1087 } 1088 1089 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1090 int fh_len, int fh_type) 1091 { 1092 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1093 ext4_nfs_get_inode); 1094 } 1095 1096 /* 1097 * Try to release metadata pages (indirect blocks, directories) which are 1098 * mapped via the block device. Since these pages could have journal heads 1099 * which would prevent try_to_free_buffers() from freeing them, we must use 1100 * jbd2 layer's try_to_free_buffers() function to release them. 1101 */ 1102 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1103 gfp_t wait) 1104 { 1105 journal_t *journal = EXT4_SB(sb)->s_journal; 1106 1107 WARN_ON(PageChecked(page)); 1108 if (!page_has_buffers(page)) 1109 return 0; 1110 if (journal) 1111 return jbd2_journal_try_to_free_buffers(journal, page, 1112 wait & ~__GFP_DIRECT_RECLAIM); 1113 return try_to_free_buffers(page); 1114 } 1115 1116 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1117 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1118 { 1119 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1120 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1121 } 1122 1123 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1124 void *fs_data) 1125 { 1126 handle_t *handle = fs_data; 1127 int res, res2, retries = 0; 1128 1129 res = ext4_convert_inline_data(inode); 1130 if (res) 1131 return res; 1132 1133 /* 1134 * If a journal handle was specified, then the encryption context is 1135 * being set on a new inode via inheritance and is part of a larger 1136 * transaction to create the inode. Otherwise the encryption context is 1137 * being set on an existing inode in its own transaction. Only in the 1138 * latter case should the "retry on ENOSPC" logic be used. 1139 */ 1140 1141 if (handle) { 1142 res = ext4_xattr_set_handle(handle, inode, 1143 EXT4_XATTR_INDEX_ENCRYPTION, 1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1145 ctx, len, 0); 1146 if (!res) { 1147 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1148 ext4_clear_inode_state(inode, 1149 EXT4_STATE_MAY_INLINE_DATA); 1150 /* 1151 * Update inode->i_flags - e.g. S_DAX may get disabled 1152 */ 1153 ext4_set_inode_flags(inode); 1154 } 1155 return res; 1156 } 1157 1158 retry: 1159 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1160 ext4_jbd2_credits_xattr(inode)); 1161 if (IS_ERR(handle)) 1162 return PTR_ERR(handle); 1163 1164 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1165 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1166 ctx, len, 0); 1167 if (!res) { 1168 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1169 /* Update inode->i_flags - e.g. S_DAX may get disabled */ 1170 ext4_set_inode_flags(inode); 1171 res = ext4_mark_inode_dirty(handle, inode); 1172 if (res) 1173 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1174 } 1175 res2 = ext4_journal_stop(handle); 1176 1177 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1178 goto retry; 1179 if (!res) 1180 res = res2; 1181 return res; 1182 } 1183 1184 static int ext4_dummy_context(struct inode *inode) 1185 { 1186 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1187 } 1188 1189 static unsigned ext4_max_namelen(struct inode *inode) 1190 { 1191 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1192 EXT4_NAME_LEN; 1193 } 1194 1195 static const struct fscrypt_operations ext4_cryptops = { 1196 .key_prefix = "ext4:", 1197 .get_context = ext4_get_context, 1198 .set_context = ext4_set_context, 1199 .dummy_context = ext4_dummy_context, 1200 .is_encrypted = ext4_encrypted_inode, 1201 .empty_dir = ext4_empty_dir, 1202 .max_namelen = ext4_max_namelen, 1203 }; 1204 #else 1205 static const struct fscrypt_operations ext4_cryptops = { 1206 .is_encrypted = ext4_encrypted_inode, 1207 }; 1208 #endif 1209 1210 #ifdef CONFIG_QUOTA 1211 static char *quotatypes[] = INITQFNAMES; 1212 #define QTYPE2NAME(t) (quotatypes[t]) 1213 1214 static int ext4_write_dquot(struct dquot *dquot); 1215 static int ext4_acquire_dquot(struct dquot *dquot); 1216 static int ext4_release_dquot(struct dquot *dquot); 1217 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1218 static int ext4_write_info(struct super_block *sb, int type); 1219 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1220 const struct path *path); 1221 static int ext4_quota_off(struct super_block *sb, int type); 1222 static int ext4_quota_on_mount(struct super_block *sb, int type); 1223 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1224 size_t len, loff_t off); 1225 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1226 const char *data, size_t len, loff_t off); 1227 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1228 unsigned int flags); 1229 static int ext4_enable_quotas(struct super_block *sb); 1230 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1231 1232 static struct dquot **ext4_get_dquots(struct inode *inode) 1233 { 1234 return EXT4_I(inode)->i_dquot; 1235 } 1236 1237 static const struct dquot_operations ext4_quota_operations = { 1238 .get_reserved_space = ext4_get_reserved_space, 1239 .write_dquot = ext4_write_dquot, 1240 .acquire_dquot = ext4_acquire_dquot, 1241 .release_dquot = ext4_release_dquot, 1242 .mark_dirty = ext4_mark_dquot_dirty, 1243 .write_info = ext4_write_info, 1244 .alloc_dquot = dquot_alloc, 1245 .destroy_dquot = dquot_destroy, 1246 .get_projid = ext4_get_projid, 1247 .get_next_id = ext4_get_next_id, 1248 }; 1249 1250 static const struct quotactl_ops ext4_qctl_operations = { 1251 .quota_on = ext4_quota_on, 1252 .quota_off = ext4_quota_off, 1253 .quota_sync = dquot_quota_sync, 1254 .get_state = dquot_get_state, 1255 .set_info = dquot_set_dqinfo, 1256 .get_dqblk = dquot_get_dqblk, 1257 .set_dqblk = dquot_set_dqblk, 1258 .get_nextdqblk = dquot_get_next_dqblk, 1259 }; 1260 #endif 1261 1262 static const struct super_operations ext4_sops = { 1263 .alloc_inode = ext4_alloc_inode, 1264 .destroy_inode = ext4_destroy_inode, 1265 .write_inode = ext4_write_inode, 1266 .dirty_inode = ext4_dirty_inode, 1267 .drop_inode = ext4_drop_inode, 1268 .evict_inode = ext4_evict_inode, 1269 .put_super = ext4_put_super, 1270 .sync_fs = ext4_sync_fs, 1271 .freeze_fs = ext4_freeze, 1272 .unfreeze_fs = ext4_unfreeze, 1273 .statfs = ext4_statfs, 1274 .remount_fs = ext4_remount, 1275 .show_options = ext4_show_options, 1276 #ifdef CONFIG_QUOTA 1277 .quota_read = ext4_quota_read, 1278 .quota_write = ext4_quota_write, 1279 .get_dquots = ext4_get_dquots, 1280 #endif 1281 .bdev_try_to_free_page = bdev_try_to_free_page, 1282 }; 1283 1284 static const struct export_operations ext4_export_ops = { 1285 .fh_to_dentry = ext4_fh_to_dentry, 1286 .fh_to_parent = ext4_fh_to_parent, 1287 .get_parent = ext4_get_parent, 1288 }; 1289 1290 enum { 1291 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1292 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1293 Opt_nouid32, Opt_debug, Opt_removed, 1294 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1295 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1296 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1297 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1298 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1299 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1300 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1301 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1302 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1303 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1304 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1305 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1306 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1307 Opt_inode_readahead_blks, Opt_journal_ioprio, 1308 Opt_dioread_nolock, Opt_dioread_lock, 1309 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1310 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1311 }; 1312 1313 static const match_table_t tokens = { 1314 {Opt_bsd_df, "bsddf"}, 1315 {Opt_minix_df, "minixdf"}, 1316 {Opt_grpid, "grpid"}, 1317 {Opt_grpid, "bsdgroups"}, 1318 {Opt_nogrpid, "nogrpid"}, 1319 {Opt_nogrpid, "sysvgroups"}, 1320 {Opt_resgid, "resgid=%u"}, 1321 {Opt_resuid, "resuid=%u"}, 1322 {Opt_sb, "sb=%u"}, 1323 {Opt_err_cont, "errors=continue"}, 1324 {Opt_err_panic, "errors=panic"}, 1325 {Opt_err_ro, "errors=remount-ro"}, 1326 {Opt_nouid32, "nouid32"}, 1327 {Opt_debug, "debug"}, 1328 {Opt_removed, "oldalloc"}, 1329 {Opt_removed, "orlov"}, 1330 {Opt_user_xattr, "user_xattr"}, 1331 {Opt_nouser_xattr, "nouser_xattr"}, 1332 {Opt_acl, "acl"}, 1333 {Opt_noacl, "noacl"}, 1334 {Opt_noload, "norecovery"}, 1335 {Opt_noload, "noload"}, 1336 {Opt_removed, "nobh"}, 1337 {Opt_removed, "bh"}, 1338 {Opt_commit, "commit=%u"}, 1339 {Opt_min_batch_time, "min_batch_time=%u"}, 1340 {Opt_max_batch_time, "max_batch_time=%u"}, 1341 {Opt_journal_dev, "journal_dev=%u"}, 1342 {Opt_journal_path, "journal_path=%s"}, 1343 {Opt_journal_checksum, "journal_checksum"}, 1344 {Opt_nojournal_checksum, "nojournal_checksum"}, 1345 {Opt_journal_async_commit, "journal_async_commit"}, 1346 {Opt_abort, "abort"}, 1347 {Opt_data_journal, "data=journal"}, 1348 {Opt_data_ordered, "data=ordered"}, 1349 {Opt_data_writeback, "data=writeback"}, 1350 {Opt_data_err_abort, "data_err=abort"}, 1351 {Opt_data_err_ignore, "data_err=ignore"}, 1352 {Opt_offusrjquota, "usrjquota="}, 1353 {Opt_usrjquota, "usrjquota=%s"}, 1354 {Opt_offgrpjquota, "grpjquota="}, 1355 {Opt_grpjquota, "grpjquota=%s"}, 1356 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1357 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1358 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1359 {Opt_grpquota, "grpquota"}, 1360 {Opt_noquota, "noquota"}, 1361 {Opt_quota, "quota"}, 1362 {Opt_usrquota, "usrquota"}, 1363 {Opt_prjquota, "prjquota"}, 1364 {Opt_barrier, "barrier=%u"}, 1365 {Opt_barrier, "barrier"}, 1366 {Opt_nobarrier, "nobarrier"}, 1367 {Opt_i_version, "i_version"}, 1368 {Opt_dax, "dax"}, 1369 {Opt_stripe, "stripe=%u"}, 1370 {Opt_delalloc, "delalloc"}, 1371 {Opt_lazytime, "lazytime"}, 1372 {Opt_nolazytime, "nolazytime"}, 1373 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1374 {Opt_nodelalloc, "nodelalloc"}, 1375 {Opt_removed, "mblk_io_submit"}, 1376 {Opt_removed, "nomblk_io_submit"}, 1377 {Opt_block_validity, "block_validity"}, 1378 {Opt_noblock_validity, "noblock_validity"}, 1379 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1380 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1381 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1382 {Opt_auto_da_alloc, "auto_da_alloc"}, 1383 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1384 {Opt_dioread_nolock, "dioread_nolock"}, 1385 {Opt_dioread_lock, "dioread_lock"}, 1386 {Opt_discard, "discard"}, 1387 {Opt_nodiscard, "nodiscard"}, 1388 {Opt_init_itable, "init_itable=%u"}, 1389 {Opt_init_itable, "init_itable"}, 1390 {Opt_noinit_itable, "noinit_itable"}, 1391 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1392 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1393 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1394 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1395 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1396 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1397 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1398 {Opt_err, NULL}, 1399 }; 1400 1401 static ext4_fsblk_t get_sb_block(void **data) 1402 { 1403 ext4_fsblk_t sb_block; 1404 char *options = (char *) *data; 1405 1406 if (!options || strncmp(options, "sb=", 3) != 0) 1407 return 1; /* Default location */ 1408 1409 options += 3; 1410 /* TODO: use simple_strtoll with >32bit ext4 */ 1411 sb_block = simple_strtoul(options, &options, 0); 1412 if (*options && *options != ',') { 1413 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1414 (char *) *data); 1415 return 1; 1416 } 1417 if (*options == ',') 1418 options++; 1419 *data = (void *) options; 1420 1421 return sb_block; 1422 } 1423 1424 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1425 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1426 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1427 1428 #ifdef CONFIG_QUOTA 1429 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1430 { 1431 struct ext4_sb_info *sbi = EXT4_SB(sb); 1432 char *qname; 1433 int ret = -1; 1434 1435 if (sb_any_quota_loaded(sb) && 1436 !sbi->s_qf_names[qtype]) { 1437 ext4_msg(sb, KERN_ERR, 1438 "Cannot change journaled " 1439 "quota options when quota turned on"); 1440 return -1; 1441 } 1442 if (ext4_has_feature_quota(sb)) { 1443 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1444 "ignored when QUOTA feature is enabled"); 1445 return 1; 1446 } 1447 qname = match_strdup(args); 1448 if (!qname) { 1449 ext4_msg(sb, KERN_ERR, 1450 "Not enough memory for storing quotafile name"); 1451 return -1; 1452 } 1453 if (sbi->s_qf_names[qtype]) { 1454 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1455 ret = 1; 1456 else 1457 ext4_msg(sb, KERN_ERR, 1458 "%s quota file already specified", 1459 QTYPE2NAME(qtype)); 1460 goto errout; 1461 } 1462 if (strchr(qname, '/')) { 1463 ext4_msg(sb, KERN_ERR, 1464 "quotafile must be on filesystem root"); 1465 goto errout; 1466 } 1467 sbi->s_qf_names[qtype] = qname; 1468 set_opt(sb, QUOTA); 1469 return 1; 1470 errout: 1471 kfree(qname); 1472 return ret; 1473 } 1474 1475 static int clear_qf_name(struct super_block *sb, int qtype) 1476 { 1477 1478 struct ext4_sb_info *sbi = EXT4_SB(sb); 1479 1480 if (sb_any_quota_loaded(sb) && 1481 sbi->s_qf_names[qtype]) { 1482 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1483 " when quota turned on"); 1484 return -1; 1485 } 1486 kfree(sbi->s_qf_names[qtype]); 1487 sbi->s_qf_names[qtype] = NULL; 1488 return 1; 1489 } 1490 #endif 1491 1492 #define MOPT_SET 0x0001 1493 #define MOPT_CLEAR 0x0002 1494 #define MOPT_NOSUPPORT 0x0004 1495 #define MOPT_EXPLICIT 0x0008 1496 #define MOPT_CLEAR_ERR 0x0010 1497 #define MOPT_GTE0 0x0020 1498 #ifdef CONFIG_QUOTA 1499 #define MOPT_Q 0 1500 #define MOPT_QFMT 0x0040 1501 #else 1502 #define MOPT_Q MOPT_NOSUPPORT 1503 #define MOPT_QFMT MOPT_NOSUPPORT 1504 #endif 1505 #define MOPT_DATAJ 0x0080 1506 #define MOPT_NO_EXT2 0x0100 1507 #define MOPT_NO_EXT3 0x0200 1508 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1509 #define MOPT_STRING 0x0400 1510 1511 static const struct mount_opts { 1512 int token; 1513 int mount_opt; 1514 int flags; 1515 } ext4_mount_opts[] = { 1516 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1517 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1518 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1519 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1520 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1521 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1522 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1523 MOPT_EXT4_ONLY | MOPT_SET}, 1524 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1525 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1526 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1527 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1528 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1529 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1530 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1531 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1532 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1533 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1534 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1535 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1536 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1537 EXT4_MOUNT_JOURNAL_CHECKSUM), 1538 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1539 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1540 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1541 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1542 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1543 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1544 MOPT_NO_EXT2}, 1545 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1546 MOPT_NO_EXT2}, 1547 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1548 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1549 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1550 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1551 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1552 {Opt_commit, 0, MOPT_GTE0}, 1553 {Opt_max_batch_time, 0, MOPT_GTE0}, 1554 {Opt_min_batch_time, 0, MOPT_GTE0}, 1555 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1556 {Opt_init_itable, 0, MOPT_GTE0}, 1557 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1558 {Opt_stripe, 0, MOPT_GTE0}, 1559 {Opt_resuid, 0, MOPT_GTE0}, 1560 {Opt_resgid, 0, MOPT_GTE0}, 1561 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1562 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1563 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1564 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1565 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1566 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1567 MOPT_NO_EXT2 | MOPT_DATAJ}, 1568 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1569 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1570 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1571 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1572 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1573 #else 1574 {Opt_acl, 0, MOPT_NOSUPPORT}, 1575 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1576 #endif 1577 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1578 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1579 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1580 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1581 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1582 MOPT_SET | MOPT_Q}, 1583 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1584 MOPT_SET | MOPT_Q}, 1585 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1586 MOPT_SET | MOPT_Q}, 1587 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1588 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1589 MOPT_CLEAR | MOPT_Q}, 1590 {Opt_usrjquota, 0, MOPT_Q}, 1591 {Opt_grpjquota, 0, MOPT_Q}, 1592 {Opt_offusrjquota, 0, MOPT_Q}, 1593 {Opt_offgrpjquota, 0, MOPT_Q}, 1594 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1595 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1596 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1597 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1598 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1599 {Opt_err, 0, 0} 1600 }; 1601 1602 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1603 substring_t *args, unsigned long *journal_devnum, 1604 unsigned int *journal_ioprio, int is_remount) 1605 { 1606 struct ext4_sb_info *sbi = EXT4_SB(sb); 1607 const struct mount_opts *m; 1608 kuid_t uid; 1609 kgid_t gid; 1610 int arg = 0; 1611 1612 #ifdef CONFIG_QUOTA 1613 if (token == Opt_usrjquota) 1614 return set_qf_name(sb, USRQUOTA, &args[0]); 1615 else if (token == Opt_grpjquota) 1616 return set_qf_name(sb, GRPQUOTA, &args[0]); 1617 else if (token == Opt_offusrjquota) 1618 return clear_qf_name(sb, USRQUOTA); 1619 else if (token == Opt_offgrpjquota) 1620 return clear_qf_name(sb, GRPQUOTA); 1621 #endif 1622 switch (token) { 1623 case Opt_noacl: 1624 case Opt_nouser_xattr: 1625 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1626 break; 1627 case Opt_sb: 1628 return 1; /* handled by get_sb_block() */ 1629 case Opt_removed: 1630 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1631 return 1; 1632 case Opt_abort: 1633 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1634 return 1; 1635 case Opt_i_version: 1636 sb->s_flags |= MS_I_VERSION; 1637 return 1; 1638 case Opt_lazytime: 1639 sb->s_flags |= MS_LAZYTIME; 1640 return 1; 1641 case Opt_nolazytime: 1642 sb->s_flags &= ~MS_LAZYTIME; 1643 return 1; 1644 } 1645 1646 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1647 if (token == m->token) 1648 break; 1649 1650 if (m->token == Opt_err) { 1651 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1652 "or missing value", opt); 1653 return -1; 1654 } 1655 1656 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1657 ext4_msg(sb, KERN_ERR, 1658 "Mount option \"%s\" incompatible with ext2", opt); 1659 return -1; 1660 } 1661 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1662 ext4_msg(sb, KERN_ERR, 1663 "Mount option \"%s\" incompatible with ext3", opt); 1664 return -1; 1665 } 1666 1667 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1668 return -1; 1669 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1670 return -1; 1671 if (m->flags & MOPT_EXPLICIT) { 1672 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1673 set_opt2(sb, EXPLICIT_DELALLOC); 1674 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1675 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1676 } else 1677 return -1; 1678 } 1679 if (m->flags & MOPT_CLEAR_ERR) 1680 clear_opt(sb, ERRORS_MASK); 1681 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1682 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1683 "options when quota turned on"); 1684 return -1; 1685 } 1686 1687 if (m->flags & MOPT_NOSUPPORT) { 1688 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1689 } else if (token == Opt_commit) { 1690 if (arg == 0) 1691 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1692 sbi->s_commit_interval = HZ * arg; 1693 } else if (token == Opt_debug_want_extra_isize) { 1694 sbi->s_want_extra_isize = arg; 1695 } else if (token == Opt_max_batch_time) { 1696 sbi->s_max_batch_time = arg; 1697 } else if (token == Opt_min_batch_time) { 1698 sbi->s_min_batch_time = arg; 1699 } else if (token == Opt_inode_readahead_blks) { 1700 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1701 ext4_msg(sb, KERN_ERR, 1702 "EXT4-fs: inode_readahead_blks must be " 1703 "0 or a power of 2 smaller than 2^31"); 1704 return -1; 1705 } 1706 sbi->s_inode_readahead_blks = arg; 1707 } else if (token == Opt_init_itable) { 1708 set_opt(sb, INIT_INODE_TABLE); 1709 if (!args->from) 1710 arg = EXT4_DEF_LI_WAIT_MULT; 1711 sbi->s_li_wait_mult = arg; 1712 } else if (token == Opt_max_dir_size_kb) { 1713 sbi->s_max_dir_size_kb = arg; 1714 } else if (token == Opt_stripe) { 1715 sbi->s_stripe = arg; 1716 } else if (token == Opt_resuid) { 1717 uid = make_kuid(current_user_ns(), arg); 1718 if (!uid_valid(uid)) { 1719 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1720 return -1; 1721 } 1722 sbi->s_resuid = uid; 1723 } else if (token == Opt_resgid) { 1724 gid = make_kgid(current_user_ns(), arg); 1725 if (!gid_valid(gid)) { 1726 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1727 return -1; 1728 } 1729 sbi->s_resgid = gid; 1730 } else if (token == Opt_journal_dev) { 1731 if (is_remount) { 1732 ext4_msg(sb, KERN_ERR, 1733 "Cannot specify journal on remount"); 1734 return -1; 1735 } 1736 *journal_devnum = arg; 1737 } else if (token == Opt_journal_path) { 1738 char *journal_path; 1739 struct inode *journal_inode; 1740 struct path path; 1741 int error; 1742 1743 if (is_remount) { 1744 ext4_msg(sb, KERN_ERR, 1745 "Cannot specify journal on remount"); 1746 return -1; 1747 } 1748 journal_path = match_strdup(&args[0]); 1749 if (!journal_path) { 1750 ext4_msg(sb, KERN_ERR, "error: could not dup " 1751 "journal device string"); 1752 return -1; 1753 } 1754 1755 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1756 if (error) { 1757 ext4_msg(sb, KERN_ERR, "error: could not find " 1758 "journal device path: error %d", error); 1759 kfree(journal_path); 1760 return -1; 1761 } 1762 1763 journal_inode = d_inode(path.dentry); 1764 if (!S_ISBLK(journal_inode->i_mode)) { 1765 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1766 "is not a block device", journal_path); 1767 path_put(&path); 1768 kfree(journal_path); 1769 return -1; 1770 } 1771 1772 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1773 path_put(&path); 1774 kfree(journal_path); 1775 } else if (token == Opt_journal_ioprio) { 1776 if (arg > 7) { 1777 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1778 " (must be 0-7)"); 1779 return -1; 1780 } 1781 *journal_ioprio = 1782 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1783 } else if (token == Opt_test_dummy_encryption) { 1784 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1785 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1786 ext4_msg(sb, KERN_WARNING, 1787 "Test dummy encryption mode enabled"); 1788 #else 1789 ext4_msg(sb, KERN_WARNING, 1790 "Test dummy encryption mount option ignored"); 1791 #endif 1792 } else if (m->flags & MOPT_DATAJ) { 1793 if (is_remount) { 1794 if (!sbi->s_journal) 1795 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1796 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1797 ext4_msg(sb, KERN_ERR, 1798 "Cannot change data mode on remount"); 1799 return -1; 1800 } 1801 } else { 1802 clear_opt(sb, DATA_FLAGS); 1803 sbi->s_mount_opt |= m->mount_opt; 1804 } 1805 #ifdef CONFIG_QUOTA 1806 } else if (m->flags & MOPT_QFMT) { 1807 if (sb_any_quota_loaded(sb) && 1808 sbi->s_jquota_fmt != m->mount_opt) { 1809 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1810 "quota options when quota turned on"); 1811 return -1; 1812 } 1813 if (ext4_has_feature_quota(sb)) { 1814 ext4_msg(sb, KERN_INFO, 1815 "Quota format mount options ignored " 1816 "when QUOTA feature is enabled"); 1817 return 1; 1818 } 1819 sbi->s_jquota_fmt = m->mount_opt; 1820 #endif 1821 } else if (token == Opt_dax) { 1822 #ifdef CONFIG_FS_DAX 1823 ext4_msg(sb, KERN_WARNING, 1824 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1825 sbi->s_mount_opt |= m->mount_opt; 1826 #else 1827 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1828 return -1; 1829 #endif 1830 } else if (token == Opt_data_err_abort) { 1831 sbi->s_mount_opt |= m->mount_opt; 1832 } else if (token == Opt_data_err_ignore) { 1833 sbi->s_mount_opt &= ~m->mount_opt; 1834 } else { 1835 if (!args->from) 1836 arg = 1; 1837 if (m->flags & MOPT_CLEAR) 1838 arg = !arg; 1839 else if (unlikely(!(m->flags & MOPT_SET))) { 1840 ext4_msg(sb, KERN_WARNING, 1841 "buggy handling of option %s", opt); 1842 WARN_ON(1); 1843 return -1; 1844 } 1845 if (arg != 0) 1846 sbi->s_mount_opt |= m->mount_opt; 1847 else 1848 sbi->s_mount_opt &= ~m->mount_opt; 1849 } 1850 return 1; 1851 } 1852 1853 static int parse_options(char *options, struct super_block *sb, 1854 unsigned long *journal_devnum, 1855 unsigned int *journal_ioprio, 1856 int is_remount) 1857 { 1858 struct ext4_sb_info *sbi = EXT4_SB(sb); 1859 char *p; 1860 substring_t args[MAX_OPT_ARGS]; 1861 int token; 1862 1863 if (!options) 1864 return 1; 1865 1866 while ((p = strsep(&options, ",")) != NULL) { 1867 if (!*p) 1868 continue; 1869 /* 1870 * Initialize args struct so we know whether arg was 1871 * found; some options take optional arguments. 1872 */ 1873 args[0].to = args[0].from = NULL; 1874 token = match_token(p, tokens, args); 1875 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1876 journal_ioprio, is_remount) < 0) 1877 return 0; 1878 } 1879 #ifdef CONFIG_QUOTA 1880 /* 1881 * We do the test below only for project quotas. 'usrquota' and 1882 * 'grpquota' mount options are allowed even without quota feature 1883 * to support legacy quotas in quota files. 1884 */ 1885 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1886 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1887 "Cannot enable project quota enforcement."); 1888 return 0; 1889 } 1890 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1891 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1892 clear_opt(sb, USRQUOTA); 1893 1894 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1895 clear_opt(sb, GRPQUOTA); 1896 1897 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1898 ext4_msg(sb, KERN_ERR, "old and new quota " 1899 "format mixing"); 1900 return 0; 1901 } 1902 1903 if (!sbi->s_jquota_fmt) { 1904 ext4_msg(sb, KERN_ERR, "journaled quota format " 1905 "not specified"); 1906 return 0; 1907 } 1908 } 1909 #endif 1910 if (test_opt(sb, DIOREAD_NOLOCK)) { 1911 int blocksize = 1912 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1913 1914 if (blocksize < PAGE_SIZE) { 1915 ext4_msg(sb, KERN_ERR, "can't mount with " 1916 "dioread_nolock if block size != PAGE_SIZE"); 1917 return 0; 1918 } 1919 } 1920 return 1; 1921 } 1922 1923 static inline void ext4_show_quota_options(struct seq_file *seq, 1924 struct super_block *sb) 1925 { 1926 #if defined(CONFIG_QUOTA) 1927 struct ext4_sb_info *sbi = EXT4_SB(sb); 1928 1929 if (sbi->s_jquota_fmt) { 1930 char *fmtname = ""; 1931 1932 switch (sbi->s_jquota_fmt) { 1933 case QFMT_VFS_OLD: 1934 fmtname = "vfsold"; 1935 break; 1936 case QFMT_VFS_V0: 1937 fmtname = "vfsv0"; 1938 break; 1939 case QFMT_VFS_V1: 1940 fmtname = "vfsv1"; 1941 break; 1942 } 1943 seq_printf(seq, ",jqfmt=%s", fmtname); 1944 } 1945 1946 if (sbi->s_qf_names[USRQUOTA]) 1947 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1948 1949 if (sbi->s_qf_names[GRPQUOTA]) 1950 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1951 #endif 1952 } 1953 1954 static const char *token2str(int token) 1955 { 1956 const struct match_token *t; 1957 1958 for (t = tokens; t->token != Opt_err; t++) 1959 if (t->token == token && !strchr(t->pattern, '=')) 1960 break; 1961 return t->pattern; 1962 } 1963 1964 /* 1965 * Show an option if 1966 * - it's set to a non-default value OR 1967 * - if the per-sb default is different from the global default 1968 */ 1969 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1970 int nodefs) 1971 { 1972 struct ext4_sb_info *sbi = EXT4_SB(sb); 1973 struct ext4_super_block *es = sbi->s_es; 1974 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1975 const struct mount_opts *m; 1976 char sep = nodefs ? '\n' : ','; 1977 1978 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1979 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1980 1981 if (sbi->s_sb_block != 1) 1982 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1983 1984 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1985 int want_set = m->flags & MOPT_SET; 1986 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1987 (m->flags & MOPT_CLEAR_ERR)) 1988 continue; 1989 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1990 continue; /* skip if same as the default */ 1991 if ((want_set && 1992 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1993 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1994 continue; /* select Opt_noFoo vs Opt_Foo */ 1995 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1996 } 1997 1998 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1999 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2000 SEQ_OPTS_PRINT("resuid=%u", 2001 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2002 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2003 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2004 SEQ_OPTS_PRINT("resgid=%u", 2005 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2006 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2007 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2008 SEQ_OPTS_PUTS("errors=remount-ro"); 2009 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2010 SEQ_OPTS_PUTS("errors=continue"); 2011 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2012 SEQ_OPTS_PUTS("errors=panic"); 2013 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2014 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2015 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2016 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2017 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2018 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2019 if (sb->s_flags & MS_I_VERSION) 2020 SEQ_OPTS_PUTS("i_version"); 2021 if (nodefs || sbi->s_stripe) 2022 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2023 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2024 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2025 SEQ_OPTS_PUTS("data=journal"); 2026 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2027 SEQ_OPTS_PUTS("data=ordered"); 2028 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2029 SEQ_OPTS_PUTS("data=writeback"); 2030 } 2031 if (nodefs || 2032 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2033 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2034 sbi->s_inode_readahead_blks); 2035 2036 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2037 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2038 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2039 if (nodefs || sbi->s_max_dir_size_kb) 2040 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2041 if (test_opt(sb, DATA_ERR_ABORT)) 2042 SEQ_OPTS_PUTS("data_err=abort"); 2043 2044 ext4_show_quota_options(seq, sb); 2045 return 0; 2046 } 2047 2048 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2049 { 2050 return _ext4_show_options(seq, root->d_sb, 0); 2051 } 2052 2053 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2054 { 2055 struct super_block *sb = seq->private; 2056 int rc; 2057 2058 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2059 rc = _ext4_show_options(seq, sb, 1); 2060 seq_puts(seq, "\n"); 2061 return rc; 2062 } 2063 2064 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2065 int read_only) 2066 { 2067 struct ext4_sb_info *sbi = EXT4_SB(sb); 2068 int res = 0; 2069 2070 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2071 ext4_msg(sb, KERN_ERR, "revision level too high, " 2072 "forcing read-only mode"); 2073 res = MS_RDONLY; 2074 } 2075 if (read_only) 2076 goto done; 2077 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2078 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2079 "running e2fsck is recommended"); 2080 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2081 ext4_msg(sb, KERN_WARNING, 2082 "warning: mounting fs with errors, " 2083 "running e2fsck is recommended"); 2084 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2085 le16_to_cpu(es->s_mnt_count) >= 2086 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2087 ext4_msg(sb, KERN_WARNING, 2088 "warning: maximal mount count reached, " 2089 "running e2fsck is recommended"); 2090 else if (le32_to_cpu(es->s_checkinterval) && 2091 (le32_to_cpu(es->s_lastcheck) + 2092 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2093 ext4_msg(sb, KERN_WARNING, 2094 "warning: checktime reached, " 2095 "running e2fsck is recommended"); 2096 if (!sbi->s_journal) 2097 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2098 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2099 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2100 le16_add_cpu(&es->s_mnt_count, 1); 2101 es->s_mtime = cpu_to_le32(get_seconds()); 2102 ext4_update_dynamic_rev(sb); 2103 if (sbi->s_journal) 2104 ext4_set_feature_journal_needs_recovery(sb); 2105 2106 ext4_commit_super(sb, 1); 2107 done: 2108 if (test_opt(sb, DEBUG)) 2109 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2110 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2111 sb->s_blocksize, 2112 sbi->s_groups_count, 2113 EXT4_BLOCKS_PER_GROUP(sb), 2114 EXT4_INODES_PER_GROUP(sb), 2115 sbi->s_mount_opt, sbi->s_mount_opt2); 2116 2117 cleancache_init_fs(sb); 2118 return res; 2119 } 2120 2121 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2122 { 2123 struct ext4_sb_info *sbi = EXT4_SB(sb); 2124 struct flex_groups *new_groups; 2125 int size; 2126 2127 if (!sbi->s_log_groups_per_flex) 2128 return 0; 2129 2130 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2131 if (size <= sbi->s_flex_groups_allocated) 2132 return 0; 2133 2134 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2135 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 2136 if (!new_groups) { 2137 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2138 size / (int) sizeof(struct flex_groups)); 2139 return -ENOMEM; 2140 } 2141 2142 if (sbi->s_flex_groups) { 2143 memcpy(new_groups, sbi->s_flex_groups, 2144 (sbi->s_flex_groups_allocated * 2145 sizeof(struct flex_groups))); 2146 kvfree(sbi->s_flex_groups); 2147 } 2148 sbi->s_flex_groups = new_groups; 2149 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2150 return 0; 2151 } 2152 2153 static int ext4_fill_flex_info(struct super_block *sb) 2154 { 2155 struct ext4_sb_info *sbi = EXT4_SB(sb); 2156 struct ext4_group_desc *gdp = NULL; 2157 ext4_group_t flex_group; 2158 int i, err; 2159 2160 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2161 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2162 sbi->s_log_groups_per_flex = 0; 2163 return 1; 2164 } 2165 2166 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2167 if (err) 2168 goto failed; 2169 2170 for (i = 0; i < sbi->s_groups_count; i++) { 2171 gdp = ext4_get_group_desc(sb, i, NULL); 2172 2173 flex_group = ext4_flex_group(sbi, i); 2174 atomic_add(ext4_free_inodes_count(sb, gdp), 2175 &sbi->s_flex_groups[flex_group].free_inodes); 2176 atomic64_add(ext4_free_group_clusters(sb, gdp), 2177 &sbi->s_flex_groups[flex_group].free_clusters); 2178 atomic_add(ext4_used_dirs_count(sb, gdp), 2179 &sbi->s_flex_groups[flex_group].used_dirs); 2180 } 2181 2182 return 1; 2183 failed: 2184 return 0; 2185 } 2186 2187 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2188 struct ext4_group_desc *gdp) 2189 { 2190 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2191 __u16 crc = 0; 2192 __le32 le_group = cpu_to_le32(block_group); 2193 struct ext4_sb_info *sbi = EXT4_SB(sb); 2194 2195 if (ext4_has_metadata_csum(sbi->s_sb)) { 2196 /* Use new metadata_csum algorithm */ 2197 __u32 csum32; 2198 __u16 dummy_csum = 0; 2199 2200 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2201 sizeof(le_group)); 2202 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2203 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2204 sizeof(dummy_csum)); 2205 offset += sizeof(dummy_csum); 2206 if (offset < sbi->s_desc_size) 2207 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2208 sbi->s_desc_size - offset); 2209 2210 crc = csum32 & 0xFFFF; 2211 goto out; 2212 } 2213 2214 /* old crc16 code */ 2215 if (!ext4_has_feature_gdt_csum(sb)) 2216 return 0; 2217 2218 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2219 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2220 crc = crc16(crc, (__u8 *)gdp, offset); 2221 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2222 /* for checksum of struct ext4_group_desc do the rest...*/ 2223 if (ext4_has_feature_64bit(sb) && 2224 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2225 crc = crc16(crc, (__u8 *)gdp + offset, 2226 le16_to_cpu(sbi->s_es->s_desc_size) - 2227 offset); 2228 2229 out: 2230 return cpu_to_le16(crc); 2231 } 2232 2233 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2234 struct ext4_group_desc *gdp) 2235 { 2236 if (ext4_has_group_desc_csum(sb) && 2237 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2238 return 0; 2239 2240 return 1; 2241 } 2242 2243 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2244 struct ext4_group_desc *gdp) 2245 { 2246 if (!ext4_has_group_desc_csum(sb)) 2247 return; 2248 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2249 } 2250 2251 /* Called at mount-time, super-block is locked */ 2252 static int ext4_check_descriptors(struct super_block *sb, 2253 ext4_fsblk_t sb_block, 2254 ext4_group_t *first_not_zeroed) 2255 { 2256 struct ext4_sb_info *sbi = EXT4_SB(sb); 2257 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2258 ext4_fsblk_t last_block; 2259 ext4_fsblk_t block_bitmap; 2260 ext4_fsblk_t inode_bitmap; 2261 ext4_fsblk_t inode_table; 2262 int flexbg_flag = 0; 2263 ext4_group_t i, grp = sbi->s_groups_count; 2264 2265 if (ext4_has_feature_flex_bg(sb)) 2266 flexbg_flag = 1; 2267 2268 ext4_debug("Checking group descriptors"); 2269 2270 for (i = 0; i < sbi->s_groups_count; i++) { 2271 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2272 2273 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2274 last_block = ext4_blocks_count(sbi->s_es) - 1; 2275 else 2276 last_block = first_block + 2277 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2278 2279 if ((grp == sbi->s_groups_count) && 2280 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2281 grp = i; 2282 2283 block_bitmap = ext4_block_bitmap(sb, gdp); 2284 if (block_bitmap == sb_block) { 2285 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2286 "Block bitmap for group %u overlaps " 2287 "superblock", i); 2288 } 2289 if (block_bitmap < first_block || block_bitmap > last_block) { 2290 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2291 "Block bitmap for group %u not in group " 2292 "(block %llu)!", i, block_bitmap); 2293 return 0; 2294 } 2295 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2296 if (inode_bitmap == sb_block) { 2297 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2298 "Inode bitmap for group %u overlaps " 2299 "superblock", i); 2300 } 2301 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2302 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2303 "Inode bitmap for group %u not in group " 2304 "(block %llu)!", i, inode_bitmap); 2305 return 0; 2306 } 2307 inode_table = ext4_inode_table(sb, gdp); 2308 if (inode_table == sb_block) { 2309 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2310 "Inode table for group %u overlaps " 2311 "superblock", i); 2312 } 2313 if (inode_table < first_block || 2314 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2315 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2316 "Inode table for group %u not in group " 2317 "(block %llu)!", i, inode_table); 2318 return 0; 2319 } 2320 ext4_lock_group(sb, i); 2321 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2322 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2323 "Checksum for group %u failed (%u!=%u)", 2324 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2325 gdp)), le16_to_cpu(gdp->bg_checksum)); 2326 if (!(sb->s_flags & MS_RDONLY)) { 2327 ext4_unlock_group(sb, i); 2328 return 0; 2329 } 2330 } 2331 ext4_unlock_group(sb, i); 2332 if (!flexbg_flag) 2333 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2334 } 2335 if (NULL != first_not_zeroed) 2336 *first_not_zeroed = grp; 2337 return 1; 2338 } 2339 2340 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2341 * the superblock) which were deleted from all directories, but held open by 2342 * a process at the time of a crash. We walk the list and try to delete these 2343 * inodes at recovery time (only with a read-write filesystem). 2344 * 2345 * In order to keep the orphan inode chain consistent during traversal (in 2346 * case of crash during recovery), we link each inode into the superblock 2347 * orphan list_head and handle it the same way as an inode deletion during 2348 * normal operation (which journals the operations for us). 2349 * 2350 * We only do an iget() and an iput() on each inode, which is very safe if we 2351 * accidentally point at an in-use or already deleted inode. The worst that 2352 * can happen in this case is that we get a "bit already cleared" message from 2353 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2354 * e2fsck was run on this filesystem, and it must have already done the orphan 2355 * inode cleanup for us, so we can safely abort without any further action. 2356 */ 2357 static void ext4_orphan_cleanup(struct super_block *sb, 2358 struct ext4_super_block *es) 2359 { 2360 unsigned int s_flags = sb->s_flags; 2361 int ret, nr_orphans = 0, nr_truncates = 0; 2362 #ifdef CONFIG_QUOTA 2363 int i; 2364 #endif 2365 if (!es->s_last_orphan) { 2366 jbd_debug(4, "no orphan inodes to clean up\n"); 2367 return; 2368 } 2369 2370 if (bdev_read_only(sb->s_bdev)) { 2371 ext4_msg(sb, KERN_ERR, "write access " 2372 "unavailable, skipping orphan cleanup"); 2373 return; 2374 } 2375 2376 /* Check if feature set would not allow a r/w mount */ 2377 if (!ext4_feature_set_ok(sb, 0)) { 2378 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2379 "unknown ROCOMPAT features"); 2380 return; 2381 } 2382 2383 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2384 /* don't clear list on RO mount w/ errors */ 2385 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2386 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2387 "clearing orphan list.\n"); 2388 es->s_last_orphan = 0; 2389 } 2390 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2391 return; 2392 } 2393 2394 if (s_flags & MS_RDONLY) { 2395 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2396 sb->s_flags &= ~MS_RDONLY; 2397 } 2398 #ifdef CONFIG_QUOTA 2399 /* Needed for iput() to work correctly and not trash data */ 2400 sb->s_flags |= MS_ACTIVE; 2401 /* Turn on quotas so that they are updated correctly */ 2402 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2403 if (EXT4_SB(sb)->s_qf_names[i]) { 2404 int ret = ext4_quota_on_mount(sb, i); 2405 if (ret < 0) 2406 ext4_msg(sb, KERN_ERR, 2407 "Cannot turn on journaled " 2408 "quota: error %d", ret); 2409 } 2410 } 2411 #endif 2412 2413 while (es->s_last_orphan) { 2414 struct inode *inode; 2415 2416 /* 2417 * We may have encountered an error during cleanup; if 2418 * so, skip the rest. 2419 */ 2420 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2421 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2422 es->s_last_orphan = 0; 2423 break; 2424 } 2425 2426 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2427 if (IS_ERR(inode)) { 2428 es->s_last_orphan = 0; 2429 break; 2430 } 2431 2432 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2433 dquot_initialize(inode); 2434 if (inode->i_nlink) { 2435 if (test_opt(sb, DEBUG)) 2436 ext4_msg(sb, KERN_DEBUG, 2437 "%s: truncating inode %lu to %lld bytes", 2438 __func__, inode->i_ino, inode->i_size); 2439 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2440 inode->i_ino, inode->i_size); 2441 inode_lock(inode); 2442 truncate_inode_pages(inode->i_mapping, inode->i_size); 2443 ret = ext4_truncate(inode); 2444 if (ret) 2445 ext4_std_error(inode->i_sb, ret); 2446 inode_unlock(inode); 2447 nr_truncates++; 2448 } else { 2449 if (test_opt(sb, DEBUG)) 2450 ext4_msg(sb, KERN_DEBUG, 2451 "%s: deleting unreferenced inode %lu", 2452 __func__, inode->i_ino); 2453 jbd_debug(2, "deleting unreferenced inode %lu\n", 2454 inode->i_ino); 2455 nr_orphans++; 2456 } 2457 iput(inode); /* The delete magic happens here! */ 2458 } 2459 2460 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2461 2462 if (nr_orphans) 2463 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2464 PLURAL(nr_orphans)); 2465 if (nr_truncates) 2466 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2467 PLURAL(nr_truncates)); 2468 #ifdef CONFIG_QUOTA 2469 /* Turn quotas off */ 2470 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2471 if (sb_dqopt(sb)->files[i]) 2472 dquot_quota_off(sb, i); 2473 } 2474 #endif 2475 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2476 } 2477 2478 /* 2479 * Maximal extent format file size. 2480 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2481 * extent format containers, within a sector_t, and within i_blocks 2482 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2483 * so that won't be a limiting factor. 2484 * 2485 * However there is other limiting factor. We do store extents in the form 2486 * of starting block and length, hence the resulting length of the extent 2487 * covering maximum file size must fit into on-disk format containers as 2488 * well. Given that length is always by 1 unit bigger than max unit (because 2489 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2490 * 2491 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2492 */ 2493 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2494 { 2495 loff_t res; 2496 loff_t upper_limit = MAX_LFS_FILESIZE; 2497 2498 /* small i_blocks in vfs inode? */ 2499 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2500 /* 2501 * CONFIG_LBDAF is not enabled implies the inode 2502 * i_block represent total blocks in 512 bytes 2503 * 32 == size of vfs inode i_blocks * 8 2504 */ 2505 upper_limit = (1LL << 32) - 1; 2506 2507 /* total blocks in file system block size */ 2508 upper_limit >>= (blkbits - 9); 2509 upper_limit <<= blkbits; 2510 } 2511 2512 /* 2513 * 32-bit extent-start container, ee_block. We lower the maxbytes 2514 * by one fs block, so ee_len can cover the extent of maximum file 2515 * size 2516 */ 2517 res = (1LL << 32) - 1; 2518 res <<= blkbits; 2519 2520 /* Sanity check against vm- & vfs- imposed limits */ 2521 if (res > upper_limit) 2522 res = upper_limit; 2523 2524 return res; 2525 } 2526 2527 /* 2528 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2529 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2530 * We need to be 1 filesystem block less than the 2^48 sector limit. 2531 */ 2532 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2533 { 2534 loff_t res = EXT4_NDIR_BLOCKS; 2535 int meta_blocks; 2536 loff_t upper_limit; 2537 /* This is calculated to be the largest file size for a dense, block 2538 * mapped file such that the file's total number of 512-byte sectors, 2539 * including data and all indirect blocks, does not exceed (2^48 - 1). 2540 * 2541 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2542 * number of 512-byte sectors of the file. 2543 */ 2544 2545 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2546 /* 2547 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2548 * the inode i_block field represents total file blocks in 2549 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2550 */ 2551 upper_limit = (1LL << 32) - 1; 2552 2553 /* total blocks in file system block size */ 2554 upper_limit >>= (bits - 9); 2555 2556 } else { 2557 /* 2558 * We use 48 bit ext4_inode i_blocks 2559 * With EXT4_HUGE_FILE_FL set the i_blocks 2560 * represent total number of blocks in 2561 * file system block size 2562 */ 2563 upper_limit = (1LL << 48) - 1; 2564 2565 } 2566 2567 /* indirect blocks */ 2568 meta_blocks = 1; 2569 /* double indirect blocks */ 2570 meta_blocks += 1 + (1LL << (bits-2)); 2571 /* tripple indirect blocks */ 2572 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2573 2574 upper_limit -= meta_blocks; 2575 upper_limit <<= bits; 2576 2577 res += 1LL << (bits-2); 2578 res += 1LL << (2*(bits-2)); 2579 res += 1LL << (3*(bits-2)); 2580 res <<= bits; 2581 if (res > upper_limit) 2582 res = upper_limit; 2583 2584 if (res > MAX_LFS_FILESIZE) 2585 res = MAX_LFS_FILESIZE; 2586 2587 return res; 2588 } 2589 2590 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2591 ext4_fsblk_t logical_sb_block, int nr) 2592 { 2593 struct ext4_sb_info *sbi = EXT4_SB(sb); 2594 ext4_group_t bg, first_meta_bg; 2595 int has_super = 0; 2596 2597 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2598 2599 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2600 return logical_sb_block + nr + 1; 2601 bg = sbi->s_desc_per_block * nr; 2602 if (ext4_bg_has_super(sb, bg)) 2603 has_super = 1; 2604 2605 /* 2606 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2607 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2608 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2609 * compensate. 2610 */ 2611 if (sb->s_blocksize == 1024 && nr == 0 && 2612 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2613 has_super++; 2614 2615 return (has_super + ext4_group_first_block_no(sb, bg)); 2616 } 2617 2618 /** 2619 * ext4_get_stripe_size: Get the stripe size. 2620 * @sbi: In memory super block info 2621 * 2622 * If we have specified it via mount option, then 2623 * use the mount option value. If the value specified at mount time is 2624 * greater than the blocks per group use the super block value. 2625 * If the super block value is greater than blocks per group return 0. 2626 * Allocator needs it be less than blocks per group. 2627 * 2628 */ 2629 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2630 { 2631 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2632 unsigned long stripe_width = 2633 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2634 int ret; 2635 2636 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2637 ret = sbi->s_stripe; 2638 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2639 ret = stripe_width; 2640 else if (stride && stride <= sbi->s_blocks_per_group) 2641 ret = stride; 2642 else 2643 ret = 0; 2644 2645 /* 2646 * If the stripe width is 1, this makes no sense and 2647 * we set it to 0 to turn off stripe handling code. 2648 */ 2649 if (ret <= 1) 2650 ret = 0; 2651 2652 return ret; 2653 } 2654 2655 /* 2656 * Check whether this filesystem can be mounted based on 2657 * the features present and the RDONLY/RDWR mount requested. 2658 * Returns 1 if this filesystem can be mounted as requested, 2659 * 0 if it cannot be. 2660 */ 2661 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2662 { 2663 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2664 ext4_msg(sb, KERN_ERR, 2665 "Couldn't mount because of " 2666 "unsupported optional features (%x)", 2667 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2668 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2669 return 0; 2670 } 2671 2672 if (readonly) 2673 return 1; 2674 2675 if (ext4_has_feature_readonly(sb)) { 2676 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2677 sb->s_flags |= MS_RDONLY; 2678 return 1; 2679 } 2680 2681 /* Check that feature set is OK for a read-write mount */ 2682 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2683 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2684 "unsupported optional features (%x)", 2685 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2686 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2687 return 0; 2688 } 2689 /* 2690 * Large file size enabled file system can only be mounted 2691 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2692 */ 2693 if (ext4_has_feature_huge_file(sb)) { 2694 if (sizeof(blkcnt_t) < sizeof(u64)) { 2695 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2696 "cannot be mounted RDWR without " 2697 "CONFIG_LBDAF"); 2698 return 0; 2699 } 2700 } 2701 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2702 ext4_msg(sb, KERN_ERR, 2703 "Can't support bigalloc feature without " 2704 "extents feature\n"); 2705 return 0; 2706 } 2707 2708 #ifndef CONFIG_QUOTA 2709 if (ext4_has_feature_quota(sb) && !readonly) { 2710 ext4_msg(sb, KERN_ERR, 2711 "Filesystem with quota feature cannot be mounted RDWR " 2712 "without CONFIG_QUOTA"); 2713 return 0; 2714 } 2715 if (ext4_has_feature_project(sb) && !readonly) { 2716 ext4_msg(sb, KERN_ERR, 2717 "Filesystem with project quota feature cannot be mounted RDWR " 2718 "without CONFIG_QUOTA"); 2719 return 0; 2720 } 2721 #endif /* CONFIG_QUOTA */ 2722 return 1; 2723 } 2724 2725 /* 2726 * This function is called once a day if we have errors logged 2727 * on the file system 2728 */ 2729 static void print_daily_error_info(unsigned long arg) 2730 { 2731 struct super_block *sb = (struct super_block *) arg; 2732 struct ext4_sb_info *sbi; 2733 struct ext4_super_block *es; 2734 2735 sbi = EXT4_SB(sb); 2736 es = sbi->s_es; 2737 2738 if (es->s_error_count) 2739 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2740 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2741 le32_to_cpu(es->s_error_count)); 2742 if (es->s_first_error_time) { 2743 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2744 sb->s_id, le32_to_cpu(es->s_first_error_time), 2745 (int) sizeof(es->s_first_error_func), 2746 es->s_first_error_func, 2747 le32_to_cpu(es->s_first_error_line)); 2748 if (es->s_first_error_ino) 2749 printk(KERN_CONT ": inode %u", 2750 le32_to_cpu(es->s_first_error_ino)); 2751 if (es->s_first_error_block) 2752 printk(KERN_CONT ": block %llu", (unsigned long long) 2753 le64_to_cpu(es->s_first_error_block)); 2754 printk(KERN_CONT "\n"); 2755 } 2756 if (es->s_last_error_time) { 2757 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2758 sb->s_id, le32_to_cpu(es->s_last_error_time), 2759 (int) sizeof(es->s_last_error_func), 2760 es->s_last_error_func, 2761 le32_to_cpu(es->s_last_error_line)); 2762 if (es->s_last_error_ino) 2763 printk(KERN_CONT ": inode %u", 2764 le32_to_cpu(es->s_last_error_ino)); 2765 if (es->s_last_error_block) 2766 printk(KERN_CONT ": block %llu", (unsigned long long) 2767 le64_to_cpu(es->s_last_error_block)); 2768 printk(KERN_CONT "\n"); 2769 } 2770 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2771 } 2772 2773 /* Find next suitable group and run ext4_init_inode_table */ 2774 static int ext4_run_li_request(struct ext4_li_request *elr) 2775 { 2776 struct ext4_group_desc *gdp = NULL; 2777 ext4_group_t group, ngroups; 2778 struct super_block *sb; 2779 unsigned long timeout = 0; 2780 int ret = 0; 2781 2782 sb = elr->lr_super; 2783 ngroups = EXT4_SB(sb)->s_groups_count; 2784 2785 for (group = elr->lr_next_group; group < ngroups; group++) { 2786 gdp = ext4_get_group_desc(sb, group, NULL); 2787 if (!gdp) { 2788 ret = 1; 2789 break; 2790 } 2791 2792 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2793 break; 2794 } 2795 2796 if (group >= ngroups) 2797 ret = 1; 2798 2799 if (!ret) { 2800 timeout = jiffies; 2801 ret = ext4_init_inode_table(sb, group, 2802 elr->lr_timeout ? 0 : 1); 2803 if (elr->lr_timeout == 0) { 2804 timeout = (jiffies - timeout) * 2805 elr->lr_sbi->s_li_wait_mult; 2806 elr->lr_timeout = timeout; 2807 } 2808 elr->lr_next_sched = jiffies + elr->lr_timeout; 2809 elr->lr_next_group = group + 1; 2810 } 2811 return ret; 2812 } 2813 2814 /* 2815 * Remove lr_request from the list_request and free the 2816 * request structure. Should be called with li_list_mtx held 2817 */ 2818 static void ext4_remove_li_request(struct ext4_li_request *elr) 2819 { 2820 struct ext4_sb_info *sbi; 2821 2822 if (!elr) 2823 return; 2824 2825 sbi = elr->lr_sbi; 2826 2827 list_del(&elr->lr_request); 2828 sbi->s_li_request = NULL; 2829 kfree(elr); 2830 } 2831 2832 static void ext4_unregister_li_request(struct super_block *sb) 2833 { 2834 mutex_lock(&ext4_li_mtx); 2835 if (!ext4_li_info) { 2836 mutex_unlock(&ext4_li_mtx); 2837 return; 2838 } 2839 2840 mutex_lock(&ext4_li_info->li_list_mtx); 2841 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2842 mutex_unlock(&ext4_li_info->li_list_mtx); 2843 mutex_unlock(&ext4_li_mtx); 2844 } 2845 2846 static struct task_struct *ext4_lazyinit_task; 2847 2848 /* 2849 * This is the function where ext4lazyinit thread lives. It walks 2850 * through the request list searching for next scheduled filesystem. 2851 * When such a fs is found, run the lazy initialization request 2852 * (ext4_rn_li_request) and keep track of the time spend in this 2853 * function. Based on that time we compute next schedule time of 2854 * the request. When walking through the list is complete, compute 2855 * next waking time and put itself into sleep. 2856 */ 2857 static int ext4_lazyinit_thread(void *arg) 2858 { 2859 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2860 struct list_head *pos, *n; 2861 struct ext4_li_request *elr; 2862 unsigned long next_wakeup, cur; 2863 2864 BUG_ON(NULL == eli); 2865 2866 cont_thread: 2867 while (true) { 2868 next_wakeup = MAX_JIFFY_OFFSET; 2869 2870 mutex_lock(&eli->li_list_mtx); 2871 if (list_empty(&eli->li_request_list)) { 2872 mutex_unlock(&eli->li_list_mtx); 2873 goto exit_thread; 2874 } 2875 list_for_each_safe(pos, n, &eli->li_request_list) { 2876 int err = 0; 2877 int progress = 0; 2878 elr = list_entry(pos, struct ext4_li_request, 2879 lr_request); 2880 2881 if (time_before(jiffies, elr->lr_next_sched)) { 2882 if (time_before(elr->lr_next_sched, next_wakeup)) 2883 next_wakeup = elr->lr_next_sched; 2884 continue; 2885 } 2886 if (down_read_trylock(&elr->lr_super->s_umount)) { 2887 if (sb_start_write_trylock(elr->lr_super)) { 2888 progress = 1; 2889 /* 2890 * We hold sb->s_umount, sb can not 2891 * be removed from the list, it is 2892 * now safe to drop li_list_mtx 2893 */ 2894 mutex_unlock(&eli->li_list_mtx); 2895 err = ext4_run_li_request(elr); 2896 sb_end_write(elr->lr_super); 2897 mutex_lock(&eli->li_list_mtx); 2898 n = pos->next; 2899 } 2900 up_read((&elr->lr_super->s_umount)); 2901 } 2902 /* error, remove the lazy_init job */ 2903 if (err) { 2904 ext4_remove_li_request(elr); 2905 continue; 2906 } 2907 if (!progress) { 2908 elr->lr_next_sched = jiffies + 2909 (prandom_u32() 2910 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2911 } 2912 if (time_before(elr->lr_next_sched, next_wakeup)) 2913 next_wakeup = elr->lr_next_sched; 2914 } 2915 mutex_unlock(&eli->li_list_mtx); 2916 2917 try_to_freeze(); 2918 2919 cur = jiffies; 2920 if ((time_after_eq(cur, next_wakeup)) || 2921 (MAX_JIFFY_OFFSET == next_wakeup)) { 2922 cond_resched(); 2923 continue; 2924 } 2925 2926 schedule_timeout_interruptible(next_wakeup - cur); 2927 2928 if (kthread_should_stop()) { 2929 ext4_clear_request_list(); 2930 goto exit_thread; 2931 } 2932 } 2933 2934 exit_thread: 2935 /* 2936 * It looks like the request list is empty, but we need 2937 * to check it under the li_list_mtx lock, to prevent any 2938 * additions into it, and of course we should lock ext4_li_mtx 2939 * to atomically free the list and ext4_li_info, because at 2940 * this point another ext4 filesystem could be registering 2941 * new one. 2942 */ 2943 mutex_lock(&ext4_li_mtx); 2944 mutex_lock(&eli->li_list_mtx); 2945 if (!list_empty(&eli->li_request_list)) { 2946 mutex_unlock(&eli->li_list_mtx); 2947 mutex_unlock(&ext4_li_mtx); 2948 goto cont_thread; 2949 } 2950 mutex_unlock(&eli->li_list_mtx); 2951 kfree(ext4_li_info); 2952 ext4_li_info = NULL; 2953 mutex_unlock(&ext4_li_mtx); 2954 2955 return 0; 2956 } 2957 2958 static void ext4_clear_request_list(void) 2959 { 2960 struct list_head *pos, *n; 2961 struct ext4_li_request *elr; 2962 2963 mutex_lock(&ext4_li_info->li_list_mtx); 2964 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2965 elr = list_entry(pos, struct ext4_li_request, 2966 lr_request); 2967 ext4_remove_li_request(elr); 2968 } 2969 mutex_unlock(&ext4_li_info->li_list_mtx); 2970 } 2971 2972 static int ext4_run_lazyinit_thread(void) 2973 { 2974 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2975 ext4_li_info, "ext4lazyinit"); 2976 if (IS_ERR(ext4_lazyinit_task)) { 2977 int err = PTR_ERR(ext4_lazyinit_task); 2978 ext4_clear_request_list(); 2979 kfree(ext4_li_info); 2980 ext4_li_info = NULL; 2981 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2982 "initialization thread\n", 2983 err); 2984 return err; 2985 } 2986 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2987 return 0; 2988 } 2989 2990 /* 2991 * Check whether it make sense to run itable init. thread or not. 2992 * If there is at least one uninitialized inode table, return 2993 * corresponding group number, else the loop goes through all 2994 * groups and return total number of groups. 2995 */ 2996 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2997 { 2998 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2999 struct ext4_group_desc *gdp = NULL; 3000 3001 for (group = 0; group < ngroups; group++) { 3002 gdp = ext4_get_group_desc(sb, group, NULL); 3003 if (!gdp) 3004 continue; 3005 3006 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3007 break; 3008 } 3009 3010 return group; 3011 } 3012 3013 static int ext4_li_info_new(void) 3014 { 3015 struct ext4_lazy_init *eli = NULL; 3016 3017 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3018 if (!eli) 3019 return -ENOMEM; 3020 3021 INIT_LIST_HEAD(&eli->li_request_list); 3022 mutex_init(&eli->li_list_mtx); 3023 3024 eli->li_state |= EXT4_LAZYINIT_QUIT; 3025 3026 ext4_li_info = eli; 3027 3028 return 0; 3029 } 3030 3031 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3032 ext4_group_t start) 3033 { 3034 struct ext4_sb_info *sbi = EXT4_SB(sb); 3035 struct ext4_li_request *elr; 3036 3037 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3038 if (!elr) 3039 return NULL; 3040 3041 elr->lr_super = sb; 3042 elr->lr_sbi = sbi; 3043 elr->lr_next_group = start; 3044 3045 /* 3046 * Randomize first schedule time of the request to 3047 * spread the inode table initialization requests 3048 * better. 3049 */ 3050 elr->lr_next_sched = jiffies + (prandom_u32() % 3051 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3052 return elr; 3053 } 3054 3055 int ext4_register_li_request(struct super_block *sb, 3056 ext4_group_t first_not_zeroed) 3057 { 3058 struct ext4_sb_info *sbi = EXT4_SB(sb); 3059 struct ext4_li_request *elr = NULL; 3060 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3061 int ret = 0; 3062 3063 mutex_lock(&ext4_li_mtx); 3064 if (sbi->s_li_request != NULL) { 3065 /* 3066 * Reset timeout so it can be computed again, because 3067 * s_li_wait_mult might have changed. 3068 */ 3069 sbi->s_li_request->lr_timeout = 0; 3070 goto out; 3071 } 3072 3073 if (first_not_zeroed == ngroups || 3074 (sb->s_flags & MS_RDONLY) || 3075 !test_opt(sb, INIT_INODE_TABLE)) 3076 goto out; 3077 3078 elr = ext4_li_request_new(sb, first_not_zeroed); 3079 if (!elr) { 3080 ret = -ENOMEM; 3081 goto out; 3082 } 3083 3084 if (NULL == ext4_li_info) { 3085 ret = ext4_li_info_new(); 3086 if (ret) 3087 goto out; 3088 } 3089 3090 mutex_lock(&ext4_li_info->li_list_mtx); 3091 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3092 mutex_unlock(&ext4_li_info->li_list_mtx); 3093 3094 sbi->s_li_request = elr; 3095 /* 3096 * set elr to NULL here since it has been inserted to 3097 * the request_list and the removal and free of it is 3098 * handled by ext4_clear_request_list from now on. 3099 */ 3100 elr = NULL; 3101 3102 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3103 ret = ext4_run_lazyinit_thread(); 3104 if (ret) 3105 goto out; 3106 } 3107 out: 3108 mutex_unlock(&ext4_li_mtx); 3109 if (ret) 3110 kfree(elr); 3111 return ret; 3112 } 3113 3114 /* 3115 * We do not need to lock anything since this is called on 3116 * module unload. 3117 */ 3118 static void ext4_destroy_lazyinit_thread(void) 3119 { 3120 /* 3121 * If thread exited earlier 3122 * there's nothing to be done. 3123 */ 3124 if (!ext4_li_info || !ext4_lazyinit_task) 3125 return; 3126 3127 kthread_stop(ext4_lazyinit_task); 3128 } 3129 3130 static int set_journal_csum_feature_set(struct super_block *sb) 3131 { 3132 int ret = 1; 3133 int compat, incompat; 3134 struct ext4_sb_info *sbi = EXT4_SB(sb); 3135 3136 if (ext4_has_metadata_csum(sb)) { 3137 /* journal checksum v3 */ 3138 compat = 0; 3139 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3140 } else { 3141 /* journal checksum v1 */ 3142 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3143 incompat = 0; 3144 } 3145 3146 jbd2_journal_clear_features(sbi->s_journal, 3147 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3148 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3149 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3150 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3151 ret = jbd2_journal_set_features(sbi->s_journal, 3152 compat, 0, 3153 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3154 incompat); 3155 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3156 ret = jbd2_journal_set_features(sbi->s_journal, 3157 compat, 0, 3158 incompat); 3159 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3160 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3161 } else { 3162 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3163 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3164 } 3165 3166 return ret; 3167 } 3168 3169 /* 3170 * Note: calculating the overhead so we can be compatible with 3171 * historical BSD practice is quite difficult in the face of 3172 * clusters/bigalloc. This is because multiple metadata blocks from 3173 * different block group can end up in the same allocation cluster. 3174 * Calculating the exact overhead in the face of clustered allocation 3175 * requires either O(all block bitmaps) in memory or O(number of block 3176 * groups**2) in time. We will still calculate the superblock for 3177 * older file systems --- and if we come across with a bigalloc file 3178 * system with zero in s_overhead_clusters the estimate will be close to 3179 * correct especially for very large cluster sizes --- but for newer 3180 * file systems, it's better to calculate this figure once at mkfs 3181 * time, and store it in the superblock. If the superblock value is 3182 * present (even for non-bigalloc file systems), we will use it. 3183 */ 3184 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3185 char *buf) 3186 { 3187 struct ext4_sb_info *sbi = EXT4_SB(sb); 3188 struct ext4_group_desc *gdp; 3189 ext4_fsblk_t first_block, last_block, b; 3190 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3191 int s, j, count = 0; 3192 3193 if (!ext4_has_feature_bigalloc(sb)) 3194 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3195 sbi->s_itb_per_group + 2); 3196 3197 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3198 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3199 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3200 for (i = 0; i < ngroups; i++) { 3201 gdp = ext4_get_group_desc(sb, i, NULL); 3202 b = ext4_block_bitmap(sb, gdp); 3203 if (b >= first_block && b <= last_block) { 3204 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3205 count++; 3206 } 3207 b = ext4_inode_bitmap(sb, gdp); 3208 if (b >= first_block && b <= last_block) { 3209 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3210 count++; 3211 } 3212 b = ext4_inode_table(sb, gdp); 3213 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3214 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3215 int c = EXT4_B2C(sbi, b - first_block); 3216 ext4_set_bit(c, buf); 3217 count++; 3218 } 3219 if (i != grp) 3220 continue; 3221 s = 0; 3222 if (ext4_bg_has_super(sb, grp)) { 3223 ext4_set_bit(s++, buf); 3224 count++; 3225 } 3226 j = ext4_bg_num_gdb(sb, grp); 3227 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3228 ext4_error(sb, "Invalid number of block group " 3229 "descriptor blocks: %d", j); 3230 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3231 } 3232 count += j; 3233 for (; j > 0; j--) 3234 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3235 } 3236 if (!count) 3237 return 0; 3238 return EXT4_CLUSTERS_PER_GROUP(sb) - 3239 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3240 } 3241 3242 /* 3243 * Compute the overhead and stash it in sbi->s_overhead 3244 */ 3245 int ext4_calculate_overhead(struct super_block *sb) 3246 { 3247 struct ext4_sb_info *sbi = EXT4_SB(sb); 3248 struct ext4_super_block *es = sbi->s_es; 3249 struct inode *j_inode; 3250 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3251 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3252 ext4_fsblk_t overhead = 0; 3253 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3254 3255 if (!buf) 3256 return -ENOMEM; 3257 3258 /* 3259 * Compute the overhead (FS structures). This is constant 3260 * for a given filesystem unless the number of block groups 3261 * changes so we cache the previous value until it does. 3262 */ 3263 3264 /* 3265 * All of the blocks before first_data_block are overhead 3266 */ 3267 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3268 3269 /* 3270 * Add the overhead found in each block group 3271 */ 3272 for (i = 0; i < ngroups; i++) { 3273 int blks; 3274 3275 blks = count_overhead(sb, i, buf); 3276 overhead += blks; 3277 if (blks) 3278 memset(buf, 0, PAGE_SIZE); 3279 cond_resched(); 3280 } 3281 3282 /* 3283 * Add the internal journal blocks whether the journal has been 3284 * loaded or not 3285 */ 3286 if (sbi->s_journal && !sbi->journal_bdev) 3287 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3288 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3289 j_inode = ext4_get_journal_inode(sb, j_inum); 3290 if (j_inode) { 3291 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3292 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3293 iput(j_inode); 3294 } else { 3295 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3296 } 3297 } 3298 sbi->s_overhead = overhead; 3299 smp_wmb(); 3300 free_page((unsigned long) buf); 3301 return 0; 3302 } 3303 3304 static void ext4_set_resv_clusters(struct super_block *sb) 3305 { 3306 ext4_fsblk_t resv_clusters; 3307 struct ext4_sb_info *sbi = EXT4_SB(sb); 3308 3309 /* 3310 * There's no need to reserve anything when we aren't using extents. 3311 * The space estimates are exact, there are no unwritten extents, 3312 * hole punching doesn't need new metadata... This is needed especially 3313 * to keep ext2/3 backward compatibility. 3314 */ 3315 if (!ext4_has_feature_extents(sb)) 3316 return; 3317 /* 3318 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3319 * This should cover the situations where we can not afford to run 3320 * out of space like for example punch hole, or converting 3321 * unwritten extents in delalloc path. In most cases such 3322 * allocation would require 1, or 2 blocks, higher numbers are 3323 * very rare. 3324 */ 3325 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3326 sbi->s_cluster_bits); 3327 3328 do_div(resv_clusters, 50); 3329 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3330 3331 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3332 } 3333 3334 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3335 { 3336 char *orig_data = kstrdup(data, GFP_KERNEL); 3337 struct buffer_head *bh; 3338 struct ext4_super_block *es = NULL; 3339 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3340 ext4_fsblk_t block; 3341 ext4_fsblk_t sb_block = get_sb_block(&data); 3342 ext4_fsblk_t logical_sb_block; 3343 unsigned long offset = 0; 3344 unsigned long journal_devnum = 0; 3345 unsigned long def_mount_opts; 3346 struct inode *root; 3347 const char *descr; 3348 int ret = -ENOMEM; 3349 int blocksize, clustersize; 3350 unsigned int db_count; 3351 unsigned int i; 3352 int needs_recovery, has_huge_files, has_bigalloc; 3353 __u64 blocks_count; 3354 int err = 0; 3355 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3356 ext4_group_t first_not_zeroed; 3357 3358 if ((data && !orig_data) || !sbi) 3359 goto out_free_base; 3360 3361 sbi->s_blockgroup_lock = 3362 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3363 if (!sbi->s_blockgroup_lock) 3364 goto out_free_base; 3365 3366 sb->s_fs_info = sbi; 3367 sbi->s_sb = sb; 3368 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3369 sbi->s_sb_block = sb_block; 3370 if (sb->s_bdev->bd_part) 3371 sbi->s_sectors_written_start = 3372 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3373 3374 /* Cleanup superblock name */ 3375 strreplace(sb->s_id, '/', '!'); 3376 3377 /* -EINVAL is default */ 3378 ret = -EINVAL; 3379 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3380 if (!blocksize) { 3381 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3382 goto out_fail; 3383 } 3384 3385 /* 3386 * The ext4 superblock will not be buffer aligned for other than 1kB 3387 * block sizes. We need to calculate the offset from buffer start. 3388 */ 3389 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3390 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3391 offset = do_div(logical_sb_block, blocksize); 3392 } else { 3393 logical_sb_block = sb_block; 3394 } 3395 3396 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3397 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3398 goto out_fail; 3399 } 3400 /* 3401 * Note: s_es must be initialized as soon as possible because 3402 * some ext4 macro-instructions depend on its value 3403 */ 3404 es = (struct ext4_super_block *) (bh->b_data + offset); 3405 sbi->s_es = es; 3406 sb->s_magic = le16_to_cpu(es->s_magic); 3407 if (sb->s_magic != EXT4_SUPER_MAGIC) 3408 goto cantfind_ext4; 3409 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3410 3411 /* Warn if metadata_csum and gdt_csum are both set. */ 3412 if (ext4_has_feature_metadata_csum(sb) && 3413 ext4_has_feature_gdt_csum(sb)) 3414 ext4_warning(sb, "metadata_csum and uninit_bg are " 3415 "redundant flags; please run fsck."); 3416 3417 /* Check for a known checksum algorithm */ 3418 if (!ext4_verify_csum_type(sb, es)) { 3419 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3420 "unknown checksum algorithm."); 3421 silent = 1; 3422 goto cantfind_ext4; 3423 } 3424 3425 /* Load the checksum driver */ 3426 if (ext4_has_feature_metadata_csum(sb)) { 3427 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3428 if (IS_ERR(sbi->s_chksum_driver)) { 3429 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3430 ret = PTR_ERR(sbi->s_chksum_driver); 3431 sbi->s_chksum_driver = NULL; 3432 goto failed_mount; 3433 } 3434 } 3435 3436 /* Check superblock checksum */ 3437 if (!ext4_superblock_csum_verify(sb, es)) { 3438 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3439 "invalid superblock checksum. Run e2fsck?"); 3440 silent = 1; 3441 ret = -EFSBADCRC; 3442 goto cantfind_ext4; 3443 } 3444 3445 /* Precompute checksum seed for all metadata */ 3446 if (ext4_has_feature_csum_seed(sb)) 3447 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3448 else if (ext4_has_metadata_csum(sb)) 3449 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3450 sizeof(es->s_uuid)); 3451 3452 /* Set defaults before we parse the mount options */ 3453 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3454 set_opt(sb, INIT_INODE_TABLE); 3455 if (def_mount_opts & EXT4_DEFM_DEBUG) 3456 set_opt(sb, DEBUG); 3457 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3458 set_opt(sb, GRPID); 3459 if (def_mount_opts & EXT4_DEFM_UID16) 3460 set_opt(sb, NO_UID32); 3461 /* xattr user namespace & acls are now defaulted on */ 3462 set_opt(sb, XATTR_USER); 3463 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3464 set_opt(sb, POSIX_ACL); 3465 #endif 3466 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3467 if (ext4_has_metadata_csum(sb)) 3468 set_opt(sb, JOURNAL_CHECKSUM); 3469 3470 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3471 set_opt(sb, JOURNAL_DATA); 3472 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3473 set_opt(sb, ORDERED_DATA); 3474 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3475 set_opt(sb, WRITEBACK_DATA); 3476 3477 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3478 set_opt(sb, ERRORS_PANIC); 3479 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3480 set_opt(sb, ERRORS_CONT); 3481 else 3482 set_opt(sb, ERRORS_RO); 3483 /* block_validity enabled by default; disable with noblock_validity */ 3484 set_opt(sb, BLOCK_VALIDITY); 3485 if (def_mount_opts & EXT4_DEFM_DISCARD) 3486 set_opt(sb, DISCARD); 3487 3488 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3489 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3490 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3491 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3492 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3493 3494 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3495 set_opt(sb, BARRIER); 3496 3497 /* 3498 * enable delayed allocation by default 3499 * Use -o nodelalloc to turn it off 3500 */ 3501 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3502 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3503 set_opt(sb, DELALLOC); 3504 3505 /* 3506 * set default s_li_wait_mult for lazyinit, for the case there is 3507 * no mount option specified. 3508 */ 3509 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3510 3511 if (sbi->s_es->s_mount_opts[0]) { 3512 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3513 sizeof(sbi->s_es->s_mount_opts), 3514 GFP_KERNEL); 3515 if (!s_mount_opts) 3516 goto failed_mount; 3517 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3518 &journal_ioprio, 0)) { 3519 ext4_msg(sb, KERN_WARNING, 3520 "failed to parse options in superblock: %s", 3521 s_mount_opts); 3522 } 3523 kfree(s_mount_opts); 3524 } 3525 sbi->s_def_mount_opt = sbi->s_mount_opt; 3526 if (!parse_options((char *) data, sb, &journal_devnum, 3527 &journal_ioprio, 0)) 3528 goto failed_mount; 3529 3530 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3531 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3532 "with data=journal disables delayed " 3533 "allocation and O_DIRECT support!\n"); 3534 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3535 ext4_msg(sb, KERN_ERR, "can't mount with " 3536 "both data=journal and delalloc"); 3537 goto failed_mount; 3538 } 3539 if (test_opt(sb, DIOREAD_NOLOCK)) { 3540 ext4_msg(sb, KERN_ERR, "can't mount with " 3541 "both data=journal and dioread_nolock"); 3542 goto failed_mount; 3543 } 3544 if (test_opt(sb, DAX)) { 3545 ext4_msg(sb, KERN_ERR, "can't mount with " 3546 "both data=journal and dax"); 3547 goto failed_mount; 3548 } 3549 if (ext4_has_feature_encrypt(sb)) { 3550 ext4_msg(sb, KERN_WARNING, 3551 "encrypted files will use data=ordered " 3552 "instead of data journaling mode"); 3553 } 3554 if (test_opt(sb, DELALLOC)) 3555 clear_opt(sb, DELALLOC); 3556 } else { 3557 sb->s_iflags |= SB_I_CGROUPWB; 3558 } 3559 3560 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3561 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3562 3563 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3564 (ext4_has_compat_features(sb) || 3565 ext4_has_ro_compat_features(sb) || 3566 ext4_has_incompat_features(sb))) 3567 ext4_msg(sb, KERN_WARNING, 3568 "feature flags set on rev 0 fs, " 3569 "running e2fsck is recommended"); 3570 3571 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3572 set_opt2(sb, HURD_COMPAT); 3573 if (ext4_has_feature_64bit(sb)) { 3574 ext4_msg(sb, KERN_ERR, 3575 "The Hurd can't support 64-bit file systems"); 3576 goto failed_mount; 3577 } 3578 } 3579 3580 if (IS_EXT2_SB(sb)) { 3581 if (ext2_feature_set_ok(sb)) 3582 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3583 "using the ext4 subsystem"); 3584 else { 3585 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3586 "to feature incompatibilities"); 3587 goto failed_mount; 3588 } 3589 } 3590 3591 if (IS_EXT3_SB(sb)) { 3592 if (ext3_feature_set_ok(sb)) 3593 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3594 "using the ext4 subsystem"); 3595 else { 3596 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3597 "to feature incompatibilities"); 3598 goto failed_mount; 3599 } 3600 } 3601 3602 /* 3603 * Check feature flags regardless of the revision level, since we 3604 * previously didn't change the revision level when setting the flags, 3605 * so there is a chance incompat flags are set on a rev 0 filesystem. 3606 */ 3607 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3608 goto failed_mount; 3609 3610 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3611 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3612 blocksize > EXT4_MAX_BLOCK_SIZE) { 3613 ext4_msg(sb, KERN_ERR, 3614 "Unsupported filesystem blocksize %d (%d log_block_size)", 3615 blocksize, le32_to_cpu(es->s_log_block_size)); 3616 goto failed_mount; 3617 } 3618 if (le32_to_cpu(es->s_log_block_size) > 3619 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3620 ext4_msg(sb, KERN_ERR, 3621 "Invalid log block size: %u", 3622 le32_to_cpu(es->s_log_block_size)); 3623 goto failed_mount; 3624 } 3625 3626 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3627 ext4_msg(sb, KERN_ERR, 3628 "Number of reserved GDT blocks insanely large: %d", 3629 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3630 goto failed_mount; 3631 } 3632 3633 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3634 err = bdev_dax_supported(sb, blocksize); 3635 if (err) 3636 goto failed_mount; 3637 } 3638 3639 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3640 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3641 es->s_encryption_level); 3642 goto failed_mount; 3643 } 3644 3645 if (sb->s_blocksize != blocksize) { 3646 /* Validate the filesystem blocksize */ 3647 if (!sb_set_blocksize(sb, blocksize)) { 3648 ext4_msg(sb, KERN_ERR, "bad block size %d", 3649 blocksize); 3650 goto failed_mount; 3651 } 3652 3653 brelse(bh); 3654 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3655 offset = do_div(logical_sb_block, blocksize); 3656 bh = sb_bread_unmovable(sb, logical_sb_block); 3657 if (!bh) { 3658 ext4_msg(sb, KERN_ERR, 3659 "Can't read superblock on 2nd try"); 3660 goto failed_mount; 3661 } 3662 es = (struct ext4_super_block *)(bh->b_data + offset); 3663 sbi->s_es = es; 3664 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3665 ext4_msg(sb, KERN_ERR, 3666 "Magic mismatch, very weird!"); 3667 goto failed_mount; 3668 } 3669 } 3670 3671 has_huge_files = ext4_has_feature_huge_file(sb); 3672 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3673 has_huge_files); 3674 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3675 3676 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3677 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3678 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3679 } else { 3680 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3681 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3682 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3683 (!is_power_of_2(sbi->s_inode_size)) || 3684 (sbi->s_inode_size > blocksize)) { 3685 ext4_msg(sb, KERN_ERR, 3686 "unsupported inode size: %d", 3687 sbi->s_inode_size); 3688 goto failed_mount; 3689 } 3690 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3691 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3692 } 3693 3694 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3695 if (ext4_has_feature_64bit(sb)) { 3696 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3697 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3698 !is_power_of_2(sbi->s_desc_size)) { 3699 ext4_msg(sb, KERN_ERR, 3700 "unsupported descriptor size %lu", 3701 sbi->s_desc_size); 3702 goto failed_mount; 3703 } 3704 } else 3705 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3706 3707 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3708 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3709 3710 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3711 if (sbi->s_inodes_per_block == 0) 3712 goto cantfind_ext4; 3713 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3714 sbi->s_inodes_per_group > blocksize * 8) { 3715 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3716 sbi->s_blocks_per_group); 3717 goto failed_mount; 3718 } 3719 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3720 sbi->s_inodes_per_block; 3721 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3722 sbi->s_sbh = bh; 3723 sbi->s_mount_state = le16_to_cpu(es->s_state); 3724 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3725 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3726 3727 for (i = 0; i < 4; i++) 3728 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3729 sbi->s_def_hash_version = es->s_def_hash_version; 3730 if (ext4_has_feature_dir_index(sb)) { 3731 i = le32_to_cpu(es->s_flags); 3732 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3733 sbi->s_hash_unsigned = 3; 3734 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3735 #ifdef __CHAR_UNSIGNED__ 3736 if (!(sb->s_flags & MS_RDONLY)) 3737 es->s_flags |= 3738 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3739 sbi->s_hash_unsigned = 3; 3740 #else 3741 if (!(sb->s_flags & MS_RDONLY)) 3742 es->s_flags |= 3743 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3744 #endif 3745 } 3746 } 3747 3748 /* Handle clustersize */ 3749 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3750 has_bigalloc = ext4_has_feature_bigalloc(sb); 3751 if (has_bigalloc) { 3752 if (clustersize < blocksize) { 3753 ext4_msg(sb, KERN_ERR, 3754 "cluster size (%d) smaller than " 3755 "block size (%d)", clustersize, blocksize); 3756 goto failed_mount; 3757 } 3758 if (le32_to_cpu(es->s_log_cluster_size) > 3759 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3760 ext4_msg(sb, KERN_ERR, 3761 "Invalid log cluster size: %u", 3762 le32_to_cpu(es->s_log_cluster_size)); 3763 goto failed_mount; 3764 } 3765 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3766 le32_to_cpu(es->s_log_block_size); 3767 sbi->s_clusters_per_group = 3768 le32_to_cpu(es->s_clusters_per_group); 3769 if (sbi->s_clusters_per_group > blocksize * 8) { 3770 ext4_msg(sb, KERN_ERR, 3771 "#clusters per group too big: %lu", 3772 sbi->s_clusters_per_group); 3773 goto failed_mount; 3774 } 3775 if (sbi->s_blocks_per_group != 3776 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3777 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3778 "clusters per group (%lu) inconsistent", 3779 sbi->s_blocks_per_group, 3780 sbi->s_clusters_per_group); 3781 goto failed_mount; 3782 } 3783 } else { 3784 if (clustersize != blocksize) { 3785 ext4_warning(sb, "fragment/cluster size (%d) != " 3786 "block size (%d)", clustersize, 3787 blocksize); 3788 clustersize = blocksize; 3789 } 3790 if (sbi->s_blocks_per_group > blocksize * 8) { 3791 ext4_msg(sb, KERN_ERR, 3792 "#blocks per group too big: %lu", 3793 sbi->s_blocks_per_group); 3794 goto failed_mount; 3795 } 3796 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3797 sbi->s_cluster_bits = 0; 3798 } 3799 sbi->s_cluster_ratio = clustersize / blocksize; 3800 3801 /* Do we have standard group size of clustersize * 8 blocks ? */ 3802 if (sbi->s_blocks_per_group == clustersize << 3) 3803 set_opt2(sb, STD_GROUP_SIZE); 3804 3805 /* 3806 * Test whether we have more sectors than will fit in sector_t, 3807 * and whether the max offset is addressable by the page cache. 3808 */ 3809 err = generic_check_addressable(sb->s_blocksize_bits, 3810 ext4_blocks_count(es)); 3811 if (err) { 3812 ext4_msg(sb, KERN_ERR, "filesystem" 3813 " too large to mount safely on this system"); 3814 if (sizeof(sector_t) < 8) 3815 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3816 goto failed_mount; 3817 } 3818 3819 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3820 goto cantfind_ext4; 3821 3822 /* check blocks count against device size */ 3823 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3824 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3825 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3826 "exceeds size of device (%llu blocks)", 3827 ext4_blocks_count(es), blocks_count); 3828 goto failed_mount; 3829 } 3830 3831 /* 3832 * It makes no sense for the first data block to be beyond the end 3833 * of the filesystem. 3834 */ 3835 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3836 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3837 "block %u is beyond end of filesystem (%llu)", 3838 le32_to_cpu(es->s_first_data_block), 3839 ext4_blocks_count(es)); 3840 goto failed_mount; 3841 } 3842 blocks_count = (ext4_blocks_count(es) - 3843 le32_to_cpu(es->s_first_data_block) + 3844 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3845 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3846 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3847 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3848 "(block count %llu, first data block %u, " 3849 "blocks per group %lu)", sbi->s_groups_count, 3850 ext4_blocks_count(es), 3851 le32_to_cpu(es->s_first_data_block), 3852 EXT4_BLOCKS_PER_GROUP(sb)); 3853 goto failed_mount; 3854 } 3855 sbi->s_groups_count = blocks_count; 3856 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3857 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3858 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3859 EXT4_DESC_PER_BLOCK(sb); 3860 if (ext4_has_feature_meta_bg(sb)) { 3861 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3862 ext4_msg(sb, KERN_WARNING, 3863 "first meta block group too large: %u " 3864 "(group descriptor block count %u)", 3865 le32_to_cpu(es->s_first_meta_bg), db_count); 3866 goto failed_mount; 3867 } 3868 } 3869 sbi->s_group_desc = ext4_kvmalloc(db_count * 3870 sizeof(struct buffer_head *), 3871 GFP_KERNEL); 3872 if (sbi->s_group_desc == NULL) { 3873 ext4_msg(sb, KERN_ERR, "not enough memory"); 3874 ret = -ENOMEM; 3875 goto failed_mount; 3876 } 3877 3878 bgl_lock_init(sbi->s_blockgroup_lock); 3879 3880 for (i = 0; i < db_count; i++) { 3881 block = descriptor_loc(sb, logical_sb_block, i); 3882 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3883 if (!sbi->s_group_desc[i]) { 3884 ext4_msg(sb, KERN_ERR, 3885 "can't read group descriptor %d", i); 3886 db_count = i; 3887 goto failed_mount2; 3888 } 3889 } 3890 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3891 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3892 ret = -EFSCORRUPTED; 3893 goto failed_mount2; 3894 } 3895 3896 sbi->s_gdb_count = db_count; 3897 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3898 spin_lock_init(&sbi->s_next_gen_lock); 3899 3900 setup_timer(&sbi->s_err_report, print_daily_error_info, 3901 (unsigned long) sb); 3902 3903 /* Register extent status tree shrinker */ 3904 if (ext4_es_register_shrinker(sbi)) 3905 goto failed_mount3; 3906 3907 sbi->s_stripe = ext4_get_stripe_size(sbi); 3908 sbi->s_extent_max_zeroout_kb = 32; 3909 3910 /* 3911 * set up enough so that it can read an inode 3912 */ 3913 sb->s_op = &ext4_sops; 3914 sb->s_export_op = &ext4_export_ops; 3915 sb->s_xattr = ext4_xattr_handlers; 3916 sb->s_cop = &ext4_cryptops; 3917 #ifdef CONFIG_QUOTA 3918 sb->dq_op = &ext4_quota_operations; 3919 if (ext4_has_feature_quota(sb)) 3920 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3921 else 3922 sb->s_qcop = &ext4_qctl_operations; 3923 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3924 #endif 3925 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3926 3927 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3928 mutex_init(&sbi->s_orphan_lock); 3929 3930 sb->s_root = NULL; 3931 3932 needs_recovery = (es->s_last_orphan != 0 || 3933 ext4_has_feature_journal_needs_recovery(sb)); 3934 3935 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3936 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3937 goto failed_mount3a; 3938 3939 /* 3940 * The first inode we look at is the journal inode. Don't try 3941 * root first: it may be modified in the journal! 3942 */ 3943 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3944 err = ext4_load_journal(sb, es, journal_devnum); 3945 if (err) 3946 goto failed_mount3a; 3947 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3948 ext4_has_feature_journal_needs_recovery(sb)) { 3949 ext4_msg(sb, KERN_ERR, "required journal recovery " 3950 "suppressed and not mounted read-only"); 3951 goto failed_mount_wq; 3952 } else { 3953 /* Nojournal mode, all journal mount options are illegal */ 3954 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3955 ext4_msg(sb, KERN_ERR, "can't mount with " 3956 "journal_checksum, fs mounted w/o journal"); 3957 goto failed_mount_wq; 3958 } 3959 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3960 ext4_msg(sb, KERN_ERR, "can't mount with " 3961 "journal_async_commit, fs mounted w/o journal"); 3962 goto failed_mount_wq; 3963 } 3964 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3965 ext4_msg(sb, KERN_ERR, "can't mount with " 3966 "commit=%lu, fs mounted w/o journal", 3967 sbi->s_commit_interval / HZ); 3968 goto failed_mount_wq; 3969 } 3970 if (EXT4_MOUNT_DATA_FLAGS & 3971 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3972 ext4_msg(sb, KERN_ERR, "can't mount with " 3973 "data=, fs mounted w/o journal"); 3974 goto failed_mount_wq; 3975 } 3976 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3977 clear_opt(sb, JOURNAL_CHECKSUM); 3978 clear_opt(sb, DATA_FLAGS); 3979 sbi->s_journal = NULL; 3980 needs_recovery = 0; 3981 goto no_journal; 3982 } 3983 3984 if (ext4_has_feature_64bit(sb) && 3985 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3986 JBD2_FEATURE_INCOMPAT_64BIT)) { 3987 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3988 goto failed_mount_wq; 3989 } 3990 3991 if (!set_journal_csum_feature_set(sb)) { 3992 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3993 "feature set"); 3994 goto failed_mount_wq; 3995 } 3996 3997 /* We have now updated the journal if required, so we can 3998 * validate the data journaling mode. */ 3999 switch (test_opt(sb, DATA_FLAGS)) { 4000 case 0: 4001 /* No mode set, assume a default based on the journal 4002 * capabilities: ORDERED_DATA if the journal can 4003 * cope, else JOURNAL_DATA 4004 */ 4005 if (jbd2_journal_check_available_features 4006 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4007 set_opt(sb, ORDERED_DATA); 4008 else 4009 set_opt(sb, JOURNAL_DATA); 4010 break; 4011 4012 case EXT4_MOUNT_ORDERED_DATA: 4013 case EXT4_MOUNT_WRITEBACK_DATA: 4014 if (!jbd2_journal_check_available_features 4015 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4016 ext4_msg(sb, KERN_ERR, "Journal does not support " 4017 "requested data journaling mode"); 4018 goto failed_mount_wq; 4019 } 4020 default: 4021 break; 4022 } 4023 4024 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4025 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4026 ext4_msg(sb, KERN_ERR, "can't mount with " 4027 "journal_async_commit in data=ordered mode"); 4028 goto failed_mount_wq; 4029 } 4030 4031 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4032 4033 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4034 4035 no_journal: 4036 sbi->s_mb_cache = ext4_xattr_create_cache(); 4037 if (!sbi->s_mb_cache) { 4038 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4039 goto failed_mount_wq; 4040 } 4041 4042 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4043 (blocksize != PAGE_SIZE)) { 4044 ext4_msg(sb, KERN_ERR, 4045 "Unsupported blocksize for fs encryption"); 4046 goto failed_mount_wq; 4047 } 4048 4049 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 4050 !ext4_has_feature_encrypt(sb)) { 4051 ext4_set_feature_encrypt(sb); 4052 ext4_commit_super(sb, 1); 4053 } 4054 4055 /* 4056 * Get the # of file system overhead blocks from the 4057 * superblock if present. 4058 */ 4059 if (es->s_overhead_clusters) 4060 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4061 else { 4062 err = ext4_calculate_overhead(sb); 4063 if (err) 4064 goto failed_mount_wq; 4065 } 4066 4067 /* 4068 * The maximum number of concurrent works can be high and 4069 * concurrency isn't really necessary. Limit it to 1. 4070 */ 4071 EXT4_SB(sb)->rsv_conversion_wq = 4072 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4073 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4074 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4075 ret = -ENOMEM; 4076 goto failed_mount4; 4077 } 4078 4079 /* 4080 * The jbd2_journal_load will have done any necessary log recovery, 4081 * so we can safely mount the rest of the filesystem now. 4082 */ 4083 4084 root = ext4_iget(sb, EXT4_ROOT_INO); 4085 if (IS_ERR(root)) { 4086 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4087 ret = PTR_ERR(root); 4088 root = NULL; 4089 goto failed_mount4; 4090 } 4091 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4092 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4093 iput(root); 4094 goto failed_mount4; 4095 } 4096 sb->s_root = d_make_root(root); 4097 if (!sb->s_root) { 4098 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4099 ret = -ENOMEM; 4100 goto failed_mount4; 4101 } 4102 4103 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4104 sb->s_flags |= MS_RDONLY; 4105 4106 /* determine the minimum size of new large inodes, if present */ 4107 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4108 sbi->s_want_extra_isize == 0) { 4109 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4110 EXT4_GOOD_OLD_INODE_SIZE; 4111 if (ext4_has_feature_extra_isize(sb)) { 4112 if (sbi->s_want_extra_isize < 4113 le16_to_cpu(es->s_want_extra_isize)) 4114 sbi->s_want_extra_isize = 4115 le16_to_cpu(es->s_want_extra_isize); 4116 if (sbi->s_want_extra_isize < 4117 le16_to_cpu(es->s_min_extra_isize)) 4118 sbi->s_want_extra_isize = 4119 le16_to_cpu(es->s_min_extra_isize); 4120 } 4121 } 4122 /* Check if enough inode space is available */ 4123 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4124 sbi->s_inode_size) { 4125 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4126 EXT4_GOOD_OLD_INODE_SIZE; 4127 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4128 "available"); 4129 } 4130 4131 ext4_set_resv_clusters(sb); 4132 4133 err = ext4_setup_system_zone(sb); 4134 if (err) { 4135 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4136 "zone (%d)", err); 4137 goto failed_mount4a; 4138 } 4139 4140 ext4_ext_init(sb); 4141 err = ext4_mb_init(sb); 4142 if (err) { 4143 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4144 err); 4145 goto failed_mount5; 4146 } 4147 4148 block = ext4_count_free_clusters(sb); 4149 ext4_free_blocks_count_set(sbi->s_es, 4150 EXT4_C2B(sbi, block)); 4151 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4152 GFP_KERNEL); 4153 if (!err) { 4154 unsigned long freei = ext4_count_free_inodes(sb); 4155 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4156 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4157 GFP_KERNEL); 4158 } 4159 if (!err) 4160 err = percpu_counter_init(&sbi->s_dirs_counter, 4161 ext4_count_dirs(sb), GFP_KERNEL); 4162 if (!err) 4163 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4164 GFP_KERNEL); 4165 if (!err) 4166 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4167 4168 if (err) { 4169 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4170 goto failed_mount6; 4171 } 4172 4173 if (ext4_has_feature_flex_bg(sb)) 4174 if (!ext4_fill_flex_info(sb)) { 4175 ext4_msg(sb, KERN_ERR, 4176 "unable to initialize " 4177 "flex_bg meta info!"); 4178 goto failed_mount6; 4179 } 4180 4181 err = ext4_register_li_request(sb, first_not_zeroed); 4182 if (err) 4183 goto failed_mount6; 4184 4185 err = ext4_register_sysfs(sb); 4186 if (err) 4187 goto failed_mount7; 4188 4189 #ifdef CONFIG_QUOTA 4190 /* Enable quota usage during mount. */ 4191 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4192 err = ext4_enable_quotas(sb); 4193 if (err) 4194 goto failed_mount8; 4195 } 4196 #endif /* CONFIG_QUOTA */ 4197 4198 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4199 ext4_orphan_cleanup(sb, es); 4200 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4201 if (needs_recovery) { 4202 ext4_msg(sb, KERN_INFO, "recovery complete"); 4203 ext4_mark_recovery_complete(sb, es); 4204 } 4205 if (EXT4_SB(sb)->s_journal) { 4206 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4207 descr = " journalled data mode"; 4208 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4209 descr = " ordered data mode"; 4210 else 4211 descr = " writeback data mode"; 4212 } else 4213 descr = "out journal"; 4214 4215 if (test_opt(sb, DISCARD)) { 4216 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4217 if (!blk_queue_discard(q)) 4218 ext4_msg(sb, KERN_WARNING, 4219 "mounting with \"discard\" option, but " 4220 "the device does not support discard"); 4221 } 4222 4223 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4224 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4225 "Opts: %.*s%s%s", descr, 4226 (int) sizeof(sbi->s_es->s_mount_opts), 4227 sbi->s_es->s_mount_opts, 4228 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4229 4230 if (es->s_error_count) 4231 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4232 4233 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4234 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4235 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4236 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4237 4238 kfree(orig_data); 4239 return 0; 4240 4241 cantfind_ext4: 4242 if (!silent) 4243 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4244 goto failed_mount; 4245 4246 #ifdef CONFIG_QUOTA 4247 failed_mount8: 4248 ext4_unregister_sysfs(sb); 4249 #endif 4250 failed_mount7: 4251 ext4_unregister_li_request(sb); 4252 failed_mount6: 4253 ext4_mb_release(sb); 4254 if (sbi->s_flex_groups) 4255 kvfree(sbi->s_flex_groups); 4256 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4257 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4258 percpu_counter_destroy(&sbi->s_dirs_counter); 4259 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4260 failed_mount5: 4261 ext4_ext_release(sb); 4262 ext4_release_system_zone(sb); 4263 failed_mount4a: 4264 dput(sb->s_root); 4265 sb->s_root = NULL; 4266 failed_mount4: 4267 ext4_msg(sb, KERN_ERR, "mount failed"); 4268 if (EXT4_SB(sb)->rsv_conversion_wq) 4269 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4270 failed_mount_wq: 4271 if (sbi->s_mb_cache) { 4272 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4273 sbi->s_mb_cache = NULL; 4274 } 4275 if (sbi->s_journal) { 4276 jbd2_journal_destroy(sbi->s_journal); 4277 sbi->s_journal = NULL; 4278 } 4279 failed_mount3a: 4280 ext4_es_unregister_shrinker(sbi); 4281 failed_mount3: 4282 del_timer_sync(&sbi->s_err_report); 4283 if (sbi->s_mmp_tsk) 4284 kthread_stop(sbi->s_mmp_tsk); 4285 failed_mount2: 4286 for (i = 0; i < db_count; i++) 4287 brelse(sbi->s_group_desc[i]); 4288 kvfree(sbi->s_group_desc); 4289 failed_mount: 4290 if (sbi->s_chksum_driver) 4291 crypto_free_shash(sbi->s_chksum_driver); 4292 #ifdef CONFIG_QUOTA 4293 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4294 kfree(sbi->s_qf_names[i]); 4295 #endif 4296 ext4_blkdev_remove(sbi); 4297 brelse(bh); 4298 out_fail: 4299 sb->s_fs_info = NULL; 4300 kfree(sbi->s_blockgroup_lock); 4301 out_free_base: 4302 kfree(sbi); 4303 kfree(orig_data); 4304 return err ? err : ret; 4305 } 4306 4307 /* 4308 * Setup any per-fs journal parameters now. We'll do this both on 4309 * initial mount, once the journal has been initialised but before we've 4310 * done any recovery; and again on any subsequent remount. 4311 */ 4312 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4313 { 4314 struct ext4_sb_info *sbi = EXT4_SB(sb); 4315 4316 journal->j_commit_interval = sbi->s_commit_interval; 4317 journal->j_min_batch_time = sbi->s_min_batch_time; 4318 journal->j_max_batch_time = sbi->s_max_batch_time; 4319 4320 write_lock(&journal->j_state_lock); 4321 if (test_opt(sb, BARRIER)) 4322 journal->j_flags |= JBD2_BARRIER; 4323 else 4324 journal->j_flags &= ~JBD2_BARRIER; 4325 if (test_opt(sb, DATA_ERR_ABORT)) 4326 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4327 else 4328 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4329 write_unlock(&journal->j_state_lock); 4330 } 4331 4332 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4333 unsigned int journal_inum) 4334 { 4335 struct inode *journal_inode; 4336 4337 /* 4338 * Test for the existence of a valid inode on disk. Bad things 4339 * happen if we iget() an unused inode, as the subsequent iput() 4340 * will try to delete it. 4341 */ 4342 journal_inode = ext4_iget(sb, journal_inum); 4343 if (IS_ERR(journal_inode)) { 4344 ext4_msg(sb, KERN_ERR, "no journal found"); 4345 return NULL; 4346 } 4347 if (!journal_inode->i_nlink) { 4348 make_bad_inode(journal_inode); 4349 iput(journal_inode); 4350 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4351 return NULL; 4352 } 4353 4354 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4355 journal_inode, journal_inode->i_size); 4356 if (!S_ISREG(journal_inode->i_mode)) { 4357 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4358 iput(journal_inode); 4359 return NULL; 4360 } 4361 return journal_inode; 4362 } 4363 4364 static journal_t *ext4_get_journal(struct super_block *sb, 4365 unsigned int journal_inum) 4366 { 4367 struct inode *journal_inode; 4368 journal_t *journal; 4369 4370 BUG_ON(!ext4_has_feature_journal(sb)); 4371 4372 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4373 if (!journal_inode) 4374 return NULL; 4375 4376 journal = jbd2_journal_init_inode(journal_inode); 4377 if (!journal) { 4378 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4379 iput(journal_inode); 4380 return NULL; 4381 } 4382 journal->j_private = sb; 4383 ext4_init_journal_params(sb, journal); 4384 return journal; 4385 } 4386 4387 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4388 dev_t j_dev) 4389 { 4390 struct buffer_head *bh; 4391 journal_t *journal; 4392 ext4_fsblk_t start; 4393 ext4_fsblk_t len; 4394 int hblock, blocksize; 4395 ext4_fsblk_t sb_block; 4396 unsigned long offset; 4397 struct ext4_super_block *es; 4398 struct block_device *bdev; 4399 4400 BUG_ON(!ext4_has_feature_journal(sb)); 4401 4402 bdev = ext4_blkdev_get(j_dev, sb); 4403 if (bdev == NULL) 4404 return NULL; 4405 4406 blocksize = sb->s_blocksize; 4407 hblock = bdev_logical_block_size(bdev); 4408 if (blocksize < hblock) { 4409 ext4_msg(sb, KERN_ERR, 4410 "blocksize too small for journal device"); 4411 goto out_bdev; 4412 } 4413 4414 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4415 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4416 set_blocksize(bdev, blocksize); 4417 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4418 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4419 "external journal"); 4420 goto out_bdev; 4421 } 4422 4423 es = (struct ext4_super_block *) (bh->b_data + offset); 4424 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4425 !(le32_to_cpu(es->s_feature_incompat) & 4426 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4427 ext4_msg(sb, KERN_ERR, "external journal has " 4428 "bad superblock"); 4429 brelse(bh); 4430 goto out_bdev; 4431 } 4432 4433 if ((le32_to_cpu(es->s_feature_ro_compat) & 4434 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4435 es->s_checksum != ext4_superblock_csum(sb, es)) { 4436 ext4_msg(sb, KERN_ERR, "external journal has " 4437 "corrupt superblock"); 4438 brelse(bh); 4439 goto out_bdev; 4440 } 4441 4442 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4443 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4444 brelse(bh); 4445 goto out_bdev; 4446 } 4447 4448 len = ext4_blocks_count(es); 4449 start = sb_block + 1; 4450 brelse(bh); /* we're done with the superblock */ 4451 4452 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4453 start, len, blocksize); 4454 if (!journal) { 4455 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4456 goto out_bdev; 4457 } 4458 journal->j_private = sb; 4459 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4460 wait_on_buffer(journal->j_sb_buffer); 4461 if (!buffer_uptodate(journal->j_sb_buffer)) { 4462 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4463 goto out_journal; 4464 } 4465 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4466 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4467 "user (unsupported) - %d", 4468 be32_to_cpu(journal->j_superblock->s_nr_users)); 4469 goto out_journal; 4470 } 4471 EXT4_SB(sb)->journal_bdev = bdev; 4472 ext4_init_journal_params(sb, journal); 4473 return journal; 4474 4475 out_journal: 4476 jbd2_journal_destroy(journal); 4477 out_bdev: 4478 ext4_blkdev_put(bdev); 4479 return NULL; 4480 } 4481 4482 static int ext4_load_journal(struct super_block *sb, 4483 struct ext4_super_block *es, 4484 unsigned long journal_devnum) 4485 { 4486 journal_t *journal; 4487 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4488 dev_t journal_dev; 4489 int err = 0; 4490 int really_read_only; 4491 4492 BUG_ON(!ext4_has_feature_journal(sb)); 4493 4494 if (journal_devnum && 4495 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4496 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4497 "numbers have changed"); 4498 journal_dev = new_decode_dev(journal_devnum); 4499 } else 4500 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4501 4502 really_read_only = bdev_read_only(sb->s_bdev); 4503 4504 /* 4505 * Are we loading a blank journal or performing recovery after a 4506 * crash? For recovery, we need to check in advance whether we 4507 * can get read-write access to the device. 4508 */ 4509 if (ext4_has_feature_journal_needs_recovery(sb)) { 4510 if (sb->s_flags & MS_RDONLY) { 4511 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4512 "required on readonly filesystem"); 4513 if (really_read_only) { 4514 ext4_msg(sb, KERN_ERR, "write access " 4515 "unavailable, cannot proceed"); 4516 return -EROFS; 4517 } 4518 ext4_msg(sb, KERN_INFO, "write access will " 4519 "be enabled during recovery"); 4520 } 4521 } 4522 4523 if (journal_inum && journal_dev) { 4524 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4525 "and inode journals!"); 4526 return -EINVAL; 4527 } 4528 4529 if (journal_inum) { 4530 if (!(journal = ext4_get_journal(sb, journal_inum))) 4531 return -EINVAL; 4532 } else { 4533 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4534 return -EINVAL; 4535 } 4536 4537 if (!(journal->j_flags & JBD2_BARRIER)) 4538 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4539 4540 if (!ext4_has_feature_journal_needs_recovery(sb)) 4541 err = jbd2_journal_wipe(journal, !really_read_only); 4542 if (!err) { 4543 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4544 if (save) 4545 memcpy(save, ((char *) es) + 4546 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4547 err = jbd2_journal_load(journal); 4548 if (save) 4549 memcpy(((char *) es) + EXT4_S_ERR_START, 4550 save, EXT4_S_ERR_LEN); 4551 kfree(save); 4552 } 4553 4554 if (err) { 4555 ext4_msg(sb, KERN_ERR, "error loading journal"); 4556 jbd2_journal_destroy(journal); 4557 return err; 4558 } 4559 4560 EXT4_SB(sb)->s_journal = journal; 4561 ext4_clear_journal_err(sb, es); 4562 4563 if (!really_read_only && journal_devnum && 4564 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4565 es->s_journal_dev = cpu_to_le32(journal_devnum); 4566 4567 /* Make sure we flush the recovery flag to disk. */ 4568 ext4_commit_super(sb, 1); 4569 } 4570 4571 return 0; 4572 } 4573 4574 static int ext4_commit_super(struct super_block *sb, int sync) 4575 { 4576 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4577 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4578 int error = 0; 4579 4580 if (!sbh || block_device_ejected(sb)) 4581 return error; 4582 /* 4583 * If the file system is mounted read-only, don't update the 4584 * superblock write time. This avoids updating the superblock 4585 * write time when we are mounting the root file system 4586 * read/only but we need to replay the journal; at that point, 4587 * for people who are east of GMT and who make their clock 4588 * tick in localtime for Windows bug-for-bug compatibility, 4589 * the clock is set in the future, and this will cause e2fsck 4590 * to complain and force a full file system check. 4591 */ 4592 if (!(sb->s_flags & MS_RDONLY)) 4593 es->s_wtime = cpu_to_le32(get_seconds()); 4594 if (sb->s_bdev->bd_part) 4595 es->s_kbytes_written = 4596 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4597 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4598 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4599 else 4600 es->s_kbytes_written = 4601 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4602 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4603 ext4_free_blocks_count_set(es, 4604 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4605 &EXT4_SB(sb)->s_freeclusters_counter))); 4606 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4607 es->s_free_inodes_count = 4608 cpu_to_le32(percpu_counter_sum_positive( 4609 &EXT4_SB(sb)->s_freeinodes_counter)); 4610 BUFFER_TRACE(sbh, "marking dirty"); 4611 ext4_superblock_csum_set(sb); 4612 if (sync) 4613 lock_buffer(sbh); 4614 if (buffer_write_io_error(sbh)) { 4615 /* 4616 * Oh, dear. A previous attempt to write the 4617 * superblock failed. This could happen because the 4618 * USB device was yanked out. Or it could happen to 4619 * be a transient write error and maybe the block will 4620 * be remapped. Nothing we can do but to retry the 4621 * write and hope for the best. 4622 */ 4623 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4624 "superblock detected"); 4625 clear_buffer_write_io_error(sbh); 4626 set_buffer_uptodate(sbh); 4627 } 4628 mark_buffer_dirty(sbh); 4629 if (sync) { 4630 unlock_buffer(sbh); 4631 error = __sync_dirty_buffer(sbh, 4632 test_opt(sb, BARRIER) ? REQ_FUA : REQ_SYNC); 4633 if (error) 4634 return error; 4635 4636 error = buffer_write_io_error(sbh); 4637 if (error) { 4638 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4639 "superblock"); 4640 clear_buffer_write_io_error(sbh); 4641 set_buffer_uptodate(sbh); 4642 } 4643 } 4644 return error; 4645 } 4646 4647 /* 4648 * Have we just finished recovery? If so, and if we are mounting (or 4649 * remounting) the filesystem readonly, then we will end up with a 4650 * consistent fs on disk. Record that fact. 4651 */ 4652 static void ext4_mark_recovery_complete(struct super_block *sb, 4653 struct ext4_super_block *es) 4654 { 4655 journal_t *journal = EXT4_SB(sb)->s_journal; 4656 4657 if (!ext4_has_feature_journal(sb)) { 4658 BUG_ON(journal != NULL); 4659 return; 4660 } 4661 jbd2_journal_lock_updates(journal); 4662 if (jbd2_journal_flush(journal) < 0) 4663 goto out; 4664 4665 if (ext4_has_feature_journal_needs_recovery(sb) && 4666 sb->s_flags & MS_RDONLY) { 4667 ext4_clear_feature_journal_needs_recovery(sb); 4668 ext4_commit_super(sb, 1); 4669 } 4670 4671 out: 4672 jbd2_journal_unlock_updates(journal); 4673 } 4674 4675 /* 4676 * If we are mounting (or read-write remounting) a filesystem whose journal 4677 * has recorded an error from a previous lifetime, move that error to the 4678 * main filesystem now. 4679 */ 4680 static void ext4_clear_journal_err(struct super_block *sb, 4681 struct ext4_super_block *es) 4682 { 4683 journal_t *journal; 4684 int j_errno; 4685 const char *errstr; 4686 4687 BUG_ON(!ext4_has_feature_journal(sb)); 4688 4689 journal = EXT4_SB(sb)->s_journal; 4690 4691 /* 4692 * Now check for any error status which may have been recorded in the 4693 * journal by a prior ext4_error() or ext4_abort() 4694 */ 4695 4696 j_errno = jbd2_journal_errno(journal); 4697 if (j_errno) { 4698 char nbuf[16]; 4699 4700 errstr = ext4_decode_error(sb, j_errno, nbuf); 4701 ext4_warning(sb, "Filesystem error recorded " 4702 "from previous mount: %s", errstr); 4703 ext4_warning(sb, "Marking fs in need of filesystem check."); 4704 4705 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4706 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4707 ext4_commit_super(sb, 1); 4708 4709 jbd2_journal_clear_err(journal); 4710 jbd2_journal_update_sb_errno(journal); 4711 } 4712 } 4713 4714 /* 4715 * Force the running and committing transactions to commit, 4716 * and wait on the commit. 4717 */ 4718 int ext4_force_commit(struct super_block *sb) 4719 { 4720 journal_t *journal; 4721 4722 if (sb->s_flags & MS_RDONLY) 4723 return 0; 4724 4725 journal = EXT4_SB(sb)->s_journal; 4726 return ext4_journal_force_commit(journal); 4727 } 4728 4729 static int ext4_sync_fs(struct super_block *sb, int wait) 4730 { 4731 int ret = 0; 4732 tid_t target; 4733 bool needs_barrier = false; 4734 struct ext4_sb_info *sbi = EXT4_SB(sb); 4735 4736 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4737 return 0; 4738 4739 trace_ext4_sync_fs(sb, wait); 4740 flush_workqueue(sbi->rsv_conversion_wq); 4741 /* 4742 * Writeback quota in non-journalled quota case - journalled quota has 4743 * no dirty dquots 4744 */ 4745 dquot_writeback_dquots(sb, -1); 4746 /* 4747 * Data writeback is possible w/o journal transaction, so barrier must 4748 * being sent at the end of the function. But we can skip it if 4749 * transaction_commit will do it for us. 4750 */ 4751 if (sbi->s_journal) { 4752 target = jbd2_get_latest_transaction(sbi->s_journal); 4753 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4754 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4755 needs_barrier = true; 4756 4757 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4758 if (wait) 4759 ret = jbd2_log_wait_commit(sbi->s_journal, 4760 target); 4761 } 4762 } else if (wait && test_opt(sb, BARRIER)) 4763 needs_barrier = true; 4764 if (needs_barrier) { 4765 int err; 4766 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4767 if (!ret) 4768 ret = err; 4769 } 4770 4771 return ret; 4772 } 4773 4774 /* 4775 * LVM calls this function before a (read-only) snapshot is created. This 4776 * gives us a chance to flush the journal completely and mark the fs clean. 4777 * 4778 * Note that only this function cannot bring a filesystem to be in a clean 4779 * state independently. It relies on upper layer to stop all data & metadata 4780 * modifications. 4781 */ 4782 static int ext4_freeze(struct super_block *sb) 4783 { 4784 int error = 0; 4785 journal_t *journal; 4786 4787 if (sb->s_flags & MS_RDONLY) 4788 return 0; 4789 4790 journal = EXT4_SB(sb)->s_journal; 4791 4792 if (journal) { 4793 /* Now we set up the journal barrier. */ 4794 jbd2_journal_lock_updates(journal); 4795 4796 /* 4797 * Don't clear the needs_recovery flag if we failed to 4798 * flush the journal. 4799 */ 4800 error = jbd2_journal_flush(journal); 4801 if (error < 0) 4802 goto out; 4803 4804 /* Journal blocked and flushed, clear needs_recovery flag. */ 4805 ext4_clear_feature_journal_needs_recovery(sb); 4806 } 4807 4808 error = ext4_commit_super(sb, 1); 4809 out: 4810 if (journal) 4811 /* we rely on upper layer to stop further updates */ 4812 jbd2_journal_unlock_updates(journal); 4813 return error; 4814 } 4815 4816 /* 4817 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4818 * flag here, even though the filesystem is not technically dirty yet. 4819 */ 4820 static int ext4_unfreeze(struct super_block *sb) 4821 { 4822 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb))) 4823 return 0; 4824 4825 if (EXT4_SB(sb)->s_journal) { 4826 /* Reset the needs_recovery flag before the fs is unlocked. */ 4827 ext4_set_feature_journal_needs_recovery(sb); 4828 } 4829 4830 ext4_commit_super(sb, 1); 4831 return 0; 4832 } 4833 4834 /* 4835 * Structure to save mount options for ext4_remount's benefit 4836 */ 4837 struct ext4_mount_options { 4838 unsigned long s_mount_opt; 4839 unsigned long s_mount_opt2; 4840 kuid_t s_resuid; 4841 kgid_t s_resgid; 4842 unsigned long s_commit_interval; 4843 u32 s_min_batch_time, s_max_batch_time; 4844 #ifdef CONFIG_QUOTA 4845 int s_jquota_fmt; 4846 char *s_qf_names[EXT4_MAXQUOTAS]; 4847 #endif 4848 }; 4849 4850 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4851 { 4852 struct ext4_super_block *es; 4853 struct ext4_sb_info *sbi = EXT4_SB(sb); 4854 unsigned long old_sb_flags; 4855 struct ext4_mount_options old_opts; 4856 int enable_quota = 0; 4857 ext4_group_t g; 4858 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4859 int err = 0; 4860 #ifdef CONFIG_QUOTA 4861 int i, j; 4862 #endif 4863 char *orig_data = kstrdup(data, GFP_KERNEL); 4864 4865 /* Store the original options */ 4866 old_sb_flags = sb->s_flags; 4867 old_opts.s_mount_opt = sbi->s_mount_opt; 4868 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4869 old_opts.s_resuid = sbi->s_resuid; 4870 old_opts.s_resgid = sbi->s_resgid; 4871 old_opts.s_commit_interval = sbi->s_commit_interval; 4872 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4873 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4874 #ifdef CONFIG_QUOTA 4875 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4876 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4877 if (sbi->s_qf_names[i]) { 4878 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4879 GFP_KERNEL); 4880 if (!old_opts.s_qf_names[i]) { 4881 for (j = 0; j < i; j++) 4882 kfree(old_opts.s_qf_names[j]); 4883 kfree(orig_data); 4884 return -ENOMEM; 4885 } 4886 } else 4887 old_opts.s_qf_names[i] = NULL; 4888 #endif 4889 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4890 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4891 4892 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4893 err = -EINVAL; 4894 goto restore_opts; 4895 } 4896 4897 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4898 test_opt(sb, JOURNAL_CHECKSUM)) { 4899 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4900 "during remount not supported; ignoring"); 4901 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4902 } 4903 4904 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4905 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4906 ext4_msg(sb, KERN_ERR, "can't mount with " 4907 "both data=journal and delalloc"); 4908 err = -EINVAL; 4909 goto restore_opts; 4910 } 4911 if (test_opt(sb, DIOREAD_NOLOCK)) { 4912 ext4_msg(sb, KERN_ERR, "can't mount with " 4913 "both data=journal and dioread_nolock"); 4914 err = -EINVAL; 4915 goto restore_opts; 4916 } 4917 if (test_opt(sb, DAX)) { 4918 ext4_msg(sb, KERN_ERR, "can't mount with " 4919 "both data=journal and dax"); 4920 err = -EINVAL; 4921 goto restore_opts; 4922 } 4923 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 4924 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4925 ext4_msg(sb, KERN_ERR, "can't mount with " 4926 "journal_async_commit in data=ordered mode"); 4927 err = -EINVAL; 4928 goto restore_opts; 4929 } 4930 } 4931 4932 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4933 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4934 "dax flag with busy inodes while remounting"); 4935 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4936 } 4937 4938 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4939 ext4_abort(sb, "Abort forced by user"); 4940 4941 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4942 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4943 4944 es = sbi->s_es; 4945 4946 if (sbi->s_journal) { 4947 ext4_init_journal_params(sb, sbi->s_journal); 4948 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4949 } 4950 4951 if (*flags & MS_LAZYTIME) 4952 sb->s_flags |= MS_LAZYTIME; 4953 4954 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4955 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4956 err = -EROFS; 4957 goto restore_opts; 4958 } 4959 4960 if (*flags & MS_RDONLY) { 4961 err = sync_filesystem(sb); 4962 if (err < 0) 4963 goto restore_opts; 4964 err = dquot_suspend(sb, -1); 4965 if (err < 0) 4966 goto restore_opts; 4967 4968 /* 4969 * First of all, the unconditional stuff we have to do 4970 * to disable replay of the journal when we next remount 4971 */ 4972 sb->s_flags |= MS_RDONLY; 4973 4974 /* 4975 * OK, test if we are remounting a valid rw partition 4976 * readonly, and if so set the rdonly flag and then 4977 * mark the partition as valid again. 4978 */ 4979 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4980 (sbi->s_mount_state & EXT4_VALID_FS)) 4981 es->s_state = cpu_to_le16(sbi->s_mount_state); 4982 4983 if (sbi->s_journal) 4984 ext4_mark_recovery_complete(sb, es); 4985 } else { 4986 /* Make sure we can mount this feature set readwrite */ 4987 if (ext4_has_feature_readonly(sb) || 4988 !ext4_feature_set_ok(sb, 0)) { 4989 err = -EROFS; 4990 goto restore_opts; 4991 } 4992 /* 4993 * Make sure the group descriptor checksums 4994 * are sane. If they aren't, refuse to remount r/w. 4995 */ 4996 for (g = 0; g < sbi->s_groups_count; g++) { 4997 struct ext4_group_desc *gdp = 4998 ext4_get_group_desc(sb, g, NULL); 4999 5000 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5001 ext4_msg(sb, KERN_ERR, 5002 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5003 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5004 le16_to_cpu(gdp->bg_checksum)); 5005 err = -EFSBADCRC; 5006 goto restore_opts; 5007 } 5008 } 5009 5010 /* 5011 * If we have an unprocessed orphan list hanging 5012 * around from a previously readonly bdev mount, 5013 * require a full umount/remount for now. 5014 */ 5015 if (es->s_last_orphan) { 5016 ext4_msg(sb, KERN_WARNING, "Couldn't " 5017 "remount RDWR because of unprocessed " 5018 "orphan inode list. Please " 5019 "umount/remount instead"); 5020 err = -EINVAL; 5021 goto restore_opts; 5022 } 5023 5024 /* 5025 * Mounting a RDONLY partition read-write, so reread 5026 * and store the current valid flag. (It may have 5027 * been changed by e2fsck since we originally mounted 5028 * the partition.) 5029 */ 5030 if (sbi->s_journal) 5031 ext4_clear_journal_err(sb, es); 5032 sbi->s_mount_state = le16_to_cpu(es->s_state); 5033 if (!ext4_setup_super(sb, es, 0)) 5034 sb->s_flags &= ~MS_RDONLY; 5035 if (ext4_has_feature_mmp(sb)) 5036 if (ext4_multi_mount_protect(sb, 5037 le64_to_cpu(es->s_mmp_block))) { 5038 err = -EROFS; 5039 goto restore_opts; 5040 } 5041 enable_quota = 1; 5042 } 5043 } 5044 5045 /* 5046 * Reinitialize lazy itable initialization thread based on 5047 * current settings 5048 */ 5049 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5050 ext4_unregister_li_request(sb); 5051 else { 5052 ext4_group_t first_not_zeroed; 5053 first_not_zeroed = ext4_has_uninit_itable(sb); 5054 ext4_register_li_request(sb, first_not_zeroed); 5055 } 5056 5057 ext4_setup_system_zone(sb); 5058 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5059 ext4_commit_super(sb, 1); 5060 5061 #ifdef CONFIG_QUOTA 5062 /* Release old quota file names */ 5063 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5064 kfree(old_opts.s_qf_names[i]); 5065 if (enable_quota) { 5066 if (sb_any_quota_suspended(sb)) 5067 dquot_resume(sb, -1); 5068 else if (ext4_has_feature_quota(sb)) { 5069 err = ext4_enable_quotas(sb); 5070 if (err) 5071 goto restore_opts; 5072 } 5073 } 5074 #endif 5075 5076 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5077 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5078 kfree(orig_data); 5079 return 0; 5080 5081 restore_opts: 5082 sb->s_flags = old_sb_flags; 5083 sbi->s_mount_opt = old_opts.s_mount_opt; 5084 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5085 sbi->s_resuid = old_opts.s_resuid; 5086 sbi->s_resgid = old_opts.s_resgid; 5087 sbi->s_commit_interval = old_opts.s_commit_interval; 5088 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5089 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5090 #ifdef CONFIG_QUOTA 5091 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5092 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5093 kfree(sbi->s_qf_names[i]); 5094 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5095 } 5096 #endif 5097 kfree(orig_data); 5098 return err; 5099 } 5100 5101 #ifdef CONFIG_QUOTA 5102 static int ext4_statfs_project(struct super_block *sb, 5103 kprojid_t projid, struct kstatfs *buf) 5104 { 5105 struct kqid qid; 5106 struct dquot *dquot; 5107 u64 limit; 5108 u64 curblock; 5109 5110 qid = make_kqid_projid(projid); 5111 dquot = dqget(sb, qid); 5112 if (IS_ERR(dquot)) 5113 return PTR_ERR(dquot); 5114 spin_lock(&dq_data_lock); 5115 5116 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5117 dquot->dq_dqb.dqb_bsoftlimit : 5118 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5119 if (limit && buf->f_blocks > limit) { 5120 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5121 buf->f_blocks = limit; 5122 buf->f_bfree = buf->f_bavail = 5123 (buf->f_blocks > curblock) ? 5124 (buf->f_blocks - curblock) : 0; 5125 } 5126 5127 limit = dquot->dq_dqb.dqb_isoftlimit ? 5128 dquot->dq_dqb.dqb_isoftlimit : 5129 dquot->dq_dqb.dqb_ihardlimit; 5130 if (limit && buf->f_files > limit) { 5131 buf->f_files = limit; 5132 buf->f_ffree = 5133 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5134 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5135 } 5136 5137 spin_unlock(&dq_data_lock); 5138 dqput(dquot); 5139 return 0; 5140 } 5141 #endif 5142 5143 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5144 { 5145 struct super_block *sb = dentry->d_sb; 5146 struct ext4_sb_info *sbi = EXT4_SB(sb); 5147 struct ext4_super_block *es = sbi->s_es; 5148 ext4_fsblk_t overhead = 0, resv_blocks; 5149 u64 fsid; 5150 s64 bfree; 5151 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5152 5153 if (!test_opt(sb, MINIX_DF)) 5154 overhead = sbi->s_overhead; 5155 5156 buf->f_type = EXT4_SUPER_MAGIC; 5157 buf->f_bsize = sb->s_blocksize; 5158 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5159 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5160 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5161 /* prevent underflow in case that few free space is available */ 5162 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5163 buf->f_bavail = buf->f_bfree - 5164 (ext4_r_blocks_count(es) + resv_blocks); 5165 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5166 buf->f_bavail = 0; 5167 buf->f_files = le32_to_cpu(es->s_inodes_count); 5168 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5169 buf->f_namelen = EXT4_NAME_LEN; 5170 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5171 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5172 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5173 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5174 5175 #ifdef CONFIG_QUOTA 5176 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5177 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5178 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5179 #endif 5180 return 0; 5181 } 5182 5183 /* Helper function for writing quotas on sync - we need to start transaction 5184 * before quota file is locked for write. Otherwise the are possible deadlocks: 5185 * Process 1 Process 2 5186 * ext4_create() quota_sync() 5187 * jbd2_journal_start() write_dquot() 5188 * dquot_initialize() down(dqio_mutex) 5189 * down(dqio_mutex) jbd2_journal_start() 5190 * 5191 */ 5192 5193 #ifdef CONFIG_QUOTA 5194 5195 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5196 { 5197 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5198 } 5199 5200 static int ext4_write_dquot(struct dquot *dquot) 5201 { 5202 int ret, err; 5203 handle_t *handle; 5204 struct inode *inode; 5205 5206 inode = dquot_to_inode(dquot); 5207 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5208 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5209 if (IS_ERR(handle)) 5210 return PTR_ERR(handle); 5211 ret = dquot_commit(dquot); 5212 err = ext4_journal_stop(handle); 5213 if (!ret) 5214 ret = err; 5215 return ret; 5216 } 5217 5218 static int ext4_acquire_dquot(struct dquot *dquot) 5219 { 5220 int ret, err; 5221 handle_t *handle; 5222 5223 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5224 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5225 if (IS_ERR(handle)) 5226 return PTR_ERR(handle); 5227 ret = dquot_acquire(dquot); 5228 err = ext4_journal_stop(handle); 5229 if (!ret) 5230 ret = err; 5231 return ret; 5232 } 5233 5234 static int ext4_release_dquot(struct dquot *dquot) 5235 { 5236 int ret, err; 5237 handle_t *handle; 5238 5239 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5240 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5241 if (IS_ERR(handle)) { 5242 /* Release dquot anyway to avoid endless cycle in dqput() */ 5243 dquot_release(dquot); 5244 return PTR_ERR(handle); 5245 } 5246 ret = dquot_release(dquot); 5247 err = ext4_journal_stop(handle); 5248 if (!ret) 5249 ret = err; 5250 return ret; 5251 } 5252 5253 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5254 { 5255 struct super_block *sb = dquot->dq_sb; 5256 struct ext4_sb_info *sbi = EXT4_SB(sb); 5257 5258 /* Are we journaling quotas? */ 5259 if (ext4_has_feature_quota(sb) || 5260 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5261 dquot_mark_dquot_dirty(dquot); 5262 return ext4_write_dquot(dquot); 5263 } else { 5264 return dquot_mark_dquot_dirty(dquot); 5265 } 5266 } 5267 5268 static int ext4_write_info(struct super_block *sb, int type) 5269 { 5270 int ret, err; 5271 handle_t *handle; 5272 5273 /* Data block + inode block */ 5274 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5275 if (IS_ERR(handle)) 5276 return PTR_ERR(handle); 5277 ret = dquot_commit_info(sb, type); 5278 err = ext4_journal_stop(handle); 5279 if (!ret) 5280 ret = err; 5281 return ret; 5282 } 5283 5284 /* 5285 * Turn on quotas during mount time - we need to find 5286 * the quota file and such... 5287 */ 5288 static int ext4_quota_on_mount(struct super_block *sb, int type) 5289 { 5290 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5291 EXT4_SB(sb)->s_jquota_fmt, type); 5292 } 5293 5294 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5295 { 5296 struct ext4_inode_info *ei = EXT4_I(inode); 5297 5298 /* The first argument of lockdep_set_subclass has to be 5299 * *exactly* the same as the argument to init_rwsem() --- in 5300 * this case, in init_once() --- or lockdep gets unhappy 5301 * because the name of the lock is set using the 5302 * stringification of the argument to init_rwsem(). 5303 */ 5304 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5305 lockdep_set_subclass(&ei->i_data_sem, subclass); 5306 } 5307 5308 /* 5309 * Standard function to be called on quota_on 5310 */ 5311 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5312 const struct path *path) 5313 { 5314 int err; 5315 5316 if (!test_opt(sb, QUOTA)) 5317 return -EINVAL; 5318 5319 /* Quotafile not on the same filesystem? */ 5320 if (path->dentry->d_sb != sb) 5321 return -EXDEV; 5322 /* Journaling quota? */ 5323 if (EXT4_SB(sb)->s_qf_names[type]) { 5324 /* Quotafile not in fs root? */ 5325 if (path->dentry->d_parent != sb->s_root) 5326 ext4_msg(sb, KERN_WARNING, 5327 "Quota file not on filesystem root. " 5328 "Journaled quota will not work"); 5329 } 5330 5331 /* 5332 * When we journal data on quota file, we have to flush journal to see 5333 * all updates to the file when we bypass pagecache... 5334 */ 5335 if (EXT4_SB(sb)->s_journal && 5336 ext4_should_journal_data(d_inode(path->dentry))) { 5337 /* 5338 * We don't need to lock updates but journal_flush() could 5339 * otherwise be livelocked... 5340 */ 5341 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5342 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5343 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5344 if (err) 5345 return err; 5346 } 5347 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5348 err = dquot_quota_on(sb, type, format_id, path); 5349 if (err) 5350 lockdep_set_quota_inode(path->dentry->d_inode, 5351 I_DATA_SEM_NORMAL); 5352 return err; 5353 } 5354 5355 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5356 unsigned int flags) 5357 { 5358 int err; 5359 struct inode *qf_inode; 5360 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5361 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5362 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5363 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5364 }; 5365 5366 BUG_ON(!ext4_has_feature_quota(sb)); 5367 5368 if (!qf_inums[type]) 5369 return -EPERM; 5370 5371 qf_inode = ext4_iget(sb, qf_inums[type]); 5372 if (IS_ERR(qf_inode)) { 5373 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5374 return PTR_ERR(qf_inode); 5375 } 5376 5377 /* Don't account quota for quota files to avoid recursion */ 5378 qf_inode->i_flags |= S_NOQUOTA; 5379 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5380 err = dquot_enable(qf_inode, type, format_id, flags); 5381 iput(qf_inode); 5382 if (err) 5383 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5384 5385 return err; 5386 } 5387 5388 /* Enable usage tracking for all quota types. */ 5389 static int ext4_enable_quotas(struct super_block *sb) 5390 { 5391 int type, err = 0; 5392 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5393 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5394 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5395 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5396 }; 5397 bool quota_mopt[EXT4_MAXQUOTAS] = { 5398 test_opt(sb, USRQUOTA), 5399 test_opt(sb, GRPQUOTA), 5400 test_opt(sb, PRJQUOTA), 5401 }; 5402 5403 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5404 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5405 if (qf_inums[type]) { 5406 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5407 DQUOT_USAGE_ENABLED | 5408 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5409 if (err) { 5410 ext4_warning(sb, 5411 "Failed to enable quota tracking " 5412 "(type=%d, err=%d). Please run " 5413 "e2fsck to fix.", type, err); 5414 return err; 5415 } 5416 } 5417 } 5418 return 0; 5419 } 5420 5421 static int ext4_quota_off(struct super_block *sb, int type) 5422 { 5423 struct inode *inode = sb_dqopt(sb)->files[type]; 5424 handle_t *handle; 5425 5426 /* Force all delayed allocation blocks to be allocated. 5427 * Caller already holds s_umount sem */ 5428 if (test_opt(sb, DELALLOC)) 5429 sync_filesystem(sb); 5430 5431 if (!inode) 5432 goto out; 5433 5434 /* Update modification times of quota files when userspace can 5435 * start looking at them */ 5436 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5437 if (IS_ERR(handle)) 5438 goto out; 5439 inode->i_mtime = inode->i_ctime = current_time(inode); 5440 ext4_mark_inode_dirty(handle, inode); 5441 ext4_journal_stop(handle); 5442 5443 out: 5444 return dquot_quota_off(sb, type); 5445 } 5446 5447 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5448 * acquiring the locks... As quota files are never truncated and quota code 5449 * itself serializes the operations (and no one else should touch the files) 5450 * we don't have to be afraid of races */ 5451 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5452 size_t len, loff_t off) 5453 { 5454 struct inode *inode = sb_dqopt(sb)->files[type]; 5455 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5456 int offset = off & (sb->s_blocksize - 1); 5457 int tocopy; 5458 size_t toread; 5459 struct buffer_head *bh; 5460 loff_t i_size = i_size_read(inode); 5461 5462 if (off > i_size) 5463 return 0; 5464 if (off+len > i_size) 5465 len = i_size-off; 5466 toread = len; 5467 while (toread > 0) { 5468 tocopy = sb->s_blocksize - offset < toread ? 5469 sb->s_blocksize - offset : toread; 5470 bh = ext4_bread(NULL, inode, blk, 0); 5471 if (IS_ERR(bh)) 5472 return PTR_ERR(bh); 5473 if (!bh) /* A hole? */ 5474 memset(data, 0, tocopy); 5475 else 5476 memcpy(data, bh->b_data+offset, tocopy); 5477 brelse(bh); 5478 offset = 0; 5479 toread -= tocopy; 5480 data += tocopy; 5481 blk++; 5482 } 5483 return len; 5484 } 5485 5486 /* Write to quotafile (we know the transaction is already started and has 5487 * enough credits) */ 5488 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5489 const char *data, size_t len, loff_t off) 5490 { 5491 struct inode *inode = sb_dqopt(sb)->files[type]; 5492 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5493 int err, offset = off & (sb->s_blocksize - 1); 5494 int retries = 0; 5495 struct buffer_head *bh; 5496 handle_t *handle = journal_current_handle(); 5497 5498 if (EXT4_SB(sb)->s_journal && !handle) { 5499 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5500 " cancelled because transaction is not started", 5501 (unsigned long long)off, (unsigned long long)len); 5502 return -EIO; 5503 } 5504 /* 5505 * Since we account only one data block in transaction credits, 5506 * then it is impossible to cross a block boundary. 5507 */ 5508 if (sb->s_blocksize - offset < len) { 5509 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5510 " cancelled because not block aligned", 5511 (unsigned long long)off, (unsigned long long)len); 5512 return -EIO; 5513 } 5514 5515 do { 5516 bh = ext4_bread(handle, inode, blk, 5517 EXT4_GET_BLOCKS_CREATE | 5518 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5519 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5520 ext4_should_retry_alloc(inode->i_sb, &retries)); 5521 if (IS_ERR(bh)) 5522 return PTR_ERR(bh); 5523 if (!bh) 5524 goto out; 5525 BUFFER_TRACE(bh, "get write access"); 5526 err = ext4_journal_get_write_access(handle, bh); 5527 if (err) { 5528 brelse(bh); 5529 return err; 5530 } 5531 lock_buffer(bh); 5532 memcpy(bh->b_data+offset, data, len); 5533 flush_dcache_page(bh->b_page); 5534 unlock_buffer(bh); 5535 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5536 brelse(bh); 5537 out: 5538 if (inode->i_size < off + len) { 5539 i_size_write(inode, off + len); 5540 EXT4_I(inode)->i_disksize = inode->i_size; 5541 ext4_mark_inode_dirty(handle, inode); 5542 } 5543 return len; 5544 } 5545 5546 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5547 { 5548 const struct quota_format_ops *ops; 5549 5550 if (!sb_has_quota_loaded(sb, qid->type)) 5551 return -ESRCH; 5552 ops = sb_dqopt(sb)->ops[qid->type]; 5553 if (!ops || !ops->get_next_id) 5554 return -ENOSYS; 5555 return dquot_get_next_id(sb, qid); 5556 } 5557 #endif 5558 5559 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5560 const char *dev_name, void *data) 5561 { 5562 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5563 } 5564 5565 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5566 static inline void register_as_ext2(void) 5567 { 5568 int err = register_filesystem(&ext2_fs_type); 5569 if (err) 5570 printk(KERN_WARNING 5571 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5572 } 5573 5574 static inline void unregister_as_ext2(void) 5575 { 5576 unregister_filesystem(&ext2_fs_type); 5577 } 5578 5579 static inline int ext2_feature_set_ok(struct super_block *sb) 5580 { 5581 if (ext4_has_unknown_ext2_incompat_features(sb)) 5582 return 0; 5583 if (sb->s_flags & MS_RDONLY) 5584 return 1; 5585 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5586 return 0; 5587 return 1; 5588 } 5589 #else 5590 static inline void register_as_ext2(void) { } 5591 static inline void unregister_as_ext2(void) { } 5592 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5593 #endif 5594 5595 static inline void register_as_ext3(void) 5596 { 5597 int err = register_filesystem(&ext3_fs_type); 5598 if (err) 5599 printk(KERN_WARNING 5600 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5601 } 5602 5603 static inline void unregister_as_ext3(void) 5604 { 5605 unregister_filesystem(&ext3_fs_type); 5606 } 5607 5608 static inline int ext3_feature_set_ok(struct super_block *sb) 5609 { 5610 if (ext4_has_unknown_ext3_incompat_features(sb)) 5611 return 0; 5612 if (!ext4_has_feature_journal(sb)) 5613 return 0; 5614 if (sb->s_flags & MS_RDONLY) 5615 return 1; 5616 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5617 return 0; 5618 return 1; 5619 } 5620 5621 static struct file_system_type ext4_fs_type = { 5622 .owner = THIS_MODULE, 5623 .name = "ext4", 5624 .mount = ext4_mount, 5625 .kill_sb = kill_block_super, 5626 .fs_flags = FS_REQUIRES_DEV, 5627 }; 5628 MODULE_ALIAS_FS("ext4"); 5629 5630 /* Shared across all ext4 file systems */ 5631 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5632 5633 static int __init ext4_init_fs(void) 5634 { 5635 int i, err; 5636 5637 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5638 ext4_li_info = NULL; 5639 mutex_init(&ext4_li_mtx); 5640 5641 /* Build-time check for flags consistency */ 5642 ext4_check_flag_values(); 5643 5644 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5645 init_waitqueue_head(&ext4__ioend_wq[i]); 5646 5647 err = ext4_init_es(); 5648 if (err) 5649 return err; 5650 5651 err = ext4_init_pageio(); 5652 if (err) 5653 goto out5; 5654 5655 err = ext4_init_system_zone(); 5656 if (err) 5657 goto out4; 5658 5659 err = ext4_init_sysfs(); 5660 if (err) 5661 goto out3; 5662 5663 err = ext4_init_mballoc(); 5664 if (err) 5665 goto out2; 5666 err = init_inodecache(); 5667 if (err) 5668 goto out1; 5669 register_as_ext3(); 5670 register_as_ext2(); 5671 err = register_filesystem(&ext4_fs_type); 5672 if (err) 5673 goto out; 5674 5675 return 0; 5676 out: 5677 unregister_as_ext2(); 5678 unregister_as_ext3(); 5679 destroy_inodecache(); 5680 out1: 5681 ext4_exit_mballoc(); 5682 out2: 5683 ext4_exit_sysfs(); 5684 out3: 5685 ext4_exit_system_zone(); 5686 out4: 5687 ext4_exit_pageio(); 5688 out5: 5689 ext4_exit_es(); 5690 5691 return err; 5692 } 5693 5694 static void __exit ext4_exit_fs(void) 5695 { 5696 ext4_destroy_lazyinit_thread(); 5697 unregister_as_ext2(); 5698 unregister_as_ext3(); 5699 unregister_filesystem(&ext4_fs_type); 5700 destroy_inodecache(); 5701 ext4_exit_mballoc(); 5702 ext4_exit_sysfs(); 5703 ext4_exit_system_zone(); 5704 ext4_exit_pageio(); 5705 ext4_exit_es(); 5706 } 5707 5708 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5709 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5710 MODULE_LICENSE("GPL"); 5711 module_init(ext4_init_fs) 5712 module_exit(ext4_exit_fs) 5713