xref: /openbmc/linux/fs/ext4/super.c (revision 1d7a0395)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19 
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 #include "ext4.h"
51 #include "ext4_extents.h"	/* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60 
61 static struct ext4_lazy_init *ext4_li_info;
62 static DEFINE_MUTEX(ext4_li_mtx);
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 			     unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 					struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 				  struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 		       const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 					    unsigned int journal_inum);
89 
90 /*
91  * Lock ordering
92  *
93  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94  * i_mmap_rwsem (inode->i_mmap_rwsem)!
95  *
96  * page fault path:
97  * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98  *   page lock -> i_data_sem (rw)
99  *
100  * buffered write path:
101  * sb_start_write -> i_mutex -> mmap_lock
102  * sb_start_write -> i_mutex -> transaction start -> page lock ->
103  *   i_data_sem (rw)
104  *
105  * truncate:
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108  *   i_data_sem (rw)
109  *
110  * direct IO:
111  * sb_start_write -> i_mutex -> mmap_lock
112  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113  *
114  * writepages:
115  * transaction start -> page lock(s) -> i_data_sem (rw)
116  */
117 
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 	.owner		= THIS_MODULE,
121 	.name		= "ext2",
122 	.mount		= ext4_mount,
123 	.kill_sb	= kill_block_super,
124 	.fs_flags	= FS_REQUIRES_DEV,
125 };
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
132 
133 
134 static struct file_system_type ext3_fs_type = {
135 	.owner		= THIS_MODULE,
136 	.name		= "ext3",
137 	.mount		= ext4_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144 
145 
146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 				  bh_end_io_t *end_io)
148 {
149 	/*
150 	 * buffer's verified bit is no longer valid after reading from
151 	 * disk again due to write out error, clear it to make sure we
152 	 * recheck the buffer contents.
153 	 */
154 	clear_buffer_verified(bh);
155 
156 	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 	get_bh(bh);
158 	submit_bh(REQ_OP_READ, op_flags, bh);
159 }
160 
161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 			 bh_end_io_t *end_io)
163 {
164 	BUG_ON(!buffer_locked(bh));
165 
166 	if (ext4_buffer_uptodate(bh)) {
167 		unlock_buffer(bh);
168 		return;
169 	}
170 	__ext4_read_bh(bh, op_flags, end_io);
171 }
172 
173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 {
175 	BUG_ON(!buffer_locked(bh));
176 
177 	if (ext4_buffer_uptodate(bh)) {
178 		unlock_buffer(bh);
179 		return 0;
180 	}
181 
182 	__ext4_read_bh(bh, op_flags, end_io);
183 
184 	wait_on_buffer(bh);
185 	if (buffer_uptodate(bh))
186 		return 0;
187 	return -EIO;
188 }
189 
190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 {
192 	if (trylock_buffer(bh)) {
193 		if (wait)
194 			return ext4_read_bh(bh, op_flags, NULL);
195 		ext4_read_bh_nowait(bh, op_flags, NULL);
196 		return 0;
197 	}
198 	if (wait) {
199 		wait_on_buffer(bh);
200 		if (buffer_uptodate(bh))
201 			return 0;
202 		return -EIO;
203 	}
204 	return 0;
205 }
206 
207 /*
208  * This works like __bread_gfp() except it uses ERR_PTR for error
209  * returns.  Currently with sb_bread it's impossible to distinguish
210  * between ENOMEM and EIO situations (since both result in a NULL
211  * return.
212  */
213 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
214 					       sector_t block, int op_flags,
215 					       gfp_t gfp)
216 {
217 	struct buffer_head *bh;
218 	int ret;
219 
220 	bh = sb_getblk_gfp(sb, block, gfp);
221 	if (bh == NULL)
222 		return ERR_PTR(-ENOMEM);
223 	if (ext4_buffer_uptodate(bh))
224 		return bh;
225 
226 	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
227 	if (ret) {
228 		put_bh(bh);
229 		return ERR_PTR(ret);
230 	}
231 	return bh;
232 }
233 
234 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
235 				   int op_flags)
236 {
237 	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
238 }
239 
240 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
241 					    sector_t block)
242 {
243 	return __ext4_sb_bread_gfp(sb, block, 0, 0);
244 }
245 
246 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
247 {
248 	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
249 
250 	if (likely(bh)) {
251 		ext4_read_bh_lock(bh, REQ_RAHEAD, false);
252 		brelse(bh);
253 	}
254 }
255 
256 static int ext4_verify_csum_type(struct super_block *sb,
257 				 struct ext4_super_block *es)
258 {
259 	if (!ext4_has_feature_metadata_csum(sb))
260 		return 1;
261 
262 	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
263 }
264 
265 static __le32 ext4_superblock_csum(struct super_block *sb,
266 				   struct ext4_super_block *es)
267 {
268 	struct ext4_sb_info *sbi = EXT4_SB(sb);
269 	int offset = offsetof(struct ext4_super_block, s_checksum);
270 	__u32 csum;
271 
272 	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
273 
274 	return cpu_to_le32(csum);
275 }
276 
277 static int ext4_superblock_csum_verify(struct super_block *sb,
278 				       struct ext4_super_block *es)
279 {
280 	if (!ext4_has_metadata_csum(sb))
281 		return 1;
282 
283 	return es->s_checksum == ext4_superblock_csum(sb, es);
284 }
285 
286 void ext4_superblock_csum_set(struct super_block *sb)
287 {
288 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
289 
290 	if (!ext4_has_metadata_csum(sb))
291 		return;
292 
293 	es->s_checksum = ext4_superblock_csum(sb, es);
294 }
295 
296 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
297 			       struct ext4_group_desc *bg)
298 {
299 	return le32_to_cpu(bg->bg_block_bitmap_lo) |
300 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
301 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
302 }
303 
304 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
305 			       struct ext4_group_desc *bg)
306 {
307 	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
308 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
309 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
310 }
311 
312 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
313 			      struct ext4_group_desc *bg)
314 {
315 	return le32_to_cpu(bg->bg_inode_table_lo) |
316 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
318 }
319 
320 __u32 ext4_free_group_clusters(struct super_block *sb,
321 			       struct ext4_group_desc *bg)
322 {
323 	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
324 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
326 }
327 
328 __u32 ext4_free_inodes_count(struct super_block *sb,
329 			      struct ext4_group_desc *bg)
330 {
331 	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
332 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
334 }
335 
336 __u32 ext4_used_dirs_count(struct super_block *sb,
337 			      struct ext4_group_desc *bg)
338 {
339 	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
340 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
342 }
343 
344 __u32 ext4_itable_unused_count(struct super_block *sb,
345 			      struct ext4_group_desc *bg)
346 {
347 	return le16_to_cpu(bg->bg_itable_unused_lo) |
348 		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
350 }
351 
352 void ext4_block_bitmap_set(struct super_block *sb,
353 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
354 {
355 	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
356 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
357 		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
358 }
359 
360 void ext4_inode_bitmap_set(struct super_block *sb,
361 			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
362 {
363 	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
364 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
365 		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
366 }
367 
368 void ext4_inode_table_set(struct super_block *sb,
369 			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
370 {
371 	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
372 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
374 }
375 
376 void ext4_free_group_clusters_set(struct super_block *sb,
377 				  struct ext4_group_desc *bg, __u32 count)
378 {
379 	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
380 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
382 }
383 
384 void ext4_free_inodes_set(struct super_block *sb,
385 			  struct ext4_group_desc *bg, __u32 count)
386 {
387 	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
388 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
390 }
391 
392 void ext4_used_dirs_set(struct super_block *sb,
393 			  struct ext4_group_desc *bg, __u32 count)
394 {
395 	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
396 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
398 }
399 
400 void ext4_itable_unused_set(struct super_block *sb,
401 			  struct ext4_group_desc *bg, __u32 count)
402 {
403 	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
404 	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
406 }
407 
408 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
409 {
410 	now = clamp_val(now, 0, (1ull << 40) - 1);
411 
412 	*lo = cpu_to_le32(lower_32_bits(now));
413 	*hi = upper_32_bits(now);
414 }
415 
416 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
417 {
418 	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
419 }
420 #define ext4_update_tstamp(es, tstamp) \
421 	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
422 			     ktime_get_real_seconds())
423 #define ext4_get_tstamp(es, tstamp) \
424 	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
425 
426 /*
427  * The del_gendisk() function uninitializes the disk-specific data
428  * structures, including the bdi structure, without telling anyone
429  * else.  Once this happens, any attempt to call mark_buffer_dirty()
430  * (for example, by ext4_commit_super), will cause a kernel OOPS.
431  * This is a kludge to prevent these oops until we can put in a proper
432  * hook in del_gendisk() to inform the VFS and file system layers.
433  */
434 static int block_device_ejected(struct super_block *sb)
435 {
436 	struct inode *bd_inode = sb->s_bdev->bd_inode;
437 	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
438 
439 	return bdi->dev == NULL;
440 }
441 
442 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
443 {
444 	struct super_block		*sb = journal->j_private;
445 	struct ext4_sb_info		*sbi = EXT4_SB(sb);
446 	int				error = is_journal_aborted(journal);
447 	struct ext4_journal_cb_entry	*jce;
448 
449 	BUG_ON(txn->t_state == T_FINISHED);
450 
451 	ext4_process_freed_data(sb, txn->t_tid);
452 
453 	spin_lock(&sbi->s_md_lock);
454 	while (!list_empty(&txn->t_private_list)) {
455 		jce = list_entry(txn->t_private_list.next,
456 				 struct ext4_journal_cb_entry, jce_list);
457 		list_del_init(&jce->jce_list);
458 		spin_unlock(&sbi->s_md_lock);
459 		jce->jce_func(sb, jce, error);
460 		spin_lock(&sbi->s_md_lock);
461 	}
462 	spin_unlock(&sbi->s_md_lock);
463 }
464 
465 /*
466  * This writepage callback for write_cache_pages()
467  * takes care of a few cases after page cleaning.
468  *
469  * write_cache_pages() already checks for dirty pages
470  * and calls clear_page_dirty_for_io(), which we want,
471  * to write protect the pages.
472  *
473  * However, we may have to redirty a page (see below.)
474  */
475 static int ext4_journalled_writepage_callback(struct page *page,
476 					      struct writeback_control *wbc,
477 					      void *data)
478 {
479 	transaction_t *transaction = (transaction_t *) data;
480 	struct buffer_head *bh, *head;
481 	struct journal_head *jh;
482 
483 	bh = head = page_buffers(page);
484 	do {
485 		/*
486 		 * We have to redirty a page in these cases:
487 		 * 1) If buffer is dirty, it means the page was dirty because it
488 		 * contains a buffer that needs checkpointing. So the dirty bit
489 		 * needs to be preserved so that checkpointing writes the buffer
490 		 * properly.
491 		 * 2) If buffer is not part of the committing transaction
492 		 * (we may have just accidentally come across this buffer because
493 		 * inode range tracking is not exact) or if the currently running
494 		 * transaction already contains this buffer as well, dirty bit
495 		 * needs to be preserved so that the buffer gets writeprotected
496 		 * properly on running transaction's commit.
497 		 */
498 		jh = bh2jh(bh);
499 		if (buffer_dirty(bh) ||
500 		    (jh && (jh->b_transaction != transaction ||
501 			    jh->b_next_transaction))) {
502 			redirty_page_for_writepage(wbc, page);
503 			goto out;
504 		}
505 	} while ((bh = bh->b_this_page) != head);
506 
507 out:
508 	return AOP_WRITEPAGE_ACTIVATE;
509 }
510 
511 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
512 {
513 	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
514 	struct writeback_control wbc = {
515 		.sync_mode =  WB_SYNC_ALL,
516 		.nr_to_write = LONG_MAX,
517 		.range_start = jinode->i_dirty_start,
518 		.range_end = jinode->i_dirty_end,
519         };
520 
521 	return write_cache_pages(mapping, &wbc,
522 				 ext4_journalled_writepage_callback,
523 				 jinode->i_transaction);
524 }
525 
526 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
527 {
528 	int ret;
529 
530 	if (ext4_should_journal_data(jinode->i_vfs_inode))
531 		ret = ext4_journalled_submit_inode_data_buffers(jinode);
532 	else
533 		ret = jbd2_journal_submit_inode_data_buffers(jinode);
534 
535 	return ret;
536 }
537 
538 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
539 {
540 	int ret = 0;
541 
542 	if (!ext4_should_journal_data(jinode->i_vfs_inode))
543 		ret = jbd2_journal_finish_inode_data_buffers(jinode);
544 
545 	return ret;
546 }
547 
548 static bool system_going_down(void)
549 {
550 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
551 		|| system_state == SYSTEM_RESTART;
552 }
553 
554 struct ext4_err_translation {
555 	int code;
556 	int errno;
557 };
558 
559 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
560 
561 static struct ext4_err_translation err_translation[] = {
562 	EXT4_ERR_TRANSLATE(EIO),
563 	EXT4_ERR_TRANSLATE(ENOMEM),
564 	EXT4_ERR_TRANSLATE(EFSBADCRC),
565 	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
566 	EXT4_ERR_TRANSLATE(ENOSPC),
567 	EXT4_ERR_TRANSLATE(ENOKEY),
568 	EXT4_ERR_TRANSLATE(EROFS),
569 	EXT4_ERR_TRANSLATE(EFBIG),
570 	EXT4_ERR_TRANSLATE(EEXIST),
571 	EXT4_ERR_TRANSLATE(ERANGE),
572 	EXT4_ERR_TRANSLATE(EOVERFLOW),
573 	EXT4_ERR_TRANSLATE(EBUSY),
574 	EXT4_ERR_TRANSLATE(ENOTDIR),
575 	EXT4_ERR_TRANSLATE(ENOTEMPTY),
576 	EXT4_ERR_TRANSLATE(ESHUTDOWN),
577 	EXT4_ERR_TRANSLATE(EFAULT),
578 };
579 
580 static int ext4_errno_to_code(int errno)
581 {
582 	int i;
583 
584 	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
585 		if (err_translation[i].errno == errno)
586 			return err_translation[i].code;
587 	return EXT4_ERR_UNKNOWN;
588 }
589 
590 static void save_error_info(struct super_block *sb, int error,
591 			    __u32 ino, __u64 block,
592 			    const char *func, unsigned int line)
593 {
594 	struct ext4_sb_info *sbi = EXT4_SB(sb);
595 
596 	/* We default to EFSCORRUPTED error... */
597 	if (error == 0)
598 		error = EFSCORRUPTED;
599 
600 	spin_lock(&sbi->s_error_lock);
601 	sbi->s_add_error_count++;
602 	sbi->s_last_error_code = error;
603 	sbi->s_last_error_line = line;
604 	sbi->s_last_error_ino = ino;
605 	sbi->s_last_error_block = block;
606 	sbi->s_last_error_func = func;
607 	sbi->s_last_error_time = ktime_get_real_seconds();
608 	if (!sbi->s_first_error_time) {
609 		sbi->s_first_error_code = error;
610 		sbi->s_first_error_line = line;
611 		sbi->s_first_error_ino = ino;
612 		sbi->s_first_error_block = block;
613 		sbi->s_first_error_func = func;
614 		sbi->s_first_error_time = sbi->s_last_error_time;
615 	}
616 	spin_unlock(&sbi->s_error_lock);
617 }
618 
619 /* Deal with the reporting of failure conditions on a filesystem such as
620  * inconsistencies detected or read IO failures.
621  *
622  * On ext2, we can store the error state of the filesystem in the
623  * superblock.  That is not possible on ext4, because we may have other
624  * write ordering constraints on the superblock which prevent us from
625  * writing it out straight away; and given that the journal is about to
626  * be aborted, we can't rely on the current, or future, transactions to
627  * write out the superblock safely.
628  *
629  * We'll just use the jbd2_journal_abort() error code to record an error in
630  * the journal instead.  On recovery, the journal will complain about
631  * that error until we've noted it down and cleared it.
632  *
633  * If force_ro is set, we unconditionally force the filesystem into an
634  * ABORT|READONLY state, unless the error response on the fs has been set to
635  * panic in which case we take the easy way out and panic immediately. This is
636  * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
637  * at a critical moment in log management.
638  */
639 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
640 			      __u32 ino, __u64 block,
641 			      const char *func, unsigned int line)
642 {
643 	journal_t *journal = EXT4_SB(sb)->s_journal;
644 	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
645 
646 	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
647 	if (test_opt(sb, WARN_ON_ERROR))
648 		WARN_ON_ONCE(1);
649 
650 	if (!continue_fs && !sb_rdonly(sb)) {
651 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
652 		if (journal)
653 			jbd2_journal_abort(journal, -EIO);
654 	}
655 
656 	if (!bdev_read_only(sb->s_bdev)) {
657 		save_error_info(sb, error, ino, block, func, line);
658 		/*
659 		 * In case the fs should keep running, we need to writeout
660 		 * superblock through the journal. Due to lock ordering
661 		 * constraints, it may not be safe to do it right here so we
662 		 * defer superblock flushing to a workqueue.
663 		 */
664 		if (continue_fs)
665 			schedule_work(&EXT4_SB(sb)->s_error_work);
666 		else
667 			ext4_commit_super(sb);
668 	}
669 
670 	/*
671 	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
672 	 * could panic during 'reboot -f' as the underlying device got already
673 	 * disabled.
674 	 */
675 	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
676 		panic("EXT4-fs (device %s): panic forced after error\n",
677 			sb->s_id);
678 	}
679 
680 	if (sb_rdonly(sb) || continue_fs)
681 		return;
682 
683 	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
684 	/*
685 	 * Make sure updated value of ->s_mount_flags will be visible before
686 	 * ->s_flags update
687 	 */
688 	smp_wmb();
689 	sb->s_flags |= SB_RDONLY;
690 }
691 
692 static void flush_stashed_error_work(struct work_struct *work)
693 {
694 	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
695 						s_error_work);
696 	journal_t *journal = sbi->s_journal;
697 	handle_t *handle;
698 
699 	/*
700 	 * If the journal is still running, we have to write out superblock
701 	 * through the journal to avoid collisions of other journalled sb
702 	 * updates.
703 	 *
704 	 * We use directly jbd2 functions here to avoid recursing back into
705 	 * ext4 error handling code during handling of previous errors.
706 	 */
707 	if (!sb_rdonly(sbi->s_sb) && journal) {
708 		handle = jbd2_journal_start(journal, 1);
709 		if (IS_ERR(handle))
710 			goto write_directly;
711 		if (jbd2_journal_get_write_access(handle, sbi->s_sbh)) {
712 			jbd2_journal_stop(handle);
713 			goto write_directly;
714 		}
715 		ext4_update_super(sbi->s_sb);
716 		if (jbd2_journal_dirty_metadata(handle, sbi->s_sbh)) {
717 			jbd2_journal_stop(handle);
718 			goto write_directly;
719 		}
720 		jbd2_journal_stop(handle);
721 		ext4_notify_error_sysfs(sbi);
722 		return;
723 	}
724 write_directly:
725 	/*
726 	 * Write through journal failed. Write sb directly to get error info
727 	 * out and hope for the best.
728 	 */
729 	ext4_commit_super(sbi->s_sb);
730 	ext4_notify_error_sysfs(sbi);
731 }
732 
733 #define ext4_error_ratelimit(sb)					\
734 		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
735 			     "EXT4-fs error")
736 
737 void __ext4_error(struct super_block *sb, const char *function,
738 		  unsigned int line, bool force_ro, int error, __u64 block,
739 		  const char *fmt, ...)
740 {
741 	struct va_format vaf;
742 	va_list args;
743 
744 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
745 		return;
746 
747 	trace_ext4_error(sb, function, line);
748 	if (ext4_error_ratelimit(sb)) {
749 		va_start(args, fmt);
750 		vaf.fmt = fmt;
751 		vaf.va = &args;
752 		printk(KERN_CRIT
753 		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
754 		       sb->s_id, function, line, current->comm, &vaf);
755 		va_end(args);
756 	}
757 	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
758 }
759 
760 void __ext4_error_inode(struct inode *inode, const char *function,
761 			unsigned int line, ext4_fsblk_t block, int error,
762 			const char *fmt, ...)
763 {
764 	va_list args;
765 	struct va_format vaf;
766 
767 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
768 		return;
769 
770 	trace_ext4_error(inode->i_sb, function, line);
771 	if (ext4_error_ratelimit(inode->i_sb)) {
772 		va_start(args, fmt);
773 		vaf.fmt = fmt;
774 		vaf.va = &args;
775 		if (block)
776 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
777 			       "inode #%lu: block %llu: comm %s: %pV\n",
778 			       inode->i_sb->s_id, function, line, inode->i_ino,
779 			       block, current->comm, &vaf);
780 		else
781 			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
782 			       "inode #%lu: comm %s: %pV\n",
783 			       inode->i_sb->s_id, function, line, inode->i_ino,
784 			       current->comm, &vaf);
785 		va_end(args);
786 	}
787 	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
788 			  function, line);
789 }
790 
791 void __ext4_error_file(struct file *file, const char *function,
792 		       unsigned int line, ext4_fsblk_t block,
793 		       const char *fmt, ...)
794 {
795 	va_list args;
796 	struct va_format vaf;
797 	struct inode *inode = file_inode(file);
798 	char pathname[80], *path;
799 
800 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
801 		return;
802 
803 	trace_ext4_error(inode->i_sb, function, line);
804 	if (ext4_error_ratelimit(inode->i_sb)) {
805 		path = file_path(file, pathname, sizeof(pathname));
806 		if (IS_ERR(path))
807 			path = "(unknown)";
808 		va_start(args, fmt);
809 		vaf.fmt = fmt;
810 		vaf.va = &args;
811 		if (block)
812 			printk(KERN_CRIT
813 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
814 			       "block %llu: comm %s: path %s: %pV\n",
815 			       inode->i_sb->s_id, function, line, inode->i_ino,
816 			       block, current->comm, path, &vaf);
817 		else
818 			printk(KERN_CRIT
819 			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
820 			       "comm %s: path %s: %pV\n",
821 			       inode->i_sb->s_id, function, line, inode->i_ino,
822 			       current->comm, path, &vaf);
823 		va_end(args);
824 	}
825 	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
826 			  function, line);
827 }
828 
829 const char *ext4_decode_error(struct super_block *sb, int errno,
830 			      char nbuf[16])
831 {
832 	char *errstr = NULL;
833 
834 	switch (errno) {
835 	case -EFSCORRUPTED:
836 		errstr = "Corrupt filesystem";
837 		break;
838 	case -EFSBADCRC:
839 		errstr = "Filesystem failed CRC";
840 		break;
841 	case -EIO:
842 		errstr = "IO failure";
843 		break;
844 	case -ENOMEM:
845 		errstr = "Out of memory";
846 		break;
847 	case -EROFS:
848 		if (!sb || (EXT4_SB(sb)->s_journal &&
849 			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
850 			errstr = "Journal has aborted";
851 		else
852 			errstr = "Readonly filesystem";
853 		break;
854 	default:
855 		/* If the caller passed in an extra buffer for unknown
856 		 * errors, textualise them now.  Else we just return
857 		 * NULL. */
858 		if (nbuf) {
859 			/* Check for truncated error codes... */
860 			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
861 				errstr = nbuf;
862 		}
863 		break;
864 	}
865 
866 	return errstr;
867 }
868 
869 /* __ext4_std_error decodes expected errors from journaling functions
870  * automatically and invokes the appropriate error response.  */
871 
872 void __ext4_std_error(struct super_block *sb, const char *function,
873 		      unsigned int line, int errno)
874 {
875 	char nbuf[16];
876 	const char *errstr;
877 
878 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
879 		return;
880 
881 	/* Special case: if the error is EROFS, and we're not already
882 	 * inside a transaction, then there's really no point in logging
883 	 * an error. */
884 	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
885 		return;
886 
887 	if (ext4_error_ratelimit(sb)) {
888 		errstr = ext4_decode_error(sb, errno, nbuf);
889 		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
890 		       sb->s_id, function, line, errstr);
891 	}
892 
893 	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
894 }
895 
896 void __ext4_msg(struct super_block *sb,
897 		const char *prefix, const char *fmt, ...)
898 {
899 	struct va_format vaf;
900 	va_list args;
901 
902 	atomic_inc(&EXT4_SB(sb)->s_msg_count);
903 	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
904 		return;
905 
906 	va_start(args, fmt);
907 	vaf.fmt = fmt;
908 	vaf.va = &args;
909 	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
910 	va_end(args);
911 }
912 
913 static int ext4_warning_ratelimit(struct super_block *sb)
914 {
915 	atomic_inc(&EXT4_SB(sb)->s_warning_count);
916 	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
917 			    "EXT4-fs warning");
918 }
919 
920 void __ext4_warning(struct super_block *sb, const char *function,
921 		    unsigned int line, const char *fmt, ...)
922 {
923 	struct va_format vaf;
924 	va_list args;
925 
926 	if (!ext4_warning_ratelimit(sb))
927 		return;
928 
929 	va_start(args, fmt);
930 	vaf.fmt = fmt;
931 	vaf.va = &args;
932 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
933 	       sb->s_id, function, line, &vaf);
934 	va_end(args);
935 }
936 
937 void __ext4_warning_inode(const struct inode *inode, const char *function,
938 			  unsigned int line, const char *fmt, ...)
939 {
940 	struct va_format vaf;
941 	va_list args;
942 
943 	if (!ext4_warning_ratelimit(inode->i_sb))
944 		return;
945 
946 	va_start(args, fmt);
947 	vaf.fmt = fmt;
948 	vaf.va = &args;
949 	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
950 	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
951 	       function, line, inode->i_ino, current->comm, &vaf);
952 	va_end(args);
953 }
954 
955 void __ext4_grp_locked_error(const char *function, unsigned int line,
956 			     struct super_block *sb, ext4_group_t grp,
957 			     unsigned long ino, ext4_fsblk_t block,
958 			     const char *fmt, ...)
959 __releases(bitlock)
960 __acquires(bitlock)
961 {
962 	struct va_format vaf;
963 	va_list args;
964 
965 	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
966 		return;
967 
968 	trace_ext4_error(sb, function, line);
969 	if (ext4_error_ratelimit(sb)) {
970 		va_start(args, fmt);
971 		vaf.fmt = fmt;
972 		vaf.va = &args;
973 		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
974 		       sb->s_id, function, line, grp);
975 		if (ino)
976 			printk(KERN_CONT "inode %lu: ", ino);
977 		if (block)
978 			printk(KERN_CONT "block %llu:",
979 			       (unsigned long long) block);
980 		printk(KERN_CONT "%pV\n", &vaf);
981 		va_end(args);
982 	}
983 
984 	if (test_opt(sb, ERRORS_CONT)) {
985 		if (test_opt(sb, WARN_ON_ERROR))
986 			WARN_ON_ONCE(1);
987 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
988 		if (!bdev_read_only(sb->s_bdev)) {
989 			save_error_info(sb, EFSCORRUPTED, ino, block, function,
990 					line);
991 			schedule_work(&EXT4_SB(sb)->s_error_work);
992 		}
993 		return;
994 	}
995 	ext4_unlock_group(sb, grp);
996 	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
997 	/*
998 	 * We only get here in the ERRORS_RO case; relocking the group
999 	 * may be dangerous, but nothing bad will happen since the
1000 	 * filesystem will have already been marked read/only and the
1001 	 * journal has been aborted.  We return 1 as a hint to callers
1002 	 * who might what to use the return value from
1003 	 * ext4_grp_locked_error() to distinguish between the
1004 	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1005 	 * aggressively from the ext4 function in question, with a
1006 	 * more appropriate error code.
1007 	 */
1008 	ext4_lock_group(sb, grp);
1009 	return;
1010 }
1011 
1012 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1013 				     ext4_group_t group,
1014 				     unsigned int flags)
1015 {
1016 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1017 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1018 	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1019 	int ret;
1020 
1021 	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1022 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1023 					    &grp->bb_state);
1024 		if (!ret)
1025 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1026 					   grp->bb_free);
1027 	}
1028 
1029 	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1030 		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1031 					    &grp->bb_state);
1032 		if (!ret && gdp) {
1033 			int count;
1034 
1035 			count = ext4_free_inodes_count(sb, gdp);
1036 			percpu_counter_sub(&sbi->s_freeinodes_counter,
1037 					   count);
1038 		}
1039 	}
1040 }
1041 
1042 void ext4_update_dynamic_rev(struct super_block *sb)
1043 {
1044 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1045 
1046 	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1047 		return;
1048 
1049 	ext4_warning(sb,
1050 		     "updating to rev %d because of new feature flag, "
1051 		     "running e2fsck is recommended",
1052 		     EXT4_DYNAMIC_REV);
1053 
1054 	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1055 	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1056 	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1057 	/* leave es->s_feature_*compat flags alone */
1058 	/* es->s_uuid will be set by e2fsck if empty */
1059 
1060 	/*
1061 	 * The rest of the superblock fields should be zero, and if not it
1062 	 * means they are likely already in use, so leave them alone.  We
1063 	 * can leave it up to e2fsck to clean up any inconsistencies there.
1064 	 */
1065 }
1066 
1067 /*
1068  * Open the external journal device
1069  */
1070 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1071 {
1072 	struct block_device *bdev;
1073 
1074 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1075 	if (IS_ERR(bdev))
1076 		goto fail;
1077 	return bdev;
1078 
1079 fail:
1080 	ext4_msg(sb, KERN_ERR,
1081 		 "failed to open journal device unknown-block(%u,%u) %ld",
1082 		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1083 	return NULL;
1084 }
1085 
1086 /*
1087  * Release the journal device
1088  */
1089 static void ext4_blkdev_put(struct block_device *bdev)
1090 {
1091 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1092 }
1093 
1094 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1095 {
1096 	struct block_device *bdev;
1097 	bdev = sbi->s_journal_bdev;
1098 	if (bdev) {
1099 		ext4_blkdev_put(bdev);
1100 		sbi->s_journal_bdev = NULL;
1101 	}
1102 }
1103 
1104 static inline struct inode *orphan_list_entry(struct list_head *l)
1105 {
1106 	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1107 }
1108 
1109 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1110 {
1111 	struct list_head *l;
1112 
1113 	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1114 		 le32_to_cpu(sbi->s_es->s_last_orphan));
1115 
1116 	printk(KERN_ERR "sb_info orphan list:\n");
1117 	list_for_each(l, &sbi->s_orphan) {
1118 		struct inode *inode = orphan_list_entry(l);
1119 		printk(KERN_ERR "  "
1120 		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1121 		       inode->i_sb->s_id, inode->i_ino, inode,
1122 		       inode->i_mode, inode->i_nlink,
1123 		       NEXT_ORPHAN(inode));
1124 	}
1125 }
1126 
1127 #ifdef CONFIG_QUOTA
1128 static int ext4_quota_off(struct super_block *sb, int type);
1129 
1130 static inline void ext4_quota_off_umount(struct super_block *sb)
1131 {
1132 	int type;
1133 
1134 	/* Use our quota_off function to clear inode flags etc. */
1135 	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1136 		ext4_quota_off(sb, type);
1137 }
1138 
1139 /*
1140  * This is a helper function which is used in the mount/remount
1141  * codepaths (which holds s_umount) to fetch the quota file name.
1142  */
1143 static inline char *get_qf_name(struct super_block *sb,
1144 				struct ext4_sb_info *sbi,
1145 				int type)
1146 {
1147 	return rcu_dereference_protected(sbi->s_qf_names[type],
1148 					 lockdep_is_held(&sb->s_umount));
1149 }
1150 #else
1151 static inline void ext4_quota_off_umount(struct super_block *sb)
1152 {
1153 }
1154 #endif
1155 
1156 static void ext4_put_super(struct super_block *sb)
1157 {
1158 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1159 	struct ext4_super_block *es = sbi->s_es;
1160 	struct buffer_head **group_desc;
1161 	struct flex_groups **flex_groups;
1162 	int aborted = 0;
1163 	int i, err;
1164 
1165 	ext4_unregister_li_request(sb);
1166 	ext4_quota_off_umount(sb);
1167 
1168 	flush_work(&sbi->s_error_work);
1169 	destroy_workqueue(sbi->rsv_conversion_wq);
1170 
1171 	/*
1172 	 * Unregister sysfs before destroying jbd2 journal.
1173 	 * Since we could still access attr_journal_task attribute via sysfs
1174 	 * path which could have sbi->s_journal->j_task as NULL
1175 	 */
1176 	ext4_unregister_sysfs(sb);
1177 
1178 	if (sbi->s_journal) {
1179 		jbd2_journal_unregister_shrinker(sbi->s_journal);
1180 		aborted = is_journal_aborted(sbi->s_journal);
1181 		err = jbd2_journal_destroy(sbi->s_journal);
1182 		sbi->s_journal = NULL;
1183 		if ((err < 0) && !aborted) {
1184 			ext4_abort(sb, -err, "Couldn't clean up the journal");
1185 		}
1186 	}
1187 
1188 	ext4_es_unregister_shrinker(sbi);
1189 	del_timer_sync(&sbi->s_err_report);
1190 	ext4_release_system_zone(sb);
1191 	ext4_mb_release(sb);
1192 	ext4_ext_release(sb);
1193 
1194 	if (!sb_rdonly(sb) && !aborted) {
1195 		ext4_clear_feature_journal_needs_recovery(sb);
1196 		es->s_state = cpu_to_le16(sbi->s_mount_state);
1197 	}
1198 	if (!sb_rdonly(sb))
1199 		ext4_commit_super(sb);
1200 
1201 	rcu_read_lock();
1202 	group_desc = rcu_dereference(sbi->s_group_desc);
1203 	for (i = 0; i < sbi->s_gdb_count; i++)
1204 		brelse(group_desc[i]);
1205 	kvfree(group_desc);
1206 	flex_groups = rcu_dereference(sbi->s_flex_groups);
1207 	if (flex_groups) {
1208 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1209 			kvfree(flex_groups[i]);
1210 		kvfree(flex_groups);
1211 	}
1212 	rcu_read_unlock();
1213 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1214 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1215 	percpu_counter_destroy(&sbi->s_dirs_counter);
1216 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1217 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1218 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1219 #ifdef CONFIG_QUOTA
1220 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1221 		kfree(get_qf_name(sb, sbi, i));
1222 #endif
1223 
1224 	/* Debugging code just in case the in-memory inode orphan list
1225 	 * isn't empty.  The on-disk one can be non-empty if we've
1226 	 * detected an error and taken the fs readonly, but the
1227 	 * in-memory list had better be clean by this point. */
1228 	if (!list_empty(&sbi->s_orphan))
1229 		dump_orphan_list(sb, sbi);
1230 	ASSERT(list_empty(&sbi->s_orphan));
1231 
1232 	sync_blockdev(sb->s_bdev);
1233 	invalidate_bdev(sb->s_bdev);
1234 	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1235 		/*
1236 		 * Invalidate the journal device's buffers.  We don't want them
1237 		 * floating about in memory - the physical journal device may
1238 		 * hotswapped, and it breaks the `ro-after' testing code.
1239 		 */
1240 		sync_blockdev(sbi->s_journal_bdev);
1241 		invalidate_bdev(sbi->s_journal_bdev);
1242 		ext4_blkdev_remove(sbi);
1243 	}
1244 
1245 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1246 	sbi->s_ea_inode_cache = NULL;
1247 
1248 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1249 	sbi->s_ea_block_cache = NULL;
1250 
1251 	ext4_stop_mmpd(sbi);
1252 
1253 	brelse(sbi->s_sbh);
1254 	sb->s_fs_info = NULL;
1255 	/*
1256 	 * Now that we are completely done shutting down the
1257 	 * superblock, we need to actually destroy the kobject.
1258 	 */
1259 	kobject_put(&sbi->s_kobj);
1260 	wait_for_completion(&sbi->s_kobj_unregister);
1261 	if (sbi->s_chksum_driver)
1262 		crypto_free_shash(sbi->s_chksum_driver);
1263 	kfree(sbi->s_blockgroup_lock);
1264 	fs_put_dax(sbi->s_daxdev);
1265 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1266 #ifdef CONFIG_UNICODE
1267 	utf8_unload(sb->s_encoding);
1268 #endif
1269 	kfree(sbi);
1270 }
1271 
1272 static struct kmem_cache *ext4_inode_cachep;
1273 
1274 /*
1275  * Called inside transaction, so use GFP_NOFS
1276  */
1277 static struct inode *ext4_alloc_inode(struct super_block *sb)
1278 {
1279 	struct ext4_inode_info *ei;
1280 
1281 	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1282 	if (!ei)
1283 		return NULL;
1284 
1285 	inode_set_iversion(&ei->vfs_inode, 1);
1286 	spin_lock_init(&ei->i_raw_lock);
1287 	INIT_LIST_HEAD(&ei->i_prealloc_list);
1288 	atomic_set(&ei->i_prealloc_active, 0);
1289 	spin_lock_init(&ei->i_prealloc_lock);
1290 	ext4_es_init_tree(&ei->i_es_tree);
1291 	rwlock_init(&ei->i_es_lock);
1292 	INIT_LIST_HEAD(&ei->i_es_list);
1293 	ei->i_es_all_nr = 0;
1294 	ei->i_es_shk_nr = 0;
1295 	ei->i_es_shrink_lblk = 0;
1296 	ei->i_reserved_data_blocks = 0;
1297 	spin_lock_init(&(ei->i_block_reservation_lock));
1298 	ext4_init_pending_tree(&ei->i_pending_tree);
1299 #ifdef CONFIG_QUOTA
1300 	ei->i_reserved_quota = 0;
1301 	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1302 #endif
1303 	ei->jinode = NULL;
1304 	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1305 	spin_lock_init(&ei->i_completed_io_lock);
1306 	ei->i_sync_tid = 0;
1307 	ei->i_datasync_tid = 0;
1308 	atomic_set(&ei->i_unwritten, 0);
1309 	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1310 	ext4_fc_init_inode(&ei->vfs_inode);
1311 	mutex_init(&ei->i_fc_lock);
1312 	return &ei->vfs_inode;
1313 }
1314 
1315 static int ext4_drop_inode(struct inode *inode)
1316 {
1317 	int drop = generic_drop_inode(inode);
1318 
1319 	if (!drop)
1320 		drop = fscrypt_drop_inode(inode);
1321 
1322 	trace_ext4_drop_inode(inode, drop);
1323 	return drop;
1324 }
1325 
1326 static void ext4_free_in_core_inode(struct inode *inode)
1327 {
1328 	fscrypt_free_inode(inode);
1329 	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1330 		pr_warn("%s: inode %ld still in fc list",
1331 			__func__, inode->i_ino);
1332 	}
1333 	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1334 }
1335 
1336 static void ext4_destroy_inode(struct inode *inode)
1337 {
1338 	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1339 		ext4_msg(inode->i_sb, KERN_ERR,
1340 			 "Inode %lu (%p): orphan list check failed!",
1341 			 inode->i_ino, EXT4_I(inode));
1342 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1343 				EXT4_I(inode), sizeof(struct ext4_inode_info),
1344 				true);
1345 		dump_stack();
1346 	}
1347 }
1348 
1349 static void init_once(void *foo)
1350 {
1351 	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1352 
1353 	INIT_LIST_HEAD(&ei->i_orphan);
1354 	init_rwsem(&ei->xattr_sem);
1355 	init_rwsem(&ei->i_data_sem);
1356 	init_rwsem(&ei->i_mmap_sem);
1357 	inode_init_once(&ei->vfs_inode);
1358 	ext4_fc_init_inode(&ei->vfs_inode);
1359 }
1360 
1361 static int __init init_inodecache(void)
1362 {
1363 	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1364 				sizeof(struct ext4_inode_info), 0,
1365 				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1366 					SLAB_ACCOUNT),
1367 				offsetof(struct ext4_inode_info, i_data),
1368 				sizeof_field(struct ext4_inode_info, i_data),
1369 				init_once);
1370 	if (ext4_inode_cachep == NULL)
1371 		return -ENOMEM;
1372 	return 0;
1373 }
1374 
1375 static void destroy_inodecache(void)
1376 {
1377 	/*
1378 	 * Make sure all delayed rcu free inodes are flushed before we
1379 	 * destroy cache.
1380 	 */
1381 	rcu_barrier();
1382 	kmem_cache_destroy(ext4_inode_cachep);
1383 }
1384 
1385 void ext4_clear_inode(struct inode *inode)
1386 {
1387 	ext4_fc_del(inode);
1388 	invalidate_inode_buffers(inode);
1389 	clear_inode(inode);
1390 	ext4_discard_preallocations(inode, 0);
1391 	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1392 	dquot_drop(inode);
1393 	if (EXT4_I(inode)->jinode) {
1394 		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1395 					       EXT4_I(inode)->jinode);
1396 		jbd2_free_inode(EXT4_I(inode)->jinode);
1397 		EXT4_I(inode)->jinode = NULL;
1398 	}
1399 	fscrypt_put_encryption_info(inode);
1400 	fsverity_cleanup_inode(inode);
1401 }
1402 
1403 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1404 					u64 ino, u32 generation)
1405 {
1406 	struct inode *inode;
1407 
1408 	/*
1409 	 * Currently we don't know the generation for parent directory, so
1410 	 * a generation of 0 means "accept any"
1411 	 */
1412 	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1413 	if (IS_ERR(inode))
1414 		return ERR_CAST(inode);
1415 	if (generation && inode->i_generation != generation) {
1416 		iput(inode);
1417 		return ERR_PTR(-ESTALE);
1418 	}
1419 
1420 	return inode;
1421 }
1422 
1423 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1424 					int fh_len, int fh_type)
1425 {
1426 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1427 				    ext4_nfs_get_inode);
1428 }
1429 
1430 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1431 					int fh_len, int fh_type)
1432 {
1433 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1434 				    ext4_nfs_get_inode);
1435 }
1436 
1437 static int ext4_nfs_commit_metadata(struct inode *inode)
1438 {
1439 	struct writeback_control wbc = {
1440 		.sync_mode = WB_SYNC_ALL
1441 	};
1442 
1443 	trace_ext4_nfs_commit_metadata(inode);
1444 	return ext4_write_inode(inode, &wbc);
1445 }
1446 
1447 #ifdef CONFIG_FS_ENCRYPTION
1448 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1449 {
1450 	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1451 				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1452 }
1453 
1454 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1455 							void *fs_data)
1456 {
1457 	handle_t *handle = fs_data;
1458 	int res, res2, credits, retries = 0;
1459 
1460 	/*
1461 	 * Encrypting the root directory is not allowed because e2fsck expects
1462 	 * lost+found to exist and be unencrypted, and encrypting the root
1463 	 * directory would imply encrypting the lost+found directory as well as
1464 	 * the filename "lost+found" itself.
1465 	 */
1466 	if (inode->i_ino == EXT4_ROOT_INO)
1467 		return -EPERM;
1468 
1469 	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1470 		return -EINVAL;
1471 
1472 	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1473 		return -EOPNOTSUPP;
1474 
1475 	res = ext4_convert_inline_data(inode);
1476 	if (res)
1477 		return res;
1478 
1479 	/*
1480 	 * If a journal handle was specified, then the encryption context is
1481 	 * being set on a new inode via inheritance and is part of a larger
1482 	 * transaction to create the inode.  Otherwise the encryption context is
1483 	 * being set on an existing inode in its own transaction.  Only in the
1484 	 * latter case should the "retry on ENOSPC" logic be used.
1485 	 */
1486 
1487 	if (handle) {
1488 		res = ext4_xattr_set_handle(handle, inode,
1489 					    EXT4_XATTR_INDEX_ENCRYPTION,
1490 					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1491 					    ctx, len, 0);
1492 		if (!res) {
1493 			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1494 			ext4_clear_inode_state(inode,
1495 					EXT4_STATE_MAY_INLINE_DATA);
1496 			/*
1497 			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1498 			 * S_DAX may be disabled
1499 			 */
1500 			ext4_set_inode_flags(inode, false);
1501 		}
1502 		return res;
1503 	}
1504 
1505 	res = dquot_initialize(inode);
1506 	if (res)
1507 		return res;
1508 retry:
1509 	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1510 				     &credits);
1511 	if (res)
1512 		return res;
1513 
1514 	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1515 	if (IS_ERR(handle))
1516 		return PTR_ERR(handle);
1517 
1518 	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1519 				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1520 				    ctx, len, 0);
1521 	if (!res) {
1522 		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1523 		/*
1524 		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1525 		 * S_DAX may be disabled
1526 		 */
1527 		ext4_set_inode_flags(inode, false);
1528 		res = ext4_mark_inode_dirty(handle, inode);
1529 		if (res)
1530 			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1531 	}
1532 	res2 = ext4_journal_stop(handle);
1533 
1534 	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1535 		goto retry;
1536 	if (!res)
1537 		res = res2;
1538 	return res;
1539 }
1540 
1541 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1542 {
1543 	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1544 }
1545 
1546 static bool ext4_has_stable_inodes(struct super_block *sb)
1547 {
1548 	return ext4_has_feature_stable_inodes(sb);
1549 }
1550 
1551 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1552 				       int *ino_bits_ret, int *lblk_bits_ret)
1553 {
1554 	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1555 	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1556 }
1557 
1558 static const struct fscrypt_operations ext4_cryptops = {
1559 	.key_prefix		= "ext4:",
1560 	.get_context		= ext4_get_context,
1561 	.set_context		= ext4_set_context,
1562 	.get_dummy_policy	= ext4_get_dummy_policy,
1563 	.empty_dir		= ext4_empty_dir,
1564 	.max_namelen		= EXT4_NAME_LEN,
1565 	.has_stable_inodes	= ext4_has_stable_inodes,
1566 	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1567 };
1568 #endif
1569 
1570 #ifdef CONFIG_QUOTA
1571 static const char * const quotatypes[] = INITQFNAMES;
1572 #define QTYPE2NAME(t) (quotatypes[t])
1573 
1574 static int ext4_write_dquot(struct dquot *dquot);
1575 static int ext4_acquire_dquot(struct dquot *dquot);
1576 static int ext4_release_dquot(struct dquot *dquot);
1577 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1578 static int ext4_write_info(struct super_block *sb, int type);
1579 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1580 			 const struct path *path);
1581 static int ext4_quota_on_mount(struct super_block *sb, int type);
1582 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1583 			       size_t len, loff_t off);
1584 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1585 				const char *data, size_t len, loff_t off);
1586 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1587 			     unsigned int flags);
1588 static int ext4_enable_quotas(struct super_block *sb);
1589 
1590 static struct dquot **ext4_get_dquots(struct inode *inode)
1591 {
1592 	return EXT4_I(inode)->i_dquot;
1593 }
1594 
1595 static const struct dquot_operations ext4_quota_operations = {
1596 	.get_reserved_space	= ext4_get_reserved_space,
1597 	.write_dquot		= ext4_write_dquot,
1598 	.acquire_dquot		= ext4_acquire_dquot,
1599 	.release_dquot		= ext4_release_dquot,
1600 	.mark_dirty		= ext4_mark_dquot_dirty,
1601 	.write_info		= ext4_write_info,
1602 	.alloc_dquot		= dquot_alloc,
1603 	.destroy_dquot		= dquot_destroy,
1604 	.get_projid		= ext4_get_projid,
1605 	.get_inode_usage	= ext4_get_inode_usage,
1606 	.get_next_id		= dquot_get_next_id,
1607 };
1608 
1609 static const struct quotactl_ops ext4_qctl_operations = {
1610 	.quota_on	= ext4_quota_on,
1611 	.quota_off	= ext4_quota_off,
1612 	.quota_sync	= dquot_quota_sync,
1613 	.get_state	= dquot_get_state,
1614 	.set_info	= dquot_set_dqinfo,
1615 	.get_dqblk	= dquot_get_dqblk,
1616 	.set_dqblk	= dquot_set_dqblk,
1617 	.get_nextdqblk	= dquot_get_next_dqblk,
1618 };
1619 #endif
1620 
1621 static const struct super_operations ext4_sops = {
1622 	.alloc_inode	= ext4_alloc_inode,
1623 	.free_inode	= ext4_free_in_core_inode,
1624 	.destroy_inode	= ext4_destroy_inode,
1625 	.write_inode	= ext4_write_inode,
1626 	.dirty_inode	= ext4_dirty_inode,
1627 	.drop_inode	= ext4_drop_inode,
1628 	.evict_inode	= ext4_evict_inode,
1629 	.put_super	= ext4_put_super,
1630 	.sync_fs	= ext4_sync_fs,
1631 	.freeze_fs	= ext4_freeze,
1632 	.unfreeze_fs	= ext4_unfreeze,
1633 	.statfs		= ext4_statfs,
1634 	.remount_fs	= ext4_remount,
1635 	.show_options	= ext4_show_options,
1636 #ifdef CONFIG_QUOTA
1637 	.quota_read	= ext4_quota_read,
1638 	.quota_write	= ext4_quota_write,
1639 	.get_dquots	= ext4_get_dquots,
1640 #endif
1641 };
1642 
1643 static const struct export_operations ext4_export_ops = {
1644 	.fh_to_dentry = ext4_fh_to_dentry,
1645 	.fh_to_parent = ext4_fh_to_parent,
1646 	.get_parent = ext4_get_parent,
1647 	.commit_metadata = ext4_nfs_commit_metadata,
1648 };
1649 
1650 enum {
1651 	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1652 	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1653 	Opt_nouid32, Opt_debug, Opt_removed,
1654 	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1655 	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1656 	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1657 	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1658 	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1659 	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1660 	Opt_inlinecrypt,
1661 	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1662 	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1663 	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1664 	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1665 	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1666 	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1667 	Opt_nowarn_on_error, Opt_mblk_io_submit,
1668 	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1669 	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1670 	Opt_inode_readahead_blks, Opt_journal_ioprio,
1671 	Opt_dioread_nolock, Opt_dioread_lock,
1672 	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1673 	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1674 	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1675 #ifdef CONFIG_EXT4_DEBUG
1676 	Opt_fc_debug_max_replay, Opt_fc_debug_force
1677 #endif
1678 };
1679 
1680 static const match_table_t tokens = {
1681 	{Opt_bsd_df, "bsddf"},
1682 	{Opt_minix_df, "minixdf"},
1683 	{Opt_grpid, "grpid"},
1684 	{Opt_grpid, "bsdgroups"},
1685 	{Opt_nogrpid, "nogrpid"},
1686 	{Opt_nogrpid, "sysvgroups"},
1687 	{Opt_resgid, "resgid=%u"},
1688 	{Opt_resuid, "resuid=%u"},
1689 	{Opt_sb, "sb=%u"},
1690 	{Opt_err_cont, "errors=continue"},
1691 	{Opt_err_panic, "errors=panic"},
1692 	{Opt_err_ro, "errors=remount-ro"},
1693 	{Opt_nouid32, "nouid32"},
1694 	{Opt_debug, "debug"},
1695 	{Opt_removed, "oldalloc"},
1696 	{Opt_removed, "orlov"},
1697 	{Opt_user_xattr, "user_xattr"},
1698 	{Opt_nouser_xattr, "nouser_xattr"},
1699 	{Opt_acl, "acl"},
1700 	{Opt_noacl, "noacl"},
1701 	{Opt_noload, "norecovery"},
1702 	{Opt_noload, "noload"},
1703 	{Opt_removed, "nobh"},
1704 	{Opt_removed, "bh"},
1705 	{Opt_commit, "commit=%u"},
1706 	{Opt_min_batch_time, "min_batch_time=%u"},
1707 	{Opt_max_batch_time, "max_batch_time=%u"},
1708 	{Opt_journal_dev, "journal_dev=%u"},
1709 	{Opt_journal_path, "journal_path=%s"},
1710 	{Opt_journal_checksum, "journal_checksum"},
1711 	{Opt_nojournal_checksum, "nojournal_checksum"},
1712 	{Opt_journal_async_commit, "journal_async_commit"},
1713 	{Opt_abort, "abort"},
1714 	{Opt_data_journal, "data=journal"},
1715 	{Opt_data_ordered, "data=ordered"},
1716 	{Opt_data_writeback, "data=writeback"},
1717 	{Opt_data_err_abort, "data_err=abort"},
1718 	{Opt_data_err_ignore, "data_err=ignore"},
1719 	{Opt_offusrjquota, "usrjquota="},
1720 	{Opt_usrjquota, "usrjquota=%s"},
1721 	{Opt_offgrpjquota, "grpjquota="},
1722 	{Opt_grpjquota, "grpjquota=%s"},
1723 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1724 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1725 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1726 	{Opt_grpquota, "grpquota"},
1727 	{Opt_noquota, "noquota"},
1728 	{Opt_quota, "quota"},
1729 	{Opt_usrquota, "usrquota"},
1730 	{Opt_prjquota, "prjquota"},
1731 	{Opt_barrier, "barrier=%u"},
1732 	{Opt_barrier, "barrier"},
1733 	{Opt_nobarrier, "nobarrier"},
1734 	{Opt_i_version, "i_version"},
1735 	{Opt_dax, "dax"},
1736 	{Opt_dax_always, "dax=always"},
1737 	{Opt_dax_inode, "dax=inode"},
1738 	{Opt_dax_never, "dax=never"},
1739 	{Opt_stripe, "stripe=%u"},
1740 	{Opt_delalloc, "delalloc"},
1741 	{Opt_warn_on_error, "warn_on_error"},
1742 	{Opt_nowarn_on_error, "nowarn_on_error"},
1743 	{Opt_lazytime, "lazytime"},
1744 	{Opt_nolazytime, "nolazytime"},
1745 	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1746 	{Opt_nodelalloc, "nodelalloc"},
1747 	{Opt_removed, "mblk_io_submit"},
1748 	{Opt_removed, "nomblk_io_submit"},
1749 	{Opt_block_validity, "block_validity"},
1750 	{Opt_noblock_validity, "noblock_validity"},
1751 	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1752 	{Opt_journal_ioprio, "journal_ioprio=%u"},
1753 	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1754 	{Opt_auto_da_alloc, "auto_da_alloc"},
1755 	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1756 	{Opt_dioread_nolock, "dioread_nolock"},
1757 	{Opt_dioread_lock, "nodioread_nolock"},
1758 	{Opt_dioread_lock, "dioread_lock"},
1759 	{Opt_discard, "discard"},
1760 	{Opt_nodiscard, "nodiscard"},
1761 	{Opt_init_itable, "init_itable=%u"},
1762 	{Opt_init_itable, "init_itable"},
1763 	{Opt_noinit_itable, "noinit_itable"},
1764 #ifdef CONFIG_EXT4_DEBUG
1765 	{Opt_fc_debug_force, "fc_debug_force"},
1766 	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1767 #endif
1768 	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1769 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1770 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1771 	{Opt_inlinecrypt, "inlinecrypt"},
1772 	{Opt_nombcache, "nombcache"},
1773 	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1774 	{Opt_removed, "prefetch_block_bitmaps"},
1775 	{Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1776 	{Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1777 	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1778 	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1779 	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1780 	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1781 	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1782 	{Opt_err, NULL},
1783 };
1784 
1785 static ext4_fsblk_t get_sb_block(void **data)
1786 {
1787 	ext4_fsblk_t	sb_block;
1788 	char		*options = (char *) *data;
1789 
1790 	if (!options || strncmp(options, "sb=", 3) != 0)
1791 		return 1;	/* Default location */
1792 
1793 	options += 3;
1794 	/* TODO: use simple_strtoll with >32bit ext4 */
1795 	sb_block = simple_strtoul(options, &options, 0);
1796 	if (*options && *options != ',') {
1797 		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1798 		       (char *) *data);
1799 		return 1;
1800 	}
1801 	if (*options == ',')
1802 		options++;
1803 	*data = (void *) options;
1804 
1805 	return sb_block;
1806 }
1807 
1808 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1809 #define DEFAULT_MB_OPTIMIZE_SCAN	(-1)
1810 
1811 static const char deprecated_msg[] =
1812 	"Mount option \"%s\" will be removed by %s\n"
1813 	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1814 
1815 #ifdef CONFIG_QUOTA
1816 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1817 {
1818 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1819 	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1820 	int ret = -1;
1821 
1822 	if (sb_any_quota_loaded(sb) && !old_qname) {
1823 		ext4_msg(sb, KERN_ERR,
1824 			"Cannot change journaled "
1825 			"quota options when quota turned on");
1826 		return -1;
1827 	}
1828 	if (ext4_has_feature_quota(sb)) {
1829 		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1830 			 "ignored when QUOTA feature is enabled");
1831 		return 1;
1832 	}
1833 	qname = match_strdup(args);
1834 	if (!qname) {
1835 		ext4_msg(sb, KERN_ERR,
1836 			"Not enough memory for storing quotafile name");
1837 		return -1;
1838 	}
1839 	if (old_qname) {
1840 		if (strcmp(old_qname, qname) == 0)
1841 			ret = 1;
1842 		else
1843 			ext4_msg(sb, KERN_ERR,
1844 				 "%s quota file already specified",
1845 				 QTYPE2NAME(qtype));
1846 		goto errout;
1847 	}
1848 	if (strchr(qname, '/')) {
1849 		ext4_msg(sb, KERN_ERR,
1850 			"quotafile must be on filesystem root");
1851 		goto errout;
1852 	}
1853 	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1854 	set_opt(sb, QUOTA);
1855 	return 1;
1856 errout:
1857 	kfree(qname);
1858 	return ret;
1859 }
1860 
1861 static int clear_qf_name(struct super_block *sb, int qtype)
1862 {
1863 
1864 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1865 	char *old_qname = get_qf_name(sb, sbi, qtype);
1866 
1867 	if (sb_any_quota_loaded(sb) && old_qname) {
1868 		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1869 			" when quota turned on");
1870 		return -1;
1871 	}
1872 	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1873 	synchronize_rcu();
1874 	kfree(old_qname);
1875 	return 1;
1876 }
1877 #endif
1878 
1879 #define MOPT_SET	0x0001
1880 #define MOPT_CLEAR	0x0002
1881 #define MOPT_NOSUPPORT	0x0004
1882 #define MOPT_EXPLICIT	0x0008
1883 #define MOPT_CLEAR_ERR	0x0010
1884 #define MOPT_GTE0	0x0020
1885 #ifdef CONFIG_QUOTA
1886 #define MOPT_Q		0
1887 #define MOPT_QFMT	0x0040
1888 #else
1889 #define MOPT_Q		MOPT_NOSUPPORT
1890 #define MOPT_QFMT	MOPT_NOSUPPORT
1891 #endif
1892 #define MOPT_DATAJ	0x0080
1893 #define MOPT_NO_EXT2	0x0100
1894 #define MOPT_NO_EXT3	0x0200
1895 #define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1896 #define MOPT_STRING	0x0400
1897 #define MOPT_SKIP	0x0800
1898 #define	MOPT_2		0x1000
1899 
1900 static const struct mount_opts {
1901 	int	token;
1902 	int	mount_opt;
1903 	int	flags;
1904 } ext4_mount_opts[] = {
1905 	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1906 	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1907 	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1908 	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1909 	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1910 	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1911 	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1912 	 MOPT_EXT4_ONLY | MOPT_SET},
1913 	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1914 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1915 	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1916 	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1917 	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1918 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1919 	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1920 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1921 	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1922 	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1923 	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1924 	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1925 	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1926 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1927 	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1928 				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1929 	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1930 	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1931 	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1932 	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1933 	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1934 	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1935 	 MOPT_NO_EXT2},
1936 	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1937 	 MOPT_NO_EXT2},
1938 	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1939 	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1940 	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1941 	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1942 	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1943 	{Opt_commit, 0, MOPT_GTE0},
1944 	{Opt_max_batch_time, 0, MOPT_GTE0},
1945 	{Opt_min_batch_time, 0, MOPT_GTE0},
1946 	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1947 	{Opt_init_itable, 0, MOPT_GTE0},
1948 	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1949 	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1950 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1951 	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1952 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1953 	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1954 		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1955 	{Opt_stripe, 0, MOPT_GTE0},
1956 	{Opt_resuid, 0, MOPT_GTE0},
1957 	{Opt_resgid, 0, MOPT_GTE0},
1958 	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1959 	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1960 	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1961 	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1962 	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1963 	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1964 	 MOPT_NO_EXT2 | MOPT_DATAJ},
1965 	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1966 	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1967 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1968 	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1969 	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1970 #else
1971 	{Opt_acl, 0, MOPT_NOSUPPORT},
1972 	{Opt_noacl, 0, MOPT_NOSUPPORT},
1973 #endif
1974 	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1975 	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1976 	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1977 	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1978 	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1979 							MOPT_SET | MOPT_Q},
1980 	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1981 							MOPT_SET | MOPT_Q},
1982 	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1983 							MOPT_SET | MOPT_Q},
1984 	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1985 		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1986 							MOPT_CLEAR | MOPT_Q},
1987 	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1988 	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1989 	{Opt_offusrjquota, 0, MOPT_Q},
1990 	{Opt_offgrpjquota, 0, MOPT_Q},
1991 	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1992 	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1993 	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1994 	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1995 	{Opt_test_dummy_encryption, 0, MOPT_STRING},
1996 	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1997 	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1998 	 MOPT_SET},
1999 	{Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2000 #ifdef CONFIG_EXT4_DEBUG
2001 	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2002 	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2003 	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2004 #endif
2005 	{Opt_err, 0, 0}
2006 };
2007 
2008 #ifdef CONFIG_UNICODE
2009 static const struct ext4_sb_encodings {
2010 	__u16 magic;
2011 	char *name;
2012 	char *version;
2013 } ext4_sb_encoding_map[] = {
2014 	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2015 };
2016 
2017 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2018 				 const struct ext4_sb_encodings **encoding,
2019 				 __u16 *flags)
2020 {
2021 	__u16 magic = le16_to_cpu(es->s_encoding);
2022 	int i;
2023 
2024 	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2025 		if (magic == ext4_sb_encoding_map[i].magic)
2026 			break;
2027 
2028 	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2029 		return -EINVAL;
2030 
2031 	*encoding = &ext4_sb_encoding_map[i];
2032 	*flags = le16_to_cpu(es->s_encoding_flags);
2033 
2034 	return 0;
2035 }
2036 #endif
2037 
2038 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2039 					  const char *opt,
2040 					  const substring_t *arg,
2041 					  bool is_remount)
2042 {
2043 #ifdef CONFIG_FS_ENCRYPTION
2044 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2045 	int err;
2046 
2047 	/*
2048 	 * This mount option is just for testing, and it's not worthwhile to
2049 	 * implement the extra complexity (e.g. RCU protection) that would be
2050 	 * needed to allow it to be set or changed during remount.  We do allow
2051 	 * it to be specified during remount, but only if there is no change.
2052 	 */
2053 	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2054 		ext4_msg(sb, KERN_WARNING,
2055 			 "Can't set test_dummy_encryption on remount");
2056 		return -1;
2057 	}
2058 	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2059 						&sbi->s_dummy_enc_policy);
2060 	if (err) {
2061 		if (err == -EEXIST)
2062 			ext4_msg(sb, KERN_WARNING,
2063 				 "Can't change test_dummy_encryption on remount");
2064 		else if (err == -EINVAL)
2065 			ext4_msg(sb, KERN_WARNING,
2066 				 "Value of option \"%s\" is unrecognized", opt);
2067 		else
2068 			ext4_msg(sb, KERN_WARNING,
2069 				 "Error processing option \"%s\" [%d]",
2070 				 opt, err);
2071 		return -1;
2072 	}
2073 	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2074 #else
2075 	ext4_msg(sb, KERN_WARNING,
2076 		 "Test dummy encryption mount option ignored");
2077 #endif
2078 	return 1;
2079 }
2080 
2081 struct ext4_parsed_options {
2082 	unsigned long journal_devnum;
2083 	unsigned int journal_ioprio;
2084 	int mb_optimize_scan;
2085 };
2086 
2087 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2088 			    substring_t *args, struct ext4_parsed_options *parsed_opts,
2089 			    int is_remount)
2090 {
2091 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2092 	const struct mount_opts *m;
2093 	kuid_t uid;
2094 	kgid_t gid;
2095 	int arg = 0;
2096 
2097 #ifdef CONFIG_QUOTA
2098 	if (token == Opt_usrjquota)
2099 		return set_qf_name(sb, USRQUOTA, &args[0]);
2100 	else if (token == Opt_grpjquota)
2101 		return set_qf_name(sb, GRPQUOTA, &args[0]);
2102 	else if (token == Opt_offusrjquota)
2103 		return clear_qf_name(sb, USRQUOTA);
2104 	else if (token == Opt_offgrpjquota)
2105 		return clear_qf_name(sb, GRPQUOTA);
2106 #endif
2107 	switch (token) {
2108 	case Opt_noacl:
2109 	case Opt_nouser_xattr:
2110 		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2111 		break;
2112 	case Opt_sb:
2113 		return 1;	/* handled by get_sb_block() */
2114 	case Opt_removed:
2115 		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2116 		return 1;
2117 	case Opt_abort:
2118 		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2119 		return 1;
2120 	case Opt_i_version:
2121 		sb->s_flags |= SB_I_VERSION;
2122 		return 1;
2123 	case Opt_lazytime:
2124 		sb->s_flags |= SB_LAZYTIME;
2125 		return 1;
2126 	case Opt_nolazytime:
2127 		sb->s_flags &= ~SB_LAZYTIME;
2128 		return 1;
2129 	case Opt_inlinecrypt:
2130 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2131 		sb->s_flags |= SB_INLINECRYPT;
2132 #else
2133 		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2134 #endif
2135 		return 1;
2136 	}
2137 
2138 	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2139 		if (token == m->token)
2140 			break;
2141 
2142 	if (m->token == Opt_err) {
2143 		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2144 			 "or missing value", opt);
2145 		return -1;
2146 	}
2147 
2148 	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2149 		ext4_msg(sb, KERN_ERR,
2150 			 "Mount option \"%s\" incompatible with ext2", opt);
2151 		return -1;
2152 	}
2153 	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2154 		ext4_msg(sb, KERN_ERR,
2155 			 "Mount option \"%s\" incompatible with ext3", opt);
2156 		return -1;
2157 	}
2158 
2159 	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2160 		return -1;
2161 	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2162 		return -1;
2163 	if (m->flags & MOPT_EXPLICIT) {
2164 		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2165 			set_opt2(sb, EXPLICIT_DELALLOC);
2166 		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2167 			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2168 		} else
2169 			return -1;
2170 	}
2171 	if (m->flags & MOPT_CLEAR_ERR)
2172 		clear_opt(sb, ERRORS_MASK);
2173 	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2174 		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2175 			 "options when quota turned on");
2176 		return -1;
2177 	}
2178 
2179 	if (m->flags & MOPT_NOSUPPORT) {
2180 		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2181 	} else if (token == Opt_commit) {
2182 		if (arg == 0)
2183 			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2184 		else if (arg > INT_MAX / HZ) {
2185 			ext4_msg(sb, KERN_ERR,
2186 				 "Invalid commit interval %d, "
2187 				 "must be smaller than %d",
2188 				 arg, INT_MAX / HZ);
2189 			return -1;
2190 		}
2191 		sbi->s_commit_interval = HZ * arg;
2192 	} else if (token == Opt_debug_want_extra_isize) {
2193 		if ((arg & 1) ||
2194 		    (arg < 4) ||
2195 		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2196 			ext4_msg(sb, KERN_ERR,
2197 				 "Invalid want_extra_isize %d", arg);
2198 			return -1;
2199 		}
2200 		sbi->s_want_extra_isize = arg;
2201 	} else if (token == Opt_max_batch_time) {
2202 		sbi->s_max_batch_time = arg;
2203 	} else if (token == Opt_min_batch_time) {
2204 		sbi->s_min_batch_time = arg;
2205 	} else if (token == Opt_inode_readahead_blks) {
2206 		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2207 			ext4_msg(sb, KERN_ERR,
2208 				 "EXT4-fs: inode_readahead_blks must be "
2209 				 "0 or a power of 2 smaller than 2^31");
2210 			return -1;
2211 		}
2212 		sbi->s_inode_readahead_blks = arg;
2213 	} else if (token == Opt_init_itable) {
2214 		set_opt(sb, INIT_INODE_TABLE);
2215 		if (!args->from)
2216 			arg = EXT4_DEF_LI_WAIT_MULT;
2217 		sbi->s_li_wait_mult = arg;
2218 	} else if (token == Opt_max_dir_size_kb) {
2219 		sbi->s_max_dir_size_kb = arg;
2220 #ifdef CONFIG_EXT4_DEBUG
2221 	} else if (token == Opt_fc_debug_max_replay) {
2222 		sbi->s_fc_debug_max_replay = arg;
2223 #endif
2224 	} else if (token == Opt_stripe) {
2225 		sbi->s_stripe = arg;
2226 	} else if (token == Opt_resuid) {
2227 		uid = make_kuid(current_user_ns(), arg);
2228 		if (!uid_valid(uid)) {
2229 			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2230 			return -1;
2231 		}
2232 		sbi->s_resuid = uid;
2233 	} else if (token == Opt_resgid) {
2234 		gid = make_kgid(current_user_ns(), arg);
2235 		if (!gid_valid(gid)) {
2236 			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2237 			return -1;
2238 		}
2239 		sbi->s_resgid = gid;
2240 	} else if (token == Opt_journal_dev) {
2241 		if (is_remount) {
2242 			ext4_msg(sb, KERN_ERR,
2243 				 "Cannot specify journal on remount");
2244 			return -1;
2245 		}
2246 		parsed_opts->journal_devnum = arg;
2247 	} else if (token == Opt_journal_path) {
2248 		char *journal_path;
2249 		struct inode *journal_inode;
2250 		struct path path;
2251 		int error;
2252 
2253 		if (is_remount) {
2254 			ext4_msg(sb, KERN_ERR,
2255 				 "Cannot specify journal on remount");
2256 			return -1;
2257 		}
2258 		journal_path = match_strdup(&args[0]);
2259 		if (!journal_path) {
2260 			ext4_msg(sb, KERN_ERR, "error: could not dup "
2261 				"journal device string");
2262 			return -1;
2263 		}
2264 
2265 		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2266 		if (error) {
2267 			ext4_msg(sb, KERN_ERR, "error: could not find "
2268 				"journal device path: error %d", error);
2269 			kfree(journal_path);
2270 			return -1;
2271 		}
2272 
2273 		journal_inode = d_inode(path.dentry);
2274 		if (!S_ISBLK(journal_inode->i_mode)) {
2275 			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2276 				"is not a block device", journal_path);
2277 			path_put(&path);
2278 			kfree(journal_path);
2279 			return -1;
2280 		}
2281 
2282 		parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2283 		path_put(&path);
2284 		kfree(journal_path);
2285 	} else if (token == Opt_journal_ioprio) {
2286 		if (arg > 7) {
2287 			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2288 				 " (must be 0-7)");
2289 			return -1;
2290 		}
2291 		parsed_opts->journal_ioprio =
2292 			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2293 	} else if (token == Opt_test_dummy_encryption) {
2294 		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2295 						      is_remount);
2296 	} else if (m->flags & MOPT_DATAJ) {
2297 		if (is_remount) {
2298 			if (!sbi->s_journal)
2299 				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2300 			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2301 				ext4_msg(sb, KERN_ERR,
2302 					 "Cannot change data mode on remount");
2303 				return -1;
2304 			}
2305 		} else {
2306 			clear_opt(sb, DATA_FLAGS);
2307 			sbi->s_mount_opt |= m->mount_opt;
2308 		}
2309 #ifdef CONFIG_QUOTA
2310 	} else if (m->flags & MOPT_QFMT) {
2311 		if (sb_any_quota_loaded(sb) &&
2312 		    sbi->s_jquota_fmt != m->mount_opt) {
2313 			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2314 				 "quota options when quota turned on");
2315 			return -1;
2316 		}
2317 		if (ext4_has_feature_quota(sb)) {
2318 			ext4_msg(sb, KERN_INFO,
2319 				 "Quota format mount options ignored "
2320 				 "when QUOTA feature is enabled");
2321 			return 1;
2322 		}
2323 		sbi->s_jquota_fmt = m->mount_opt;
2324 #endif
2325 	} else if (token == Opt_dax || token == Opt_dax_always ||
2326 		   token == Opt_dax_inode || token == Opt_dax_never) {
2327 #ifdef CONFIG_FS_DAX
2328 		switch (token) {
2329 		case Opt_dax:
2330 		case Opt_dax_always:
2331 			if (is_remount &&
2332 			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2333 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2334 			fail_dax_change_remount:
2335 				ext4_msg(sb, KERN_ERR, "can't change "
2336 					 "dax mount option while remounting");
2337 				return -1;
2338 			}
2339 			if (is_remount &&
2340 			    (test_opt(sb, DATA_FLAGS) ==
2341 			     EXT4_MOUNT_JOURNAL_DATA)) {
2342 				    ext4_msg(sb, KERN_ERR, "can't mount with "
2343 					     "both data=journal and dax");
2344 				    return -1;
2345 			}
2346 			ext4_msg(sb, KERN_WARNING,
2347 				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2348 			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2349 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2350 			break;
2351 		case Opt_dax_never:
2352 			if (is_remount &&
2353 			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2354 			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2355 				goto fail_dax_change_remount;
2356 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2357 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2358 			break;
2359 		case Opt_dax_inode:
2360 			if (is_remount &&
2361 			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2362 			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2363 			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2364 				goto fail_dax_change_remount;
2365 			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2366 			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2367 			/* Strictly for printing options */
2368 			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2369 			break;
2370 		}
2371 #else
2372 		ext4_msg(sb, KERN_INFO, "dax option not supported");
2373 		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2374 		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2375 		return -1;
2376 #endif
2377 	} else if (token == Opt_data_err_abort) {
2378 		sbi->s_mount_opt |= m->mount_opt;
2379 	} else if (token == Opt_data_err_ignore) {
2380 		sbi->s_mount_opt &= ~m->mount_opt;
2381 	} else if (token == Opt_mb_optimize_scan) {
2382 		if (arg != 0 && arg != 1) {
2383 			ext4_msg(sb, KERN_WARNING,
2384 				 "mb_optimize_scan should be set to 0 or 1.");
2385 			return -1;
2386 		}
2387 		parsed_opts->mb_optimize_scan = arg;
2388 	} else {
2389 		if (!args->from)
2390 			arg = 1;
2391 		if (m->flags & MOPT_CLEAR)
2392 			arg = !arg;
2393 		else if (unlikely(!(m->flags & MOPT_SET))) {
2394 			ext4_msg(sb, KERN_WARNING,
2395 				 "buggy handling of option %s", opt);
2396 			WARN_ON(1);
2397 			return -1;
2398 		}
2399 		if (m->flags & MOPT_2) {
2400 			if (arg != 0)
2401 				sbi->s_mount_opt2 |= m->mount_opt;
2402 			else
2403 				sbi->s_mount_opt2 &= ~m->mount_opt;
2404 		} else {
2405 			if (arg != 0)
2406 				sbi->s_mount_opt |= m->mount_opt;
2407 			else
2408 				sbi->s_mount_opt &= ~m->mount_opt;
2409 		}
2410 	}
2411 	return 1;
2412 }
2413 
2414 static int parse_options(char *options, struct super_block *sb,
2415 			 struct ext4_parsed_options *ret_opts,
2416 			 int is_remount)
2417 {
2418 	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2419 	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2420 	substring_t args[MAX_OPT_ARGS];
2421 	int token;
2422 
2423 	if (!options)
2424 		return 1;
2425 
2426 	while ((p = strsep(&options, ",")) != NULL) {
2427 		if (!*p)
2428 			continue;
2429 		/*
2430 		 * Initialize args struct so we know whether arg was
2431 		 * found; some options take optional arguments.
2432 		 */
2433 		args[0].to = args[0].from = NULL;
2434 		token = match_token(p, tokens, args);
2435 		if (handle_mount_opt(sb, p, token, args, ret_opts,
2436 				     is_remount) < 0)
2437 			return 0;
2438 	}
2439 #ifdef CONFIG_QUOTA
2440 	/*
2441 	 * We do the test below only for project quotas. 'usrquota' and
2442 	 * 'grpquota' mount options are allowed even without quota feature
2443 	 * to support legacy quotas in quota files.
2444 	 */
2445 	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2446 		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2447 			 "Cannot enable project quota enforcement.");
2448 		return 0;
2449 	}
2450 	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2451 	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2452 	if (usr_qf_name || grp_qf_name) {
2453 		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2454 			clear_opt(sb, USRQUOTA);
2455 
2456 		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2457 			clear_opt(sb, GRPQUOTA);
2458 
2459 		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2460 			ext4_msg(sb, KERN_ERR, "old and new quota "
2461 					"format mixing");
2462 			return 0;
2463 		}
2464 
2465 		if (!sbi->s_jquota_fmt) {
2466 			ext4_msg(sb, KERN_ERR, "journaled quota format "
2467 					"not specified");
2468 			return 0;
2469 		}
2470 	}
2471 #endif
2472 	if (test_opt(sb, DIOREAD_NOLOCK)) {
2473 		int blocksize =
2474 			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2475 		if (blocksize < PAGE_SIZE)
2476 			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2477 				 "experimental mount option 'dioread_nolock' "
2478 				 "for blocksize < PAGE_SIZE");
2479 	}
2480 	return 1;
2481 }
2482 
2483 static inline void ext4_show_quota_options(struct seq_file *seq,
2484 					   struct super_block *sb)
2485 {
2486 #if defined(CONFIG_QUOTA)
2487 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2488 	char *usr_qf_name, *grp_qf_name;
2489 
2490 	if (sbi->s_jquota_fmt) {
2491 		char *fmtname = "";
2492 
2493 		switch (sbi->s_jquota_fmt) {
2494 		case QFMT_VFS_OLD:
2495 			fmtname = "vfsold";
2496 			break;
2497 		case QFMT_VFS_V0:
2498 			fmtname = "vfsv0";
2499 			break;
2500 		case QFMT_VFS_V1:
2501 			fmtname = "vfsv1";
2502 			break;
2503 		}
2504 		seq_printf(seq, ",jqfmt=%s", fmtname);
2505 	}
2506 
2507 	rcu_read_lock();
2508 	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2509 	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2510 	if (usr_qf_name)
2511 		seq_show_option(seq, "usrjquota", usr_qf_name);
2512 	if (grp_qf_name)
2513 		seq_show_option(seq, "grpjquota", grp_qf_name);
2514 	rcu_read_unlock();
2515 #endif
2516 }
2517 
2518 static const char *token2str(int token)
2519 {
2520 	const struct match_token *t;
2521 
2522 	for (t = tokens; t->token != Opt_err; t++)
2523 		if (t->token == token && !strchr(t->pattern, '='))
2524 			break;
2525 	return t->pattern;
2526 }
2527 
2528 /*
2529  * Show an option if
2530  *  - it's set to a non-default value OR
2531  *  - if the per-sb default is different from the global default
2532  */
2533 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2534 			      int nodefs)
2535 {
2536 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2537 	struct ext4_super_block *es = sbi->s_es;
2538 	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2539 	const struct mount_opts *m;
2540 	char sep = nodefs ? '\n' : ',';
2541 
2542 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2543 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2544 
2545 	if (sbi->s_sb_block != 1)
2546 		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2547 
2548 	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2549 		int want_set = m->flags & MOPT_SET;
2550 		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2551 		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2552 			continue;
2553 		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2554 			continue; /* skip if same as the default */
2555 		if ((want_set &&
2556 		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2557 		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2558 			continue; /* select Opt_noFoo vs Opt_Foo */
2559 		SEQ_OPTS_PRINT("%s", token2str(m->token));
2560 	}
2561 
2562 	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2563 	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2564 		SEQ_OPTS_PRINT("resuid=%u",
2565 				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2566 	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2567 	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2568 		SEQ_OPTS_PRINT("resgid=%u",
2569 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2570 	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2571 	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2572 		SEQ_OPTS_PUTS("errors=remount-ro");
2573 	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2574 		SEQ_OPTS_PUTS("errors=continue");
2575 	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2576 		SEQ_OPTS_PUTS("errors=panic");
2577 	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2578 		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2579 	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2580 		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2581 	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2582 		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2583 	if (sb->s_flags & SB_I_VERSION)
2584 		SEQ_OPTS_PUTS("i_version");
2585 	if (nodefs || sbi->s_stripe)
2586 		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2587 	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2588 			(sbi->s_mount_opt ^ def_mount_opt)) {
2589 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2590 			SEQ_OPTS_PUTS("data=journal");
2591 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2592 			SEQ_OPTS_PUTS("data=ordered");
2593 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2594 			SEQ_OPTS_PUTS("data=writeback");
2595 	}
2596 	if (nodefs ||
2597 	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2598 		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2599 			       sbi->s_inode_readahead_blks);
2600 
2601 	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2602 		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2603 		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2604 	if (nodefs || sbi->s_max_dir_size_kb)
2605 		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2606 	if (test_opt(sb, DATA_ERR_ABORT))
2607 		SEQ_OPTS_PUTS("data_err=abort");
2608 
2609 	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2610 
2611 	if (sb->s_flags & SB_INLINECRYPT)
2612 		SEQ_OPTS_PUTS("inlinecrypt");
2613 
2614 	if (test_opt(sb, DAX_ALWAYS)) {
2615 		if (IS_EXT2_SB(sb))
2616 			SEQ_OPTS_PUTS("dax");
2617 		else
2618 			SEQ_OPTS_PUTS("dax=always");
2619 	} else if (test_opt2(sb, DAX_NEVER)) {
2620 		SEQ_OPTS_PUTS("dax=never");
2621 	} else if (test_opt2(sb, DAX_INODE)) {
2622 		SEQ_OPTS_PUTS("dax=inode");
2623 	}
2624 	ext4_show_quota_options(seq, sb);
2625 	return 0;
2626 }
2627 
2628 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2629 {
2630 	return _ext4_show_options(seq, root->d_sb, 0);
2631 }
2632 
2633 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2634 {
2635 	struct super_block *sb = seq->private;
2636 	int rc;
2637 
2638 	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2639 	rc = _ext4_show_options(seq, sb, 1);
2640 	seq_puts(seq, "\n");
2641 	return rc;
2642 }
2643 
2644 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2645 			    int read_only)
2646 {
2647 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2648 	int err = 0;
2649 
2650 	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2651 		ext4_msg(sb, KERN_ERR, "revision level too high, "
2652 			 "forcing read-only mode");
2653 		err = -EROFS;
2654 		goto done;
2655 	}
2656 	if (read_only)
2657 		goto done;
2658 	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2659 		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2660 			 "running e2fsck is recommended");
2661 	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2662 		ext4_msg(sb, KERN_WARNING,
2663 			 "warning: mounting fs with errors, "
2664 			 "running e2fsck is recommended");
2665 	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2666 		 le16_to_cpu(es->s_mnt_count) >=
2667 		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2668 		ext4_msg(sb, KERN_WARNING,
2669 			 "warning: maximal mount count reached, "
2670 			 "running e2fsck is recommended");
2671 	else if (le32_to_cpu(es->s_checkinterval) &&
2672 		 (ext4_get_tstamp(es, s_lastcheck) +
2673 		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2674 		ext4_msg(sb, KERN_WARNING,
2675 			 "warning: checktime reached, "
2676 			 "running e2fsck is recommended");
2677 	if (!sbi->s_journal)
2678 		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2679 	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2680 		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2681 	le16_add_cpu(&es->s_mnt_count, 1);
2682 	ext4_update_tstamp(es, s_mtime);
2683 	if (sbi->s_journal)
2684 		ext4_set_feature_journal_needs_recovery(sb);
2685 
2686 	err = ext4_commit_super(sb);
2687 done:
2688 	if (test_opt(sb, DEBUG))
2689 		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2690 				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2691 			sb->s_blocksize,
2692 			sbi->s_groups_count,
2693 			EXT4_BLOCKS_PER_GROUP(sb),
2694 			EXT4_INODES_PER_GROUP(sb),
2695 			sbi->s_mount_opt, sbi->s_mount_opt2);
2696 
2697 	cleancache_init_fs(sb);
2698 	return err;
2699 }
2700 
2701 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2702 {
2703 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2704 	struct flex_groups **old_groups, **new_groups;
2705 	int size, i, j;
2706 
2707 	if (!sbi->s_log_groups_per_flex)
2708 		return 0;
2709 
2710 	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2711 	if (size <= sbi->s_flex_groups_allocated)
2712 		return 0;
2713 
2714 	new_groups = kvzalloc(roundup_pow_of_two(size *
2715 			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2716 	if (!new_groups) {
2717 		ext4_msg(sb, KERN_ERR,
2718 			 "not enough memory for %d flex group pointers", size);
2719 		return -ENOMEM;
2720 	}
2721 	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2722 		new_groups[i] = kvzalloc(roundup_pow_of_two(
2723 					 sizeof(struct flex_groups)),
2724 					 GFP_KERNEL);
2725 		if (!new_groups[i]) {
2726 			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2727 				kvfree(new_groups[j]);
2728 			kvfree(new_groups);
2729 			ext4_msg(sb, KERN_ERR,
2730 				 "not enough memory for %d flex groups", size);
2731 			return -ENOMEM;
2732 		}
2733 	}
2734 	rcu_read_lock();
2735 	old_groups = rcu_dereference(sbi->s_flex_groups);
2736 	if (old_groups)
2737 		memcpy(new_groups, old_groups,
2738 		       (sbi->s_flex_groups_allocated *
2739 			sizeof(struct flex_groups *)));
2740 	rcu_read_unlock();
2741 	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2742 	sbi->s_flex_groups_allocated = size;
2743 	if (old_groups)
2744 		ext4_kvfree_array_rcu(old_groups);
2745 	return 0;
2746 }
2747 
2748 static int ext4_fill_flex_info(struct super_block *sb)
2749 {
2750 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2751 	struct ext4_group_desc *gdp = NULL;
2752 	struct flex_groups *fg;
2753 	ext4_group_t flex_group;
2754 	int i, err;
2755 
2756 	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2757 	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2758 		sbi->s_log_groups_per_flex = 0;
2759 		return 1;
2760 	}
2761 
2762 	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2763 	if (err)
2764 		goto failed;
2765 
2766 	for (i = 0; i < sbi->s_groups_count; i++) {
2767 		gdp = ext4_get_group_desc(sb, i, NULL);
2768 
2769 		flex_group = ext4_flex_group(sbi, i);
2770 		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2771 		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2772 		atomic64_add(ext4_free_group_clusters(sb, gdp),
2773 			     &fg->free_clusters);
2774 		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2775 	}
2776 
2777 	return 1;
2778 failed:
2779 	return 0;
2780 }
2781 
2782 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2783 				   struct ext4_group_desc *gdp)
2784 {
2785 	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2786 	__u16 crc = 0;
2787 	__le32 le_group = cpu_to_le32(block_group);
2788 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2789 
2790 	if (ext4_has_metadata_csum(sbi->s_sb)) {
2791 		/* Use new metadata_csum algorithm */
2792 		__u32 csum32;
2793 		__u16 dummy_csum = 0;
2794 
2795 		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2796 				     sizeof(le_group));
2797 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2798 		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2799 				     sizeof(dummy_csum));
2800 		offset += sizeof(dummy_csum);
2801 		if (offset < sbi->s_desc_size)
2802 			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2803 					     sbi->s_desc_size - offset);
2804 
2805 		crc = csum32 & 0xFFFF;
2806 		goto out;
2807 	}
2808 
2809 	/* old crc16 code */
2810 	if (!ext4_has_feature_gdt_csum(sb))
2811 		return 0;
2812 
2813 	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2814 	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2815 	crc = crc16(crc, (__u8 *)gdp, offset);
2816 	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2817 	/* for checksum of struct ext4_group_desc do the rest...*/
2818 	if (ext4_has_feature_64bit(sb) &&
2819 	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2820 		crc = crc16(crc, (__u8 *)gdp + offset,
2821 			    le16_to_cpu(sbi->s_es->s_desc_size) -
2822 				offset);
2823 
2824 out:
2825 	return cpu_to_le16(crc);
2826 }
2827 
2828 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2829 				struct ext4_group_desc *gdp)
2830 {
2831 	if (ext4_has_group_desc_csum(sb) &&
2832 	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2833 		return 0;
2834 
2835 	return 1;
2836 }
2837 
2838 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2839 			      struct ext4_group_desc *gdp)
2840 {
2841 	if (!ext4_has_group_desc_csum(sb))
2842 		return;
2843 	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2844 }
2845 
2846 /* Called at mount-time, super-block is locked */
2847 static int ext4_check_descriptors(struct super_block *sb,
2848 				  ext4_fsblk_t sb_block,
2849 				  ext4_group_t *first_not_zeroed)
2850 {
2851 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2852 	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2853 	ext4_fsblk_t last_block;
2854 	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2855 	ext4_fsblk_t block_bitmap;
2856 	ext4_fsblk_t inode_bitmap;
2857 	ext4_fsblk_t inode_table;
2858 	int flexbg_flag = 0;
2859 	ext4_group_t i, grp = sbi->s_groups_count;
2860 
2861 	if (ext4_has_feature_flex_bg(sb))
2862 		flexbg_flag = 1;
2863 
2864 	ext4_debug("Checking group descriptors");
2865 
2866 	for (i = 0; i < sbi->s_groups_count; i++) {
2867 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2868 
2869 		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2870 			last_block = ext4_blocks_count(sbi->s_es) - 1;
2871 		else
2872 			last_block = first_block +
2873 				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2874 
2875 		if ((grp == sbi->s_groups_count) &&
2876 		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2877 			grp = i;
2878 
2879 		block_bitmap = ext4_block_bitmap(sb, gdp);
2880 		if (block_bitmap == sb_block) {
2881 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2882 				 "Block bitmap for group %u overlaps "
2883 				 "superblock", i);
2884 			if (!sb_rdonly(sb))
2885 				return 0;
2886 		}
2887 		if (block_bitmap >= sb_block + 1 &&
2888 		    block_bitmap <= last_bg_block) {
2889 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2890 				 "Block bitmap for group %u overlaps "
2891 				 "block group descriptors", i);
2892 			if (!sb_rdonly(sb))
2893 				return 0;
2894 		}
2895 		if (block_bitmap < first_block || block_bitmap > last_block) {
2896 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2897 			       "Block bitmap for group %u not in group "
2898 			       "(block %llu)!", i, block_bitmap);
2899 			return 0;
2900 		}
2901 		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2902 		if (inode_bitmap == sb_block) {
2903 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2904 				 "Inode bitmap for group %u overlaps "
2905 				 "superblock", i);
2906 			if (!sb_rdonly(sb))
2907 				return 0;
2908 		}
2909 		if (inode_bitmap >= sb_block + 1 &&
2910 		    inode_bitmap <= last_bg_block) {
2911 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2912 				 "Inode bitmap for group %u overlaps "
2913 				 "block group descriptors", i);
2914 			if (!sb_rdonly(sb))
2915 				return 0;
2916 		}
2917 		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2918 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2919 			       "Inode bitmap for group %u not in group "
2920 			       "(block %llu)!", i, inode_bitmap);
2921 			return 0;
2922 		}
2923 		inode_table = ext4_inode_table(sb, gdp);
2924 		if (inode_table == sb_block) {
2925 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2926 				 "Inode table for group %u overlaps "
2927 				 "superblock", i);
2928 			if (!sb_rdonly(sb))
2929 				return 0;
2930 		}
2931 		if (inode_table >= sb_block + 1 &&
2932 		    inode_table <= last_bg_block) {
2933 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2934 				 "Inode table for group %u overlaps "
2935 				 "block group descriptors", i);
2936 			if (!sb_rdonly(sb))
2937 				return 0;
2938 		}
2939 		if (inode_table < first_block ||
2940 		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2941 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2942 			       "Inode table for group %u not in group "
2943 			       "(block %llu)!", i, inode_table);
2944 			return 0;
2945 		}
2946 		ext4_lock_group(sb, i);
2947 		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2948 			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2949 				 "Checksum for group %u failed (%u!=%u)",
2950 				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2951 				     gdp)), le16_to_cpu(gdp->bg_checksum));
2952 			if (!sb_rdonly(sb)) {
2953 				ext4_unlock_group(sb, i);
2954 				return 0;
2955 			}
2956 		}
2957 		ext4_unlock_group(sb, i);
2958 		if (!flexbg_flag)
2959 			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2960 	}
2961 	if (NULL != first_not_zeroed)
2962 		*first_not_zeroed = grp;
2963 	return 1;
2964 }
2965 
2966 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2967  * the superblock) which were deleted from all directories, but held open by
2968  * a process at the time of a crash.  We walk the list and try to delete these
2969  * inodes at recovery time (only with a read-write filesystem).
2970  *
2971  * In order to keep the orphan inode chain consistent during traversal (in
2972  * case of crash during recovery), we link each inode into the superblock
2973  * orphan list_head and handle it the same way as an inode deletion during
2974  * normal operation (which journals the operations for us).
2975  *
2976  * We only do an iget() and an iput() on each inode, which is very safe if we
2977  * accidentally point at an in-use or already deleted inode.  The worst that
2978  * can happen in this case is that we get a "bit already cleared" message from
2979  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2980  * e2fsck was run on this filesystem, and it must have already done the orphan
2981  * inode cleanup for us, so we can safely abort without any further action.
2982  */
2983 static void ext4_orphan_cleanup(struct super_block *sb,
2984 				struct ext4_super_block *es)
2985 {
2986 	unsigned int s_flags = sb->s_flags;
2987 	int ret, nr_orphans = 0, nr_truncates = 0;
2988 #ifdef CONFIG_QUOTA
2989 	int quota_update = 0;
2990 	int i;
2991 #endif
2992 	if (!es->s_last_orphan) {
2993 		jbd_debug(4, "no orphan inodes to clean up\n");
2994 		return;
2995 	}
2996 
2997 	if (bdev_read_only(sb->s_bdev)) {
2998 		ext4_msg(sb, KERN_ERR, "write access "
2999 			"unavailable, skipping orphan cleanup");
3000 		return;
3001 	}
3002 
3003 	/* Check if feature set would not allow a r/w mount */
3004 	if (!ext4_feature_set_ok(sb, 0)) {
3005 		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3006 			 "unknown ROCOMPAT features");
3007 		return;
3008 	}
3009 
3010 	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3011 		/* don't clear list on RO mount w/ errors */
3012 		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3013 			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3014 				  "clearing orphan list.\n");
3015 			es->s_last_orphan = 0;
3016 		}
3017 		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3018 		return;
3019 	}
3020 
3021 	if (s_flags & SB_RDONLY) {
3022 		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3023 		sb->s_flags &= ~SB_RDONLY;
3024 	}
3025 #ifdef CONFIG_QUOTA
3026 	/*
3027 	 * Turn on quotas which were not enabled for read-only mounts if
3028 	 * filesystem has quota feature, so that they are updated correctly.
3029 	 */
3030 	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3031 		int ret = ext4_enable_quotas(sb);
3032 
3033 		if (!ret)
3034 			quota_update = 1;
3035 		else
3036 			ext4_msg(sb, KERN_ERR,
3037 				"Cannot turn on quotas: error %d", ret);
3038 	}
3039 
3040 	/* Turn on journaled quotas used for old sytle */
3041 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3042 		if (EXT4_SB(sb)->s_qf_names[i]) {
3043 			int ret = ext4_quota_on_mount(sb, i);
3044 
3045 			if (!ret)
3046 				quota_update = 1;
3047 			else
3048 				ext4_msg(sb, KERN_ERR,
3049 					"Cannot turn on journaled "
3050 					"quota: type %d: error %d", i, ret);
3051 		}
3052 	}
3053 #endif
3054 
3055 	while (es->s_last_orphan) {
3056 		struct inode *inode;
3057 
3058 		/*
3059 		 * We may have encountered an error during cleanup; if
3060 		 * so, skip the rest.
3061 		 */
3062 		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3063 			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3064 			es->s_last_orphan = 0;
3065 			break;
3066 		}
3067 
3068 		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3069 		if (IS_ERR(inode)) {
3070 			es->s_last_orphan = 0;
3071 			break;
3072 		}
3073 
3074 		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3075 		dquot_initialize(inode);
3076 		if (inode->i_nlink) {
3077 			if (test_opt(sb, DEBUG))
3078 				ext4_msg(sb, KERN_DEBUG,
3079 					"%s: truncating inode %lu to %lld bytes",
3080 					__func__, inode->i_ino, inode->i_size);
3081 			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3082 				  inode->i_ino, inode->i_size);
3083 			inode_lock(inode);
3084 			truncate_inode_pages(inode->i_mapping, inode->i_size);
3085 			ret = ext4_truncate(inode);
3086 			if (ret) {
3087 				/*
3088 				 * We need to clean up the in-core orphan list
3089 				 * manually if ext4_truncate() failed to get a
3090 				 * transaction handle.
3091 				 */
3092 				ext4_orphan_del(NULL, inode);
3093 				ext4_std_error(inode->i_sb, ret);
3094 			}
3095 			inode_unlock(inode);
3096 			nr_truncates++;
3097 		} else {
3098 			if (test_opt(sb, DEBUG))
3099 				ext4_msg(sb, KERN_DEBUG,
3100 					"%s: deleting unreferenced inode %lu",
3101 					__func__, inode->i_ino);
3102 			jbd_debug(2, "deleting unreferenced inode %lu\n",
3103 				  inode->i_ino);
3104 			nr_orphans++;
3105 		}
3106 		iput(inode);  /* The delete magic happens here! */
3107 	}
3108 
3109 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3110 
3111 	if (nr_orphans)
3112 		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3113 		       PLURAL(nr_orphans));
3114 	if (nr_truncates)
3115 		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3116 		       PLURAL(nr_truncates));
3117 #ifdef CONFIG_QUOTA
3118 	/* Turn off quotas if they were enabled for orphan cleanup */
3119 	if (quota_update) {
3120 		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3121 			if (sb_dqopt(sb)->files[i])
3122 				dquot_quota_off(sb, i);
3123 		}
3124 	}
3125 #endif
3126 	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3127 }
3128 
3129 /*
3130  * Maximal extent format file size.
3131  * Resulting logical blkno at s_maxbytes must fit in our on-disk
3132  * extent format containers, within a sector_t, and within i_blocks
3133  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3134  * so that won't be a limiting factor.
3135  *
3136  * However there is other limiting factor. We do store extents in the form
3137  * of starting block and length, hence the resulting length of the extent
3138  * covering maximum file size must fit into on-disk format containers as
3139  * well. Given that length is always by 1 unit bigger than max unit (because
3140  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3141  *
3142  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3143  */
3144 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3145 {
3146 	loff_t res;
3147 	loff_t upper_limit = MAX_LFS_FILESIZE;
3148 
3149 	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3150 
3151 	if (!has_huge_files) {
3152 		upper_limit = (1LL << 32) - 1;
3153 
3154 		/* total blocks in file system block size */
3155 		upper_limit >>= (blkbits - 9);
3156 		upper_limit <<= blkbits;
3157 	}
3158 
3159 	/*
3160 	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3161 	 * by one fs block, so ee_len can cover the extent of maximum file
3162 	 * size
3163 	 */
3164 	res = (1LL << 32) - 1;
3165 	res <<= blkbits;
3166 
3167 	/* Sanity check against vm- & vfs- imposed limits */
3168 	if (res > upper_limit)
3169 		res = upper_limit;
3170 
3171 	return res;
3172 }
3173 
3174 /*
3175  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3176  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3177  * We need to be 1 filesystem block less than the 2^48 sector limit.
3178  */
3179 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3180 {
3181 	loff_t res = EXT4_NDIR_BLOCKS;
3182 	int meta_blocks;
3183 	loff_t upper_limit;
3184 	/* This is calculated to be the largest file size for a dense, block
3185 	 * mapped file such that the file's total number of 512-byte sectors,
3186 	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3187 	 *
3188 	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3189 	 * number of 512-byte sectors of the file.
3190 	 */
3191 
3192 	if (!has_huge_files) {
3193 		/*
3194 		 * !has_huge_files or implies that the inode i_block field
3195 		 * represents total file blocks in 2^32 512-byte sectors ==
3196 		 * size of vfs inode i_blocks * 8
3197 		 */
3198 		upper_limit = (1LL << 32) - 1;
3199 
3200 		/* total blocks in file system block size */
3201 		upper_limit >>= (bits - 9);
3202 
3203 	} else {
3204 		/*
3205 		 * We use 48 bit ext4_inode i_blocks
3206 		 * With EXT4_HUGE_FILE_FL set the i_blocks
3207 		 * represent total number of blocks in
3208 		 * file system block size
3209 		 */
3210 		upper_limit = (1LL << 48) - 1;
3211 
3212 	}
3213 
3214 	/* indirect blocks */
3215 	meta_blocks = 1;
3216 	/* double indirect blocks */
3217 	meta_blocks += 1 + (1LL << (bits-2));
3218 	/* tripple indirect blocks */
3219 	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3220 
3221 	upper_limit -= meta_blocks;
3222 	upper_limit <<= bits;
3223 
3224 	res += 1LL << (bits-2);
3225 	res += 1LL << (2*(bits-2));
3226 	res += 1LL << (3*(bits-2));
3227 	res <<= bits;
3228 	if (res > upper_limit)
3229 		res = upper_limit;
3230 
3231 	if (res > MAX_LFS_FILESIZE)
3232 		res = MAX_LFS_FILESIZE;
3233 
3234 	return res;
3235 }
3236 
3237 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3238 				   ext4_fsblk_t logical_sb_block, int nr)
3239 {
3240 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3241 	ext4_group_t bg, first_meta_bg;
3242 	int has_super = 0;
3243 
3244 	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3245 
3246 	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3247 		return logical_sb_block + nr + 1;
3248 	bg = sbi->s_desc_per_block * nr;
3249 	if (ext4_bg_has_super(sb, bg))
3250 		has_super = 1;
3251 
3252 	/*
3253 	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3254 	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3255 	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3256 	 * compensate.
3257 	 */
3258 	if (sb->s_blocksize == 1024 && nr == 0 &&
3259 	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3260 		has_super++;
3261 
3262 	return (has_super + ext4_group_first_block_no(sb, bg));
3263 }
3264 
3265 /**
3266  * ext4_get_stripe_size: Get the stripe size.
3267  * @sbi: In memory super block info
3268  *
3269  * If we have specified it via mount option, then
3270  * use the mount option value. If the value specified at mount time is
3271  * greater than the blocks per group use the super block value.
3272  * If the super block value is greater than blocks per group return 0.
3273  * Allocator needs it be less than blocks per group.
3274  *
3275  */
3276 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3277 {
3278 	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3279 	unsigned long stripe_width =
3280 			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3281 	int ret;
3282 
3283 	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3284 		ret = sbi->s_stripe;
3285 	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3286 		ret = stripe_width;
3287 	else if (stride && stride <= sbi->s_blocks_per_group)
3288 		ret = stride;
3289 	else
3290 		ret = 0;
3291 
3292 	/*
3293 	 * If the stripe width is 1, this makes no sense and
3294 	 * we set it to 0 to turn off stripe handling code.
3295 	 */
3296 	if (ret <= 1)
3297 		ret = 0;
3298 
3299 	return ret;
3300 }
3301 
3302 /*
3303  * Check whether this filesystem can be mounted based on
3304  * the features present and the RDONLY/RDWR mount requested.
3305  * Returns 1 if this filesystem can be mounted as requested,
3306  * 0 if it cannot be.
3307  */
3308 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3309 {
3310 	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3311 		ext4_msg(sb, KERN_ERR,
3312 			"Couldn't mount because of "
3313 			"unsupported optional features (%x)",
3314 			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3315 			~EXT4_FEATURE_INCOMPAT_SUPP));
3316 		return 0;
3317 	}
3318 
3319 #ifndef CONFIG_UNICODE
3320 	if (ext4_has_feature_casefold(sb)) {
3321 		ext4_msg(sb, KERN_ERR,
3322 			 "Filesystem with casefold feature cannot be "
3323 			 "mounted without CONFIG_UNICODE");
3324 		return 0;
3325 	}
3326 #endif
3327 
3328 	if (readonly)
3329 		return 1;
3330 
3331 	if (ext4_has_feature_readonly(sb)) {
3332 		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3333 		sb->s_flags |= SB_RDONLY;
3334 		return 1;
3335 	}
3336 
3337 	/* Check that feature set is OK for a read-write mount */
3338 	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3339 		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3340 			 "unsupported optional features (%x)",
3341 			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3342 				~EXT4_FEATURE_RO_COMPAT_SUPP));
3343 		return 0;
3344 	}
3345 	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3346 		ext4_msg(sb, KERN_ERR,
3347 			 "Can't support bigalloc feature without "
3348 			 "extents feature\n");
3349 		return 0;
3350 	}
3351 
3352 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3353 	if (!readonly && (ext4_has_feature_quota(sb) ||
3354 			  ext4_has_feature_project(sb))) {
3355 		ext4_msg(sb, KERN_ERR,
3356 			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3357 		return 0;
3358 	}
3359 #endif  /* CONFIG_QUOTA */
3360 	return 1;
3361 }
3362 
3363 /*
3364  * This function is called once a day if we have errors logged
3365  * on the file system
3366  */
3367 static void print_daily_error_info(struct timer_list *t)
3368 {
3369 	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3370 	struct super_block *sb = sbi->s_sb;
3371 	struct ext4_super_block *es = sbi->s_es;
3372 
3373 	if (es->s_error_count)
3374 		/* fsck newer than v1.41.13 is needed to clean this condition. */
3375 		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3376 			 le32_to_cpu(es->s_error_count));
3377 	if (es->s_first_error_time) {
3378 		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3379 		       sb->s_id,
3380 		       ext4_get_tstamp(es, s_first_error_time),
3381 		       (int) sizeof(es->s_first_error_func),
3382 		       es->s_first_error_func,
3383 		       le32_to_cpu(es->s_first_error_line));
3384 		if (es->s_first_error_ino)
3385 			printk(KERN_CONT ": inode %u",
3386 			       le32_to_cpu(es->s_first_error_ino));
3387 		if (es->s_first_error_block)
3388 			printk(KERN_CONT ": block %llu", (unsigned long long)
3389 			       le64_to_cpu(es->s_first_error_block));
3390 		printk(KERN_CONT "\n");
3391 	}
3392 	if (es->s_last_error_time) {
3393 		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3394 		       sb->s_id,
3395 		       ext4_get_tstamp(es, s_last_error_time),
3396 		       (int) sizeof(es->s_last_error_func),
3397 		       es->s_last_error_func,
3398 		       le32_to_cpu(es->s_last_error_line));
3399 		if (es->s_last_error_ino)
3400 			printk(KERN_CONT ": inode %u",
3401 			       le32_to_cpu(es->s_last_error_ino));
3402 		if (es->s_last_error_block)
3403 			printk(KERN_CONT ": block %llu", (unsigned long long)
3404 			       le64_to_cpu(es->s_last_error_block));
3405 		printk(KERN_CONT "\n");
3406 	}
3407 	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3408 }
3409 
3410 /* Find next suitable group and run ext4_init_inode_table */
3411 static int ext4_run_li_request(struct ext4_li_request *elr)
3412 {
3413 	struct ext4_group_desc *gdp = NULL;
3414 	struct super_block *sb = elr->lr_super;
3415 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3416 	ext4_group_t group = elr->lr_next_group;
3417 	unsigned long timeout = 0;
3418 	unsigned int prefetch_ios = 0;
3419 	int ret = 0;
3420 
3421 	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3422 		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3423 				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3424 		if (prefetch_ios)
3425 			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3426 					      prefetch_ios);
3427 		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3428 					    prefetch_ios);
3429 		if (group >= elr->lr_next_group) {
3430 			ret = 1;
3431 			if (elr->lr_first_not_zeroed != ngroups &&
3432 			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3433 				elr->lr_next_group = elr->lr_first_not_zeroed;
3434 				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3435 				ret = 0;
3436 			}
3437 		}
3438 		return ret;
3439 	}
3440 
3441 	for (; group < ngroups; group++) {
3442 		gdp = ext4_get_group_desc(sb, group, NULL);
3443 		if (!gdp) {
3444 			ret = 1;
3445 			break;
3446 		}
3447 
3448 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3449 			break;
3450 	}
3451 
3452 	if (group >= ngroups)
3453 		ret = 1;
3454 
3455 	if (!ret) {
3456 		timeout = jiffies;
3457 		ret = ext4_init_inode_table(sb, group,
3458 					    elr->lr_timeout ? 0 : 1);
3459 		trace_ext4_lazy_itable_init(sb, group);
3460 		if (elr->lr_timeout == 0) {
3461 			timeout = (jiffies - timeout) *
3462 				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3463 			elr->lr_timeout = timeout;
3464 		}
3465 		elr->lr_next_sched = jiffies + elr->lr_timeout;
3466 		elr->lr_next_group = group + 1;
3467 	}
3468 	return ret;
3469 }
3470 
3471 /*
3472  * Remove lr_request from the list_request and free the
3473  * request structure. Should be called with li_list_mtx held
3474  */
3475 static void ext4_remove_li_request(struct ext4_li_request *elr)
3476 {
3477 	if (!elr)
3478 		return;
3479 
3480 	list_del(&elr->lr_request);
3481 	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3482 	kfree(elr);
3483 }
3484 
3485 static void ext4_unregister_li_request(struct super_block *sb)
3486 {
3487 	mutex_lock(&ext4_li_mtx);
3488 	if (!ext4_li_info) {
3489 		mutex_unlock(&ext4_li_mtx);
3490 		return;
3491 	}
3492 
3493 	mutex_lock(&ext4_li_info->li_list_mtx);
3494 	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3495 	mutex_unlock(&ext4_li_info->li_list_mtx);
3496 	mutex_unlock(&ext4_li_mtx);
3497 }
3498 
3499 static struct task_struct *ext4_lazyinit_task;
3500 
3501 /*
3502  * This is the function where ext4lazyinit thread lives. It walks
3503  * through the request list searching for next scheduled filesystem.
3504  * When such a fs is found, run the lazy initialization request
3505  * (ext4_rn_li_request) and keep track of the time spend in this
3506  * function. Based on that time we compute next schedule time of
3507  * the request. When walking through the list is complete, compute
3508  * next waking time and put itself into sleep.
3509  */
3510 static int ext4_lazyinit_thread(void *arg)
3511 {
3512 	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3513 	struct list_head *pos, *n;
3514 	struct ext4_li_request *elr;
3515 	unsigned long next_wakeup, cur;
3516 
3517 	BUG_ON(NULL == eli);
3518 
3519 cont_thread:
3520 	while (true) {
3521 		next_wakeup = MAX_JIFFY_OFFSET;
3522 
3523 		mutex_lock(&eli->li_list_mtx);
3524 		if (list_empty(&eli->li_request_list)) {
3525 			mutex_unlock(&eli->li_list_mtx);
3526 			goto exit_thread;
3527 		}
3528 		list_for_each_safe(pos, n, &eli->li_request_list) {
3529 			int err = 0;
3530 			int progress = 0;
3531 			elr = list_entry(pos, struct ext4_li_request,
3532 					 lr_request);
3533 
3534 			if (time_before(jiffies, elr->lr_next_sched)) {
3535 				if (time_before(elr->lr_next_sched, next_wakeup))
3536 					next_wakeup = elr->lr_next_sched;
3537 				continue;
3538 			}
3539 			if (down_read_trylock(&elr->lr_super->s_umount)) {
3540 				if (sb_start_write_trylock(elr->lr_super)) {
3541 					progress = 1;
3542 					/*
3543 					 * We hold sb->s_umount, sb can not
3544 					 * be removed from the list, it is
3545 					 * now safe to drop li_list_mtx
3546 					 */
3547 					mutex_unlock(&eli->li_list_mtx);
3548 					err = ext4_run_li_request(elr);
3549 					sb_end_write(elr->lr_super);
3550 					mutex_lock(&eli->li_list_mtx);
3551 					n = pos->next;
3552 				}
3553 				up_read((&elr->lr_super->s_umount));
3554 			}
3555 			/* error, remove the lazy_init job */
3556 			if (err) {
3557 				ext4_remove_li_request(elr);
3558 				continue;
3559 			}
3560 			if (!progress) {
3561 				elr->lr_next_sched = jiffies +
3562 					(prandom_u32()
3563 					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3564 			}
3565 			if (time_before(elr->lr_next_sched, next_wakeup))
3566 				next_wakeup = elr->lr_next_sched;
3567 		}
3568 		mutex_unlock(&eli->li_list_mtx);
3569 
3570 		try_to_freeze();
3571 
3572 		cur = jiffies;
3573 		if ((time_after_eq(cur, next_wakeup)) ||
3574 		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3575 			cond_resched();
3576 			continue;
3577 		}
3578 
3579 		schedule_timeout_interruptible(next_wakeup - cur);
3580 
3581 		if (kthread_should_stop()) {
3582 			ext4_clear_request_list();
3583 			goto exit_thread;
3584 		}
3585 	}
3586 
3587 exit_thread:
3588 	/*
3589 	 * It looks like the request list is empty, but we need
3590 	 * to check it under the li_list_mtx lock, to prevent any
3591 	 * additions into it, and of course we should lock ext4_li_mtx
3592 	 * to atomically free the list and ext4_li_info, because at
3593 	 * this point another ext4 filesystem could be registering
3594 	 * new one.
3595 	 */
3596 	mutex_lock(&ext4_li_mtx);
3597 	mutex_lock(&eli->li_list_mtx);
3598 	if (!list_empty(&eli->li_request_list)) {
3599 		mutex_unlock(&eli->li_list_mtx);
3600 		mutex_unlock(&ext4_li_mtx);
3601 		goto cont_thread;
3602 	}
3603 	mutex_unlock(&eli->li_list_mtx);
3604 	kfree(ext4_li_info);
3605 	ext4_li_info = NULL;
3606 	mutex_unlock(&ext4_li_mtx);
3607 
3608 	return 0;
3609 }
3610 
3611 static void ext4_clear_request_list(void)
3612 {
3613 	struct list_head *pos, *n;
3614 	struct ext4_li_request *elr;
3615 
3616 	mutex_lock(&ext4_li_info->li_list_mtx);
3617 	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3618 		elr = list_entry(pos, struct ext4_li_request,
3619 				 lr_request);
3620 		ext4_remove_li_request(elr);
3621 	}
3622 	mutex_unlock(&ext4_li_info->li_list_mtx);
3623 }
3624 
3625 static int ext4_run_lazyinit_thread(void)
3626 {
3627 	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3628 					 ext4_li_info, "ext4lazyinit");
3629 	if (IS_ERR(ext4_lazyinit_task)) {
3630 		int err = PTR_ERR(ext4_lazyinit_task);
3631 		ext4_clear_request_list();
3632 		kfree(ext4_li_info);
3633 		ext4_li_info = NULL;
3634 		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3635 				 "initialization thread\n",
3636 				 err);
3637 		return err;
3638 	}
3639 	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3640 	return 0;
3641 }
3642 
3643 /*
3644  * Check whether it make sense to run itable init. thread or not.
3645  * If there is at least one uninitialized inode table, return
3646  * corresponding group number, else the loop goes through all
3647  * groups and return total number of groups.
3648  */
3649 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3650 {
3651 	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3652 	struct ext4_group_desc *gdp = NULL;
3653 
3654 	if (!ext4_has_group_desc_csum(sb))
3655 		return ngroups;
3656 
3657 	for (group = 0; group < ngroups; group++) {
3658 		gdp = ext4_get_group_desc(sb, group, NULL);
3659 		if (!gdp)
3660 			continue;
3661 
3662 		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3663 			break;
3664 	}
3665 
3666 	return group;
3667 }
3668 
3669 static int ext4_li_info_new(void)
3670 {
3671 	struct ext4_lazy_init *eli = NULL;
3672 
3673 	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3674 	if (!eli)
3675 		return -ENOMEM;
3676 
3677 	INIT_LIST_HEAD(&eli->li_request_list);
3678 	mutex_init(&eli->li_list_mtx);
3679 
3680 	eli->li_state |= EXT4_LAZYINIT_QUIT;
3681 
3682 	ext4_li_info = eli;
3683 
3684 	return 0;
3685 }
3686 
3687 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3688 					    ext4_group_t start)
3689 {
3690 	struct ext4_li_request *elr;
3691 
3692 	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3693 	if (!elr)
3694 		return NULL;
3695 
3696 	elr->lr_super = sb;
3697 	elr->lr_first_not_zeroed = start;
3698 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3699 		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3700 		elr->lr_next_group = start;
3701 	} else {
3702 		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3703 	}
3704 
3705 	/*
3706 	 * Randomize first schedule time of the request to
3707 	 * spread the inode table initialization requests
3708 	 * better.
3709 	 */
3710 	elr->lr_next_sched = jiffies + (prandom_u32() %
3711 				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3712 	return elr;
3713 }
3714 
3715 int ext4_register_li_request(struct super_block *sb,
3716 			     ext4_group_t first_not_zeroed)
3717 {
3718 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3719 	struct ext4_li_request *elr = NULL;
3720 	ext4_group_t ngroups = sbi->s_groups_count;
3721 	int ret = 0;
3722 
3723 	mutex_lock(&ext4_li_mtx);
3724 	if (sbi->s_li_request != NULL) {
3725 		/*
3726 		 * Reset timeout so it can be computed again, because
3727 		 * s_li_wait_mult might have changed.
3728 		 */
3729 		sbi->s_li_request->lr_timeout = 0;
3730 		goto out;
3731 	}
3732 
3733 	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3734 	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3735 	     !test_opt(sb, INIT_INODE_TABLE)))
3736 		goto out;
3737 
3738 	elr = ext4_li_request_new(sb, first_not_zeroed);
3739 	if (!elr) {
3740 		ret = -ENOMEM;
3741 		goto out;
3742 	}
3743 
3744 	if (NULL == ext4_li_info) {
3745 		ret = ext4_li_info_new();
3746 		if (ret)
3747 			goto out;
3748 	}
3749 
3750 	mutex_lock(&ext4_li_info->li_list_mtx);
3751 	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3752 	mutex_unlock(&ext4_li_info->li_list_mtx);
3753 
3754 	sbi->s_li_request = elr;
3755 	/*
3756 	 * set elr to NULL here since it has been inserted to
3757 	 * the request_list and the removal and free of it is
3758 	 * handled by ext4_clear_request_list from now on.
3759 	 */
3760 	elr = NULL;
3761 
3762 	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3763 		ret = ext4_run_lazyinit_thread();
3764 		if (ret)
3765 			goto out;
3766 	}
3767 out:
3768 	mutex_unlock(&ext4_li_mtx);
3769 	if (ret)
3770 		kfree(elr);
3771 	return ret;
3772 }
3773 
3774 /*
3775  * We do not need to lock anything since this is called on
3776  * module unload.
3777  */
3778 static void ext4_destroy_lazyinit_thread(void)
3779 {
3780 	/*
3781 	 * If thread exited earlier
3782 	 * there's nothing to be done.
3783 	 */
3784 	if (!ext4_li_info || !ext4_lazyinit_task)
3785 		return;
3786 
3787 	kthread_stop(ext4_lazyinit_task);
3788 }
3789 
3790 static int set_journal_csum_feature_set(struct super_block *sb)
3791 {
3792 	int ret = 1;
3793 	int compat, incompat;
3794 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3795 
3796 	if (ext4_has_metadata_csum(sb)) {
3797 		/* journal checksum v3 */
3798 		compat = 0;
3799 		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3800 	} else {
3801 		/* journal checksum v1 */
3802 		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3803 		incompat = 0;
3804 	}
3805 
3806 	jbd2_journal_clear_features(sbi->s_journal,
3807 			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3808 			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3809 			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3810 	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3811 		ret = jbd2_journal_set_features(sbi->s_journal,
3812 				compat, 0,
3813 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3814 				incompat);
3815 	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3816 		ret = jbd2_journal_set_features(sbi->s_journal,
3817 				compat, 0,
3818 				incompat);
3819 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3820 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3821 	} else {
3822 		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3823 				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3824 	}
3825 
3826 	return ret;
3827 }
3828 
3829 /*
3830  * Note: calculating the overhead so we can be compatible with
3831  * historical BSD practice is quite difficult in the face of
3832  * clusters/bigalloc.  This is because multiple metadata blocks from
3833  * different block group can end up in the same allocation cluster.
3834  * Calculating the exact overhead in the face of clustered allocation
3835  * requires either O(all block bitmaps) in memory or O(number of block
3836  * groups**2) in time.  We will still calculate the superblock for
3837  * older file systems --- and if we come across with a bigalloc file
3838  * system with zero in s_overhead_clusters the estimate will be close to
3839  * correct especially for very large cluster sizes --- but for newer
3840  * file systems, it's better to calculate this figure once at mkfs
3841  * time, and store it in the superblock.  If the superblock value is
3842  * present (even for non-bigalloc file systems), we will use it.
3843  */
3844 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3845 			  char *buf)
3846 {
3847 	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3848 	struct ext4_group_desc	*gdp;
3849 	ext4_fsblk_t		first_block, last_block, b;
3850 	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3851 	int			s, j, count = 0;
3852 
3853 	if (!ext4_has_feature_bigalloc(sb))
3854 		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3855 			sbi->s_itb_per_group + 2);
3856 
3857 	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3858 		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3859 	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3860 	for (i = 0; i < ngroups; i++) {
3861 		gdp = ext4_get_group_desc(sb, i, NULL);
3862 		b = ext4_block_bitmap(sb, gdp);
3863 		if (b >= first_block && b <= last_block) {
3864 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3865 			count++;
3866 		}
3867 		b = ext4_inode_bitmap(sb, gdp);
3868 		if (b >= first_block && b <= last_block) {
3869 			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3870 			count++;
3871 		}
3872 		b = ext4_inode_table(sb, gdp);
3873 		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3874 			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3875 				int c = EXT4_B2C(sbi, b - first_block);
3876 				ext4_set_bit(c, buf);
3877 				count++;
3878 			}
3879 		if (i != grp)
3880 			continue;
3881 		s = 0;
3882 		if (ext4_bg_has_super(sb, grp)) {
3883 			ext4_set_bit(s++, buf);
3884 			count++;
3885 		}
3886 		j = ext4_bg_num_gdb(sb, grp);
3887 		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3888 			ext4_error(sb, "Invalid number of block group "
3889 				   "descriptor blocks: %d", j);
3890 			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3891 		}
3892 		count += j;
3893 		for (; j > 0; j--)
3894 			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3895 	}
3896 	if (!count)
3897 		return 0;
3898 	return EXT4_CLUSTERS_PER_GROUP(sb) -
3899 		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3900 }
3901 
3902 /*
3903  * Compute the overhead and stash it in sbi->s_overhead
3904  */
3905 int ext4_calculate_overhead(struct super_block *sb)
3906 {
3907 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3908 	struct ext4_super_block *es = sbi->s_es;
3909 	struct inode *j_inode;
3910 	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3911 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3912 	ext4_fsblk_t overhead = 0;
3913 	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3914 
3915 	if (!buf)
3916 		return -ENOMEM;
3917 
3918 	/*
3919 	 * Compute the overhead (FS structures).  This is constant
3920 	 * for a given filesystem unless the number of block groups
3921 	 * changes so we cache the previous value until it does.
3922 	 */
3923 
3924 	/*
3925 	 * All of the blocks before first_data_block are overhead
3926 	 */
3927 	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3928 
3929 	/*
3930 	 * Add the overhead found in each block group
3931 	 */
3932 	for (i = 0; i < ngroups; i++) {
3933 		int blks;
3934 
3935 		blks = count_overhead(sb, i, buf);
3936 		overhead += blks;
3937 		if (blks)
3938 			memset(buf, 0, PAGE_SIZE);
3939 		cond_resched();
3940 	}
3941 
3942 	/*
3943 	 * Add the internal journal blocks whether the journal has been
3944 	 * loaded or not
3945 	 */
3946 	if (sbi->s_journal && !sbi->s_journal_bdev)
3947 		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3948 	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3949 		/* j_inum for internal journal is non-zero */
3950 		j_inode = ext4_get_journal_inode(sb, j_inum);
3951 		if (j_inode) {
3952 			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3953 			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3954 			iput(j_inode);
3955 		} else {
3956 			ext4_msg(sb, KERN_ERR, "can't get journal size");
3957 		}
3958 	}
3959 	sbi->s_overhead = overhead;
3960 	smp_wmb();
3961 	free_page((unsigned long) buf);
3962 	return 0;
3963 }
3964 
3965 static void ext4_set_resv_clusters(struct super_block *sb)
3966 {
3967 	ext4_fsblk_t resv_clusters;
3968 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3969 
3970 	/*
3971 	 * There's no need to reserve anything when we aren't using extents.
3972 	 * The space estimates are exact, there are no unwritten extents,
3973 	 * hole punching doesn't need new metadata... This is needed especially
3974 	 * to keep ext2/3 backward compatibility.
3975 	 */
3976 	if (!ext4_has_feature_extents(sb))
3977 		return;
3978 	/*
3979 	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3980 	 * This should cover the situations where we can not afford to run
3981 	 * out of space like for example punch hole, or converting
3982 	 * unwritten extents in delalloc path. In most cases such
3983 	 * allocation would require 1, or 2 blocks, higher numbers are
3984 	 * very rare.
3985 	 */
3986 	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3987 			 sbi->s_cluster_bits);
3988 
3989 	do_div(resv_clusters, 50);
3990 	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3991 
3992 	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3993 }
3994 
3995 static const char *ext4_quota_mode(struct super_block *sb)
3996 {
3997 #ifdef CONFIG_QUOTA
3998 	if (!ext4_quota_capable(sb))
3999 		return "none";
4000 
4001 	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4002 		return "journalled";
4003 	else
4004 		return "writeback";
4005 #else
4006 	return "disabled";
4007 #endif
4008 }
4009 
4010 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4011 {
4012 	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4013 	char *orig_data = kstrdup(data, GFP_KERNEL);
4014 	struct buffer_head *bh, **group_desc;
4015 	struct ext4_super_block *es = NULL;
4016 	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4017 	struct flex_groups **flex_groups;
4018 	ext4_fsblk_t block;
4019 	ext4_fsblk_t sb_block = get_sb_block(&data);
4020 	ext4_fsblk_t logical_sb_block;
4021 	unsigned long offset = 0;
4022 	unsigned long def_mount_opts;
4023 	struct inode *root;
4024 	const char *descr;
4025 	int ret = -ENOMEM;
4026 	int blocksize, clustersize;
4027 	unsigned int db_count;
4028 	unsigned int i;
4029 	int needs_recovery, has_huge_files;
4030 	__u64 blocks_count;
4031 	int err = 0;
4032 	ext4_group_t first_not_zeroed;
4033 	struct ext4_parsed_options parsed_opts;
4034 
4035 	/* Set defaults for the variables that will be set during parsing */
4036 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4037 	parsed_opts.journal_devnum = 0;
4038 	parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
4039 
4040 	if ((data && !orig_data) || !sbi)
4041 		goto out_free_base;
4042 
4043 	sbi->s_daxdev = dax_dev;
4044 	sbi->s_blockgroup_lock =
4045 		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4046 	if (!sbi->s_blockgroup_lock)
4047 		goto out_free_base;
4048 
4049 	sb->s_fs_info = sbi;
4050 	sbi->s_sb = sb;
4051 	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4052 	sbi->s_sb_block = sb_block;
4053 	sbi->s_sectors_written_start =
4054 		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4055 
4056 	/* Cleanup superblock name */
4057 	strreplace(sb->s_id, '/', '!');
4058 
4059 	/* -EINVAL is default */
4060 	ret = -EINVAL;
4061 	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4062 	if (!blocksize) {
4063 		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4064 		goto out_fail;
4065 	}
4066 
4067 	/*
4068 	 * The ext4 superblock will not be buffer aligned for other than 1kB
4069 	 * block sizes.  We need to calculate the offset from buffer start.
4070 	 */
4071 	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4072 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4073 		offset = do_div(logical_sb_block, blocksize);
4074 	} else {
4075 		logical_sb_block = sb_block;
4076 	}
4077 
4078 	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4079 	if (IS_ERR(bh)) {
4080 		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4081 		ret = PTR_ERR(bh);
4082 		goto out_fail;
4083 	}
4084 	/*
4085 	 * Note: s_es must be initialized as soon as possible because
4086 	 *       some ext4 macro-instructions depend on its value
4087 	 */
4088 	es = (struct ext4_super_block *) (bh->b_data + offset);
4089 	sbi->s_es = es;
4090 	sb->s_magic = le16_to_cpu(es->s_magic);
4091 	if (sb->s_magic != EXT4_SUPER_MAGIC)
4092 		goto cantfind_ext4;
4093 	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4094 
4095 	/* Warn if metadata_csum and gdt_csum are both set. */
4096 	if (ext4_has_feature_metadata_csum(sb) &&
4097 	    ext4_has_feature_gdt_csum(sb))
4098 		ext4_warning(sb, "metadata_csum and uninit_bg are "
4099 			     "redundant flags; please run fsck.");
4100 
4101 	/* Check for a known checksum algorithm */
4102 	if (!ext4_verify_csum_type(sb, es)) {
4103 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4104 			 "unknown checksum algorithm.");
4105 		silent = 1;
4106 		goto cantfind_ext4;
4107 	}
4108 
4109 	/* Load the checksum driver */
4110 	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4111 	if (IS_ERR(sbi->s_chksum_driver)) {
4112 		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4113 		ret = PTR_ERR(sbi->s_chksum_driver);
4114 		sbi->s_chksum_driver = NULL;
4115 		goto failed_mount;
4116 	}
4117 
4118 	/* Check superblock checksum */
4119 	if (!ext4_superblock_csum_verify(sb, es)) {
4120 		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4121 			 "invalid superblock checksum.  Run e2fsck?");
4122 		silent = 1;
4123 		ret = -EFSBADCRC;
4124 		goto cantfind_ext4;
4125 	}
4126 
4127 	/* Precompute checksum seed for all metadata */
4128 	if (ext4_has_feature_csum_seed(sb))
4129 		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4130 	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4131 		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4132 					       sizeof(es->s_uuid));
4133 
4134 	/* Set defaults before we parse the mount options */
4135 	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4136 	set_opt(sb, INIT_INODE_TABLE);
4137 	if (def_mount_opts & EXT4_DEFM_DEBUG)
4138 		set_opt(sb, DEBUG);
4139 	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4140 		set_opt(sb, GRPID);
4141 	if (def_mount_opts & EXT4_DEFM_UID16)
4142 		set_opt(sb, NO_UID32);
4143 	/* xattr user namespace & acls are now defaulted on */
4144 	set_opt(sb, XATTR_USER);
4145 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4146 	set_opt(sb, POSIX_ACL);
4147 #endif
4148 	if (ext4_has_feature_fast_commit(sb))
4149 		set_opt2(sb, JOURNAL_FAST_COMMIT);
4150 	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4151 	if (ext4_has_metadata_csum(sb))
4152 		set_opt(sb, JOURNAL_CHECKSUM);
4153 
4154 	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4155 		set_opt(sb, JOURNAL_DATA);
4156 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4157 		set_opt(sb, ORDERED_DATA);
4158 	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4159 		set_opt(sb, WRITEBACK_DATA);
4160 
4161 	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4162 		set_opt(sb, ERRORS_PANIC);
4163 	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4164 		set_opt(sb, ERRORS_CONT);
4165 	else
4166 		set_opt(sb, ERRORS_RO);
4167 	/* block_validity enabled by default; disable with noblock_validity */
4168 	set_opt(sb, BLOCK_VALIDITY);
4169 	if (def_mount_opts & EXT4_DEFM_DISCARD)
4170 		set_opt(sb, DISCARD);
4171 
4172 	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4173 	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4174 	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4175 	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4176 	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4177 
4178 	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4179 		set_opt(sb, BARRIER);
4180 
4181 	/*
4182 	 * enable delayed allocation by default
4183 	 * Use -o nodelalloc to turn it off
4184 	 */
4185 	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4186 	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4187 		set_opt(sb, DELALLOC);
4188 
4189 	/*
4190 	 * set default s_li_wait_mult for lazyinit, for the case there is
4191 	 * no mount option specified.
4192 	 */
4193 	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4194 
4195 	if (le32_to_cpu(es->s_log_block_size) >
4196 	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4197 		ext4_msg(sb, KERN_ERR,
4198 			 "Invalid log block size: %u",
4199 			 le32_to_cpu(es->s_log_block_size));
4200 		goto failed_mount;
4201 	}
4202 	if (le32_to_cpu(es->s_log_cluster_size) >
4203 	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4204 		ext4_msg(sb, KERN_ERR,
4205 			 "Invalid log cluster size: %u",
4206 			 le32_to_cpu(es->s_log_cluster_size));
4207 		goto failed_mount;
4208 	}
4209 
4210 	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4211 
4212 	if (blocksize == PAGE_SIZE)
4213 		set_opt(sb, DIOREAD_NOLOCK);
4214 
4215 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4216 		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4217 		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4218 	} else {
4219 		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4220 		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4221 		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4222 			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4223 				 sbi->s_first_ino);
4224 			goto failed_mount;
4225 		}
4226 		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4227 		    (!is_power_of_2(sbi->s_inode_size)) ||
4228 		    (sbi->s_inode_size > blocksize)) {
4229 			ext4_msg(sb, KERN_ERR,
4230 			       "unsupported inode size: %d",
4231 			       sbi->s_inode_size);
4232 			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4233 			goto failed_mount;
4234 		}
4235 		/*
4236 		 * i_atime_extra is the last extra field available for
4237 		 * [acm]times in struct ext4_inode. Checking for that
4238 		 * field should suffice to ensure we have extra space
4239 		 * for all three.
4240 		 */
4241 		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4242 			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4243 			sb->s_time_gran = 1;
4244 			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4245 		} else {
4246 			sb->s_time_gran = NSEC_PER_SEC;
4247 			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4248 		}
4249 		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4250 	}
4251 	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4252 		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4253 			EXT4_GOOD_OLD_INODE_SIZE;
4254 		if (ext4_has_feature_extra_isize(sb)) {
4255 			unsigned v, max = (sbi->s_inode_size -
4256 					   EXT4_GOOD_OLD_INODE_SIZE);
4257 
4258 			v = le16_to_cpu(es->s_want_extra_isize);
4259 			if (v > max) {
4260 				ext4_msg(sb, KERN_ERR,
4261 					 "bad s_want_extra_isize: %d", v);
4262 				goto failed_mount;
4263 			}
4264 			if (sbi->s_want_extra_isize < v)
4265 				sbi->s_want_extra_isize = v;
4266 
4267 			v = le16_to_cpu(es->s_min_extra_isize);
4268 			if (v > max) {
4269 				ext4_msg(sb, KERN_ERR,
4270 					 "bad s_min_extra_isize: %d", v);
4271 				goto failed_mount;
4272 			}
4273 			if (sbi->s_want_extra_isize < v)
4274 				sbi->s_want_extra_isize = v;
4275 		}
4276 	}
4277 
4278 	if (sbi->s_es->s_mount_opts[0]) {
4279 		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4280 					      sizeof(sbi->s_es->s_mount_opts),
4281 					      GFP_KERNEL);
4282 		if (!s_mount_opts)
4283 			goto failed_mount;
4284 		if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4285 			ext4_msg(sb, KERN_WARNING,
4286 				 "failed to parse options in superblock: %s",
4287 				 s_mount_opts);
4288 		}
4289 		kfree(s_mount_opts);
4290 	}
4291 	sbi->s_def_mount_opt = sbi->s_mount_opt;
4292 	if (!parse_options((char *) data, sb, &parsed_opts, 0))
4293 		goto failed_mount;
4294 
4295 #ifdef CONFIG_UNICODE
4296 	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4297 		const struct ext4_sb_encodings *encoding_info;
4298 		struct unicode_map *encoding;
4299 		__u16 encoding_flags;
4300 
4301 		if (ext4_sb_read_encoding(es, &encoding_info,
4302 					  &encoding_flags)) {
4303 			ext4_msg(sb, KERN_ERR,
4304 				 "Encoding requested by superblock is unknown");
4305 			goto failed_mount;
4306 		}
4307 
4308 		encoding = utf8_load(encoding_info->version);
4309 		if (IS_ERR(encoding)) {
4310 			ext4_msg(sb, KERN_ERR,
4311 				 "can't mount with superblock charset: %s-%s "
4312 				 "not supported by the kernel. flags: 0x%x.",
4313 				 encoding_info->name, encoding_info->version,
4314 				 encoding_flags);
4315 			goto failed_mount;
4316 		}
4317 		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4318 			 "%s-%s with flags 0x%hx", encoding_info->name,
4319 			 encoding_info->version?:"\b", encoding_flags);
4320 
4321 		sb->s_encoding = encoding;
4322 		sb->s_encoding_flags = encoding_flags;
4323 	}
4324 #endif
4325 
4326 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4327 		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4328 		/* can't mount with both data=journal and dioread_nolock. */
4329 		clear_opt(sb, DIOREAD_NOLOCK);
4330 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4331 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4332 			ext4_msg(sb, KERN_ERR, "can't mount with "
4333 				 "both data=journal and delalloc");
4334 			goto failed_mount;
4335 		}
4336 		if (test_opt(sb, DAX_ALWAYS)) {
4337 			ext4_msg(sb, KERN_ERR, "can't mount with "
4338 				 "both data=journal and dax");
4339 			goto failed_mount;
4340 		}
4341 		if (ext4_has_feature_encrypt(sb)) {
4342 			ext4_msg(sb, KERN_WARNING,
4343 				 "encrypted files will use data=ordered "
4344 				 "instead of data journaling mode");
4345 		}
4346 		if (test_opt(sb, DELALLOC))
4347 			clear_opt(sb, DELALLOC);
4348 	} else {
4349 		sb->s_iflags |= SB_I_CGROUPWB;
4350 	}
4351 
4352 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4353 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4354 
4355 	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4356 	    (ext4_has_compat_features(sb) ||
4357 	     ext4_has_ro_compat_features(sb) ||
4358 	     ext4_has_incompat_features(sb)))
4359 		ext4_msg(sb, KERN_WARNING,
4360 		       "feature flags set on rev 0 fs, "
4361 		       "running e2fsck is recommended");
4362 
4363 	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4364 		set_opt2(sb, HURD_COMPAT);
4365 		if (ext4_has_feature_64bit(sb)) {
4366 			ext4_msg(sb, KERN_ERR,
4367 				 "The Hurd can't support 64-bit file systems");
4368 			goto failed_mount;
4369 		}
4370 
4371 		/*
4372 		 * ea_inode feature uses l_i_version field which is not
4373 		 * available in HURD_COMPAT mode.
4374 		 */
4375 		if (ext4_has_feature_ea_inode(sb)) {
4376 			ext4_msg(sb, KERN_ERR,
4377 				 "ea_inode feature is not supported for Hurd");
4378 			goto failed_mount;
4379 		}
4380 	}
4381 
4382 	if (IS_EXT2_SB(sb)) {
4383 		if (ext2_feature_set_ok(sb))
4384 			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4385 				 "using the ext4 subsystem");
4386 		else {
4387 			/*
4388 			 * If we're probing be silent, if this looks like
4389 			 * it's actually an ext[34] filesystem.
4390 			 */
4391 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4392 				goto failed_mount;
4393 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4394 				 "to feature incompatibilities");
4395 			goto failed_mount;
4396 		}
4397 	}
4398 
4399 	if (IS_EXT3_SB(sb)) {
4400 		if (ext3_feature_set_ok(sb))
4401 			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4402 				 "using the ext4 subsystem");
4403 		else {
4404 			/*
4405 			 * If we're probing be silent, if this looks like
4406 			 * it's actually an ext4 filesystem.
4407 			 */
4408 			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4409 				goto failed_mount;
4410 			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4411 				 "to feature incompatibilities");
4412 			goto failed_mount;
4413 		}
4414 	}
4415 
4416 	/*
4417 	 * Check feature flags regardless of the revision level, since we
4418 	 * previously didn't change the revision level when setting the flags,
4419 	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4420 	 */
4421 	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4422 		goto failed_mount;
4423 
4424 	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4425 		ext4_msg(sb, KERN_ERR,
4426 			 "Number of reserved GDT blocks insanely large: %d",
4427 			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4428 		goto failed_mount;
4429 	}
4430 
4431 	if (bdev_dax_supported(sb->s_bdev, blocksize))
4432 		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4433 
4434 	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4435 		if (ext4_has_feature_inline_data(sb)) {
4436 			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4437 					" that may contain inline data");
4438 			goto failed_mount;
4439 		}
4440 		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4441 			ext4_msg(sb, KERN_ERR,
4442 				"DAX unsupported by block device.");
4443 			goto failed_mount;
4444 		}
4445 	}
4446 
4447 	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4448 		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4449 			 es->s_encryption_level);
4450 		goto failed_mount;
4451 	}
4452 
4453 	if (sb->s_blocksize != blocksize) {
4454 		/*
4455 		 * bh must be released before kill_bdev(), otherwise
4456 		 * it won't be freed and its page also. kill_bdev()
4457 		 * is called by sb_set_blocksize().
4458 		 */
4459 		brelse(bh);
4460 		/* Validate the filesystem blocksize */
4461 		if (!sb_set_blocksize(sb, blocksize)) {
4462 			ext4_msg(sb, KERN_ERR, "bad block size %d",
4463 					blocksize);
4464 			bh = NULL;
4465 			goto failed_mount;
4466 		}
4467 
4468 		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4469 		offset = do_div(logical_sb_block, blocksize);
4470 		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4471 		if (IS_ERR(bh)) {
4472 			ext4_msg(sb, KERN_ERR,
4473 			       "Can't read superblock on 2nd try");
4474 			ret = PTR_ERR(bh);
4475 			bh = NULL;
4476 			goto failed_mount;
4477 		}
4478 		es = (struct ext4_super_block *)(bh->b_data + offset);
4479 		sbi->s_es = es;
4480 		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4481 			ext4_msg(sb, KERN_ERR,
4482 			       "Magic mismatch, very weird!");
4483 			goto failed_mount;
4484 		}
4485 	}
4486 
4487 	has_huge_files = ext4_has_feature_huge_file(sb);
4488 	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4489 						      has_huge_files);
4490 	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4491 
4492 	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4493 	if (ext4_has_feature_64bit(sb)) {
4494 		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4495 		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4496 		    !is_power_of_2(sbi->s_desc_size)) {
4497 			ext4_msg(sb, KERN_ERR,
4498 			       "unsupported descriptor size %lu",
4499 			       sbi->s_desc_size);
4500 			goto failed_mount;
4501 		}
4502 	} else
4503 		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4504 
4505 	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4506 	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4507 
4508 	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4509 	if (sbi->s_inodes_per_block == 0)
4510 		goto cantfind_ext4;
4511 	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4512 	    sbi->s_inodes_per_group > blocksize * 8) {
4513 		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4514 			 sbi->s_inodes_per_group);
4515 		goto failed_mount;
4516 	}
4517 	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4518 					sbi->s_inodes_per_block;
4519 	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4520 	sbi->s_sbh = bh;
4521 	sbi->s_mount_state = le16_to_cpu(es->s_state);
4522 	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4523 	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4524 
4525 	for (i = 0; i < 4; i++)
4526 		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4527 	sbi->s_def_hash_version = es->s_def_hash_version;
4528 	if (ext4_has_feature_dir_index(sb)) {
4529 		i = le32_to_cpu(es->s_flags);
4530 		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4531 			sbi->s_hash_unsigned = 3;
4532 		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4533 #ifdef __CHAR_UNSIGNED__
4534 			if (!sb_rdonly(sb))
4535 				es->s_flags |=
4536 					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4537 			sbi->s_hash_unsigned = 3;
4538 #else
4539 			if (!sb_rdonly(sb))
4540 				es->s_flags |=
4541 					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4542 #endif
4543 		}
4544 	}
4545 
4546 	/* Handle clustersize */
4547 	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4548 	if (ext4_has_feature_bigalloc(sb)) {
4549 		if (clustersize < blocksize) {
4550 			ext4_msg(sb, KERN_ERR,
4551 				 "cluster size (%d) smaller than "
4552 				 "block size (%d)", clustersize, blocksize);
4553 			goto failed_mount;
4554 		}
4555 		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4556 			le32_to_cpu(es->s_log_block_size);
4557 		sbi->s_clusters_per_group =
4558 			le32_to_cpu(es->s_clusters_per_group);
4559 		if (sbi->s_clusters_per_group > blocksize * 8) {
4560 			ext4_msg(sb, KERN_ERR,
4561 				 "#clusters per group too big: %lu",
4562 				 sbi->s_clusters_per_group);
4563 			goto failed_mount;
4564 		}
4565 		if (sbi->s_blocks_per_group !=
4566 		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4567 			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4568 				 "clusters per group (%lu) inconsistent",
4569 				 sbi->s_blocks_per_group,
4570 				 sbi->s_clusters_per_group);
4571 			goto failed_mount;
4572 		}
4573 	} else {
4574 		if (clustersize != blocksize) {
4575 			ext4_msg(sb, KERN_ERR,
4576 				 "fragment/cluster size (%d) != "
4577 				 "block size (%d)", clustersize, blocksize);
4578 			goto failed_mount;
4579 		}
4580 		if (sbi->s_blocks_per_group > blocksize * 8) {
4581 			ext4_msg(sb, KERN_ERR,
4582 				 "#blocks per group too big: %lu",
4583 				 sbi->s_blocks_per_group);
4584 			goto failed_mount;
4585 		}
4586 		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4587 		sbi->s_cluster_bits = 0;
4588 	}
4589 	sbi->s_cluster_ratio = clustersize / blocksize;
4590 
4591 	/* Do we have standard group size of clustersize * 8 blocks ? */
4592 	if (sbi->s_blocks_per_group == clustersize << 3)
4593 		set_opt2(sb, STD_GROUP_SIZE);
4594 
4595 	/*
4596 	 * Test whether we have more sectors than will fit in sector_t,
4597 	 * and whether the max offset is addressable by the page cache.
4598 	 */
4599 	err = generic_check_addressable(sb->s_blocksize_bits,
4600 					ext4_blocks_count(es));
4601 	if (err) {
4602 		ext4_msg(sb, KERN_ERR, "filesystem"
4603 			 " too large to mount safely on this system");
4604 		goto failed_mount;
4605 	}
4606 
4607 	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4608 		goto cantfind_ext4;
4609 
4610 	/* check blocks count against device size */
4611 	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4612 	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4613 		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4614 		       "exceeds size of device (%llu blocks)",
4615 		       ext4_blocks_count(es), blocks_count);
4616 		goto failed_mount;
4617 	}
4618 
4619 	/*
4620 	 * It makes no sense for the first data block to be beyond the end
4621 	 * of the filesystem.
4622 	 */
4623 	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4624 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4625 			 "block %u is beyond end of filesystem (%llu)",
4626 			 le32_to_cpu(es->s_first_data_block),
4627 			 ext4_blocks_count(es));
4628 		goto failed_mount;
4629 	}
4630 	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4631 	    (sbi->s_cluster_ratio == 1)) {
4632 		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4633 			 "block is 0 with a 1k block and cluster size");
4634 		goto failed_mount;
4635 	}
4636 
4637 	blocks_count = (ext4_blocks_count(es) -
4638 			le32_to_cpu(es->s_first_data_block) +
4639 			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4640 	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4641 	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4642 		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4643 		       "(block count %llu, first data block %u, "
4644 		       "blocks per group %lu)", blocks_count,
4645 		       ext4_blocks_count(es),
4646 		       le32_to_cpu(es->s_first_data_block),
4647 		       EXT4_BLOCKS_PER_GROUP(sb));
4648 		goto failed_mount;
4649 	}
4650 	sbi->s_groups_count = blocks_count;
4651 	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4652 			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4653 	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4654 	    le32_to_cpu(es->s_inodes_count)) {
4655 		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4656 			 le32_to_cpu(es->s_inodes_count),
4657 			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4658 		ret = -EINVAL;
4659 		goto failed_mount;
4660 	}
4661 	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4662 		   EXT4_DESC_PER_BLOCK(sb);
4663 	if (ext4_has_feature_meta_bg(sb)) {
4664 		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4665 			ext4_msg(sb, KERN_WARNING,
4666 				 "first meta block group too large: %u "
4667 				 "(group descriptor block count %u)",
4668 				 le32_to_cpu(es->s_first_meta_bg), db_count);
4669 			goto failed_mount;
4670 		}
4671 	}
4672 	rcu_assign_pointer(sbi->s_group_desc,
4673 			   kvmalloc_array(db_count,
4674 					  sizeof(struct buffer_head *),
4675 					  GFP_KERNEL));
4676 	if (sbi->s_group_desc == NULL) {
4677 		ext4_msg(sb, KERN_ERR, "not enough memory");
4678 		ret = -ENOMEM;
4679 		goto failed_mount;
4680 	}
4681 
4682 	bgl_lock_init(sbi->s_blockgroup_lock);
4683 
4684 	/* Pre-read the descriptors into the buffer cache */
4685 	for (i = 0; i < db_count; i++) {
4686 		block = descriptor_loc(sb, logical_sb_block, i);
4687 		ext4_sb_breadahead_unmovable(sb, block);
4688 	}
4689 
4690 	for (i = 0; i < db_count; i++) {
4691 		struct buffer_head *bh;
4692 
4693 		block = descriptor_loc(sb, logical_sb_block, i);
4694 		bh = ext4_sb_bread_unmovable(sb, block);
4695 		if (IS_ERR(bh)) {
4696 			ext4_msg(sb, KERN_ERR,
4697 			       "can't read group descriptor %d", i);
4698 			db_count = i;
4699 			ret = PTR_ERR(bh);
4700 			goto failed_mount2;
4701 		}
4702 		rcu_read_lock();
4703 		rcu_dereference(sbi->s_group_desc)[i] = bh;
4704 		rcu_read_unlock();
4705 	}
4706 	sbi->s_gdb_count = db_count;
4707 	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4708 		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4709 		ret = -EFSCORRUPTED;
4710 		goto failed_mount2;
4711 	}
4712 
4713 	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4714 	spin_lock_init(&sbi->s_error_lock);
4715 	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4716 
4717 	/* Register extent status tree shrinker */
4718 	if (ext4_es_register_shrinker(sbi))
4719 		goto failed_mount3;
4720 
4721 	sbi->s_stripe = ext4_get_stripe_size(sbi);
4722 	sbi->s_extent_max_zeroout_kb = 32;
4723 
4724 	/*
4725 	 * set up enough so that it can read an inode
4726 	 */
4727 	sb->s_op = &ext4_sops;
4728 	sb->s_export_op = &ext4_export_ops;
4729 	sb->s_xattr = ext4_xattr_handlers;
4730 #ifdef CONFIG_FS_ENCRYPTION
4731 	sb->s_cop = &ext4_cryptops;
4732 #endif
4733 #ifdef CONFIG_FS_VERITY
4734 	sb->s_vop = &ext4_verityops;
4735 #endif
4736 #ifdef CONFIG_QUOTA
4737 	sb->dq_op = &ext4_quota_operations;
4738 	if (ext4_has_feature_quota(sb))
4739 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4740 	else
4741 		sb->s_qcop = &ext4_qctl_operations;
4742 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4743 #endif
4744 	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4745 
4746 	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4747 	mutex_init(&sbi->s_orphan_lock);
4748 
4749 	/* Initialize fast commit stuff */
4750 	atomic_set(&sbi->s_fc_subtid, 0);
4751 	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4752 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4753 	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4754 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4755 	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4756 	sbi->s_fc_bytes = 0;
4757 	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4758 	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4759 	spin_lock_init(&sbi->s_fc_lock);
4760 	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4761 	sbi->s_fc_replay_state.fc_regions = NULL;
4762 	sbi->s_fc_replay_state.fc_regions_size = 0;
4763 	sbi->s_fc_replay_state.fc_regions_used = 0;
4764 	sbi->s_fc_replay_state.fc_regions_valid = 0;
4765 	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4766 	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4767 	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4768 
4769 	sb->s_root = NULL;
4770 
4771 	needs_recovery = (es->s_last_orphan != 0 ||
4772 			  ext4_has_feature_journal_needs_recovery(sb));
4773 
4774 	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4775 		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4776 			goto failed_mount3a;
4777 
4778 	/*
4779 	 * The first inode we look at is the journal inode.  Don't try
4780 	 * root first: it may be modified in the journal!
4781 	 */
4782 	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4783 		err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4784 		if (err)
4785 			goto failed_mount3a;
4786 	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4787 		   ext4_has_feature_journal_needs_recovery(sb)) {
4788 		ext4_msg(sb, KERN_ERR, "required journal recovery "
4789 		       "suppressed and not mounted read-only");
4790 		goto failed_mount_wq;
4791 	} else {
4792 		/* Nojournal mode, all journal mount options are illegal */
4793 		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4794 			ext4_msg(sb, KERN_ERR, "can't mount with "
4795 				 "journal_checksum, fs mounted w/o journal");
4796 			goto failed_mount_wq;
4797 		}
4798 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4799 			ext4_msg(sb, KERN_ERR, "can't mount with "
4800 				 "journal_async_commit, fs mounted w/o journal");
4801 			goto failed_mount_wq;
4802 		}
4803 		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4804 			ext4_msg(sb, KERN_ERR, "can't mount with "
4805 				 "commit=%lu, fs mounted w/o journal",
4806 				 sbi->s_commit_interval / HZ);
4807 			goto failed_mount_wq;
4808 		}
4809 		if (EXT4_MOUNT_DATA_FLAGS &
4810 		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4811 			ext4_msg(sb, KERN_ERR, "can't mount with "
4812 				 "data=, fs mounted w/o journal");
4813 			goto failed_mount_wq;
4814 		}
4815 		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4816 		clear_opt(sb, JOURNAL_CHECKSUM);
4817 		clear_opt(sb, DATA_FLAGS);
4818 		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4819 		sbi->s_journal = NULL;
4820 		needs_recovery = 0;
4821 		goto no_journal;
4822 	}
4823 
4824 	if (ext4_has_feature_64bit(sb) &&
4825 	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4826 				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4827 		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4828 		goto failed_mount_wq;
4829 	}
4830 
4831 	if (!set_journal_csum_feature_set(sb)) {
4832 		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4833 			 "feature set");
4834 		goto failed_mount_wq;
4835 	}
4836 
4837 	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4838 		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4839 					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4840 		ext4_msg(sb, KERN_ERR,
4841 			"Failed to set fast commit journal feature");
4842 		goto failed_mount_wq;
4843 	}
4844 
4845 	/* We have now updated the journal if required, so we can
4846 	 * validate the data journaling mode. */
4847 	switch (test_opt(sb, DATA_FLAGS)) {
4848 	case 0:
4849 		/* No mode set, assume a default based on the journal
4850 		 * capabilities: ORDERED_DATA if the journal can
4851 		 * cope, else JOURNAL_DATA
4852 		 */
4853 		if (jbd2_journal_check_available_features
4854 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4855 			set_opt(sb, ORDERED_DATA);
4856 			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4857 		} else {
4858 			set_opt(sb, JOURNAL_DATA);
4859 			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4860 		}
4861 		break;
4862 
4863 	case EXT4_MOUNT_ORDERED_DATA:
4864 	case EXT4_MOUNT_WRITEBACK_DATA:
4865 		if (!jbd2_journal_check_available_features
4866 		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4867 			ext4_msg(sb, KERN_ERR, "Journal does not support "
4868 			       "requested data journaling mode");
4869 			goto failed_mount_wq;
4870 		}
4871 		break;
4872 	default:
4873 		break;
4874 	}
4875 
4876 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4877 	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4878 		ext4_msg(sb, KERN_ERR, "can't mount with "
4879 			"journal_async_commit in data=ordered mode");
4880 		goto failed_mount_wq;
4881 	}
4882 
4883 	set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4884 
4885 	sbi->s_journal->j_submit_inode_data_buffers =
4886 		ext4_journal_submit_inode_data_buffers;
4887 	sbi->s_journal->j_finish_inode_data_buffers =
4888 		ext4_journal_finish_inode_data_buffers;
4889 
4890 no_journal:
4891 	if (!test_opt(sb, NO_MBCACHE)) {
4892 		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4893 		if (!sbi->s_ea_block_cache) {
4894 			ext4_msg(sb, KERN_ERR,
4895 				 "Failed to create ea_block_cache");
4896 			goto failed_mount_wq;
4897 		}
4898 
4899 		if (ext4_has_feature_ea_inode(sb)) {
4900 			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4901 			if (!sbi->s_ea_inode_cache) {
4902 				ext4_msg(sb, KERN_ERR,
4903 					 "Failed to create ea_inode_cache");
4904 				goto failed_mount_wq;
4905 			}
4906 		}
4907 	}
4908 
4909 	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4910 		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4911 		goto failed_mount_wq;
4912 	}
4913 
4914 	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4915 	    !ext4_has_feature_encrypt(sb)) {
4916 		ext4_set_feature_encrypt(sb);
4917 		ext4_commit_super(sb);
4918 	}
4919 
4920 	/*
4921 	 * Get the # of file system overhead blocks from the
4922 	 * superblock if present.
4923 	 */
4924 	if (es->s_overhead_clusters)
4925 		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4926 	else {
4927 		err = ext4_calculate_overhead(sb);
4928 		if (err)
4929 			goto failed_mount_wq;
4930 	}
4931 
4932 	/*
4933 	 * The maximum number of concurrent works can be high and
4934 	 * concurrency isn't really necessary.  Limit it to 1.
4935 	 */
4936 	EXT4_SB(sb)->rsv_conversion_wq =
4937 		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4938 	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4939 		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4940 		ret = -ENOMEM;
4941 		goto failed_mount4;
4942 	}
4943 
4944 	/*
4945 	 * The jbd2_journal_load will have done any necessary log recovery,
4946 	 * so we can safely mount the rest of the filesystem now.
4947 	 */
4948 
4949 	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4950 	if (IS_ERR(root)) {
4951 		ext4_msg(sb, KERN_ERR, "get root inode failed");
4952 		ret = PTR_ERR(root);
4953 		root = NULL;
4954 		goto failed_mount4;
4955 	}
4956 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4957 		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4958 		iput(root);
4959 		goto failed_mount4;
4960 	}
4961 
4962 	sb->s_root = d_make_root(root);
4963 	if (!sb->s_root) {
4964 		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4965 		ret = -ENOMEM;
4966 		goto failed_mount4;
4967 	}
4968 
4969 	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4970 	if (ret == -EROFS) {
4971 		sb->s_flags |= SB_RDONLY;
4972 		ret = 0;
4973 	} else if (ret)
4974 		goto failed_mount4a;
4975 
4976 	ext4_set_resv_clusters(sb);
4977 
4978 	if (test_opt(sb, BLOCK_VALIDITY)) {
4979 		err = ext4_setup_system_zone(sb);
4980 		if (err) {
4981 			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4982 				 "zone (%d)", err);
4983 			goto failed_mount4a;
4984 		}
4985 	}
4986 	ext4_fc_replay_cleanup(sb);
4987 
4988 	ext4_ext_init(sb);
4989 
4990 	/*
4991 	 * Enable optimize_scan if number of groups is > threshold. This can be
4992 	 * turned off by passing "mb_optimize_scan=0". This can also be
4993 	 * turned on forcefully by passing "mb_optimize_scan=1".
4994 	 */
4995 	if (parsed_opts.mb_optimize_scan == 1)
4996 		set_opt2(sb, MB_OPTIMIZE_SCAN);
4997 	else if (parsed_opts.mb_optimize_scan == 0)
4998 		clear_opt2(sb, MB_OPTIMIZE_SCAN);
4999 	else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5000 		set_opt2(sb, MB_OPTIMIZE_SCAN);
5001 
5002 	err = ext4_mb_init(sb);
5003 	if (err) {
5004 		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5005 			 err);
5006 		goto failed_mount5;
5007 	}
5008 
5009 	/*
5010 	 * We can only set up the journal commit callback once
5011 	 * mballoc is initialized
5012 	 */
5013 	if (sbi->s_journal)
5014 		sbi->s_journal->j_commit_callback =
5015 			ext4_journal_commit_callback;
5016 
5017 	block = ext4_count_free_clusters(sb);
5018 	ext4_free_blocks_count_set(sbi->s_es,
5019 				   EXT4_C2B(sbi, block));
5020 	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5021 				  GFP_KERNEL);
5022 	if (!err) {
5023 		unsigned long freei = ext4_count_free_inodes(sb);
5024 		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5025 		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5026 					  GFP_KERNEL);
5027 	}
5028 	if (!err)
5029 		err = percpu_counter_init(&sbi->s_dirs_counter,
5030 					  ext4_count_dirs(sb), GFP_KERNEL);
5031 	if (!err)
5032 		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5033 					  GFP_KERNEL);
5034 	if (!err)
5035 		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5036 					  GFP_KERNEL);
5037 	if (!err)
5038 		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5039 
5040 	if (err) {
5041 		ext4_msg(sb, KERN_ERR, "insufficient memory");
5042 		goto failed_mount6;
5043 	}
5044 
5045 	if (ext4_has_feature_flex_bg(sb))
5046 		if (!ext4_fill_flex_info(sb)) {
5047 			ext4_msg(sb, KERN_ERR,
5048 			       "unable to initialize "
5049 			       "flex_bg meta info!");
5050 			ret = -ENOMEM;
5051 			goto failed_mount6;
5052 		}
5053 
5054 	err = ext4_register_li_request(sb, first_not_zeroed);
5055 	if (err)
5056 		goto failed_mount6;
5057 
5058 	err = ext4_register_sysfs(sb);
5059 	if (err)
5060 		goto failed_mount7;
5061 
5062 #ifdef CONFIG_QUOTA
5063 	/* Enable quota usage during mount. */
5064 	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5065 		err = ext4_enable_quotas(sb);
5066 		if (err)
5067 			goto failed_mount8;
5068 	}
5069 #endif  /* CONFIG_QUOTA */
5070 
5071 	/*
5072 	 * Save the original bdev mapping's wb_err value which could be
5073 	 * used to detect the metadata async write error.
5074 	 */
5075 	spin_lock_init(&sbi->s_bdev_wb_lock);
5076 	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5077 				 &sbi->s_bdev_wb_err);
5078 	sb->s_bdev->bd_super = sb;
5079 	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5080 	ext4_orphan_cleanup(sb, es);
5081 	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5082 	if (needs_recovery) {
5083 		ext4_msg(sb, KERN_INFO, "recovery complete");
5084 		err = ext4_mark_recovery_complete(sb, es);
5085 		if (err)
5086 			goto failed_mount8;
5087 	}
5088 	if (EXT4_SB(sb)->s_journal) {
5089 		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5090 			descr = " journalled data mode";
5091 		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5092 			descr = " ordered data mode";
5093 		else
5094 			descr = " writeback data mode";
5095 	} else
5096 		descr = "out journal";
5097 
5098 	if (test_opt(sb, DISCARD)) {
5099 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5100 		if (!blk_queue_discard(q))
5101 			ext4_msg(sb, KERN_WARNING,
5102 				 "mounting with \"discard\" option, but "
5103 				 "the device does not support discard");
5104 	}
5105 
5106 	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5107 		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5108 			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
5109 			 (int) sizeof(sbi->s_es->s_mount_opts),
5110 			 sbi->s_es->s_mount_opts,
5111 			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5112 			 ext4_quota_mode(sb));
5113 
5114 	if (es->s_error_count)
5115 		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5116 
5117 	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5118 	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5119 	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5120 	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5121 	atomic_set(&sbi->s_warning_count, 0);
5122 	atomic_set(&sbi->s_msg_count, 0);
5123 
5124 	kfree(orig_data);
5125 	return 0;
5126 
5127 cantfind_ext4:
5128 	if (!silent)
5129 		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5130 	goto failed_mount;
5131 
5132 failed_mount8:
5133 	ext4_unregister_sysfs(sb);
5134 	kobject_put(&sbi->s_kobj);
5135 failed_mount7:
5136 	ext4_unregister_li_request(sb);
5137 failed_mount6:
5138 	ext4_mb_release(sb);
5139 	rcu_read_lock();
5140 	flex_groups = rcu_dereference(sbi->s_flex_groups);
5141 	if (flex_groups) {
5142 		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5143 			kvfree(flex_groups[i]);
5144 		kvfree(flex_groups);
5145 	}
5146 	rcu_read_unlock();
5147 	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5148 	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5149 	percpu_counter_destroy(&sbi->s_dirs_counter);
5150 	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5151 	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5152 	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5153 failed_mount5:
5154 	ext4_ext_release(sb);
5155 	ext4_release_system_zone(sb);
5156 failed_mount4a:
5157 	dput(sb->s_root);
5158 	sb->s_root = NULL;
5159 failed_mount4:
5160 	ext4_msg(sb, KERN_ERR, "mount failed");
5161 	if (EXT4_SB(sb)->rsv_conversion_wq)
5162 		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5163 failed_mount_wq:
5164 	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5165 	sbi->s_ea_inode_cache = NULL;
5166 
5167 	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5168 	sbi->s_ea_block_cache = NULL;
5169 
5170 	if (sbi->s_journal) {
5171 		jbd2_journal_unregister_shrinker(sbi->s_journal);
5172 		jbd2_journal_destroy(sbi->s_journal);
5173 		sbi->s_journal = NULL;
5174 	}
5175 failed_mount3a:
5176 	ext4_es_unregister_shrinker(sbi);
5177 failed_mount3:
5178 	flush_work(&sbi->s_error_work);
5179 	del_timer_sync(&sbi->s_err_report);
5180 	ext4_stop_mmpd(sbi);
5181 failed_mount2:
5182 	rcu_read_lock();
5183 	group_desc = rcu_dereference(sbi->s_group_desc);
5184 	for (i = 0; i < db_count; i++)
5185 		brelse(group_desc[i]);
5186 	kvfree(group_desc);
5187 	rcu_read_unlock();
5188 failed_mount:
5189 	if (sbi->s_chksum_driver)
5190 		crypto_free_shash(sbi->s_chksum_driver);
5191 
5192 #ifdef CONFIG_UNICODE
5193 	utf8_unload(sb->s_encoding);
5194 #endif
5195 
5196 #ifdef CONFIG_QUOTA
5197 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5198 		kfree(get_qf_name(sb, sbi, i));
5199 #endif
5200 	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5201 	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5202 	brelse(bh);
5203 	ext4_blkdev_remove(sbi);
5204 out_fail:
5205 	sb->s_fs_info = NULL;
5206 	kfree(sbi->s_blockgroup_lock);
5207 out_free_base:
5208 	kfree(sbi);
5209 	kfree(orig_data);
5210 	fs_put_dax(dax_dev);
5211 	return err ? err : ret;
5212 }
5213 
5214 /*
5215  * Setup any per-fs journal parameters now.  We'll do this both on
5216  * initial mount, once the journal has been initialised but before we've
5217  * done any recovery; and again on any subsequent remount.
5218  */
5219 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5220 {
5221 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5222 
5223 	journal->j_commit_interval = sbi->s_commit_interval;
5224 	journal->j_min_batch_time = sbi->s_min_batch_time;
5225 	journal->j_max_batch_time = sbi->s_max_batch_time;
5226 	ext4_fc_init(sb, journal);
5227 
5228 	write_lock(&journal->j_state_lock);
5229 	if (test_opt(sb, BARRIER))
5230 		journal->j_flags |= JBD2_BARRIER;
5231 	else
5232 		journal->j_flags &= ~JBD2_BARRIER;
5233 	if (test_opt(sb, DATA_ERR_ABORT))
5234 		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5235 	else
5236 		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5237 	write_unlock(&journal->j_state_lock);
5238 }
5239 
5240 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5241 					     unsigned int journal_inum)
5242 {
5243 	struct inode *journal_inode;
5244 
5245 	/*
5246 	 * Test for the existence of a valid inode on disk.  Bad things
5247 	 * happen if we iget() an unused inode, as the subsequent iput()
5248 	 * will try to delete it.
5249 	 */
5250 	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5251 	if (IS_ERR(journal_inode)) {
5252 		ext4_msg(sb, KERN_ERR, "no journal found");
5253 		return NULL;
5254 	}
5255 	if (!journal_inode->i_nlink) {
5256 		make_bad_inode(journal_inode);
5257 		iput(journal_inode);
5258 		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5259 		return NULL;
5260 	}
5261 
5262 	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5263 		  journal_inode, journal_inode->i_size);
5264 	if (!S_ISREG(journal_inode->i_mode)) {
5265 		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5266 		iput(journal_inode);
5267 		return NULL;
5268 	}
5269 	return journal_inode;
5270 }
5271 
5272 static journal_t *ext4_get_journal(struct super_block *sb,
5273 				   unsigned int journal_inum)
5274 {
5275 	struct inode *journal_inode;
5276 	journal_t *journal;
5277 
5278 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5279 		return NULL;
5280 
5281 	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5282 	if (!journal_inode)
5283 		return NULL;
5284 
5285 	journal = jbd2_journal_init_inode(journal_inode);
5286 	if (!journal) {
5287 		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5288 		iput(journal_inode);
5289 		return NULL;
5290 	}
5291 	journal->j_private = sb;
5292 	ext4_init_journal_params(sb, journal);
5293 	return journal;
5294 }
5295 
5296 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5297 				       dev_t j_dev)
5298 {
5299 	struct buffer_head *bh;
5300 	journal_t *journal;
5301 	ext4_fsblk_t start;
5302 	ext4_fsblk_t len;
5303 	int hblock, blocksize;
5304 	ext4_fsblk_t sb_block;
5305 	unsigned long offset;
5306 	struct ext4_super_block *es;
5307 	struct block_device *bdev;
5308 
5309 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5310 		return NULL;
5311 
5312 	bdev = ext4_blkdev_get(j_dev, sb);
5313 	if (bdev == NULL)
5314 		return NULL;
5315 
5316 	blocksize = sb->s_blocksize;
5317 	hblock = bdev_logical_block_size(bdev);
5318 	if (blocksize < hblock) {
5319 		ext4_msg(sb, KERN_ERR,
5320 			"blocksize too small for journal device");
5321 		goto out_bdev;
5322 	}
5323 
5324 	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5325 	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5326 	set_blocksize(bdev, blocksize);
5327 	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5328 		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5329 		       "external journal");
5330 		goto out_bdev;
5331 	}
5332 
5333 	es = (struct ext4_super_block *) (bh->b_data + offset);
5334 	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5335 	    !(le32_to_cpu(es->s_feature_incompat) &
5336 	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5337 		ext4_msg(sb, KERN_ERR, "external journal has "
5338 					"bad superblock");
5339 		brelse(bh);
5340 		goto out_bdev;
5341 	}
5342 
5343 	if ((le32_to_cpu(es->s_feature_ro_compat) &
5344 	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5345 	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5346 		ext4_msg(sb, KERN_ERR, "external journal has "
5347 				       "corrupt superblock");
5348 		brelse(bh);
5349 		goto out_bdev;
5350 	}
5351 
5352 	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5353 		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5354 		brelse(bh);
5355 		goto out_bdev;
5356 	}
5357 
5358 	len = ext4_blocks_count(es);
5359 	start = sb_block + 1;
5360 	brelse(bh);	/* we're done with the superblock */
5361 
5362 	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5363 					start, len, blocksize);
5364 	if (!journal) {
5365 		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5366 		goto out_bdev;
5367 	}
5368 	journal->j_private = sb;
5369 	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5370 		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5371 		goto out_journal;
5372 	}
5373 	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5374 		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5375 					"user (unsupported) - %d",
5376 			be32_to_cpu(journal->j_superblock->s_nr_users));
5377 		goto out_journal;
5378 	}
5379 	EXT4_SB(sb)->s_journal_bdev = bdev;
5380 	ext4_init_journal_params(sb, journal);
5381 	return journal;
5382 
5383 out_journal:
5384 	jbd2_journal_destroy(journal);
5385 out_bdev:
5386 	ext4_blkdev_put(bdev);
5387 	return NULL;
5388 }
5389 
5390 static int ext4_load_journal(struct super_block *sb,
5391 			     struct ext4_super_block *es,
5392 			     unsigned long journal_devnum)
5393 {
5394 	journal_t *journal;
5395 	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5396 	dev_t journal_dev;
5397 	int err = 0;
5398 	int really_read_only;
5399 	int journal_dev_ro;
5400 
5401 	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5402 		return -EFSCORRUPTED;
5403 
5404 	if (journal_devnum &&
5405 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5406 		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5407 			"numbers have changed");
5408 		journal_dev = new_decode_dev(journal_devnum);
5409 	} else
5410 		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5411 
5412 	if (journal_inum && journal_dev) {
5413 		ext4_msg(sb, KERN_ERR,
5414 			 "filesystem has both journal inode and journal device!");
5415 		return -EINVAL;
5416 	}
5417 
5418 	if (journal_inum) {
5419 		journal = ext4_get_journal(sb, journal_inum);
5420 		if (!journal)
5421 			return -EINVAL;
5422 	} else {
5423 		journal = ext4_get_dev_journal(sb, journal_dev);
5424 		if (!journal)
5425 			return -EINVAL;
5426 	}
5427 
5428 	journal_dev_ro = bdev_read_only(journal->j_dev);
5429 	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5430 
5431 	if (journal_dev_ro && !sb_rdonly(sb)) {
5432 		ext4_msg(sb, KERN_ERR,
5433 			 "journal device read-only, try mounting with '-o ro'");
5434 		err = -EROFS;
5435 		goto err_out;
5436 	}
5437 
5438 	/*
5439 	 * Are we loading a blank journal or performing recovery after a
5440 	 * crash?  For recovery, we need to check in advance whether we
5441 	 * can get read-write access to the device.
5442 	 */
5443 	if (ext4_has_feature_journal_needs_recovery(sb)) {
5444 		if (sb_rdonly(sb)) {
5445 			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5446 					"required on readonly filesystem");
5447 			if (really_read_only) {
5448 				ext4_msg(sb, KERN_ERR, "write access "
5449 					"unavailable, cannot proceed "
5450 					"(try mounting with noload)");
5451 				err = -EROFS;
5452 				goto err_out;
5453 			}
5454 			ext4_msg(sb, KERN_INFO, "write access will "
5455 			       "be enabled during recovery");
5456 		}
5457 	}
5458 
5459 	if (!(journal->j_flags & JBD2_BARRIER))
5460 		ext4_msg(sb, KERN_INFO, "barriers disabled");
5461 
5462 	if (!ext4_has_feature_journal_needs_recovery(sb))
5463 		err = jbd2_journal_wipe(journal, !really_read_only);
5464 	if (!err) {
5465 		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5466 		if (save)
5467 			memcpy(save, ((char *) es) +
5468 			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5469 		err = jbd2_journal_load(journal);
5470 		if (save)
5471 			memcpy(((char *) es) + EXT4_S_ERR_START,
5472 			       save, EXT4_S_ERR_LEN);
5473 		kfree(save);
5474 	}
5475 
5476 	if (err) {
5477 		ext4_msg(sb, KERN_ERR, "error loading journal");
5478 		goto err_out;
5479 	}
5480 
5481 	EXT4_SB(sb)->s_journal = journal;
5482 	err = ext4_clear_journal_err(sb, es);
5483 	if (err) {
5484 		EXT4_SB(sb)->s_journal = NULL;
5485 		jbd2_journal_destroy(journal);
5486 		return err;
5487 	}
5488 
5489 	if (!really_read_only && journal_devnum &&
5490 	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5491 		es->s_journal_dev = cpu_to_le32(journal_devnum);
5492 
5493 		/* Make sure we flush the recovery flag to disk. */
5494 		ext4_commit_super(sb);
5495 	}
5496 
5497 	err = jbd2_journal_register_shrinker(journal);
5498 	if (err) {
5499 		EXT4_SB(sb)->s_journal = NULL;
5500 		goto err_out;
5501 	}
5502 
5503 	return 0;
5504 
5505 err_out:
5506 	jbd2_journal_destroy(journal);
5507 	return err;
5508 }
5509 
5510 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5511 static void ext4_update_super(struct super_block *sb)
5512 {
5513 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5514 	struct ext4_super_block *es = sbi->s_es;
5515 	struct buffer_head *sbh = sbi->s_sbh;
5516 
5517 	lock_buffer(sbh);
5518 	/*
5519 	 * If the file system is mounted read-only, don't update the
5520 	 * superblock write time.  This avoids updating the superblock
5521 	 * write time when we are mounting the root file system
5522 	 * read/only but we need to replay the journal; at that point,
5523 	 * for people who are east of GMT and who make their clock
5524 	 * tick in localtime for Windows bug-for-bug compatibility,
5525 	 * the clock is set in the future, and this will cause e2fsck
5526 	 * to complain and force a full file system check.
5527 	 */
5528 	if (!(sb->s_flags & SB_RDONLY))
5529 		ext4_update_tstamp(es, s_wtime);
5530 	es->s_kbytes_written =
5531 		cpu_to_le64(sbi->s_kbytes_written +
5532 		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5533 		      sbi->s_sectors_written_start) >> 1));
5534 	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5535 		ext4_free_blocks_count_set(es,
5536 			EXT4_C2B(sbi, percpu_counter_sum_positive(
5537 				&sbi->s_freeclusters_counter)));
5538 	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5539 		es->s_free_inodes_count =
5540 			cpu_to_le32(percpu_counter_sum_positive(
5541 				&sbi->s_freeinodes_counter));
5542 	/* Copy error information to the on-disk superblock */
5543 	spin_lock(&sbi->s_error_lock);
5544 	if (sbi->s_add_error_count > 0) {
5545 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5546 		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5547 			__ext4_update_tstamp(&es->s_first_error_time,
5548 					     &es->s_first_error_time_hi,
5549 					     sbi->s_first_error_time);
5550 			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5551 				sizeof(es->s_first_error_func));
5552 			es->s_first_error_line =
5553 				cpu_to_le32(sbi->s_first_error_line);
5554 			es->s_first_error_ino =
5555 				cpu_to_le32(sbi->s_first_error_ino);
5556 			es->s_first_error_block =
5557 				cpu_to_le64(sbi->s_first_error_block);
5558 			es->s_first_error_errcode =
5559 				ext4_errno_to_code(sbi->s_first_error_code);
5560 		}
5561 		__ext4_update_tstamp(&es->s_last_error_time,
5562 				     &es->s_last_error_time_hi,
5563 				     sbi->s_last_error_time);
5564 		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5565 			sizeof(es->s_last_error_func));
5566 		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5567 		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5568 		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5569 		es->s_last_error_errcode =
5570 				ext4_errno_to_code(sbi->s_last_error_code);
5571 		/*
5572 		 * Start the daily error reporting function if it hasn't been
5573 		 * started already
5574 		 */
5575 		if (!es->s_error_count)
5576 			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5577 		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5578 		sbi->s_add_error_count = 0;
5579 	}
5580 	spin_unlock(&sbi->s_error_lock);
5581 
5582 	ext4_superblock_csum_set(sb);
5583 	unlock_buffer(sbh);
5584 }
5585 
5586 static int ext4_commit_super(struct super_block *sb)
5587 {
5588 	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5589 	int error = 0;
5590 
5591 	if (!sbh)
5592 		return -EINVAL;
5593 	if (block_device_ejected(sb))
5594 		return -ENODEV;
5595 
5596 	ext4_update_super(sb);
5597 
5598 	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5599 		/*
5600 		 * Oh, dear.  A previous attempt to write the
5601 		 * superblock failed.  This could happen because the
5602 		 * USB device was yanked out.  Or it could happen to
5603 		 * be a transient write error and maybe the block will
5604 		 * be remapped.  Nothing we can do but to retry the
5605 		 * write and hope for the best.
5606 		 */
5607 		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5608 		       "superblock detected");
5609 		clear_buffer_write_io_error(sbh);
5610 		set_buffer_uptodate(sbh);
5611 	}
5612 	BUFFER_TRACE(sbh, "marking dirty");
5613 	mark_buffer_dirty(sbh);
5614 	error = __sync_dirty_buffer(sbh,
5615 		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5616 	if (buffer_write_io_error(sbh)) {
5617 		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5618 		       "superblock");
5619 		clear_buffer_write_io_error(sbh);
5620 		set_buffer_uptodate(sbh);
5621 	}
5622 	return error;
5623 }
5624 
5625 /*
5626  * Have we just finished recovery?  If so, and if we are mounting (or
5627  * remounting) the filesystem readonly, then we will end up with a
5628  * consistent fs on disk.  Record that fact.
5629  */
5630 static int ext4_mark_recovery_complete(struct super_block *sb,
5631 				       struct ext4_super_block *es)
5632 {
5633 	int err;
5634 	journal_t *journal = EXT4_SB(sb)->s_journal;
5635 
5636 	if (!ext4_has_feature_journal(sb)) {
5637 		if (journal != NULL) {
5638 			ext4_error(sb, "Journal got removed while the fs was "
5639 				   "mounted!");
5640 			return -EFSCORRUPTED;
5641 		}
5642 		return 0;
5643 	}
5644 	jbd2_journal_lock_updates(journal);
5645 	err = jbd2_journal_flush(journal, 0);
5646 	if (err < 0)
5647 		goto out;
5648 
5649 	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5650 		ext4_clear_feature_journal_needs_recovery(sb);
5651 		ext4_commit_super(sb);
5652 	}
5653 out:
5654 	jbd2_journal_unlock_updates(journal);
5655 	return err;
5656 }
5657 
5658 /*
5659  * If we are mounting (or read-write remounting) a filesystem whose journal
5660  * has recorded an error from a previous lifetime, move that error to the
5661  * main filesystem now.
5662  */
5663 static int ext4_clear_journal_err(struct super_block *sb,
5664 				   struct ext4_super_block *es)
5665 {
5666 	journal_t *journal;
5667 	int j_errno;
5668 	const char *errstr;
5669 
5670 	if (!ext4_has_feature_journal(sb)) {
5671 		ext4_error(sb, "Journal got removed while the fs was mounted!");
5672 		return -EFSCORRUPTED;
5673 	}
5674 
5675 	journal = EXT4_SB(sb)->s_journal;
5676 
5677 	/*
5678 	 * Now check for any error status which may have been recorded in the
5679 	 * journal by a prior ext4_error() or ext4_abort()
5680 	 */
5681 
5682 	j_errno = jbd2_journal_errno(journal);
5683 	if (j_errno) {
5684 		char nbuf[16];
5685 
5686 		errstr = ext4_decode_error(sb, j_errno, nbuf);
5687 		ext4_warning(sb, "Filesystem error recorded "
5688 			     "from previous mount: %s", errstr);
5689 		ext4_warning(sb, "Marking fs in need of filesystem check.");
5690 
5691 		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5692 		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5693 		ext4_commit_super(sb);
5694 
5695 		jbd2_journal_clear_err(journal);
5696 		jbd2_journal_update_sb_errno(journal);
5697 	}
5698 	return 0;
5699 }
5700 
5701 /*
5702  * Force the running and committing transactions to commit,
5703  * and wait on the commit.
5704  */
5705 int ext4_force_commit(struct super_block *sb)
5706 {
5707 	journal_t *journal;
5708 
5709 	if (sb_rdonly(sb))
5710 		return 0;
5711 
5712 	journal = EXT4_SB(sb)->s_journal;
5713 	return ext4_journal_force_commit(journal);
5714 }
5715 
5716 static int ext4_sync_fs(struct super_block *sb, int wait)
5717 {
5718 	int ret = 0;
5719 	tid_t target;
5720 	bool needs_barrier = false;
5721 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5722 
5723 	if (unlikely(ext4_forced_shutdown(sbi)))
5724 		return 0;
5725 
5726 	trace_ext4_sync_fs(sb, wait);
5727 	flush_workqueue(sbi->rsv_conversion_wq);
5728 	/*
5729 	 * Writeback quota in non-journalled quota case - journalled quota has
5730 	 * no dirty dquots
5731 	 */
5732 	dquot_writeback_dquots(sb, -1);
5733 	/*
5734 	 * Data writeback is possible w/o journal transaction, so barrier must
5735 	 * being sent at the end of the function. But we can skip it if
5736 	 * transaction_commit will do it for us.
5737 	 */
5738 	if (sbi->s_journal) {
5739 		target = jbd2_get_latest_transaction(sbi->s_journal);
5740 		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5741 		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5742 			needs_barrier = true;
5743 
5744 		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5745 			if (wait)
5746 				ret = jbd2_log_wait_commit(sbi->s_journal,
5747 							   target);
5748 		}
5749 	} else if (wait && test_opt(sb, BARRIER))
5750 		needs_barrier = true;
5751 	if (needs_barrier) {
5752 		int err;
5753 		err = blkdev_issue_flush(sb->s_bdev);
5754 		if (!ret)
5755 			ret = err;
5756 	}
5757 
5758 	return ret;
5759 }
5760 
5761 /*
5762  * LVM calls this function before a (read-only) snapshot is created.  This
5763  * gives us a chance to flush the journal completely and mark the fs clean.
5764  *
5765  * Note that only this function cannot bring a filesystem to be in a clean
5766  * state independently. It relies on upper layer to stop all data & metadata
5767  * modifications.
5768  */
5769 static int ext4_freeze(struct super_block *sb)
5770 {
5771 	int error = 0;
5772 	journal_t *journal;
5773 
5774 	if (sb_rdonly(sb))
5775 		return 0;
5776 
5777 	journal = EXT4_SB(sb)->s_journal;
5778 
5779 	if (journal) {
5780 		/* Now we set up the journal barrier. */
5781 		jbd2_journal_lock_updates(journal);
5782 
5783 		/*
5784 		 * Don't clear the needs_recovery flag if we failed to
5785 		 * flush the journal.
5786 		 */
5787 		error = jbd2_journal_flush(journal, 0);
5788 		if (error < 0)
5789 			goto out;
5790 
5791 		/* Journal blocked and flushed, clear needs_recovery flag. */
5792 		ext4_clear_feature_journal_needs_recovery(sb);
5793 	}
5794 
5795 	error = ext4_commit_super(sb);
5796 out:
5797 	if (journal)
5798 		/* we rely on upper layer to stop further updates */
5799 		jbd2_journal_unlock_updates(journal);
5800 	return error;
5801 }
5802 
5803 /*
5804  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5805  * flag here, even though the filesystem is not technically dirty yet.
5806  */
5807 static int ext4_unfreeze(struct super_block *sb)
5808 {
5809 	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5810 		return 0;
5811 
5812 	if (EXT4_SB(sb)->s_journal) {
5813 		/* Reset the needs_recovery flag before the fs is unlocked. */
5814 		ext4_set_feature_journal_needs_recovery(sb);
5815 	}
5816 
5817 	ext4_commit_super(sb);
5818 	return 0;
5819 }
5820 
5821 /*
5822  * Structure to save mount options for ext4_remount's benefit
5823  */
5824 struct ext4_mount_options {
5825 	unsigned long s_mount_opt;
5826 	unsigned long s_mount_opt2;
5827 	kuid_t s_resuid;
5828 	kgid_t s_resgid;
5829 	unsigned long s_commit_interval;
5830 	u32 s_min_batch_time, s_max_batch_time;
5831 #ifdef CONFIG_QUOTA
5832 	int s_jquota_fmt;
5833 	char *s_qf_names[EXT4_MAXQUOTAS];
5834 #endif
5835 };
5836 
5837 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5838 {
5839 	struct ext4_super_block *es;
5840 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5841 	unsigned long old_sb_flags, vfs_flags;
5842 	struct ext4_mount_options old_opts;
5843 	int enable_quota = 0;
5844 	ext4_group_t g;
5845 	int err = 0;
5846 #ifdef CONFIG_QUOTA
5847 	int i, j;
5848 	char *to_free[EXT4_MAXQUOTAS];
5849 #endif
5850 	char *orig_data = kstrdup(data, GFP_KERNEL);
5851 	struct ext4_parsed_options parsed_opts;
5852 
5853 	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5854 	parsed_opts.journal_devnum = 0;
5855 
5856 	if (data && !orig_data)
5857 		return -ENOMEM;
5858 
5859 	/* Store the original options */
5860 	old_sb_flags = sb->s_flags;
5861 	old_opts.s_mount_opt = sbi->s_mount_opt;
5862 	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5863 	old_opts.s_resuid = sbi->s_resuid;
5864 	old_opts.s_resgid = sbi->s_resgid;
5865 	old_opts.s_commit_interval = sbi->s_commit_interval;
5866 	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5867 	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5868 #ifdef CONFIG_QUOTA
5869 	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5870 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5871 		if (sbi->s_qf_names[i]) {
5872 			char *qf_name = get_qf_name(sb, sbi, i);
5873 
5874 			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5875 			if (!old_opts.s_qf_names[i]) {
5876 				for (j = 0; j < i; j++)
5877 					kfree(old_opts.s_qf_names[j]);
5878 				kfree(orig_data);
5879 				return -ENOMEM;
5880 			}
5881 		} else
5882 			old_opts.s_qf_names[i] = NULL;
5883 #endif
5884 	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5885 		parsed_opts.journal_ioprio =
5886 			sbi->s_journal->j_task->io_context->ioprio;
5887 
5888 	/*
5889 	 * Some options can be enabled by ext4 and/or by VFS mount flag
5890 	 * either way we need to make sure it matches in both *flags and
5891 	 * s_flags. Copy those selected flags from *flags to s_flags
5892 	 */
5893 	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5894 	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5895 
5896 	if (!parse_options(data, sb, &parsed_opts, 1)) {
5897 		err = -EINVAL;
5898 		goto restore_opts;
5899 	}
5900 
5901 	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5902 	    test_opt(sb, JOURNAL_CHECKSUM)) {
5903 		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5904 			 "during remount not supported; ignoring");
5905 		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5906 	}
5907 
5908 	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5909 		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5910 			ext4_msg(sb, KERN_ERR, "can't mount with "
5911 				 "both data=journal and delalloc");
5912 			err = -EINVAL;
5913 			goto restore_opts;
5914 		}
5915 		if (test_opt(sb, DIOREAD_NOLOCK)) {
5916 			ext4_msg(sb, KERN_ERR, "can't mount with "
5917 				 "both data=journal and dioread_nolock");
5918 			err = -EINVAL;
5919 			goto restore_opts;
5920 		}
5921 	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5922 		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5923 			ext4_msg(sb, KERN_ERR, "can't mount with "
5924 				"journal_async_commit in data=ordered mode");
5925 			err = -EINVAL;
5926 			goto restore_opts;
5927 		}
5928 	}
5929 
5930 	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5931 		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5932 		err = -EINVAL;
5933 		goto restore_opts;
5934 	}
5935 
5936 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5937 		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5938 
5939 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5940 		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5941 
5942 	es = sbi->s_es;
5943 
5944 	if (sbi->s_journal) {
5945 		ext4_init_journal_params(sb, sbi->s_journal);
5946 		set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5947 	}
5948 
5949 	/* Flush outstanding errors before changing fs state */
5950 	flush_work(&sbi->s_error_work);
5951 
5952 	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5953 		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5954 			err = -EROFS;
5955 			goto restore_opts;
5956 		}
5957 
5958 		if (*flags & SB_RDONLY) {
5959 			err = sync_filesystem(sb);
5960 			if (err < 0)
5961 				goto restore_opts;
5962 			err = dquot_suspend(sb, -1);
5963 			if (err < 0)
5964 				goto restore_opts;
5965 
5966 			/*
5967 			 * First of all, the unconditional stuff we have to do
5968 			 * to disable replay of the journal when we next remount
5969 			 */
5970 			sb->s_flags |= SB_RDONLY;
5971 
5972 			/*
5973 			 * OK, test if we are remounting a valid rw partition
5974 			 * readonly, and if so set the rdonly flag and then
5975 			 * mark the partition as valid again.
5976 			 */
5977 			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5978 			    (sbi->s_mount_state & EXT4_VALID_FS))
5979 				es->s_state = cpu_to_le16(sbi->s_mount_state);
5980 
5981 			if (sbi->s_journal) {
5982 				/*
5983 				 * We let remount-ro finish even if marking fs
5984 				 * as clean failed...
5985 				 */
5986 				ext4_mark_recovery_complete(sb, es);
5987 			}
5988 			ext4_stop_mmpd(sbi);
5989 		} else {
5990 			/* Make sure we can mount this feature set readwrite */
5991 			if (ext4_has_feature_readonly(sb) ||
5992 			    !ext4_feature_set_ok(sb, 0)) {
5993 				err = -EROFS;
5994 				goto restore_opts;
5995 			}
5996 			/*
5997 			 * Make sure the group descriptor checksums
5998 			 * are sane.  If they aren't, refuse to remount r/w.
5999 			 */
6000 			for (g = 0; g < sbi->s_groups_count; g++) {
6001 				struct ext4_group_desc *gdp =
6002 					ext4_get_group_desc(sb, g, NULL);
6003 
6004 				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6005 					ext4_msg(sb, KERN_ERR,
6006 	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6007 		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6008 					       le16_to_cpu(gdp->bg_checksum));
6009 					err = -EFSBADCRC;
6010 					goto restore_opts;
6011 				}
6012 			}
6013 
6014 			/*
6015 			 * If we have an unprocessed orphan list hanging
6016 			 * around from a previously readonly bdev mount,
6017 			 * require a full umount/remount for now.
6018 			 */
6019 			if (es->s_last_orphan) {
6020 				ext4_msg(sb, KERN_WARNING, "Couldn't "
6021 				       "remount RDWR because of unprocessed "
6022 				       "orphan inode list.  Please "
6023 				       "umount/remount instead");
6024 				err = -EINVAL;
6025 				goto restore_opts;
6026 			}
6027 
6028 			/*
6029 			 * Mounting a RDONLY partition read-write, so reread
6030 			 * and store the current valid flag.  (It may have
6031 			 * been changed by e2fsck since we originally mounted
6032 			 * the partition.)
6033 			 */
6034 			if (sbi->s_journal) {
6035 				err = ext4_clear_journal_err(sb, es);
6036 				if (err)
6037 					goto restore_opts;
6038 			}
6039 			sbi->s_mount_state = le16_to_cpu(es->s_state);
6040 
6041 			err = ext4_setup_super(sb, es, 0);
6042 			if (err)
6043 				goto restore_opts;
6044 
6045 			sb->s_flags &= ~SB_RDONLY;
6046 			if (ext4_has_feature_mmp(sb))
6047 				if (ext4_multi_mount_protect(sb,
6048 						le64_to_cpu(es->s_mmp_block))) {
6049 					err = -EROFS;
6050 					goto restore_opts;
6051 				}
6052 			enable_quota = 1;
6053 		}
6054 	}
6055 
6056 	/*
6057 	 * Reinitialize lazy itable initialization thread based on
6058 	 * current settings
6059 	 */
6060 	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6061 		ext4_unregister_li_request(sb);
6062 	else {
6063 		ext4_group_t first_not_zeroed;
6064 		first_not_zeroed = ext4_has_uninit_itable(sb);
6065 		ext4_register_li_request(sb, first_not_zeroed);
6066 	}
6067 
6068 	/*
6069 	 * Handle creation of system zone data early because it can fail.
6070 	 * Releasing of existing data is done when we are sure remount will
6071 	 * succeed.
6072 	 */
6073 	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6074 		err = ext4_setup_system_zone(sb);
6075 		if (err)
6076 			goto restore_opts;
6077 	}
6078 
6079 	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6080 		err = ext4_commit_super(sb);
6081 		if (err)
6082 			goto restore_opts;
6083 	}
6084 
6085 #ifdef CONFIG_QUOTA
6086 	/* Release old quota file names */
6087 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6088 		kfree(old_opts.s_qf_names[i]);
6089 	if (enable_quota) {
6090 		if (sb_any_quota_suspended(sb))
6091 			dquot_resume(sb, -1);
6092 		else if (ext4_has_feature_quota(sb)) {
6093 			err = ext4_enable_quotas(sb);
6094 			if (err)
6095 				goto restore_opts;
6096 		}
6097 	}
6098 #endif
6099 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6100 		ext4_release_system_zone(sb);
6101 
6102 	/*
6103 	 * Some options can be enabled by ext4 and/or by VFS mount flag
6104 	 * either way we need to make sure it matches in both *flags and
6105 	 * s_flags. Copy those selected flags from s_flags to *flags
6106 	 */
6107 	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6108 
6109 	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6110 		 orig_data, ext4_quota_mode(sb));
6111 	kfree(orig_data);
6112 	return 0;
6113 
6114 restore_opts:
6115 	sb->s_flags = old_sb_flags;
6116 	sbi->s_mount_opt = old_opts.s_mount_opt;
6117 	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6118 	sbi->s_resuid = old_opts.s_resuid;
6119 	sbi->s_resgid = old_opts.s_resgid;
6120 	sbi->s_commit_interval = old_opts.s_commit_interval;
6121 	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6122 	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6123 	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6124 		ext4_release_system_zone(sb);
6125 #ifdef CONFIG_QUOTA
6126 	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6127 	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6128 		to_free[i] = get_qf_name(sb, sbi, i);
6129 		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6130 	}
6131 	synchronize_rcu();
6132 	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6133 		kfree(to_free[i]);
6134 #endif
6135 	kfree(orig_data);
6136 	return err;
6137 }
6138 
6139 #ifdef CONFIG_QUOTA
6140 static int ext4_statfs_project(struct super_block *sb,
6141 			       kprojid_t projid, struct kstatfs *buf)
6142 {
6143 	struct kqid qid;
6144 	struct dquot *dquot;
6145 	u64 limit;
6146 	u64 curblock;
6147 
6148 	qid = make_kqid_projid(projid);
6149 	dquot = dqget(sb, qid);
6150 	if (IS_ERR(dquot))
6151 		return PTR_ERR(dquot);
6152 	spin_lock(&dquot->dq_dqb_lock);
6153 
6154 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6155 			     dquot->dq_dqb.dqb_bhardlimit);
6156 	limit >>= sb->s_blocksize_bits;
6157 
6158 	if (limit && buf->f_blocks > limit) {
6159 		curblock = (dquot->dq_dqb.dqb_curspace +
6160 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6161 		buf->f_blocks = limit;
6162 		buf->f_bfree = buf->f_bavail =
6163 			(buf->f_blocks > curblock) ?
6164 			 (buf->f_blocks - curblock) : 0;
6165 	}
6166 
6167 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6168 			     dquot->dq_dqb.dqb_ihardlimit);
6169 	if (limit && buf->f_files > limit) {
6170 		buf->f_files = limit;
6171 		buf->f_ffree =
6172 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6173 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6174 	}
6175 
6176 	spin_unlock(&dquot->dq_dqb_lock);
6177 	dqput(dquot);
6178 	return 0;
6179 }
6180 #endif
6181 
6182 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6183 {
6184 	struct super_block *sb = dentry->d_sb;
6185 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6186 	struct ext4_super_block *es = sbi->s_es;
6187 	ext4_fsblk_t overhead = 0, resv_blocks;
6188 	s64 bfree;
6189 	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6190 
6191 	if (!test_opt(sb, MINIX_DF))
6192 		overhead = sbi->s_overhead;
6193 
6194 	buf->f_type = EXT4_SUPER_MAGIC;
6195 	buf->f_bsize = sb->s_blocksize;
6196 	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6197 	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6198 		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6199 	/* prevent underflow in case that few free space is available */
6200 	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6201 	buf->f_bavail = buf->f_bfree -
6202 			(ext4_r_blocks_count(es) + resv_blocks);
6203 	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6204 		buf->f_bavail = 0;
6205 	buf->f_files = le32_to_cpu(es->s_inodes_count);
6206 	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6207 	buf->f_namelen = EXT4_NAME_LEN;
6208 	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6209 
6210 #ifdef CONFIG_QUOTA
6211 	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6212 	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6213 		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6214 #endif
6215 	return 0;
6216 }
6217 
6218 
6219 #ifdef CONFIG_QUOTA
6220 
6221 /*
6222  * Helper functions so that transaction is started before we acquire dqio_sem
6223  * to keep correct lock ordering of transaction > dqio_sem
6224  */
6225 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6226 {
6227 	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6228 }
6229 
6230 static int ext4_write_dquot(struct dquot *dquot)
6231 {
6232 	int ret, err;
6233 	handle_t *handle;
6234 	struct inode *inode;
6235 
6236 	inode = dquot_to_inode(dquot);
6237 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6238 				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6239 	if (IS_ERR(handle))
6240 		return PTR_ERR(handle);
6241 	ret = dquot_commit(dquot);
6242 	err = ext4_journal_stop(handle);
6243 	if (!ret)
6244 		ret = err;
6245 	return ret;
6246 }
6247 
6248 static int ext4_acquire_dquot(struct dquot *dquot)
6249 {
6250 	int ret, err;
6251 	handle_t *handle;
6252 
6253 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6254 				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6255 	if (IS_ERR(handle))
6256 		return PTR_ERR(handle);
6257 	ret = dquot_acquire(dquot);
6258 	err = ext4_journal_stop(handle);
6259 	if (!ret)
6260 		ret = err;
6261 	return ret;
6262 }
6263 
6264 static int ext4_release_dquot(struct dquot *dquot)
6265 {
6266 	int ret, err;
6267 	handle_t *handle;
6268 
6269 	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6270 				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6271 	if (IS_ERR(handle)) {
6272 		/* Release dquot anyway to avoid endless cycle in dqput() */
6273 		dquot_release(dquot);
6274 		return PTR_ERR(handle);
6275 	}
6276 	ret = dquot_release(dquot);
6277 	err = ext4_journal_stop(handle);
6278 	if (!ret)
6279 		ret = err;
6280 	return ret;
6281 }
6282 
6283 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6284 {
6285 	struct super_block *sb = dquot->dq_sb;
6286 
6287 	if (ext4_is_quota_journalled(sb)) {
6288 		dquot_mark_dquot_dirty(dquot);
6289 		return ext4_write_dquot(dquot);
6290 	} else {
6291 		return dquot_mark_dquot_dirty(dquot);
6292 	}
6293 }
6294 
6295 static int ext4_write_info(struct super_block *sb, int type)
6296 {
6297 	int ret, err;
6298 	handle_t *handle;
6299 
6300 	/* Data block + inode block */
6301 	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6302 	if (IS_ERR(handle))
6303 		return PTR_ERR(handle);
6304 	ret = dquot_commit_info(sb, type);
6305 	err = ext4_journal_stop(handle);
6306 	if (!ret)
6307 		ret = err;
6308 	return ret;
6309 }
6310 
6311 /*
6312  * Turn on quotas during mount time - we need to find
6313  * the quota file and such...
6314  */
6315 static int ext4_quota_on_mount(struct super_block *sb, int type)
6316 {
6317 	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6318 					EXT4_SB(sb)->s_jquota_fmt, type);
6319 }
6320 
6321 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6322 {
6323 	struct ext4_inode_info *ei = EXT4_I(inode);
6324 
6325 	/* The first argument of lockdep_set_subclass has to be
6326 	 * *exactly* the same as the argument to init_rwsem() --- in
6327 	 * this case, in init_once() --- or lockdep gets unhappy
6328 	 * because the name of the lock is set using the
6329 	 * stringification of the argument to init_rwsem().
6330 	 */
6331 	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6332 	lockdep_set_subclass(&ei->i_data_sem, subclass);
6333 }
6334 
6335 /*
6336  * Standard function to be called on quota_on
6337  */
6338 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6339 			 const struct path *path)
6340 {
6341 	int err;
6342 
6343 	if (!test_opt(sb, QUOTA))
6344 		return -EINVAL;
6345 
6346 	/* Quotafile not on the same filesystem? */
6347 	if (path->dentry->d_sb != sb)
6348 		return -EXDEV;
6349 
6350 	/* Quota already enabled for this file? */
6351 	if (IS_NOQUOTA(d_inode(path->dentry)))
6352 		return -EBUSY;
6353 
6354 	/* Journaling quota? */
6355 	if (EXT4_SB(sb)->s_qf_names[type]) {
6356 		/* Quotafile not in fs root? */
6357 		if (path->dentry->d_parent != sb->s_root)
6358 			ext4_msg(sb, KERN_WARNING,
6359 				"Quota file not on filesystem root. "
6360 				"Journaled quota will not work");
6361 		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6362 	} else {
6363 		/*
6364 		 * Clear the flag just in case mount options changed since
6365 		 * last time.
6366 		 */
6367 		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6368 	}
6369 
6370 	/*
6371 	 * When we journal data on quota file, we have to flush journal to see
6372 	 * all updates to the file when we bypass pagecache...
6373 	 */
6374 	if (EXT4_SB(sb)->s_journal &&
6375 	    ext4_should_journal_data(d_inode(path->dentry))) {
6376 		/*
6377 		 * We don't need to lock updates but journal_flush() could
6378 		 * otherwise be livelocked...
6379 		 */
6380 		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6381 		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6382 		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6383 		if (err)
6384 			return err;
6385 	}
6386 
6387 	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6388 	err = dquot_quota_on(sb, type, format_id, path);
6389 	if (err) {
6390 		lockdep_set_quota_inode(path->dentry->d_inode,
6391 					     I_DATA_SEM_NORMAL);
6392 	} else {
6393 		struct inode *inode = d_inode(path->dentry);
6394 		handle_t *handle;
6395 
6396 		/*
6397 		 * Set inode flags to prevent userspace from messing with quota
6398 		 * files. If this fails, we return success anyway since quotas
6399 		 * are already enabled and this is not a hard failure.
6400 		 */
6401 		inode_lock(inode);
6402 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6403 		if (IS_ERR(handle))
6404 			goto unlock_inode;
6405 		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6406 		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6407 				S_NOATIME | S_IMMUTABLE);
6408 		err = ext4_mark_inode_dirty(handle, inode);
6409 		ext4_journal_stop(handle);
6410 	unlock_inode:
6411 		inode_unlock(inode);
6412 	}
6413 	return err;
6414 }
6415 
6416 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6417 			     unsigned int flags)
6418 {
6419 	int err;
6420 	struct inode *qf_inode;
6421 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6422 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6423 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6424 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6425 	};
6426 
6427 	BUG_ON(!ext4_has_feature_quota(sb));
6428 
6429 	if (!qf_inums[type])
6430 		return -EPERM;
6431 
6432 	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6433 	if (IS_ERR(qf_inode)) {
6434 		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6435 		return PTR_ERR(qf_inode);
6436 	}
6437 
6438 	/* Don't account quota for quota files to avoid recursion */
6439 	qf_inode->i_flags |= S_NOQUOTA;
6440 	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6441 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6442 	if (err)
6443 		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6444 	iput(qf_inode);
6445 
6446 	return err;
6447 }
6448 
6449 /* Enable usage tracking for all quota types. */
6450 static int ext4_enable_quotas(struct super_block *sb)
6451 {
6452 	int type, err = 0;
6453 	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6454 		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6455 		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6456 		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6457 	};
6458 	bool quota_mopt[EXT4_MAXQUOTAS] = {
6459 		test_opt(sb, USRQUOTA),
6460 		test_opt(sb, GRPQUOTA),
6461 		test_opt(sb, PRJQUOTA),
6462 	};
6463 
6464 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6465 	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6466 		if (qf_inums[type]) {
6467 			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6468 				DQUOT_USAGE_ENABLED |
6469 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6470 			if (err) {
6471 				ext4_warning(sb,
6472 					"Failed to enable quota tracking "
6473 					"(type=%d, err=%d). Please run "
6474 					"e2fsck to fix.", type, err);
6475 				for (type--; type >= 0; type--)
6476 					dquot_quota_off(sb, type);
6477 
6478 				return err;
6479 			}
6480 		}
6481 	}
6482 	return 0;
6483 }
6484 
6485 static int ext4_quota_off(struct super_block *sb, int type)
6486 {
6487 	struct inode *inode = sb_dqopt(sb)->files[type];
6488 	handle_t *handle;
6489 	int err;
6490 
6491 	/* Force all delayed allocation blocks to be allocated.
6492 	 * Caller already holds s_umount sem */
6493 	if (test_opt(sb, DELALLOC))
6494 		sync_filesystem(sb);
6495 
6496 	if (!inode || !igrab(inode))
6497 		goto out;
6498 
6499 	err = dquot_quota_off(sb, type);
6500 	if (err || ext4_has_feature_quota(sb))
6501 		goto out_put;
6502 
6503 	inode_lock(inode);
6504 	/*
6505 	 * Update modification times of quota files when userspace can
6506 	 * start looking at them. If we fail, we return success anyway since
6507 	 * this is not a hard failure and quotas are already disabled.
6508 	 */
6509 	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6510 	if (IS_ERR(handle)) {
6511 		err = PTR_ERR(handle);
6512 		goto out_unlock;
6513 	}
6514 	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6515 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6516 	inode->i_mtime = inode->i_ctime = current_time(inode);
6517 	err = ext4_mark_inode_dirty(handle, inode);
6518 	ext4_journal_stop(handle);
6519 out_unlock:
6520 	inode_unlock(inode);
6521 out_put:
6522 	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6523 	iput(inode);
6524 	return err;
6525 out:
6526 	return dquot_quota_off(sb, type);
6527 }
6528 
6529 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6530  * acquiring the locks... As quota files are never truncated and quota code
6531  * itself serializes the operations (and no one else should touch the files)
6532  * we don't have to be afraid of races */
6533 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6534 			       size_t len, loff_t off)
6535 {
6536 	struct inode *inode = sb_dqopt(sb)->files[type];
6537 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6538 	int offset = off & (sb->s_blocksize - 1);
6539 	int tocopy;
6540 	size_t toread;
6541 	struct buffer_head *bh;
6542 	loff_t i_size = i_size_read(inode);
6543 
6544 	if (off > i_size)
6545 		return 0;
6546 	if (off+len > i_size)
6547 		len = i_size-off;
6548 	toread = len;
6549 	while (toread > 0) {
6550 		tocopy = sb->s_blocksize - offset < toread ?
6551 				sb->s_blocksize - offset : toread;
6552 		bh = ext4_bread(NULL, inode, blk, 0);
6553 		if (IS_ERR(bh))
6554 			return PTR_ERR(bh);
6555 		if (!bh)	/* A hole? */
6556 			memset(data, 0, tocopy);
6557 		else
6558 			memcpy(data, bh->b_data+offset, tocopy);
6559 		brelse(bh);
6560 		offset = 0;
6561 		toread -= tocopy;
6562 		data += tocopy;
6563 		blk++;
6564 	}
6565 	return len;
6566 }
6567 
6568 /* Write to quotafile (we know the transaction is already started and has
6569  * enough credits) */
6570 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6571 				const char *data, size_t len, loff_t off)
6572 {
6573 	struct inode *inode = sb_dqopt(sb)->files[type];
6574 	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6575 	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6576 	int retries = 0;
6577 	struct buffer_head *bh;
6578 	handle_t *handle = journal_current_handle();
6579 
6580 	if (EXT4_SB(sb)->s_journal && !handle) {
6581 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6582 			" cancelled because transaction is not started",
6583 			(unsigned long long)off, (unsigned long long)len);
6584 		return -EIO;
6585 	}
6586 	/*
6587 	 * Since we account only one data block in transaction credits,
6588 	 * then it is impossible to cross a block boundary.
6589 	 */
6590 	if (sb->s_blocksize - offset < len) {
6591 		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6592 			" cancelled because not block aligned",
6593 			(unsigned long long)off, (unsigned long long)len);
6594 		return -EIO;
6595 	}
6596 
6597 	do {
6598 		bh = ext4_bread(handle, inode, blk,
6599 				EXT4_GET_BLOCKS_CREATE |
6600 				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6601 	} while (PTR_ERR(bh) == -ENOSPC &&
6602 		 ext4_should_retry_alloc(inode->i_sb, &retries));
6603 	if (IS_ERR(bh))
6604 		return PTR_ERR(bh);
6605 	if (!bh)
6606 		goto out;
6607 	BUFFER_TRACE(bh, "get write access");
6608 	err = ext4_journal_get_write_access(handle, bh);
6609 	if (err) {
6610 		brelse(bh);
6611 		return err;
6612 	}
6613 	lock_buffer(bh);
6614 	memcpy(bh->b_data+offset, data, len);
6615 	flush_dcache_page(bh->b_page);
6616 	unlock_buffer(bh);
6617 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6618 	brelse(bh);
6619 out:
6620 	if (inode->i_size < off + len) {
6621 		i_size_write(inode, off + len);
6622 		EXT4_I(inode)->i_disksize = inode->i_size;
6623 		err2 = ext4_mark_inode_dirty(handle, inode);
6624 		if (unlikely(err2 && !err))
6625 			err = err2;
6626 	}
6627 	return err ? err : len;
6628 }
6629 #endif
6630 
6631 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6632 		       const char *dev_name, void *data)
6633 {
6634 	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6635 }
6636 
6637 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6638 static inline void register_as_ext2(void)
6639 {
6640 	int err = register_filesystem(&ext2_fs_type);
6641 	if (err)
6642 		printk(KERN_WARNING
6643 		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6644 }
6645 
6646 static inline void unregister_as_ext2(void)
6647 {
6648 	unregister_filesystem(&ext2_fs_type);
6649 }
6650 
6651 static inline int ext2_feature_set_ok(struct super_block *sb)
6652 {
6653 	if (ext4_has_unknown_ext2_incompat_features(sb))
6654 		return 0;
6655 	if (sb_rdonly(sb))
6656 		return 1;
6657 	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6658 		return 0;
6659 	return 1;
6660 }
6661 #else
6662 static inline void register_as_ext2(void) { }
6663 static inline void unregister_as_ext2(void) { }
6664 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6665 #endif
6666 
6667 static inline void register_as_ext3(void)
6668 {
6669 	int err = register_filesystem(&ext3_fs_type);
6670 	if (err)
6671 		printk(KERN_WARNING
6672 		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6673 }
6674 
6675 static inline void unregister_as_ext3(void)
6676 {
6677 	unregister_filesystem(&ext3_fs_type);
6678 }
6679 
6680 static inline int ext3_feature_set_ok(struct super_block *sb)
6681 {
6682 	if (ext4_has_unknown_ext3_incompat_features(sb))
6683 		return 0;
6684 	if (!ext4_has_feature_journal(sb))
6685 		return 0;
6686 	if (sb_rdonly(sb))
6687 		return 1;
6688 	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6689 		return 0;
6690 	return 1;
6691 }
6692 
6693 static struct file_system_type ext4_fs_type = {
6694 	.owner		= THIS_MODULE,
6695 	.name		= "ext4",
6696 	.mount		= ext4_mount,
6697 	.kill_sb	= kill_block_super,
6698 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6699 };
6700 MODULE_ALIAS_FS("ext4");
6701 
6702 /* Shared across all ext4 file systems */
6703 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6704 
6705 static int __init ext4_init_fs(void)
6706 {
6707 	int i, err;
6708 
6709 	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6710 	ext4_li_info = NULL;
6711 
6712 	/* Build-time check for flags consistency */
6713 	ext4_check_flag_values();
6714 
6715 	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6716 		init_waitqueue_head(&ext4__ioend_wq[i]);
6717 
6718 	err = ext4_init_es();
6719 	if (err)
6720 		return err;
6721 
6722 	err = ext4_init_pending();
6723 	if (err)
6724 		goto out7;
6725 
6726 	err = ext4_init_post_read_processing();
6727 	if (err)
6728 		goto out6;
6729 
6730 	err = ext4_init_pageio();
6731 	if (err)
6732 		goto out5;
6733 
6734 	err = ext4_init_system_zone();
6735 	if (err)
6736 		goto out4;
6737 
6738 	err = ext4_init_sysfs();
6739 	if (err)
6740 		goto out3;
6741 
6742 	err = ext4_init_mballoc();
6743 	if (err)
6744 		goto out2;
6745 	err = init_inodecache();
6746 	if (err)
6747 		goto out1;
6748 
6749 	err = ext4_fc_init_dentry_cache();
6750 	if (err)
6751 		goto out05;
6752 
6753 	register_as_ext3();
6754 	register_as_ext2();
6755 	err = register_filesystem(&ext4_fs_type);
6756 	if (err)
6757 		goto out;
6758 
6759 	return 0;
6760 out:
6761 	unregister_as_ext2();
6762 	unregister_as_ext3();
6763 out05:
6764 	destroy_inodecache();
6765 out1:
6766 	ext4_exit_mballoc();
6767 out2:
6768 	ext4_exit_sysfs();
6769 out3:
6770 	ext4_exit_system_zone();
6771 out4:
6772 	ext4_exit_pageio();
6773 out5:
6774 	ext4_exit_post_read_processing();
6775 out6:
6776 	ext4_exit_pending();
6777 out7:
6778 	ext4_exit_es();
6779 
6780 	return err;
6781 }
6782 
6783 static void __exit ext4_exit_fs(void)
6784 {
6785 	ext4_destroy_lazyinit_thread();
6786 	unregister_as_ext2();
6787 	unregister_as_ext3();
6788 	unregister_filesystem(&ext4_fs_type);
6789 	destroy_inodecache();
6790 	ext4_exit_mballoc();
6791 	ext4_exit_sysfs();
6792 	ext4_exit_system_zone();
6793 	ext4_exit_pageio();
6794 	ext4_exit_post_read_processing();
6795 	ext4_exit_es();
6796 	ext4_exit_pending();
6797 }
6798 
6799 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6800 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6801 MODULE_LICENSE("GPL");
6802 MODULE_SOFTDEP("pre: crc32c");
6803 module_init(ext4_init_fs)
6804 module_exit(ext4_exit_fs)
6805