xref: /openbmc/linux/fs/ext4/super.c (revision 22fd411a)
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18 
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42 
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 
46 #include "ext4.h"
47 #include "ext4_jbd2.h"
48 #include "xattr.h"
49 #include "acl.h"
50 #include "mballoc.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ext4.h>
54 
55 static struct proc_dir_entry *ext4_proc_root;
56 static struct kset *ext4_kset;
57 struct ext4_lazy_init *ext4_li_info;
58 struct mutex ext4_li_mtx;
59 struct ext4_features *ext4_feat;
60 
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 			     unsigned long journal_devnum);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 					struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 				   struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static const char *ext4_decode_error(struct super_block *sb, int errno,
70 				     char nbuf[16]);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static void ext4_write_super(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 		       const char *dev_name, void *data);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 
81 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
82 static struct file_system_type ext3_fs_type = {
83 	.owner		= THIS_MODULE,
84 	.name		= "ext3",
85 	.mount		= ext4_mount,
86 	.kill_sb	= kill_block_super,
87 	.fs_flags	= FS_REQUIRES_DEV,
88 };
89 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
90 #else
91 #define IS_EXT3_SB(sb) (0)
92 #endif
93 
94 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
95 			       struct ext4_group_desc *bg)
96 {
97 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
98 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
99 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
100 }
101 
102 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
103 			       struct ext4_group_desc *bg)
104 {
105 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
106 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
107 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
108 }
109 
110 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
111 			      struct ext4_group_desc *bg)
112 {
113 	return le32_to_cpu(bg->bg_inode_table_lo) |
114 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
115 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
116 }
117 
118 __u32 ext4_free_blks_count(struct super_block *sb,
119 			      struct ext4_group_desc *bg)
120 {
121 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
122 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
123 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
124 }
125 
126 __u32 ext4_free_inodes_count(struct super_block *sb,
127 			      struct ext4_group_desc *bg)
128 {
129 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
130 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
131 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
132 }
133 
134 __u32 ext4_used_dirs_count(struct super_block *sb,
135 			      struct ext4_group_desc *bg)
136 {
137 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
138 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
139 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
140 }
141 
142 __u32 ext4_itable_unused_count(struct super_block *sb,
143 			      struct ext4_group_desc *bg)
144 {
145 	return le16_to_cpu(bg->bg_itable_unused_lo) |
146 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
148 }
149 
150 void ext4_block_bitmap_set(struct super_block *sb,
151 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
152 {
153 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
154 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
155 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
156 }
157 
158 void ext4_inode_bitmap_set(struct super_block *sb,
159 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
160 {
161 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
162 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
163 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
164 }
165 
166 void ext4_inode_table_set(struct super_block *sb,
167 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
168 {
169 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
170 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
171 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
172 }
173 
174 void ext4_free_blks_set(struct super_block *sb,
175 			  struct ext4_group_desc *bg, __u32 count)
176 {
177 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
178 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
179 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
180 }
181 
182 void ext4_free_inodes_set(struct super_block *sb,
183 			  struct ext4_group_desc *bg, __u32 count)
184 {
185 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
186 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
187 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
188 }
189 
190 void ext4_used_dirs_set(struct super_block *sb,
191 			  struct ext4_group_desc *bg, __u32 count)
192 {
193 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
194 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
195 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
196 }
197 
198 void ext4_itable_unused_set(struct super_block *sb,
199 			  struct ext4_group_desc *bg, __u32 count)
200 {
201 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
202 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
204 }
205 
206 
207 /* Just increment the non-pointer handle value */
208 static handle_t *ext4_get_nojournal(void)
209 {
210 	handle_t *handle = current->journal_info;
211 	unsigned long ref_cnt = (unsigned long)handle;
212 
213 	BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
214 
215 	ref_cnt++;
216 	handle = (handle_t *)ref_cnt;
217 
218 	current->journal_info = handle;
219 	return handle;
220 }
221 
222 
223 /* Decrement the non-pointer handle value */
224 static void ext4_put_nojournal(handle_t *handle)
225 {
226 	unsigned long ref_cnt = (unsigned long)handle;
227 
228 	BUG_ON(ref_cnt == 0);
229 
230 	ref_cnt--;
231 	handle = (handle_t *)ref_cnt;
232 
233 	current->journal_info = handle;
234 }
235 
236 /*
237  * Wrappers for jbd2_journal_start/end.
238  *
239  * The only special thing we need to do here is to make sure that all
240  * journal_end calls result in the superblock being marked dirty, so
241  * that sync() will call the filesystem's write_super callback if
242  * appropriate.
243  */
244 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
245 {
246 	journal_t *journal;
247 
248 	if (sb->s_flags & MS_RDONLY)
249 		return ERR_PTR(-EROFS);
250 
251 	vfs_check_frozen(sb, SB_FREEZE_TRANS);
252 	/* Special case here: if the journal has aborted behind our
253 	 * backs (eg. EIO in the commit thread), then we still need to
254 	 * take the FS itself readonly cleanly. */
255 	journal = EXT4_SB(sb)->s_journal;
256 	if (journal) {
257 		if (is_journal_aborted(journal)) {
258 			ext4_abort(sb, "Detected aborted journal");
259 			return ERR_PTR(-EROFS);
260 		}
261 		return jbd2_journal_start(journal, nblocks);
262 	}
263 	return ext4_get_nojournal();
264 }
265 
266 /*
267  * The only special thing we need to do here is to make sure that all
268  * jbd2_journal_stop calls result in the superblock being marked dirty, so
269  * that sync() will call the filesystem's write_super callback if
270  * appropriate.
271  */
272 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
273 {
274 	struct super_block *sb;
275 	int err;
276 	int rc;
277 
278 	if (!ext4_handle_valid(handle)) {
279 		ext4_put_nojournal(handle);
280 		return 0;
281 	}
282 	sb = handle->h_transaction->t_journal->j_private;
283 	err = handle->h_err;
284 	rc = jbd2_journal_stop(handle);
285 
286 	if (!err)
287 		err = rc;
288 	if (err)
289 		__ext4_std_error(sb, where, line, err);
290 	return err;
291 }
292 
293 void ext4_journal_abort_handle(const char *caller, unsigned int line,
294 			       const char *err_fn, struct buffer_head *bh,
295 			       handle_t *handle, int err)
296 {
297 	char nbuf[16];
298 	const char *errstr = ext4_decode_error(NULL, err, nbuf);
299 
300 	BUG_ON(!ext4_handle_valid(handle));
301 
302 	if (bh)
303 		BUFFER_TRACE(bh, "abort");
304 
305 	if (!handle->h_err)
306 		handle->h_err = err;
307 
308 	if (is_handle_aborted(handle))
309 		return;
310 
311 	printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
312 	       caller, line, errstr, err_fn);
313 
314 	jbd2_journal_abort_handle(handle);
315 }
316 
317 static void __save_error_info(struct super_block *sb, const char *func,
318 			    unsigned int line)
319 {
320 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321 
322 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
323 	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
324 	es->s_last_error_time = cpu_to_le32(get_seconds());
325 	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
326 	es->s_last_error_line = cpu_to_le32(line);
327 	if (!es->s_first_error_time) {
328 		es->s_first_error_time = es->s_last_error_time;
329 		strncpy(es->s_first_error_func, func,
330 			sizeof(es->s_first_error_func));
331 		es->s_first_error_line = cpu_to_le32(line);
332 		es->s_first_error_ino = es->s_last_error_ino;
333 		es->s_first_error_block = es->s_last_error_block;
334 	}
335 	/*
336 	 * Start the daily error reporting function if it hasn't been
337 	 * started already
338 	 */
339 	if (!es->s_error_count)
340 		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
341 	es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
342 }
343 
344 static void save_error_info(struct super_block *sb, const char *func,
345 			    unsigned int line)
346 {
347 	__save_error_info(sb, func, line);
348 	ext4_commit_super(sb, 1);
349 }
350 
351 
352 /* Deal with the reporting of failure conditions on a filesystem such as
353  * inconsistencies detected or read IO failures.
354  *
355  * On ext2, we can store the error state of the filesystem in the
356  * superblock.  That is not possible on ext4, because we may have other
357  * write ordering constraints on the superblock which prevent us from
358  * writing it out straight away; and given that the journal is about to
359  * be aborted, we can't rely on the current, or future, transactions to
360  * write out the superblock safely.
361  *
362  * We'll just use the jbd2_journal_abort() error code to record an error in
363  * the journal instead.  On recovery, the journal will complain about
364  * that error until we've noted it down and cleared it.
365  */
366 
367 static void ext4_handle_error(struct super_block *sb)
368 {
369 	if (sb->s_flags & MS_RDONLY)
370 		return;
371 
372 	if (!test_opt(sb, ERRORS_CONT)) {
373 		journal_t *journal = EXT4_SB(sb)->s_journal;
374 
375 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
376 		if (journal)
377 			jbd2_journal_abort(journal, -EIO);
378 	}
379 	if (test_opt(sb, ERRORS_RO)) {
380 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
381 		sb->s_flags |= MS_RDONLY;
382 	}
383 	if (test_opt(sb, ERRORS_PANIC))
384 		panic("EXT4-fs (device %s): panic forced after error\n",
385 			sb->s_id);
386 }
387 
388 void __ext4_error(struct super_block *sb, const char *function,
389 		  unsigned int line, const char *fmt, ...)
390 {
391 	struct va_format vaf;
392 	va_list args;
393 
394 	va_start(args, fmt);
395 	vaf.fmt = fmt;
396 	vaf.va = &args;
397 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
398 	       sb->s_id, function, line, current->comm, &vaf);
399 	va_end(args);
400 
401 	ext4_handle_error(sb);
402 }
403 
404 void ext4_error_inode(struct inode *inode, const char *function,
405 		      unsigned int line, ext4_fsblk_t block,
406 		      const char *fmt, ...)
407 {
408 	va_list args;
409 	struct va_format vaf;
410 	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
411 
412 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
413 	es->s_last_error_block = cpu_to_le64(block);
414 	save_error_info(inode->i_sb, function, line);
415 	va_start(args, fmt);
416 	vaf.fmt = fmt;
417 	vaf.va = &args;
418 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
419 	       inode->i_sb->s_id, function, line, inode->i_ino);
420 	if (block)
421 		printk(KERN_CONT "block %llu: ", block);
422 	printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
423 	va_end(args);
424 
425 	ext4_handle_error(inode->i_sb);
426 }
427 
428 void ext4_error_file(struct file *file, const char *function,
429 		     unsigned int line, ext4_fsblk_t block,
430 		     const char *fmt, ...)
431 {
432 	va_list args;
433 	struct va_format vaf;
434 	struct ext4_super_block *es;
435 	struct inode *inode = file->f_dentry->d_inode;
436 	char pathname[80], *path;
437 
438 	es = EXT4_SB(inode->i_sb)->s_es;
439 	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
440 	save_error_info(inode->i_sb, function, line);
441 	path = d_path(&(file->f_path), pathname, sizeof(pathname));
442 	if (IS_ERR(path))
443 		path = "(unknown)";
444 	printk(KERN_CRIT
445 	       "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
446 	       inode->i_sb->s_id, function, line, inode->i_ino);
447 	if (block)
448 		printk(KERN_CONT "block %llu: ", block);
449 	va_start(args, fmt);
450 	vaf.fmt = fmt;
451 	vaf.va = &args;
452 	printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
453 	va_end(args);
454 
455 	ext4_handle_error(inode->i_sb);
456 }
457 
458 static const char *ext4_decode_error(struct super_block *sb, int errno,
459 				     char nbuf[16])
460 {
461 	char *errstr = NULL;
462 
463 	switch (errno) {
464 	case -EIO:
465 		errstr = "IO failure";
466 		break;
467 	case -ENOMEM:
468 		errstr = "Out of memory";
469 		break;
470 	case -EROFS:
471 		if (!sb || (EXT4_SB(sb)->s_journal &&
472 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
473 			errstr = "Journal has aborted";
474 		else
475 			errstr = "Readonly filesystem";
476 		break;
477 	default:
478 		/* If the caller passed in an extra buffer for unknown
479 		 * errors, textualise them now.  Else we just return
480 		 * NULL. */
481 		if (nbuf) {
482 			/* Check for truncated error codes... */
483 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
484 				errstr = nbuf;
485 		}
486 		break;
487 	}
488 
489 	return errstr;
490 }
491 
492 /* __ext4_std_error decodes expected errors from journaling functions
493  * automatically and invokes the appropriate error response.  */
494 
495 void __ext4_std_error(struct super_block *sb, const char *function,
496 		      unsigned int line, int errno)
497 {
498 	char nbuf[16];
499 	const char *errstr;
500 
501 	/* Special case: if the error is EROFS, and we're not already
502 	 * inside a transaction, then there's really no point in logging
503 	 * an error. */
504 	if (errno == -EROFS && journal_current_handle() == NULL &&
505 	    (sb->s_flags & MS_RDONLY))
506 		return;
507 
508 	errstr = ext4_decode_error(sb, errno, nbuf);
509 	printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
510 	       sb->s_id, function, line, errstr);
511 	save_error_info(sb, function, line);
512 
513 	ext4_handle_error(sb);
514 }
515 
516 /*
517  * ext4_abort is a much stronger failure handler than ext4_error.  The
518  * abort function may be used to deal with unrecoverable failures such
519  * as journal IO errors or ENOMEM at a critical moment in log management.
520  *
521  * We unconditionally force the filesystem into an ABORT|READONLY state,
522  * unless the error response on the fs has been set to panic in which
523  * case we take the easy way out and panic immediately.
524  */
525 
526 void __ext4_abort(struct super_block *sb, const char *function,
527 		unsigned int line, const char *fmt, ...)
528 {
529 	va_list args;
530 
531 	save_error_info(sb, function, line);
532 	va_start(args, fmt);
533 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
534 	       function, line);
535 	vprintk(fmt, args);
536 	printk("\n");
537 	va_end(args);
538 
539 	if ((sb->s_flags & MS_RDONLY) == 0) {
540 		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
541 		sb->s_flags |= MS_RDONLY;
542 		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
543 		if (EXT4_SB(sb)->s_journal)
544 			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
545 		save_error_info(sb, function, line);
546 	}
547 	if (test_opt(sb, ERRORS_PANIC))
548 		panic("EXT4-fs panic from previous error\n");
549 }
550 
551 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
552 {
553 	struct va_format vaf;
554 	va_list args;
555 
556 	va_start(args, fmt);
557 	vaf.fmt = fmt;
558 	vaf.va = &args;
559 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
560 	va_end(args);
561 }
562 
563 void __ext4_warning(struct super_block *sb, const char *function,
564 		    unsigned int line, const char *fmt, ...)
565 {
566 	struct va_format vaf;
567 	va_list args;
568 
569 	va_start(args, fmt);
570 	vaf.fmt = fmt;
571 	vaf.va = &args;
572 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
573 	       sb->s_id, function, line, &vaf);
574 	va_end(args);
575 }
576 
577 void __ext4_grp_locked_error(const char *function, unsigned int line,
578 			     struct super_block *sb, ext4_group_t grp,
579 			     unsigned long ino, ext4_fsblk_t block,
580 			     const char *fmt, ...)
581 __releases(bitlock)
582 __acquires(bitlock)
583 {
584 	struct va_format vaf;
585 	va_list args;
586 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
587 
588 	es->s_last_error_ino = cpu_to_le32(ino);
589 	es->s_last_error_block = cpu_to_le64(block);
590 	__save_error_info(sb, function, line);
591 
592 	va_start(args, fmt);
593 
594 	vaf.fmt = fmt;
595 	vaf.va = &args;
596 	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u",
597 	       sb->s_id, function, line, grp);
598 	if (ino)
599 		printk(KERN_CONT "inode %lu: ", ino);
600 	if (block)
601 		printk(KERN_CONT "block %llu:", (unsigned long long) block);
602 	printk(KERN_CONT "%pV\n", &vaf);
603 	va_end(args);
604 
605 	if (test_opt(sb, ERRORS_CONT)) {
606 		ext4_commit_super(sb, 0);
607 		return;
608 	}
609 
610 	ext4_unlock_group(sb, grp);
611 	ext4_handle_error(sb);
612 	/*
613 	 * We only get here in the ERRORS_RO case; relocking the group
614 	 * may be dangerous, but nothing bad will happen since the
615 	 * filesystem will have already been marked read/only and the
616 	 * journal has been aborted.  We return 1 as a hint to callers
617 	 * who might what to use the return value from
618 	 * ext4_grp_locked_error() to distinguish beween the
619 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
620 	 * aggressively from the ext4 function in question, with a
621 	 * more appropriate error code.
622 	 */
623 	ext4_lock_group(sb, grp);
624 	return;
625 }
626 
627 void ext4_update_dynamic_rev(struct super_block *sb)
628 {
629 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
630 
631 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
632 		return;
633 
634 	ext4_warning(sb,
635 		     "updating to rev %d because of new feature flag, "
636 		     "running e2fsck is recommended",
637 		     EXT4_DYNAMIC_REV);
638 
639 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
640 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
641 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
642 	/* leave es->s_feature_*compat flags alone */
643 	/* es->s_uuid will be set by e2fsck if empty */
644 
645 	/*
646 	 * The rest of the superblock fields should be zero, and if not it
647 	 * means they are likely already in use, so leave them alone.  We
648 	 * can leave it up to e2fsck to clean up any inconsistencies there.
649 	 */
650 }
651 
652 /*
653  * Open the external journal device
654  */
655 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
656 {
657 	struct block_device *bdev;
658 	char b[BDEVNAME_SIZE];
659 
660 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
661 	if (IS_ERR(bdev))
662 		goto fail;
663 	return bdev;
664 
665 fail:
666 	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
667 			__bdevname(dev, b), PTR_ERR(bdev));
668 	return NULL;
669 }
670 
671 /*
672  * Release the journal device
673  */
674 static int ext4_blkdev_put(struct block_device *bdev)
675 {
676 	return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
677 }
678 
679 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
680 {
681 	struct block_device *bdev;
682 	int ret = -ENODEV;
683 
684 	bdev = sbi->journal_bdev;
685 	if (bdev) {
686 		ret = ext4_blkdev_put(bdev);
687 		sbi->journal_bdev = NULL;
688 	}
689 	return ret;
690 }
691 
692 static inline struct inode *orphan_list_entry(struct list_head *l)
693 {
694 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
695 }
696 
697 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
698 {
699 	struct list_head *l;
700 
701 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
702 		 le32_to_cpu(sbi->s_es->s_last_orphan));
703 
704 	printk(KERN_ERR "sb_info orphan list:\n");
705 	list_for_each(l, &sbi->s_orphan) {
706 		struct inode *inode = orphan_list_entry(l);
707 		printk(KERN_ERR "  "
708 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
709 		       inode->i_sb->s_id, inode->i_ino, inode,
710 		       inode->i_mode, inode->i_nlink,
711 		       NEXT_ORPHAN(inode));
712 	}
713 }
714 
715 static void ext4_put_super(struct super_block *sb)
716 {
717 	struct ext4_sb_info *sbi = EXT4_SB(sb);
718 	struct ext4_super_block *es = sbi->s_es;
719 	int i, err;
720 
721 	ext4_unregister_li_request(sb);
722 	dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
723 
724 	flush_workqueue(sbi->dio_unwritten_wq);
725 	destroy_workqueue(sbi->dio_unwritten_wq);
726 
727 	lock_super(sb);
728 	if (sb->s_dirt)
729 		ext4_commit_super(sb, 1);
730 
731 	if (sbi->s_journal) {
732 		err = jbd2_journal_destroy(sbi->s_journal);
733 		sbi->s_journal = NULL;
734 		if (err < 0)
735 			ext4_abort(sb, "Couldn't clean up the journal");
736 	}
737 
738 	del_timer(&sbi->s_err_report);
739 	ext4_release_system_zone(sb);
740 	ext4_mb_release(sb);
741 	ext4_ext_release(sb);
742 	ext4_xattr_put_super(sb);
743 
744 	if (!(sb->s_flags & MS_RDONLY)) {
745 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
746 		es->s_state = cpu_to_le16(sbi->s_mount_state);
747 		ext4_commit_super(sb, 1);
748 	}
749 	if (sbi->s_proc) {
750 		remove_proc_entry(sb->s_id, ext4_proc_root);
751 	}
752 	kobject_del(&sbi->s_kobj);
753 
754 	for (i = 0; i < sbi->s_gdb_count; i++)
755 		brelse(sbi->s_group_desc[i]);
756 	kfree(sbi->s_group_desc);
757 	if (is_vmalloc_addr(sbi->s_flex_groups))
758 		vfree(sbi->s_flex_groups);
759 	else
760 		kfree(sbi->s_flex_groups);
761 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
762 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
763 	percpu_counter_destroy(&sbi->s_dirs_counter);
764 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
765 	brelse(sbi->s_sbh);
766 #ifdef CONFIG_QUOTA
767 	for (i = 0; i < MAXQUOTAS; i++)
768 		kfree(sbi->s_qf_names[i]);
769 #endif
770 
771 	/* Debugging code just in case the in-memory inode orphan list
772 	 * isn't empty.  The on-disk one can be non-empty if we've
773 	 * detected an error and taken the fs readonly, but the
774 	 * in-memory list had better be clean by this point. */
775 	if (!list_empty(&sbi->s_orphan))
776 		dump_orphan_list(sb, sbi);
777 	J_ASSERT(list_empty(&sbi->s_orphan));
778 
779 	invalidate_bdev(sb->s_bdev);
780 	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
781 		/*
782 		 * Invalidate the journal device's buffers.  We don't want them
783 		 * floating about in memory - the physical journal device may
784 		 * hotswapped, and it breaks the `ro-after' testing code.
785 		 */
786 		sync_blockdev(sbi->journal_bdev);
787 		invalidate_bdev(sbi->journal_bdev);
788 		ext4_blkdev_remove(sbi);
789 	}
790 	sb->s_fs_info = NULL;
791 	/*
792 	 * Now that we are completely done shutting down the
793 	 * superblock, we need to actually destroy the kobject.
794 	 */
795 	unlock_super(sb);
796 	kobject_put(&sbi->s_kobj);
797 	wait_for_completion(&sbi->s_kobj_unregister);
798 	kfree(sbi->s_blockgroup_lock);
799 	kfree(sbi);
800 }
801 
802 static struct kmem_cache *ext4_inode_cachep;
803 
804 /*
805  * Called inside transaction, so use GFP_NOFS
806  */
807 static struct inode *ext4_alloc_inode(struct super_block *sb)
808 {
809 	struct ext4_inode_info *ei;
810 
811 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
812 	if (!ei)
813 		return NULL;
814 
815 	ei->vfs_inode.i_version = 1;
816 	ei->vfs_inode.i_data.writeback_index = 0;
817 	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
818 	INIT_LIST_HEAD(&ei->i_prealloc_list);
819 	spin_lock_init(&ei->i_prealloc_lock);
820 	ei->i_reserved_data_blocks = 0;
821 	ei->i_reserved_meta_blocks = 0;
822 	ei->i_allocated_meta_blocks = 0;
823 	ei->i_da_metadata_calc_len = 0;
824 	spin_lock_init(&(ei->i_block_reservation_lock));
825 #ifdef CONFIG_QUOTA
826 	ei->i_reserved_quota = 0;
827 #endif
828 	ei->jinode = NULL;
829 	INIT_LIST_HEAD(&ei->i_completed_io_list);
830 	spin_lock_init(&ei->i_completed_io_lock);
831 	ei->cur_aio_dio = NULL;
832 	ei->i_sync_tid = 0;
833 	ei->i_datasync_tid = 0;
834 	atomic_set(&ei->i_ioend_count, 0);
835 
836 	return &ei->vfs_inode;
837 }
838 
839 static int ext4_drop_inode(struct inode *inode)
840 {
841 	int drop = generic_drop_inode(inode);
842 
843 	trace_ext4_drop_inode(inode, drop);
844 	return drop;
845 }
846 
847 static void ext4_i_callback(struct rcu_head *head)
848 {
849 	struct inode *inode = container_of(head, struct inode, i_rcu);
850 	INIT_LIST_HEAD(&inode->i_dentry);
851 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
852 }
853 
854 static void ext4_destroy_inode(struct inode *inode)
855 {
856 	ext4_ioend_wait(inode);
857 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
858 		ext4_msg(inode->i_sb, KERN_ERR,
859 			 "Inode %lu (%p): orphan list check failed!",
860 			 inode->i_ino, EXT4_I(inode));
861 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
862 				EXT4_I(inode), sizeof(struct ext4_inode_info),
863 				true);
864 		dump_stack();
865 	}
866 	call_rcu(&inode->i_rcu, ext4_i_callback);
867 }
868 
869 static void init_once(void *foo)
870 {
871 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
872 
873 	INIT_LIST_HEAD(&ei->i_orphan);
874 #ifdef CONFIG_EXT4_FS_XATTR
875 	init_rwsem(&ei->xattr_sem);
876 #endif
877 	init_rwsem(&ei->i_data_sem);
878 	inode_init_once(&ei->vfs_inode);
879 }
880 
881 static int init_inodecache(void)
882 {
883 	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
884 					     sizeof(struct ext4_inode_info),
885 					     0, (SLAB_RECLAIM_ACCOUNT|
886 						SLAB_MEM_SPREAD),
887 					     init_once);
888 	if (ext4_inode_cachep == NULL)
889 		return -ENOMEM;
890 	return 0;
891 }
892 
893 static void destroy_inodecache(void)
894 {
895 	kmem_cache_destroy(ext4_inode_cachep);
896 }
897 
898 void ext4_clear_inode(struct inode *inode)
899 {
900 	invalidate_inode_buffers(inode);
901 	end_writeback(inode);
902 	dquot_drop(inode);
903 	ext4_discard_preallocations(inode);
904 	if (EXT4_I(inode)->jinode) {
905 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
906 					       EXT4_I(inode)->jinode);
907 		jbd2_free_inode(EXT4_I(inode)->jinode);
908 		EXT4_I(inode)->jinode = NULL;
909 	}
910 }
911 
912 static inline void ext4_show_quota_options(struct seq_file *seq,
913 					   struct super_block *sb)
914 {
915 #if defined(CONFIG_QUOTA)
916 	struct ext4_sb_info *sbi = EXT4_SB(sb);
917 
918 	if (sbi->s_jquota_fmt) {
919 		char *fmtname = "";
920 
921 		switch (sbi->s_jquota_fmt) {
922 		case QFMT_VFS_OLD:
923 			fmtname = "vfsold";
924 			break;
925 		case QFMT_VFS_V0:
926 			fmtname = "vfsv0";
927 			break;
928 		case QFMT_VFS_V1:
929 			fmtname = "vfsv1";
930 			break;
931 		}
932 		seq_printf(seq, ",jqfmt=%s", fmtname);
933 	}
934 
935 	if (sbi->s_qf_names[USRQUOTA])
936 		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
937 
938 	if (sbi->s_qf_names[GRPQUOTA])
939 		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
940 
941 	if (test_opt(sb, USRQUOTA))
942 		seq_puts(seq, ",usrquota");
943 
944 	if (test_opt(sb, GRPQUOTA))
945 		seq_puts(seq, ",grpquota");
946 #endif
947 }
948 
949 /*
950  * Show an option if
951  *  - it's set to a non-default value OR
952  *  - if the per-sb default is different from the global default
953  */
954 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
955 {
956 	int def_errors;
957 	unsigned long def_mount_opts;
958 	struct super_block *sb = vfs->mnt_sb;
959 	struct ext4_sb_info *sbi = EXT4_SB(sb);
960 	struct ext4_super_block *es = sbi->s_es;
961 
962 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
963 	def_errors     = le16_to_cpu(es->s_errors);
964 
965 	if (sbi->s_sb_block != 1)
966 		seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
967 	if (test_opt(sb, MINIX_DF))
968 		seq_puts(seq, ",minixdf");
969 	if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
970 		seq_puts(seq, ",grpid");
971 	if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
972 		seq_puts(seq, ",nogrpid");
973 	if (sbi->s_resuid != EXT4_DEF_RESUID ||
974 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
975 		seq_printf(seq, ",resuid=%u", sbi->s_resuid);
976 	}
977 	if (sbi->s_resgid != EXT4_DEF_RESGID ||
978 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
979 		seq_printf(seq, ",resgid=%u", sbi->s_resgid);
980 	}
981 	if (test_opt(sb, ERRORS_RO)) {
982 		if (def_errors == EXT4_ERRORS_PANIC ||
983 		    def_errors == EXT4_ERRORS_CONTINUE) {
984 			seq_puts(seq, ",errors=remount-ro");
985 		}
986 	}
987 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
988 		seq_puts(seq, ",errors=continue");
989 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
990 		seq_puts(seq, ",errors=panic");
991 	if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
992 		seq_puts(seq, ",nouid32");
993 	if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
994 		seq_puts(seq, ",debug");
995 	if (test_opt(sb, OLDALLOC))
996 		seq_puts(seq, ",oldalloc");
997 #ifdef CONFIG_EXT4_FS_XATTR
998 	if (test_opt(sb, XATTR_USER) &&
999 		!(def_mount_opts & EXT4_DEFM_XATTR_USER))
1000 		seq_puts(seq, ",user_xattr");
1001 	if (!test_opt(sb, XATTR_USER) &&
1002 	    (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
1003 		seq_puts(seq, ",nouser_xattr");
1004 	}
1005 #endif
1006 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1007 	if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1008 		seq_puts(seq, ",acl");
1009 	if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1010 		seq_puts(seq, ",noacl");
1011 #endif
1012 	if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1013 		seq_printf(seq, ",commit=%u",
1014 			   (unsigned) (sbi->s_commit_interval / HZ));
1015 	}
1016 	if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1017 		seq_printf(seq, ",min_batch_time=%u",
1018 			   (unsigned) sbi->s_min_batch_time);
1019 	}
1020 	if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1021 		seq_printf(seq, ",max_batch_time=%u",
1022 			   (unsigned) sbi->s_min_batch_time);
1023 	}
1024 
1025 	/*
1026 	 * We're changing the default of barrier mount option, so
1027 	 * let's always display its mount state so it's clear what its
1028 	 * status is.
1029 	 */
1030 	seq_puts(seq, ",barrier=");
1031 	seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1032 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1033 		seq_puts(seq, ",journal_async_commit");
1034 	else if (test_opt(sb, JOURNAL_CHECKSUM))
1035 		seq_puts(seq, ",journal_checksum");
1036 	if (test_opt(sb, I_VERSION))
1037 		seq_puts(seq, ",i_version");
1038 	if (!test_opt(sb, DELALLOC) &&
1039 	    !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1040 		seq_puts(seq, ",nodelalloc");
1041 
1042 	if (test_opt(sb, MBLK_IO_SUBMIT))
1043 		seq_puts(seq, ",mblk_io_submit");
1044 	if (sbi->s_stripe)
1045 		seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1046 	/*
1047 	 * journal mode get enabled in different ways
1048 	 * So just print the value even if we didn't specify it
1049 	 */
1050 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1051 		seq_puts(seq, ",data=journal");
1052 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1053 		seq_puts(seq, ",data=ordered");
1054 	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1055 		seq_puts(seq, ",data=writeback");
1056 
1057 	if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1058 		seq_printf(seq, ",inode_readahead_blks=%u",
1059 			   sbi->s_inode_readahead_blks);
1060 
1061 	if (test_opt(sb, DATA_ERR_ABORT))
1062 		seq_puts(seq, ",data_err=abort");
1063 
1064 	if (test_opt(sb, NO_AUTO_DA_ALLOC))
1065 		seq_puts(seq, ",noauto_da_alloc");
1066 
1067 	if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1068 		seq_puts(seq, ",discard");
1069 
1070 	if (test_opt(sb, NOLOAD))
1071 		seq_puts(seq, ",norecovery");
1072 
1073 	if (test_opt(sb, DIOREAD_NOLOCK))
1074 		seq_puts(seq, ",dioread_nolock");
1075 
1076 	if (test_opt(sb, BLOCK_VALIDITY) &&
1077 	    !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1078 		seq_puts(seq, ",block_validity");
1079 
1080 	if (!test_opt(sb, INIT_INODE_TABLE))
1081 		seq_puts(seq, ",noinit_inode_table");
1082 	else if (sbi->s_li_wait_mult)
1083 		seq_printf(seq, ",init_inode_table=%u",
1084 			   (unsigned) sbi->s_li_wait_mult);
1085 
1086 	ext4_show_quota_options(seq, sb);
1087 
1088 	return 0;
1089 }
1090 
1091 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1092 					u64 ino, u32 generation)
1093 {
1094 	struct inode *inode;
1095 
1096 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1097 		return ERR_PTR(-ESTALE);
1098 	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1099 		return ERR_PTR(-ESTALE);
1100 
1101 	/* iget isn't really right if the inode is currently unallocated!!
1102 	 *
1103 	 * ext4_read_inode will return a bad_inode if the inode had been
1104 	 * deleted, so we should be safe.
1105 	 *
1106 	 * Currently we don't know the generation for parent directory, so
1107 	 * a generation of 0 means "accept any"
1108 	 */
1109 	inode = ext4_iget(sb, ino);
1110 	if (IS_ERR(inode))
1111 		return ERR_CAST(inode);
1112 	if (generation && inode->i_generation != generation) {
1113 		iput(inode);
1114 		return ERR_PTR(-ESTALE);
1115 	}
1116 
1117 	return inode;
1118 }
1119 
1120 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1121 					int fh_len, int fh_type)
1122 {
1123 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1124 				    ext4_nfs_get_inode);
1125 }
1126 
1127 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1128 					int fh_len, int fh_type)
1129 {
1130 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1131 				    ext4_nfs_get_inode);
1132 }
1133 
1134 /*
1135  * Try to release metadata pages (indirect blocks, directories) which are
1136  * mapped via the block device.  Since these pages could have journal heads
1137  * which would prevent try_to_free_buffers() from freeing them, we must use
1138  * jbd2 layer's try_to_free_buffers() function to release them.
1139  */
1140 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1141 				 gfp_t wait)
1142 {
1143 	journal_t *journal = EXT4_SB(sb)->s_journal;
1144 
1145 	WARN_ON(PageChecked(page));
1146 	if (!page_has_buffers(page))
1147 		return 0;
1148 	if (journal)
1149 		return jbd2_journal_try_to_free_buffers(journal, page,
1150 							wait & ~__GFP_WAIT);
1151 	return try_to_free_buffers(page);
1152 }
1153 
1154 #ifdef CONFIG_QUOTA
1155 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1156 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1157 
1158 static int ext4_write_dquot(struct dquot *dquot);
1159 static int ext4_acquire_dquot(struct dquot *dquot);
1160 static int ext4_release_dquot(struct dquot *dquot);
1161 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1162 static int ext4_write_info(struct super_block *sb, int type);
1163 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1164 			 struct path *path);
1165 static int ext4_quota_off(struct super_block *sb, int type);
1166 static int ext4_quota_on_mount(struct super_block *sb, int type);
1167 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1168 			       size_t len, loff_t off);
1169 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1170 				const char *data, size_t len, loff_t off);
1171 
1172 static const struct dquot_operations ext4_quota_operations = {
1173 #ifdef CONFIG_QUOTA
1174 	.get_reserved_space = ext4_get_reserved_space,
1175 #endif
1176 	.write_dquot	= ext4_write_dquot,
1177 	.acquire_dquot	= ext4_acquire_dquot,
1178 	.release_dquot	= ext4_release_dquot,
1179 	.mark_dirty	= ext4_mark_dquot_dirty,
1180 	.write_info	= ext4_write_info,
1181 	.alloc_dquot	= dquot_alloc,
1182 	.destroy_dquot	= dquot_destroy,
1183 };
1184 
1185 static const struct quotactl_ops ext4_qctl_operations = {
1186 	.quota_on	= ext4_quota_on,
1187 	.quota_off	= ext4_quota_off,
1188 	.quota_sync	= dquot_quota_sync,
1189 	.get_info	= dquot_get_dqinfo,
1190 	.set_info	= dquot_set_dqinfo,
1191 	.get_dqblk	= dquot_get_dqblk,
1192 	.set_dqblk	= dquot_set_dqblk
1193 };
1194 #endif
1195 
1196 static const struct super_operations ext4_sops = {
1197 	.alloc_inode	= ext4_alloc_inode,
1198 	.destroy_inode	= ext4_destroy_inode,
1199 	.write_inode	= ext4_write_inode,
1200 	.dirty_inode	= ext4_dirty_inode,
1201 	.drop_inode	= ext4_drop_inode,
1202 	.evict_inode	= ext4_evict_inode,
1203 	.put_super	= ext4_put_super,
1204 	.sync_fs	= ext4_sync_fs,
1205 	.freeze_fs	= ext4_freeze,
1206 	.unfreeze_fs	= ext4_unfreeze,
1207 	.statfs		= ext4_statfs,
1208 	.remount_fs	= ext4_remount,
1209 	.show_options	= ext4_show_options,
1210 #ifdef CONFIG_QUOTA
1211 	.quota_read	= ext4_quota_read,
1212 	.quota_write	= ext4_quota_write,
1213 #endif
1214 	.bdev_try_to_free_page = bdev_try_to_free_page,
1215 };
1216 
1217 static const struct super_operations ext4_nojournal_sops = {
1218 	.alloc_inode	= ext4_alloc_inode,
1219 	.destroy_inode	= ext4_destroy_inode,
1220 	.write_inode	= ext4_write_inode,
1221 	.dirty_inode	= ext4_dirty_inode,
1222 	.drop_inode	= ext4_drop_inode,
1223 	.evict_inode	= ext4_evict_inode,
1224 	.write_super	= ext4_write_super,
1225 	.put_super	= ext4_put_super,
1226 	.statfs		= ext4_statfs,
1227 	.remount_fs	= ext4_remount,
1228 	.show_options	= ext4_show_options,
1229 #ifdef CONFIG_QUOTA
1230 	.quota_read	= ext4_quota_read,
1231 	.quota_write	= ext4_quota_write,
1232 #endif
1233 	.bdev_try_to_free_page = bdev_try_to_free_page,
1234 };
1235 
1236 static const struct export_operations ext4_export_ops = {
1237 	.fh_to_dentry = ext4_fh_to_dentry,
1238 	.fh_to_parent = ext4_fh_to_parent,
1239 	.get_parent = ext4_get_parent,
1240 };
1241 
1242 enum {
1243 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1244 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1245 	Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1246 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1247 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1248 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1249 	Opt_journal_update, Opt_journal_dev,
1250 	Opt_journal_checksum, Opt_journal_async_commit,
1251 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1252 	Opt_data_err_abort, Opt_data_err_ignore,
1253 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1254 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1255 	Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1256 	Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1257 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1258 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1259 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1260 	Opt_dioread_nolock, Opt_dioread_lock,
1261 	Opt_discard, Opt_nodiscard,
1262 	Opt_init_inode_table, Opt_noinit_inode_table,
1263 };
1264 
1265 static const match_table_t tokens = {
1266 	{Opt_bsd_df, "bsddf"},
1267 	{Opt_minix_df, "minixdf"},
1268 	{Opt_grpid, "grpid"},
1269 	{Opt_grpid, "bsdgroups"},
1270 	{Opt_nogrpid, "nogrpid"},
1271 	{Opt_nogrpid, "sysvgroups"},
1272 	{Opt_resgid, "resgid=%u"},
1273 	{Opt_resuid, "resuid=%u"},
1274 	{Opt_sb, "sb=%u"},
1275 	{Opt_err_cont, "errors=continue"},
1276 	{Opt_err_panic, "errors=panic"},
1277 	{Opt_err_ro, "errors=remount-ro"},
1278 	{Opt_nouid32, "nouid32"},
1279 	{Opt_debug, "debug"},
1280 	{Opt_oldalloc, "oldalloc"},
1281 	{Opt_orlov, "orlov"},
1282 	{Opt_user_xattr, "user_xattr"},
1283 	{Opt_nouser_xattr, "nouser_xattr"},
1284 	{Opt_acl, "acl"},
1285 	{Opt_noacl, "noacl"},
1286 	{Opt_noload, "noload"},
1287 	{Opt_noload, "norecovery"},
1288 	{Opt_nobh, "nobh"},
1289 	{Opt_bh, "bh"},
1290 	{Opt_commit, "commit=%u"},
1291 	{Opt_min_batch_time, "min_batch_time=%u"},
1292 	{Opt_max_batch_time, "max_batch_time=%u"},
1293 	{Opt_journal_update, "journal=update"},
1294 	{Opt_journal_dev, "journal_dev=%u"},
1295 	{Opt_journal_checksum, "journal_checksum"},
1296 	{Opt_journal_async_commit, "journal_async_commit"},
1297 	{Opt_abort, "abort"},
1298 	{Opt_data_journal, "data=journal"},
1299 	{Opt_data_ordered, "data=ordered"},
1300 	{Opt_data_writeback, "data=writeback"},
1301 	{Opt_data_err_abort, "data_err=abort"},
1302 	{Opt_data_err_ignore, "data_err=ignore"},
1303 	{Opt_offusrjquota, "usrjquota="},
1304 	{Opt_usrjquota, "usrjquota=%s"},
1305 	{Opt_offgrpjquota, "grpjquota="},
1306 	{Opt_grpjquota, "grpjquota=%s"},
1307 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1308 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1309 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1310 	{Opt_grpquota, "grpquota"},
1311 	{Opt_noquota, "noquota"},
1312 	{Opt_quota, "quota"},
1313 	{Opt_usrquota, "usrquota"},
1314 	{Opt_barrier, "barrier=%u"},
1315 	{Opt_barrier, "barrier"},
1316 	{Opt_nobarrier, "nobarrier"},
1317 	{Opt_i_version, "i_version"},
1318 	{Opt_stripe, "stripe=%u"},
1319 	{Opt_resize, "resize"},
1320 	{Opt_delalloc, "delalloc"},
1321 	{Opt_nodelalloc, "nodelalloc"},
1322 	{Opt_mblk_io_submit, "mblk_io_submit"},
1323 	{Opt_nomblk_io_submit, "nomblk_io_submit"},
1324 	{Opt_block_validity, "block_validity"},
1325 	{Opt_noblock_validity, "noblock_validity"},
1326 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1327 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1328 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1329 	{Opt_auto_da_alloc, "auto_da_alloc"},
1330 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1331 	{Opt_dioread_nolock, "dioread_nolock"},
1332 	{Opt_dioread_lock, "dioread_lock"},
1333 	{Opt_discard, "discard"},
1334 	{Opt_nodiscard, "nodiscard"},
1335 	{Opt_init_inode_table, "init_itable=%u"},
1336 	{Opt_init_inode_table, "init_itable"},
1337 	{Opt_noinit_inode_table, "noinit_itable"},
1338 	{Opt_err, NULL},
1339 };
1340 
1341 static ext4_fsblk_t get_sb_block(void **data)
1342 {
1343 	ext4_fsblk_t	sb_block;
1344 	char		*options = (char *) *data;
1345 
1346 	if (!options || strncmp(options, "sb=", 3) != 0)
1347 		return 1;	/* Default location */
1348 
1349 	options += 3;
1350 	/* TODO: use simple_strtoll with >32bit ext4 */
1351 	sb_block = simple_strtoul(options, &options, 0);
1352 	if (*options && *options != ',') {
1353 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1354 		       (char *) *data);
1355 		return 1;
1356 	}
1357 	if (*options == ',')
1358 		options++;
1359 	*data = (void *) options;
1360 
1361 	return sb_block;
1362 }
1363 
1364 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1365 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1366 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1367 
1368 #ifdef CONFIG_QUOTA
1369 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1370 {
1371 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1372 	char *qname;
1373 
1374 	if (sb_any_quota_loaded(sb) &&
1375 		!sbi->s_qf_names[qtype]) {
1376 		ext4_msg(sb, KERN_ERR,
1377 			"Cannot change journaled "
1378 			"quota options when quota turned on");
1379 		return 0;
1380 	}
1381 	qname = match_strdup(args);
1382 	if (!qname) {
1383 		ext4_msg(sb, KERN_ERR,
1384 			"Not enough memory for storing quotafile name");
1385 		return 0;
1386 	}
1387 	if (sbi->s_qf_names[qtype] &&
1388 		strcmp(sbi->s_qf_names[qtype], qname)) {
1389 		ext4_msg(sb, KERN_ERR,
1390 			"%s quota file already specified", QTYPE2NAME(qtype));
1391 		kfree(qname);
1392 		return 0;
1393 	}
1394 	sbi->s_qf_names[qtype] = qname;
1395 	if (strchr(sbi->s_qf_names[qtype], '/')) {
1396 		ext4_msg(sb, KERN_ERR,
1397 			"quotafile must be on filesystem root");
1398 		kfree(sbi->s_qf_names[qtype]);
1399 		sbi->s_qf_names[qtype] = NULL;
1400 		return 0;
1401 	}
1402 	set_opt(sb, QUOTA);
1403 	return 1;
1404 }
1405 
1406 static int clear_qf_name(struct super_block *sb, int qtype)
1407 {
1408 
1409 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1410 
1411 	if (sb_any_quota_loaded(sb) &&
1412 		sbi->s_qf_names[qtype]) {
1413 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1414 			" when quota turned on");
1415 		return 0;
1416 	}
1417 	/*
1418 	 * The space will be released later when all options are confirmed
1419 	 * to be correct
1420 	 */
1421 	sbi->s_qf_names[qtype] = NULL;
1422 	return 1;
1423 }
1424 #endif
1425 
1426 static int parse_options(char *options, struct super_block *sb,
1427 			 unsigned long *journal_devnum,
1428 			 unsigned int *journal_ioprio,
1429 			 ext4_fsblk_t *n_blocks_count, int is_remount)
1430 {
1431 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1432 	char *p;
1433 	substring_t args[MAX_OPT_ARGS];
1434 	int data_opt = 0;
1435 	int option;
1436 #ifdef CONFIG_QUOTA
1437 	int qfmt;
1438 #endif
1439 
1440 	if (!options)
1441 		return 1;
1442 
1443 	while ((p = strsep(&options, ",")) != NULL) {
1444 		int token;
1445 		if (!*p)
1446 			continue;
1447 
1448 		/*
1449 		 * Initialize args struct so we know whether arg was
1450 		 * found; some options take optional arguments.
1451 		 */
1452 		args[0].to = args[0].from = 0;
1453 		token = match_token(p, tokens, args);
1454 		switch (token) {
1455 		case Opt_bsd_df:
1456 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1457 			clear_opt(sb, MINIX_DF);
1458 			break;
1459 		case Opt_minix_df:
1460 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1461 			set_opt(sb, MINIX_DF);
1462 
1463 			break;
1464 		case Opt_grpid:
1465 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1466 			set_opt(sb, GRPID);
1467 
1468 			break;
1469 		case Opt_nogrpid:
1470 			ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1471 			clear_opt(sb, GRPID);
1472 
1473 			break;
1474 		case Opt_resuid:
1475 			if (match_int(&args[0], &option))
1476 				return 0;
1477 			sbi->s_resuid = option;
1478 			break;
1479 		case Opt_resgid:
1480 			if (match_int(&args[0], &option))
1481 				return 0;
1482 			sbi->s_resgid = option;
1483 			break;
1484 		case Opt_sb:
1485 			/* handled by get_sb_block() instead of here */
1486 			/* *sb_block = match_int(&args[0]); */
1487 			break;
1488 		case Opt_err_panic:
1489 			clear_opt(sb, ERRORS_CONT);
1490 			clear_opt(sb, ERRORS_RO);
1491 			set_opt(sb, ERRORS_PANIC);
1492 			break;
1493 		case Opt_err_ro:
1494 			clear_opt(sb, ERRORS_CONT);
1495 			clear_opt(sb, ERRORS_PANIC);
1496 			set_opt(sb, ERRORS_RO);
1497 			break;
1498 		case Opt_err_cont:
1499 			clear_opt(sb, ERRORS_RO);
1500 			clear_opt(sb, ERRORS_PANIC);
1501 			set_opt(sb, ERRORS_CONT);
1502 			break;
1503 		case Opt_nouid32:
1504 			set_opt(sb, NO_UID32);
1505 			break;
1506 		case Opt_debug:
1507 			set_opt(sb, DEBUG);
1508 			break;
1509 		case Opt_oldalloc:
1510 			set_opt(sb, OLDALLOC);
1511 			break;
1512 		case Opt_orlov:
1513 			clear_opt(sb, OLDALLOC);
1514 			break;
1515 #ifdef CONFIG_EXT4_FS_XATTR
1516 		case Opt_user_xattr:
1517 			set_opt(sb, XATTR_USER);
1518 			break;
1519 		case Opt_nouser_xattr:
1520 			clear_opt(sb, XATTR_USER);
1521 			break;
1522 #else
1523 		case Opt_user_xattr:
1524 		case Opt_nouser_xattr:
1525 			ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1526 			break;
1527 #endif
1528 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1529 		case Opt_acl:
1530 			set_opt(sb, POSIX_ACL);
1531 			break;
1532 		case Opt_noacl:
1533 			clear_opt(sb, POSIX_ACL);
1534 			break;
1535 #else
1536 		case Opt_acl:
1537 		case Opt_noacl:
1538 			ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1539 			break;
1540 #endif
1541 		case Opt_journal_update:
1542 			/* @@@ FIXME */
1543 			/* Eventually we will want to be able to create
1544 			   a journal file here.  For now, only allow the
1545 			   user to specify an existing inode to be the
1546 			   journal file. */
1547 			if (is_remount) {
1548 				ext4_msg(sb, KERN_ERR,
1549 					 "Cannot specify journal on remount");
1550 				return 0;
1551 			}
1552 			set_opt(sb, UPDATE_JOURNAL);
1553 			break;
1554 		case Opt_journal_dev:
1555 			if (is_remount) {
1556 				ext4_msg(sb, KERN_ERR,
1557 					"Cannot specify journal on remount");
1558 				return 0;
1559 			}
1560 			if (match_int(&args[0], &option))
1561 				return 0;
1562 			*journal_devnum = option;
1563 			break;
1564 		case Opt_journal_checksum:
1565 			set_opt(sb, JOURNAL_CHECKSUM);
1566 			break;
1567 		case Opt_journal_async_commit:
1568 			set_opt(sb, JOURNAL_ASYNC_COMMIT);
1569 			set_opt(sb, JOURNAL_CHECKSUM);
1570 			break;
1571 		case Opt_noload:
1572 			set_opt(sb, NOLOAD);
1573 			break;
1574 		case Opt_commit:
1575 			if (match_int(&args[0], &option))
1576 				return 0;
1577 			if (option < 0)
1578 				return 0;
1579 			if (option == 0)
1580 				option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1581 			sbi->s_commit_interval = HZ * option;
1582 			break;
1583 		case Opt_max_batch_time:
1584 			if (match_int(&args[0], &option))
1585 				return 0;
1586 			if (option < 0)
1587 				return 0;
1588 			if (option == 0)
1589 				option = EXT4_DEF_MAX_BATCH_TIME;
1590 			sbi->s_max_batch_time = option;
1591 			break;
1592 		case Opt_min_batch_time:
1593 			if (match_int(&args[0], &option))
1594 				return 0;
1595 			if (option < 0)
1596 				return 0;
1597 			sbi->s_min_batch_time = option;
1598 			break;
1599 		case Opt_data_journal:
1600 			data_opt = EXT4_MOUNT_JOURNAL_DATA;
1601 			goto datacheck;
1602 		case Opt_data_ordered:
1603 			data_opt = EXT4_MOUNT_ORDERED_DATA;
1604 			goto datacheck;
1605 		case Opt_data_writeback:
1606 			data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1607 		datacheck:
1608 			if (is_remount) {
1609 				if (test_opt(sb, DATA_FLAGS) != data_opt) {
1610 					ext4_msg(sb, KERN_ERR,
1611 						"Cannot change data mode on remount");
1612 					return 0;
1613 				}
1614 			} else {
1615 				clear_opt(sb, DATA_FLAGS);
1616 				sbi->s_mount_opt |= data_opt;
1617 			}
1618 			break;
1619 		case Opt_data_err_abort:
1620 			set_opt(sb, DATA_ERR_ABORT);
1621 			break;
1622 		case Opt_data_err_ignore:
1623 			clear_opt(sb, DATA_ERR_ABORT);
1624 			break;
1625 #ifdef CONFIG_QUOTA
1626 		case Opt_usrjquota:
1627 			if (!set_qf_name(sb, USRQUOTA, &args[0]))
1628 				return 0;
1629 			break;
1630 		case Opt_grpjquota:
1631 			if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1632 				return 0;
1633 			break;
1634 		case Opt_offusrjquota:
1635 			if (!clear_qf_name(sb, USRQUOTA))
1636 				return 0;
1637 			break;
1638 		case Opt_offgrpjquota:
1639 			if (!clear_qf_name(sb, GRPQUOTA))
1640 				return 0;
1641 			break;
1642 
1643 		case Opt_jqfmt_vfsold:
1644 			qfmt = QFMT_VFS_OLD;
1645 			goto set_qf_format;
1646 		case Opt_jqfmt_vfsv0:
1647 			qfmt = QFMT_VFS_V0;
1648 			goto set_qf_format;
1649 		case Opt_jqfmt_vfsv1:
1650 			qfmt = QFMT_VFS_V1;
1651 set_qf_format:
1652 			if (sb_any_quota_loaded(sb) &&
1653 			    sbi->s_jquota_fmt != qfmt) {
1654 				ext4_msg(sb, KERN_ERR, "Cannot change "
1655 					"journaled quota options when "
1656 					"quota turned on");
1657 				return 0;
1658 			}
1659 			sbi->s_jquota_fmt = qfmt;
1660 			break;
1661 		case Opt_quota:
1662 		case Opt_usrquota:
1663 			set_opt(sb, QUOTA);
1664 			set_opt(sb, USRQUOTA);
1665 			break;
1666 		case Opt_grpquota:
1667 			set_opt(sb, QUOTA);
1668 			set_opt(sb, GRPQUOTA);
1669 			break;
1670 		case Opt_noquota:
1671 			if (sb_any_quota_loaded(sb)) {
1672 				ext4_msg(sb, KERN_ERR, "Cannot change quota "
1673 					"options when quota turned on");
1674 				return 0;
1675 			}
1676 			clear_opt(sb, QUOTA);
1677 			clear_opt(sb, USRQUOTA);
1678 			clear_opt(sb, GRPQUOTA);
1679 			break;
1680 #else
1681 		case Opt_quota:
1682 		case Opt_usrquota:
1683 		case Opt_grpquota:
1684 			ext4_msg(sb, KERN_ERR,
1685 				"quota options not supported");
1686 			break;
1687 		case Opt_usrjquota:
1688 		case Opt_grpjquota:
1689 		case Opt_offusrjquota:
1690 		case Opt_offgrpjquota:
1691 		case Opt_jqfmt_vfsold:
1692 		case Opt_jqfmt_vfsv0:
1693 		case Opt_jqfmt_vfsv1:
1694 			ext4_msg(sb, KERN_ERR,
1695 				"journaled quota options not supported");
1696 			break;
1697 		case Opt_noquota:
1698 			break;
1699 #endif
1700 		case Opt_abort:
1701 			sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1702 			break;
1703 		case Opt_nobarrier:
1704 			clear_opt(sb, BARRIER);
1705 			break;
1706 		case Opt_barrier:
1707 			if (args[0].from) {
1708 				if (match_int(&args[0], &option))
1709 					return 0;
1710 			} else
1711 				option = 1;	/* No argument, default to 1 */
1712 			if (option)
1713 				set_opt(sb, BARRIER);
1714 			else
1715 				clear_opt(sb, BARRIER);
1716 			break;
1717 		case Opt_ignore:
1718 			break;
1719 		case Opt_resize:
1720 			if (!is_remount) {
1721 				ext4_msg(sb, KERN_ERR,
1722 					"resize option only available "
1723 					"for remount");
1724 				return 0;
1725 			}
1726 			if (match_int(&args[0], &option) != 0)
1727 				return 0;
1728 			*n_blocks_count = option;
1729 			break;
1730 		case Opt_nobh:
1731 			ext4_msg(sb, KERN_WARNING,
1732 				 "Ignoring deprecated nobh option");
1733 			break;
1734 		case Opt_bh:
1735 			ext4_msg(sb, KERN_WARNING,
1736 				 "Ignoring deprecated bh option");
1737 			break;
1738 		case Opt_i_version:
1739 			set_opt(sb, I_VERSION);
1740 			sb->s_flags |= MS_I_VERSION;
1741 			break;
1742 		case Opt_nodelalloc:
1743 			clear_opt(sb, DELALLOC);
1744 			break;
1745 		case Opt_mblk_io_submit:
1746 			set_opt(sb, MBLK_IO_SUBMIT);
1747 			break;
1748 		case Opt_nomblk_io_submit:
1749 			clear_opt(sb, MBLK_IO_SUBMIT);
1750 			break;
1751 		case Opt_stripe:
1752 			if (match_int(&args[0], &option))
1753 				return 0;
1754 			if (option < 0)
1755 				return 0;
1756 			sbi->s_stripe = option;
1757 			break;
1758 		case Opt_delalloc:
1759 			set_opt(sb, DELALLOC);
1760 			break;
1761 		case Opt_block_validity:
1762 			set_opt(sb, BLOCK_VALIDITY);
1763 			break;
1764 		case Opt_noblock_validity:
1765 			clear_opt(sb, BLOCK_VALIDITY);
1766 			break;
1767 		case Opt_inode_readahead_blks:
1768 			if (match_int(&args[0], &option))
1769 				return 0;
1770 			if (option < 0 || option > (1 << 30))
1771 				return 0;
1772 			if (!is_power_of_2(option)) {
1773 				ext4_msg(sb, KERN_ERR,
1774 					 "EXT4-fs: inode_readahead_blks"
1775 					 " must be a power of 2");
1776 				return 0;
1777 			}
1778 			sbi->s_inode_readahead_blks = option;
1779 			break;
1780 		case Opt_journal_ioprio:
1781 			if (match_int(&args[0], &option))
1782 				return 0;
1783 			if (option < 0 || option > 7)
1784 				break;
1785 			*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1786 							    option);
1787 			break;
1788 		case Opt_noauto_da_alloc:
1789 			set_opt(sb, NO_AUTO_DA_ALLOC);
1790 			break;
1791 		case Opt_auto_da_alloc:
1792 			if (args[0].from) {
1793 				if (match_int(&args[0], &option))
1794 					return 0;
1795 			} else
1796 				option = 1;	/* No argument, default to 1 */
1797 			if (option)
1798 				clear_opt(sb, NO_AUTO_DA_ALLOC);
1799 			else
1800 				set_opt(sb,NO_AUTO_DA_ALLOC);
1801 			break;
1802 		case Opt_discard:
1803 			set_opt(sb, DISCARD);
1804 			break;
1805 		case Opt_nodiscard:
1806 			clear_opt(sb, DISCARD);
1807 			break;
1808 		case Opt_dioread_nolock:
1809 			set_opt(sb, DIOREAD_NOLOCK);
1810 			break;
1811 		case Opt_dioread_lock:
1812 			clear_opt(sb, DIOREAD_NOLOCK);
1813 			break;
1814 		case Opt_init_inode_table:
1815 			set_opt(sb, INIT_INODE_TABLE);
1816 			if (args[0].from) {
1817 				if (match_int(&args[0], &option))
1818 					return 0;
1819 			} else
1820 				option = EXT4_DEF_LI_WAIT_MULT;
1821 			if (option < 0)
1822 				return 0;
1823 			sbi->s_li_wait_mult = option;
1824 			break;
1825 		case Opt_noinit_inode_table:
1826 			clear_opt(sb, INIT_INODE_TABLE);
1827 			break;
1828 		default:
1829 			ext4_msg(sb, KERN_ERR,
1830 			       "Unrecognized mount option \"%s\" "
1831 			       "or missing value", p);
1832 			return 0;
1833 		}
1834 	}
1835 #ifdef CONFIG_QUOTA
1836 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1837 		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1838 			clear_opt(sb, USRQUOTA);
1839 
1840 		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1841 			clear_opt(sb, GRPQUOTA);
1842 
1843 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1844 			ext4_msg(sb, KERN_ERR, "old and new quota "
1845 					"format mixing");
1846 			return 0;
1847 		}
1848 
1849 		if (!sbi->s_jquota_fmt) {
1850 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1851 					"not specified");
1852 			return 0;
1853 		}
1854 	} else {
1855 		if (sbi->s_jquota_fmt) {
1856 			ext4_msg(sb, KERN_ERR, "journaled quota format "
1857 					"specified with no journaling "
1858 					"enabled");
1859 			return 0;
1860 		}
1861 	}
1862 #endif
1863 	return 1;
1864 }
1865 
1866 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1867 			    int read_only)
1868 {
1869 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1870 	int res = 0;
1871 
1872 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1873 		ext4_msg(sb, KERN_ERR, "revision level too high, "
1874 			 "forcing read-only mode");
1875 		res = MS_RDONLY;
1876 	}
1877 	if (read_only)
1878 		return res;
1879 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
1880 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1881 			 "running e2fsck is recommended");
1882 	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1883 		ext4_msg(sb, KERN_WARNING,
1884 			 "warning: mounting fs with errors, "
1885 			 "running e2fsck is recommended");
1886 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1887 		 le16_to_cpu(es->s_mnt_count) >=
1888 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1889 		ext4_msg(sb, KERN_WARNING,
1890 			 "warning: maximal mount count reached, "
1891 			 "running e2fsck is recommended");
1892 	else if (le32_to_cpu(es->s_checkinterval) &&
1893 		(le32_to_cpu(es->s_lastcheck) +
1894 			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1895 		ext4_msg(sb, KERN_WARNING,
1896 			 "warning: checktime reached, "
1897 			 "running e2fsck is recommended");
1898 	if (!sbi->s_journal)
1899 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1900 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1901 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1902 	le16_add_cpu(&es->s_mnt_count, 1);
1903 	es->s_mtime = cpu_to_le32(get_seconds());
1904 	ext4_update_dynamic_rev(sb);
1905 	if (sbi->s_journal)
1906 		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1907 
1908 	ext4_commit_super(sb, 1);
1909 	if (test_opt(sb, DEBUG))
1910 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1911 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1912 			sb->s_blocksize,
1913 			sbi->s_groups_count,
1914 			EXT4_BLOCKS_PER_GROUP(sb),
1915 			EXT4_INODES_PER_GROUP(sb),
1916 			sbi->s_mount_opt, sbi->s_mount_opt2);
1917 
1918 	return res;
1919 }
1920 
1921 static int ext4_fill_flex_info(struct super_block *sb)
1922 {
1923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1924 	struct ext4_group_desc *gdp = NULL;
1925 	ext4_group_t flex_group_count;
1926 	ext4_group_t flex_group;
1927 	int groups_per_flex = 0;
1928 	size_t size;
1929 	int i;
1930 
1931 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1932 	groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1933 
1934 	if (groups_per_flex < 2) {
1935 		sbi->s_log_groups_per_flex = 0;
1936 		return 1;
1937 	}
1938 
1939 	/* We allocate both existing and potentially added groups */
1940 	flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1941 			((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1942 			      EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1943 	size = flex_group_count * sizeof(struct flex_groups);
1944 	sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1945 	if (sbi->s_flex_groups == NULL) {
1946 		sbi->s_flex_groups = vzalloc(size);
1947 		if (sbi->s_flex_groups == NULL) {
1948 			ext4_msg(sb, KERN_ERR,
1949 				 "not enough memory for %u flex groups",
1950 				 flex_group_count);
1951 			goto failed;
1952 		}
1953 	}
1954 
1955 	for (i = 0; i < sbi->s_groups_count; i++) {
1956 		gdp = ext4_get_group_desc(sb, i, NULL);
1957 
1958 		flex_group = ext4_flex_group(sbi, i);
1959 		atomic_add(ext4_free_inodes_count(sb, gdp),
1960 			   &sbi->s_flex_groups[flex_group].free_inodes);
1961 		atomic_add(ext4_free_blks_count(sb, gdp),
1962 			   &sbi->s_flex_groups[flex_group].free_blocks);
1963 		atomic_add(ext4_used_dirs_count(sb, gdp),
1964 			   &sbi->s_flex_groups[flex_group].used_dirs);
1965 	}
1966 
1967 	return 1;
1968 failed:
1969 	return 0;
1970 }
1971 
1972 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1973 			    struct ext4_group_desc *gdp)
1974 {
1975 	__u16 crc = 0;
1976 
1977 	if (sbi->s_es->s_feature_ro_compat &
1978 	    cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1979 		int offset = offsetof(struct ext4_group_desc, bg_checksum);
1980 		__le32 le_group = cpu_to_le32(block_group);
1981 
1982 		crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1983 		crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1984 		crc = crc16(crc, (__u8 *)gdp, offset);
1985 		offset += sizeof(gdp->bg_checksum); /* skip checksum */
1986 		/* for checksum of struct ext4_group_desc do the rest...*/
1987 		if ((sbi->s_es->s_feature_incompat &
1988 		     cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1989 		    offset < le16_to_cpu(sbi->s_es->s_desc_size))
1990 			crc = crc16(crc, (__u8 *)gdp + offset,
1991 				    le16_to_cpu(sbi->s_es->s_desc_size) -
1992 					offset);
1993 	}
1994 
1995 	return cpu_to_le16(crc);
1996 }
1997 
1998 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1999 				struct ext4_group_desc *gdp)
2000 {
2001 	if ((sbi->s_es->s_feature_ro_compat &
2002 	     cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
2003 	    (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
2004 		return 0;
2005 
2006 	return 1;
2007 }
2008 
2009 /* Called at mount-time, super-block is locked */
2010 static int ext4_check_descriptors(struct super_block *sb,
2011 				  ext4_group_t *first_not_zeroed)
2012 {
2013 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2014 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2015 	ext4_fsblk_t last_block;
2016 	ext4_fsblk_t block_bitmap;
2017 	ext4_fsblk_t inode_bitmap;
2018 	ext4_fsblk_t inode_table;
2019 	int flexbg_flag = 0;
2020 	ext4_group_t i, grp = sbi->s_groups_count;
2021 
2022 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2023 		flexbg_flag = 1;
2024 
2025 	ext4_debug("Checking group descriptors");
2026 
2027 	for (i = 0; i < sbi->s_groups_count; i++) {
2028 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2029 
2030 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2031 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2032 		else
2033 			last_block = first_block +
2034 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2035 
2036 		if ((grp == sbi->s_groups_count) &&
2037 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2038 			grp = i;
2039 
2040 		block_bitmap = ext4_block_bitmap(sb, gdp);
2041 		if (block_bitmap < first_block || block_bitmap > last_block) {
2042 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2043 			       "Block bitmap for group %u not in group "
2044 			       "(block %llu)!", i, block_bitmap);
2045 			return 0;
2046 		}
2047 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2048 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2049 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2050 			       "Inode bitmap for group %u not in group "
2051 			       "(block %llu)!", i, inode_bitmap);
2052 			return 0;
2053 		}
2054 		inode_table = ext4_inode_table(sb, gdp);
2055 		if (inode_table < first_block ||
2056 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2057 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2058 			       "Inode table for group %u not in group "
2059 			       "(block %llu)!", i, inode_table);
2060 			return 0;
2061 		}
2062 		ext4_lock_group(sb, i);
2063 		if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2064 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2065 				 "Checksum for group %u failed (%u!=%u)",
2066 				 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2067 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2068 			if (!(sb->s_flags & MS_RDONLY)) {
2069 				ext4_unlock_group(sb, i);
2070 				return 0;
2071 			}
2072 		}
2073 		ext4_unlock_group(sb, i);
2074 		if (!flexbg_flag)
2075 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2076 	}
2077 	if (NULL != first_not_zeroed)
2078 		*first_not_zeroed = grp;
2079 
2080 	ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2081 	sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2082 	return 1;
2083 }
2084 
2085 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2086  * the superblock) which were deleted from all directories, but held open by
2087  * a process at the time of a crash.  We walk the list and try to delete these
2088  * inodes at recovery time (only with a read-write filesystem).
2089  *
2090  * In order to keep the orphan inode chain consistent during traversal (in
2091  * case of crash during recovery), we link each inode into the superblock
2092  * orphan list_head and handle it the same way as an inode deletion during
2093  * normal operation (which journals the operations for us).
2094  *
2095  * We only do an iget() and an iput() on each inode, which is very safe if we
2096  * accidentally point at an in-use or already deleted inode.  The worst that
2097  * can happen in this case is that we get a "bit already cleared" message from
2098  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2099  * e2fsck was run on this filesystem, and it must have already done the orphan
2100  * inode cleanup for us, so we can safely abort without any further action.
2101  */
2102 static void ext4_orphan_cleanup(struct super_block *sb,
2103 				struct ext4_super_block *es)
2104 {
2105 	unsigned int s_flags = sb->s_flags;
2106 	int nr_orphans = 0, nr_truncates = 0;
2107 #ifdef CONFIG_QUOTA
2108 	int i;
2109 #endif
2110 	if (!es->s_last_orphan) {
2111 		jbd_debug(4, "no orphan inodes to clean up\n");
2112 		return;
2113 	}
2114 
2115 	if (bdev_read_only(sb->s_bdev)) {
2116 		ext4_msg(sb, KERN_ERR, "write access "
2117 			"unavailable, skipping orphan cleanup");
2118 		return;
2119 	}
2120 
2121 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2122 		if (es->s_last_orphan)
2123 			jbd_debug(1, "Errors on filesystem, "
2124 				  "clearing orphan list.\n");
2125 		es->s_last_orphan = 0;
2126 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2127 		return;
2128 	}
2129 
2130 	if (s_flags & MS_RDONLY) {
2131 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2132 		sb->s_flags &= ~MS_RDONLY;
2133 	}
2134 #ifdef CONFIG_QUOTA
2135 	/* Needed for iput() to work correctly and not trash data */
2136 	sb->s_flags |= MS_ACTIVE;
2137 	/* Turn on quotas so that they are updated correctly */
2138 	for (i = 0; i < MAXQUOTAS; i++) {
2139 		if (EXT4_SB(sb)->s_qf_names[i]) {
2140 			int ret = ext4_quota_on_mount(sb, i);
2141 			if (ret < 0)
2142 				ext4_msg(sb, KERN_ERR,
2143 					"Cannot turn on journaled "
2144 					"quota: error %d", ret);
2145 		}
2146 	}
2147 #endif
2148 
2149 	while (es->s_last_orphan) {
2150 		struct inode *inode;
2151 
2152 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2153 		if (IS_ERR(inode)) {
2154 			es->s_last_orphan = 0;
2155 			break;
2156 		}
2157 
2158 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2159 		dquot_initialize(inode);
2160 		if (inode->i_nlink) {
2161 			ext4_msg(sb, KERN_DEBUG,
2162 				"%s: truncating inode %lu to %lld bytes",
2163 				__func__, inode->i_ino, inode->i_size);
2164 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2165 				  inode->i_ino, inode->i_size);
2166 			ext4_truncate(inode);
2167 			nr_truncates++;
2168 		} else {
2169 			ext4_msg(sb, KERN_DEBUG,
2170 				"%s: deleting unreferenced inode %lu",
2171 				__func__, inode->i_ino);
2172 			jbd_debug(2, "deleting unreferenced inode %lu\n",
2173 				  inode->i_ino);
2174 			nr_orphans++;
2175 		}
2176 		iput(inode);  /* The delete magic happens here! */
2177 	}
2178 
2179 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2180 
2181 	if (nr_orphans)
2182 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2183 		       PLURAL(nr_orphans));
2184 	if (nr_truncates)
2185 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2186 		       PLURAL(nr_truncates));
2187 #ifdef CONFIG_QUOTA
2188 	/* Turn quotas off */
2189 	for (i = 0; i < MAXQUOTAS; i++) {
2190 		if (sb_dqopt(sb)->files[i])
2191 			dquot_quota_off(sb, i);
2192 	}
2193 #endif
2194 	sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2195 }
2196 
2197 /*
2198  * Maximal extent format file size.
2199  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2200  * extent format containers, within a sector_t, and within i_blocks
2201  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2202  * so that won't be a limiting factor.
2203  *
2204  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2205  */
2206 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2207 {
2208 	loff_t res;
2209 	loff_t upper_limit = MAX_LFS_FILESIZE;
2210 
2211 	/* small i_blocks in vfs inode? */
2212 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2213 		/*
2214 		 * CONFIG_LBDAF is not enabled implies the inode
2215 		 * i_block represent total blocks in 512 bytes
2216 		 * 32 == size of vfs inode i_blocks * 8
2217 		 */
2218 		upper_limit = (1LL << 32) - 1;
2219 
2220 		/* total blocks in file system block size */
2221 		upper_limit >>= (blkbits - 9);
2222 		upper_limit <<= blkbits;
2223 	}
2224 
2225 	/* 32-bit extent-start container, ee_block */
2226 	res = 1LL << 32;
2227 	res <<= blkbits;
2228 	res -= 1;
2229 
2230 	/* Sanity check against vm- & vfs- imposed limits */
2231 	if (res > upper_limit)
2232 		res = upper_limit;
2233 
2234 	return res;
2235 }
2236 
2237 /*
2238  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2239  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2240  * We need to be 1 filesystem block less than the 2^48 sector limit.
2241  */
2242 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2243 {
2244 	loff_t res = EXT4_NDIR_BLOCKS;
2245 	int meta_blocks;
2246 	loff_t upper_limit;
2247 	/* This is calculated to be the largest file size for a dense, block
2248 	 * mapped file such that the file's total number of 512-byte sectors,
2249 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2250 	 *
2251 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2252 	 * number of 512-byte sectors of the file.
2253 	 */
2254 
2255 	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2256 		/*
2257 		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2258 		 * the inode i_block field represents total file blocks in
2259 		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2260 		 */
2261 		upper_limit = (1LL << 32) - 1;
2262 
2263 		/* total blocks in file system block size */
2264 		upper_limit >>= (bits - 9);
2265 
2266 	} else {
2267 		/*
2268 		 * We use 48 bit ext4_inode i_blocks
2269 		 * With EXT4_HUGE_FILE_FL set the i_blocks
2270 		 * represent total number of blocks in
2271 		 * file system block size
2272 		 */
2273 		upper_limit = (1LL << 48) - 1;
2274 
2275 	}
2276 
2277 	/* indirect blocks */
2278 	meta_blocks = 1;
2279 	/* double indirect blocks */
2280 	meta_blocks += 1 + (1LL << (bits-2));
2281 	/* tripple indirect blocks */
2282 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2283 
2284 	upper_limit -= meta_blocks;
2285 	upper_limit <<= bits;
2286 
2287 	res += 1LL << (bits-2);
2288 	res += 1LL << (2*(bits-2));
2289 	res += 1LL << (3*(bits-2));
2290 	res <<= bits;
2291 	if (res > upper_limit)
2292 		res = upper_limit;
2293 
2294 	if (res > MAX_LFS_FILESIZE)
2295 		res = MAX_LFS_FILESIZE;
2296 
2297 	return res;
2298 }
2299 
2300 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2301 				   ext4_fsblk_t logical_sb_block, int nr)
2302 {
2303 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2304 	ext4_group_t bg, first_meta_bg;
2305 	int has_super = 0;
2306 
2307 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2308 
2309 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2310 	    nr < first_meta_bg)
2311 		return logical_sb_block + nr + 1;
2312 	bg = sbi->s_desc_per_block * nr;
2313 	if (ext4_bg_has_super(sb, bg))
2314 		has_super = 1;
2315 
2316 	return (has_super + ext4_group_first_block_no(sb, bg));
2317 }
2318 
2319 /**
2320  * ext4_get_stripe_size: Get the stripe size.
2321  * @sbi: In memory super block info
2322  *
2323  * If we have specified it via mount option, then
2324  * use the mount option value. If the value specified at mount time is
2325  * greater than the blocks per group use the super block value.
2326  * If the super block value is greater than blocks per group return 0.
2327  * Allocator needs it be less than blocks per group.
2328  *
2329  */
2330 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2331 {
2332 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2333 	unsigned long stripe_width =
2334 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2335 
2336 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2337 		return sbi->s_stripe;
2338 
2339 	if (stripe_width <= sbi->s_blocks_per_group)
2340 		return stripe_width;
2341 
2342 	if (stride <= sbi->s_blocks_per_group)
2343 		return stride;
2344 
2345 	return 0;
2346 }
2347 
2348 /* sysfs supprt */
2349 
2350 struct ext4_attr {
2351 	struct attribute attr;
2352 	ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2353 	ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2354 			 const char *, size_t);
2355 	int offset;
2356 };
2357 
2358 static int parse_strtoul(const char *buf,
2359 		unsigned long max, unsigned long *value)
2360 {
2361 	char *endp;
2362 
2363 	*value = simple_strtoul(skip_spaces(buf), &endp, 0);
2364 	endp = skip_spaces(endp);
2365 	if (*endp || *value > max)
2366 		return -EINVAL;
2367 
2368 	return 0;
2369 }
2370 
2371 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2372 					      struct ext4_sb_info *sbi,
2373 					      char *buf)
2374 {
2375 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2376 			(s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2377 }
2378 
2379 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2380 					 struct ext4_sb_info *sbi, char *buf)
2381 {
2382 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2383 
2384 	if (!sb->s_bdev->bd_part)
2385 		return snprintf(buf, PAGE_SIZE, "0\n");
2386 	return snprintf(buf, PAGE_SIZE, "%lu\n",
2387 			(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2388 			 sbi->s_sectors_written_start) >> 1);
2389 }
2390 
2391 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2392 					  struct ext4_sb_info *sbi, char *buf)
2393 {
2394 	struct super_block *sb = sbi->s_buddy_cache->i_sb;
2395 
2396 	if (!sb->s_bdev->bd_part)
2397 		return snprintf(buf, PAGE_SIZE, "0\n");
2398 	return snprintf(buf, PAGE_SIZE, "%llu\n",
2399 			(unsigned long long)(sbi->s_kbytes_written +
2400 			((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2401 			  EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2402 }
2403 
2404 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2405 					  struct ext4_sb_info *sbi,
2406 					  const char *buf, size_t count)
2407 {
2408 	unsigned long t;
2409 
2410 	if (parse_strtoul(buf, 0x40000000, &t))
2411 		return -EINVAL;
2412 
2413 	if (!is_power_of_2(t))
2414 		return -EINVAL;
2415 
2416 	sbi->s_inode_readahead_blks = t;
2417 	return count;
2418 }
2419 
2420 static ssize_t sbi_ui_show(struct ext4_attr *a,
2421 			   struct ext4_sb_info *sbi, char *buf)
2422 {
2423 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2424 
2425 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2426 }
2427 
2428 static ssize_t sbi_ui_store(struct ext4_attr *a,
2429 			    struct ext4_sb_info *sbi,
2430 			    const char *buf, size_t count)
2431 {
2432 	unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2433 	unsigned long t;
2434 
2435 	if (parse_strtoul(buf, 0xffffffff, &t))
2436 		return -EINVAL;
2437 	*ui = t;
2438 	return count;
2439 }
2440 
2441 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2442 static struct ext4_attr ext4_attr_##_name = {			\
2443 	.attr = {.name = __stringify(_name), .mode = _mode },	\
2444 	.show	= _show,					\
2445 	.store	= _store,					\
2446 	.offset = offsetof(struct ext4_sb_info, _elname),	\
2447 }
2448 #define EXT4_ATTR(name, mode, show, store) \
2449 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2450 
2451 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2452 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2453 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2454 #define EXT4_RW_ATTR_SBI_UI(name, elname)	\
2455 	EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2456 #define ATTR_LIST(name) &ext4_attr_##name.attr
2457 
2458 EXT4_RO_ATTR(delayed_allocation_blocks);
2459 EXT4_RO_ATTR(session_write_kbytes);
2460 EXT4_RO_ATTR(lifetime_write_kbytes);
2461 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2462 		 inode_readahead_blks_store, s_inode_readahead_blks);
2463 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2464 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2465 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2466 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2467 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2468 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2469 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2470 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2471 
2472 static struct attribute *ext4_attrs[] = {
2473 	ATTR_LIST(delayed_allocation_blocks),
2474 	ATTR_LIST(session_write_kbytes),
2475 	ATTR_LIST(lifetime_write_kbytes),
2476 	ATTR_LIST(inode_readahead_blks),
2477 	ATTR_LIST(inode_goal),
2478 	ATTR_LIST(mb_stats),
2479 	ATTR_LIST(mb_max_to_scan),
2480 	ATTR_LIST(mb_min_to_scan),
2481 	ATTR_LIST(mb_order2_req),
2482 	ATTR_LIST(mb_stream_req),
2483 	ATTR_LIST(mb_group_prealloc),
2484 	ATTR_LIST(max_writeback_mb_bump),
2485 	NULL,
2486 };
2487 
2488 /* Features this copy of ext4 supports */
2489 EXT4_INFO_ATTR(lazy_itable_init);
2490 EXT4_INFO_ATTR(batched_discard);
2491 
2492 static struct attribute *ext4_feat_attrs[] = {
2493 	ATTR_LIST(lazy_itable_init),
2494 	ATTR_LIST(batched_discard),
2495 	NULL,
2496 };
2497 
2498 static ssize_t ext4_attr_show(struct kobject *kobj,
2499 			      struct attribute *attr, char *buf)
2500 {
2501 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2502 						s_kobj);
2503 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2504 
2505 	return a->show ? a->show(a, sbi, buf) : 0;
2506 }
2507 
2508 static ssize_t ext4_attr_store(struct kobject *kobj,
2509 			       struct attribute *attr,
2510 			       const char *buf, size_t len)
2511 {
2512 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2513 						s_kobj);
2514 	struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2515 
2516 	return a->store ? a->store(a, sbi, buf, len) : 0;
2517 }
2518 
2519 static void ext4_sb_release(struct kobject *kobj)
2520 {
2521 	struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2522 						s_kobj);
2523 	complete(&sbi->s_kobj_unregister);
2524 }
2525 
2526 static const struct sysfs_ops ext4_attr_ops = {
2527 	.show	= ext4_attr_show,
2528 	.store	= ext4_attr_store,
2529 };
2530 
2531 static struct kobj_type ext4_ktype = {
2532 	.default_attrs	= ext4_attrs,
2533 	.sysfs_ops	= &ext4_attr_ops,
2534 	.release	= ext4_sb_release,
2535 };
2536 
2537 static void ext4_feat_release(struct kobject *kobj)
2538 {
2539 	complete(&ext4_feat->f_kobj_unregister);
2540 }
2541 
2542 static struct kobj_type ext4_feat_ktype = {
2543 	.default_attrs	= ext4_feat_attrs,
2544 	.sysfs_ops	= &ext4_attr_ops,
2545 	.release	= ext4_feat_release,
2546 };
2547 
2548 /*
2549  * Check whether this filesystem can be mounted based on
2550  * the features present and the RDONLY/RDWR mount requested.
2551  * Returns 1 if this filesystem can be mounted as requested,
2552  * 0 if it cannot be.
2553  */
2554 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2555 {
2556 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2557 		ext4_msg(sb, KERN_ERR,
2558 			"Couldn't mount because of "
2559 			"unsupported optional features (%x)",
2560 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2561 			~EXT4_FEATURE_INCOMPAT_SUPP));
2562 		return 0;
2563 	}
2564 
2565 	if (readonly)
2566 		return 1;
2567 
2568 	/* Check that feature set is OK for a read-write mount */
2569 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2570 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2571 			 "unsupported optional features (%x)",
2572 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2573 				~EXT4_FEATURE_RO_COMPAT_SUPP));
2574 		return 0;
2575 	}
2576 	/*
2577 	 * Large file size enabled file system can only be mounted
2578 	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2579 	 */
2580 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2581 		if (sizeof(blkcnt_t) < sizeof(u64)) {
2582 			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2583 				 "cannot be mounted RDWR without "
2584 				 "CONFIG_LBDAF");
2585 			return 0;
2586 		}
2587 	}
2588 	return 1;
2589 }
2590 
2591 /*
2592  * This function is called once a day if we have errors logged
2593  * on the file system
2594  */
2595 static void print_daily_error_info(unsigned long arg)
2596 {
2597 	struct super_block *sb = (struct super_block *) arg;
2598 	struct ext4_sb_info *sbi;
2599 	struct ext4_super_block *es;
2600 
2601 	sbi = EXT4_SB(sb);
2602 	es = sbi->s_es;
2603 
2604 	if (es->s_error_count)
2605 		ext4_msg(sb, KERN_NOTICE, "error count: %u",
2606 			 le32_to_cpu(es->s_error_count));
2607 	if (es->s_first_error_time) {
2608 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2609 		       sb->s_id, le32_to_cpu(es->s_first_error_time),
2610 		       (int) sizeof(es->s_first_error_func),
2611 		       es->s_first_error_func,
2612 		       le32_to_cpu(es->s_first_error_line));
2613 		if (es->s_first_error_ino)
2614 			printk(": inode %u",
2615 			       le32_to_cpu(es->s_first_error_ino));
2616 		if (es->s_first_error_block)
2617 			printk(": block %llu", (unsigned long long)
2618 			       le64_to_cpu(es->s_first_error_block));
2619 		printk("\n");
2620 	}
2621 	if (es->s_last_error_time) {
2622 		printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2623 		       sb->s_id, le32_to_cpu(es->s_last_error_time),
2624 		       (int) sizeof(es->s_last_error_func),
2625 		       es->s_last_error_func,
2626 		       le32_to_cpu(es->s_last_error_line));
2627 		if (es->s_last_error_ino)
2628 			printk(": inode %u",
2629 			       le32_to_cpu(es->s_last_error_ino));
2630 		if (es->s_last_error_block)
2631 			printk(": block %llu", (unsigned long long)
2632 			       le64_to_cpu(es->s_last_error_block));
2633 		printk("\n");
2634 	}
2635 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2636 }
2637 
2638 static void ext4_lazyinode_timeout(unsigned long data)
2639 {
2640 	struct task_struct *p = (struct task_struct *)data;
2641 	wake_up_process(p);
2642 }
2643 
2644 /* Find next suitable group and run ext4_init_inode_table */
2645 static int ext4_run_li_request(struct ext4_li_request *elr)
2646 {
2647 	struct ext4_group_desc *gdp = NULL;
2648 	ext4_group_t group, ngroups;
2649 	struct super_block *sb;
2650 	unsigned long timeout = 0;
2651 	int ret = 0;
2652 
2653 	sb = elr->lr_super;
2654 	ngroups = EXT4_SB(sb)->s_groups_count;
2655 
2656 	for (group = elr->lr_next_group; group < ngroups; group++) {
2657 		gdp = ext4_get_group_desc(sb, group, NULL);
2658 		if (!gdp) {
2659 			ret = 1;
2660 			break;
2661 		}
2662 
2663 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2664 			break;
2665 	}
2666 
2667 	if (group == ngroups)
2668 		ret = 1;
2669 
2670 	if (!ret) {
2671 		timeout = jiffies;
2672 		ret = ext4_init_inode_table(sb, group,
2673 					    elr->lr_timeout ? 0 : 1);
2674 		if (elr->lr_timeout == 0) {
2675 			timeout = jiffies - timeout;
2676 			if (elr->lr_sbi->s_li_wait_mult)
2677 				timeout *= elr->lr_sbi->s_li_wait_mult;
2678 			else
2679 				timeout *= 20;
2680 			elr->lr_timeout = timeout;
2681 		}
2682 		elr->lr_next_sched = jiffies + elr->lr_timeout;
2683 		elr->lr_next_group = group + 1;
2684 	}
2685 
2686 	return ret;
2687 }
2688 
2689 /*
2690  * Remove lr_request from the list_request and free the
2691  * request tructure. Should be called with li_list_mtx held
2692  */
2693 static void ext4_remove_li_request(struct ext4_li_request *elr)
2694 {
2695 	struct ext4_sb_info *sbi;
2696 
2697 	if (!elr)
2698 		return;
2699 
2700 	sbi = elr->lr_sbi;
2701 
2702 	list_del(&elr->lr_request);
2703 	sbi->s_li_request = NULL;
2704 	kfree(elr);
2705 }
2706 
2707 static void ext4_unregister_li_request(struct super_block *sb)
2708 {
2709 	struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2710 
2711 	if (!ext4_li_info)
2712 		return;
2713 
2714 	mutex_lock(&ext4_li_info->li_list_mtx);
2715 	ext4_remove_li_request(elr);
2716 	mutex_unlock(&ext4_li_info->li_list_mtx);
2717 }
2718 
2719 /*
2720  * This is the function where ext4lazyinit thread lives. It walks
2721  * through the request list searching for next scheduled filesystem.
2722  * When such a fs is found, run the lazy initialization request
2723  * (ext4_rn_li_request) and keep track of the time spend in this
2724  * function. Based on that time we compute next schedule time of
2725  * the request. When walking through the list is complete, compute
2726  * next waking time and put itself into sleep.
2727  */
2728 static int ext4_lazyinit_thread(void *arg)
2729 {
2730 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2731 	struct list_head *pos, *n;
2732 	struct ext4_li_request *elr;
2733 	unsigned long next_wakeup;
2734 	DEFINE_WAIT(wait);
2735 
2736 	BUG_ON(NULL == eli);
2737 
2738 	eli->li_timer.data = (unsigned long)current;
2739 	eli->li_timer.function = ext4_lazyinode_timeout;
2740 
2741 	eli->li_task = current;
2742 	wake_up(&eli->li_wait_task);
2743 
2744 cont_thread:
2745 	while (true) {
2746 		next_wakeup = MAX_JIFFY_OFFSET;
2747 
2748 		mutex_lock(&eli->li_list_mtx);
2749 		if (list_empty(&eli->li_request_list)) {
2750 			mutex_unlock(&eli->li_list_mtx);
2751 			goto exit_thread;
2752 		}
2753 
2754 		list_for_each_safe(pos, n, &eli->li_request_list) {
2755 			elr = list_entry(pos, struct ext4_li_request,
2756 					 lr_request);
2757 
2758 			if (time_after_eq(jiffies, elr->lr_next_sched)) {
2759 				if (ext4_run_li_request(elr) != 0) {
2760 					/* error, remove the lazy_init job */
2761 					ext4_remove_li_request(elr);
2762 					continue;
2763 				}
2764 			}
2765 
2766 			if (time_before(elr->lr_next_sched, next_wakeup))
2767 				next_wakeup = elr->lr_next_sched;
2768 		}
2769 		mutex_unlock(&eli->li_list_mtx);
2770 
2771 		if (freezing(current))
2772 			refrigerator();
2773 
2774 		if ((time_after_eq(jiffies, next_wakeup)) ||
2775 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2776 			cond_resched();
2777 			continue;
2778 		}
2779 
2780 		eli->li_timer.expires = next_wakeup;
2781 		add_timer(&eli->li_timer);
2782 		prepare_to_wait(&eli->li_wait_daemon, &wait,
2783 				TASK_INTERRUPTIBLE);
2784 		if (time_before(jiffies, next_wakeup))
2785 			schedule();
2786 		finish_wait(&eli->li_wait_daemon, &wait);
2787 	}
2788 
2789 exit_thread:
2790 	/*
2791 	 * It looks like the request list is empty, but we need
2792 	 * to check it under the li_list_mtx lock, to prevent any
2793 	 * additions into it, and of course we should lock ext4_li_mtx
2794 	 * to atomically free the list and ext4_li_info, because at
2795 	 * this point another ext4 filesystem could be registering
2796 	 * new one.
2797 	 */
2798 	mutex_lock(&ext4_li_mtx);
2799 	mutex_lock(&eli->li_list_mtx);
2800 	if (!list_empty(&eli->li_request_list)) {
2801 		mutex_unlock(&eli->li_list_mtx);
2802 		mutex_unlock(&ext4_li_mtx);
2803 		goto cont_thread;
2804 	}
2805 	mutex_unlock(&eli->li_list_mtx);
2806 	del_timer_sync(&ext4_li_info->li_timer);
2807 	eli->li_task = NULL;
2808 	wake_up(&eli->li_wait_task);
2809 
2810 	kfree(ext4_li_info);
2811 	ext4_li_info = NULL;
2812 	mutex_unlock(&ext4_li_mtx);
2813 
2814 	return 0;
2815 }
2816 
2817 static void ext4_clear_request_list(void)
2818 {
2819 	struct list_head *pos, *n;
2820 	struct ext4_li_request *elr;
2821 
2822 	mutex_lock(&ext4_li_info->li_list_mtx);
2823 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2824 		elr = list_entry(pos, struct ext4_li_request,
2825 				 lr_request);
2826 		ext4_remove_li_request(elr);
2827 	}
2828 	mutex_unlock(&ext4_li_info->li_list_mtx);
2829 }
2830 
2831 static int ext4_run_lazyinit_thread(void)
2832 {
2833 	struct task_struct *t;
2834 
2835 	t = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit");
2836 	if (IS_ERR(t)) {
2837 		int err = PTR_ERR(t);
2838 		ext4_clear_request_list();
2839 		del_timer_sync(&ext4_li_info->li_timer);
2840 		kfree(ext4_li_info);
2841 		ext4_li_info = NULL;
2842 		printk(KERN_CRIT "EXT4: error %d creating inode table "
2843 				 "initialization thread\n",
2844 				 err);
2845 		return err;
2846 	}
2847 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2848 
2849 	wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2850 	return 0;
2851 }
2852 
2853 /*
2854  * Check whether it make sense to run itable init. thread or not.
2855  * If there is at least one uninitialized inode table, return
2856  * corresponding group number, else the loop goes through all
2857  * groups and return total number of groups.
2858  */
2859 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2860 {
2861 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2862 	struct ext4_group_desc *gdp = NULL;
2863 
2864 	for (group = 0; group < ngroups; group++) {
2865 		gdp = ext4_get_group_desc(sb, group, NULL);
2866 		if (!gdp)
2867 			continue;
2868 
2869 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2870 			break;
2871 	}
2872 
2873 	return group;
2874 }
2875 
2876 static int ext4_li_info_new(void)
2877 {
2878 	struct ext4_lazy_init *eli = NULL;
2879 
2880 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2881 	if (!eli)
2882 		return -ENOMEM;
2883 
2884 	eli->li_task = NULL;
2885 	INIT_LIST_HEAD(&eli->li_request_list);
2886 	mutex_init(&eli->li_list_mtx);
2887 
2888 	init_waitqueue_head(&eli->li_wait_daemon);
2889 	init_waitqueue_head(&eli->li_wait_task);
2890 	init_timer(&eli->li_timer);
2891 	eli->li_state |= EXT4_LAZYINIT_QUIT;
2892 
2893 	ext4_li_info = eli;
2894 
2895 	return 0;
2896 }
2897 
2898 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2899 					    ext4_group_t start)
2900 {
2901 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2902 	struct ext4_li_request *elr;
2903 	unsigned long rnd;
2904 
2905 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2906 	if (!elr)
2907 		return NULL;
2908 
2909 	elr->lr_super = sb;
2910 	elr->lr_sbi = sbi;
2911 	elr->lr_next_group = start;
2912 
2913 	/*
2914 	 * Randomize first schedule time of the request to
2915 	 * spread the inode table initialization requests
2916 	 * better.
2917 	 */
2918 	get_random_bytes(&rnd, sizeof(rnd));
2919 	elr->lr_next_sched = jiffies + (unsigned long)rnd %
2920 			     (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2921 
2922 	return elr;
2923 }
2924 
2925 static int ext4_register_li_request(struct super_block *sb,
2926 				    ext4_group_t first_not_zeroed)
2927 {
2928 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2929 	struct ext4_li_request *elr;
2930 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2931 	int ret = 0;
2932 
2933 	if (sbi->s_li_request != NULL)
2934 		return 0;
2935 
2936 	if (first_not_zeroed == ngroups ||
2937 	    (sb->s_flags & MS_RDONLY) ||
2938 	    !test_opt(sb, INIT_INODE_TABLE)) {
2939 		sbi->s_li_request = NULL;
2940 		return 0;
2941 	}
2942 
2943 	if (first_not_zeroed == ngroups) {
2944 		sbi->s_li_request = NULL;
2945 		return 0;
2946 	}
2947 
2948 	elr = ext4_li_request_new(sb, first_not_zeroed);
2949 	if (!elr)
2950 		return -ENOMEM;
2951 
2952 	mutex_lock(&ext4_li_mtx);
2953 
2954 	if (NULL == ext4_li_info) {
2955 		ret = ext4_li_info_new();
2956 		if (ret)
2957 			goto out;
2958 	}
2959 
2960 	mutex_lock(&ext4_li_info->li_list_mtx);
2961 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2962 	mutex_unlock(&ext4_li_info->li_list_mtx);
2963 
2964 	sbi->s_li_request = elr;
2965 
2966 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2967 		ret = ext4_run_lazyinit_thread();
2968 		if (ret)
2969 			goto out;
2970 	}
2971 out:
2972 	mutex_unlock(&ext4_li_mtx);
2973 	if (ret)
2974 		kfree(elr);
2975 	return ret;
2976 }
2977 
2978 /*
2979  * We do not need to lock anything since this is called on
2980  * module unload.
2981  */
2982 static void ext4_destroy_lazyinit_thread(void)
2983 {
2984 	/*
2985 	 * If thread exited earlier
2986 	 * there's nothing to be done.
2987 	 */
2988 	if (!ext4_li_info)
2989 		return;
2990 
2991 	ext4_clear_request_list();
2992 
2993 	while (ext4_li_info->li_task) {
2994 		wake_up(&ext4_li_info->li_wait_daemon);
2995 		wait_event(ext4_li_info->li_wait_task,
2996 			   ext4_li_info->li_task == NULL);
2997 	}
2998 }
2999 
3000 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3001 				__releases(kernel_lock)
3002 				__acquires(kernel_lock)
3003 {
3004 	char *orig_data = kstrdup(data, GFP_KERNEL);
3005 	struct buffer_head *bh;
3006 	struct ext4_super_block *es = NULL;
3007 	struct ext4_sb_info *sbi;
3008 	ext4_fsblk_t block;
3009 	ext4_fsblk_t sb_block = get_sb_block(&data);
3010 	ext4_fsblk_t logical_sb_block;
3011 	unsigned long offset = 0;
3012 	unsigned long journal_devnum = 0;
3013 	unsigned long def_mount_opts;
3014 	struct inode *root;
3015 	char *cp;
3016 	const char *descr;
3017 	int ret = -ENOMEM;
3018 	int blocksize;
3019 	unsigned int db_count;
3020 	unsigned int i;
3021 	int needs_recovery, has_huge_files;
3022 	__u64 blocks_count;
3023 	int err;
3024 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3025 	ext4_group_t first_not_zeroed;
3026 
3027 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3028 	if (!sbi)
3029 		goto out_free_orig;
3030 
3031 	sbi->s_blockgroup_lock =
3032 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3033 	if (!sbi->s_blockgroup_lock) {
3034 		kfree(sbi);
3035 		goto out_free_orig;
3036 	}
3037 	sb->s_fs_info = sbi;
3038 	sbi->s_mount_opt = 0;
3039 	sbi->s_resuid = EXT4_DEF_RESUID;
3040 	sbi->s_resgid = EXT4_DEF_RESGID;
3041 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3042 	sbi->s_sb_block = sb_block;
3043 	if (sb->s_bdev->bd_part)
3044 		sbi->s_sectors_written_start =
3045 			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3046 
3047 	/* Cleanup superblock name */
3048 	for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3049 		*cp = '!';
3050 
3051 	ret = -EINVAL;
3052 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3053 	if (!blocksize) {
3054 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3055 		goto out_fail;
3056 	}
3057 
3058 	/*
3059 	 * The ext4 superblock will not be buffer aligned for other than 1kB
3060 	 * block sizes.  We need to calculate the offset from buffer start.
3061 	 */
3062 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3063 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3064 		offset = do_div(logical_sb_block, blocksize);
3065 	} else {
3066 		logical_sb_block = sb_block;
3067 	}
3068 
3069 	if (!(bh = sb_bread(sb, logical_sb_block))) {
3070 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3071 		goto out_fail;
3072 	}
3073 	/*
3074 	 * Note: s_es must be initialized as soon as possible because
3075 	 *       some ext4 macro-instructions depend on its value
3076 	 */
3077 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3078 	sbi->s_es = es;
3079 	sb->s_magic = le16_to_cpu(es->s_magic);
3080 	if (sb->s_magic != EXT4_SUPER_MAGIC)
3081 		goto cantfind_ext4;
3082 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3083 
3084 	/* Set defaults before we parse the mount options */
3085 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3086 	set_opt(sb, INIT_INODE_TABLE);
3087 	if (def_mount_opts & EXT4_DEFM_DEBUG)
3088 		set_opt(sb, DEBUG);
3089 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3090 		ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3091 			"2.6.38");
3092 		set_opt(sb, GRPID);
3093 	}
3094 	if (def_mount_opts & EXT4_DEFM_UID16)
3095 		set_opt(sb, NO_UID32);
3096 #ifdef CONFIG_EXT4_FS_XATTR
3097 	if (def_mount_opts & EXT4_DEFM_XATTR_USER)
3098 		set_opt(sb, XATTR_USER);
3099 #endif
3100 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3101 	if (def_mount_opts & EXT4_DEFM_ACL)
3102 		set_opt(sb, POSIX_ACL);
3103 #endif
3104 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3105 		set_opt(sb, JOURNAL_DATA);
3106 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3107 		set_opt(sb, ORDERED_DATA);
3108 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3109 		set_opt(sb, WRITEBACK_DATA);
3110 
3111 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3112 		set_opt(sb, ERRORS_PANIC);
3113 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3114 		set_opt(sb, ERRORS_CONT);
3115 	else
3116 		set_opt(sb, ERRORS_RO);
3117 	if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3118 		set_opt(sb, BLOCK_VALIDITY);
3119 	if (def_mount_opts & EXT4_DEFM_DISCARD)
3120 		set_opt(sb, DISCARD);
3121 
3122 	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3123 	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3124 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3125 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3126 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3127 
3128 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3129 		set_opt(sb, BARRIER);
3130 
3131 	/*
3132 	 * enable delayed allocation by default
3133 	 * Use -o nodelalloc to turn it off
3134 	 */
3135 	if (!IS_EXT3_SB(sb) &&
3136 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3137 		set_opt(sb, DELALLOC);
3138 
3139 	if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3140 			   &journal_devnum, &journal_ioprio, NULL, 0)) {
3141 		ext4_msg(sb, KERN_WARNING,
3142 			 "failed to parse options in superblock: %s",
3143 			 sbi->s_es->s_mount_opts);
3144 	}
3145 	if (!parse_options((char *) data, sb, &journal_devnum,
3146 			   &journal_ioprio, NULL, 0))
3147 		goto failed_mount;
3148 
3149 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3150 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3151 
3152 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3153 	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3154 	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3155 	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3156 		ext4_msg(sb, KERN_WARNING,
3157 		       "feature flags set on rev 0 fs, "
3158 		       "running e2fsck is recommended");
3159 
3160 	/*
3161 	 * Check feature flags regardless of the revision level, since we
3162 	 * previously didn't change the revision level when setting the flags,
3163 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3164 	 */
3165 	if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3166 		goto failed_mount;
3167 
3168 	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3169 
3170 	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3171 	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3172 		ext4_msg(sb, KERN_ERR,
3173 		       "Unsupported filesystem blocksize %d", blocksize);
3174 		goto failed_mount;
3175 	}
3176 
3177 	if (sb->s_blocksize != blocksize) {
3178 		/* Validate the filesystem blocksize */
3179 		if (!sb_set_blocksize(sb, blocksize)) {
3180 			ext4_msg(sb, KERN_ERR, "bad block size %d",
3181 					blocksize);
3182 			goto failed_mount;
3183 		}
3184 
3185 		brelse(bh);
3186 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3187 		offset = do_div(logical_sb_block, blocksize);
3188 		bh = sb_bread(sb, logical_sb_block);
3189 		if (!bh) {
3190 			ext4_msg(sb, KERN_ERR,
3191 			       "Can't read superblock on 2nd try");
3192 			goto failed_mount;
3193 		}
3194 		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3195 		sbi->s_es = es;
3196 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3197 			ext4_msg(sb, KERN_ERR,
3198 			       "Magic mismatch, very weird!");
3199 			goto failed_mount;
3200 		}
3201 	}
3202 
3203 	has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3204 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3205 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3206 						      has_huge_files);
3207 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3208 
3209 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3210 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3211 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3212 	} else {
3213 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3214 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3215 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3216 		    (!is_power_of_2(sbi->s_inode_size)) ||
3217 		    (sbi->s_inode_size > blocksize)) {
3218 			ext4_msg(sb, KERN_ERR,
3219 			       "unsupported inode size: %d",
3220 			       sbi->s_inode_size);
3221 			goto failed_mount;
3222 		}
3223 		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3224 			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3225 	}
3226 
3227 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3228 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3229 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3230 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3231 		    !is_power_of_2(sbi->s_desc_size)) {
3232 			ext4_msg(sb, KERN_ERR,
3233 			       "unsupported descriptor size %lu",
3234 			       sbi->s_desc_size);
3235 			goto failed_mount;
3236 		}
3237 	} else
3238 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3239 
3240 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3241 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3242 	if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3243 		goto cantfind_ext4;
3244 
3245 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3246 	if (sbi->s_inodes_per_block == 0)
3247 		goto cantfind_ext4;
3248 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3249 					sbi->s_inodes_per_block;
3250 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3251 	sbi->s_sbh = bh;
3252 	sbi->s_mount_state = le16_to_cpu(es->s_state);
3253 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3254 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3255 
3256 	for (i = 0; i < 4; i++)
3257 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3258 	sbi->s_def_hash_version = es->s_def_hash_version;
3259 	i = le32_to_cpu(es->s_flags);
3260 	if (i & EXT2_FLAGS_UNSIGNED_HASH)
3261 		sbi->s_hash_unsigned = 3;
3262 	else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3263 #ifdef __CHAR_UNSIGNED__
3264 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3265 		sbi->s_hash_unsigned = 3;
3266 #else
3267 		es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3268 #endif
3269 		sb->s_dirt = 1;
3270 	}
3271 
3272 	if (sbi->s_blocks_per_group > blocksize * 8) {
3273 		ext4_msg(sb, KERN_ERR,
3274 		       "#blocks per group too big: %lu",
3275 		       sbi->s_blocks_per_group);
3276 		goto failed_mount;
3277 	}
3278 	if (sbi->s_inodes_per_group > blocksize * 8) {
3279 		ext4_msg(sb, KERN_ERR,
3280 		       "#inodes per group too big: %lu",
3281 		       sbi->s_inodes_per_group);
3282 		goto failed_mount;
3283 	}
3284 
3285 	/*
3286 	 * Test whether we have more sectors than will fit in sector_t,
3287 	 * and whether the max offset is addressable by the page cache.
3288 	 */
3289 	err = generic_check_addressable(sb->s_blocksize_bits,
3290 					ext4_blocks_count(es));
3291 	if (err) {
3292 		ext4_msg(sb, KERN_ERR, "filesystem"
3293 			 " too large to mount safely on this system");
3294 		if (sizeof(sector_t) < 8)
3295 			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3296 		ret = err;
3297 		goto failed_mount;
3298 	}
3299 
3300 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3301 		goto cantfind_ext4;
3302 
3303 	/* check blocks count against device size */
3304 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3305 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3306 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3307 		       "exceeds size of device (%llu blocks)",
3308 		       ext4_blocks_count(es), blocks_count);
3309 		goto failed_mount;
3310 	}
3311 
3312 	/*
3313 	 * It makes no sense for the first data block to be beyond the end
3314 	 * of the filesystem.
3315 	 */
3316 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3317                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3318 			 "block %u is beyond end of filesystem (%llu)",
3319 			 le32_to_cpu(es->s_first_data_block),
3320 			 ext4_blocks_count(es));
3321 		goto failed_mount;
3322 	}
3323 	blocks_count = (ext4_blocks_count(es) -
3324 			le32_to_cpu(es->s_first_data_block) +
3325 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3326 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3327 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3328 		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3329 		       "(block count %llu, first data block %u, "
3330 		       "blocks per group %lu)", sbi->s_groups_count,
3331 		       ext4_blocks_count(es),
3332 		       le32_to_cpu(es->s_first_data_block),
3333 		       EXT4_BLOCKS_PER_GROUP(sb));
3334 		goto failed_mount;
3335 	}
3336 	sbi->s_groups_count = blocks_count;
3337 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3338 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3339 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3340 		   EXT4_DESC_PER_BLOCK(sb);
3341 	sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3342 				    GFP_KERNEL);
3343 	if (sbi->s_group_desc == NULL) {
3344 		ext4_msg(sb, KERN_ERR, "not enough memory");
3345 		goto failed_mount;
3346 	}
3347 
3348 #ifdef CONFIG_PROC_FS
3349 	if (ext4_proc_root)
3350 		sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3351 #endif
3352 
3353 	bgl_lock_init(sbi->s_blockgroup_lock);
3354 
3355 	for (i = 0; i < db_count; i++) {
3356 		block = descriptor_loc(sb, logical_sb_block, i);
3357 		sbi->s_group_desc[i] = sb_bread(sb, block);
3358 		if (!sbi->s_group_desc[i]) {
3359 			ext4_msg(sb, KERN_ERR,
3360 			       "can't read group descriptor %d", i);
3361 			db_count = i;
3362 			goto failed_mount2;
3363 		}
3364 	}
3365 	if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3366 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3367 		goto failed_mount2;
3368 	}
3369 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3370 		if (!ext4_fill_flex_info(sb)) {
3371 			ext4_msg(sb, KERN_ERR,
3372 			       "unable to initialize "
3373 			       "flex_bg meta info!");
3374 			goto failed_mount2;
3375 		}
3376 
3377 	sbi->s_gdb_count = db_count;
3378 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3379 	spin_lock_init(&sbi->s_next_gen_lock);
3380 
3381 	err = percpu_counter_init(&sbi->s_freeblocks_counter,
3382 			ext4_count_free_blocks(sb));
3383 	if (!err) {
3384 		err = percpu_counter_init(&sbi->s_freeinodes_counter,
3385 				ext4_count_free_inodes(sb));
3386 	}
3387 	if (!err) {
3388 		err = percpu_counter_init(&sbi->s_dirs_counter,
3389 				ext4_count_dirs(sb));
3390 	}
3391 	if (!err) {
3392 		err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3393 	}
3394 	if (err) {
3395 		ext4_msg(sb, KERN_ERR, "insufficient memory");
3396 		goto failed_mount3;
3397 	}
3398 
3399 	sbi->s_stripe = ext4_get_stripe_size(sbi);
3400 	sbi->s_max_writeback_mb_bump = 128;
3401 
3402 	/*
3403 	 * set up enough so that it can read an inode
3404 	 */
3405 	if (!test_opt(sb, NOLOAD) &&
3406 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3407 		sb->s_op = &ext4_sops;
3408 	else
3409 		sb->s_op = &ext4_nojournal_sops;
3410 	sb->s_export_op = &ext4_export_ops;
3411 	sb->s_xattr = ext4_xattr_handlers;
3412 #ifdef CONFIG_QUOTA
3413 	sb->s_qcop = &ext4_qctl_operations;
3414 	sb->dq_op = &ext4_quota_operations;
3415 #endif
3416 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3417 	mutex_init(&sbi->s_orphan_lock);
3418 	mutex_init(&sbi->s_resize_lock);
3419 
3420 	sb->s_root = NULL;
3421 
3422 	needs_recovery = (es->s_last_orphan != 0 ||
3423 			  EXT4_HAS_INCOMPAT_FEATURE(sb,
3424 				    EXT4_FEATURE_INCOMPAT_RECOVER));
3425 
3426 	/*
3427 	 * The first inode we look at is the journal inode.  Don't try
3428 	 * root first: it may be modified in the journal!
3429 	 */
3430 	if (!test_opt(sb, NOLOAD) &&
3431 	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3432 		if (ext4_load_journal(sb, es, journal_devnum))
3433 			goto failed_mount3;
3434 	} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3435 	      EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3436 		ext4_msg(sb, KERN_ERR, "required journal recovery "
3437 		       "suppressed and not mounted read-only");
3438 		goto failed_mount_wq;
3439 	} else {
3440 		clear_opt(sb, DATA_FLAGS);
3441 		set_opt(sb, WRITEBACK_DATA);
3442 		sbi->s_journal = NULL;
3443 		needs_recovery = 0;
3444 		goto no_journal;
3445 	}
3446 
3447 	if (ext4_blocks_count(es) > 0xffffffffULL &&
3448 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3449 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
3450 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3451 		goto failed_mount_wq;
3452 	}
3453 
3454 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3455 		jbd2_journal_set_features(sbi->s_journal,
3456 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3457 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3458 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3459 		jbd2_journal_set_features(sbi->s_journal,
3460 				JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3461 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3462 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3463 	} else {
3464 		jbd2_journal_clear_features(sbi->s_journal,
3465 				JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3466 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3467 	}
3468 
3469 	/* We have now updated the journal if required, so we can
3470 	 * validate the data journaling mode. */
3471 	switch (test_opt(sb, DATA_FLAGS)) {
3472 	case 0:
3473 		/* No mode set, assume a default based on the journal
3474 		 * capabilities: ORDERED_DATA if the journal can
3475 		 * cope, else JOURNAL_DATA
3476 		 */
3477 		if (jbd2_journal_check_available_features
3478 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3479 			set_opt(sb, ORDERED_DATA);
3480 		else
3481 			set_opt(sb, JOURNAL_DATA);
3482 		break;
3483 
3484 	case EXT4_MOUNT_ORDERED_DATA:
3485 	case EXT4_MOUNT_WRITEBACK_DATA:
3486 		if (!jbd2_journal_check_available_features
3487 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3488 			ext4_msg(sb, KERN_ERR, "Journal does not support "
3489 			       "requested data journaling mode");
3490 			goto failed_mount_wq;
3491 		}
3492 	default:
3493 		break;
3494 	}
3495 	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3496 
3497 	/*
3498 	 * The journal may have updated the bg summary counts, so we
3499 	 * need to update the global counters.
3500 	 */
3501 	percpu_counter_set(&sbi->s_freeblocks_counter,
3502 			   ext4_count_free_blocks(sb));
3503 	percpu_counter_set(&sbi->s_freeinodes_counter,
3504 			   ext4_count_free_inodes(sb));
3505 	percpu_counter_set(&sbi->s_dirs_counter,
3506 			   ext4_count_dirs(sb));
3507 	percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3508 
3509 no_journal:
3510 	EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
3511 	if (!EXT4_SB(sb)->dio_unwritten_wq) {
3512 		printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3513 		goto failed_mount_wq;
3514 	}
3515 
3516 	/*
3517 	 * The jbd2_journal_load will have done any necessary log recovery,
3518 	 * so we can safely mount the rest of the filesystem now.
3519 	 */
3520 
3521 	root = ext4_iget(sb, EXT4_ROOT_INO);
3522 	if (IS_ERR(root)) {
3523 		ext4_msg(sb, KERN_ERR, "get root inode failed");
3524 		ret = PTR_ERR(root);
3525 		goto failed_mount4;
3526 	}
3527 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3528 		iput(root);
3529 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3530 		goto failed_mount4;
3531 	}
3532 	sb->s_root = d_alloc_root(root);
3533 	if (!sb->s_root) {
3534 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
3535 		iput(root);
3536 		ret = -ENOMEM;
3537 		goto failed_mount4;
3538 	}
3539 
3540 	ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3541 
3542 	/* determine the minimum size of new large inodes, if present */
3543 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3544 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3545 						     EXT4_GOOD_OLD_INODE_SIZE;
3546 		if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3547 				       EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3548 			if (sbi->s_want_extra_isize <
3549 			    le16_to_cpu(es->s_want_extra_isize))
3550 				sbi->s_want_extra_isize =
3551 					le16_to_cpu(es->s_want_extra_isize);
3552 			if (sbi->s_want_extra_isize <
3553 			    le16_to_cpu(es->s_min_extra_isize))
3554 				sbi->s_want_extra_isize =
3555 					le16_to_cpu(es->s_min_extra_isize);
3556 		}
3557 	}
3558 	/* Check if enough inode space is available */
3559 	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3560 							sbi->s_inode_size) {
3561 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3562 						       EXT4_GOOD_OLD_INODE_SIZE;
3563 		ext4_msg(sb, KERN_INFO, "required extra inode space not"
3564 			 "available");
3565 	}
3566 
3567 	if (test_opt(sb, DELALLOC) &&
3568 	    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3569 		ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3570 			 "requested data journaling mode");
3571 		clear_opt(sb, DELALLOC);
3572 	}
3573 	if (test_opt(sb, DIOREAD_NOLOCK)) {
3574 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3575 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3576 				"option - requested data journaling mode");
3577 			clear_opt(sb, DIOREAD_NOLOCK);
3578 		}
3579 		if (sb->s_blocksize < PAGE_SIZE) {
3580 			ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3581 				"option - block size is too small");
3582 			clear_opt(sb, DIOREAD_NOLOCK);
3583 		}
3584 	}
3585 
3586 	err = ext4_setup_system_zone(sb);
3587 	if (err) {
3588 		ext4_msg(sb, KERN_ERR, "failed to initialize system "
3589 			 "zone (%d)", err);
3590 		goto failed_mount4;
3591 	}
3592 
3593 	ext4_ext_init(sb);
3594 	err = ext4_mb_init(sb, needs_recovery);
3595 	if (err) {
3596 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3597 			 err);
3598 		goto failed_mount4;
3599 	}
3600 
3601 	err = ext4_register_li_request(sb, first_not_zeroed);
3602 	if (err)
3603 		goto failed_mount4;
3604 
3605 	sbi->s_kobj.kset = ext4_kset;
3606 	init_completion(&sbi->s_kobj_unregister);
3607 	err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3608 				   "%s", sb->s_id);
3609 	if (err) {
3610 		ext4_mb_release(sb);
3611 		ext4_ext_release(sb);
3612 		goto failed_mount4;
3613 	};
3614 
3615 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3616 	ext4_orphan_cleanup(sb, es);
3617 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3618 	if (needs_recovery) {
3619 		ext4_msg(sb, KERN_INFO, "recovery complete");
3620 		ext4_mark_recovery_complete(sb, es);
3621 	}
3622 	if (EXT4_SB(sb)->s_journal) {
3623 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3624 			descr = " journalled data mode";
3625 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3626 			descr = " ordered data mode";
3627 		else
3628 			descr = " writeback data mode";
3629 	} else
3630 		descr = "out journal";
3631 
3632 	ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3633 		 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3634 		 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3635 
3636 	init_timer(&sbi->s_err_report);
3637 	sbi->s_err_report.function = print_daily_error_info;
3638 	sbi->s_err_report.data = (unsigned long) sb;
3639 	if (es->s_error_count)
3640 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3641 
3642 	kfree(orig_data);
3643 	return 0;
3644 
3645 cantfind_ext4:
3646 	if (!silent)
3647 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3648 	goto failed_mount;
3649 
3650 failed_mount4:
3651 	ext4_msg(sb, KERN_ERR, "mount failed");
3652 	destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3653 failed_mount_wq:
3654 	ext4_release_system_zone(sb);
3655 	if (sbi->s_journal) {
3656 		jbd2_journal_destroy(sbi->s_journal);
3657 		sbi->s_journal = NULL;
3658 	}
3659 failed_mount3:
3660 	if (sbi->s_flex_groups) {
3661 		if (is_vmalloc_addr(sbi->s_flex_groups))
3662 			vfree(sbi->s_flex_groups);
3663 		else
3664 			kfree(sbi->s_flex_groups);
3665 	}
3666 	percpu_counter_destroy(&sbi->s_freeblocks_counter);
3667 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
3668 	percpu_counter_destroy(&sbi->s_dirs_counter);
3669 	percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3670 failed_mount2:
3671 	for (i = 0; i < db_count; i++)
3672 		brelse(sbi->s_group_desc[i]);
3673 	kfree(sbi->s_group_desc);
3674 failed_mount:
3675 	if (sbi->s_proc) {
3676 		remove_proc_entry(sb->s_id, ext4_proc_root);
3677 	}
3678 #ifdef CONFIG_QUOTA
3679 	for (i = 0; i < MAXQUOTAS; i++)
3680 		kfree(sbi->s_qf_names[i]);
3681 #endif
3682 	ext4_blkdev_remove(sbi);
3683 	brelse(bh);
3684 out_fail:
3685 	sb->s_fs_info = NULL;
3686 	kfree(sbi->s_blockgroup_lock);
3687 	kfree(sbi);
3688 out_free_orig:
3689 	kfree(orig_data);
3690 	return ret;
3691 }
3692 
3693 /*
3694  * Setup any per-fs journal parameters now.  We'll do this both on
3695  * initial mount, once the journal has been initialised but before we've
3696  * done any recovery; and again on any subsequent remount.
3697  */
3698 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3699 {
3700 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3701 
3702 	journal->j_commit_interval = sbi->s_commit_interval;
3703 	journal->j_min_batch_time = sbi->s_min_batch_time;
3704 	journal->j_max_batch_time = sbi->s_max_batch_time;
3705 
3706 	write_lock(&journal->j_state_lock);
3707 	if (test_opt(sb, BARRIER))
3708 		journal->j_flags |= JBD2_BARRIER;
3709 	else
3710 		journal->j_flags &= ~JBD2_BARRIER;
3711 	if (test_opt(sb, DATA_ERR_ABORT))
3712 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3713 	else
3714 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3715 	write_unlock(&journal->j_state_lock);
3716 }
3717 
3718 static journal_t *ext4_get_journal(struct super_block *sb,
3719 				   unsigned int journal_inum)
3720 {
3721 	struct inode *journal_inode;
3722 	journal_t *journal;
3723 
3724 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3725 
3726 	/* First, test for the existence of a valid inode on disk.  Bad
3727 	 * things happen if we iget() an unused inode, as the subsequent
3728 	 * iput() will try to delete it. */
3729 
3730 	journal_inode = ext4_iget(sb, journal_inum);
3731 	if (IS_ERR(journal_inode)) {
3732 		ext4_msg(sb, KERN_ERR, "no journal found");
3733 		return NULL;
3734 	}
3735 	if (!journal_inode->i_nlink) {
3736 		make_bad_inode(journal_inode);
3737 		iput(journal_inode);
3738 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3739 		return NULL;
3740 	}
3741 
3742 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3743 		  journal_inode, journal_inode->i_size);
3744 	if (!S_ISREG(journal_inode->i_mode)) {
3745 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
3746 		iput(journal_inode);
3747 		return NULL;
3748 	}
3749 
3750 	journal = jbd2_journal_init_inode(journal_inode);
3751 	if (!journal) {
3752 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3753 		iput(journal_inode);
3754 		return NULL;
3755 	}
3756 	journal->j_private = sb;
3757 	ext4_init_journal_params(sb, journal);
3758 	return journal;
3759 }
3760 
3761 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3762 				       dev_t j_dev)
3763 {
3764 	struct buffer_head *bh;
3765 	journal_t *journal;
3766 	ext4_fsblk_t start;
3767 	ext4_fsblk_t len;
3768 	int hblock, blocksize;
3769 	ext4_fsblk_t sb_block;
3770 	unsigned long offset;
3771 	struct ext4_super_block *es;
3772 	struct block_device *bdev;
3773 
3774 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3775 
3776 	bdev = ext4_blkdev_get(j_dev, sb);
3777 	if (bdev == NULL)
3778 		return NULL;
3779 
3780 	blocksize = sb->s_blocksize;
3781 	hblock = bdev_logical_block_size(bdev);
3782 	if (blocksize < hblock) {
3783 		ext4_msg(sb, KERN_ERR,
3784 			"blocksize too small for journal device");
3785 		goto out_bdev;
3786 	}
3787 
3788 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3789 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3790 	set_blocksize(bdev, blocksize);
3791 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
3792 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3793 		       "external journal");
3794 		goto out_bdev;
3795 	}
3796 
3797 	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3798 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3799 	    !(le32_to_cpu(es->s_feature_incompat) &
3800 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3801 		ext4_msg(sb, KERN_ERR, "external journal has "
3802 					"bad superblock");
3803 		brelse(bh);
3804 		goto out_bdev;
3805 	}
3806 
3807 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3808 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3809 		brelse(bh);
3810 		goto out_bdev;
3811 	}
3812 
3813 	len = ext4_blocks_count(es);
3814 	start = sb_block + 1;
3815 	brelse(bh);	/* we're done with the superblock */
3816 
3817 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3818 					start, len, blocksize);
3819 	if (!journal) {
3820 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
3821 		goto out_bdev;
3822 	}
3823 	journal->j_private = sb;
3824 	ll_rw_block(READ, 1, &journal->j_sb_buffer);
3825 	wait_on_buffer(journal->j_sb_buffer);
3826 	if (!buffer_uptodate(journal->j_sb_buffer)) {
3827 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3828 		goto out_journal;
3829 	}
3830 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3831 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
3832 					"user (unsupported) - %d",
3833 			be32_to_cpu(journal->j_superblock->s_nr_users));
3834 		goto out_journal;
3835 	}
3836 	EXT4_SB(sb)->journal_bdev = bdev;
3837 	ext4_init_journal_params(sb, journal);
3838 	return journal;
3839 
3840 out_journal:
3841 	jbd2_journal_destroy(journal);
3842 out_bdev:
3843 	ext4_blkdev_put(bdev);
3844 	return NULL;
3845 }
3846 
3847 static int ext4_load_journal(struct super_block *sb,
3848 			     struct ext4_super_block *es,
3849 			     unsigned long journal_devnum)
3850 {
3851 	journal_t *journal;
3852 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3853 	dev_t journal_dev;
3854 	int err = 0;
3855 	int really_read_only;
3856 
3857 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3858 
3859 	if (journal_devnum &&
3860 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3861 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3862 			"numbers have changed");
3863 		journal_dev = new_decode_dev(journal_devnum);
3864 	} else
3865 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3866 
3867 	really_read_only = bdev_read_only(sb->s_bdev);
3868 
3869 	/*
3870 	 * Are we loading a blank journal or performing recovery after a
3871 	 * crash?  For recovery, we need to check in advance whether we
3872 	 * can get read-write access to the device.
3873 	 */
3874 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3875 		if (sb->s_flags & MS_RDONLY) {
3876 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
3877 					"required on readonly filesystem");
3878 			if (really_read_only) {
3879 				ext4_msg(sb, KERN_ERR, "write access "
3880 					"unavailable, cannot proceed");
3881 				return -EROFS;
3882 			}
3883 			ext4_msg(sb, KERN_INFO, "write access will "
3884 			       "be enabled during recovery");
3885 		}
3886 	}
3887 
3888 	if (journal_inum && journal_dev) {
3889 		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3890 		       "and inode journals!");
3891 		return -EINVAL;
3892 	}
3893 
3894 	if (journal_inum) {
3895 		if (!(journal = ext4_get_journal(sb, journal_inum)))
3896 			return -EINVAL;
3897 	} else {
3898 		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3899 			return -EINVAL;
3900 	}
3901 
3902 	if (!(journal->j_flags & JBD2_BARRIER))
3903 		ext4_msg(sb, KERN_INFO, "barriers disabled");
3904 
3905 	if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3906 		err = jbd2_journal_update_format(journal);
3907 		if (err)  {
3908 			ext4_msg(sb, KERN_ERR, "error updating journal");
3909 			jbd2_journal_destroy(journal);
3910 			return err;
3911 		}
3912 	}
3913 
3914 	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3915 		err = jbd2_journal_wipe(journal, !really_read_only);
3916 	if (!err) {
3917 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3918 		if (save)
3919 			memcpy(save, ((char *) es) +
3920 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3921 		err = jbd2_journal_load(journal);
3922 		if (save)
3923 			memcpy(((char *) es) + EXT4_S_ERR_START,
3924 			       save, EXT4_S_ERR_LEN);
3925 		kfree(save);
3926 	}
3927 
3928 	if (err) {
3929 		ext4_msg(sb, KERN_ERR, "error loading journal");
3930 		jbd2_journal_destroy(journal);
3931 		return err;
3932 	}
3933 
3934 	EXT4_SB(sb)->s_journal = journal;
3935 	ext4_clear_journal_err(sb, es);
3936 
3937 	if (!really_read_only && journal_devnum &&
3938 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3939 		es->s_journal_dev = cpu_to_le32(journal_devnum);
3940 
3941 		/* Make sure we flush the recovery flag to disk. */
3942 		ext4_commit_super(sb, 1);
3943 	}
3944 
3945 	return 0;
3946 }
3947 
3948 static int ext4_commit_super(struct super_block *sb, int sync)
3949 {
3950 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3951 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3952 	int error = 0;
3953 
3954 	if (!sbh)
3955 		return error;
3956 	if (buffer_write_io_error(sbh)) {
3957 		/*
3958 		 * Oh, dear.  A previous attempt to write the
3959 		 * superblock failed.  This could happen because the
3960 		 * USB device was yanked out.  Or it could happen to
3961 		 * be a transient write error and maybe the block will
3962 		 * be remapped.  Nothing we can do but to retry the
3963 		 * write and hope for the best.
3964 		 */
3965 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
3966 		       "superblock detected");
3967 		clear_buffer_write_io_error(sbh);
3968 		set_buffer_uptodate(sbh);
3969 	}
3970 	/*
3971 	 * If the file system is mounted read-only, don't update the
3972 	 * superblock write time.  This avoids updating the superblock
3973 	 * write time when we are mounting the root file system
3974 	 * read/only but we need to replay the journal; at that point,
3975 	 * for people who are east of GMT and who make their clock
3976 	 * tick in localtime for Windows bug-for-bug compatibility,
3977 	 * the clock is set in the future, and this will cause e2fsck
3978 	 * to complain and force a full file system check.
3979 	 */
3980 	if (!(sb->s_flags & MS_RDONLY))
3981 		es->s_wtime = cpu_to_le32(get_seconds());
3982 	if (sb->s_bdev->bd_part)
3983 		es->s_kbytes_written =
3984 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3985 			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3986 			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
3987 	else
3988 		es->s_kbytes_written =
3989 			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
3990 	ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3991 					   &EXT4_SB(sb)->s_freeblocks_counter));
3992 	es->s_free_inodes_count =
3993 		cpu_to_le32(percpu_counter_sum_positive(
3994 				&EXT4_SB(sb)->s_freeinodes_counter));
3995 	sb->s_dirt = 0;
3996 	BUFFER_TRACE(sbh, "marking dirty");
3997 	mark_buffer_dirty(sbh);
3998 	if (sync) {
3999 		error = sync_dirty_buffer(sbh);
4000 		if (error)
4001 			return error;
4002 
4003 		error = buffer_write_io_error(sbh);
4004 		if (error) {
4005 			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4006 			       "superblock");
4007 			clear_buffer_write_io_error(sbh);
4008 			set_buffer_uptodate(sbh);
4009 		}
4010 	}
4011 	return error;
4012 }
4013 
4014 /*
4015  * Have we just finished recovery?  If so, and if we are mounting (or
4016  * remounting) the filesystem readonly, then we will end up with a
4017  * consistent fs on disk.  Record that fact.
4018  */
4019 static void ext4_mark_recovery_complete(struct super_block *sb,
4020 					struct ext4_super_block *es)
4021 {
4022 	journal_t *journal = EXT4_SB(sb)->s_journal;
4023 
4024 	if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4025 		BUG_ON(journal != NULL);
4026 		return;
4027 	}
4028 	jbd2_journal_lock_updates(journal);
4029 	if (jbd2_journal_flush(journal) < 0)
4030 		goto out;
4031 
4032 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4033 	    sb->s_flags & MS_RDONLY) {
4034 		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4035 		ext4_commit_super(sb, 1);
4036 	}
4037 
4038 out:
4039 	jbd2_journal_unlock_updates(journal);
4040 }
4041 
4042 /*
4043  * If we are mounting (or read-write remounting) a filesystem whose journal
4044  * has recorded an error from a previous lifetime, move that error to the
4045  * main filesystem now.
4046  */
4047 static void ext4_clear_journal_err(struct super_block *sb,
4048 				   struct ext4_super_block *es)
4049 {
4050 	journal_t *journal;
4051 	int j_errno;
4052 	const char *errstr;
4053 
4054 	BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4055 
4056 	journal = EXT4_SB(sb)->s_journal;
4057 
4058 	/*
4059 	 * Now check for any error status which may have been recorded in the
4060 	 * journal by a prior ext4_error() or ext4_abort()
4061 	 */
4062 
4063 	j_errno = jbd2_journal_errno(journal);
4064 	if (j_errno) {
4065 		char nbuf[16];
4066 
4067 		errstr = ext4_decode_error(sb, j_errno, nbuf);
4068 		ext4_warning(sb, "Filesystem error recorded "
4069 			     "from previous mount: %s", errstr);
4070 		ext4_warning(sb, "Marking fs in need of filesystem check.");
4071 
4072 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4073 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4074 		ext4_commit_super(sb, 1);
4075 
4076 		jbd2_journal_clear_err(journal);
4077 	}
4078 }
4079 
4080 /*
4081  * Force the running and committing transactions to commit,
4082  * and wait on the commit.
4083  */
4084 int ext4_force_commit(struct super_block *sb)
4085 {
4086 	journal_t *journal;
4087 	int ret = 0;
4088 
4089 	if (sb->s_flags & MS_RDONLY)
4090 		return 0;
4091 
4092 	journal = EXT4_SB(sb)->s_journal;
4093 	if (journal) {
4094 		vfs_check_frozen(sb, SB_FREEZE_TRANS);
4095 		ret = ext4_journal_force_commit(journal);
4096 	}
4097 
4098 	return ret;
4099 }
4100 
4101 static void ext4_write_super(struct super_block *sb)
4102 {
4103 	lock_super(sb);
4104 	ext4_commit_super(sb, 1);
4105 	unlock_super(sb);
4106 }
4107 
4108 static int ext4_sync_fs(struct super_block *sb, int wait)
4109 {
4110 	int ret = 0;
4111 	tid_t target;
4112 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4113 
4114 	trace_ext4_sync_fs(sb, wait);
4115 	flush_workqueue(sbi->dio_unwritten_wq);
4116 	if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4117 		if (wait)
4118 			jbd2_log_wait_commit(sbi->s_journal, target);
4119 	}
4120 	return ret;
4121 }
4122 
4123 /*
4124  * LVM calls this function before a (read-only) snapshot is created.  This
4125  * gives us a chance to flush the journal completely and mark the fs clean.
4126  */
4127 static int ext4_freeze(struct super_block *sb)
4128 {
4129 	int error = 0;
4130 	journal_t *journal;
4131 
4132 	if (sb->s_flags & MS_RDONLY)
4133 		return 0;
4134 
4135 	journal = EXT4_SB(sb)->s_journal;
4136 
4137 	/* Now we set up the journal barrier. */
4138 	jbd2_journal_lock_updates(journal);
4139 
4140 	/*
4141 	 * Don't clear the needs_recovery flag if we failed to flush
4142 	 * the journal.
4143 	 */
4144 	error = jbd2_journal_flush(journal);
4145 	if (error < 0)
4146 		goto out;
4147 
4148 	/* Journal blocked and flushed, clear needs_recovery flag. */
4149 	EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4150 	error = ext4_commit_super(sb, 1);
4151 out:
4152 	/* we rely on s_frozen to stop further updates */
4153 	jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4154 	return error;
4155 }
4156 
4157 /*
4158  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4159  * flag here, even though the filesystem is not technically dirty yet.
4160  */
4161 static int ext4_unfreeze(struct super_block *sb)
4162 {
4163 	if (sb->s_flags & MS_RDONLY)
4164 		return 0;
4165 
4166 	lock_super(sb);
4167 	/* Reset the needs_recovery flag before the fs is unlocked. */
4168 	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4169 	ext4_commit_super(sb, 1);
4170 	unlock_super(sb);
4171 	return 0;
4172 }
4173 
4174 /*
4175  * Structure to save mount options for ext4_remount's benefit
4176  */
4177 struct ext4_mount_options {
4178 	unsigned long s_mount_opt;
4179 	unsigned long s_mount_opt2;
4180 	uid_t s_resuid;
4181 	gid_t s_resgid;
4182 	unsigned long s_commit_interval;
4183 	u32 s_min_batch_time, s_max_batch_time;
4184 #ifdef CONFIG_QUOTA
4185 	int s_jquota_fmt;
4186 	char *s_qf_names[MAXQUOTAS];
4187 #endif
4188 };
4189 
4190 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4191 {
4192 	struct ext4_super_block *es;
4193 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4194 	ext4_fsblk_t n_blocks_count = 0;
4195 	unsigned long old_sb_flags;
4196 	struct ext4_mount_options old_opts;
4197 	int enable_quota = 0;
4198 	ext4_group_t g;
4199 	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4200 	int err;
4201 #ifdef CONFIG_QUOTA
4202 	int i;
4203 #endif
4204 	char *orig_data = kstrdup(data, GFP_KERNEL);
4205 
4206 	/* Store the original options */
4207 	lock_super(sb);
4208 	old_sb_flags = sb->s_flags;
4209 	old_opts.s_mount_opt = sbi->s_mount_opt;
4210 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4211 	old_opts.s_resuid = sbi->s_resuid;
4212 	old_opts.s_resgid = sbi->s_resgid;
4213 	old_opts.s_commit_interval = sbi->s_commit_interval;
4214 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
4215 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
4216 #ifdef CONFIG_QUOTA
4217 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4218 	for (i = 0; i < MAXQUOTAS; i++)
4219 		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4220 #endif
4221 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4222 		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4223 
4224 	/*
4225 	 * Allow the "check" option to be passed as a remount option.
4226 	 */
4227 	if (!parse_options(data, sb, NULL, &journal_ioprio,
4228 			   &n_blocks_count, 1)) {
4229 		err = -EINVAL;
4230 		goto restore_opts;
4231 	}
4232 
4233 	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4234 		ext4_abort(sb, "Abort forced by user");
4235 
4236 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4237 		(test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4238 
4239 	es = sbi->s_es;
4240 
4241 	if (sbi->s_journal) {
4242 		ext4_init_journal_params(sb, sbi->s_journal);
4243 		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4244 	}
4245 
4246 	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4247 		n_blocks_count > ext4_blocks_count(es)) {
4248 		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4249 			err = -EROFS;
4250 			goto restore_opts;
4251 		}
4252 
4253 		if (*flags & MS_RDONLY) {
4254 			err = dquot_suspend(sb, -1);
4255 			if (err < 0)
4256 				goto restore_opts;
4257 
4258 			/*
4259 			 * First of all, the unconditional stuff we have to do
4260 			 * to disable replay of the journal when we next remount
4261 			 */
4262 			sb->s_flags |= MS_RDONLY;
4263 
4264 			/*
4265 			 * OK, test if we are remounting a valid rw partition
4266 			 * readonly, and if so set the rdonly flag and then
4267 			 * mark the partition as valid again.
4268 			 */
4269 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4270 			    (sbi->s_mount_state & EXT4_VALID_FS))
4271 				es->s_state = cpu_to_le16(sbi->s_mount_state);
4272 
4273 			if (sbi->s_journal)
4274 				ext4_mark_recovery_complete(sb, es);
4275 		} else {
4276 			/* Make sure we can mount this feature set readwrite */
4277 			if (!ext4_feature_set_ok(sb, 0)) {
4278 				err = -EROFS;
4279 				goto restore_opts;
4280 			}
4281 			/*
4282 			 * Make sure the group descriptor checksums
4283 			 * are sane.  If they aren't, refuse to remount r/w.
4284 			 */
4285 			for (g = 0; g < sbi->s_groups_count; g++) {
4286 				struct ext4_group_desc *gdp =
4287 					ext4_get_group_desc(sb, g, NULL);
4288 
4289 				if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4290 					ext4_msg(sb, KERN_ERR,
4291 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
4292 		g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4293 					       le16_to_cpu(gdp->bg_checksum));
4294 					err = -EINVAL;
4295 					goto restore_opts;
4296 				}
4297 			}
4298 
4299 			/*
4300 			 * If we have an unprocessed orphan list hanging
4301 			 * around from a previously readonly bdev mount,
4302 			 * require a full umount/remount for now.
4303 			 */
4304 			if (es->s_last_orphan) {
4305 				ext4_msg(sb, KERN_WARNING, "Couldn't "
4306 				       "remount RDWR because of unprocessed "
4307 				       "orphan inode list.  Please "
4308 				       "umount/remount instead");
4309 				err = -EINVAL;
4310 				goto restore_opts;
4311 			}
4312 
4313 			/*
4314 			 * Mounting a RDONLY partition read-write, so reread
4315 			 * and store the current valid flag.  (It may have
4316 			 * been changed by e2fsck since we originally mounted
4317 			 * the partition.)
4318 			 */
4319 			if (sbi->s_journal)
4320 				ext4_clear_journal_err(sb, es);
4321 			sbi->s_mount_state = le16_to_cpu(es->s_state);
4322 			if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4323 				goto restore_opts;
4324 			if (!ext4_setup_super(sb, es, 0))
4325 				sb->s_flags &= ~MS_RDONLY;
4326 			enable_quota = 1;
4327 		}
4328 	}
4329 
4330 	/*
4331 	 * Reinitialize lazy itable initialization thread based on
4332 	 * current settings
4333 	 */
4334 	if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4335 		ext4_unregister_li_request(sb);
4336 	else {
4337 		ext4_group_t first_not_zeroed;
4338 		first_not_zeroed = ext4_has_uninit_itable(sb);
4339 		ext4_register_li_request(sb, first_not_zeroed);
4340 	}
4341 
4342 	ext4_setup_system_zone(sb);
4343 	if (sbi->s_journal == NULL)
4344 		ext4_commit_super(sb, 1);
4345 
4346 #ifdef CONFIG_QUOTA
4347 	/* Release old quota file names */
4348 	for (i = 0; i < MAXQUOTAS; i++)
4349 		if (old_opts.s_qf_names[i] &&
4350 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4351 			kfree(old_opts.s_qf_names[i]);
4352 #endif
4353 	unlock_super(sb);
4354 	if (enable_quota)
4355 		dquot_resume(sb, -1);
4356 
4357 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4358 	kfree(orig_data);
4359 	return 0;
4360 
4361 restore_opts:
4362 	sb->s_flags = old_sb_flags;
4363 	sbi->s_mount_opt = old_opts.s_mount_opt;
4364 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4365 	sbi->s_resuid = old_opts.s_resuid;
4366 	sbi->s_resgid = old_opts.s_resgid;
4367 	sbi->s_commit_interval = old_opts.s_commit_interval;
4368 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
4369 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
4370 #ifdef CONFIG_QUOTA
4371 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4372 	for (i = 0; i < MAXQUOTAS; i++) {
4373 		if (sbi->s_qf_names[i] &&
4374 		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4375 			kfree(sbi->s_qf_names[i]);
4376 		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4377 	}
4378 #endif
4379 	unlock_super(sb);
4380 	kfree(orig_data);
4381 	return err;
4382 }
4383 
4384 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4385 {
4386 	struct super_block *sb = dentry->d_sb;
4387 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4388 	struct ext4_super_block *es = sbi->s_es;
4389 	u64 fsid;
4390 
4391 	if (test_opt(sb, MINIX_DF)) {
4392 		sbi->s_overhead_last = 0;
4393 	} else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4394 		ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4395 		ext4_fsblk_t overhead = 0;
4396 
4397 		/*
4398 		 * Compute the overhead (FS structures).  This is constant
4399 		 * for a given filesystem unless the number of block groups
4400 		 * changes so we cache the previous value until it does.
4401 		 */
4402 
4403 		/*
4404 		 * All of the blocks before first_data_block are
4405 		 * overhead
4406 		 */
4407 		overhead = le32_to_cpu(es->s_first_data_block);
4408 
4409 		/*
4410 		 * Add the overhead attributed to the superblock and
4411 		 * block group descriptors.  If the sparse superblocks
4412 		 * feature is turned on, then not all groups have this.
4413 		 */
4414 		for (i = 0; i < ngroups; i++) {
4415 			overhead += ext4_bg_has_super(sb, i) +
4416 				ext4_bg_num_gdb(sb, i);
4417 			cond_resched();
4418 		}
4419 
4420 		/*
4421 		 * Every block group has an inode bitmap, a block
4422 		 * bitmap, and an inode table.
4423 		 */
4424 		overhead += ngroups * (2 + sbi->s_itb_per_group);
4425 		sbi->s_overhead_last = overhead;
4426 		smp_wmb();
4427 		sbi->s_blocks_last = ext4_blocks_count(es);
4428 	}
4429 
4430 	buf->f_type = EXT4_SUPER_MAGIC;
4431 	buf->f_bsize = sb->s_blocksize;
4432 	buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4433 	buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4434 		       percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4435 	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4436 	if (buf->f_bfree < ext4_r_blocks_count(es))
4437 		buf->f_bavail = 0;
4438 	buf->f_files = le32_to_cpu(es->s_inodes_count);
4439 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4440 	buf->f_namelen = EXT4_NAME_LEN;
4441 	fsid = le64_to_cpup((void *)es->s_uuid) ^
4442 	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4443 	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4444 	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4445 
4446 	return 0;
4447 }
4448 
4449 /* Helper function for writing quotas on sync - we need to start transaction
4450  * before quota file is locked for write. Otherwise the are possible deadlocks:
4451  * Process 1                         Process 2
4452  * ext4_create()                     quota_sync()
4453  *   jbd2_journal_start()                  write_dquot()
4454  *   dquot_initialize()                         down(dqio_mutex)
4455  *     down(dqio_mutex)                    jbd2_journal_start()
4456  *
4457  */
4458 
4459 #ifdef CONFIG_QUOTA
4460 
4461 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4462 {
4463 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4464 }
4465 
4466 static int ext4_write_dquot(struct dquot *dquot)
4467 {
4468 	int ret, err;
4469 	handle_t *handle;
4470 	struct inode *inode;
4471 
4472 	inode = dquot_to_inode(dquot);
4473 	handle = ext4_journal_start(inode,
4474 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4475 	if (IS_ERR(handle))
4476 		return PTR_ERR(handle);
4477 	ret = dquot_commit(dquot);
4478 	err = ext4_journal_stop(handle);
4479 	if (!ret)
4480 		ret = err;
4481 	return ret;
4482 }
4483 
4484 static int ext4_acquire_dquot(struct dquot *dquot)
4485 {
4486 	int ret, err;
4487 	handle_t *handle;
4488 
4489 	handle = ext4_journal_start(dquot_to_inode(dquot),
4490 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4491 	if (IS_ERR(handle))
4492 		return PTR_ERR(handle);
4493 	ret = dquot_acquire(dquot);
4494 	err = ext4_journal_stop(handle);
4495 	if (!ret)
4496 		ret = err;
4497 	return ret;
4498 }
4499 
4500 static int ext4_release_dquot(struct dquot *dquot)
4501 {
4502 	int ret, err;
4503 	handle_t *handle;
4504 
4505 	handle = ext4_journal_start(dquot_to_inode(dquot),
4506 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4507 	if (IS_ERR(handle)) {
4508 		/* Release dquot anyway to avoid endless cycle in dqput() */
4509 		dquot_release(dquot);
4510 		return PTR_ERR(handle);
4511 	}
4512 	ret = dquot_release(dquot);
4513 	err = ext4_journal_stop(handle);
4514 	if (!ret)
4515 		ret = err;
4516 	return ret;
4517 }
4518 
4519 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4520 {
4521 	/* Are we journaling quotas? */
4522 	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4523 	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4524 		dquot_mark_dquot_dirty(dquot);
4525 		return ext4_write_dquot(dquot);
4526 	} else {
4527 		return dquot_mark_dquot_dirty(dquot);
4528 	}
4529 }
4530 
4531 static int ext4_write_info(struct super_block *sb, int type)
4532 {
4533 	int ret, err;
4534 	handle_t *handle;
4535 
4536 	/* Data block + inode block */
4537 	handle = ext4_journal_start(sb->s_root->d_inode, 2);
4538 	if (IS_ERR(handle))
4539 		return PTR_ERR(handle);
4540 	ret = dquot_commit_info(sb, type);
4541 	err = ext4_journal_stop(handle);
4542 	if (!ret)
4543 		ret = err;
4544 	return ret;
4545 }
4546 
4547 /*
4548  * Turn on quotas during mount time - we need to find
4549  * the quota file and such...
4550  */
4551 static int ext4_quota_on_mount(struct super_block *sb, int type)
4552 {
4553 	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4554 					EXT4_SB(sb)->s_jquota_fmt, type);
4555 }
4556 
4557 /*
4558  * Standard function to be called on quota_on
4559  */
4560 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4561 			 struct path *path)
4562 {
4563 	int err;
4564 
4565 	if (!test_opt(sb, QUOTA))
4566 		return -EINVAL;
4567 
4568 	/* Quotafile not on the same filesystem? */
4569 	if (path->mnt->mnt_sb != sb)
4570 		return -EXDEV;
4571 	/* Journaling quota? */
4572 	if (EXT4_SB(sb)->s_qf_names[type]) {
4573 		/* Quotafile not in fs root? */
4574 		if (path->dentry->d_parent != sb->s_root)
4575 			ext4_msg(sb, KERN_WARNING,
4576 				"Quota file not on filesystem root. "
4577 				"Journaled quota will not work");
4578 	}
4579 
4580 	/*
4581 	 * When we journal data on quota file, we have to flush journal to see
4582 	 * all updates to the file when we bypass pagecache...
4583 	 */
4584 	if (EXT4_SB(sb)->s_journal &&
4585 	    ext4_should_journal_data(path->dentry->d_inode)) {
4586 		/*
4587 		 * We don't need to lock updates but journal_flush() could
4588 		 * otherwise be livelocked...
4589 		 */
4590 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4591 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4592 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4593 		if (err)
4594 			return err;
4595 	}
4596 
4597 	return dquot_quota_on(sb, type, format_id, path);
4598 }
4599 
4600 static int ext4_quota_off(struct super_block *sb, int type)
4601 {
4602 	/* Force all delayed allocation blocks to be allocated.
4603 	 * Caller already holds s_umount sem */
4604 	if (test_opt(sb, DELALLOC))
4605 		sync_filesystem(sb);
4606 
4607 	return dquot_quota_off(sb, type);
4608 }
4609 
4610 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4611  * acquiring the locks... As quota files are never truncated and quota code
4612  * itself serializes the operations (and noone else should touch the files)
4613  * we don't have to be afraid of races */
4614 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4615 			       size_t len, loff_t off)
4616 {
4617 	struct inode *inode = sb_dqopt(sb)->files[type];
4618 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4619 	int err = 0;
4620 	int offset = off & (sb->s_blocksize - 1);
4621 	int tocopy;
4622 	size_t toread;
4623 	struct buffer_head *bh;
4624 	loff_t i_size = i_size_read(inode);
4625 
4626 	if (off > i_size)
4627 		return 0;
4628 	if (off+len > i_size)
4629 		len = i_size-off;
4630 	toread = len;
4631 	while (toread > 0) {
4632 		tocopy = sb->s_blocksize - offset < toread ?
4633 				sb->s_blocksize - offset : toread;
4634 		bh = ext4_bread(NULL, inode, blk, 0, &err);
4635 		if (err)
4636 			return err;
4637 		if (!bh)	/* A hole? */
4638 			memset(data, 0, tocopy);
4639 		else
4640 			memcpy(data, bh->b_data+offset, tocopy);
4641 		brelse(bh);
4642 		offset = 0;
4643 		toread -= tocopy;
4644 		data += tocopy;
4645 		blk++;
4646 	}
4647 	return len;
4648 }
4649 
4650 /* Write to quotafile (we know the transaction is already started and has
4651  * enough credits) */
4652 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4653 				const char *data, size_t len, loff_t off)
4654 {
4655 	struct inode *inode = sb_dqopt(sb)->files[type];
4656 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4657 	int err = 0;
4658 	int offset = off & (sb->s_blocksize - 1);
4659 	struct buffer_head *bh;
4660 	handle_t *handle = journal_current_handle();
4661 
4662 	if (EXT4_SB(sb)->s_journal && !handle) {
4663 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4664 			" cancelled because transaction is not started",
4665 			(unsigned long long)off, (unsigned long long)len);
4666 		return -EIO;
4667 	}
4668 	/*
4669 	 * Since we account only one data block in transaction credits,
4670 	 * then it is impossible to cross a block boundary.
4671 	 */
4672 	if (sb->s_blocksize - offset < len) {
4673 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4674 			" cancelled because not block aligned",
4675 			(unsigned long long)off, (unsigned long long)len);
4676 		return -EIO;
4677 	}
4678 
4679 	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4680 	bh = ext4_bread(handle, inode, blk, 1, &err);
4681 	if (!bh)
4682 		goto out;
4683 	err = ext4_journal_get_write_access(handle, bh);
4684 	if (err) {
4685 		brelse(bh);
4686 		goto out;
4687 	}
4688 	lock_buffer(bh);
4689 	memcpy(bh->b_data+offset, data, len);
4690 	flush_dcache_page(bh->b_page);
4691 	unlock_buffer(bh);
4692 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
4693 	brelse(bh);
4694 out:
4695 	if (err) {
4696 		mutex_unlock(&inode->i_mutex);
4697 		return err;
4698 	}
4699 	if (inode->i_size < off + len) {
4700 		i_size_write(inode, off + len);
4701 		EXT4_I(inode)->i_disksize = inode->i_size;
4702 	}
4703 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4704 	ext4_mark_inode_dirty(handle, inode);
4705 	mutex_unlock(&inode->i_mutex);
4706 	return len;
4707 }
4708 
4709 #endif
4710 
4711 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4712 		       const char *dev_name, void *data)
4713 {
4714 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4715 }
4716 
4717 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4718 static struct file_system_type ext2_fs_type = {
4719 	.owner		= THIS_MODULE,
4720 	.name		= "ext2",
4721 	.mount		= ext4_mount,
4722 	.kill_sb	= kill_block_super,
4723 	.fs_flags	= FS_REQUIRES_DEV,
4724 };
4725 
4726 static inline void register_as_ext2(void)
4727 {
4728 	int err = register_filesystem(&ext2_fs_type);
4729 	if (err)
4730 		printk(KERN_WARNING
4731 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4732 }
4733 
4734 static inline void unregister_as_ext2(void)
4735 {
4736 	unregister_filesystem(&ext2_fs_type);
4737 }
4738 MODULE_ALIAS("ext2");
4739 #else
4740 static inline void register_as_ext2(void) { }
4741 static inline void unregister_as_ext2(void) { }
4742 #endif
4743 
4744 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4745 static inline void register_as_ext3(void)
4746 {
4747 	int err = register_filesystem(&ext3_fs_type);
4748 	if (err)
4749 		printk(KERN_WARNING
4750 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4751 }
4752 
4753 static inline void unregister_as_ext3(void)
4754 {
4755 	unregister_filesystem(&ext3_fs_type);
4756 }
4757 MODULE_ALIAS("ext3");
4758 #else
4759 static inline void register_as_ext3(void) { }
4760 static inline void unregister_as_ext3(void) { }
4761 #endif
4762 
4763 static struct file_system_type ext4_fs_type = {
4764 	.owner		= THIS_MODULE,
4765 	.name		= "ext4",
4766 	.mount		= ext4_mount,
4767 	.kill_sb	= kill_block_super,
4768 	.fs_flags	= FS_REQUIRES_DEV,
4769 };
4770 
4771 int __init ext4_init_feat_adverts(void)
4772 {
4773 	struct ext4_features *ef;
4774 	int ret = -ENOMEM;
4775 
4776 	ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4777 	if (!ef)
4778 		goto out;
4779 
4780 	ef->f_kobj.kset = ext4_kset;
4781 	init_completion(&ef->f_kobj_unregister);
4782 	ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4783 				   "features");
4784 	if (ret) {
4785 		kfree(ef);
4786 		goto out;
4787 	}
4788 
4789 	ext4_feat = ef;
4790 	ret = 0;
4791 out:
4792 	return ret;
4793 }
4794 
4795 static int __init ext4_init_fs(void)
4796 {
4797 	int err;
4798 
4799 	ext4_check_flag_values();
4800 	err = ext4_init_pageio();
4801 	if (err)
4802 		return err;
4803 	err = ext4_init_system_zone();
4804 	if (err)
4805 		goto out5;
4806 	ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4807 	if (!ext4_kset)
4808 		goto out4;
4809 	ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4810 
4811 	err = ext4_init_feat_adverts();
4812 
4813 	err = ext4_init_mballoc();
4814 	if (err)
4815 		goto out3;
4816 
4817 	err = ext4_init_xattr();
4818 	if (err)
4819 		goto out2;
4820 	err = init_inodecache();
4821 	if (err)
4822 		goto out1;
4823 	register_as_ext2();
4824 	register_as_ext3();
4825 	err = register_filesystem(&ext4_fs_type);
4826 	if (err)
4827 		goto out;
4828 
4829 	ext4_li_info = NULL;
4830 	mutex_init(&ext4_li_mtx);
4831 	return 0;
4832 out:
4833 	unregister_as_ext2();
4834 	unregister_as_ext3();
4835 	destroy_inodecache();
4836 out1:
4837 	ext4_exit_xattr();
4838 out2:
4839 	ext4_exit_mballoc();
4840 out3:
4841 	kfree(ext4_feat);
4842 	remove_proc_entry("fs/ext4", NULL);
4843 	kset_unregister(ext4_kset);
4844 out4:
4845 	ext4_exit_system_zone();
4846 out5:
4847 	ext4_exit_pageio();
4848 	return err;
4849 }
4850 
4851 static void __exit ext4_exit_fs(void)
4852 {
4853 	ext4_destroy_lazyinit_thread();
4854 	unregister_as_ext2();
4855 	unregister_as_ext3();
4856 	unregister_filesystem(&ext4_fs_type);
4857 	destroy_inodecache();
4858 	ext4_exit_xattr();
4859 	ext4_exit_mballoc();
4860 	remove_proc_entry("fs/ext4", NULL);
4861 	kset_unregister(ext4_kset);
4862 	ext4_exit_system_zone();
4863 	ext4_exit_pageio();
4864 }
4865 
4866 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4867 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4868 MODULE_LICENSE("GPL");
4869 module_init(ext4_init_fs)
4870 module_exit(ext4_exit_fs)
4871