1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static DEFINE_MUTEX(ext4_li_mtx); 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static void ext4_update_super(struct super_block *sb); 69 static int ext4_commit_super(struct super_block *sb); 70 static int ext4_mark_recovery_complete(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_clear_journal_err(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_sync_fs(struct super_block *sb, int wait); 75 static int ext4_remount(struct super_block *sb, int *flags, char *data); 76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 77 static int ext4_unfreeze(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 84 static void ext4_destroy_lazyinit_thread(void); 85 static void ext4_unregister_li_request(struct super_block *sb); 86 static void ext4_clear_request_list(void); 87 static struct inode *ext4_get_journal_inode(struct super_block *sb, 88 unsigned int journal_inum); 89 90 /* 91 * Lock ordering 92 * 93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 94 * i_mmap_rwsem (inode->i_mmap_rwsem)! 95 * 96 * page fault path: 97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 98 * page lock -> i_data_sem (rw) 99 * 100 * buffered write path: 101 * sb_start_write -> i_mutex -> mmap_lock 102 * sb_start_write -> i_mutex -> transaction start -> page lock -> 103 * i_data_sem (rw) 104 * 105 * truncate: 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 108 * i_data_sem (rw) 109 * 110 * direct IO: 111 * sb_start_write -> i_mutex -> mmap_lock 112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 113 * 114 * writepages: 115 * transaction start -> page lock(s) -> i_data_sem (rw) 116 */ 117 118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 119 static struct file_system_type ext2_fs_type = { 120 .owner = THIS_MODULE, 121 .name = "ext2", 122 .mount = ext4_mount, 123 .kill_sb = kill_block_super, 124 .fs_flags = FS_REQUIRES_DEV, 125 }; 126 MODULE_ALIAS_FS("ext2"); 127 MODULE_ALIAS("ext2"); 128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 129 #else 130 #define IS_EXT2_SB(sb) (0) 131 #endif 132 133 134 static struct file_system_type ext3_fs_type = { 135 .owner = THIS_MODULE, 136 .name = "ext3", 137 .mount = ext4_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("ext3"); 142 MODULE_ALIAS("ext3"); 143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 144 145 146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 147 bh_end_io_t *end_io) 148 { 149 /* 150 * buffer's verified bit is no longer valid after reading from 151 * disk again due to write out error, clear it to make sure we 152 * recheck the buffer contents. 153 */ 154 clear_buffer_verified(bh); 155 156 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 157 get_bh(bh); 158 submit_bh(REQ_OP_READ, op_flags, bh); 159 } 160 161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 162 bh_end_io_t *end_io) 163 { 164 BUG_ON(!buffer_locked(bh)); 165 166 if (ext4_buffer_uptodate(bh)) { 167 unlock_buffer(bh); 168 return; 169 } 170 __ext4_read_bh(bh, op_flags, end_io); 171 } 172 173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 174 { 175 BUG_ON(!buffer_locked(bh)); 176 177 if (ext4_buffer_uptodate(bh)) { 178 unlock_buffer(bh); 179 return 0; 180 } 181 182 __ext4_read_bh(bh, op_flags, end_io); 183 184 wait_on_buffer(bh); 185 if (buffer_uptodate(bh)) 186 return 0; 187 return -EIO; 188 } 189 190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 191 { 192 if (trylock_buffer(bh)) { 193 if (wait) 194 return ext4_read_bh(bh, op_flags, NULL); 195 ext4_read_bh_nowait(bh, op_flags, NULL); 196 return 0; 197 } 198 if (wait) { 199 wait_on_buffer(bh); 200 if (buffer_uptodate(bh)) 201 return 0; 202 return -EIO; 203 } 204 return 0; 205 } 206 207 /* 208 * This works like __bread_gfp() except it uses ERR_PTR for error 209 * returns. Currently with sb_bread it's impossible to distinguish 210 * between ENOMEM and EIO situations (since both result in a NULL 211 * return. 212 */ 213 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 214 sector_t block, int op_flags, 215 gfp_t gfp) 216 { 217 struct buffer_head *bh; 218 int ret; 219 220 bh = sb_getblk_gfp(sb, block, gfp); 221 if (bh == NULL) 222 return ERR_PTR(-ENOMEM); 223 if (ext4_buffer_uptodate(bh)) 224 return bh; 225 226 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 227 if (ret) { 228 put_bh(bh); 229 return ERR_PTR(ret); 230 } 231 return bh; 232 } 233 234 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 235 int op_flags) 236 { 237 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 238 } 239 240 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 241 sector_t block) 242 { 243 return __ext4_sb_bread_gfp(sb, block, 0, 0); 244 } 245 246 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 247 { 248 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 249 250 if (likely(bh)) { 251 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 252 brelse(bh); 253 } 254 } 255 256 static int ext4_verify_csum_type(struct super_block *sb, 257 struct ext4_super_block *es) 258 { 259 if (!ext4_has_feature_metadata_csum(sb)) 260 return 1; 261 262 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 263 } 264 265 static __le32 ext4_superblock_csum(struct super_block *sb, 266 struct ext4_super_block *es) 267 { 268 struct ext4_sb_info *sbi = EXT4_SB(sb); 269 int offset = offsetof(struct ext4_super_block, s_checksum); 270 __u32 csum; 271 272 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 273 274 return cpu_to_le32(csum); 275 } 276 277 static int ext4_superblock_csum_verify(struct super_block *sb, 278 struct ext4_super_block *es) 279 { 280 if (!ext4_has_metadata_csum(sb)) 281 return 1; 282 283 return es->s_checksum == ext4_superblock_csum(sb, es); 284 } 285 286 void ext4_superblock_csum_set(struct super_block *sb) 287 { 288 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 289 290 if (!ext4_has_metadata_csum(sb)) 291 return; 292 293 es->s_checksum = ext4_superblock_csum(sb, es); 294 } 295 296 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 297 struct ext4_group_desc *bg) 298 { 299 return le32_to_cpu(bg->bg_block_bitmap_lo) | 300 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 301 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 302 } 303 304 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 305 struct ext4_group_desc *bg) 306 { 307 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 308 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 309 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 310 } 311 312 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 313 struct ext4_group_desc *bg) 314 { 315 return le32_to_cpu(bg->bg_inode_table_lo) | 316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 317 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 318 } 319 320 __u32 ext4_free_group_clusters(struct super_block *sb, 321 struct ext4_group_desc *bg) 322 { 323 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 325 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 326 } 327 328 __u32 ext4_free_inodes_count(struct super_block *sb, 329 struct ext4_group_desc *bg) 330 { 331 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 333 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 334 } 335 336 __u32 ext4_used_dirs_count(struct super_block *sb, 337 struct ext4_group_desc *bg) 338 { 339 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 341 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 342 } 343 344 __u32 ext4_itable_unused_count(struct super_block *sb, 345 struct ext4_group_desc *bg) 346 { 347 return le16_to_cpu(bg->bg_itable_unused_lo) | 348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 349 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 350 } 351 352 void ext4_block_bitmap_set(struct super_block *sb, 353 struct ext4_group_desc *bg, ext4_fsblk_t blk) 354 { 355 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 356 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 357 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 358 } 359 360 void ext4_inode_bitmap_set(struct super_block *sb, 361 struct ext4_group_desc *bg, ext4_fsblk_t blk) 362 { 363 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 364 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 365 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 366 } 367 368 void ext4_inode_table_set(struct super_block *sb, 369 struct ext4_group_desc *bg, ext4_fsblk_t blk) 370 { 371 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 373 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 374 } 375 376 void ext4_free_group_clusters_set(struct super_block *sb, 377 struct ext4_group_desc *bg, __u32 count) 378 { 379 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 381 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 382 } 383 384 void ext4_free_inodes_set(struct super_block *sb, 385 struct ext4_group_desc *bg, __u32 count) 386 { 387 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 389 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 390 } 391 392 void ext4_used_dirs_set(struct super_block *sb, 393 struct ext4_group_desc *bg, __u32 count) 394 { 395 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 397 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 398 } 399 400 void ext4_itable_unused_set(struct super_block *sb, 401 struct ext4_group_desc *bg, __u32 count) 402 { 403 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 405 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 406 } 407 408 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 409 { 410 now = clamp_val(now, 0, (1ull << 40) - 1); 411 412 *lo = cpu_to_le32(lower_32_bits(now)); 413 *hi = upper_32_bits(now); 414 } 415 416 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 417 { 418 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 419 } 420 #define ext4_update_tstamp(es, tstamp) \ 421 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 422 ktime_get_real_seconds()) 423 #define ext4_get_tstamp(es, tstamp) \ 424 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 425 426 /* 427 * The del_gendisk() function uninitializes the disk-specific data 428 * structures, including the bdi structure, without telling anyone 429 * else. Once this happens, any attempt to call mark_buffer_dirty() 430 * (for example, by ext4_commit_super), will cause a kernel OOPS. 431 * This is a kludge to prevent these oops until we can put in a proper 432 * hook in del_gendisk() to inform the VFS and file system layers. 433 */ 434 static int block_device_ejected(struct super_block *sb) 435 { 436 struct inode *bd_inode = sb->s_bdev->bd_inode; 437 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 438 439 return bdi->dev == NULL; 440 } 441 442 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 443 { 444 struct super_block *sb = journal->j_private; 445 struct ext4_sb_info *sbi = EXT4_SB(sb); 446 int error = is_journal_aborted(journal); 447 struct ext4_journal_cb_entry *jce; 448 449 BUG_ON(txn->t_state == T_FINISHED); 450 451 ext4_process_freed_data(sb, txn->t_tid); 452 453 spin_lock(&sbi->s_md_lock); 454 while (!list_empty(&txn->t_private_list)) { 455 jce = list_entry(txn->t_private_list.next, 456 struct ext4_journal_cb_entry, jce_list); 457 list_del_init(&jce->jce_list); 458 spin_unlock(&sbi->s_md_lock); 459 jce->jce_func(sb, jce, error); 460 spin_lock(&sbi->s_md_lock); 461 } 462 spin_unlock(&sbi->s_md_lock); 463 } 464 465 /* 466 * This writepage callback for write_cache_pages() 467 * takes care of a few cases after page cleaning. 468 * 469 * write_cache_pages() already checks for dirty pages 470 * and calls clear_page_dirty_for_io(), which we want, 471 * to write protect the pages. 472 * 473 * However, we may have to redirty a page (see below.) 474 */ 475 static int ext4_journalled_writepage_callback(struct page *page, 476 struct writeback_control *wbc, 477 void *data) 478 { 479 transaction_t *transaction = (transaction_t *) data; 480 struct buffer_head *bh, *head; 481 struct journal_head *jh; 482 483 bh = head = page_buffers(page); 484 do { 485 /* 486 * We have to redirty a page in these cases: 487 * 1) If buffer is dirty, it means the page was dirty because it 488 * contains a buffer that needs checkpointing. So the dirty bit 489 * needs to be preserved so that checkpointing writes the buffer 490 * properly. 491 * 2) If buffer is not part of the committing transaction 492 * (we may have just accidentally come across this buffer because 493 * inode range tracking is not exact) or if the currently running 494 * transaction already contains this buffer as well, dirty bit 495 * needs to be preserved so that the buffer gets writeprotected 496 * properly on running transaction's commit. 497 */ 498 jh = bh2jh(bh); 499 if (buffer_dirty(bh) || 500 (jh && (jh->b_transaction != transaction || 501 jh->b_next_transaction))) { 502 redirty_page_for_writepage(wbc, page); 503 goto out; 504 } 505 } while ((bh = bh->b_this_page) != head); 506 507 out: 508 return AOP_WRITEPAGE_ACTIVATE; 509 } 510 511 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 512 { 513 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 514 struct writeback_control wbc = { 515 .sync_mode = WB_SYNC_ALL, 516 .nr_to_write = LONG_MAX, 517 .range_start = jinode->i_dirty_start, 518 .range_end = jinode->i_dirty_end, 519 }; 520 521 return write_cache_pages(mapping, &wbc, 522 ext4_journalled_writepage_callback, 523 jinode->i_transaction); 524 } 525 526 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 527 { 528 int ret; 529 530 if (ext4_should_journal_data(jinode->i_vfs_inode)) 531 ret = ext4_journalled_submit_inode_data_buffers(jinode); 532 else 533 ret = jbd2_journal_submit_inode_data_buffers(jinode); 534 535 return ret; 536 } 537 538 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 539 { 540 int ret = 0; 541 542 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 543 ret = jbd2_journal_finish_inode_data_buffers(jinode); 544 545 return ret; 546 } 547 548 static bool system_going_down(void) 549 { 550 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 551 || system_state == SYSTEM_RESTART; 552 } 553 554 struct ext4_err_translation { 555 int code; 556 int errno; 557 }; 558 559 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 560 561 static struct ext4_err_translation err_translation[] = { 562 EXT4_ERR_TRANSLATE(EIO), 563 EXT4_ERR_TRANSLATE(ENOMEM), 564 EXT4_ERR_TRANSLATE(EFSBADCRC), 565 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 566 EXT4_ERR_TRANSLATE(ENOSPC), 567 EXT4_ERR_TRANSLATE(ENOKEY), 568 EXT4_ERR_TRANSLATE(EROFS), 569 EXT4_ERR_TRANSLATE(EFBIG), 570 EXT4_ERR_TRANSLATE(EEXIST), 571 EXT4_ERR_TRANSLATE(ERANGE), 572 EXT4_ERR_TRANSLATE(EOVERFLOW), 573 EXT4_ERR_TRANSLATE(EBUSY), 574 EXT4_ERR_TRANSLATE(ENOTDIR), 575 EXT4_ERR_TRANSLATE(ENOTEMPTY), 576 EXT4_ERR_TRANSLATE(ESHUTDOWN), 577 EXT4_ERR_TRANSLATE(EFAULT), 578 }; 579 580 static int ext4_errno_to_code(int errno) 581 { 582 int i; 583 584 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 585 if (err_translation[i].errno == errno) 586 return err_translation[i].code; 587 return EXT4_ERR_UNKNOWN; 588 } 589 590 static void save_error_info(struct super_block *sb, int error, 591 __u32 ino, __u64 block, 592 const char *func, unsigned int line) 593 { 594 struct ext4_sb_info *sbi = EXT4_SB(sb); 595 596 /* We default to EFSCORRUPTED error... */ 597 if (error == 0) 598 error = EFSCORRUPTED; 599 600 spin_lock(&sbi->s_error_lock); 601 sbi->s_add_error_count++; 602 sbi->s_last_error_code = error; 603 sbi->s_last_error_line = line; 604 sbi->s_last_error_ino = ino; 605 sbi->s_last_error_block = block; 606 sbi->s_last_error_func = func; 607 sbi->s_last_error_time = ktime_get_real_seconds(); 608 if (!sbi->s_first_error_time) { 609 sbi->s_first_error_code = error; 610 sbi->s_first_error_line = line; 611 sbi->s_first_error_ino = ino; 612 sbi->s_first_error_block = block; 613 sbi->s_first_error_func = func; 614 sbi->s_first_error_time = sbi->s_last_error_time; 615 } 616 spin_unlock(&sbi->s_error_lock); 617 } 618 619 /* Deal with the reporting of failure conditions on a filesystem such as 620 * inconsistencies detected or read IO failures. 621 * 622 * On ext2, we can store the error state of the filesystem in the 623 * superblock. That is not possible on ext4, because we may have other 624 * write ordering constraints on the superblock which prevent us from 625 * writing it out straight away; and given that the journal is about to 626 * be aborted, we can't rely on the current, or future, transactions to 627 * write out the superblock safely. 628 * 629 * We'll just use the jbd2_journal_abort() error code to record an error in 630 * the journal instead. On recovery, the journal will complain about 631 * that error until we've noted it down and cleared it. 632 * 633 * If force_ro is set, we unconditionally force the filesystem into an 634 * ABORT|READONLY state, unless the error response on the fs has been set to 635 * panic in which case we take the easy way out and panic immediately. This is 636 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 637 * at a critical moment in log management. 638 */ 639 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 640 __u32 ino, __u64 block, 641 const char *func, unsigned int line) 642 { 643 journal_t *journal = EXT4_SB(sb)->s_journal; 644 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 645 646 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 647 if (test_opt(sb, WARN_ON_ERROR)) 648 WARN_ON_ONCE(1); 649 650 if (!continue_fs && !sb_rdonly(sb)) { 651 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 652 if (journal) 653 jbd2_journal_abort(journal, -EIO); 654 } 655 656 if (!bdev_read_only(sb->s_bdev)) { 657 save_error_info(sb, error, ino, block, func, line); 658 /* 659 * In case the fs should keep running, we need to writeout 660 * superblock through the journal. Due to lock ordering 661 * constraints, it may not be safe to do it right here so we 662 * defer superblock flushing to a workqueue. 663 */ 664 if (continue_fs) 665 schedule_work(&EXT4_SB(sb)->s_error_work); 666 else 667 ext4_commit_super(sb); 668 } 669 670 /* 671 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 672 * could panic during 'reboot -f' as the underlying device got already 673 * disabled. 674 */ 675 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 676 panic("EXT4-fs (device %s): panic forced after error\n", 677 sb->s_id); 678 } 679 680 if (sb_rdonly(sb) || continue_fs) 681 return; 682 683 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 684 /* 685 * Make sure updated value of ->s_mount_flags will be visible before 686 * ->s_flags update 687 */ 688 smp_wmb(); 689 sb->s_flags |= SB_RDONLY; 690 } 691 692 static void flush_stashed_error_work(struct work_struct *work) 693 { 694 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 695 s_error_work); 696 journal_t *journal = sbi->s_journal; 697 handle_t *handle; 698 699 /* 700 * If the journal is still running, we have to write out superblock 701 * through the journal to avoid collisions of other journalled sb 702 * updates. 703 * 704 * We use directly jbd2 functions here to avoid recursing back into 705 * ext4 error handling code during handling of previous errors. 706 */ 707 if (!sb_rdonly(sbi->s_sb) && journal) { 708 handle = jbd2_journal_start(journal, 1); 709 if (IS_ERR(handle)) 710 goto write_directly; 711 if (jbd2_journal_get_write_access(handle, sbi->s_sbh)) { 712 jbd2_journal_stop(handle); 713 goto write_directly; 714 } 715 ext4_update_super(sbi->s_sb); 716 if (jbd2_journal_dirty_metadata(handle, sbi->s_sbh)) { 717 jbd2_journal_stop(handle); 718 goto write_directly; 719 } 720 jbd2_journal_stop(handle); 721 ext4_notify_error_sysfs(sbi); 722 return; 723 } 724 write_directly: 725 /* 726 * Write through journal failed. Write sb directly to get error info 727 * out and hope for the best. 728 */ 729 ext4_commit_super(sbi->s_sb); 730 ext4_notify_error_sysfs(sbi); 731 } 732 733 #define ext4_error_ratelimit(sb) \ 734 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 735 "EXT4-fs error") 736 737 void __ext4_error(struct super_block *sb, const char *function, 738 unsigned int line, bool force_ro, int error, __u64 block, 739 const char *fmt, ...) 740 { 741 struct va_format vaf; 742 va_list args; 743 744 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 745 return; 746 747 trace_ext4_error(sb, function, line); 748 if (ext4_error_ratelimit(sb)) { 749 va_start(args, fmt); 750 vaf.fmt = fmt; 751 vaf.va = &args; 752 printk(KERN_CRIT 753 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 754 sb->s_id, function, line, current->comm, &vaf); 755 va_end(args); 756 } 757 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 758 } 759 760 void __ext4_error_inode(struct inode *inode, const char *function, 761 unsigned int line, ext4_fsblk_t block, int error, 762 const char *fmt, ...) 763 { 764 va_list args; 765 struct va_format vaf; 766 767 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 768 return; 769 770 trace_ext4_error(inode->i_sb, function, line); 771 if (ext4_error_ratelimit(inode->i_sb)) { 772 va_start(args, fmt); 773 vaf.fmt = fmt; 774 vaf.va = &args; 775 if (block) 776 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 777 "inode #%lu: block %llu: comm %s: %pV\n", 778 inode->i_sb->s_id, function, line, inode->i_ino, 779 block, current->comm, &vaf); 780 else 781 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 782 "inode #%lu: comm %s: %pV\n", 783 inode->i_sb->s_id, function, line, inode->i_ino, 784 current->comm, &vaf); 785 va_end(args); 786 } 787 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 788 function, line); 789 } 790 791 void __ext4_error_file(struct file *file, const char *function, 792 unsigned int line, ext4_fsblk_t block, 793 const char *fmt, ...) 794 { 795 va_list args; 796 struct va_format vaf; 797 struct inode *inode = file_inode(file); 798 char pathname[80], *path; 799 800 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 801 return; 802 803 trace_ext4_error(inode->i_sb, function, line); 804 if (ext4_error_ratelimit(inode->i_sb)) { 805 path = file_path(file, pathname, sizeof(pathname)); 806 if (IS_ERR(path)) 807 path = "(unknown)"; 808 va_start(args, fmt); 809 vaf.fmt = fmt; 810 vaf.va = &args; 811 if (block) 812 printk(KERN_CRIT 813 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 814 "block %llu: comm %s: path %s: %pV\n", 815 inode->i_sb->s_id, function, line, inode->i_ino, 816 block, current->comm, path, &vaf); 817 else 818 printk(KERN_CRIT 819 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 820 "comm %s: path %s: %pV\n", 821 inode->i_sb->s_id, function, line, inode->i_ino, 822 current->comm, path, &vaf); 823 va_end(args); 824 } 825 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 826 function, line); 827 } 828 829 const char *ext4_decode_error(struct super_block *sb, int errno, 830 char nbuf[16]) 831 { 832 char *errstr = NULL; 833 834 switch (errno) { 835 case -EFSCORRUPTED: 836 errstr = "Corrupt filesystem"; 837 break; 838 case -EFSBADCRC: 839 errstr = "Filesystem failed CRC"; 840 break; 841 case -EIO: 842 errstr = "IO failure"; 843 break; 844 case -ENOMEM: 845 errstr = "Out of memory"; 846 break; 847 case -EROFS: 848 if (!sb || (EXT4_SB(sb)->s_journal && 849 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 850 errstr = "Journal has aborted"; 851 else 852 errstr = "Readonly filesystem"; 853 break; 854 default: 855 /* If the caller passed in an extra buffer for unknown 856 * errors, textualise them now. Else we just return 857 * NULL. */ 858 if (nbuf) { 859 /* Check for truncated error codes... */ 860 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 861 errstr = nbuf; 862 } 863 break; 864 } 865 866 return errstr; 867 } 868 869 /* __ext4_std_error decodes expected errors from journaling functions 870 * automatically and invokes the appropriate error response. */ 871 872 void __ext4_std_error(struct super_block *sb, const char *function, 873 unsigned int line, int errno) 874 { 875 char nbuf[16]; 876 const char *errstr; 877 878 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 879 return; 880 881 /* Special case: if the error is EROFS, and we're not already 882 * inside a transaction, then there's really no point in logging 883 * an error. */ 884 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 885 return; 886 887 if (ext4_error_ratelimit(sb)) { 888 errstr = ext4_decode_error(sb, errno, nbuf); 889 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 890 sb->s_id, function, line, errstr); 891 } 892 893 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 894 } 895 896 void __ext4_msg(struct super_block *sb, 897 const char *prefix, const char *fmt, ...) 898 { 899 struct va_format vaf; 900 va_list args; 901 902 atomic_inc(&EXT4_SB(sb)->s_msg_count); 903 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 904 return; 905 906 va_start(args, fmt); 907 vaf.fmt = fmt; 908 vaf.va = &args; 909 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 910 va_end(args); 911 } 912 913 static int ext4_warning_ratelimit(struct super_block *sb) 914 { 915 atomic_inc(&EXT4_SB(sb)->s_warning_count); 916 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 917 "EXT4-fs warning"); 918 } 919 920 void __ext4_warning(struct super_block *sb, const char *function, 921 unsigned int line, const char *fmt, ...) 922 { 923 struct va_format vaf; 924 va_list args; 925 926 if (!ext4_warning_ratelimit(sb)) 927 return; 928 929 va_start(args, fmt); 930 vaf.fmt = fmt; 931 vaf.va = &args; 932 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 933 sb->s_id, function, line, &vaf); 934 va_end(args); 935 } 936 937 void __ext4_warning_inode(const struct inode *inode, const char *function, 938 unsigned int line, const char *fmt, ...) 939 { 940 struct va_format vaf; 941 va_list args; 942 943 if (!ext4_warning_ratelimit(inode->i_sb)) 944 return; 945 946 va_start(args, fmt); 947 vaf.fmt = fmt; 948 vaf.va = &args; 949 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 950 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 951 function, line, inode->i_ino, current->comm, &vaf); 952 va_end(args); 953 } 954 955 void __ext4_grp_locked_error(const char *function, unsigned int line, 956 struct super_block *sb, ext4_group_t grp, 957 unsigned long ino, ext4_fsblk_t block, 958 const char *fmt, ...) 959 __releases(bitlock) 960 __acquires(bitlock) 961 { 962 struct va_format vaf; 963 va_list args; 964 965 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 966 return; 967 968 trace_ext4_error(sb, function, line); 969 if (ext4_error_ratelimit(sb)) { 970 va_start(args, fmt); 971 vaf.fmt = fmt; 972 vaf.va = &args; 973 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 974 sb->s_id, function, line, grp); 975 if (ino) 976 printk(KERN_CONT "inode %lu: ", ino); 977 if (block) 978 printk(KERN_CONT "block %llu:", 979 (unsigned long long) block); 980 printk(KERN_CONT "%pV\n", &vaf); 981 va_end(args); 982 } 983 984 if (test_opt(sb, ERRORS_CONT)) { 985 if (test_opt(sb, WARN_ON_ERROR)) 986 WARN_ON_ONCE(1); 987 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 988 if (!bdev_read_only(sb->s_bdev)) { 989 save_error_info(sb, EFSCORRUPTED, ino, block, function, 990 line); 991 schedule_work(&EXT4_SB(sb)->s_error_work); 992 } 993 return; 994 } 995 ext4_unlock_group(sb, grp); 996 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 997 /* 998 * We only get here in the ERRORS_RO case; relocking the group 999 * may be dangerous, but nothing bad will happen since the 1000 * filesystem will have already been marked read/only and the 1001 * journal has been aborted. We return 1 as a hint to callers 1002 * who might what to use the return value from 1003 * ext4_grp_locked_error() to distinguish between the 1004 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1005 * aggressively from the ext4 function in question, with a 1006 * more appropriate error code. 1007 */ 1008 ext4_lock_group(sb, grp); 1009 return; 1010 } 1011 1012 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1013 ext4_group_t group, 1014 unsigned int flags) 1015 { 1016 struct ext4_sb_info *sbi = EXT4_SB(sb); 1017 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1018 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1019 int ret; 1020 1021 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1022 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1023 &grp->bb_state); 1024 if (!ret) 1025 percpu_counter_sub(&sbi->s_freeclusters_counter, 1026 grp->bb_free); 1027 } 1028 1029 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1030 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1031 &grp->bb_state); 1032 if (!ret && gdp) { 1033 int count; 1034 1035 count = ext4_free_inodes_count(sb, gdp); 1036 percpu_counter_sub(&sbi->s_freeinodes_counter, 1037 count); 1038 } 1039 } 1040 } 1041 1042 void ext4_update_dynamic_rev(struct super_block *sb) 1043 { 1044 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1045 1046 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1047 return; 1048 1049 ext4_warning(sb, 1050 "updating to rev %d because of new feature flag, " 1051 "running e2fsck is recommended", 1052 EXT4_DYNAMIC_REV); 1053 1054 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1055 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1056 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1057 /* leave es->s_feature_*compat flags alone */ 1058 /* es->s_uuid will be set by e2fsck if empty */ 1059 1060 /* 1061 * The rest of the superblock fields should be zero, and if not it 1062 * means they are likely already in use, so leave them alone. We 1063 * can leave it up to e2fsck to clean up any inconsistencies there. 1064 */ 1065 } 1066 1067 /* 1068 * Open the external journal device 1069 */ 1070 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1071 { 1072 struct block_device *bdev; 1073 1074 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1075 if (IS_ERR(bdev)) 1076 goto fail; 1077 return bdev; 1078 1079 fail: 1080 ext4_msg(sb, KERN_ERR, 1081 "failed to open journal device unknown-block(%u,%u) %ld", 1082 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1083 return NULL; 1084 } 1085 1086 /* 1087 * Release the journal device 1088 */ 1089 static void ext4_blkdev_put(struct block_device *bdev) 1090 { 1091 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1092 } 1093 1094 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1095 { 1096 struct block_device *bdev; 1097 bdev = sbi->s_journal_bdev; 1098 if (bdev) { 1099 ext4_blkdev_put(bdev); 1100 sbi->s_journal_bdev = NULL; 1101 } 1102 } 1103 1104 static inline struct inode *orphan_list_entry(struct list_head *l) 1105 { 1106 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1107 } 1108 1109 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1110 { 1111 struct list_head *l; 1112 1113 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1114 le32_to_cpu(sbi->s_es->s_last_orphan)); 1115 1116 printk(KERN_ERR "sb_info orphan list:\n"); 1117 list_for_each(l, &sbi->s_orphan) { 1118 struct inode *inode = orphan_list_entry(l); 1119 printk(KERN_ERR " " 1120 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1121 inode->i_sb->s_id, inode->i_ino, inode, 1122 inode->i_mode, inode->i_nlink, 1123 NEXT_ORPHAN(inode)); 1124 } 1125 } 1126 1127 #ifdef CONFIG_QUOTA 1128 static int ext4_quota_off(struct super_block *sb, int type); 1129 1130 static inline void ext4_quota_off_umount(struct super_block *sb) 1131 { 1132 int type; 1133 1134 /* Use our quota_off function to clear inode flags etc. */ 1135 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1136 ext4_quota_off(sb, type); 1137 } 1138 1139 /* 1140 * This is a helper function which is used in the mount/remount 1141 * codepaths (which holds s_umount) to fetch the quota file name. 1142 */ 1143 static inline char *get_qf_name(struct super_block *sb, 1144 struct ext4_sb_info *sbi, 1145 int type) 1146 { 1147 return rcu_dereference_protected(sbi->s_qf_names[type], 1148 lockdep_is_held(&sb->s_umount)); 1149 } 1150 #else 1151 static inline void ext4_quota_off_umount(struct super_block *sb) 1152 { 1153 } 1154 #endif 1155 1156 static void ext4_put_super(struct super_block *sb) 1157 { 1158 struct ext4_sb_info *sbi = EXT4_SB(sb); 1159 struct ext4_super_block *es = sbi->s_es; 1160 struct buffer_head **group_desc; 1161 struct flex_groups **flex_groups; 1162 int aborted = 0; 1163 int i, err; 1164 1165 ext4_unregister_li_request(sb); 1166 ext4_quota_off_umount(sb); 1167 1168 flush_work(&sbi->s_error_work); 1169 destroy_workqueue(sbi->rsv_conversion_wq); 1170 1171 /* 1172 * Unregister sysfs before destroying jbd2 journal. 1173 * Since we could still access attr_journal_task attribute via sysfs 1174 * path which could have sbi->s_journal->j_task as NULL 1175 */ 1176 ext4_unregister_sysfs(sb); 1177 1178 if (sbi->s_journal) { 1179 jbd2_journal_unregister_shrinker(sbi->s_journal); 1180 aborted = is_journal_aborted(sbi->s_journal); 1181 err = jbd2_journal_destroy(sbi->s_journal); 1182 sbi->s_journal = NULL; 1183 if ((err < 0) && !aborted) { 1184 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1185 } 1186 } 1187 1188 ext4_es_unregister_shrinker(sbi); 1189 del_timer_sync(&sbi->s_err_report); 1190 ext4_release_system_zone(sb); 1191 ext4_mb_release(sb); 1192 ext4_ext_release(sb); 1193 1194 if (!sb_rdonly(sb) && !aborted) { 1195 ext4_clear_feature_journal_needs_recovery(sb); 1196 es->s_state = cpu_to_le16(sbi->s_mount_state); 1197 } 1198 if (!sb_rdonly(sb)) 1199 ext4_commit_super(sb); 1200 1201 rcu_read_lock(); 1202 group_desc = rcu_dereference(sbi->s_group_desc); 1203 for (i = 0; i < sbi->s_gdb_count; i++) 1204 brelse(group_desc[i]); 1205 kvfree(group_desc); 1206 flex_groups = rcu_dereference(sbi->s_flex_groups); 1207 if (flex_groups) { 1208 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1209 kvfree(flex_groups[i]); 1210 kvfree(flex_groups); 1211 } 1212 rcu_read_unlock(); 1213 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1214 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1215 percpu_counter_destroy(&sbi->s_dirs_counter); 1216 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1217 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1218 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1219 #ifdef CONFIG_QUOTA 1220 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1221 kfree(get_qf_name(sb, sbi, i)); 1222 #endif 1223 1224 /* Debugging code just in case the in-memory inode orphan list 1225 * isn't empty. The on-disk one can be non-empty if we've 1226 * detected an error and taken the fs readonly, but the 1227 * in-memory list had better be clean by this point. */ 1228 if (!list_empty(&sbi->s_orphan)) 1229 dump_orphan_list(sb, sbi); 1230 ASSERT(list_empty(&sbi->s_orphan)); 1231 1232 sync_blockdev(sb->s_bdev); 1233 invalidate_bdev(sb->s_bdev); 1234 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1235 /* 1236 * Invalidate the journal device's buffers. We don't want them 1237 * floating about in memory - the physical journal device may 1238 * hotswapped, and it breaks the `ro-after' testing code. 1239 */ 1240 sync_blockdev(sbi->s_journal_bdev); 1241 invalidate_bdev(sbi->s_journal_bdev); 1242 ext4_blkdev_remove(sbi); 1243 } 1244 1245 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1246 sbi->s_ea_inode_cache = NULL; 1247 1248 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1249 sbi->s_ea_block_cache = NULL; 1250 1251 ext4_stop_mmpd(sbi); 1252 1253 brelse(sbi->s_sbh); 1254 sb->s_fs_info = NULL; 1255 /* 1256 * Now that we are completely done shutting down the 1257 * superblock, we need to actually destroy the kobject. 1258 */ 1259 kobject_put(&sbi->s_kobj); 1260 wait_for_completion(&sbi->s_kobj_unregister); 1261 if (sbi->s_chksum_driver) 1262 crypto_free_shash(sbi->s_chksum_driver); 1263 kfree(sbi->s_blockgroup_lock); 1264 fs_put_dax(sbi->s_daxdev); 1265 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1266 #ifdef CONFIG_UNICODE 1267 utf8_unload(sb->s_encoding); 1268 #endif 1269 kfree(sbi); 1270 } 1271 1272 static struct kmem_cache *ext4_inode_cachep; 1273 1274 /* 1275 * Called inside transaction, so use GFP_NOFS 1276 */ 1277 static struct inode *ext4_alloc_inode(struct super_block *sb) 1278 { 1279 struct ext4_inode_info *ei; 1280 1281 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1282 if (!ei) 1283 return NULL; 1284 1285 inode_set_iversion(&ei->vfs_inode, 1); 1286 spin_lock_init(&ei->i_raw_lock); 1287 INIT_LIST_HEAD(&ei->i_prealloc_list); 1288 atomic_set(&ei->i_prealloc_active, 0); 1289 spin_lock_init(&ei->i_prealloc_lock); 1290 ext4_es_init_tree(&ei->i_es_tree); 1291 rwlock_init(&ei->i_es_lock); 1292 INIT_LIST_HEAD(&ei->i_es_list); 1293 ei->i_es_all_nr = 0; 1294 ei->i_es_shk_nr = 0; 1295 ei->i_es_shrink_lblk = 0; 1296 ei->i_reserved_data_blocks = 0; 1297 spin_lock_init(&(ei->i_block_reservation_lock)); 1298 ext4_init_pending_tree(&ei->i_pending_tree); 1299 #ifdef CONFIG_QUOTA 1300 ei->i_reserved_quota = 0; 1301 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1302 #endif 1303 ei->jinode = NULL; 1304 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1305 spin_lock_init(&ei->i_completed_io_lock); 1306 ei->i_sync_tid = 0; 1307 ei->i_datasync_tid = 0; 1308 atomic_set(&ei->i_unwritten, 0); 1309 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1310 ext4_fc_init_inode(&ei->vfs_inode); 1311 mutex_init(&ei->i_fc_lock); 1312 return &ei->vfs_inode; 1313 } 1314 1315 static int ext4_drop_inode(struct inode *inode) 1316 { 1317 int drop = generic_drop_inode(inode); 1318 1319 if (!drop) 1320 drop = fscrypt_drop_inode(inode); 1321 1322 trace_ext4_drop_inode(inode, drop); 1323 return drop; 1324 } 1325 1326 static void ext4_free_in_core_inode(struct inode *inode) 1327 { 1328 fscrypt_free_inode(inode); 1329 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1330 pr_warn("%s: inode %ld still in fc list", 1331 __func__, inode->i_ino); 1332 } 1333 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1334 } 1335 1336 static void ext4_destroy_inode(struct inode *inode) 1337 { 1338 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1339 ext4_msg(inode->i_sb, KERN_ERR, 1340 "Inode %lu (%p): orphan list check failed!", 1341 inode->i_ino, EXT4_I(inode)); 1342 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1343 EXT4_I(inode), sizeof(struct ext4_inode_info), 1344 true); 1345 dump_stack(); 1346 } 1347 } 1348 1349 static void init_once(void *foo) 1350 { 1351 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1352 1353 INIT_LIST_HEAD(&ei->i_orphan); 1354 init_rwsem(&ei->xattr_sem); 1355 init_rwsem(&ei->i_data_sem); 1356 init_rwsem(&ei->i_mmap_sem); 1357 inode_init_once(&ei->vfs_inode); 1358 ext4_fc_init_inode(&ei->vfs_inode); 1359 } 1360 1361 static int __init init_inodecache(void) 1362 { 1363 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1364 sizeof(struct ext4_inode_info), 0, 1365 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1366 SLAB_ACCOUNT), 1367 offsetof(struct ext4_inode_info, i_data), 1368 sizeof_field(struct ext4_inode_info, i_data), 1369 init_once); 1370 if (ext4_inode_cachep == NULL) 1371 return -ENOMEM; 1372 return 0; 1373 } 1374 1375 static void destroy_inodecache(void) 1376 { 1377 /* 1378 * Make sure all delayed rcu free inodes are flushed before we 1379 * destroy cache. 1380 */ 1381 rcu_barrier(); 1382 kmem_cache_destroy(ext4_inode_cachep); 1383 } 1384 1385 void ext4_clear_inode(struct inode *inode) 1386 { 1387 ext4_fc_del(inode); 1388 invalidate_inode_buffers(inode); 1389 clear_inode(inode); 1390 ext4_discard_preallocations(inode, 0); 1391 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1392 dquot_drop(inode); 1393 if (EXT4_I(inode)->jinode) { 1394 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1395 EXT4_I(inode)->jinode); 1396 jbd2_free_inode(EXT4_I(inode)->jinode); 1397 EXT4_I(inode)->jinode = NULL; 1398 } 1399 fscrypt_put_encryption_info(inode); 1400 fsverity_cleanup_inode(inode); 1401 } 1402 1403 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1404 u64 ino, u32 generation) 1405 { 1406 struct inode *inode; 1407 1408 /* 1409 * Currently we don't know the generation for parent directory, so 1410 * a generation of 0 means "accept any" 1411 */ 1412 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1413 if (IS_ERR(inode)) 1414 return ERR_CAST(inode); 1415 if (generation && inode->i_generation != generation) { 1416 iput(inode); 1417 return ERR_PTR(-ESTALE); 1418 } 1419 1420 return inode; 1421 } 1422 1423 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1424 int fh_len, int fh_type) 1425 { 1426 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1427 ext4_nfs_get_inode); 1428 } 1429 1430 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1431 int fh_len, int fh_type) 1432 { 1433 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1434 ext4_nfs_get_inode); 1435 } 1436 1437 static int ext4_nfs_commit_metadata(struct inode *inode) 1438 { 1439 struct writeback_control wbc = { 1440 .sync_mode = WB_SYNC_ALL 1441 }; 1442 1443 trace_ext4_nfs_commit_metadata(inode); 1444 return ext4_write_inode(inode, &wbc); 1445 } 1446 1447 #ifdef CONFIG_FS_ENCRYPTION 1448 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1449 { 1450 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1451 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1452 } 1453 1454 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1455 void *fs_data) 1456 { 1457 handle_t *handle = fs_data; 1458 int res, res2, credits, retries = 0; 1459 1460 /* 1461 * Encrypting the root directory is not allowed because e2fsck expects 1462 * lost+found to exist and be unencrypted, and encrypting the root 1463 * directory would imply encrypting the lost+found directory as well as 1464 * the filename "lost+found" itself. 1465 */ 1466 if (inode->i_ino == EXT4_ROOT_INO) 1467 return -EPERM; 1468 1469 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1470 return -EINVAL; 1471 1472 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1473 return -EOPNOTSUPP; 1474 1475 res = ext4_convert_inline_data(inode); 1476 if (res) 1477 return res; 1478 1479 /* 1480 * If a journal handle was specified, then the encryption context is 1481 * being set on a new inode via inheritance and is part of a larger 1482 * transaction to create the inode. Otherwise the encryption context is 1483 * being set on an existing inode in its own transaction. Only in the 1484 * latter case should the "retry on ENOSPC" logic be used. 1485 */ 1486 1487 if (handle) { 1488 res = ext4_xattr_set_handle(handle, inode, 1489 EXT4_XATTR_INDEX_ENCRYPTION, 1490 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1491 ctx, len, 0); 1492 if (!res) { 1493 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1494 ext4_clear_inode_state(inode, 1495 EXT4_STATE_MAY_INLINE_DATA); 1496 /* 1497 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1498 * S_DAX may be disabled 1499 */ 1500 ext4_set_inode_flags(inode, false); 1501 } 1502 return res; 1503 } 1504 1505 res = dquot_initialize(inode); 1506 if (res) 1507 return res; 1508 retry: 1509 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1510 &credits); 1511 if (res) 1512 return res; 1513 1514 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1515 if (IS_ERR(handle)) 1516 return PTR_ERR(handle); 1517 1518 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1519 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1520 ctx, len, 0); 1521 if (!res) { 1522 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1523 /* 1524 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1525 * S_DAX may be disabled 1526 */ 1527 ext4_set_inode_flags(inode, false); 1528 res = ext4_mark_inode_dirty(handle, inode); 1529 if (res) 1530 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1531 } 1532 res2 = ext4_journal_stop(handle); 1533 1534 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1535 goto retry; 1536 if (!res) 1537 res = res2; 1538 return res; 1539 } 1540 1541 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1542 { 1543 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1544 } 1545 1546 static bool ext4_has_stable_inodes(struct super_block *sb) 1547 { 1548 return ext4_has_feature_stable_inodes(sb); 1549 } 1550 1551 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1552 int *ino_bits_ret, int *lblk_bits_ret) 1553 { 1554 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1555 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1556 } 1557 1558 static const struct fscrypt_operations ext4_cryptops = { 1559 .key_prefix = "ext4:", 1560 .get_context = ext4_get_context, 1561 .set_context = ext4_set_context, 1562 .get_dummy_policy = ext4_get_dummy_policy, 1563 .empty_dir = ext4_empty_dir, 1564 .max_namelen = EXT4_NAME_LEN, 1565 .has_stable_inodes = ext4_has_stable_inodes, 1566 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1567 }; 1568 #endif 1569 1570 #ifdef CONFIG_QUOTA 1571 static const char * const quotatypes[] = INITQFNAMES; 1572 #define QTYPE2NAME(t) (quotatypes[t]) 1573 1574 static int ext4_write_dquot(struct dquot *dquot); 1575 static int ext4_acquire_dquot(struct dquot *dquot); 1576 static int ext4_release_dquot(struct dquot *dquot); 1577 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1578 static int ext4_write_info(struct super_block *sb, int type); 1579 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1580 const struct path *path); 1581 static int ext4_quota_on_mount(struct super_block *sb, int type); 1582 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1583 size_t len, loff_t off); 1584 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1585 const char *data, size_t len, loff_t off); 1586 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1587 unsigned int flags); 1588 static int ext4_enable_quotas(struct super_block *sb); 1589 1590 static struct dquot **ext4_get_dquots(struct inode *inode) 1591 { 1592 return EXT4_I(inode)->i_dquot; 1593 } 1594 1595 static const struct dquot_operations ext4_quota_operations = { 1596 .get_reserved_space = ext4_get_reserved_space, 1597 .write_dquot = ext4_write_dquot, 1598 .acquire_dquot = ext4_acquire_dquot, 1599 .release_dquot = ext4_release_dquot, 1600 .mark_dirty = ext4_mark_dquot_dirty, 1601 .write_info = ext4_write_info, 1602 .alloc_dquot = dquot_alloc, 1603 .destroy_dquot = dquot_destroy, 1604 .get_projid = ext4_get_projid, 1605 .get_inode_usage = ext4_get_inode_usage, 1606 .get_next_id = dquot_get_next_id, 1607 }; 1608 1609 static const struct quotactl_ops ext4_qctl_operations = { 1610 .quota_on = ext4_quota_on, 1611 .quota_off = ext4_quota_off, 1612 .quota_sync = dquot_quota_sync, 1613 .get_state = dquot_get_state, 1614 .set_info = dquot_set_dqinfo, 1615 .get_dqblk = dquot_get_dqblk, 1616 .set_dqblk = dquot_set_dqblk, 1617 .get_nextdqblk = dquot_get_next_dqblk, 1618 }; 1619 #endif 1620 1621 static const struct super_operations ext4_sops = { 1622 .alloc_inode = ext4_alloc_inode, 1623 .free_inode = ext4_free_in_core_inode, 1624 .destroy_inode = ext4_destroy_inode, 1625 .write_inode = ext4_write_inode, 1626 .dirty_inode = ext4_dirty_inode, 1627 .drop_inode = ext4_drop_inode, 1628 .evict_inode = ext4_evict_inode, 1629 .put_super = ext4_put_super, 1630 .sync_fs = ext4_sync_fs, 1631 .freeze_fs = ext4_freeze, 1632 .unfreeze_fs = ext4_unfreeze, 1633 .statfs = ext4_statfs, 1634 .remount_fs = ext4_remount, 1635 .show_options = ext4_show_options, 1636 #ifdef CONFIG_QUOTA 1637 .quota_read = ext4_quota_read, 1638 .quota_write = ext4_quota_write, 1639 .get_dquots = ext4_get_dquots, 1640 #endif 1641 }; 1642 1643 static const struct export_operations ext4_export_ops = { 1644 .fh_to_dentry = ext4_fh_to_dentry, 1645 .fh_to_parent = ext4_fh_to_parent, 1646 .get_parent = ext4_get_parent, 1647 .commit_metadata = ext4_nfs_commit_metadata, 1648 }; 1649 1650 enum { 1651 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1652 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1653 Opt_nouid32, Opt_debug, Opt_removed, 1654 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1655 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1656 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1657 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1658 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1659 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1660 Opt_inlinecrypt, 1661 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1662 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1663 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1664 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1665 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1666 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1667 Opt_nowarn_on_error, Opt_mblk_io_submit, 1668 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1669 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1670 Opt_inode_readahead_blks, Opt_journal_ioprio, 1671 Opt_dioread_nolock, Opt_dioread_lock, 1672 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1673 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1674 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1675 #ifdef CONFIG_EXT4_DEBUG 1676 Opt_fc_debug_max_replay, Opt_fc_debug_force 1677 #endif 1678 }; 1679 1680 static const match_table_t tokens = { 1681 {Opt_bsd_df, "bsddf"}, 1682 {Opt_minix_df, "minixdf"}, 1683 {Opt_grpid, "grpid"}, 1684 {Opt_grpid, "bsdgroups"}, 1685 {Opt_nogrpid, "nogrpid"}, 1686 {Opt_nogrpid, "sysvgroups"}, 1687 {Opt_resgid, "resgid=%u"}, 1688 {Opt_resuid, "resuid=%u"}, 1689 {Opt_sb, "sb=%u"}, 1690 {Opt_err_cont, "errors=continue"}, 1691 {Opt_err_panic, "errors=panic"}, 1692 {Opt_err_ro, "errors=remount-ro"}, 1693 {Opt_nouid32, "nouid32"}, 1694 {Opt_debug, "debug"}, 1695 {Opt_removed, "oldalloc"}, 1696 {Opt_removed, "orlov"}, 1697 {Opt_user_xattr, "user_xattr"}, 1698 {Opt_nouser_xattr, "nouser_xattr"}, 1699 {Opt_acl, "acl"}, 1700 {Opt_noacl, "noacl"}, 1701 {Opt_noload, "norecovery"}, 1702 {Opt_noload, "noload"}, 1703 {Opt_removed, "nobh"}, 1704 {Opt_removed, "bh"}, 1705 {Opt_commit, "commit=%u"}, 1706 {Opt_min_batch_time, "min_batch_time=%u"}, 1707 {Opt_max_batch_time, "max_batch_time=%u"}, 1708 {Opt_journal_dev, "journal_dev=%u"}, 1709 {Opt_journal_path, "journal_path=%s"}, 1710 {Opt_journal_checksum, "journal_checksum"}, 1711 {Opt_nojournal_checksum, "nojournal_checksum"}, 1712 {Opt_journal_async_commit, "journal_async_commit"}, 1713 {Opt_abort, "abort"}, 1714 {Opt_data_journal, "data=journal"}, 1715 {Opt_data_ordered, "data=ordered"}, 1716 {Opt_data_writeback, "data=writeback"}, 1717 {Opt_data_err_abort, "data_err=abort"}, 1718 {Opt_data_err_ignore, "data_err=ignore"}, 1719 {Opt_offusrjquota, "usrjquota="}, 1720 {Opt_usrjquota, "usrjquota=%s"}, 1721 {Opt_offgrpjquota, "grpjquota="}, 1722 {Opt_grpjquota, "grpjquota=%s"}, 1723 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1724 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1725 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1726 {Opt_grpquota, "grpquota"}, 1727 {Opt_noquota, "noquota"}, 1728 {Opt_quota, "quota"}, 1729 {Opt_usrquota, "usrquota"}, 1730 {Opt_prjquota, "prjquota"}, 1731 {Opt_barrier, "barrier=%u"}, 1732 {Opt_barrier, "barrier"}, 1733 {Opt_nobarrier, "nobarrier"}, 1734 {Opt_i_version, "i_version"}, 1735 {Opt_dax, "dax"}, 1736 {Opt_dax_always, "dax=always"}, 1737 {Opt_dax_inode, "dax=inode"}, 1738 {Opt_dax_never, "dax=never"}, 1739 {Opt_stripe, "stripe=%u"}, 1740 {Opt_delalloc, "delalloc"}, 1741 {Opt_warn_on_error, "warn_on_error"}, 1742 {Opt_nowarn_on_error, "nowarn_on_error"}, 1743 {Opt_lazytime, "lazytime"}, 1744 {Opt_nolazytime, "nolazytime"}, 1745 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1746 {Opt_nodelalloc, "nodelalloc"}, 1747 {Opt_removed, "mblk_io_submit"}, 1748 {Opt_removed, "nomblk_io_submit"}, 1749 {Opt_block_validity, "block_validity"}, 1750 {Opt_noblock_validity, "noblock_validity"}, 1751 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1752 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1753 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1754 {Opt_auto_da_alloc, "auto_da_alloc"}, 1755 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1756 {Opt_dioread_nolock, "dioread_nolock"}, 1757 {Opt_dioread_lock, "nodioread_nolock"}, 1758 {Opt_dioread_lock, "dioread_lock"}, 1759 {Opt_discard, "discard"}, 1760 {Opt_nodiscard, "nodiscard"}, 1761 {Opt_init_itable, "init_itable=%u"}, 1762 {Opt_init_itable, "init_itable"}, 1763 {Opt_noinit_itable, "noinit_itable"}, 1764 #ifdef CONFIG_EXT4_DEBUG 1765 {Opt_fc_debug_force, "fc_debug_force"}, 1766 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1767 #endif 1768 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1769 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1770 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1771 {Opt_inlinecrypt, "inlinecrypt"}, 1772 {Opt_nombcache, "nombcache"}, 1773 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1774 {Opt_removed, "prefetch_block_bitmaps"}, 1775 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"}, 1776 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"}, 1777 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1778 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1779 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1780 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1781 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1782 {Opt_err, NULL}, 1783 }; 1784 1785 static ext4_fsblk_t get_sb_block(void **data) 1786 { 1787 ext4_fsblk_t sb_block; 1788 char *options = (char *) *data; 1789 1790 if (!options || strncmp(options, "sb=", 3) != 0) 1791 return 1; /* Default location */ 1792 1793 options += 3; 1794 /* TODO: use simple_strtoll with >32bit ext4 */ 1795 sb_block = simple_strtoul(options, &options, 0); 1796 if (*options && *options != ',') { 1797 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1798 (char *) *data); 1799 return 1; 1800 } 1801 if (*options == ',') 1802 options++; 1803 *data = (void *) options; 1804 1805 return sb_block; 1806 } 1807 1808 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1809 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1810 1811 static const char deprecated_msg[] = 1812 "Mount option \"%s\" will be removed by %s\n" 1813 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1814 1815 #ifdef CONFIG_QUOTA 1816 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1817 { 1818 struct ext4_sb_info *sbi = EXT4_SB(sb); 1819 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1820 int ret = -1; 1821 1822 if (sb_any_quota_loaded(sb) && !old_qname) { 1823 ext4_msg(sb, KERN_ERR, 1824 "Cannot change journaled " 1825 "quota options when quota turned on"); 1826 return -1; 1827 } 1828 if (ext4_has_feature_quota(sb)) { 1829 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1830 "ignored when QUOTA feature is enabled"); 1831 return 1; 1832 } 1833 qname = match_strdup(args); 1834 if (!qname) { 1835 ext4_msg(sb, KERN_ERR, 1836 "Not enough memory for storing quotafile name"); 1837 return -1; 1838 } 1839 if (old_qname) { 1840 if (strcmp(old_qname, qname) == 0) 1841 ret = 1; 1842 else 1843 ext4_msg(sb, KERN_ERR, 1844 "%s quota file already specified", 1845 QTYPE2NAME(qtype)); 1846 goto errout; 1847 } 1848 if (strchr(qname, '/')) { 1849 ext4_msg(sb, KERN_ERR, 1850 "quotafile must be on filesystem root"); 1851 goto errout; 1852 } 1853 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1854 set_opt(sb, QUOTA); 1855 return 1; 1856 errout: 1857 kfree(qname); 1858 return ret; 1859 } 1860 1861 static int clear_qf_name(struct super_block *sb, int qtype) 1862 { 1863 1864 struct ext4_sb_info *sbi = EXT4_SB(sb); 1865 char *old_qname = get_qf_name(sb, sbi, qtype); 1866 1867 if (sb_any_quota_loaded(sb) && old_qname) { 1868 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1869 " when quota turned on"); 1870 return -1; 1871 } 1872 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1873 synchronize_rcu(); 1874 kfree(old_qname); 1875 return 1; 1876 } 1877 #endif 1878 1879 #define MOPT_SET 0x0001 1880 #define MOPT_CLEAR 0x0002 1881 #define MOPT_NOSUPPORT 0x0004 1882 #define MOPT_EXPLICIT 0x0008 1883 #define MOPT_CLEAR_ERR 0x0010 1884 #define MOPT_GTE0 0x0020 1885 #ifdef CONFIG_QUOTA 1886 #define MOPT_Q 0 1887 #define MOPT_QFMT 0x0040 1888 #else 1889 #define MOPT_Q MOPT_NOSUPPORT 1890 #define MOPT_QFMT MOPT_NOSUPPORT 1891 #endif 1892 #define MOPT_DATAJ 0x0080 1893 #define MOPT_NO_EXT2 0x0100 1894 #define MOPT_NO_EXT3 0x0200 1895 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1896 #define MOPT_STRING 0x0400 1897 #define MOPT_SKIP 0x0800 1898 #define MOPT_2 0x1000 1899 1900 static const struct mount_opts { 1901 int token; 1902 int mount_opt; 1903 int flags; 1904 } ext4_mount_opts[] = { 1905 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1906 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1907 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1908 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1909 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1910 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1911 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1912 MOPT_EXT4_ONLY | MOPT_SET}, 1913 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1914 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1915 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1916 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1917 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1918 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1919 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1920 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1921 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1922 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1923 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1924 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1925 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1926 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1927 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1928 EXT4_MOUNT_JOURNAL_CHECKSUM), 1929 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1930 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1931 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1932 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1933 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1934 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1935 MOPT_NO_EXT2}, 1936 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1937 MOPT_NO_EXT2}, 1938 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1939 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1940 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1941 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1942 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1943 {Opt_commit, 0, MOPT_GTE0}, 1944 {Opt_max_batch_time, 0, MOPT_GTE0}, 1945 {Opt_min_batch_time, 0, MOPT_GTE0}, 1946 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1947 {Opt_init_itable, 0, MOPT_GTE0}, 1948 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1949 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1950 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1951 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1952 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1953 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1954 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1955 {Opt_stripe, 0, MOPT_GTE0}, 1956 {Opt_resuid, 0, MOPT_GTE0}, 1957 {Opt_resgid, 0, MOPT_GTE0}, 1958 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1959 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1960 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1961 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1962 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1963 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1964 MOPT_NO_EXT2 | MOPT_DATAJ}, 1965 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1966 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1967 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1968 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1969 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1970 #else 1971 {Opt_acl, 0, MOPT_NOSUPPORT}, 1972 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1973 #endif 1974 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1975 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1976 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1977 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1978 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1979 MOPT_SET | MOPT_Q}, 1980 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1981 MOPT_SET | MOPT_Q}, 1982 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1983 MOPT_SET | MOPT_Q}, 1984 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1985 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1986 MOPT_CLEAR | MOPT_Q}, 1987 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 1988 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 1989 {Opt_offusrjquota, 0, MOPT_Q}, 1990 {Opt_offgrpjquota, 0, MOPT_Q}, 1991 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1992 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1993 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1994 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1995 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 1996 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1997 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 1998 MOPT_SET}, 1999 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0}, 2000 #ifdef CONFIG_EXT4_DEBUG 2001 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2002 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2003 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2004 #endif 2005 {Opt_err, 0, 0} 2006 }; 2007 2008 #ifdef CONFIG_UNICODE 2009 static const struct ext4_sb_encodings { 2010 __u16 magic; 2011 char *name; 2012 char *version; 2013 } ext4_sb_encoding_map[] = { 2014 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2015 }; 2016 2017 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2018 const struct ext4_sb_encodings **encoding, 2019 __u16 *flags) 2020 { 2021 __u16 magic = le16_to_cpu(es->s_encoding); 2022 int i; 2023 2024 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2025 if (magic == ext4_sb_encoding_map[i].magic) 2026 break; 2027 2028 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2029 return -EINVAL; 2030 2031 *encoding = &ext4_sb_encoding_map[i]; 2032 *flags = le16_to_cpu(es->s_encoding_flags); 2033 2034 return 0; 2035 } 2036 #endif 2037 2038 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2039 const char *opt, 2040 const substring_t *arg, 2041 bool is_remount) 2042 { 2043 #ifdef CONFIG_FS_ENCRYPTION 2044 struct ext4_sb_info *sbi = EXT4_SB(sb); 2045 int err; 2046 2047 /* 2048 * This mount option is just for testing, and it's not worthwhile to 2049 * implement the extra complexity (e.g. RCU protection) that would be 2050 * needed to allow it to be set or changed during remount. We do allow 2051 * it to be specified during remount, but only if there is no change. 2052 */ 2053 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2054 ext4_msg(sb, KERN_WARNING, 2055 "Can't set test_dummy_encryption on remount"); 2056 return -1; 2057 } 2058 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2059 &sbi->s_dummy_enc_policy); 2060 if (err) { 2061 if (err == -EEXIST) 2062 ext4_msg(sb, KERN_WARNING, 2063 "Can't change test_dummy_encryption on remount"); 2064 else if (err == -EINVAL) 2065 ext4_msg(sb, KERN_WARNING, 2066 "Value of option \"%s\" is unrecognized", opt); 2067 else 2068 ext4_msg(sb, KERN_WARNING, 2069 "Error processing option \"%s\" [%d]", 2070 opt, err); 2071 return -1; 2072 } 2073 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2074 #else 2075 ext4_msg(sb, KERN_WARNING, 2076 "Test dummy encryption mount option ignored"); 2077 #endif 2078 return 1; 2079 } 2080 2081 struct ext4_parsed_options { 2082 unsigned long journal_devnum; 2083 unsigned int journal_ioprio; 2084 int mb_optimize_scan; 2085 }; 2086 2087 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2088 substring_t *args, struct ext4_parsed_options *parsed_opts, 2089 int is_remount) 2090 { 2091 struct ext4_sb_info *sbi = EXT4_SB(sb); 2092 const struct mount_opts *m; 2093 kuid_t uid; 2094 kgid_t gid; 2095 int arg = 0; 2096 2097 #ifdef CONFIG_QUOTA 2098 if (token == Opt_usrjquota) 2099 return set_qf_name(sb, USRQUOTA, &args[0]); 2100 else if (token == Opt_grpjquota) 2101 return set_qf_name(sb, GRPQUOTA, &args[0]); 2102 else if (token == Opt_offusrjquota) 2103 return clear_qf_name(sb, USRQUOTA); 2104 else if (token == Opt_offgrpjquota) 2105 return clear_qf_name(sb, GRPQUOTA); 2106 #endif 2107 switch (token) { 2108 case Opt_noacl: 2109 case Opt_nouser_xattr: 2110 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2111 break; 2112 case Opt_sb: 2113 return 1; /* handled by get_sb_block() */ 2114 case Opt_removed: 2115 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2116 return 1; 2117 case Opt_abort: 2118 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2119 return 1; 2120 case Opt_i_version: 2121 sb->s_flags |= SB_I_VERSION; 2122 return 1; 2123 case Opt_lazytime: 2124 sb->s_flags |= SB_LAZYTIME; 2125 return 1; 2126 case Opt_nolazytime: 2127 sb->s_flags &= ~SB_LAZYTIME; 2128 return 1; 2129 case Opt_inlinecrypt: 2130 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2131 sb->s_flags |= SB_INLINECRYPT; 2132 #else 2133 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2134 #endif 2135 return 1; 2136 } 2137 2138 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2139 if (token == m->token) 2140 break; 2141 2142 if (m->token == Opt_err) { 2143 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2144 "or missing value", opt); 2145 return -1; 2146 } 2147 2148 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2149 ext4_msg(sb, KERN_ERR, 2150 "Mount option \"%s\" incompatible with ext2", opt); 2151 return -1; 2152 } 2153 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2154 ext4_msg(sb, KERN_ERR, 2155 "Mount option \"%s\" incompatible with ext3", opt); 2156 return -1; 2157 } 2158 2159 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2160 return -1; 2161 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2162 return -1; 2163 if (m->flags & MOPT_EXPLICIT) { 2164 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2165 set_opt2(sb, EXPLICIT_DELALLOC); 2166 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2167 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2168 } else 2169 return -1; 2170 } 2171 if (m->flags & MOPT_CLEAR_ERR) 2172 clear_opt(sb, ERRORS_MASK); 2173 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2174 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2175 "options when quota turned on"); 2176 return -1; 2177 } 2178 2179 if (m->flags & MOPT_NOSUPPORT) { 2180 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2181 } else if (token == Opt_commit) { 2182 if (arg == 0) 2183 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2184 else if (arg > INT_MAX / HZ) { 2185 ext4_msg(sb, KERN_ERR, 2186 "Invalid commit interval %d, " 2187 "must be smaller than %d", 2188 arg, INT_MAX / HZ); 2189 return -1; 2190 } 2191 sbi->s_commit_interval = HZ * arg; 2192 } else if (token == Opt_debug_want_extra_isize) { 2193 if ((arg & 1) || 2194 (arg < 4) || 2195 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2196 ext4_msg(sb, KERN_ERR, 2197 "Invalid want_extra_isize %d", arg); 2198 return -1; 2199 } 2200 sbi->s_want_extra_isize = arg; 2201 } else if (token == Opt_max_batch_time) { 2202 sbi->s_max_batch_time = arg; 2203 } else if (token == Opt_min_batch_time) { 2204 sbi->s_min_batch_time = arg; 2205 } else if (token == Opt_inode_readahead_blks) { 2206 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2207 ext4_msg(sb, KERN_ERR, 2208 "EXT4-fs: inode_readahead_blks must be " 2209 "0 or a power of 2 smaller than 2^31"); 2210 return -1; 2211 } 2212 sbi->s_inode_readahead_blks = arg; 2213 } else if (token == Opt_init_itable) { 2214 set_opt(sb, INIT_INODE_TABLE); 2215 if (!args->from) 2216 arg = EXT4_DEF_LI_WAIT_MULT; 2217 sbi->s_li_wait_mult = arg; 2218 } else if (token == Opt_max_dir_size_kb) { 2219 sbi->s_max_dir_size_kb = arg; 2220 #ifdef CONFIG_EXT4_DEBUG 2221 } else if (token == Opt_fc_debug_max_replay) { 2222 sbi->s_fc_debug_max_replay = arg; 2223 #endif 2224 } else if (token == Opt_stripe) { 2225 sbi->s_stripe = arg; 2226 } else if (token == Opt_resuid) { 2227 uid = make_kuid(current_user_ns(), arg); 2228 if (!uid_valid(uid)) { 2229 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2230 return -1; 2231 } 2232 sbi->s_resuid = uid; 2233 } else if (token == Opt_resgid) { 2234 gid = make_kgid(current_user_ns(), arg); 2235 if (!gid_valid(gid)) { 2236 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2237 return -1; 2238 } 2239 sbi->s_resgid = gid; 2240 } else if (token == Opt_journal_dev) { 2241 if (is_remount) { 2242 ext4_msg(sb, KERN_ERR, 2243 "Cannot specify journal on remount"); 2244 return -1; 2245 } 2246 parsed_opts->journal_devnum = arg; 2247 } else if (token == Opt_journal_path) { 2248 char *journal_path; 2249 struct inode *journal_inode; 2250 struct path path; 2251 int error; 2252 2253 if (is_remount) { 2254 ext4_msg(sb, KERN_ERR, 2255 "Cannot specify journal on remount"); 2256 return -1; 2257 } 2258 journal_path = match_strdup(&args[0]); 2259 if (!journal_path) { 2260 ext4_msg(sb, KERN_ERR, "error: could not dup " 2261 "journal device string"); 2262 return -1; 2263 } 2264 2265 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2266 if (error) { 2267 ext4_msg(sb, KERN_ERR, "error: could not find " 2268 "journal device path: error %d", error); 2269 kfree(journal_path); 2270 return -1; 2271 } 2272 2273 journal_inode = d_inode(path.dentry); 2274 if (!S_ISBLK(journal_inode->i_mode)) { 2275 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2276 "is not a block device", journal_path); 2277 path_put(&path); 2278 kfree(journal_path); 2279 return -1; 2280 } 2281 2282 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2283 path_put(&path); 2284 kfree(journal_path); 2285 } else if (token == Opt_journal_ioprio) { 2286 if (arg > 7) { 2287 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2288 " (must be 0-7)"); 2289 return -1; 2290 } 2291 parsed_opts->journal_ioprio = 2292 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2293 } else if (token == Opt_test_dummy_encryption) { 2294 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2295 is_remount); 2296 } else if (m->flags & MOPT_DATAJ) { 2297 if (is_remount) { 2298 if (!sbi->s_journal) 2299 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2300 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2301 ext4_msg(sb, KERN_ERR, 2302 "Cannot change data mode on remount"); 2303 return -1; 2304 } 2305 } else { 2306 clear_opt(sb, DATA_FLAGS); 2307 sbi->s_mount_opt |= m->mount_opt; 2308 } 2309 #ifdef CONFIG_QUOTA 2310 } else if (m->flags & MOPT_QFMT) { 2311 if (sb_any_quota_loaded(sb) && 2312 sbi->s_jquota_fmt != m->mount_opt) { 2313 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2314 "quota options when quota turned on"); 2315 return -1; 2316 } 2317 if (ext4_has_feature_quota(sb)) { 2318 ext4_msg(sb, KERN_INFO, 2319 "Quota format mount options ignored " 2320 "when QUOTA feature is enabled"); 2321 return 1; 2322 } 2323 sbi->s_jquota_fmt = m->mount_opt; 2324 #endif 2325 } else if (token == Opt_dax || token == Opt_dax_always || 2326 token == Opt_dax_inode || token == Opt_dax_never) { 2327 #ifdef CONFIG_FS_DAX 2328 switch (token) { 2329 case Opt_dax: 2330 case Opt_dax_always: 2331 if (is_remount && 2332 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2333 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2334 fail_dax_change_remount: 2335 ext4_msg(sb, KERN_ERR, "can't change " 2336 "dax mount option while remounting"); 2337 return -1; 2338 } 2339 if (is_remount && 2340 (test_opt(sb, DATA_FLAGS) == 2341 EXT4_MOUNT_JOURNAL_DATA)) { 2342 ext4_msg(sb, KERN_ERR, "can't mount with " 2343 "both data=journal and dax"); 2344 return -1; 2345 } 2346 ext4_msg(sb, KERN_WARNING, 2347 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2348 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2349 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2350 break; 2351 case Opt_dax_never: 2352 if (is_remount && 2353 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2354 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2355 goto fail_dax_change_remount; 2356 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2357 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2358 break; 2359 case Opt_dax_inode: 2360 if (is_remount && 2361 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2362 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2363 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2364 goto fail_dax_change_remount; 2365 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2366 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2367 /* Strictly for printing options */ 2368 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2369 break; 2370 } 2371 #else 2372 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2373 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2374 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2375 return -1; 2376 #endif 2377 } else if (token == Opt_data_err_abort) { 2378 sbi->s_mount_opt |= m->mount_opt; 2379 } else if (token == Opt_data_err_ignore) { 2380 sbi->s_mount_opt &= ~m->mount_opt; 2381 } else if (token == Opt_mb_optimize_scan) { 2382 if (arg != 0 && arg != 1) { 2383 ext4_msg(sb, KERN_WARNING, 2384 "mb_optimize_scan should be set to 0 or 1."); 2385 return -1; 2386 } 2387 parsed_opts->mb_optimize_scan = arg; 2388 } else { 2389 if (!args->from) 2390 arg = 1; 2391 if (m->flags & MOPT_CLEAR) 2392 arg = !arg; 2393 else if (unlikely(!(m->flags & MOPT_SET))) { 2394 ext4_msg(sb, KERN_WARNING, 2395 "buggy handling of option %s", opt); 2396 WARN_ON(1); 2397 return -1; 2398 } 2399 if (m->flags & MOPT_2) { 2400 if (arg != 0) 2401 sbi->s_mount_opt2 |= m->mount_opt; 2402 else 2403 sbi->s_mount_opt2 &= ~m->mount_opt; 2404 } else { 2405 if (arg != 0) 2406 sbi->s_mount_opt |= m->mount_opt; 2407 else 2408 sbi->s_mount_opt &= ~m->mount_opt; 2409 } 2410 } 2411 return 1; 2412 } 2413 2414 static int parse_options(char *options, struct super_block *sb, 2415 struct ext4_parsed_options *ret_opts, 2416 int is_remount) 2417 { 2418 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2419 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2420 substring_t args[MAX_OPT_ARGS]; 2421 int token; 2422 2423 if (!options) 2424 return 1; 2425 2426 while ((p = strsep(&options, ",")) != NULL) { 2427 if (!*p) 2428 continue; 2429 /* 2430 * Initialize args struct so we know whether arg was 2431 * found; some options take optional arguments. 2432 */ 2433 args[0].to = args[0].from = NULL; 2434 token = match_token(p, tokens, args); 2435 if (handle_mount_opt(sb, p, token, args, ret_opts, 2436 is_remount) < 0) 2437 return 0; 2438 } 2439 #ifdef CONFIG_QUOTA 2440 /* 2441 * We do the test below only for project quotas. 'usrquota' and 2442 * 'grpquota' mount options are allowed even without quota feature 2443 * to support legacy quotas in quota files. 2444 */ 2445 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2446 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2447 "Cannot enable project quota enforcement."); 2448 return 0; 2449 } 2450 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2451 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2452 if (usr_qf_name || grp_qf_name) { 2453 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2454 clear_opt(sb, USRQUOTA); 2455 2456 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2457 clear_opt(sb, GRPQUOTA); 2458 2459 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2460 ext4_msg(sb, KERN_ERR, "old and new quota " 2461 "format mixing"); 2462 return 0; 2463 } 2464 2465 if (!sbi->s_jquota_fmt) { 2466 ext4_msg(sb, KERN_ERR, "journaled quota format " 2467 "not specified"); 2468 return 0; 2469 } 2470 } 2471 #endif 2472 if (test_opt(sb, DIOREAD_NOLOCK)) { 2473 int blocksize = 2474 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2475 if (blocksize < PAGE_SIZE) 2476 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2477 "experimental mount option 'dioread_nolock' " 2478 "for blocksize < PAGE_SIZE"); 2479 } 2480 return 1; 2481 } 2482 2483 static inline void ext4_show_quota_options(struct seq_file *seq, 2484 struct super_block *sb) 2485 { 2486 #if defined(CONFIG_QUOTA) 2487 struct ext4_sb_info *sbi = EXT4_SB(sb); 2488 char *usr_qf_name, *grp_qf_name; 2489 2490 if (sbi->s_jquota_fmt) { 2491 char *fmtname = ""; 2492 2493 switch (sbi->s_jquota_fmt) { 2494 case QFMT_VFS_OLD: 2495 fmtname = "vfsold"; 2496 break; 2497 case QFMT_VFS_V0: 2498 fmtname = "vfsv0"; 2499 break; 2500 case QFMT_VFS_V1: 2501 fmtname = "vfsv1"; 2502 break; 2503 } 2504 seq_printf(seq, ",jqfmt=%s", fmtname); 2505 } 2506 2507 rcu_read_lock(); 2508 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2509 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2510 if (usr_qf_name) 2511 seq_show_option(seq, "usrjquota", usr_qf_name); 2512 if (grp_qf_name) 2513 seq_show_option(seq, "grpjquota", grp_qf_name); 2514 rcu_read_unlock(); 2515 #endif 2516 } 2517 2518 static const char *token2str(int token) 2519 { 2520 const struct match_token *t; 2521 2522 for (t = tokens; t->token != Opt_err; t++) 2523 if (t->token == token && !strchr(t->pattern, '=')) 2524 break; 2525 return t->pattern; 2526 } 2527 2528 /* 2529 * Show an option if 2530 * - it's set to a non-default value OR 2531 * - if the per-sb default is different from the global default 2532 */ 2533 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2534 int nodefs) 2535 { 2536 struct ext4_sb_info *sbi = EXT4_SB(sb); 2537 struct ext4_super_block *es = sbi->s_es; 2538 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2539 const struct mount_opts *m; 2540 char sep = nodefs ? '\n' : ','; 2541 2542 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2543 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2544 2545 if (sbi->s_sb_block != 1) 2546 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2547 2548 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2549 int want_set = m->flags & MOPT_SET; 2550 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2551 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2552 continue; 2553 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2554 continue; /* skip if same as the default */ 2555 if ((want_set && 2556 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2557 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2558 continue; /* select Opt_noFoo vs Opt_Foo */ 2559 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2560 } 2561 2562 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2563 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2564 SEQ_OPTS_PRINT("resuid=%u", 2565 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2566 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2567 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2568 SEQ_OPTS_PRINT("resgid=%u", 2569 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2570 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2571 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2572 SEQ_OPTS_PUTS("errors=remount-ro"); 2573 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2574 SEQ_OPTS_PUTS("errors=continue"); 2575 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2576 SEQ_OPTS_PUTS("errors=panic"); 2577 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2578 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2579 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2580 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2581 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2582 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2583 if (sb->s_flags & SB_I_VERSION) 2584 SEQ_OPTS_PUTS("i_version"); 2585 if (nodefs || sbi->s_stripe) 2586 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2587 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2588 (sbi->s_mount_opt ^ def_mount_opt)) { 2589 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2590 SEQ_OPTS_PUTS("data=journal"); 2591 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2592 SEQ_OPTS_PUTS("data=ordered"); 2593 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2594 SEQ_OPTS_PUTS("data=writeback"); 2595 } 2596 if (nodefs || 2597 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2598 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2599 sbi->s_inode_readahead_blks); 2600 2601 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2602 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2603 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2604 if (nodefs || sbi->s_max_dir_size_kb) 2605 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2606 if (test_opt(sb, DATA_ERR_ABORT)) 2607 SEQ_OPTS_PUTS("data_err=abort"); 2608 2609 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2610 2611 if (sb->s_flags & SB_INLINECRYPT) 2612 SEQ_OPTS_PUTS("inlinecrypt"); 2613 2614 if (test_opt(sb, DAX_ALWAYS)) { 2615 if (IS_EXT2_SB(sb)) 2616 SEQ_OPTS_PUTS("dax"); 2617 else 2618 SEQ_OPTS_PUTS("dax=always"); 2619 } else if (test_opt2(sb, DAX_NEVER)) { 2620 SEQ_OPTS_PUTS("dax=never"); 2621 } else if (test_opt2(sb, DAX_INODE)) { 2622 SEQ_OPTS_PUTS("dax=inode"); 2623 } 2624 ext4_show_quota_options(seq, sb); 2625 return 0; 2626 } 2627 2628 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2629 { 2630 return _ext4_show_options(seq, root->d_sb, 0); 2631 } 2632 2633 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2634 { 2635 struct super_block *sb = seq->private; 2636 int rc; 2637 2638 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2639 rc = _ext4_show_options(seq, sb, 1); 2640 seq_puts(seq, "\n"); 2641 return rc; 2642 } 2643 2644 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2645 int read_only) 2646 { 2647 struct ext4_sb_info *sbi = EXT4_SB(sb); 2648 int err = 0; 2649 2650 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2651 ext4_msg(sb, KERN_ERR, "revision level too high, " 2652 "forcing read-only mode"); 2653 err = -EROFS; 2654 goto done; 2655 } 2656 if (read_only) 2657 goto done; 2658 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2659 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2660 "running e2fsck is recommended"); 2661 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2662 ext4_msg(sb, KERN_WARNING, 2663 "warning: mounting fs with errors, " 2664 "running e2fsck is recommended"); 2665 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2666 le16_to_cpu(es->s_mnt_count) >= 2667 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2668 ext4_msg(sb, KERN_WARNING, 2669 "warning: maximal mount count reached, " 2670 "running e2fsck is recommended"); 2671 else if (le32_to_cpu(es->s_checkinterval) && 2672 (ext4_get_tstamp(es, s_lastcheck) + 2673 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2674 ext4_msg(sb, KERN_WARNING, 2675 "warning: checktime reached, " 2676 "running e2fsck is recommended"); 2677 if (!sbi->s_journal) 2678 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2679 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2680 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2681 le16_add_cpu(&es->s_mnt_count, 1); 2682 ext4_update_tstamp(es, s_mtime); 2683 if (sbi->s_journal) 2684 ext4_set_feature_journal_needs_recovery(sb); 2685 2686 err = ext4_commit_super(sb); 2687 done: 2688 if (test_opt(sb, DEBUG)) 2689 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2690 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2691 sb->s_blocksize, 2692 sbi->s_groups_count, 2693 EXT4_BLOCKS_PER_GROUP(sb), 2694 EXT4_INODES_PER_GROUP(sb), 2695 sbi->s_mount_opt, sbi->s_mount_opt2); 2696 2697 cleancache_init_fs(sb); 2698 return err; 2699 } 2700 2701 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2702 { 2703 struct ext4_sb_info *sbi = EXT4_SB(sb); 2704 struct flex_groups **old_groups, **new_groups; 2705 int size, i, j; 2706 2707 if (!sbi->s_log_groups_per_flex) 2708 return 0; 2709 2710 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2711 if (size <= sbi->s_flex_groups_allocated) 2712 return 0; 2713 2714 new_groups = kvzalloc(roundup_pow_of_two(size * 2715 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2716 if (!new_groups) { 2717 ext4_msg(sb, KERN_ERR, 2718 "not enough memory for %d flex group pointers", size); 2719 return -ENOMEM; 2720 } 2721 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2722 new_groups[i] = kvzalloc(roundup_pow_of_two( 2723 sizeof(struct flex_groups)), 2724 GFP_KERNEL); 2725 if (!new_groups[i]) { 2726 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2727 kvfree(new_groups[j]); 2728 kvfree(new_groups); 2729 ext4_msg(sb, KERN_ERR, 2730 "not enough memory for %d flex groups", size); 2731 return -ENOMEM; 2732 } 2733 } 2734 rcu_read_lock(); 2735 old_groups = rcu_dereference(sbi->s_flex_groups); 2736 if (old_groups) 2737 memcpy(new_groups, old_groups, 2738 (sbi->s_flex_groups_allocated * 2739 sizeof(struct flex_groups *))); 2740 rcu_read_unlock(); 2741 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2742 sbi->s_flex_groups_allocated = size; 2743 if (old_groups) 2744 ext4_kvfree_array_rcu(old_groups); 2745 return 0; 2746 } 2747 2748 static int ext4_fill_flex_info(struct super_block *sb) 2749 { 2750 struct ext4_sb_info *sbi = EXT4_SB(sb); 2751 struct ext4_group_desc *gdp = NULL; 2752 struct flex_groups *fg; 2753 ext4_group_t flex_group; 2754 int i, err; 2755 2756 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2757 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2758 sbi->s_log_groups_per_flex = 0; 2759 return 1; 2760 } 2761 2762 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2763 if (err) 2764 goto failed; 2765 2766 for (i = 0; i < sbi->s_groups_count; i++) { 2767 gdp = ext4_get_group_desc(sb, i, NULL); 2768 2769 flex_group = ext4_flex_group(sbi, i); 2770 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2771 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2772 atomic64_add(ext4_free_group_clusters(sb, gdp), 2773 &fg->free_clusters); 2774 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2775 } 2776 2777 return 1; 2778 failed: 2779 return 0; 2780 } 2781 2782 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2783 struct ext4_group_desc *gdp) 2784 { 2785 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2786 __u16 crc = 0; 2787 __le32 le_group = cpu_to_le32(block_group); 2788 struct ext4_sb_info *sbi = EXT4_SB(sb); 2789 2790 if (ext4_has_metadata_csum(sbi->s_sb)) { 2791 /* Use new metadata_csum algorithm */ 2792 __u32 csum32; 2793 __u16 dummy_csum = 0; 2794 2795 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2796 sizeof(le_group)); 2797 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2798 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2799 sizeof(dummy_csum)); 2800 offset += sizeof(dummy_csum); 2801 if (offset < sbi->s_desc_size) 2802 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2803 sbi->s_desc_size - offset); 2804 2805 crc = csum32 & 0xFFFF; 2806 goto out; 2807 } 2808 2809 /* old crc16 code */ 2810 if (!ext4_has_feature_gdt_csum(sb)) 2811 return 0; 2812 2813 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2814 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2815 crc = crc16(crc, (__u8 *)gdp, offset); 2816 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2817 /* for checksum of struct ext4_group_desc do the rest...*/ 2818 if (ext4_has_feature_64bit(sb) && 2819 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2820 crc = crc16(crc, (__u8 *)gdp + offset, 2821 le16_to_cpu(sbi->s_es->s_desc_size) - 2822 offset); 2823 2824 out: 2825 return cpu_to_le16(crc); 2826 } 2827 2828 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2829 struct ext4_group_desc *gdp) 2830 { 2831 if (ext4_has_group_desc_csum(sb) && 2832 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2833 return 0; 2834 2835 return 1; 2836 } 2837 2838 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2839 struct ext4_group_desc *gdp) 2840 { 2841 if (!ext4_has_group_desc_csum(sb)) 2842 return; 2843 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2844 } 2845 2846 /* Called at mount-time, super-block is locked */ 2847 static int ext4_check_descriptors(struct super_block *sb, 2848 ext4_fsblk_t sb_block, 2849 ext4_group_t *first_not_zeroed) 2850 { 2851 struct ext4_sb_info *sbi = EXT4_SB(sb); 2852 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2853 ext4_fsblk_t last_block; 2854 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2855 ext4_fsblk_t block_bitmap; 2856 ext4_fsblk_t inode_bitmap; 2857 ext4_fsblk_t inode_table; 2858 int flexbg_flag = 0; 2859 ext4_group_t i, grp = sbi->s_groups_count; 2860 2861 if (ext4_has_feature_flex_bg(sb)) 2862 flexbg_flag = 1; 2863 2864 ext4_debug("Checking group descriptors"); 2865 2866 for (i = 0; i < sbi->s_groups_count; i++) { 2867 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2868 2869 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2870 last_block = ext4_blocks_count(sbi->s_es) - 1; 2871 else 2872 last_block = first_block + 2873 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2874 2875 if ((grp == sbi->s_groups_count) && 2876 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2877 grp = i; 2878 2879 block_bitmap = ext4_block_bitmap(sb, gdp); 2880 if (block_bitmap == sb_block) { 2881 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2882 "Block bitmap for group %u overlaps " 2883 "superblock", i); 2884 if (!sb_rdonly(sb)) 2885 return 0; 2886 } 2887 if (block_bitmap >= sb_block + 1 && 2888 block_bitmap <= last_bg_block) { 2889 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2890 "Block bitmap for group %u overlaps " 2891 "block group descriptors", i); 2892 if (!sb_rdonly(sb)) 2893 return 0; 2894 } 2895 if (block_bitmap < first_block || block_bitmap > last_block) { 2896 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2897 "Block bitmap for group %u not in group " 2898 "(block %llu)!", i, block_bitmap); 2899 return 0; 2900 } 2901 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2902 if (inode_bitmap == sb_block) { 2903 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2904 "Inode bitmap for group %u overlaps " 2905 "superblock", i); 2906 if (!sb_rdonly(sb)) 2907 return 0; 2908 } 2909 if (inode_bitmap >= sb_block + 1 && 2910 inode_bitmap <= last_bg_block) { 2911 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2912 "Inode bitmap for group %u overlaps " 2913 "block group descriptors", i); 2914 if (!sb_rdonly(sb)) 2915 return 0; 2916 } 2917 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2918 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2919 "Inode bitmap for group %u not in group " 2920 "(block %llu)!", i, inode_bitmap); 2921 return 0; 2922 } 2923 inode_table = ext4_inode_table(sb, gdp); 2924 if (inode_table == sb_block) { 2925 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2926 "Inode table for group %u overlaps " 2927 "superblock", i); 2928 if (!sb_rdonly(sb)) 2929 return 0; 2930 } 2931 if (inode_table >= sb_block + 1 && 2932 inode_table <= last_bg_block) { 2933 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2934 "Inode table for group %u overlaps " 2935 "block group descriptors", i); 2936 if (!sb_rdonly(sb)) 2937 return 0; 2938 } 2939 if (inode_table < first_block || 2940 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2941 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2942 "Inode table for group %u not in group " 2943 "(block %llu)!", i, inode_table); 2944 return 0; 2945 } 2946 ext4_lock_group(sb, i); 2947 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2948 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2949 "Checksum for group %u failed (%u!=%u)", 2950 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2951 gdp)), le16_to_cpu(gdp->bg_checksum)); 2952 if (!sb_rdonly(sb)) { 2953 ext4_unlock_group(sb, i); 2954 return 0; 2955 } 2956 } 2957 ext4_unlock_group(sb, i); 2958 if (!flexbg_flag) 2959 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2960 } 2961 if (NULL != first_not_zeroed) 2962 *first_not_zeroed = grp; 2963 return 1; 2964 } 2965 2966 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2967 * the superblock) which were deleted from all directories, but held open by 2968 * a process at the time of a crash. We walk the list and try to delete these 2969 * inodes at recovery time (only with a read-write filesystem). 2970 * 2971 * In order to keep the orphan inode chain consistent during traversal (in 2972 * case of crash during recovery), we link each inode into the superblock 2973 * orphan list_head and handle it the same way as an inode deletion during 2974 * normal operation (which journals the operations for us). 2975 * 2976 * We only do an iget() and an iput() on each inode, which is very safe if we 2977 * accidentally point at an in-use or already deleted inode. The worst that 2978 * can happen in this case is that we get a "bit already cleared" message from 2979 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2980 * e2fsck was run on this filesystem, and it must have already done the orphan 2981 * inode cleanup for us, so we can safely abort without any further action. 2982 */ 2983 static void ext4_orphan_cleanup(struct super_block *sb, 2984 struct ext4_super_block *es) 2985 { 2986 unsigned int s_flags = sb->s_flags; 2987 int ret, nr_orphans = 0, nr_truncates = 0; 2988 #ifdef CONFIG_QUOTA 2989 int quota_update = 0; 2990 int i; 2991 #endif 2992 if (!es->s_last_orphan) { 2993 jbd_debug(4, "no orphan inodes to clean up\n"); 2994 return; 2995 } 2996 2997 if (bdev_read_only(sb->s_bdev)) { 2998 ext4_msg(sb, KERN_ERR, "write access " 2999 "unavailable, skipping orphan cleanup"); 3000 return; 3001 } 3002 3003 /* Check if feature set would not allow a r/w mount */ 3004 if (!ext4_feature_set_ok(sb, 0)) { 3005 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 3006 "unknown ROCOMPAT features"); 3007 return; 3008 } 3009 3010 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 3011 /* don't clear list on RO mount w/ errors */ 3012 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 3013 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 3014 "clearing orphan list.\n"); 3015 es->s_last_orphan = 0; 3016 } 3017 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 3018 return; 3019 } 3020 3021 if (s_flags & SB_RDONLY) { 3022 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 3023 sb->s_flags &= ~SB_RDONLY; 3024 } 3025 #ifdef CONFIG_QUOTA 3026 /* 3027 * Turn on quotas which were not enabled for read-only mounts if 3028 * filesystem has quota feature, so that they are updated correctly. 3029 */ 3030 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 3031 int ret = ext4_enable_quotas(sb); 3032 3033 if (!ret) 3034 quota_update = 1; 3035 else 3036 ext4_msg(sb, KERN_ERR, 3037 "Cannot turn on quotas: error %d", ret); 3038 } 3039 3040 /* Turn on journaled quotas used for old sytle */ 3041 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3042 if (EXT4_SB(sb)->s_qf_names[i]) { 3043 int ret = ext4_quota_on_mount(sb, i); 3044 3045 if (!ret) 3046 quota_update = 1; 3047 else 3048 ext4_msg(sb, KERN_ERR, 3049 "Cannot turn on journaled " 3050 "quota: type %d: error %d", i, ret); 3051 } 3052 } 3053 #endif 3054 3055 while (es->s_last_orphan) { 3056 struct inode *inode; 3057 3058 /* 3059 * We may have encountered an error during cleanup; if 3060 * so, skip the rest. 3061 */ 3062 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 3063 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 3064 es->s_last_orphan = 0; 3065 break; 3066 } 3067 3068 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 3069 if (IS_ERR(inode)) { 3070 es->s_last_orphan = 0; 3071 break; 3072 } 3073 3074 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 3075 dquot_initialize(inode); 3076 if (inode->i_nlink) { 3077 if (test_opt(sb, DEBUG)) 3078 ext4_msg(sb, KERN_DEBUG, 3079 "%s: truncating inode %lu to %lld bytes", 3080 __func__, inode->i_ino, inode->i_size); 3081 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 3082 inode->i_ino, inode->i_size); 3083 inode_lock(inode); 3084 truncate_inode_pages(inode->i_mapping, inode->i_size); 3085 ret = ext4_truncate(inode); 3086 if (ret) { 3087 /* 3088 * We need to clean up the in-core orphan list 3089 * manually if ext4_truncate() failed to get a 3090 * transaction handle. 3091 */ 3092 ext4_orphan_del(NULL, inode); 3093 ext4_std_error(inode->i_sb, ret); 3094 } 3095 inode_unlock(inode); 3096 nr_truncates++; 3097 } else { 3098 if (test_opt(sb, DEBUG)) 3099 ext4_msg(sb, KERN_DEBUG, 3100 "%s: deleting unreferenced inode %lu", 3101 __func__, inode->i_ino); 3102 jbd_debug(2, "deleting unreferenced inode %lu\n", 3103 inode->i_ino); 3104 nr_orphans++; 3105 } 3106 iput(inode); /* The delete magic happens here! */ 3107 } 3108 3109 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 3110 3111 if (nr_orphans) 3112 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 3113 PLURAL(nr_orphans)); 3114 if (nr_truncates) 3115 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 3116 PLURAL(nr_truncates)); 3117 #ifdef CONFIG_QUOTA 3118 /* Turn off quotas if they were enabled for orphan cleanup */ 3119 if (quota_update) { 3120 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 3121 if (sb_dqopt(sb)->files[i]) 3122 dquot_quota_off(sb, i); 3123 } 3124 } 3125 #endif 3126 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 3127 } 3128 3129 /* 3130 * Maximal extent format file size. 3131 * Resulting logical blkno at s_maxbytes must fit in our on-disk 3132 * extent format containers, within a sector_t, and within i_blocks 3133 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 3134 * so that won't be a limiting factor. 3135 * 3136 * However there is other limiting factor. We do store extents in the form 3137 * of starting block and length, hence the resulting length of the extent 3138 * covering maximum file size must fit into on-disk format containers as 3139 * well. Given that length is always by 1 unit bigger than max unit (because 3140 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 3141 * 3142 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 3143 */ 3144 static loff_t ext4_max_size(int blkbits, int has_huge_files) 3145 { 3146 loff_t res; 3147 loff_t upper_limit = MAX_LFS_FILESIZE; 3148 3149 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 3150 3151 if (!has_huge_files) { 3152 upper_limit = (1LL << 32) - 1; 3153 3154 /* total blocks in file system block size */ 3155 upper_limit >>= (blkbits - 9); 3156 upper_limit <<= blkbits; 3157 } 3158 3159 /* 3160 * 32-bit extent-start container, ee_block. We lower the maxbytes 3161 * by one fs block, so ee_len can cover the extent of maximum file 3162 * size 3163 */ 3164 res = (1LL << 32) - 1; 3165 res <<= blkbits; 3166 3167 /* Sanity check against vm- & vfs- imposed limits */ 3168 if (res > upper_limit) 3169 res = upper_limit; 3170 3171 return res; 3172 } 3173 3174 /* 3175 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3176 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3177 * We need to be 1 filesystem block less than the 2^48 sector limit. 3178 */ 3179 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3180 { 3181 loff_t res = EXT4_NDIR_BLOCKS; 3182 int meta_blocks; 3183 loff_t upper_limit; 3184 /* This is calculated to be the largest file size for a dense, block 3185 * mapped file such that the file's total number of 512-byte sectors, 3186 * including data and all indirect blocks, does not exceed (2^48 - 1). 3187 * 3188 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3189 * number of 512-byte sectors of the file. 3190 */ 3191 3192 if (!has_huge_files) { 3193 /* 3194 * !has_huge_files or implies that the inode i_block field 3195 * represents total file blocks in 2^32 512-byte sectors == 3196 * size of vfs inode i_blocks * 8 3197 */ 3198 upper_limit = (1LL << 32) - 1; 3199 3200 /* total blocks in file system block size */ 3201 upper_limit >>= (bits - 9); 3202 3203 } else { 3204 /* 3205 * We use 48 bit ext4_inode i_blocks 3206 * With EXT4_HUGE_FILE_FL set the i_blocks 3207 * represent total number of blocks in 3208 * file system block size 3209 */ 3210 upper_limit = (1LL << 48) - 1; 3211 3212 } 3213 3214 /* indirect blocks */ 3215 meta_blocks = 1; 3216 /* double indirect blocks */ 3217 meta_blocks += 1 + (1LL << (bits-2)); 3218 /* tripple indirect blocks */ 3219 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3220 3221 upper_limit -= meta_blocks; 3222 upper_limit <<= bits; 3223 3224 res += 1LL << (bits-2); 3225 res += 1LL << (2*(bits-2)); 3226 res += 1LL << (3*(bits-2)); 3227 res <<= bits; 3228 if (res > upper_limit) 3229 res = upper_limit; 3230 3231 if (res > MAX_LFS_FILESIZE) 3232 res = MAX_LFS_FILESIZE; 3233 3234 return res; 3235 } 3236 3237 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3238 ext4_fsblk_t logical_sb_block, int nr) 3239 { 3240 struct ext4_sb_info *sbi = EXT4_SB(sb); 3241 ext4_group_t bg, first_meta_bg; 3242 int has_super = 0; 3243 3244 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3245 3246 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3247 return logical_sb_block + nr + 1; 3248 bg = sbi->s_desc_per_block * nr; 3249 if (ext4_bg_has_super(sb, bg)) 3250 has_super = 1; 3251 3252 /* 3253 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3254 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3255 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3256 * compensate. 3257 */ 3258 if (sb->s_blocksize == 1024 && nr == 0 && 3259 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3260 has_super++; 3261 3262 return (has_super + ext4_group_first_block_no(sb, bg)); 3263 } 3264 3265 /** 3266 * ext4_get_stripe_size: Get the stripe size. 3267 * @sbi: In memory super block info 3268 * 3269 * If we have specified it via mount option, then 3270 * use the mount option value. If the value specified at mount time is 3271 * greater than the blocks per group use the super block value. 3272 * If the super block value is greater than blocks per group return 0. 3273 * Allocator needs it be less than blocks per group. 3274 * 3275 */ 3276 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3277 { 3278 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3279 unsigned long stripe_width = 3280 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3281 int ret; 3282 3283 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3284 ret = sbi->s_stripe; 3285 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3286 ret = stripe_width; 3287 else if (stride && stride <= sbi->s_blocks_per_group) 3288 ret = stride; 3289 else 3290 ret = 0; 3291 3292 /* 3293 * If the stripe width is 1, this makes no sense and 3294 * we set it to 0 to turn off stripe handling code. 3295 */ 3296 if (ret <= 1) 3297 ret = 0; 3298 3299 return ret; 3300 } 3301 3302 /* 3303 * Check whether this filesystem can be mounted based on 3304 * the features present and the RDONLY/RDWR mount requested. 3305 * Returns 1 if this filesystem can be mounted as requested, 3306 * 0 if it cannot be. 3307 */ 3308 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 3309 { 3310 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3311 ext4_msg(sb, KERN_ERR, 3312 "Couldn't mount because of " 3313 "unsupported optional features (%x)", 3314 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3315 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3316 return 0; 3317 } 3318 3319 #ifndef CONFIG_UNICODE 3320 if (ext4_has_feature_casefold(sb)) { 3321 ext4_msg(sb, KERN_ERR, 3322 "Filesystem with casefold feature cannot be " 3323 "mounted without CONFIG_UNICODE"); 3324 return 0; 3325 } 3326 #endif 3327 3328 if (readonly) 3329 return 1; 3330 3331 if (ext4_has_feature_readonly(sb)) { 3332 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3333 sb->s_flags |= SB_RDONLY; 3334 return 1; 3335 } 3336 3337 /* Check that feature set is OK for a read-write mount */ 3338 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3339 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3340 "unsupported optional features (%x)", 3341 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3342 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3343 return 0; 3344 } 3345 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3346 ext4_msg(sb, KERN_ERR, 3347 "Can't support bigalloc feature without " 3348 "extents feature\n"); 3349 return 0; 3350 } 3351 3352 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3353 if (!readonly && (ext4_has_feature_quota(sb) || 3354 ext4_has_feature_project(sb))) { 3355 ext4_msg(sb, KERN_ERR, 3356 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3357 return 0; 3358 } 3359 #endif /* CONFIG_QUOTA */ 3360 return 1; 3361 } 3362 3363 /* 3364 * This function is called once a day if we have errors logged 3365 * on the file system 3366 */ 3367 static void print_daily_error_info(struct timer_list *t) 3368 { 3369 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3370 struct super_block *sb = sbi->s_sb; 3371 struct ext4_super_block *es = sbi->s_es; 3372 3373 if (es->s_error_count) 3374 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3375 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3376 le32_to_cpu(es->s_error_count)); 3377 if (es->s_first_error_time) { 3378 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3379 sb->s_id, 3380 ext4_get_tstamp(es, s_first_error_time), 3381 (int) sizeof(es->s_first_error_func), 3382 es->s_first_error_func, 3383 le32_to_cpu(es->s_first_error_line)); 3384 if (es->s_first_error_ino) 3385 printk(KERN_CONT ": inode %u", 3386 le32_to_cpu(es->s_first_error_ino)); 3387 if (es->s_first_error_block) 3388 printk(KERN_CONT ": block %llu", (unsigned long long) 3389 le64_to_cpu(es->s_first_error_block)); 3390 printk(KERN_CONT "\n"); 3391 } 3392 if (es->s_last_error_time) { 3393 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3394 sb->s_id, 3395 ext4_get_tstamp(es, s_last_error_time), 3396 (int) sizeof(es->s_last_error_func), 3397 es->s_last_error_func, 3398 le32_to_cpu(es->s_last_error_line)); 3399 if (es->s_last_error_ino) 3400 printk(KERN_CONT ": inode %u", 3401 le32_to_cpu(es->s_last_error_ino)); 3402 if (es->s_last_error_block) 3403 printk(KERN_CONT ": block %llu", (unsigned long long) 3404 le64_to_cpu(es->s_last_error_block)); 3405 printk(KERN_CONT "\n"); 3406 } 3407 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3408 } 3409 3410 /* Find next suitable group and run ext4_init_inode_table */ 3411 static int ext4_run_li_request(struct ext4_li_request *elr) 3412 { 3413 struct ext4_group_desc *gdp = NULL; 3414 struct super_block *sb = elr->lr_super; 3415 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3416 ext4_group_t group = elr->lr_next_group; 3417 unsigned long timeout = 0; 3418 unsigned int prefetch_ios = 0; 3419 int ret = 0; 3420 3421 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3422 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3423 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3424 if (prefetch_ios) 3425 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3426 prefetch_ios); 3427 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3428 prefetch_ios); 3429 if (group >= elr->lr_next_group) { 3430 ret = 1; 3431 if (elr->lr_first_not_zeroed != ngroups && 3432 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3433 elr->lr_next_group = elr->lr_first_not_zeroed; 3434 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3435 ret = 0; 3436 } 3437 } 3438 return ret; 3439 } 3440 3441 for (; group < ngroups; group++) { 3442 gdp = ext4_get_group_desc(sb, group, NULL); 3443 if (!gdp) { 3444 ret = 1; 3445 break; 3446 } 3447 3448 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3449 break; 3450 } 3451 3452 if (group >= ngroups) 3453 ret = 1; 3454 3455 if (!ret) { 3456 timeout = jiffies; 3457 ret = ext4_init_inode_table(sb, group, 3458 elr->lr_timeout ? 0 : 1); 3459 trace_ext4_lazy_itable_init(sb, group); 3460 if (elr->lr_timeout == 0) { 3461 timeout = (jiffies - timeout) * 3462 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3463 elr->lr_timeout = timeout; 3464 } 3465 elr->lr_next_sched = jiffies + elr->lr_timeout; 3466 elr->lr_next_group = group + 1; 3467 } 3468 return ret; 3469 } 3470 3471 /* 3472 * Remove lr_request from the list_request and free the 3473 * request structure. Should be called with li_list_mtx held 3474 */ 3475 static void ext4_remove_li_request(struct ext4_li_request *elr) 3476 { 3477 if (!elr) 3478 return; 3479 3480 list_del(&elr->lr_request); 3481 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3482 kfree(elr); 3483 } 3484 3485 static void ext4_unregister_li_request(struct super_block *sb) 3486 { 3487 mutex_lock(&ext4_li_mtx); 3488 if (!ext4_li_info) { 3489 mutex_unlock(&ext4_li_mtx); 3490 return; 3491 } 3492 3493 mutex_lock(&ext4_li_info->li_list_mtx); 3494 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3495 mutex_unlock(&ext4_li_info->li_list_mtx); 3496 mutex_unlock(&ext4_li_mtx); 3497 } 3498 3499 static struct task_struct *ext4_lazyinit_task; 3500 3501 /* 3502 * This is the function where ext4lazyinit thread lives. It walks 3503 * through the request list searching for next scheduled filesystem. 3504 * When such a fs is found, run the lazy initialization request 3505 * (ext4_rn_li_request) and keep track of the time spend in this 3506 * function. Based on that time we compute next schedule time of 3507 * the request. When walking through the list is complete, compute 3508 * next waking time and put itself into sleep. 3509 */ 3510 static int ext4_lazyinit_thread(void *arg) 3511 { 3512 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3513 struct list_head *pos, *n; 3514 struct ext4_li_request *elr; 3515 unsigned long next_wakeup, cur; 3516 3517 BUG_ON(NULL == eli); 3518 3519 cont_thread: 3520 while (true) { 3521 next_wakeup = MAX_JIFFY_OFFSET; 3522 3523 mutex_lock(&eli->li_list_mtx); 3524 if (list_empty(&eli->li_request_list)) { 3525 mutex_unlock(&eli->li_list_mtx); 3526 goto exit_thread; 3527 } 3528 list_for_each_safe(pos, n, &eli->li_request_list) { 3529 int err = 0; 3530 int progress = 0; 3531 elr = list_entry(pos, struct ext4_li_request, 3532 lr_request); 3533 3534 if (time_before(jiffies, elr->lr_next_sched)) { 3535 if (time_before(elr->lr_next_sched, next_wakeup)) 3536 next_wakeup = elr->lr_next_sched; 3537 continue; 3538 } 3539 if (down_read_trylock(&elr->lr_super->s_umount)) { 3540 if (sb_start_write_trylock(elr->lr_super)) { 3541 progress = 1; 3542 /* 3543 * We hold sb->s_umount, sb can not 3544 * be removed from the list, it is 3545 * now safe to drop li_list_mtx 3546 */ 3547 mutex_unlock(&eli->li_list_mtx); 3548 err = ext4_run_li_request(elr); 3549 sb_end_write(elr->lr_super); 3550 mutex_lock(&eli->li_list_mtx); 3551 n = pos->next; 3552 } 3553 up_read((&elr->lr_super->s_umount)); 3554 } 3555 /* error, remove the lazy_init job */ 3556 if (err) { 3557 ext4_remove_li_request(elr); 3558 continue; 3559 } 3560 if (!progress) { 3561 elr->lr_next_sched = jiffies + 3562 (prandom_u32() 3563 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3564 } 3565 if (time_before(elr->lr_next_sched, next_wakeup)) 3566 next_wakeup = elr->lr_next_sched; 3567 } 3568 mutex_unlock(&eli->li_list_mtx); 3569 3570 try_to_freeze(); 3571 3572 cur = jiffies; 3573 if ((time_after_eq(cur, next_wakeup)) || 3574 (MAX_JIFFY_OFFSET == next_wakeup)) { 3575 cond_resched(); 3576 continue; 3577 } 3578 3579 schedule_timeout_interruptible(next_wakeup - cur); 3580 3581 if (kthread_should_stop()) { 3582 ext4_clear_request_list(); 3583 goto exit_thread; 3584 } 3585 } 3586 3587 exit_thread: 3588 /* 3589 * It looks like the request list is empty, but we need 3590 * to check it under the li_list_mtx lock, to prevent any 3591 * additions into it, and of course we should lock ext4_li_mtx 3592 * to atomically free the list and ext4_li_info, because at 3593 * this point another ext4 filesystem could be registering 3594 * new one. 3595 */ 3596 mutex_lock(&ext4_li_mtx); 3597 mutex_lock(&eli->li_list_mtx); 3598 if (!list_empty(&eli->li_request_list)) { 3599 mutex_unlock(&eli->li_list_mtx); 3600 mutex_unlock(&ext4_li_mtx); 3601 goto cont_thread; 3602 } 3603 mutex_unlock(&eli->li_list_mtx); 3604 kfree(ext4_li_info); 3605 ext4_li_info = NULL; 3606 mutex_unlock(&ext4_li_mtx); 3607 3608 return 0; 3609 } 3610 3611 static void ext4_clear_request_list(void) 3612 { 3613 struct list_head *pos, *n; 3614 struct ext4_li_request *elr; 3615 3616 mutex_lock(&ext4_li_info->li_list_mtx); 3617 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3618 elr = list_entry(pos, struct ext4_li_request, 3619 lr_request); 3620 ext4_remove_li_request(elr); 3621 } 3622 mutex_unlock(&ext4_li_info->li_list_mtx); 3623 } 3624 3625 static int ext4_run_lazyinit_thread(void) 3626 { 3627 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3628 ext4_li_info, "ext4lazyinit"); 3629 if (IS_ERR(ext4_lazyinit_task)) { 3630 int err = PTR_ERR(ext4_lazyinit_task); 3631 ext4_clear_request_list(); 3632 kfree(ext4_li_info); 3633 ext4_li_info = NULL; 3634 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3635 "initialization thread\n", 3636 err); 3637 return err; 3638 } 3639 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3640 return 0; 3641 } 3642 3643 /* 3644 * Check whether it make sense to run itable init. thread or not. 3645 * If there is at least one uninitialized inode table, return 3646 * corresponding group number, else the loop goes through all 3647 * groups and return total number of groups. 3648 */ 3649 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3650 { 3651 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3652 struct ext4_group_desc *gdp = NULL; 3653 3654 if (!ext4_has_group_desc_csum(sb)) 3655 return ngroups; 3656 3657 for (group = 0; group < ngroups; group++) { 3658 gdp = ext4_get_group_desc(sb, group, NULL); 3659 if (!gdp) 3660 continue; 3661 3662 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3663 break; 3664 } 3665 3666 return group; 3667 } 3668 3669 static int ext4_li_info_new(void) 3670 { 3671 struct ext4_lazy_init *eli = NULL; 3672 3673 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3674 if (!eli) 3675 return -ENOMEM; 3676 3677 INIT_LIST_HEAD(&eli->li_request_list); 3678 mutex_init(&eli->li_list_mtx); 3679 3680 eli->li_state |= EXT4_LAZYINIT_QUIT; 3681 3682 ext4_li_info = eli; 3683 3684 return 0; 3685 } 3686 3687 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3688 ext4_group_t start) 3689 { 3690 struct ext4_li_request *elr; 3691 3692 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3693 if (!elr) 3694 return NULL; 3695 3696 elr->lr_super = sb; 3697 elr->lr_first_not_zeroed = start; 3698 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3699 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3700 elr->lr_next_group = start; 3701 } else { 3702 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3703 } 3704 3705 /* 3706 * Randomize first schedule time of the request to 3707 * spread the inode table initialization requests 3708 * better. 3709 */ 3710 elr->lr_next_sched = jiffies + (prandom_u32() % 3711 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3712 return elr; 3713 } 3714 3715 int ext4_register_li_request(struct super_block *sb, 3716 ext4_group_t first_not_zeroed) 3717 { 3718 struct ext4_sb_info *sbi = EXT4_SB(sb); 3719 struct ext4_li_request *elr = NULL; 3720 ext4_group_t ngroups = sbi->s_groups_count; 3721 int ret = 0; 3722 3723 mutex_lock(&ext4_li_mtx); 3724 if (sbi->s_li_request != NULL) { 3725 /* 3726 * Reset timeout so it can be computed again, because 3727 * s_li_wait_mult might have changed. 3728 */ 3729 sbi->s_li_request->lr_timeout = 0; 3730 goto out; 3731 } 3732 3733 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3734 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3735 !test_opt(sb, INIT_INODE_TABLE))) 3736 goto out; 3737 3738 elr = ext4_li_request_new(sb, first_not_zeroed); 3739 if (!elr) { 3740 ret = -ENOMEM; 3741 goto out; 3742 } 3743 3744 if (NULL == ext4_li_info) { 3745 ret = ext4_li_info_new(); 3746 if (ret) 3747 goto out; 3748 } 3749 3750 mutex_lock(&ext4_li_info->li_list_mtx); 3751 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3752 mutex_unlock(&ext4_li_info->li_list_mtx); 3753 3754 sbi->s_li_request = elr; 3755 /* 3756 * set elr to NULL here since it has been inserted to 3757 * the request_list and the removal and free of it is 3758 * handled by ext4_clear_request_list from now on. 3759 */ 3760 elr = NULL; 3761 3762 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3763 ret = ext4_run_lazyinit_thread(); 3764 if (ret) 3765 goto out; 3766 } 3767 out: 3768 mutex_unlock(&ext4_li_mtx); 3769 if (ret) 3770 kfree(elr); 3771 return ret; 3772 } 3773 3774 /* 3775 * We do not need to lock anything since this is called on 3776 * module unload. 3777 */ 3778 static void ext4_destroy_lazyinit_thread(void) 3779 { 3780 /* 3781 * If thread exited earlier 3782 * there's nothing to be done. 3783 */ 3784 if (!ext4_li_info || !ext4_lazyinit_task) 3785 return; 3786 3787 kthread_stop(ext4_lazyinit_task); 3788 } 3789 3790 static int set_journal_csum_feature_set(struct super_block *sb) 3791 { 3792 int ret = 1; 3793 int compat, incompat; 3794 struct ext4_sb_info *sbi = EXT4_SB(sb); 3795 3796 if (ext4_has_metadata_csum(sb)) { 3797 /* journal checksum v3 */ 3798 compat = 0; 3799 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3800 } else { 3801 /* journal checksum v1 */ 3802 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3803 incompat = 0; 3804 } 3805 3806 jbd2_journal_clear_features(sbi->s_journal, 3807 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3808 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3809 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3810 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3811 ret = jbd2_journal_set_features(sbi->s_journal, 3812 compat, 0, 3813 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3814 incompat); 3815 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3816 ret = jbd2_journal_set_features(sbi->s_journal, 3817 compat, 0, 3818 incompat); 3819 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3820 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3821 } else { 3822 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3823 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3824 } 3825 3826 return ret; 3827 } 3828 3829 /* 3830 * Note: calculating the overhead so we can be compatible with 3831 * historical BSD practice is quite difficult in the face of 3832 * clusters/bigalloc. This is because multiple metadata blocks from 3833 * different block group can end up in the same allocation cluster. 3834 * Calculating the exact overhead in the face of clustered allocation 3835 * requires either O(all block bitmaps) in memory or O(number of block 3836 * groups**2) in time. We will still calculate the superblock for 3837 * older file systems --- and if we come across with a bigalloc file 3838 * system with zero in s_overhead_clusters the estimate will be close to 3839 * correct especially for very large cluster sizes --- but for newer 3840 * file systems, it's better to calculate this figure once at mkfs 3841 * time, and store it in the superblock. If the superblock value is 3842 * present (even for non-bigalloc file systems), we will use it. 3843 */ 3844 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3845 char *buf) 3846 { 3847 struct ext4_sb_info *sbi = EXT4_SB(sb); 3848 struct ext4_group_desc *gdp; 3849 ext4_fsblk_t first_block, last_block, b; 3850 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3851 int s, j, count = 0; 3852 3853 if (!ext4_has_feature_bigalloc(sb)) 3854 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3855 sbi->s_itb_per_group + 2); 3856 3857 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3858 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3859 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3860 for (i = 0; i < ngroups; i++) { 3861 gdp = ext4_get_group_desc(sb, i, NULL); 3862 b = ext4_block_bitmap(sb, gdp); 3863 if (b >= first_block && b <= last_block) { 3864 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3865 count++; 3866 } 3867 b = ext4_inode_bitmap(sb, gdp); 3868 if (b >= first_block && b <= last_block) { 3869 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3870 count++; 3871 } 3872 b = ext4_inode_table(sb, gdp); 3873 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3874 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3875 int c = EXT4_B2C(sbi, b - first_block); 3876 ext4_set_bit(c, buf); 3877 count++; 3878 } 3879 if (i != grp) 3880 continue; 3881 s = 0; 3882 if (ext4_bg_has_super(sb, grp)) { 3883 ext4_set_bit(s++, buf); 3884 count++; 3885 } 3886 j = ext4_bg_num_gdb(sb, grp); 3887 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3888 ext4_error(sb, "Invalid number of block group " 3889 "descriptor blocks: %d", j); 3890 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3891 } 3892 count += j; 3893 for (; j > 0; j--) 3894 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3895 } 3896 if (!count) 3897 return 0; 3898 return EXT4_CLUSTERS_PER_GROUP(sb) - 3899 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3900 } 3901 3902 /* 3903 * Compute the overhead and stash it in sbi->s_overhead 3904 */ 3905 int ext4_calculate_overhead(struct super_block *sb) 3906 { 3907 struct ext4_sb_info *sbi = EXT4_SB(sb); 3908 struct ext4_super_block *es = sbi->s_es; 3909 struct inode *j_inode; 3910 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3911 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3912 ext4_fsblk_t overhead = 0; 3913 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3914 3915 if (!buf) 3916 return -ENOMEM; 3917 3918 /* 3919 * Compute the overhead (FS structures). This is constant 3920 * for a given filesystem unless the number of block groups 3921 * changes so we cache the previous value until it does. 3922 */ 3923 3924 /* 3925 * All of the blocks before first_data_block are overhead 3926 */ 3927 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3928 3929 /* 3930 * Add the overhead found in each block group 3931 */ 3932 for (i = 0; i < ngroups; i++) { 3933 int blks; 3934 3935 blks = count_overhead(sb, i, buf); 3936 overhead += blks; 3937 if (blks) 3938 memset(buf, 0, PAGE_SIZE); 3939 cond_resched(); 3940 } 3941 3942 /* 3943 * Add the internal journal blocks whether the journal has been 3944 * loaded or not 3945 */ 3946 if (sbi->s_journal && !sbi->s_journal_bdev) 3947 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3948 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3949 /* j_inum for internal journal is non-zero */ 3950 j_inode = ext4_get_journal_inode(sb, j_inum); 3951 if (j_inode) { 3952 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3953 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3954 iput(j_inode); 3955 } else { 3956 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3957 } 3958 } 3959 sbi->s_overhead = overhead; 3960 smp_wmb(); 3961 free_page((unsigned long) buf); 3962 return 0; 3963 } 3964 3965 static void ext4_set_resv_clusters(struct super_block *sb) 3966 { 3967 ext4_fsblk_t resv_clusters; 3968 struct ext4_sb_info *sbi = EXT4_SB(sb); 3969 3970 /* 3971 * There's no need to reserve anything when we aren't using extents. 3972 * The space estimates are exact, there are no unwritten extents, 3973 * hole punching doesn't need new metadata... This is needed especially 3974 * to keep ext2/3 backward compatibility. 3975 */ 3976 if (!ext4_has_feature_extents(sb)) 3977 return; 3978 /* 3979 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3980 * This should cover the situations where we can not afford to run 3981 * out of space like for example punch hole, or converting 3982 * unwritten extents in delalloc path. In most cases such 3983 * allocation would require 1, or 2 blocks, higher numbers are 3984 * very rare. 3985 */ 3986 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3987 sbi->s_cluster_bits); 3988 3989 do_div(resv_clusters, 50); 3990 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3991 3992 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3993 } 3994 3995 static const char *ext4_quota_mode(struct super_block *sb) 3996 { 3997 #ifdef CONFIG_QUOTA 3998 if (!ext4_quota_capable(sb)) 3999 return "none"; 4000 4001 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 4002 return "journalled"; 4003 else 4004 return "writeback"; 4005 #else 4006 return "disabled"; 4007 #endif 4008 } 4009 4010 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 4011 { 4012 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 4013 char *orig_data = kstrdup(data, GFP_KERNEL); 4014 struct buffer_head *bh, **group_desc; 4015 struct ext4_super_block *es = NULL; 4016 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 4017 struct flex_groups **flex_groups; 4018 ext4_fsblk_t block; 4019 ext4_fsblk_t sb_block = get_sb_block(&data); 4020 ext4_fsblk_t logical_sb_block; 4021 unsigned long offset = 0; 4022 unsigned long def_mount_opts; 4023 struct inode *root; 4024 const char *descr; 4025 int ret = -ENOMEM; 4026 int blocksize, clustersize; 4027 unsigned int db_count; 4028 unsigned int i; 4029 int needs_recovery, has_huge_files; 4030 __u64 blocks_count; 4031 int err = 0; 4032 ext4_group_t first_not_zeroed; 4033 struct ext4_parsed_options parsed_opts; 4034 4035 /* Set defaults for the variables that will be set during parsing */ 4036 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4037 parsed_opts.journal_devnum = 0; 4038 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN; 4039 4040 if ((data && !orig_data) || !sbi) 4041 goto out_free_base; 4042 4043 sbi->s_daxdev = dax_dev; 4044 sbi->s_blockgroup_lock = 4045 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 4046 if (!sbi->s_blockgroup_lock) 4047 goto out_free_base; 4048 4049 sb->s_fs_info = sbi; 4050 sbi->s_sb = sb; 4051 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 4052 sbi->s_sb_block = sb_block; 4053 sbi->s_sectors_written_start = 4054 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 4055 4056 /* Cleanup superblock name */ 4057 strreplace(sb->s_id, '/', '!'); 4058 4059 /* -EINVAL is default */ 4060 ret = -EINVAL; 4061 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 4062 if (!blocksize) { 4063 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 4064 goto out_fail; 4065 } 4066 4067 /* 4068 * The ext4 superblock will not be buffer aligned for other than 1kB 4069 * block sizes. We need to calculate the offset from buffer start. 4070 */ 4071 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 4072 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4073 offset = do_div(logical_sb_block, blocksize); 4074 } else { 4075 logical_sb_block = sb_block; 4076 } 4077 4078 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4079 if (IS_ERR(bh)) { 4080 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 4081 ret = PTR_ERR(bh); 4082 goto out_fail; 4083 } 4084 /* 4085 * Note: s_es must be initialized as soon as possible because 4086 * some ext4 macro-instructions depend on its value 4087 */ 4088 es = (struct ext4_super_block *) (bh->b_data + offset); 4089 sbi->s_es = es; 4090 sb->s_magic = le16_to_cpu(es->s_magic); 4091 if (sb->s_magic != EXT4_SUPER_MAGIC) 4092 goto cantfind_ext4; 4093 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 4094 4095 /* Warn if metadata_csum and gdt_csum are both set. */ 4096 if (ext4_has_feature_metadata_csum(sb) && 4097 ext4_has_feature_gdt_csum(sb)) 4098 ext4_warning(sb, "metadata_csum and uninit_bg are " 4099 "redundant flags; please run fsck."); 4100 4101 /* Check for a known checksum algorithm */ 4102 if (!ext4_verify_csum_type(sb, es)) { 4103 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4104 "unknown checksum algorithm."); 4105 silent = 1; 4106 goto cantfind_ext4; 4107 } 4108 4109 /* Load the checksum driver */ 4110 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 4111 if (IS_ERR(sbi->s_chksum_driver)) { 4112 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 4113 ret = PTR_ERR(sbi->s_chksum_driver); 4114 sbi->s_chksum_driver = NULL; 4115 goto failed_mount; 4116 } 4117 4118 /* Check superblock checksum */ 4119 if (!ext4_superblock_csum_verify(sb, es)) { 4120 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 4121 "invalid superblock checksum. Run e2fsck?"); 4122 silent = 1; 4123 ret = -EFSBADCRC; 4124 goto cantfind_ext4; 4125 } 4126 4127 /* Precompute checksum seed for all metadata */ 4128 if (ext4_has_feature_csum_seed(sb)) 4129 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 4130 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 4131 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 4132 sizeof(es->s_uuid)); 4133 4134 /* Set defaults before we parse the mount options */ 4135 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 4136 set_opt(sb, INIT_INODE_TABLE); 4137 if (def_mount_opts & EXT4_DEFM_DEBUG) 4138 set_opt(sb, DEBUG); 4139 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 4140 set_opt(sb, GRPID); 4141 if (def_mount_opts & EXT4_DEFM_UID16) 4142 set_opt(sb, NO_UID32); 4143 /* xattr user namespace & acls are now defaulted on */ 4144 set_opt(sb, XATTR_USER); 4145 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4146 set_opt(sb, POSIX_ACL); 4147 #endif 4148 if (ext4_has_feature_fast_commit(sb)) 4149 set_opt2(sb, JOURNAL_FAST_COMMIT); 4150 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4151 if (ext4_has_metadata_csum(sb)) 4152 set_opt(sb, JOURNAL_CHECKSUM); 4153 4154 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4155 set_opt(sb, JOURNAL_DATA); 4156 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4157 set_opt(sb, ORDERED_DATA); 4158 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4159 set_opt(sb, WRITEBACK_DATA); 4160 4161 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4162 set_opt(sb, ERRORS_PANIC); 4163 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4164 set_opt(sb, ERRORS_CONT); 4165 else 4166 set_opt(sb, ERRORS_RO); 4167 /* block_validity enabled by default; disable with noblock_validity */ 4168 set_opt(sb, BLOCK_VALIDITY); 4169 if (def_mount_opts & EXT4_DEFM_DISCARD) 4170 set_opt(sb, DISCARD); 4171 4172 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4173 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4174 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4175 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4176 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4177 4178 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4179 set_opt(sb, BARRIER); 4180 4181 /* 4182 * enable delayed allocation by default 4183 * Use -o nodelalloc to turn it off 4184 */ 4185 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4186 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4187 set_opt(sb, DELALLOC); 4188 4189 /* 4190 * set default s_li_wait_mult for lazyinit, for the case there is 4191 * no mount option specified. 4192 */ 4193 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4194 4195 if (le32_to_cpu(es->s_log_block_size) > 4196 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4197 ext4_msg(sb, KERN_ERR, 4198 "Invalid log block size: %u", 4199 le32_to_cpu(es->s_log_block_size)); 4200 goto failed_mount; 4201 } 4202 if (le32_to_cpu(es->s_log_cluster_size) > 4203 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4204 ext4_msg(sb, KERN_ERR, 4205 "Invalid log cluster size: %u", 4206 le32_to_cpu(es->s_log_cluster_size)); 4207 goto failed_mount; 4208 } 4209 4210 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4211 4212 if (blocksize == PAGE_SIZE) 4213 set_opt(sb, DIOREAD_NOLOCK); 4214 4215 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4216 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4217 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4218 } else { 4219 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4220 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4221 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4222 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4223 sbi->s_first_ino); 4224 goto failed_mount; 4225 } 4226 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4227 (!is_power_of_2(sbi->s_inode_size)) || 4228 (sbi->s_inode_size > blocksize)) { 4229 ext4_msg(sb, KERN_ERR, 4230 "unsupported inode size: %d", 4231 sbi->s_inode_size); 4232 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4233 goto failed_mount; 4234 } 4235 /* 4236 * i_atime_extra is the last extra field available for 4237 * [acm]times in struct ext4_inode. Checking for that 4238 * field should suffice to ensure we have extra space 4239 * for all three. 4240 */ 4241 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4242 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4243 sb->s_time_gran = 1; 4244 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4245 } else { 4246 sb->s_time_gran = NSEC_PER_SEC; 4247 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4248 } 4249 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4250 } 4251 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4252 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4253 EXT4_GOOD_OLD_INODE_SIZE; 4254 if (ext4_has_feature_extra_isize(sb)) { 4255 unsigned v, max = (sbi->s_inode_size - 4256 EXT4_GOOD_OLD_INODE_SIZE); 4257 4258 v = le16_to_cpu(es->s_want_extra_isize); 4259 if (v > max) { 4260 ext4_msg(sb, KERN_ERR, 4261 "bad s_want_extra_isize: %d", v); 4262 goto failed_mount; 4263 } 4264 if (sbi->s_want_extra_isize < v) 4265 sbi->s_want_extra_isize = v; 4266 4267 v = le16_to_cpu(es->s_min_extra_isize); 4268 if (v > max) { 4269 ext4_msg(sb, KERN_ERR, 4270 "bad s_min_extra_isize: %d", v); 4271 goto failed_mount; 4272 } 4273 if (sbi->s_want_extra_isize < v) 4274 sbi->s_want_extra_isize = v; 4275 } 4276 } 4277 4278 if (sbi->s_es->s_mount_opts[0]) { 4279 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4280 sizeof(sbi->s_es->s_mount_opts), 4281 GFP_KERNEL); 4282 if (!s_mount_opts) 4283 goto failed_mount; 4284 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) { 4285 ext4_msg(sb, KERN_WARNING, 4286 "failed to parse options in superblock: %s", 4287 s_mount_opts); 4288 } 4289 kfree(s_mount_opts); 4290 } 4291 sbi->s_def_mount_opt = sbi->s_mount_opt; 4292 if (!parse_options((char *) data, sb, &parsed_opts, 0)) 4293 goto failed_mount; 4294 4295 #ifdef CONFIG_UNICODE 4296 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4297 const struct ext4_sb_encodings *encoding_info; 4298 struct unicode_map *encoding; 4299 __u16 encoding_flags; 4300 4301 if (ext4_sb_read_encoding(es, &encoding_info, 4302 &encoding_flags)) { 4303 ext4_msg(sb, KERN_ERR, 4304 "Encoding requested by superblock is unknown"); 4305 goto failed_mount; 4306 } 4307 4308 encoding = utf8_load(encoding_info->version); 4309 if (IS_ERR(encoding)) { 4310 ext4_msg(sb, KERN_ERR, 4311 "can't mount with superblock charset: %s-%s " 4312 "not supported by the kernel. flags: 0x%x.", 4313 encoding_info->name, encoding_info->version, 4314 encoding_flags); 4315 goto failed_mount; 4316 } 4317 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4318 "%s-%s with flags 0x%hx", encoding_info->name, 4319 encoding_info->version?:"\b", encoding_flags); 4320 4321 sb->s_encoding = encoding; 4322 sb->s_encoding_flags = encoding_flags; 4323 } 4324 #endif 4325 4326 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4327 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4328 /* can't mount with both data=journal and dioread_nolock. */ 4329 clear_opt(sb, DIOREAD_NOLOCK); 4330 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4331 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4332 ext4_msg(sb, KERN_ERR, "can't mount with " 4333 "both data=journal and delalloc"); 4334 goto failed_mount; 4335 } 4336 if (test_opt(sb, DAX_ALWAYS)) { 4337 ext4_msg(sb, KERN_ERR, "can't mount with " 4338 "both data=journal and dax"); 4339 goto failed_mount; 4340 } 4341 if (ext4_has_feature_encrypt(sb)) { 4342 ext4_msg(sb, KERN_WARNING, 4343 "encrypted files will use data=ordered " 4344 "instead of data journaling mode"); 4345 } 4346 if (test_opt(sb, DELALLOC)) 4347 clear_opt(sb, DELALLOC); 4348 } else { 4349 sb->s_iflags |= SB_I_CGROUPWB; 4350 } 4351 4352 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4353 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4354 4355 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4356 (ext4_has_compat_features(sb) || 4357 ext4_has_ro_compat_features(sb) || 4358 ext4_has_incompat_features(sb))) 4359 ext4_msg(sb, KERN_WARNING, 4360 "feature flags set on rev 0 fs, " 4361 "running e2fsck is recommended"); 4362 4363 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4364 set_opt2(sb, HURD_COMPAT); 4365 if (ext4_has_feature_64bit(sb)) { 4366 ext4_msg(sb, KERN_ERR, 4367 "The Hurd can't support 64-bit file systems"); 4368 goto failed_mount; 4369 } 4370 4371 /* 4372 * ea_inode feature uses l_i_version field which is not 4373 * available in HURD_COMPAT mode. 4374 */ 4375 if (ext4_has_feature_ea_inode(sb)) { 4376 ext4_msg(sb, KERN_ERR, 4377 "ea_inode feature is not supported for Hurd"); 4378 goto failed_mount; 4379 } 4380 } 4381 4382 if (IS_EXT2_SB(sb)) { 4383 if (ext2_feature_set_ok(sb)) 4384 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4385 "using the ext4 subsystem"); 4386 else { 4387 /* 4388 * If we're probing be silent, if this looks like 4389 * it's actually an ext[34] filesystem. 4390 */ 4391 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4392 goto failed_mount; 4393 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4394 "to feature incompatibilities"); 4395 goto failed_mount; 4396 } 4397 } 4398 4399 if (IS_EXT3_SB(sb)) { 4400 if (ext3_feature_set_ok(sb)) 4401 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4402 "using the ext4 subsystem"); 4403 else { 4404 /* 4405 * If we're probing be silent, if this looks like 4406 * it's actually an ext4 filesystem. 4407 */ 4408 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4409 goto failed_mount; 4410 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4411 "to feature incompatibilities"); 4412 goto failed_mount; 4413 } 4414 } 4415 4416 /* 4417 * Check feature flags regardless of the revision level, since we 4418 * previously didn't change the revision level when setting the flags, 4419 * so there is a chance incompat flags are set on a rev 0 filesystem. 4420 */ 4421 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4422 goto failed_mount; 4423 4424 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4425 ext4_msg(sb, KERN_ERR, 4426 "Number of reserved GDT blocks insanely large: %d", 4427 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4428 goto failed_mount; 4429 } 4430 4431 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4432 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4433 4434 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4435 if (ext4_has_feature_inline_data(sb)) { 4436 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4437 " that may contain inline data"); 4438 goto failed_mount; 4439 } 4440 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4441 ext4_msg(sb, KERN_ERR, 4442 "DAX unsupported by block device."); 4443 goto failed_mount; 4444 } 4445 } 4446 4447 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4448 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4449 es->s_encryption_level); 4450 goto failed_mount; 4451 } 4452 4453 if (sb->s_blocksize != blocksize) { 4454 /* 4455 * bh must be released before kill_bdev(), otherwise 4456 * it won't be freed and its page also. kill_bdev() 4457 * is called by sb_set_blocksize(). 4458 */ 4459 brelse(bh); 4460 /* Validate the filesystem blocksize */ 4461 if (!sb_set_blocksize(sb, blocksize)) { 4462 ext4_msg(sb, KERN_ERR, "bad block size %d", 4463 blocksize); 4464 bh = NULL; 4465 goto failed_mount; 4466 } 4467 4468 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4469 offset = do_div(logical_sb_block, blocksize); 4470 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4471 if (IS_ERR(bh)) { 4472 ext4_msg(sb, KERN_ERR, 4473 "Can't read superblock on 2nd try"); 4474 ret = PTR_ERR(bh); 4475 bh = NULL; 4476 goto failed_mount; 4477 } 4478 es = (struct ext4_super_block *)(bh->b_data + offset); 4479 sbi->s_es = es; 4480 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4481 ext4_msg(sb, KERN_ERR, 4482 "Magic mismatch, very weird!"); 4483 goto failed_mount; 4484 } 4485 } 4486 4487 has_huge_files = ext4_has_feature_huge_file(sb); 4488 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4489 has_huge_files); 4490 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4491 4492 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4493 if (ext4_has_feature_64bit(sb)) { 4494 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4495 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4496 !is_power_of_2(sbi->s_desc_size)) { 4497 ext4_msg(sb, KERN_ERR, 4498 "unsupported descriptor size %lu", 4499 sbi->s_desc_size); 4500 goto failed_mount; 4501 } 4502 } else 4503 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4504 4505 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4506 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4507 4508 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4509 if (sbi->s_inodes_per_block == 0) 4510 goto cantfind_ext4; 4511 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4512 sbi->s_inodes_per_group > blocksize * 8) { 4513 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4514 sbi->s_inodes_per_group); 4515 goto failed_mount; 4516 } 4517 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4518 sbi->s_inodes_per_block; 4519 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4520 sbi->s_sbh = bh; 4521 sbi->s_mount_state = le16_to_cpu(es->s_state); 4522 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4523 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4524 4525 for (i = 0; i < 4; i++) 4526 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4527 sbi->s_def_hash_version = es->s_def_hash_version; 4528 if (ext4_has_feature_dir_index(sb)) { 4529 i = le32_to_cpu(es->s_flags); 4530 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4531 sbi->s_hash_unsigned = 3; 4532 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4533 #ifdef __CHAR_UNSIGNED__ 4534 if (!sb_rdonly(sb)) 4535 es->s_flags |= 4536 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4537 sbi->s_hash_unsigned = 3; 4538 #else 4539 if (!sb_rdonly(sb)) 4540 es->s_flags |= 4541 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4542 #endif 4543 } 4544 } 4545 4546 /* Handle clustersize */ 4547 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4548 if (ext4_has_feature_bigalloc(sb)) { 4549 if (clustersize < blocksize) { 4550 ext4_msg(sb, KERN_ERR, 4551 "cluster size (%d) smaller than " 4552 "block size (%d)", clustersize, blocksize); 4553 goto failed_mount; 4554 } 4555 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4556 le32_to_cpu(es->s_log_block_size); 4557 sbi->s_clusters_per_group = 4558 le32_to_cpu(es->s_clusters_per_group); 4559 if (sbi->s_clusters_per_group > blocksize * 8) { 4560 ext4_msg(sb, KERN_ERR, 4561 "#clusters per group too big: %lu", 4562 sbi->s_clusters_per_group); 4563 goto failed_mount; 4564 } 4565 if (sbi->s_blocks_per_group != 4566 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4567 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4568 "clusters per group (%lu) inconsistent", 4569 sbi->s_blocks_per_group, 4570 sbi->s_clusters_per_group); 4571 goto failed_mount; 4572 } 4573 } else { 4574 if (clustersize != blocksize) { 4575 ext4_msg(sb, KERN_ERR, 4576 "fragment/cluster size (%d) != " 4577 "block size (%d)", clustersize, blocksize); 4578 goto failed_mount; 4579 } 4580 if (sbi->s_blocks_per_group > blocksize * 8) { 4581 ext4_msg(sb, KERN_ERR, 4582 "#blocks per group too big: %lu", 4583 sbi->s_blocks_per_group); 4584 goto failed_mount; 4585 } 4586 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4587 sbi->s_cluster_bits = 0; 4588 } 4589 sbi->s_cluster_ratio = clustersize / blocksize; 4590 4591 /* Do we have standard group size of clustersize * 8 blocks ? */ 4592 if (sbi->s_blocks_per_group == clustersize << 3) 4593 set_opt2(sb, STD_GROUP_SIZE); 4594 4595 /* 4596 * Test whether we have more sectors than will fit in sector_t, 4597 * and whether the max offset is addressable by the page cache. 4598 */ 4599 err = generic_check_addressable(sb->s_blocksize_bits, 4600 ext4_blocks_count(es)); 4601 if (err) { 4602 ext4_msg(sb, KERN_ERR, "filesystem" 4603 " too large to mount safely on this system"); 4604 goto failed_mount; 4605 } 4606 4607 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4608 goto cantfind_ext4; 4609 4610 /* check blocks count against device size */ 4611 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4612 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4613 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4614 "exceeds size of device (%llu blocks)", 4615 ext4_blocks_count(es), blocks_count); 4616 goto failed_mount; 4617 } 4618 4619 /* 4620 * It makes no sense for the first data block to be beyond the end 4621 * of the filesystem. 4622 */ 4623 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4624 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4625 "block %u is beyond end of filesystem (%llu)", 4626 le32_to_cpu(es->s_first_data_block), 4627 ext4_blocks_count(es)); 4628 goto failed_mount; 4629 } 4630 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4631 (sbi->s_cluster_ratio == 1)) { 4632 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4633 "block is 0 with a 1k block and cluster size"); 4634 goto failed_mount; 4635 } 4636 4637 blocks_count = (ext4_blocks_count(es) - 4638 le32_to_cpu(es->s_first_data_block) + 4639 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4640 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4641 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4642 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4643 "(block count %llu, first data block %u, " 4644 "blocks per group %lu)", blocks_count, 4645 ext4_blocks_count(es), 4646 le32_to_cpu(es->s_first_data_block), 4647 EXT4_BLOCKS_PER_GROUP(sb)); 4648 goto failed_mount; 4649 } 4650 sbi->s_groups_count = blocks_count; 4651 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4652 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4653 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4654 le32_to_cpu(es->s_inodes_count)) { 4655 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4656 le32_to_cpu(es->s_inodes_count), 4657 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4658 ret = -EINVAL; 4659 goto failed_mount; 4660 } 4661 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4662 EXT4_DESC_PER_BLOCK(sb); 4663 if (ext4_has_feature_meta_bg(sb)) { 4664 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4665 ext4_msg(sb, KERN_WARNING, 4666 "first meta block group too large: %u " 4667 "(group descriptor block count %u)", 4668 le32_to_cpu(es->s_first_meta_bg), db_count); 4669 goto failed_mount; 4670 } 4671 } 4672 rcu_assign_pointer(sbi->s_group_desc, 4673 kvmalloc_array(db_count, 4674 sizeof(struct buffer_head *), 4675 GFP_KERNEL)); 4676 if (sbi->s_group_desc == NULL) { 4677 ext4_msg(sb, KERN_ERR, "not enough memory"); 4678 ret = -ENOMEM; 4679 goto failed_mount; 4680 } 4681 4682 bgl_lock_init(sbi->s_blockgroup_lock); 4683 4684 /* Pre-read the descriptors into the buffer cache */ 4685 for (i = 0; i < db_count; i++) { 4686 block = descriptor_loc(sb, logical_sb_block, i); 4687 ext4_sb_breadahead_unmovable(sb, block); 4688 } 4689 4690 for (i = 0; i < db_count; i++) { 4691 struct buffer_head *bh; 4692 4693 block = descriptor_loc(sb, logical_sb_block, i); 4694 bh = ext4_sb_bread_unmovable(sb, block); 4695 if (IS_ERR(bh)) { 4696 ext4_msg(sb, KERN_ERR, 4697 "can't read group descriptor %d", i); 4698 db_count = i; 4699 ret = PTR_ERR(bh); 4700 goto failed_mount2; 4701 } 4702 rcu_read_lock(); 4703 rcu_dereference(sbi->s_group_desc)[i] = bh; 4704 rcu_read_unlock(); 4705 } 4706 sbi->s_gdb_count = db_count; 4707 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4708 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4709 ret = -EFSCORRUPTED; 4710 goto failed_mount2; 4711 } 4712 4713 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4714 spin_lock_init(&sbi->s_error_lock); 4715 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4716 4717 /* Register extent status tree shrinker */ 4718 if (ext4_es_register_shrinker(sbi)) 4719 goto failed_mount3; 4720 4721 sbi->s_stripe = ext4_get_stripe_size(sbi); 4722 sbi->s_extent_max_zeroout_kb = 32; 4723 4724 /* 4725 * set up enough so that it can read an inode 4726 */ 4727 sb->s_op = &ext4_sops; 4728 sb->s_export_op = &ext4_export_ops; 4729 sb->s_xattr = ext4_xattr_handlers; 4730 #ifdef CONFIG_FS_ENCRYPTION 4731 sb->s_cop = &ext4_cryptops; 4732 #endif 4733 #ifdef CONFIG_FS_VERITY 4734 sb->s_vop = &ext4_verityops; 4735 #endif 4736 #ifdef CONFIG_QUOTA 4737 sb->dq_op = &ext4_quota_operations; 4738 if (ext4_has_feature_quota(sb)) 4739 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4740 else 4741 sb->s_qcop = &ext4_qctl_operations; 4742 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4743 #endif 4744 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4745 4746 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4747 mutex_init(&sbi->s_orphan_lock); 4748 4749 /* Initialize fast commit stuff */ 4750 atomic_set(&sbi->s_fc_subtid, 0); 4751 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4752 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4753 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4754 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4755 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4756 sbi->s_fc_bytes = 0; 4757 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4758 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4759 spin_lock_init(&sbi->s_fc_lock); 4760 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4761 sbi->s_fc_replay_state.fc_regions = NULL; 4762 sbi->s_fc_replay_state.fc_regions_size = 0; 4763 sbi->s_fc_replay_state.fc_regions_used = 0; 4764 sbi->s_fc_replay_state.fc_regions_valid = 0; 4765 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4766 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4767 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4768 4769 sb->s_root = NULL; 4770 4771 needs_recovery = (es->s_last_orphan != 0 || 4772 ext4_has_feature_journal_needs_recovery(sb)); 4773 4774 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4775 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4776 goto failed_mount3a; 4777 4778 /* 4779 * The first inode we look at is the journal inode. Don't try 4780 * root first: it may be modified in the journal! 4781 */ 4782 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4783 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum); 4784 if (err) 4785 goto failed_mount3a; 4786 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4787 ext4_has_feature_journal_needs_recovery(sb)) { 4788 ext4_msg(sb, KERN_ERR, "required journal recovery " 4789 "suppressed and not mounted read-only"); 4790 goto failed_mount_wq; 4791 } else { 4792 /* Nojournal mode, all journal mount options are illegal */ 4793 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4794 ext4_msg(sb, KERN_ERR, "can't mount with " 4795 "journal_checksum, fs mounted w/o journal"); 4796 goto failed_mount_wq; 4797 } 4798 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4799 ext4_msg(sb, KERN_ERR, "can't mount with " 4800 "journal_async_commit, fs mounted w/o journal"); 4801 goto failed_mount_wq; 4802 } 4803 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4804 ext4_msg(sb, KERN_ERR, "can't mount with " 4805 "commit=%lu, fs mounted w/o journal", 4806 sbi->s_commit_interval / HZ); 4807 goto failed_mount_wq; 4808 } 4809 if (EXT4_MOUNT_DATA_FLAGS & 4810 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4811 ext4_msg(sb, KERN_ERR, "can't mount with " 4812 "data=, fs mounted w/o journal"); 4813 goto failed_mount_wq; 4814 } 4815 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4816 clear_opt(sb, JOURNAL_CHECKSUM); 4817 clear_opt(sb, DATA_FLAGS); 4818 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4819 sbi->s_journal = NULL; 4820 needs_recovery = 0; 4821 goto no_journal; 4822 } 4823 4824 if (ext4_has_feature_64bit(sb) && 4825 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4826 JBD2_FEATURE_INCOMPAT_64BIT)) { 4827 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4828 goto failed_mount_wq; 4829 } 4830 4831 if (!set_journal_csum_feature_set(sb)) { 4832 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4833 "feature set"); 4834 goto failed_mount_wq; 4835 } 4836 4837 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4838 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4839 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4840 ext4_msg(sb, KERN_ERR, 4841 "Failed to set fast commit journal feature"); 4842 goto failed_mount_wq; 4843 } 4844 4845 /* We have now updated the journal if required, so we can 4846 * validate the data journaling mode. */ 4847 switch (test_opt(sb, DATA_FLAGS)) { 4848 case 0: 4849 /* No mode set, assume a default based on the journal 4850 * capabilities: ORDERED_DATA if the journal can 4851 * cope, else JOURNAL_DATA 4852 */ 4853 if (jbd2_journal_check_available_features 4854 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4855 set_opt(sb, ORDERED_DATA); 4856 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4857 } else { 4858 set_opt(sb, JOURNAL_DATA); 4859 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4860 } 4861 break; 4862 4863 case EXT4_MOUNT_ORDERED_DATA: 4864 case EXT4_MOUNT_WRITEBACK_DATA: 4865 if (!jbd2_journal_check_available_features 4866 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4867 ext4_msg(sb, KERN_ERR, "Journal does not support " 4868 "requested data journaling mode"); 4869 goto failed_mount_wq; 4870 } 4871 break; 4872 default: 4873 break; 4874 } 4875 4876 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4877 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4878 ext4_msg(sb, KERN_ERR, "can't mount with " 4879 "journal_async_commit in data=ordered mode"); 4880 goto failed_mount_wq; 4881 } 4882 4883 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 4884 4885 sbi->s_journal->j_submit_inode_data_buffers = 4886 ext4_journal_submit_inode_data_buffers; 4887 sbi->s_journal->j_finish_inode_data_buffers = 4888 ext4_journal_finish_inode_data_buffers; 4889 4890 no_journal: 4891 if (!test_opt(sb, NO_MBCACHE)) { 4892 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4893 if (!sbi->s_ea_block_cache) { 4894 ext4_msg(sb, KERN_ERR, 4895 "Failed to create ea_block_cache"); 4896 goto failed_mount_wq; 4897 } 4898 4899 if (ext4_has_feature_ea_inode(sb)) { 4900 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4901 if (!sbi->s_ea_inode_cache) { 4902 ext4_msg(sb, KERN_ERR, 4903 "Failed to create ea_inode_cache"); 4904 goto failed_mount_wq; 4905 } 4906 } 4907 } 4908 4909 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4910 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4911 goto failed_mount_wq; 4912 } 4913 4914 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4915 !ext4_has_feature_encrypt(sb)) { 4916 ext4_set_feature_encrypt(sb); 4917 ext4_commit_super(sb); 4918 } 4919 4920 /* 4921 * Get the # of file system overhead blocks from the 4922 * superblock if present. 4923 */ 4924 if (es->s_overhead_clusters) 4925 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4926 else { 4927 err = ext4_calculate_overhead(sb); 4928 if (err) 4929 goto failed_mount_wq; 4930 } 4931 4932 /* 4933 * The maximum number of concurrent works can be high and 4934 * concurrency isn't really necessary. Limit it to 1. 4935 */ 4936 EXT4_SB(sb)->rsv_conversion_wq = 4937 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4938 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4939 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4940 ret = -ENOMEM; 4941 goto failed_mount4; 4942 } 4943 4944 /* 4945 * The jbd2_journal_load will have done any necessary log recovery, 4946 * so we can safely mount the rest of the filesystem now. 4947 */ 4948 4949 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4950 if (IS_ERR(root)) { 4951 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4952 ret = PTR_ERR(root); 4953 root = NULL; 4954 goto failed_mount4; 4955 } 4956 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4957 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4958 iput(root); 4959 goto failed_mount4; 4960 } 4961 4962 sb->s_root = d_make_root(root); 4963 if (!sb->s_root) { 4964 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4965 ret = -ENOMEM; 4966 goto failed_mount4; 4967 } 4968 4969 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4970 if (ret == -EROFS) { 4971 sb->s_flags |= SB_RDONLY; 4972 ret = 0; 4973 } else if (ret) 4974 goto failed_mount4a; 4975 4976 ext4_set_resv_clusters(sb); 4977 4978 if (test_opt(sb, BLOCK_VALIDITY)) { 4979 err = ext4_setup_system_zone(sb); 4980 if (err) { 4981 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4982 "zone (%d)", err); 4983 goto failed_mount4a; 4984 } 4985 } 4986 ext4_fc_replay_cleanup(sb); 4987 4988 ext4_ext_init(sb); 4989 4990 /* 4991 * Enable optimize_scan if number of groups is > threshold. This can be 4992 * turned off by passing "mb_optimize_scan=0". This can also be 4993 * turned on forcefully by passing "mb_optimize_scan=1". 4994 */ 4995 if (parsed_opts.mb_optimize_scan == 1) 4996 set_opt2(sb, MB_OPTIMIZE_SCAN); 4997 else if (parsed_opts.mb_optimize_scan == 0) 4998 clear_opt2(sb, MB_OPTIMIZE_SCAN); 4999 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 5000 set_opt2(sb, MB_OPTIMIZE_SCAN); 5001 5002 err = ext4_mb_init(sb); 5003 if (err) { 5004 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 5005 err); 5006 goto failed_mount5; 5007 } 5008 5009 /* 5010 * We can only set up the journal commit callback once 5011 * mballoc is initialized 5012 */ 5013 if (sbi->s_journal) 5014 sbi->s_journal->j_commit_callback = 5015 ext4_journal_commit_callback; 5016 5017 block = ext4_count_free_clusters(sb); 5018 ext4_free_blocks_count_set(sbi->s_es, 5019 EXT4_C2B(sbi, block)); 5020 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 5021 GFP_KERNEL); 5022 if (!err) { 5023 unsigned long freei = ext4_count_free_inodes(sb); 5024 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 5025 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 5026 GFP_KERNEL); 5027 } 5028 if (!err) 5029 err = percpu_counter_init(&sbi->s_dirs_counter, 5030 ext4_count_dirs(sb), GFP_KERNEL); 5031 if (!err) 5032 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 5033 GFP_KERNEL); 5034 if (!err) 5035 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 5036 GFP_KERNEL); 5037 if (!err) 5038 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 5039 5040 if (err) { 5041 ext4_msg(sb, KERN_ERR, "insufficient memory"); 5042 goto failed_mount6; 5043 } 5044 5045 if (ext4_has_feature_flex_bg(sb)) 5046 if (!ext4_fill_flex_info(sb)) { 5047 ext4_msg(sb, KERN_ERR, 5048 "unable to initialize " 5049 "flex_bg meta info!"); 5050 ret = -ENOMEM; 5051 goto failed_mount6; 5052 } 5053 5054 err = ext4_register_li_request(sb, first_not_zeroed); 5055 if (err) 5056 goto failed_mount6; 5057 5058 err = ext4_register_sysfs(sb); 5059 if (err) 5060 goto failed_mount7; 5061 5062 #ifdef CONFIG_QUOTA 5063 /* Enable quota usage during mount. */ 5064 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 5065 err = ext4_enable_quotas(sb); 5066 if (err) 5067 goto failed_mount8; 5068 } 5069 #endif /* CONFIG_QUOTA */ 5070 5071 /* 5072 * Save the original bdev mapping's wb_err value which could be 5073 * used to detect the metadata async write error. 5074 */ 5075 spin_lock_init(&sbi->s_bdev_wb_lock); 5076 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 5077 &sbi->s_bdev_wb_err); 5078 sb->s_bdev->bd_super = sb; 5079 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 5080 ext4_orphan_cleanup(sb, es); 5081 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 5082 if (needs_recovery) { 5083 ext4_msg(sb, KERN_INFO, "recovery complete"); 5084 err = ext4_mark_recovery_complete(sb, es); 5085 if (err) 5086 goto failed_mount8; 5087 } 5088 if (EXT4_SB(sb)->s_journal) { 5089 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 5090 descr = " journalled data mode"; 5091 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 5092 descr = " ordered data mode"; 5093 else 5094 descr = " writeback data mode"; 5095 } else 5096 descr = "out journal"; 5097 5098 if (test_opt(sb, DISCARD)) { 5099 struct request_queue *q = bdev_get_queue(sb->s_bdev); 5100 if (!blk_queue_discard(q)) 5101 ext4_msg(sb, KERN_WARNING, 5102 "mounting with \"discard\" option, but " 5103 "the device does not support discard"); 5104 } 5105 5106 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 5107 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 5108 "Opts: %.*s%s%s. Quota mode: %s.", descr, 5109 (int) sizeof(sbi->s_es->s_mount_opts), 5110 sbi->s_es->s_mount_opts, 5111 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 5112 ext4_quota_mode(sb)); 5113 5114 if (es->s_error_count) 5115 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 5116 5117 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 5118 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 5119 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 5120 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 5121 atomic_set(&sbi->s_warning_count, 0); 5122 atomic_set(&sbi->s_msg_count, 0); 5123 5124 kfree(orig_data); 5125 return 0; 5126 5127 cantfind_ext4: 5128 if (!silent) 5129 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5130 goto failed_mount; 5131 5132 failed_mount8: 5133 ext4_unregister_sysfs(sb); 5134 kobject_put(&sbi->s_kobj); 5135 failed_mount7: 5136 ext4_unregister_li_request(sb); 5137 failed_mount6: 5138 ext4_mb_release(sb); 5139 rcu_read_lock(); 5140 flex_groups = rcu_dereference(sbi->s_flex_groups); 5141 if (flex_groups) { 5142 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5143 kvfree(flex_groups[i]); 5144 kvfree(flex_groups); 5145 } 5146 rcu_read_unlock(); 5147 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5148 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5149 percpu_counter_destroy(&sbi->s_dirs_counter); 5150 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5151 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5152 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5153 failed_mount5: 5154 ext4_ext_release(sb); 5155 ext4_release_system_zone(sb); 5156 failed_mount4a: 5157 dput(sb->s_root); 5158 sb->s_root = NULL; 5159 failed_mount4: 5160 ext4_msg(sb, KERN_ERR, "mount failed"); 5161 if (EXT4_SB(sb)->rsv_conversion_wq) 5162 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5163 failed_mount_wq: 5164 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5165 sbi->s_ea_inode_cache = NULL; 5166 5167 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5168 sbi->s_ea_block_cache = NULL; 5169 5170 if (sbi->s_journal) { 5171 jbd2_journal_unregister_shrinker(sbi->s_journal); 5172 jbd2_journal_destroy(sbi->s_journal); 5173 sbi->s_journal = NULL; 5174 } 5175 failed_mount3a: 5176 ext4_es_unregister_shrinker(sbi); 5177 failed_mount3: 5178 flush_work(&sbi->s_error_work); 5179 del_timer_sync(&sbi->s_err_report); 5180 ext4_stop_mmpd(sbi); 5181 failed_mount2: 5182 rcu_read_lock(); 5183 group_desc = rcu_dereference(sbi->s_group_desc); 5184 for (i = 0; i < db_count; i++) 5185 brelse(group_desc[i]); 5186 kvfree(group_desc); 5187 rcu_read_unlock(); 5188 failed_mount: 5189 if (sbi->s_chksum_driver) 5190 crypto_free_shash(sbi->s_chksum_driver); 5191 5192 #ifdef CONFIG_UNICODE 5193 utf8_unload(sb->s_encoding); 5194 #endif 5195 5196 #ifdef CONFIG_QUOTA 5197 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5198 kfree(get_qf_name(sb, sbi, i)); 5199 #endif 5200 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5201 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5202 brelse(bh); 5203 ext4_blkdev_remove(sbi); 5204 out_fail: 5205 sb->s_fs_info = NULL; 5206 kfree(sbi->s_blockgroup_lock); 5207 out_free_base: 5208 kfree(sbi); 5209 kfree(orig_data); 5210 fs_put_dax(dax_dev); 5211 return err ? err : ret; 5212 } 5213 5214 /* 5215 * Setup any per-fs journal parameters now. We'll do this both on 5216 * initial mount, once the journal has been initialised but before we've 5217 * done any recovery; and again on any subsequent remount. 5218 */ 5219 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5220 { 5221 struct ext4_sb_info *sbi = EXT4_SB(sb); 5222 5223 journal->j_commit_interval = sbi->s_commit_interval; 5224 journal->j_min_batch_time = sbi->s_min_batch_time; 5225 journal->j_max_batch_time = sbi->s_max_batch_time; 5226 ext4_fc_init(sb, journal); 5227 5228 write_lock(&journal->j_state_lock); 5229 if (test_opt(sb, BARRIER)) 5230 journal->j_flags |= JBD2_BARRIER; 5231 else 5232 journal->j_flags &= ~JBD2_BARRIER; 5233 if (test_opt(sb, DATA_ERR_ABORT)) 5234 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5235 else 5236 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5237 write_unlock(&journal->j_state_lock); 5238 } 5239 5240 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5241 unsigned int journal_inum) 5242 { 5243 struct inode *journal_inode; 5244 5245 /* 5246 * Test for the existence of a valid inode on disk. Bad things 5247 * happen if we iget() an unused inode, as the subsequent iput() 5248 * will try to delete it. 5249 */ 5250 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5251 if (IS_ERR(journal_inode)) { 5252 ext4_msg(sb, KERN_ERR, "no journal found"); 5253 return NULL; 5254 } 5255 if (!journal_inode->i_nlink) { 5256 make_bad_inode(journal_inode); 5257 iput(journal_inode); 5258 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5259 return NULL; 5260 } 5261 5262 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5263 journal_inode, journal_inode->i_size); 5264 if (!S_ISREG(journal_inode->i_mode)) { 5265 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5266 iput(journal_inode); 5267 return NULL; 5268 } 5269 return journal_inode; 5270 } 5271 5272 static journal_t *ext4_get_journal(struct super_block *sb, 5273 unsigned int journal_inum) 5274 { 5275 struct inode *journal_inode; 5276 journal_t *journal; 5277 5278 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5279 return NULL; 5280 5281 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5282 if (!journal_inode) 5283 return NULL; 5284 5285 journal = jbd2_journal_init_inode(journal_inode); 5286 if (!journal) { 5287 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5288 iput(journal_inode); 5289 return NULL; 5290 } 5291 journal->j_private = sb; 5292 ext4_init_journal_params(sb, journal); 5293 return journal; 5294 } 5295 5296 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5297 dev_t j_dev) 5298 { 5299 struct buffer_head *bh; 5300 journal_t *journal; 5301 ext4_fsblk_t start; 5302 ext4_fsblk_t len; 5303 int hblock, blocksize; 5304 ext4_fsblk_t sb_block; 5305 unsigned long offset; 5306 struct ext4_super_block *es; 5307 struct block_device *bdev; 5308 5309 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5310 return NULL; 5311 5312 bdev = ext4_blkdev_get(j_dev, sb); 5313 if (bdev == NULL) 5314 return NULL; 5315 5316 blocksize = sb->s_blocksize; 5317 hblock = bdev_logical_block_size(bdev); 5318 if (blocksize < hblock) { 5319 ext4_msg(sb, KERN_ERR, 5320 "blocksize too small for journal device"); 5321 goto out_bdev; 5322 } 5323 5324 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5325 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5326 set_blocksize(bdev, blocksize); 5327 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5328 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5329 "external journal"); 5330 goto out_bdev; 5331 } 5332 5333 es = (struct ext4_super_block *) (bh->b_data + offset); 5334 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5335 !(le32_to_cpu(es->s_feature_incompat) & 5336 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5337 ext4_msg(sb, KERN_ERR, "external journal has " 5338 "bad superblock"); 5339 brelse(bh); 5340 goto out_bdev; 5341 } 5342 5343 if ((le32_to_cpu(es->s_feature_ro_compat) & 5344 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5345 es->s_checksum != ext4_superblock_csum(sb, es)) { 5346 ext4_msg(sb, KERN_ERR, "external journal has " 5347 "corrupt superblock"); 5348 brelse(bh); 5349 goto out_bdev; 5350 } 5351 5352 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5353 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5354 brelse(bh); 5355 goto out_bdev; 5356 } 5357 5358 len = ext4_blocks_count(es); 5359 start = sb_block + 1; 5360 brelse(bh); /* we're done with the superblock */ 5361 5362 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5363 start, len, blocksize); 5364 if (!journal) { 5365 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5366 goto out_bdev; 5367 } 5368 journal->j_private = sb; 5369 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5370 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5371 goto out_journal; 5372 } 5373 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5374 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5375 "user (unsupported) - %d", 5376 be32_to_cpu(journal->j_superblock->s_nr_users)); 5377 goto out_journal; 5378 } 5379 EXT4_SB(sb)->s_journal_bdev = bdev; 5380 ext4_init_journal_params(sb, journal); 5381 return journal; 5382 5383 out_journal: 5384 jbd2_journal_destroy(journal); 5385 out_bdev: 5386 ext4_blkdev_put(bdev); 5387 return NULL; 5388 } 5389 5390 static int ext4_load_journal(struct super_block *sb, 5391 struct ext4_super_block *es, 5392 unsigned long journal_devnum) 5393 { 5394 journal_t *journal; 5395 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5396 dev_t journal_dev; 5397 int err = 0; 5398 int really_read_only; 5399 int journal_dev_ro; 5400 5401 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5402 return -EFSCORRUPTED; 5403 5404 if (journal_devnum && 5405 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5406 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5407 "numbers have changed"); 5408 journal_dev = new_decode_dev(journal_devnum); 5409 } else 5410 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5411 5412 if (journal_inum && journal_dev) { 5413 ext4_msg(sb, KERN_ERR, 5414 "filesystem has both journal inode and journal device!"); 5415 return -EINVAL; 5416 } 5417 5418 if (journal_inum) { 5419 journal = ext4_get_journal(sb, journal_inum); 5420 if (!journal) 5421 return -EINVAL; 5422 } else { 5423 journal = ext4_get_dev_journal(sb, journal_dev); 5424 if (!journal) 5425 return -EINVAL; 5426 } 5427 5428 journal_dev_ro = bdev_read_only(journal->j_dev); 5429 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5430 5431 if (journal_dev_ro && !sb_rdonly(sb)) { 5432 ext4_msg(sb, KERN_ERR, 5433 "journal device read-only, try mounting with '-o ro'"); 5434 err = -EROFS; 5435 goto err_out; 5436 } 5437 5438 /* 5439 * Are we loading a blank journal or performing recovery after a 5440 * crash? For recovery, we need to check in advance whether we 5441 * can get read-write access to the device. 5442 */ 5443 if (ext4_has_feature_journal_needs_recovery(sb)) { 5444 if (sb_rdonly(sb)) { 5445 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5446 "required on readonly filesystem"); 5447 if (really_read_only) { 5448 ext4_msg(sb, KERN_ERR, "write access " 5449 "unavailable, cannot proceed " 5450 "(try mounting with noload)"); 5451 err = -EROFS; 5452 goto err_out; 5453 } 5454 ext4_msg(sb, KERN_INFO, "write access will " 5455 "be enabled during recovery"); 5456 } 5457 } 5458 5459 if (!(journal->j_flags & JBD2_BARRIER)) 5460 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5461 5462 if (!ext4_has_feature_journal_needs_recovery(sb)) 5463 err = jbd2_journal_wipe(journal, !really_read_only); 5464 if (!err) { 5465 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5466 if (save) 5467 memcpy(save, ((char *) es) + 5468 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5469 err = jbd2_journal_load(journal); 5470 if (save) 5471 memcpy(((char *) es) + EXT4_S_ERR_START, 5472 save, EXT4_S_ERR_LEN); 5473 kfree(save); 5474 } 5475 5476 if (err) { 5477 ext4_msg(sb, KERN_ERR, "error loading journal"); 5478 goto err_out; 5479 } 5480 5481 EXT4_SB(sb)->s_journal = journal; 5482 err = ext4_clear_journal_err(sb, es); 5483 if (err) { 5484 EXT4_SB(sb)->s_journal = NULL; 5485 jbd2_journal_destroy(journal); 5486 return err; 5487 } 5488 5489 if (!really_read_only && journal_devnum && 5490 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5491 es->s_journal_dev = cpu_to_le32(journal_devnum); 5492 5493 /* Make sure we flush the recovery flag to disk. */ 5494 ext4_commit_super(sb); 5495 } 5496 5497 err = jbd2_journal_register_shrinker(journal); 5498 if (err) { 5499 EXT4_SB(sb)->s_journal = NULL; 5500 goto err_out; 5501 } 5502 5503 return 0; 5504 5505 err_out: 5506 jbd2_journal_destroy(journal); 5507 return err; 5508 } 5509 5510 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5511 static void ext4_update_super(struct super_block *sb) 5512 { 5513 struct ext4_sb_info *sbi = EXT4_SB(sb); 5514 struct ext4_super_block *es = sbi->s_es; 5515 struct buffer_head *sbh = sbi->s_sbh; 5516 5517 lock_buffer(sbh); 5518 /* 5519 * If the file system is mounted read-only, don't update the 5520 * superblock write time. This avoids updating the superblock 5521 * write time when we are mounting the root file system 5522 * read/only but we need to replay the journal; at that point, 5523 * for people who are east of GMT and who make their clock 5524 * tick in localtime for Windows bug-for-bug compatibility, 5525 * the clock is set in the future, and this will cause e2fsck 5526 * to complain and force a full file system check. 5527 */ 5528 if (!(sb->s_flags & SB_RDONLY)) 5529 ext4_update_tstamp(es, s_wtime); 5530 es->s_kbytes_written = 5531 cpu_to_le64(sbi->s_kbytes_written + 5532 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5533 sbi->s_sectors_written_start) >> 1)); 5534 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5535 ext4_free_blocks_count_set(es, 5536 EXT4_C2B(sbi, percpu_counter_sum_positive( 5537 &sbi->s_freeclusters_counter))); 5538 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5539 es->s_free_inodes_count = 5540 cpu_to_le32(percpu_counter_sum_positive( 5541 &sbi->s_freeinodes_counter)); 5542 /* Copy error information to the on-disk superblock */ 5543 spin_lock(&sbi->s_error_lock); 5544 if (sbi->s_add_error_count > 0) { 5545 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5546 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5547 __ext4_update_tstamp(&es->s_first_error_time, 5548 &es->s_first_error_time_hi, 5549 sbi->s_first_error_time); 5550 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5551 sizeof(es->s_first_error_func)); 5552 es->s_first_error_line = 5553 cpu_to_le32(sbi->s_first_error_line); 5554 es->s_first_error_ino = 5555 cpu_to_le32(sbi->s_first_error_ino); 5556 es->s_first_error_block = 5557 cpu_to_le64(sbi->s_first_error_block); 5558 es->s_first_error_errcode = 5559 ext4_errno_to_code(sbi->s_first_error_code); 5560 } 5561 __ext4_update_tstamp(&es->s_last_error_time, 5562 &es->s_last_error_time_hi, 5563 sbi->s_last_error_time); 5564 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5565 sizeof(es->s_last_error_func)); 5566 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5567 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5568 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5569 es->s_last_error_errcode = 5570 ext4_errno_to_code(sbi->s_last_error_code); 5571 /* 5572 * Start the daily error reporting function if it hasn't been 5573 * started already 5574 */ 5575 if (!es->s_error_count) 5576 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5577 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5578 sbi->s_add_error_count = 0; 5579 } 5580 spin_unlock(&sbi->s_error_lock); 5581 5582 ext4_superblock_csum_set(sb); 5583 unlock_buffer(sbh); 5584 } 5585 5586 static int ext4_commit_super(struct super_block *sb) 5587 { 5588 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5589 int error = 0; 5590 5591 if (!sbh) 5592 return -EINVAL; 5593 if (block_device_ejected(sb)) 5594 return -ENODEV; 5595 5596 ext4_update_super(sb); 5597 5598 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5599 /* 5600 * Oh, dear. A previous attempt to write the 5601 * superblock failed. This could happen because the 5602 * USB device was yanked out. Or it could happen to 5603 * be a transient write error and maybe the block will 5604 * be remapped. Nothing we can do but to retry the 5605 * write and hope for the best. 5606 */ 5607 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5608 "superblock detected"); 5609 clear_buffer_write_io_error(sbh); 5610 set_buffer_uptodate(sbh); 5611 } 5612 BUFFER_TRACE(sbh, "marking dirty"); 5613 mark_buffer_dirty(sbh); 5614 error = __sync_dirty_buffer(sbh, 5615 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5616 if (buffer_write_io_error(sbh)) { 5617 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5618 "superblock"); 5619 clear_buffer_write_io_error(sbh); 5620 set_buffer_uptodate(sbh); 5621 } 5622 return error; 5623 } 5624 5625 /* 5626 * Have we just finished recovery? If so, and if we are mounting (or 5627 * remounting) the filesystem readonly, then we will end up with a 5628 * consistent fs on disk. Record that fact. 5629 */ 5630 static int ext4_mark_recovery_complete(struct super_block *sb, 5631 struct ext4_super_block *es) 5632 { 5633 int err; 5634 journal_t *journal = EXT4_SB(sb)->s_journal; 5635 5636 if (!ext4_has_feature_journal(sb)) { 5637 if (journal != NULL) { 5638 ext4_error(sb, "Journal got removed while the fs was " 5639 "mounted!"); 5640 return -EFSCORRUPTED; 5641 } 5642 return 0; 5643 } 5644 jbd2_journal_lock_updates(journal); 5645 err = jbd2_journal_flush(journal, 0); 5646 if (err < 0) 5647 goto out; 5648 5649 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5650 ext4_clear_feature_journal_needs_recovery(sb); 5651 ext4_commit_super(sb); 5652 } 5653 out: 5654 jbd2_journal_unlock_updates(journal); 5655 return err; 5656 } 5657 5658 /* 5659 * If we are mounting (or read-write remounting) a filesystem whose journal 5660 * has recorded an error from a previous lifetime, move that error to the 5661 * main filesystem now. 5662 */ 5663 static int ext4_clear_journal_err(struct super_block *sb, 5664 struct ext4_super_block *es) 5665 { 5666 journal_t *journal; 5667 int j_errno; 5668 const char *errstr; 5669 5670 if (!ext4_has_feature_journal(sb)) { 5671 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5672 return -EFSCORRUPTED; 5673 } 5674 5675 journal = EXT4_SB(sb)->s_journal; 5676 5677 /* 5678 * Now check for any error status which may have been recorded in the 5679 * journal by a prior ext4_error() or ext4_abort() 5680 */ 5681 5682 j_errno = jbd2_journal_errno(journal); 5683 if (j_errno) { 5684 char nbuf[16]; 5685 5686 errstr = ext4_decode_error(sb, j_errno, nbuf); 5687 ext4_warning(sb, "Filesystem error recorded " 5688 "from previous mount: %s", errstr); 5689 ext4_warning(sb, "Marking fs in need of filesystem check."); 5690 5691 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5692 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5693 ext4_commit_super(sb); 5694 5695 jbd2_journal_clear_err(journal); 5696 jbd2_journal_update_sb_errno(journal); 5697 } 5698 return 0; 5699 } 5700 5701 /* 5702 * Force the running and committing transactions to commit, 5703 * and wait on the commit. 5704 */ 5705 int ext4_force_commit(struct super_block *sb) 5706 { 5707 journal_t *journal; 5708 5709 if (sb_rdonly(sb)) 5710 return 0; 5711 5712 journal = EXT4_SB(sb)->s_journal; 5713 return ext4_journal_force_commit(journal); 5714 } 5715 5716 static int ext4_sync_fs(struct super_block *sb, int wait) 5717 { 5718 int ret = 0; 5719 tid_t target; 5720 bool needs_barrier = false; 5721 struct ext4_sb_info *sbi = EXT4_SB(sb); 5722 5723 if (unlikely(ext4_forced_shutdown(sbi))) 5724 return 0; 5725 5726 trace_ext4_sync_fs(sb, wait); 5727 flush_workqueue(sbi->rsv_conversion_wq); 5728 /* 5729 * Writeback quota in non-journalled quota case - journalled quota has 5730 * no dirty dquots 5731 */ 5732 dquot_writeback_dquots(sb, -1); 5733 /* 5734 * Data writeback is possible w/o journal transaction, so barrier must 5735 * being sent at the end of the function. But we can skip it if 5736 * transaction_commit will do it for us. 5737 */ 5738 if (sbi->s_journal) { 5739 target = jbd2_get_latest_transaction(sbi->s_journal); 5740 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5741 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5742 needs_barrier = true; 5743 5744 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5745 if (wait) 5746 ret = jbd2_log_wait_commit(sbi->s_journal, 5747 target); 5748 } 5749 } else if (wait && test_opt(sb, BARRIER)) 5750 needs_barrier = true; 5751 if (needs_barrier) { 5752 int err; 5753 err = blkdev_issue_flush(sb->s_bdev); 5754 if (!ret) 5755 ret = err; 5756 } 5757 5758 return ret; 5759 } 5760 5761 /* 5762 * LVM calls this function before a (read-only) snapshot is created. This 5763 * gives us a chance to flush the journal completely and mark the fs clean. 5764 * 5765 * Note that only this function cannot bring a filesystem to be in a clean 5766 * state independently. It relies on upper layer to stop all data & metadata 5767 * modifications. 5768 */ 5769 static int ext4_freeze(struct super_block *sb) 5770 { 5771 int error = 0; 5772 journal_t *journal; 5773 5774 if (sb_rdonly(sb)) 5775 return 0; 5776 5777 journal = EXT4_SB(sb)->s_journal; 5778 5779 if (journal) { 5780 /* Now we set up the journal barrier. */ 5781 jbd2_journal_lock_updates(journal); 5782 5783 /* 5784 * Don't clear the needs_recovery flag if we failed to 5785 * flush the journal. 5786 */ 5787 error = jbd2_journal_flush(journal, 0); 5788 if (error < 0) 5789 goto out; 5790 5791 /* Journal blocked and flushed, clear needs_recovery flag. */ 5792 ext4_clear_feature_journal_needs_recovery(sb); 5793 } 5794 5795 error = ext4_commit_super(sb); 5796 out: 5797 if (journal) 5798 /* we rely on upper layer to stop further updates */ 5799 jbd2_journal_unlock_updates(journal); 5800 return error; 5801 } 5802 5803 /* 5804 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5805 * flag here, even though the filesystem is not technically dirty yet. 5806 */ 5807 static int ext4_unfreeze(struct super_block *sb) 5808 { 5809 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5810 return 0; 5811 5812 if (EXT4_SB(sb)->s_journal) { 5813 /* Reset the needs_recovery flag before the fs is unlocked. */ 5814 ext4_set_feature_journal_needs_recovery(sb); 5815 } 5816 5817 ext4_commit_super(sb); 5818 return 0; 5819 } 5820 5821 /* 5822 * Structure to save mount options for ext4_remount's benefit 5823 */ 5824 struct ext4_mount_options { 5825 unsigned long s_mount_opt; 5826 unsigned long s_mount_opt2; 5827 kuid_t s_resuid; 5828 kgid_t s_resgid; 5829 unsigned long s_commit_interval; 5830 u32 s_min_batch_time, s_max_batch_time; 5831 #ifdef CONFIG_QUOTA 5832 int s_jquota_fmt; 5833 char *s_qf_names[EXT4_MAXQUOTAS]; 5834 #endif 5835 }; 5836 5837 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5838 { 5839 struct ext4_super_block *es; 5840 struct ext4_sb_info *sbi = EXT4_SB(sb); 5841 unsigned long old_sb_flags, vfs_flags; 5842 struct ext4_mount_options old_opts; 5843 int enable_quota = 0; 5844 ext4_group_t g; 5845 int err = 0; 5846 #ifdef CONFIG_QUOTA 5847 int i, j; 5848 char *to_free[EXT4_MAXQUOTAS]; 5849 #endif 5850 char *orig_data = kstrdup(data, GFP_KERNEL); 5851 struct ext4_parsed_options parsed_opts; 5852 5853 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5854 parsed_opts.journal_devnum = 0; 5855 5856 if (data && !orig_data) 5857 return -ENOMEM; 5858 5859 /* Store the original options */ 5860 old_sb_flags = sb->s_flags; 5861 old_opts.s_mount_opt = sbi->s_mount_opt; 5862 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5863 old_opts.s_resuid = sbi->s_resuid; 5864 old_opts.s_resgid = sbi->s_resgid; 5865 old_opts.s_commit_interval = sbi->s_commit_interval; 5866 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5867 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5868 #ifdef CONFIG_QUOTA 5869 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5870 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5871 if (sbi->s_qf_names[i]) { 5872 char *qf_name = get_qf_name(sb, sbi, i); 5873 5874 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5875 if (!old_opts.s_qf_names[i]) { 5876 for (j = 0; j < i; j++) 5877 kfree(old_opts.s_qf_names[j]); 5878 kfree(orig_data); 5879 return -ENOMEM; 5880 } 5881 } else 5882 old_opts.s_qf_names[i] = NULL; 5883 #endif 5884 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5885 parsed_opts.journal_ioprio = 5886 sbi->s_journal->j_task->io_context->ioprio; 5887 5888 /* 5889 * Some options can be enabled by ext4 and/or by VFS mount flag 5890 * either way we need to make sure it matches in both *flags and 5891 * s_flags. Copy those selected flags from *flags to s_flags 5892 */ 5893 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5894 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5895 5896 if (!parse_options(data, sb, &parsed_opts, 1)) { 5897 err = -EINVAL; 5898 goto restore_opts; 5899 } 5900 5901 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5902 test_opt(sb, JOURNAL_CHECKSUM)) { 5903 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5904 "during remount not supported; ignoring"); 5905 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5906 } 5907 5908 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5909 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5910 ext4_msg(sb, KERN_ERR, "can't mount with " 5911 "both data=journal and delalloc"); 5912 err = -EINVAL; 5913 goto restore_opts; 5914 } 5915 if (test_opt(sb, DIOREAD_NOLOCK)) { 5916 ext4_msg(sb, KERN_ERR, "can't mount with " 5917 "both data=journal and dioread_nolock"); 5918 err = -EINVAL; 5919 goto restore_opts; 5920 } 5921 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5922 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5923 ext4_msg(sb, KERN_ERR, "can't mount with " 5924 "journal_async_commit in data=ordered mode"); 5925 err = -EINVAL; 5926 goto restore_opts; 5927 } 5928 } 5929 5930 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5931 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5932 err = -EINVAL; 5933 goto restore_opts; 5934 } 5935 5936 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5937 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5938 5939 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5940 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5941 5942 es = sbi->s_es; 5943 5944 if (sbi->s_journal) { 5945 ext4_init_journal_params(sb, sbi->s_journal); 5946 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 5947 } 5948 5949 /* Flush outstanding errors before changing fs state */ 5950 flush_work(&sbi->s_error_work); 5951 5952 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5953 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5954 err = -EROFS; 5955 goto restore_opts; 5956 } 5957 5958 if (*flags & SB_RDONLY) { 5959 err = sync_filesystem(sb); 5960 if (err < 0) 5961 goto restore_opts; 5962 err = dquot_suspend(sb, -1); 5963 if (err < 0) 5964 goto restore_opts; 5965 5966 /* 5967 * First of all, the unconditional stuff we have to do 5968 * to disable replay of the journal when we next remount 5969 */ 5970 sb->s_flags |= SB_RDONLY; 5971 5972 /* 5973 * OK, test if we are remounting a valid rw partition 5974 * readonly, and if so set the rdonly flag and then 5975 * mark the partition as valid again. 5976 */ 5977 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5978 (sbi->s_mount_state & EXT4_VALID_FS)) 5979 es->s_state = cpu_to_le16(sbi->s_mount_state); 5980 5981 if (sbi->s_journal) { 5982 /* 5983 * We let remount-ro finish even if marking fs 5984 * as clean failed... 5985 */ 5986 ext4_mark_recovery_complete(sb, es); 5987 } 5988 ext4_stop_mmpd(sbi); 5989 } else { 5990 /* Make sure we can mount this feature set readwrite */ 5991 if (ext4_has_feature_readonly(sb) || 5992 !ext4_feature_set_ok(sb, 0)) { 5993 err = -EROFS; 5994 goto restore_opts; 5995 } 5996 /* 5997 * Make sure the group descriptor checksums 5998 * are sane. If they aren't, refuse to remount r/w. 5999 */ 6000 for (g = 0; g < sbi->s_groups_count; g++) { 6001 struct ext4_group_desc *gdp = 6002 ext4_get_group_desc(sb, g, NULL); 6003 6004 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 6005 ext4_msg(sb, KERN_ERR, 6006 "ext4_remount: Checksum for group %u failed (%u!=%u)", 6007 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 6008 le16_to_cpu(gdp->bg_checksum)); 6009 err = -EFSBADCRC; 6010 goto restore_opts; 6011 } 6012 } 6013 6014 /* 6015 * If we have an unprocessed orphan list hanging 6016 * around from a previously readonly bdev mount, 6017 * require a full umount/remount for now. 6018 */ 6019 if (es->s_last_orphan) { 6020 ext4_msg(sb, KERN_WARNING, "Couldn't " 6021 "remount RDWR because of unprocessed " 6022 "orphan inode list. Please " 6023 "umount/remount instead"); 6024 err = -EINVAL; 6025 goto restore_opts; 6026 } 6027 6028 /* 6029 * Mounting a RDONLY partition read-write, so reread 6030 * and store the current valid flag. (It may have 6031 * been changed by e2fsck since we originally mounted 6032 * the partition.) 6033 */ 6034 if (sbi->s_journal) { 6035 err = ext4_clear_journal_err(sb, es); 6036 if (err) 6037 goto restore_opts; 6038 } 6039 sbi->s_mount_state = le16_to_cpu(es->s_state); 6040 6041 err = ext4_setup_super(sb, es, 0); 6042 if (err) 6043 goto restore_opts; 6044 6045 sb->s_flags &= ~SB_RDONLY; 6046 if (ext4_has_feature_mmp(sb)) 6047 if (ext4_multi_mount_protect(sb, 6048 le64_to_cpu(es->s_mmp_block))) { 6049 err = -EROFS; 6050 goto restore_opts; 6051 } 6052 enable_quota = 1; 6053 } 6054 } 6055 6056 /* 6057 * Reinitialize lazy itable initialization thread based on 6058 * current settings 6059 */ 6060 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 6061 ext4_unregister_li_request(sb); 6062 else { 6063 ext4_group_t first_not_zeroed; 6064 first_not_zeroed = ext4_has_uninit_itable(sb); 6065 ext4_register_li_request(sb, first_not_zeroed); 6066 } 6067 6068 /* 6069 * Handle creation of system zone data early because it can fail. 6070 * Releasing of existing data is done when we are sure remount will 6071 * succeed. 6072 */ 6073 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 6074 err = ext4_setup_system_zone(sb); 6075 if (err) 6076 goto restore_opts; 6077 } 6078 6079 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 6080 err = ext4_commit_super(sb); 6081 if (err) 6082 goto restore_opts; 6083 } 6084 6085 #ifdef CONFIG_QUOTA 6086 /* Release old quota file names */ 6087 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6088 kfree(old_opts.s_qf_names[i]); 6089 if (enable_quota) { 6090 if (sb_any_quota_suspended(sb)) 6091 dquot_resume(sb, -1); 6092 else if (ext4_has_feature_quota(sb)) { 6093 err = ext4_enable_quotas(sb); 6094 if (err) 6095 goto restore_opts; 6096 } 6097 } 6098 #endif 6099 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6100 ext4_release_system_zone(sb); 6101 6102 /* 6103 * Some options can be enabled by ext4 and/or by VFS mount flag 6104 * either way we need to make sure it matches in both *flags and 6105 * s_flags. Copy those selected flags from s_flags to *flags 6106 */ 6107 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 6108 6109 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 6110 orig_data, ext4_quota_mode(sb)); 6111 kfree(orig_data); 6112 return 0; 6113 6114 restore_opts: 6115 sb->s_flags = old_sb_flags; 6116 sbi->s_mount_opt = old_opts.s_mount_opt; 6117 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 6118 sbi->s_resuid = old_opts.s_resuid; 6119 sbi->s_resgid = old_opts.s_resgid; 6120 sbi->s_commit_interval = old_opts.s_commit_interval; 6121 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6122 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6123 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6124 ext4_release_system_zone(sb); 6125 #ifdef CONFIG_QUOTA 6126 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6127 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6128 to_free[i] = get_qf_name(sb, sbi, i); 6129 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6130 } 6131 synchronize_rcu(); 6132 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6133 kfree(to_free[i]); 6134 #endif 6135 kfree(orig_data); 6136 return err; 6137 } 6138 6139 #ifdef CONFIG_QUOTA 6140 static int ext4_statfs_project(struct super_block *sb, 6141 kprojid_t projid, struct kstatfs *buf) 6142 { 6143 struct kqid qid; 6144 struct dquot *dquot; 6145 u64 limit; 6146 u64 curblock; 6147 6148 qid = make_kqid_projid(projid); 6149 dquot = dqget(sb, qid); 6150 if (IS_ERR(dquot)) 6151 return PTR_ERR(dquot); 6152 spin_lock(&dquot->dq_dqb_lock); 6153 6154 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6155 dquot->dq_dqb.dqb_bhardlimit); 6156 limit >>= sb->s_blocksize_bits; 6157 6158 if (limit && buf->f_blocks > limit) { 6159 curblock = (dquot->dq_dqb.dqb_curspace + 6160 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6161 buf->f_blocks = limit; 6162 buf->f_bfree = buf->f_bavail = 6163 (buf->f_blocks > curblock) ? 6164 (buf->f_blocks - curblock) : 0; 6165 } 6166 6167 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6168 dquot->dq_dqb.dqb_ihardlimit); 6169 if (limit && buf->f_files > limit) { 6170 buf->f_files = limit; 6171 buf->f_ffree = 6172 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6173 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6174 } 6175 6176 spin_unlock(&dquot->dq_dqb_lock); 6177 dqput(dquot); 6178 return 0; 6179 } 6180 #endif 6181 6182 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6183 { 6184 struct super_block *sb = dentry->d_sb; 6185 struct ext4_sb_info *sbi = EXT4_SB(sb); 6186 struct ext4_super_block *es = sbi->s_es; 6187 ext4_fsblk_t overhead = 0, resv_blocks; 6188 s64 bfree; 6189 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6190 6191 if (!test_opt(sb, MINIX_DF)) 6192 overhead = sbi->s_overhead; 6193 6194 buf->f_type = EXT4_SUPER_MAGIC; 6195 buf->f_bsize = sb->s_blocksize; 6196 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6197 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6198 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6199 /* prevent underflow in case that few free space is available */ 6200 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6201 buf->f_bavail = buf->f_bfree - 6202 (ext4_r_blocks_count(es) + resv_blocks); 6203 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6204 buf->f_bavail = 0; 6205 buf->f_files = le32_to_cpu(es->s_inodes_count); 6206 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6207 buf->f_namelen = EXT4_NAME_LEN; 6208 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6209 6210 #ifdef CONFIG_QUOTA 6211 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6212 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6213 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6214 #endif 6215 return 0; 6216 } 6217 6218 6219 #ifdef CONFIG_QUOTA 6220 6221 /* 6222 * Helper functions so that transaction is started before we acquire dqio_sem 6223 * to keep correct lock ordering of transaction > dqio_sem 6224 */ 6225 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6226 { 6227 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6228 } 6229 6230 static int ext4_write_dquot(struct dquot *dquot) 6231 { 6232 int ret, err; 6233 handle_t *handle; 6234 struct inode *inode; 6235 6236 inode = dquot_to_inode(dquot); 6237 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6238 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6239 if (IS_ERR(handle)) 6240 return PTR_ERR(handle); 6241 ret = dquot_commit(dquot); 6242 err = ext4_journal_stop(handle); 6243 if (!ret) 6244 ret = err; 6245 return ret; 6246 } 6247 6248 static int ext4_acquire_dquot(struct dquot *dquot) 6249 { 6250 int ret, err; 6251 handle_t *handle; 6252 6253 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6254 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6255 if (IS_ERR(handle)) 6256 return PTR_ERR(handle); 6257 ret = dquot_acquire(dquot); 6258 err = ext4_journal_stop(handle); 6259 if (!ret) 6260 ret = err; 6261 return ret; 6262 } 6263 6264 static int ext4_release_dquot(struct dquot *dquot) 6265 { 6266 int ret, err; 6267 handle_t *handle; 6268 6269 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6270 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6271 if (IS_ERR(handle)) { 6272 /* Release dquot anyway to avoid endless cycle in dqput() */ 6273 dquot_release(dquot); 6274 return PTR_ERR(handle); 6275 } 6276 ret = dquot_release(dquot); 6277 err = ext4_journal_stop(handle); 6278 if (!ret) 6279 ret = err; 6280 return ret; 6281 } 6282 6283 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6284 { 6285 struct super_block *sb = dquot->dq_sb; 6286 6287 if (ext4_is_quota_journalled(sb)) { 6288 dquot_mark_dquot_dirty(dquot); 6289 return ext4_write_dquot(dquot); 6290 } else { 6291 return dquot_mark_dquot_dirty(dquot); 6292 } 6293 } 6294 6295 static int ext4_write_info(struct super_block *sb, int type) 6296 { 6297 int ret, err; 6298 handle_t *handle; 6299 6300 /* Data block + inode block */ 6301 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6302 if (IS_ERR(handle)) 6303 return PTR_ERR(handle); 6304 ret = dquot_commit_info(sb, type); 6305 err = ext4_journal_stop(handle); 6306 if (!ret) 6307 ret = err; 6308 return ret; 6309 } 6310 6311 /* 6312 * Turn on quotas during mount time - we need to find 6313 * the quota file and such... 6314 */ 6315 static int ext4_quota_on_mount(struct super_block *sb, int type) 6316 { 6317 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 6318 EXT4_SB(sb)->s_jquota_fmt, type); 6319 } 6320 6321 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6322 { 6323 struct ext4_inode_info *ei = EXT4_I(inode); 6324 6325 /* The first argument of lockdep_set_subclass has to be 6326 * *exactly* the same as the argument to init_rwsem() --- in 6327 * this case, in init_once() --- or lockdep gets unhappy 6328 * because the name of the lock is set using the 6329 * stringification of the argument to init_rwsem(). 6330 */ 6331 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6332 lockdep_set_subclass(&ei->i_data_sem, subclass); 6333 } 6334 6335 /* 6336 * Standard function to be called on quota_on 6337 */ 6338 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6339 const struct path *path) 6340 { 6341 int err; 6342 6343 if (!test_opt(sb, QUOTA)) 6344 return -EINVAL; 6345 6346 /* Quotafile not on the same filesystem? */ 6347 if (path->dentry->d_sb != sb) 6348 return -EXDEV; 6349 6350 /* Quota already enabled for this file? */ 6351 if (IS_NOQUOTA(d_inode(path->dentry))) 6352 return -EBUSY; 6353 6354 /* Journaling quota? */ 6355 if (EXT4_SB(sb)->s_qf_names[type]) { 6356 /* Quotafile not in fs root? */ 6357 if (path->dentry->d_parent != sb->s_root) 6358 ext4_msg(sb, KERN_WARNING, 6359 "Quota file not on filesystem root. " 6360 "Journaled quota will not work"); 6361 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6362 } else { 6363 /* 6364 * Clear the flag just in case mount options changed since 6365 * last time. 6366 */ 6367 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6368 } 6369 6370 /* 6371 * When we journal data on quota file, we have to flush journal to see 6372 * all updates to the file when we bypass pagecache... 6373 */ 6374 if (EXT4_SB(sb)->s_journal && 6375 ext4_should_journal_data(d_inode(path->dentry))) { 6376 /* 6377 * We don't need to lock updates but journal_flush() could 6378 * otherwise be livelocked... 6379 */ 6380 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6381 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6382 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6383 if (err) 6384 return err; 6385 } 6386 6387 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6388 err = dquot_quota_on(sb, type, format_id, path); 6389 if (err) { 6390 lockdep_set_quota_inode(path->dentry->d_inode, 6391 I_DATA_SEM_NORMAL); 6392 } else { 6393 struct inode *inode = d_inode(path->dentry); 6394 handle_t *handle; 6395 6396 /* 6397 * Set inode flags to prevent userspace from messing with quota 6398 * files. If this fails, we return success anyway since quotas 6399 * are already enabled and this is not a hard failure. 6400 */ 6401 inode_lock(inode); 6402 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6403 if (IS_ERR(handle)) 6404 goto unlock_inode; 6405 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6406 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6407 S_NOATIME | S_IMMUTABLE); 6408 err = ext4_mark_inode_dirty(handle, inode); 6409 ext4_journal_stop(handle); 6410 unlock_inode: 6411 inode_unlock(inode); 6412 } 6413 return err; 6414 } 6415 6416 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6417 unsigned int flags) 6418 { 6419 int err; 6420 struct inode *qf_inode; 6421 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6422 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6423 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6424 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6425 }; 6426 6427 BUG_ON(!ext4_has_feature_quota(sb)); 6428 6429 if (!qf_inums[type]) 6430 return -EPERM; 6431 6432 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6433 if (IS_ERR(qf_inode)) { 6434 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6435 return PTR_ERR(qf_inode); 6436 } 6437 6438 /* Don't account quota for quota files to avoid recursion */ 6439 qf_inode->i_flags |= S_NOQUOTA; 6440 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6441 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6442 if (err) 6443 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6444 iput(qf_inode); 6445 6446 return err; 6447 } 6448 6449 /* Enable usage tracking for all quota types. */ 6450 static int ext4_enable_quotas(struct super_block *sb) 6451 { 6452 int type, err = 0; 6453 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6454 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6455 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6456 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6457 }; 6458 bool quota_mopt[EXT4_MAXQUOTAS] = { 6459 test_opt(sb, USRQUOTA), 6460 test_opt(sb, GRPQUOTA), 6461 test_opt(sb, PRJQUOTA), 6462 }; 6463 6464 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6465 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6466 if (qf_inums[type]) { 6467 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6468 DQUOT_USAGE_ENABLED | 6469 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6470 if (err) { 6471 ext4_warning(sb, 6472 "Failed to enable quota tracking " 6473 "(type=%d, err=%d). Please run " 6474 "e2fsck to fix.", type, err); 6475 for (type--; type >= 0; type--) 6476 dquot_quota_off(sb, type); 6477 6478 return err; 6479 } 6480 } 6481 } 6482 return 0; 6483 } 6484 6485 static int ext4_quota_off(struct super_block *sb, int type) 6486 { 6487 struct inode *inode = sb_dqopt(sb)->files[type]; 6488 handle_t *handle; 6489 int err; 6490 6491 /* Force all delayed allocation blocks to be allocated. 6492 * Caller already holds s_umount sem */ 6493 if (test_opt(sb, DELALLOC)) 6494 sync_filesystem(sb); 6495 6496 if (!inode || !igrab(inode)) 6497 goto out; 6498 6499 err = dquot_quota_off(sb, type); 6500 if (err || ext4_has_feature_quota(sb)) 6501 goto out_put; 6502 6503 inode_lock(inode); 6504 /* 6505 * Update modification times of quota files when userspace can 6506 * start looking at them. If we fail, we return success anyway since 6507 * this is not a hard failure and quotas are already disabled. 6508 */ 6509 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6510 if (IS_ERR(handle)) { 6511 err = PTR_ERR(handle); 6512 goto out_unlock; 6513 } 6514 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6515 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6516 inode->i_mtime = inode->i_ctime = current_time(inode); 6517 err = ext4_mark_inode_dirty(handle, inode); 6518 ext4_journal_stop(handle); 6519 out_unlock: 6520 inode_unlock(inode); 6521 out_put: 6522 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6523 iput(inode); 6524 return err; 6525 out: 6526 return dquot_quota_off(sb, type); 6527 } 6528 6529 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6530 * acquiring the locks... As quota files are never truncated and quota code 6531 * itself serializes the operations (and no one else should touch the files) 6532 * we don't have to be afraid of races */ 6533 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6534 size_t len, loff_t off) 6535 { 6536 struct inode *inode = sb_dqopt(sb)->files[type]; 6537 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6538 int offset = off & (sb->s_blocksize - 1); 6539 int tocopy; 6540 size_t toread; 6541 struct buffer_head *bh; 6542 loff_t i_size = i_size_read(inode); 6543 6544 if (off > i_size) 6545 return 0; 6546 if (off+len > i_size) 6547 len = i_size-off; 6548 toread = len; 6549 while (toread > 0) { 6550 tocopy = sb->s_blocksize - offset < toread ? 6551 sb->s_blocksize - offset : toread; 6552 bh = ext4_bread(NULL, inode, blk, 0); 6553 if (IS_ERR(bh)) 6554 return PTR_ERR(bh); 6555 if (!bh) /* A hole? */ 6556 memset(data, 0, tocopy); 6557 else 6558 memcpy(data, bh->b_data+offset, tocopy); 6559 brelse(bh); 6560 offset = 0; 6561 toread -= tocopy; 6562 data += tocopy; 6563 blk++; 6564 } 6565 return len; 6566 } 6567 6568 /* Write to quotafile (we know the transaction is already started and has 6569 * enough credits) */ 6570 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6571 const char *data, size_t len, loff_t off) 6572 { 6573 struct inode *inode = sb_dqopt(sb)->files[type]; 6574 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6575 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6576 int retries = 0; 6577 struct buffer_head *bh; 6578 handle_t *handle = journal_current_handle(); 6579 6580 if (EXT4_SB(sb)->s_journal && !handle) { 6581 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6582 " cancelled because transaction is not started", 6583 (unsigned long long)off, (unsigned long long)len); 6584 return -EIO; 6585 } 6586 /* 6587 * Since we account only one data block in transaction credits, 6588 * then it is impossible to cross a block boundary. 6589 */ 6590 if (sb->s_blocksize - offset < len) { 6591 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6592 " cancelled because not block aligned", 6593 (unsigned long long)off, (unsigned long long)len); 6594 return -EIO; 6595 } 6596 6597 do { 6598 bh = ext4_bread(handle, inode, blk, 6599 EXT4_GET_BLOCKS_CREATE | 6600 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6601 } while (PTR_ERR(bh) == -ENOSPC && 6602 ext4_should_retry_alloc(inode->i_sb, &retries)); 6603 if (IS_ERR(bh)) 6604 return PTR_ERR(bh); 6605 if (!bh) 6606 goto out; 6607 BUFFER_TRACE(bh, "get write access"); 6608 err = ext4_journal_get_write_access(handle, bh); 6609 if (err) { 6610 brelse(bh); 6611 return err; 6612 } 6613 lock_buffer(bh); 6614 memcpy(bh->b_data+offset, data, len); 6615 flush_dcache_page(bh->b_page); 6616 unlock_buffer(bh); 6617 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6618 brelse(bh); 6619 out: 6620 if (inode->i_size < off + len) { 6621 i_size_write(inode, off + len); 6622 EXT4_I(inode)->i_disksize = inode->i_size; 6623 err2 = ext4_mark_inode_dirty(handle, inode); 6624 if (unlikely(err2 && !err)) 6625 err = err2; 6626 } 6627 return err ? err : len; 6628 } 6629 #endif 6630 6631 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6632 const char *dev_name, void *data) 6633 { 6634 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6635 } 6636 6637 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6638 static inline void register_as_ext2(void) 6639 { 6640 int err = register_filesystem(&ext2_fs_type); 6641 if (err) 6642 printk(KERN_WARNING 6643 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6644 } 6645 6646 static inline void unregister_as_ext2(void) 6647 { 6648 unregister_filesystem(&ext2_fs_type); 6649 } 6650 6651 static inline int ext2_feature_set_ok(struct super_block *sb) 6652 { 6653 if (ext4_has_unknown_ext2_incompat_features(sb)) 6654 return 0; 6655 if (sb_rdonly(sb)) 6656 return 1; 6657 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6658 return 0; 6659 return 1; 6660 } 6661 #else 6662 static inline void register_as_ext2(void) { } 6663 static inline void unregister_as_ext2(void) { } 6664 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6665 #endif 6666 6667 static inline void register_as_ext3(void) 6668 { 6669 int err = register_filesystem(&ext3_fs_type); 6670 if (err) 6671 printk(KERN_WARNING 6672 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6673 } 6674 6675 static inline void unregister_as_ext3(void) 6676 { 6677 unregister_filesystem(&ext3_fs_type); 6678 } 6679 6680 static inline int ext3_feature_set_ok(struct super_block *sb) 6681 { 6682 if (ext4_has_unknown_ext3_incompat_features(sb)) 6683 return 0; 6684 if (!ext4_has_feature_journal(sb)) 6685 return 0; 6686 if (sb_rdonly(sb)) 6687 return 1; 6688 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6689 return 0; 6690 return 1; 6691 } 6692 6693 static struct file_system_type ext4_fs_type = { 6694 .owner = THIS_MODULE, 6695 .name = "ext4", 6696 .mount = ext4_mount, 6697 .kill_sb = kill_block_super, 6698 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 6699 }; 6700 MODULE_ALIAS_FS("ext4"); 6701 6702 /* Shared across all ext4 file systems */ 6703 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6704 6705 static int __init ext4_init_fs(void) 6706 { 6707 int i, err; 6708 6709 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6710 ext4_li_info = NULL; 6711 6712 /* Build-time check for flags consistency */ 6713 ext4_check_flag_values(); 6714 6715 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6716 init_waitqueue_head(&ext4__ioend_wq[i]); 6717 6718 err = ext4_init_es(); 6719 if (err) 6720 return err; 6721 6722 err = ext4_init_pending(); 6723 if (err) 6724 goto out7; 6725 6726 err = ext4_init_post_read_processing(); 6727 if (err) 6728 goto out6; 6729 6730 err = ext4_init_pageio(); 6731 if (err) 6732 goto out5; 6733 6734 err = ext4_init_system_zone(); 6735 if (err) 6736 goto out4; 6737 6738 err = ext4_init_sysfs(); 6739 if (err) 6740 goto out3; 6741 6742 err = ext4_init_mballoc(); 6743 if (err) 6744 goto out2; 6745 err = init_inodecache(); 6746 if (err) 6747 goto out1; 6748 6749 err = ext4_fc_init_dentry_cache(); 6750 if (err) 6751 goto out05; 6752 6753 register_as_ext3(); 6754 register_as_ext2(); 6755 err = register_filesystem(&ext4_fs_type); 6756 if (err) 6757 goto out; 6758 6759 return 0; 6760 out: 6761 unregister_as_ext2(); 6762 unregister_as_ext3(); 6763 out05: 6764 destroy_inodecache(); 6765 out1: 6766 ext4_exit_mballoc(); 6767 out2: 6768 ext4_exit_sysfs(); 6769 out3: 6770 ext4_exit_system_zone(); 6771 out4: 6772 ext4_exit_pageio(); 6773 out5: 6774 ext4_exit_post_read_processing(); 6775 out6: 6776 ext4_exit_pending(); 6777 out7: 6778 ext4_exit_es(); 6779 6780 return err; 6781 } 6782 6783 static void __exit ext4_exit_fs(void) 6784 { 6785 ext4_destroy_lazyinit_thread(); 6786 unregister_as_ext2(); 6787 unregister_as_ext3(); 6788 unregister_filesystem(&ext4_fs_type); 6789 destroy_inodecache(); 6790 ext4_exit_mballoc(); 6791 ext4_exit_sysfs(); 6792 ext4_exit_system_zone(); 6793 ext4_exit_pageio(); 6794 ext4_exit_post_read_processing(); 6795 ext4_exit_es(); 6796 ext4_exit_pending(); 6797 } 6798 6799 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6800 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6801 MODULE_LICENSE("GPL"); 6802 MODULE_SOFTDEP("pre: crc32c"); 6803 module_init(ext4_init_fs) 6804 module_exit(ext4_exit_fs) 6805