1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_sem 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 /* 144 * This works like sb_bread() except it uses ERR_PTR for error 145 * returns. Currently with sb_bread it's impossible to distinguish 146 * between ENOMEM and EIO situations (since both result in a NULL 147 * return. 148 */ 149 struct buffer_head * 150 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 151 { 152 struct buffer_head *bh = sb_getblk(sb, block); 153 154 if (bh == NULL) 155 return ERR_PTR(-ENOMEM); 156 if (buffer_uptodate(bh)) 157 return bh; 158 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 159 wait_on_buffer(bh); 160 if (buffer_uptodate(bh)) 161 return bh; 162 put_bh(bh); 163 return ERR_PTR(-EIO); 164 } 165 166 static int ext4_verify_csum_type(struct super_block *sb, 167 struct ext4_super_block *es) 168 { 169 if (!ext4_has_feature_metadata_csum(sb)) 170 return 1; 171 172 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 173 } 174 175 static __le32 ext4_superblock_csum(struct super_block *sb, 176 struct ext4_super_block *es) 177 { 178 struct ext4_sb_info *sbi = EXT4_SB(sb); 179 int offset = offsetof(struct ext4_super_block, s_checksum); 180 __u32 csum; 181 182 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 183 184 return cpu_to_le32(csum); 185 } 186 187 static int ext4_superblock_csum_verify(struct super_block *sb, 188 struct ext4_super_block *es) 189 { 190 if (!ext4_has_metadata_csum(sb)) 191 return 1; 192 193 return es->s_checksum == ext4_superblock_csum(sb, es); 194 } 195 196 void ext4_superblock_csum_set(struct super_block *sb) 197 { 198 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 199 200 if (!ext4_has_metadata_csum(sb)) 201 return; 202 203 es->s_checksum = ext4_superblock_csum(sb, es); 204 } 205 206 void *ext4_kvmalloc(size_t size, gfp_t flags) 207 { 208 void *ret; 209 210 ret = kmalloc(size, flags | __GFP_NOWARN); 211 if (!ret) 212 ret = __vmalloc(size, flags, PAGE_KERNEL); 213 return ret; 214 } 215 216 void *ext4_kvzalloc(size_t size, gfp_t flags) 217 { 218 void *ret; 219 220 ret = kzalloc(size, flags | __GFP_NOWARN); 221 if (!ret) 222 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 223 return ret; 224 } 225 226 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 227 struct ext4_group_desc *bg) 228 { 229 return le32_to_cpu(bg->bg_block_bitmap_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 232 } 233 234 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 235 struct ext4_group_desc *bg) 236 { 237 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 239 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 240 } 241 242 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 243 struct ext4_group_desc *bg) 244 { 245 return le32_to_cpu(bg->bg_inode_table_lo) | 246 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 247 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 248 } 249 250 __u32 ext4_free_group_clusters(struct super_block *sb, 251 struct ext4_group_desc *bg) 252 { 253 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 254 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 255 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 256 } 257 258 __u32 ext4_free_inodes_count(struct super_block *sb, 259 struct ext4_group_desc *bg) 260 { 261 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 262 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 263 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 264 } 265 266 __u32 ext4_used_dirs_count(struct super_block *sb, 267 struct ext4_group_desc *bg) 268 { 269 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 270 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 271 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 272 } 273 274 __u32 ext4_itable_unused_count(struct super_block *sb, 275 struct ext4_group_desc *bg) 276 { 277 return le16_to_cpu(bg->bg_itable_unused_lo) | 278 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 279 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 280 } 281 282 void ext4_block_bitmap_set(struct super_block *sb, 283 struct ext4_group_desc *bg, ext4_fsblk_t blk) 284 { 285 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 288 } 289 290 void ext4_inode_bitmap_set(struct super_block *sb, 291 struct ext4_group_desc *bg, ext4_fsblk_t blk) 292 { 293 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 295 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 296 } 297 298 void ext4_inode_table_set(struct super_block *sb, 299 struct ext4_group_desc *bg, ext4_fsblk_t blk) 300 { 301 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 302 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 303 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 304 } 305 306 void ext4_free_group_clusters_set(struct super_block *sb, 307 struct ext4_group_desc *bg, __u32 count) 308 { 309 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 310 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 311 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 312 } 313 314 void ext4_free_inodes_set(struct super_block *sb, 315 struct ext4_group_desc *bg, __u32 count) 316 { 317 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 318 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 319 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 320 } 321 322 void ext4_used_dirs_set(struct super_block *sb, 323 struct ext4_group_desc *bg, __u32 count) 324 { 325 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 326 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 327 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 328 } 329 330 void ext4_itable_unused_set(struct super_block *sb, 331 struct ext4_group_desc *bg, __u32 count) 332 { 333 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 334 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 335 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 336 } 337 338 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 339 { 340 time64_t now = ktime_get_real_seconds(); 341 342 now = clamp_val(now, 0, (1ull << 40) - 1); 343 344 *lo = cpu_to_le32(lower_32_bits(now)); 345 *hi = upper_32_bits(now); 346 } 347 348 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 349 { 350 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 351 } 352 #define ext4_update_tstamp(es, tstamp) \ 353 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 354 #define ext4_get_tstamp(es, tstamp) \ 355 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 356 357 static void __save_error_info(struct super_block *sb, const char *func, 358 unsigned int line) 359 { 360 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 361 362 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 363 if (bdev_read_only(sb->s_bdev)) 364 return; 365 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 366 ext4_update_tstamp(es, s_last_error_time); 367 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 368 es->s_last_error_line = cpu_to_le32(line); 369 if (!es->s_first_error_time) { 370 es->s_first_error_time = es->s_last_error_time; 371 es->s_first_error_time_hi = es->s_last_error_time_hi; 372 strncpy(es->s_first_error_func, func, 373 sizeof(es->s_first_error_func)); 374 es->s_first_error_line = cpu_to_le32(line); 375 es->s_first_error_ino = es->s_last_error_ino; 376 es->s_first_error_block = es->s_last_error_block; 377 } 378 /* 379 * Start the daily error reporting function if it hasn't been 380 * started already 381 */ 382 if (!es->s_error_count) 383 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 384 le32_add_cpu(&es->s_error_count, 1); 385 } 386 387 static void save_error_info(struct super_block *sb, const char *func, 388 unsigned int line) 389 { 390 __save_error_info(sb, func, line); 391 ext4_commit_super(sb, 1); 392 } 393 394 /* 395 * The del_gendisk() function uninitializes the disk-specific data 396 * structures, including the bdi structure, without telling anyone 397 * else. Once this happens, any attempt to call mark_buffer_dirty() 398 * (for example, by ext4_commit_super), will cause a kernel OOPS. 399 * This is a kludge to prevent these oops until we can put in a proper 400 * hook in del_gendisk() to inform the VFS and file system layers. 401 */ 402 static int block_device_ejected(struct super_block *sb) 403 { 404 struct inode *bd_inode = sb->s_bdev->bd_inode; 405 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 406 407 return bdi->dev == NULL; 408 } 409 410 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 411 { 412 struct super_block *sb = journal->j_private; 413 struct ext4_sb_info *sbi = EXT4_SB(sb); 414 int error = is_journal_aborted(journal); 415 struct ext4_journal_cb_entry *jce; 416 417 BUG_ON(txn->t_state == T_FINISHED); 418 419 ext4_process_freed_data(sb, txn->t_tid); 420 421 spin_lock(&sbi->s_md_lock); 422 while (!list_empty(&txn->t_private_list)) { 423 jce = list_entry(txn->t_private_list.next, 424 struct ext4_journal_cb_entry, jce_list); 425 list_del_init(&jce->jce_list); 426 spin_unlock(&sbi->s_md_lock); 427 jce->jce_func(sb, jce, error); 428 spin_lock(&sbi->s_md_lock); 429 } 430 spin_unlock(&sbi->s_md_lock); 431 } 432 433 /* Deal with the reporting of failure conditions on a filesystem such as 434 * inconsistencies detected or read IO failures. 435 * 436 * On ext2, we can store the error state of the filesystem in the 437 * superblock. That is not possible on ext4, because we may have other 438 * write ordering constraints on the superblock which prevent us from 439 * writing it out straight away; and given that the journal is about to 440 * be aborted, we can't rely on the current, or future, transactions to 441 * write out the superblock safely. 442 * 443 * We'll just use the jbd2_journal_abort() error code to record an error in 444 * the journal instead. On recovery, the journal will complain about 445 * that error until we've noted it down and cleared it. 446 */ 447 448 static void ext4_handle_error(struct super_block *sb) 449 { 450 if (test_opt(sb, WARN_ON_ERROR)) 451 WARN_ON_ONCE(1); 452 453 if (sb_rdonly(sb)) 454 return; 455 456 if (!test_opt(sb, ERRORS_CONT)) { 457 journal_t *journal = EXT4_SB(sb)->s_journal; 458 459 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 460 if (journal) 461 jbd2_journal_abort(journal, -EIO); 462 } 463 if (test_opt(sb, ERRORS_RO)) { 464 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 465 /* 466 * Make sure updated value of ->s_mount_flags will be visible 467 * before ->s_flags update 468 */ 469 smp_wmb(); 470 sb->s_flags |= SB_RDONLY; 471 } 472 if (test_opt(sb, ERRORS_PANIC)) { 473 if (EXT4_SB(sb)->s_journal && 474 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 475 return; 476 panic("EXT4-fs (device %s): panic forced after error\n", 477 sb->s_id); 478 } 479 } 480 481 #define ext4_error_ratelimit(sb) \ 482 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 483 "EXT4-fs error") 484 485 void __ext4_error(struct super_block *sb, const char *function, 486 unsigned int line, const char *fmt, ...) 487 { 488 struct va_format vaf; 489 va_list args; 490 491 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 492 return; 493 494 trace_ext4_error(sb, function, line); 495 if (ext4_error_ratelimit(sb)) { 496 va_start(args, fmt); 497 vaf.fmt = fmt; 498 vaf.va = &args; 499 printk(KERN_CRIT 500 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 501 sb->s_id, function, line, current->comm, &vaf); 502 va_end(args); 503 } 504 save_error_info(sb, function, line); 505 ext4_handle_error(sb); 506 } 507 508 void __ext4_error_inode(struct inode *inode, const char *function, 509 unsigned int line, ext4_fsblk_t block, 510 const char *fmt, ...) 511 { 512 va_list args; 513 struct va_format vaf; 514 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 515 516 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 517 return; 518 519 trace_ext4_error(inode->i_sb, function, line); 520 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 521 es->s_last_error_block = cpu_to_le64(block); 522 if (ext4_error_ratelimit(inode->i_sb)) { 523 va_start(args, fmt); 524 vaf.fmt = fmt; 525 vaf.va = &args; 526 if (block) 527 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 528 "inode #%lu: block %llu: comm %s: %pV\n", 529 inode->i_sb->s_id, function, line, inode->i_ino, 530 block, current->comm, &vaf); 531 else 532 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 533 "inode #%lu: comm %s: %pV\n", 534 inode->i_sb->s_id, function, line, inode->i_ino, 535 current->comm, &vaf); 536 va_end(args); 537 } 538 save_error_info(inode->i_sb, function, line); 539 ext4_handle_error(inode->i_sb); 540 } 541 542 void __ext4_error_file(struct file *file, const char *function, 543 unsigned int line, ext4_fsblk_t block, 544 const char *fmt, ...) 545 { 546 va_list args; 547 struct va_format vaf; 548 struct ext4_super_block *es; 549 struct inode *inode = file_inode(file); 550 char pathname[80], *path; 551 552 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 553 return; 554 555 trace_ext4_error(inode->i_sb, function, line); 556 es = EXT4_SB(inode->i_sb)->s_es; 557 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 558 if (ext4_error_ratelimit(inode->i_sb)) { 559 path = file_path(file, pathname, sizeof(pathname)); 560 if (IS_ERR(path)) 561 path = "(unknown)"; 562 va_start(args, fmt); 563 vaf.fmt = fmt; 564 vaf.va = &args; 565 if (block) 566 printk(KERN_CRIT 567 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 568 "block %llu: comm %s: path %s: %pV\n", 569 inode->i_sb->s_id, function, line, inode->i_ino, 570 block, current->comm, path, &vaf); 571 else 572 printk(KERN_CRIT 573 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 574 "comm %s: path %s: %pV\n", 575 inode->i_sb->s_id, function, line, inode->i_ino, 576 current->comm, path, &vaf); 577 va_end(args); 578 } 579 save_error_info(inode->i_sb, function, line); 580 ext4_handle_error(inode->i_sb); 581 } 582 583 const char *ext4_decode_error(struct super_block *sb, int errno, 584 char nbuf[16]) 585 { 586 char *errstr = NULL; 587 588 switch (errno) { 589 case -EFSCORRUPTED: 590 errstr = "Corrupt filesystem"; 591 break; 592 case -EFSBADCRC: 593 errstr = "Filesystem failed CRC"; 594 break; 595 case -EIO: 596 errstr = "IO failure"; 597 break; 598 case -ENOMEM: 599 errstr = "Out of memory"; 600 break; 601 case -EROFS: 602 if (!sb || (EXT4_SB(sb)->s_journal && 603 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 604 errstr = "Journal has aborted"; 605 else 606 errstr = "Readonly filesystem"; 607 break; 608 default: 609 /* If the caller passed in an extra buffer for unknown 610 * errors, textualise them now. Else we just return 611 * NULL. */ 612 if (nbuf) { 613 /* Check for truncated error codes... */ 614 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 615 errstr = nbuf; 616 } 617 break; 618 } 619 620 return errstr; 621 } 622 623 /* __ext4_std_error decodes expected errors from journaling functions 624 * automatically and invokes the appropriate error response. */ 625 626 void __ext4_std_error(struct super_block *sb, const char *function, 627 unsigned int line, int errno) 628 { 629 char nbuf[16]; 630 const char *errstr; 631 632 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 633 return; 634 635 /* Special case: if the error is EROFS, and we're not already 636 * inside a transaction, then there's really no point in logging 637 * an error. */ 638 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 639 return; 640 641 if (ext4_error_ratelimit(sb)) { 642 errstr = ext4_decode_error(sb, errno, nbuf); 643 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 644 sb->s_id, function, line, errstr); 645 } 646 647 save_error_info(sb, function, line); 648 ext4_handle_error(sb); 649 } 650 651 /* 652 * ext4_abort is a much stronger failure handler than ext4_error. The 653 * abort function may be used to deal with unrecoverable failures such 654 * as journal IO errors or ENOMEM at a critical moment in log management. 655 * 656 * We unconditionally force the filesystem into an ABORT|READONLY state, 657 * unless the error response on the fs has been set to panic in which 658 * case we take the easy way out and panic immediately. 659 */ 660 661 void __ext4_abort(struct super_block *sb, const char *function, 662 unsigned int line, const char *fmt, ...) 663 { 664 struct va_format vaf; 665 va_list args; 666 667 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 668 return; 669 670 save_error_info(sb, function, line); 671 va_start(args, fmt); 672 vaf.fmt = fmt; 673 vaf.va = &args; 674 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 675 sb->s_id, function, line, &vaf); 676 va_end(args); 677 678 if (sb_rdonly(sb) == 0) { 679 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 680 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 681 /* 682 * Make sure updated value of ->s_mount_flags will be visible 683 * before ->s_flags update 684 */ 685 smp_wmb(); 686 sb->s_flags |= SB_RDONLY; 687 if (EXT4_SB(sb)->s_journal) 688 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 689 save_error_info(sb, function, line); 690 } 691 if (test_opt(sb, ERRORS_PANIC)) { 692 if (EXT4_SB(sb)->s_journal && 693 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 694 return; 695 panic("EXT4-fs panic from previous error\n"); 696 } 697 } 698 699 void __ext4_msg(struct super_block *sb, 700 const char *prefix, const char *fmt, ...) 701 { 702 struct va_format vaf; 703 va_list args; 704 705 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 706 return; 707 708 va_start(args, fmt); 709 vaf.fmt = fmt; 710 vaf.va = &args; 711 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 712 va_end(args); 713 } 714 715 #define ext4_warning_ratelimit(sb) \ 716 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 717 "EXT4-fs warning") 718 719 void __ext4_warning(struct super_block *sb, const char *function, 720 unsigned int line, const char *fmt, ...) 721 { 722 struct va_format vaf; 723 va_list args; 724 725 if (!ext4_warning_ratelimit(sb)) 726 return; 727 728 va_start(args, fmt); 729 vaf.fmt = fmt; 730 vaf.va = &args; 731 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 732 sb->s_id, function, line, &vaf); 733 va_end(args); 734 } 735 736 void __ext4_warning_inode(const struct inode *inode, const char *function, 737 unsigned int line, const char *fmt, ...) 738 { 739 struct va_format vaf; 740 va_list args; 741 742 if (!ext4_warning_ratelimit(inode->i_sb)) 743 return; 744 745 va_start(args, fmt); 746 vaf.fmt = fmt; 747 vaf.va = &args; 748 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 749 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 750 function, line, inode->i_ino, current->comm, &vaf); 751 va_end(args); 752 } 753 754 void __ext4_grp_locked_error(const char *function, unsigned int line, 755 struct super_block *sb, ext4_group_t grp, 756 unsigned long ino, ext4_fsblk_t block, 757 const char *fmt, ...) 758 __releases(bitlock) 759 __acquires(bitlock) 760 { 761 struct va_format vaf; 762 va_list args; 763 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 764 765 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 766 return; 767 768 trace_ext4_error(sb, function, line); 769 es->s_last_error_ino = cpu_to_le32(ino); 770 es->s_last_error_block = cpu_to_le64(block); 771 __save_error_info(sb, function, line); 772 773 if (ext4_error_ratelimit(sb)) { 774 va_start(args, fmt); 775 vaf.fmt = fmt; 776 vaf.va = &args; 777 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 778 sb->s_id, function, line, grp); 779 if (ino) 780 printk(KERN_CONT "inode %lu: ", ino); 781 if (block) 782 printk(KERN_CONT "block %llu:", 783 (unsigned long long) block); 784 printk(KERN_CONT "%pV\n", &vaf); 785 va_end(args); 786 } 787 788 if (test_opt(sb, WARN_ON_ERROR)) 789 WARN_ON_ONCE(1); 790 791 if (test_opt(sb, ERRORS_CONT)) { 792 ext4_commit_super(sb, 0); 793 return; 794 } 795 796 ext4_unlock_group(sb, grp); 797 ext4_commit_super(sb, 1); 798 ext4_handle_error(sb); 799 /* 800 * We only get here in the ERRORS_RO case; relocking the group 801 * may be dangerous, but nothing bad will happen since the 802 * filesystem will have already been marked read/only and the 803 * journal has been aborted. We return 1 as a hint to callers 804 * who might what to use the return value from 805 * ext4_grp_locked_error() to distinguish between the 806 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 807 * aggressively from the ext4 function in question, with a 808 * more appropriate error code. 809 */ 810 ext4_lock_group(sb, grp); 811 return; 812 } 813 814 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 815 ext4_group_t group, 816 unsigned int flags) 817 { 818 struct ext4_sb_info *sbi = EXT4_SB(sb); 819 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 820 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 821 int ret; 822 823 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 824 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 825 &grp->bb_state); 826 if (!ret) 827 percpu_counter_sub(&sbi->s_freeclusters_counter, 828 grp->bb_free); 829 } 830 831 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 832 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 833 &grp->bb_state); 834 if (!ret && gdp) { 835 int count; 836 837 count = ext4_free_inodes_count(sb, gdp); 838 percpu_counter_sub(&sbi->s_freeinodes_counter, 839 count); 840 } 841 } 842 } 843 844 void ext4_update_dynamic_rev(struct super_block *sb) 845 { 846 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 847 848 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 849 return; 850 851 ext4_warning(sb, 852 "updating to rev %d because of new feature flag, " 853 "running e2fsck is recommended", 854 EXT4_DYNAMIC_REV); 855 856 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 857 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 858 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 859 /* leave es->s_feature_*compat flags alone */ 860 /* es->s_uuid will be set by e2fsck if empty */ 861 862 /* 863 * The rest of the superblock fields should be zero, and if not it 864 * means they are likely already in use, so leave them alone. We 865 * can leave it up to e2fsck to clean up any inconsistencies there. 866 */ 867 } 868 869 /* 870 * Open the external journal device 871 */ 872 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 873 { 874 struct block_device *bdev; 875 char b[BDEVNAME_SIZE]; 876 877 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 878 if (IS_ERR(bdev)) 879 goto fail; 880 return bdev; 881 882 fail: 883 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 884 __bdevname(dev, b), PTR_ERR(bdev)); 885 return NULL; 886 } 887 888 /* 889 * Release the journal device 890 */ 891 static void ext4_blkdev_put(struct block_device *bdev) 892 { 893 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 894 } 895 896 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 897 { 898 struct block_device *bdev; 899 bdev = sbi->journal_bdev; 900 if (bdev) { 901 ext4_blkdev_put(bdev); 902 sbi->journal_bdev = NULL; 903 } 904 } 905 906 static inline struct inode *orphan_list_entry(struct list_head *l) 907 { 908 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 909 } 910 911 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 912 { 913 struct list_head *l; 914 915 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 916 le32_to_cpu(sbi->s_es->s_last_orphan)); 917 918 printk(KERN_ERR "sb_info orphan list:\n"); 919 list_for_each(l, &sbi->s_orphan) { 920 struct inode *inode = orphan_list_entry(l); 921 printk(KERN_ERR " " 922 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 923 inode->i_sb->s_id, inode->i_ino, inode, 924 inode->i_mode, inode->i_nlink, 925 NEXT_ORPHAN(inode)); 926 } 927 } 928 929 #ifdef CONFIG_QUOTA 930 static int ext4_quota_off(struct super_block *sb, int type); 931 932 static inline void ext4_quota_off_umount(struct super_block *sb) 933 { 934 int type; 935 936 /* Use our quota_off function to clear inode flags etc. */ 937 for (type = 0; type < EXT4_MAXQUOTAS; type++) 938 ext4_quota_off(sb, type); 939 } 940 941 /* 942 * This is a helper function which is used in the mount/remount 943 * codepaths (which holds s_umount) to fetch the quota file name. 944 */ 945 static inline char *get_qf_name(struct super_block *sb, 946 struct ext4_sb_info *sbi, 947 int type) 948 { 949 return rcu_dereference_protected(sbi->s_qf_names[type], 950 lockdep_is_held(&sb->s_umount)); 951 } 952 #else 953 static inline void ext4_quota_off_umount(struct super_block *sb) 954 { 955 } 956 #endif 957 958 static void ext4_put_super(struct super_block *sb) 959 { 960 struct ext4_sb_info *sbi = EXT4_SB(sb); 961 struct ext4_super_block *es = sbi->s_es; 962 int aborted = 0; 963 int i, err; 964 965 ext4_unregister_li_request(sb); 966 ext4_quota_off_umount(sb); 967 968 destroy_workqueue(sbi->rsv_conversion_wq); 969 970 if (sbi->s_journal) { 971 aborted = is_journal_aborted(sbi->s_journal); 972 err = jbd2_journal_destroy(sbi->s_journal); 973 sbi->s_journal = NULL; 974 if ((err < 0) && !aborted) 975 ext4_abort(sb, "Couldn't clean up the journal"); 976 } 977 978 ext4_unregister_sysfs(sb); 979 ext4_es_unregister_shrinker(sbi); 980 del_timer_sync(&sbi->s_err_report); 981 ext4_release_system_zone(sb); 982 ext4_mb_release(sb); 983 ext4_ext_release(sb); 984 985 if (!sb_rdonly(sb) && !aborted) { 986 ext4_clear_feature_journal_needs_recovery(sb); 987 es->s_state = cpu_to_le16(sbi->s_mount_state); 988 } 989 if (!sb_rdonly(sb)) 990 ext4_commit_super(sb, 1); 991 992 for (i = 0; i < sbi->s_gdb_count; i++) 993 brelse(sbi->s_group_desc[i]); 994 kvfree(sbi->s_group_desc); 995 kvfree(sbi->s_flex_groups); 996 percpu_counter_destroy(&sbi->s_freeclusters_counter); 997 percpu_counter_destroy(&sbi->s_freeinodes_counter); 998 percpu_counter_destroy(&sbi->s_dirs_counter); 999 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1000 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 1001 #ifdef CONFIG_QUOTA 1002 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1003 kfree(get_qf_name(sb, sbi, i)); 1004 #endif 1005 1006 /* Debugging code just in case the in-memory inode orphan list 1007 * isn't empty. The on-disk one can be non-empty if we've 1008 * detected an error and taken the fs readonly, but the 1009 * in-memory list had better be clean by this point. */ 1010 if (!list_empty(&sbi->s_orphan)) 1011 dump_orphan_list(sb, sbi); 1012 J_ASSERT(list_empty(&sbi->s_orphan)); 1013 1014 sync_blockdev(sb->s_bdev); 1015 invalidate_bdev(sb->s_bdev); 1016 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1017 /* 1018 * Invalidate the journal device's buffers. We don't want them 1019 * floating about in memory - the physical journal device may 1020 * hotswapped, and it breaks the `ro-after' testing code. 1021 */ 1022 sync_blockdev(sbi->journal_bdev); 1023 invalidate_bdev(sbi->journal_bdev); 1024 ext4_blkdev_remove(sbi); 1025 } 1026 1027 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1028 sbi->s_ea_inode_cache = NULL; 1029 1030 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1031 sbi->s_ea_block_cache = NULL; 1032 1033 if (sbi->s_mmp_tsk) 1034 kthread_stop(sbi->s_mmp_tsk); 1035 brelse(sbi->s_sbh); 1036 sb->s_fs_info = NULL; 1037 /* 1038 * Now that we are completely done shutting down the 1039 * superblock, we need to actually destroy the kobject. 1040 */ 1041 kobject_put(&sbi->s_kobj); 1042 wait_for_completion(&sbi->s_kobj_unregister); 1043 if (sbi->s_chksum_driver) 1044 crypto_free_shash(sbi->s_chksum_driver); 1045 kfree(sbi->s_blockgroup_lock); 1046 fs_put_dax(sbi->s_daxdev); 1047 kfree(sbi); 1048 } 1049 1050 static struct kmem_cache *ext4_inode_cachep; 1051 1052 /* 1053 * Called inside transaction, so use GFP_NOFS 1054 */ 1055 static struct inode *ext4_alloc_inode(struct super_block *sb) 1056 { 1057 struct ext4_inode_info *ei; 1058 1059 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1060 if (!ei) 1061 return NULL; 1062 1063 inode_set_iversion(&ei->vfs_inode, 1); 1064 spin_lock_init(&ei->i_raw_lock); 1065 INIT_LIST_HEAD(&ei->i_prealloc_list); 1066 spin_lock_init(&ei->i_prealloc_lock); 1067 ext4_es_init_tree(&ei->i_es_tree); 1068 rwlock_init(&ei->i_es_lock); 1069 INIT_LIST_HEAD(&ei->i_es_list); 1070 ei->i_es_all_nr = 0; 1071 ei->i_es_shk_nr = 0; 1072 ei->i_es_shrink_lblk = 0; 1073 ei->i_reserved_data_blocks = 0; 1074 ei->i_da_metadata_calc_len = 0; 1075 ei->i_da_metadata_calc_last_lblock = 0; 1076 spin_lock_init(&(ei->i_block_reservation_lock)); 1077 ext4_init_pending_tree(&ei->i_pending_tree); 1078 #ifdef CONFIG_QUOTA 1079 ei->i_reserved_quota = 0; 1080 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1081 #endif 1082 ei->jinode = NULL; 1083 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1084 spin_lock_init(&ei->i_completed_io_lock); 1085 ei->i_sync_tid = 0; 1086 ei->i_datasync_tid = 0; 1087 atomic_set(&ei->i_unwritten, 0); 1088 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1089 return &ei->vfs_inode; 1090 } 1091 1092 static int ext4_drop_inode(struct inode *inode) 1093 { 1094 int drop = generic_drop_inode(inode); 1095 1096 trace_ext4_drop_inode(inode, drop); 1097 return drop; 1098 } 1099 1100 static void ext4_i_callback(struct rcu_head *head) 1101 { 1102 struct inode *inode = container_of(head, struct inode, i_rcu); 1103 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1104 } 1105 1106 static void ext4_destroy_inode(struct inode *inode) 1107 { 1108 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1109 ext4_msg(inode->i_sb, KERN_ERR, 1110 "Inode %lu (%p): orphan list check failed!", 1111 inode->i_ino, EXT4_I(inode)); 1112 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1113 EXT4_I(inode), sizeof(struct ext4_inode_info), 1114 true); 1115 dump_stack(); 1116 } 1117 call_rcu(&inode->i_rcu, ext4_i_callback); 1118 } 1119 1120 static void init_once(void *foo) 1121 { 1122 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1123 1124 INIT_LIST_HEAD(&ei->i_orphan); 1125 init_rwsem(&ei->xattr_sem); 1126 init_rwsem(&ei->i_data_sem); 1127 init_rwsem(&ei->i_mmap_sem); 1128 inode_init_once(&ei->vfs_inode); 1129 } 1130 1131 static int __init init_inodecache(void) 1132 { 1133 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1134 sizeof(struct ext4_inode_info), 0, 1135 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1136 SLAB_ACCOUNT), 1137 offsetof(struct ext4_inode_info, i_data), 1138 sizeof_field(struct ext4_inode_info, i_data), 1139 init_once); 1140 if (ext4_inode_cachep == NULL) 1141 return -ENOMEM; 1142 return 0; 1143 } 1144 1145 static void destroy_inodecache(void) 1146 { 1147 /* 1148 * Make sure all delayed rcu free inodes are flushed before we 1149 * destroy cache. 1150 */ 1151 rcu_barrier(); 1152 kmem_cache_destroy(ext4_inode_cachep); 1153 } 1154 1155 void ext4_clear_inode(struct inode *inode) 1156 { 1157 invalidate_inode_buffers(inode); 1158 clear_inode(inode); 1159 dquot_drop(inode); 1160 ext4_discard_preallocations(inode); 1161 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1162 if (EXT4_I(inode)->jinode) { 1163 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1164 EXT4_I(inode)->jinode); 1165 jbd2_free_inode(EXT4_I(inode)->jinode); 1166 EXT4_I(inode)->jinode = NULL; 1167 } 1168 fscrypt_put_encryption_info(inode); 1169 } 1170 1171 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1172 u64 ino, u32 generation) 1173 { 1174 struct inode *inode; 1175 1176 /* 1177 * Currently we don't know the generation for parent directory, so 1178 * a generation of 0 means "accept any" 1179 */ 1180 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1181 if (IS_ERR(inode)) 1182 return ERR_CAST(inode); 1183 if (generation && inode->i_generation != generation) { 1184 iput(inode); 1185 return ERR_PTR(-ESTALE); 1186 } 1187 1188 return inode; 1189 } 1190 1191 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1192 int fh_len, int fh_type) 1193 { 1194 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1195 ext4_nfs_get_inode); 1196 } 1197 1198 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1199 int fh_len, int fh_type) 1200 { 1201 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1202 ext4_nfs_get_inode); 1203 } 1204 1205 static int ext4_nfs_commit_metadata(struct inode *inode) 1206 { 1207 struct writeback_control wbc = { 1208 .sync_mode = WB_SYNC_ALL 1209 }; 1210 1211 trace_ext4_nfs_commit_metadata(inode); 1212 return ext4_write_inode(inode, &wbc); 1213 } 1214 1215 /* 1216 * Try to release metadata pages (indirect blocks, directories) which are 1217 * mapped via the block device. Since these pages could have journal heads 1218 * which would prevent try_to_free_buffers() from freeing them, we must use 1219 * jbd2 layer's try_to_free_buffers() function to release them. 1220 */ 1221 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1222 gfp_t wait) 1223 { 1224 journal_t *journal = EXT4_SB(sb)->s_journal; 1225 1226 WARN_ON(PageChecked(page)); 1227 if (!page_has_buffers(page)) 1228 return 0; 1229 if (journal) 1230 return jbd2_journal_try_to_free_buffers(journal, page, 1231 wait & ~__GFP_DIRECT_RECLAIM); 1232 return try_to_free_buffers(page); 1233 } 1234 1235 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1236 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1237 { 1238 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1239 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1240 } 1241 1242 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1243 void *fs_data) 1244 { 1245 handle_t *handle = fs_data; 1246 int res, res2, credits, retries = 0; 1247 1248 /* 1249 * Encrypting the root directory is not allowed because e2fsck expects 1250 * lost+found to exist and be unencrypted, and encrypting the root 1251 * directory would imply encrypting the lost+found directory as well as 1252 * the filename "lost+found" itself. 1253 */ 1254 if (inode->i_ino == EXT4_ROOT_INO) 1255 return -EPERM; 1256 1257 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1258 return -EINVAL; 1259 1260 res = ext4_convert_inline_data(inode); 1261 if (res) 1262 return res; 1263 1264 /* 1265 * If a journal handle was specified, then the encryption context is 1266 * being set on a new inode via inheritance and is part of a larger 1267 * transaction to create the inode. Otherwise the encryption context is 1268 * being set on an existing inode in its own transaction. Only in the 1269 * latter case should the "retry on ENOSPC" logic be used. 1270 */ 1271 1272 if (handle) { 1273 res = ext4_xattr_set_handle(handle, inode, 1274 EXT4_XATTR_INDEX_ENCRYPTION, 1275 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1276 ctx, len, 0); 1277 if (!res) { 1278 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1279 ext4_clear_inode_state(inode, 1280 EXT4_STATE_MAY_INLINE_DATA); 1281 /* 1282 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1283 * S_DAX may be disabled 1284 */ 1285 ext4_set_inode_flags(inode); 1286 } 1287 return res; 1288 } 1289 1290 res = dquot_initialize(inode); 1291 if (res) 1292 return res; 1293 retry: 1294 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1295 &credits); 1296 if (res) 1297 return res; 1298 1299 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1300 if (IS_ERR(handle)) 1301 return PTR_ERR(handle); 1302 1303 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1304 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1305 ctx, len, 0); 1306 if (!res) { 1307 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1308 /* 1309 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1310 * S_DAX may be disabled 1311 */ 1312 ext4_set_inode_flags(inode); 1313 res = ext4_mark_inode_dirty(handle, inode); 1314 if (res) 1315 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1316 } 1317 res2 = ext4_journal_stop(handle); 1318 1319 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1320 goto retry; 1321 if (!res) 1322 res = res2; 1323 return res; 1324 } 1325 1326 static bool ext4_dummy_context(struct inode *inode) 1327 { 1328 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1329 } 1330 1331 static const struct fscrypt_operations ext4_cryptops = { 1332 .key_prefix = "ext4:", 1333 .get_context = ext4_get_context, 1334 .set_context = ext4_set_context, 1335 .dummy_context = ext4_dummy_context, 1336 .empty_dir = ext4_empty_dir, 1337 .max_namelen = EXT4_NAME_LEN, 1338 }; 1339 #endif 1340 1341 #ifdef CONFIG_QUOTA 1342 static const char * const quotatypes[] = INITQFNAMES; 1343 #define QTYPE2NAME(t) (quotatypes[t]) 1344 1345 static int ext4_write_dquot(struct dquot *dquot); 1346 static int ext4_acquire_dquot(struct dquot *dquot); 1347 static int ext4_release_dquot(struct dquot *dquot); 1348 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1349 static int ext4_write_info(struct super_block *sb, int type); 1350 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1351 const struct path *path); 1352 static int ext4_quota_on_mount(struct super_block *sb, int type); 1353 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1354 size_t len, loff_t off); 1355 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1356 const char *data, size_t len, loff_t off); 1357 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1358 unsigned int flags); 1359 static int ext4_enable_quotas(struct super_block *sb); 1360 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1361 1362 static struct dquot **ext4_get_dquots(struct inode *inode) 1363 { 1364 return EXT4_I(inode)->i_dquot; 1365 } 1366 1367 static const struct dquot_operations ext4_quota_operations = { 1368 .get_reserved_space = ext4_get_reserved_space, 1369 .write_dquot = ext4_write_dquot, 1370 .acquire_dquot = ext4_acquire_dquot, 1371 .release_dquot = ext4_release_dquot, 1372 .mark_dirty = ext4_mark_dquot_dirty, 1373 .write_info = ext4_write_info, 1374 .alloc_dquot = dquot_alloc, 1375 .destroy_dquot = dquot_destroy, 1376 .get_projid = ext4_get_projid, 1377 .get_inode_usage = ext4_get_inode_usage, 1378 .get_next_id = ext4_get_next_id, 1379 }; 1380 1381 static const struct quotactl_ops ext4_qctl_operations = { 1382 .quota_on = ext4_quota_on, 1383 .quota_off = ext4_quota_off, 1384 .quota_sync = dquot_quota_sync, 1385 .get_state = dquot_get_state, 1386 .set_info = dquot_set_dqinfo, 1387 .get_dqblk = dquot_get_dqblk, 1388 .set_dqblk = dquot_set_dqblk, 1389 .get_nextdqblk = dquot_get_next_dqblk, 1390 }; 1391 #endif 1392 1393 static const struct super_operations ext4_sops = { 1394 .alloc_inode = ext4_alloc_inode, 1395 .destroy_inode = ext4_destroy_inode, 1396 .write_inode = ext4_write_inode, 1397 .dirty_inode = ext4_dirty_inode, 1398 .drop_inode = ext4_drop_inode, 1399 .evict_inode = ext4_evict_inode, 1400 .put_super = ext4_put_super, 1401 .sync_fs = ext4_sync_fs, 1402 .freeze_fs = ext4_freeze, 1403 .unfreeze_fs = ext4_unfreeze, 1404 .statfs = ext4_statfs, 1405 .remount_fs = ext4_remount, 1406 .show_options = ext4_show_options, 1407 #ifdef CONFIG_QUOTA 1408 .quota_read = ext4_quota_read, 1409 .quota_write = ext4_quota_write, 1410 .get_dquots = ext4_get_dquots, 1411 #endif 1412 .bdev_try_to_free_page = bdev_try_to_free_page, 1413 }; 1414 1415 static const struct export_operations ext4_export_ops = { 1416 .fh_to_dentry = ext4_fh_to_dentry, 1417 .fh_to_parent = ext4_fh_to_parent, 1418 .get_parent = ext4_get_parent, 1419 .commit_metadata = ext4_nfs_commit_metadata, 1420 }; 1421 1422 enum { 1423 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1424 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1425 Opt_nouid32, Opt_debug, Opt_removed, 1426 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1427 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1428 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1429 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1430 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1431 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1432 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1433 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1434 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1435 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1436 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1437 Opt_nowarn_on_error, Opt_mblk_io_submit, 1438 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1439 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1440 Opt_inode_readahead_blks, Opt_journal_ioprio, 1441 Opt_dioread_nolock, Opt_dioread_lock, 1442 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1443 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1444 }; 1445 1446 static const match_table_t tokens = { 1447 {Opt_bsd_df, "bsddf"}, 1448 {Opt_minix_df, "minixdf"}, 1449 {Opt_grpid, "grpid"}, 1450 {Opt_grpid, "bsdgroups"}, 1451 {Opt_nogrpid, "nogrpid"}, 1452 {Opt_nogrpid, "sysvgroups"}, 1453 {Opt_resgid, "resgid=%u"}, 1454 {Opt_resuid, "resuid=%u"}, 1455 {Opt_sb, "sb=%u"}, 1456 {Opt_err_cont, "errors=continue"}, 1457 {Opt_err_panic, "errors=panic"}, 1458 {Opt_err_ro, "errors=remount-ro"}, 1459 {Opt_nouid32, "nouid32"}, 1460 {Opt_debug, "debug"}, 1461 {Opt_removed, "oldalloc"}, 1462 {Opt_removed, "orlov"}, 1463 {Opt_user_xattr, "user_xattr"}, 1464 {Opt_nouser_xattr, "nouser_xattr"}, 1465 {Opt_acl, "acl"}, 1466 {Opt_noacl, "noacl"}, 1467 {Opt_noload, "norecovery"}, 1468 {Opt_noload, "noload"}, 1469 {Opt_removed, "nobh"}, 1470 {Opt_removed, "bh"}, 1471 {Opt_commit, "commit=%u"}, 1472 {Opt_min_batch_time, "min_batch_time=%u"}, 1473 {Opt_max_batch_time, "max_batch_time=%u"}, 1474 {Opt_journal_dev, "journal_dev=%u"}, 1475 {Opt_journal_path, "journal_path=%s"}, 1476 {Opt_journal_checksum, "journal_checksum"}, 1477 {Opt_nojournal_checksum, "nojournal_checksum"}, 1478 {Opt_journal_async_commit, "journal_async_commit"}, 1479 {Opt_abort, "abort"}, 1480 {Opt_data_journal, "data=journal"}, 1481 {Opt_data_ordered, "data=ordered"}, 1482 {Opt_data_writeback, "data=writeback"}, 1483 {Opt_data_err_abort, "data_err=abort"}, 1484 {Opt_data_err_ignore, "data_err=ignore"}, 1485 {Opt_offusrjquota, "usrjquota="}, 1486 {Opt_usrjquota, "usrjquota=%s"}, 1487 {Opt_offgrpjquota, "grpjquota="}, 1488 {Opt_grpjquota, "grpjquota=%s"}, 1489 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1490 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1491 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1492 {Opt_grpquota, "grpquota"}, 1493 {Opt_noquota, "noquota"}, 1494 {Opt_quota, "quota"}, 1495 {Opt_usrquota, "usrquota"}, 1496 {Opt_prjquota, "prjquota"}, 1497 {Opt_barrier, "barrier=%u"}, 1498 {Opt_barrier, "barrier"}, 1499 {Opt_nobarrier, "nobarrier"}, 1500 {Opt_i_version, "i_version"}, 1501 {Opt_dax, "dax"}, 1502 {Opt_stripe, "stripe=%u"}, 1503 {Opt_delalloc, "delalloc"}, 1504 {Opt_warn_on_error, "warn_on_error"}, 1505 {Opt_nowarn_on_error, "nowarn_on_error"}, 1506 {Opt_lazytime, "lazytime"}, 1507 {Opt_nolazytime, "nolazytime"}, 1508 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1509 {Opt_nodelalloc, "nodelalloc"}, 1510 {Opt_removed, "mblk_io_submit"}, 1511 {Opt_removed, "nomblk_io_submit"}, 1512 {Opt_block_validity, "block_validity"}, 1513 {Opt_noblock_validity, "noblock_validity"}, 1514 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1515 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1516 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1517 {Opt_auto_da_alloc, "auto_da_alloc"}, 1518 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1519 {Opt_dioread_nolock, "dioread_nolock"}, 1520 {Opt_dioread_lock, "dioread_lock"}, 1521 {Opt_discard, "discard"}, 1522 {Opt_nodiscard, "nodiscard"}, 1523 {Opt_init_itable, "init_itable=%u"}, 1524 {Opt_init_itable, "init_itable"}, 1525 {Opt_noinit_itable, "noinit_itable"}, 1526 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1527 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1528 {Opt_nombcache, "nombcache"}, 1529 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1530 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1531 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1532 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1533 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1534 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1535 {Opt_err, NULL}, 1536 }; 1537 1538 static ext4_fsblk_t get_sb_block(void **data) 1539 { 1540 ext4_fsblk_t sb_block; 1541 char *options = (char *) *data; 1542 1543 if (!options || strncmp(options, "sb=", 3) != 0) 1544 return 1; /* Default location */ 1545 1546 options += 3; 1547 /* TODO: use simple_strtoll with >32bit ext4 */ 1548 sb_block = simple_strtoul(options, &options, 0); 1549 if (*options && *options != ',') { 1550 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1551 (char *) *data); 1552 return 1; 1553 } 1554 if (*options == ',') 1555 options++; 1556 *data = (void *) options; 1557 1558 return sb_block; 1559 } 1560 1561 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1562 static const char deprecated_msg[] = 1563 "Mount option \"%s\" will be removed by %s\n" 1564 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1565 1566 #ifdef CONFIG_QUOTA 1567 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1568 { 1569 struct ext4_sb_info *sbi = EXT4_SB(sb); 1570 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1571 int ret = -1; 1572 1573 if (sb_any_quota_loaded(sb) && !old_qname) { 1574 ext4_msg(sb, KERN_ERR, 1575 "Cannot change journaled " 1576 "quota options when quota turned on"); 1577 return -1; 1578 } 1579 if (ext4_has_feature_quota(sb)) { 1580 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1581 "ignored when QUOTA feature is enabled"); 1582 return 1; 1583 } 1584 qname = match_strdup(args); 1585 if (!qname) { 1586 ext4_msg(sb, KERN_ERR, 1587 "Not enough memory for storing quotafile name"); 1588 return -1; 1589 } 1590 if (old_qname) { 1591 if (strcmp(old_qname, qname) == 0) 1592 ret = 1; 1593 else 1594 ext4_msg(sb, KERN_ERR, 1595 "%s quota file already specified", 1596 QTYPE2NAME(qtype)); 1597 goto errout; 1598 } 1599 if (strchr(qname, '/')) { 1600 ext4_msg(sb, KERN_ERR, 1601 "quotafile must be on filesystem root"); 1602 goto errout; 1603 } 1604 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1605 set_opt(sb, QUOTA); 1606 return 1; 1607 errout: 1608 kfree(qname); 1609 return ret; 1610 } 1611 1612 static int clear_qf_name(struct super_block *sb, int qtype) 1613 { 1614 1615 struct ext4_sb_info *sbi = EXT4_SB(sb); 1616 char *old_qname = get_qf_name(sb, sbi, qtype); 1617 1618 if (sb_any_quota_loaded(sb) && old_qname) { 1619 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1620 " when quota turned on"); 1621 return -1; 1622 } 1623 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1624 synchronize_rcu(); 1625 kfree(old_qname); 1626 return 1; 1627 } 1628 #endif 1629 1630 #define MOPT_SET 0x0001 1631 #define MOPT_CLEAR 0x0002 1632 #define MOPT_NOSUPPORT 0x0004 1633 #define MOPT_EXPLICIT 0x0008 1634 #define MOPT_CLEAR_ERR 0x0010 1635 #define MOPT_GTE0 0x0020 1636 #ifdef CONFIG_QUOTA 1637 #define MOPT_Q 0 1638 #define MOPT_QFMT 0x0040 1639 #else 1640 #define MOPT_Q MOPT_NOSUPPORT 1641 #define MOPT_QFMT MOPT_NOSUPPORT 1642 #endif 1643 #define MOPT_DATAJ 0x0080 1644 #define MOPT_NO_EXT2 0x0100 1645 #define MOPT_NO_EXT3 0x0200 1646 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1647 #define MOPT_STRING 0x0400 1648 1649 static const struct mount_opts { 1650 int token; 1651 int mount_opt; 1652 int flags; 1653 } ext4_mount_opts[] = { 1654 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1655 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1656 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1657 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1658 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1659 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1660 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1661 MOPT_EXT4_ONLY | MOPT_SET}, 1662 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1663 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1664 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1665 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1666 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1667 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1668 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1669 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1670 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1671 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1672 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1673 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1674 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1675 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1676 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1677 EXT4_MOUNT_JOURNAL_CHECKSUM), 1678 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1679 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1680 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1681 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1682 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1683 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1684 MOPT_NO_EXT2}, 1685 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1686 MOPT_NO_EXT2}, 1687 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1688 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1689 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1690 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1691 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1692 {Opt_commit, 0, MOPT_GTE0}, 1693 {Opt_max_batch_time, 0, MOPT_GTE0}, 1694 {Opt_min_batch_time, 0, MOPT_GTE0}, 1695 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1696 {Opt_init_itable, 0, MOPT_GTE0}, 1697 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1698 {Opt_stripe, 0, MOPT_GTE0}, 1699 {Opt_resuid, 0, MOPT_GTE0}, 1700 {Opt_resgid, 0, MOPT_GTE0}, 1701 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1702 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1703 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1704 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1705 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1706 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1707 MOPT_NO_EXT2 | MOPT_DATAJ}, 1708 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1709 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1710 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1711 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1712 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1713 #else 1714 {Opt_acl, 0, MOPT_NOSUPPORT}, 1715 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1716 #endif 1717 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1718 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1719 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1720 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1721 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1722 MOPT_SET | MOPT_Q}, 1723 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1724 MOPT_SET | MOPT_Q}, 1725 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1726 MOPT_SET | MOPT_Q}, 1727 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1728 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1729 MOPT_CLEAR | MOPT_Q}, 1730 {Opt_usrjquota, 0, MOPT_Q}, 1731 {Opt_grpjquota, 0, MOPT_Q}, 1732 {Opt_offusrjquota, 0, MOPT_Q}, 1733 {Opt_offgrpjquota, 0, MOPT_Q}, 1734 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1735 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1736 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1737 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1738 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1739 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1740 {Opt_err, 0, 0} 1741 }; 1742 1743 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1744 substring_t *args, unsigned long *journal_devnum, 1745 unsigned int *journal_ioprio, int is_remount) 1746 { 1747 struct ext4_sb_info *sbi = EXT4_SB(sb); 1748 const struct mount_opts *m; 1749 kuid_t uid; 1750 kgid_t gid; 1751 int arg = 0; 1752 1753 #ifdef CONFIG_QUOTA 1754 if (token == Opt_usrjquota) 1755 return set_qf_name(sb, USRQUOTA, &args[0]); 1756 else if (token == Opt_grpjquota) 1757 return set_qf_name(sb, GRPQUOTA, &args[0]); 1758 else if (token == Opt_offusrjquota) 1759 return clear_qf_name(sb, USRQUOTA); 1760 else if (token == Opt_offgrpjquota) 1761 return clear_qf_name(sb, GRPQUOTA); 1762 #endif 1763 switch (token) { 1764 case Opt_noacl: 1765 case Opt_nouser_xattr: 1766 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1767 break; 1768 case Opt_sb: 1769 return 1; /* handled by get_sb_block() */ 1770 case Opt_removed: 1771 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1772 return 1; 1773 case Opt_abort: 1774 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1775 return 1; 1776 case Opt_i_version: 1777 sb->s_flags |= SB_I_VERSION; 1778 return 1; 1779 case Opt_lazytime: 1780 sb->s_flags |= SB_LAZYTIME; 1781 return 1; 1782 case Opt_nolazytime: 1783 sb->s_flags &= ~SB_LAZYTIME; 1784 return 1; 1785 } 1786 1787 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1788 if (token == m->token) 1789 break; 1790 1791 if (m->token == Opt_err) { 1792 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1793 "or missing value", opt); 1794 return -1; 1795 } 1796 1797 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1798 ext4_msg(sb, KERN_ERR, 1799 "Mount option \"%s\" incompatible with ext2", opt); 1800 return -1; 1801 } 1802 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1803 ext4_msg(sb, KERN_ERR, 1804 "Mount option \"%s\" incompatible with ext3", opt); 1805 return -1; 1806 } 1807 1808 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1809 return -1; 1810 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1811 return -1; 1812 if (m->flags & MOPT_EXPLICIT) { 1813 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1814 set_opt2(sb, EXPLICIT_DELALLOC); 1815 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1816 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1817 } else 1818 return -1; 1819 } 1820 if (m->flags & MOPT_CLEAR_ERR) 1821 clear_opt(sb, ERRORS_MASK); 1822 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1823 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1824 "options when quota turned on"); 1825 return -1; 1826 } 1827 1828 if (m->flags & MOPT_NOSUPPORT) { 1829 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1830 } else if (token == Opt_commit) { 1831 if (arg == 0) 1832 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1833 sbi->s_commit_interval = HZ * arg; 1834 } else if (token == Opt_debug_want_extra_isize) { 1835 sbi->s_want_extra_isize = arg; 1836 } else if (token == Opt_max_batch_time) { 1837 sbi->s_max_batch_time = arg; 1838 } else if (token == Opt_min_batch_time) { 1839 sbi->s_min_batch_time = arg; 1840 } else if (token == Opt_inode_readahead_blks) { 1841 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1842 ext4_msg(sb, KERN_ERR, 1843 "EXT4-fs: inode_readahead_blks must be " 1844 "0 or a power of 2 smaller than 2^31"); 1845 return -1; 1846 } 1847 sbi->s_inode_readahead_blks = arg; 1848 } else if (token == Opt_init_itable) { 1849 set_opt(sb, INIT_INODE_TABLE); 1850 if (!args->from) 1851 arg = EXT4_DEF_LI_WAIT_MULT; 1852 sbi->s_li_wait_mult = arg; 1853 } else if (token == Opt_max_dir_size_kb) { 1854 sbi->s_max_dir_size_kb = arg; 1855 } else if (token == Opt_stripe) { 1856 sbi->s_stripe = arg; 1857 } else if (token == Opt_resuid) { 1858 uid = make_kuid(current_user_ns(), arg); 1859 if (!uid_valid(uid)) { 1860 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1861 return -1; 1862 } 1863 sbi->s_resuid = uid; 1864 } else if (token == Opt_resgid) { 1865 gid = make_kgid(current_user_ns(), arg); 1866 if (!gid_valid(gid)) { 1867 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1868 return -1; 1869 } 1870 sbi->s_resgid = gid; 1871 } else if (token == Opt_journal_dev) { 1872 if (is_remount) { 1873 ext4_msg(sb, KERN_ERR, 1874 "Cannot specify journal on remount"); 1875 return -1; 1876 } 1877 *journal_devnum = arg; 1878 } else if (token == Opt_journal_path) { 1879 char *journal_path; 1880 struct inode *journal_inode; 1881 struct path path; 1882 int error; 1883 1884 if (is_remount) { 1885 ext4_msg(sb, KERN_ERR, 1886 "Cannot specify journal on remount"); 1887 return -1; 1888 } 1889 journal_path = match_strdup(&args[0]); 1890 if (!journal_path) { 1891 ext4_msg(sb, KERN_ERR, "error: could not dup " 1892 "journal device string"); 1893 return -1; 1894 } 1895 1896 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1897 if (error) { 1898 ext4_msg(sb, KERN_ERR, "error: could not find " 1899 "journal device path: error %d", error); 1900 kfree(journal_path); 1901 return -1; 1902 } 1903 1904 journal_inode = d_inode(path.dentry); 1905 if (!S_ISBLK(journal_inode->i_mode)) { 1906 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1907 "is not a block device", journal_path); 1908 path_put(&path); 1909 kfree(journal_path); 1910 return -1; 1911 } 1912 1913 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1914 path_put(&path); 1915 kfree(journal_path); 1916 } else if (token == Opt_journal_ioprio) { 1917 if (arg > 7) { 1918 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1919 " (must be 0-7)"); 1920 return -1; 1921 } 1922 *journal_ioprio = 1923 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1924 } else if (token == Opt_test_dummy_encryption) { 1925 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1926 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1927 ext4_msg(sb, KERN_WARNING, 1928 "Test dummy encryption mode enabled"); 1929 #else 1930 ext4_msg(sb, KERN_WARNING, 1931 "Test dummy encryption mount option ignored"); 1932 #endif 1933 } else if (m->flags & MOPT_DATAJ) { 1934 if (is_remount) { 1935 if (!sbi->s_journal) 1936 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1937 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1938 ext4_msg(sb, KERN_ERR, 1939 "Cannot change data mode on remount"); 1940 return -1; 1941 } 1942 } else { 1943 clear_opt(sb, DATA_FLAGS); 1944 sbi->s_mount_opt |= m->mount_opt; 1945 } 1946 #ifdef CONFIG_QUOTA 1947 } else if (m->flags & MOPT_QFMT) { 1948 if (sb_any_quota_loaded(sb) && 1949 sbi->s_jquota_fmt != m->mount_opt) { 1950 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1951 "quota options when quota turned on"); 1952 return -1; 1953 } 1954 if (ext4_has_feature_quota(sb)) { 1955 ext4_msg(sb, KERN_INFO, 1956 "Quota format mount options ignored " 1957 "when QUOTA feature is enabled"); 1958 return 1; 1959 } 1960 sbi->s_jquota_fmt = m->mount_opt; 1961 #endif 1962 } else if (token == Opt_dax) { 1963 #ifdef CONFIG_FS_DAX 1964 ext4_msg(sb, KERN_WARNING, 1965 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1966 sbi->s_mount_opt |= m->mount_opt; 1967 #else 1968 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1969 return -1; 1970 #endif 1971 } else if (token == Opt_data_err_abort) { 1972 sbi->s_mount_opt |= m->mount_opt; 1973 } else if (token == Opt_data_err_ignore) { 1974 sbi->s_mount_opt &= ~m->mount_opt; 1975 } else { 1976 if (!args->from) 1977 arg = 1; 1978 if (m->flags & MOPT_CLEAR) 1979 arg = !arg; 1980 else if (unlikely(!(m->flags & MOPT_SET))) { 1981 ext4_msg(sb, KERN_WARNING, 1982 "buggy handling of option %s", opt); 1983 WARN_ON(1); 1984 return -1; 1985 } 1986 if (arg != 0) 1987 sbi->s_mount_opt |= m->mount_opt; 1988 else 1989 sbi->s_mount_opt &= ~m->mount_opt; 1990 } 1991 return 1; 1992 } 1993 1994 static int parse_options(char *options, struct super_block *sb, 1995 unsigned long *journal_devnum, 1996 unsigned int *journal_ioprio, 1997 int is_remount) 1998 { 1999 struct ext4_sb_info *sbi = EXT4_SB(sb); 2000 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2001 substring_t args[MAX_OPT_ARGS]; 2002 int token; 2003 2004 if (!options) 2005 return 1; 2006 2007 while ((p = strsep(&options, ",")) != NULL) { 2008 if (!*p) 2009 continue; 2010 /* 2011 * Initialize args struct so we know whether arg was 2012 * found; some options take optional arguments. 2013 */ 2014 args[0].to = args[0].from = NULL; 2015 token = match_token(p, tokens, args); 2016 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2017 journal_ioprio, is_remount) < 0) 2018 return 0; 2019 } 2020 #ifdef CONFIG_QUOTA 2021 /* 2022 * We do the test below only for project quotas. 'usrquota' and 2023 * 'grpquota' mount options are allowed even without quota feature 2024 * to support legacy quotas in quota files. 2025 */ 2026 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2027 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2028 "Cannot enable project quota enforcement."); 2029 return 0; 2030 } 2031 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2032 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2033 if (usr_qf_name || grp_qf_name) { 2034 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2035 clear_opt(sb, USRQUOTA); 2036 2037 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2038 clear_opt(sb, GRPQUOTA); 2039 2040 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2041 ext4_msg(sb, KERN_ERR, "old and new quota " 2042 "format mixing"); 2043 return 0; 2044 } 2045 2046 if (!sbi->s_jquota_fmt) { 2047 ext4_msg(sb, KERN_ERR, "journaled quota format " 2048 "not specified"); 2049 return 0; 2050 } 2051 } 2052 #endif 2053 if (test_opt(sb, DIOREAD_NOLOCK)) { 2054 int blocksize = 2055 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2056 2057 if (blocksize < PAGE_SIZE) { 2058 ext4_msg(sb, KERN_ERR, "can't mount with " 2059 "dioread_nolock if block size != PAGE_SIZE"); 2060 return 0; 2061 } 2062 } 2063 return 1; 2064 } 2065 2066 static inline void ext4_show_quota_options(struct seq_file *seq, 2067 struct super_block *sb) 2068 { 2069 #if defined(CONFIG_QUOTA) 2070 struct ext4_sb_info *sbi = EXT4_SB(sb); 2071 char *usr_qf_name, *grp_qf_name; 2072 2073 if (sbi->s_jquota_fmt) { 2074 char *fmtname = ""; 2075 2076 switch (sbi->s_jquota_fmt) { 2077 case QFMT_VFS_OLD: 2078 fmtname = "vfsold"; 2079 break; 2080 case QFMT_VFS_V0: 2081 fmtname = "vfsv0"; 2082 break; 2083 case QFMT_VFS_V1: 2084 fmtname = "vfsv1"; 2085 break; 2086 } 2087 seq_printf(seq, ",jqfmt=%s", fmtname); 2088 } 2089 2090 rcu_read_lock(); 2091 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2092 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2093 if (usr_qf_name) 2094 seq_show_option(seq, "usrjquota", usr_qf_name); 2095 if (grp_qf_name) 2096 seq_show_option(seq, "grpjquota", grp_qf_name); 2097 rcu_read_unlock(); 2098 #endif 2099 } 2100 2101 static const char *token2str(int token) 2102 { 2103 const struct match_token *t; 2104 2105 for (t = tokens; t->token != Opt_err; t++) 2106 if (t->token == token && !strchr(t->pattern, '=')) 2107 break; 2108 return t->pattern; 2109 } 2110 2111 /* 2112 * Show an option if 2113 * - it's set to a non-default value OR 2114 * - if the per-sb default is different from the global default 2115 */ 2116 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2117 int nodefs) 2118 { 2119 struct ext4_sb_info *sbi = EXT4_SB(sb); 2120 struct ext4_super_block *es = sbi->s_es; 2121 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2122 const struct mount_opts *m; 2123 char sep = nodefs ? '\n' : ','; 2124 2125 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2126 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2127 2128 if (sbi->s_sb_block != 1) 2129 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2130 2131 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2132 int want_set = m->flags & MOPT_SET; 2133 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2134 (m->flags & MOPT_CLEAR_ERR)) 2135 continue; 2136 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2137 continue; /* skip if same as the default */ 2138 if ((want_set && 2139 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2140 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2141 continue; /* select Opt_noFoo vs Opt_Foo */ 2142 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2143 } 2144 2145 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2146 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2147 SEQ_OPTS_PRINT("resuid=%u", 2148 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2149 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2150 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2151 SEQ_OPTS_PRINT("resgid=%u", 2152 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2153 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2154 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2155 SEQ_OPTS_PUTS("errors=remount-ro"); 2156 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2157 SEQ_OPTS_PUTS("errors=continue"); 2158 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2159 SEQ_OPTS_PUTS("errors=panic"); 2160 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2161 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2162 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2163 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2164 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2165 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2166 if (sb->s_flags & SB_I_VERSION) 2167 SEQ_OPTS_PUTS("i_version"); 2168 if (nodefs || sbi->s_stripe) 2169 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2170 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2171 (sbi->s_mount_opt ^ def_mount_opt)) { 2172 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2173 SEQ_OPTS_PUTS("data=journal"); 2174 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2175 SEQ_OPTS_PUTS("data=ordered"); 2176 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2177 SEQ_OPTS_PUTS("data=writeback"); 2178 } 2179 if (nodefs || 2180 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2181 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2182 sbi->s_inode_readahead_blks); 2183 2184 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2185 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2186 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2187 if (nodefs || sbi->s_max_dir_size_kb) 2188 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2189 if (test_opt(sb, DATA_ERR_ABORT)) 2190 SEQ_OPTS_PUTS("data_err=abort"); 2191 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2192 SEQ_OPTS_PUTS("test_dummy_encryption"); 2193 2194 ext4_show_quota_options(seq, sb); 2195 return 0; 2196 } 2197 2198 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2199 { 2200 return _ext4_show_options(seq, root->d_sb, 0); 2201 } 2202 2203 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2204 { 2205 struct super_block *sb = seq->private; 2206 int rc; 2207 2208 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2209 rc = _ext4_show_options(seq, sb, 1); 2210 seq_puts(seq, "\n"); 2211 return rc; 2212 } 2213 2214 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2215 int read_only) 2216 { 2217 struct ext4_sb_info *sbi = EXT4_SB(sb); 2218 int err = 0; 2219 2220 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2221 ext4_msg(sb, KERN_ERR, "revision level too high, " 2222 "forcing read-only mode"); 2223 err = -EROFS; 2224 } 2225 if (read_only) 2226 goto done; 2227 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2228 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2229 "running e2fsck is recommended"); 2230 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2231 ext4_msg(sb, KERN_WARNING, 2232 "warning: mounting fs with errors, " 2233 "running e2fsck is recommended"); 2234 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2235 le16_to_cpu(es->s_mnt_count) >= 2236 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2237 ext4_msg(sb, KERN_WARNING, 2238 "warning: maximal mount count reached, " 2239 "running e2fsck is recommended"); 2240 else if (le32_to_cpu(es->s_checkinterval) && 2241 (ext4_get_tstamp(es, s_lastcheck) + 2242 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2243 ext4_msg(sb, KERN_WARNING, 2244 "warning: checktime reached, " 2245 "running e2fsck is recommended"); 2246 if (!sbi->s_journal) 2247 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2248 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2249 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2250 le16_add_cpu(&es->s_mnt_count, 1); 2251 ext4_update_tstamp(es, s_mtime); 2252 ext4_update_dynamic_rev(sb); 2253 if (sbi->s_journal) 2254 ext4_set_feature_journal_needs_recovery(sb); 2255 2256 err = ext4_commit_super(sb, 1); 2257 done: 2258 if (test_opt(sb, DEBUG)) 2259 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2260 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2261 sb->s_blocksize, 2262 sbi->s_groups_count, 2263 EXT4_BLOCKS_PER_GROUP(sb), 2264 EXT4_INODES_PER_GROUP(sb), 2265 sbi->s_mount_opt, sbi->s_mount_opt2); 2266 2267 cleancache_init_fs(sb); 2268 return err; 2269 } 2270 2271 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2272 { 2273 struct ext4_sb_info *sbi = EXT4_SB(sb); 2274 struct flex_groups *new_groups; 2275 int size; 2276 2277 if (!sbi->s_log_groups_per_flex) 2278 return 0; 2279 2280 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2281 if (size <= sbi->s_flex_groups_allocated) 2282 return 0; 2283 2284 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2285 new_groups = kvzalloc(size, GFP_KERNEL); 2286 if (!new_groups) { 2287 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2288 size / (int) sizeof(struct flex_groups)); 2289 return -ENOMEM; 2290 } 2291 2292 if (sbi->s_flex_groups) { 2293 memcpy(new_groups, sbi->s_flex_groups, 2294 (sbi->s_flex_groups_allocated * 2295 sizeof(struct flex_groups))); 2296 kvfree(sbi->s_flex_groups); 2297 } 2298 sbi->s_flex_groups = new_groups; 2299 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2300 return 0; 2301 } 2302 2303 static int ext4_fill_flex_info(struct super_block *sb) 2304 { 2305 struct ext4_sb_info *sbi = EXT4_SB(sb); 2306 struct ext4_group_desc *gdp = NULL; 2307 ext4_group_t flex_group; 2308 int i, err; 2309 2310 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2311 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2312 sbi->s_log_groups_per_flex = 0; 2313 return 1; 2314 } 2315 2316 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2317 if (err) 2318 goto failed; 2319 2320 for (i = 0; i < sbi->s_groups_count; i++) { 2321 gdp = ext4_get_group_desc(sb, i, NULL); 2322 2323 flex_group = ext4_flex_group(sbi, i); 2324 atomic_add(ext4_free_inodes_count(sb, gdp), 2325 &sbi->s_flex_groups[flex_group].free_inodes); 2326 atomic64_add(ext4_free_group_clusters(sb, gdp), 2327 &sbi->s_flex_groups[flex_group].free_clusters); 2328 atomic_add(ext4_used_dirs_count(sb, gdp), 2329 &sbi->s_flex_groups[flex_group].used_dirs); 2330 } 2331 2332 return 1; 2333 failed: 2334 return 0; 2335 } 2336 2337 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2338 struct ext4_group_desc *gdp) 2339 { 2340 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2341 __u16 crc = 0; 2342 __le32 le_group = cpu_to_le32(block_group); 2343 struct ext4_sb_info *sbi = EXT4_SB(sb); 2344 2345 if (ext4_has_metadata_csum(sbi->s_sb)) { 2346 /* Use new metadata_csum algorithm */ 2347 __u32 csum32; 2348 __u16 dummy_csum = 0; 2349 2350 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2351 sizeof(le_group)); 2352 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2353 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2354 sizeof(dummy_csum)); 2355 offset += sizeof(dummy_csum); 2356 if (offset < sbi->s_desc_size) 2357 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2358 sbi->s_desc_size - offset); 2359 2360 crc = csum32 & 0xFFFF; 2361 goto out; 2362 } 2363 2364 /* old crc16 code */ 2365 if (!ext4_has_feature_gdt_csum(sb)) 2366 return 0; 2367 2368 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2369 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2370 crc = crc16(crc, (__u8 *)gdp, offset); 2371 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2372 /* for checksum of struct ext4_group_desc do the rest...*/ 2373 if (ext4_has_feature_64bit(sb) && 2374 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2375 crc = crc16(crc, (__u8 *)gdp + offset, 2376 le16_to_cpu(sbi->s_es->s_desc_size) - 2377 offset); 2378 2379 out: 2380 return cpu_to_le16(crc); 2381 } 2382 2383 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2384 struct ext4_group_desc *gdp) 2385 { 2386 if (ext4_has_group_desc_csum(sb) && 2387 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2388 return 0; 2389 2390 return 1; 2391 } 2392 2393 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2394 struct ext4_group_desc *gdp) 2395 { 2396 if (!ext4_has_group_desc_csum(sb)) 2397 return; 2398 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2399 } 2400 2401 /* Called at mount-time, super-block is locked */ 2402 static int ext4_check_descriptors(struct super_block *sb, 2403 ext4_fsblk_t sb_block, 2404 ext4_group_t *first_not_zeroed) 2405 { 2406 struct ext4_sb_info *sbi = EXT4_SB(sb); 2407 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2408 ext4_fsblk_t last_block; 2409 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2410 ext4_fsblk_t block_bitmap; 2411 ext4_fsblk_t inode_bitmap; 2412 ext4_fsblk_t inode_table; 2413 int flexbg_flag = 0; 2414 ext4_group_t i, grp = sbi->s_groups_count; 2415 2416 if (ext4_has_feature_flex_bg(sb)) 2417 flexbg_flag = 1; 2418 2419 ext4_debug("Checking group descriptors"); 2420 2421 for (i = 0; i < sbi->s_groups_count; i++) { 2422 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2423 2424 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2425 last_block = ext4_blocks_count(sbi->s_es) - 1; 2426 else 2427 last_block = first_block + 2428 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2429 2430 if ((grp == sbi->s_groups_count) && 2431 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2432 grp = i; 2433 2434 block_bitmap = ext4_block_bitmap(sb, gdp); 2435 if (block_bitmap == sb_block) { 2436 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2437 "Block bitmap for group %u overlaps " 2438 "superblock", i); 2439 if (!sb_rdonly(sb)) 2440 return 0; 2441 } 2442 if (block_bitmap >= sb_block + 1 && 2443 block_bitmap <= last_bg_block) { 2444 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2445 "Block bitmap for group %u overlaps " 2446 "block group descriptors", i); 2447 if (!sb_rdonly(sb)) 2448 return 0; 2449 } 2450 if (block_bitmap < first_block || block_bitmap > last_block) { 2451 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2452 "Block bitmap for group %u not in group " 2453 "(block %llu)!", i, block_bitmap); 2454 return 0; 2455 } 2456 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2457 if (inode_bitmap == sb_block) { 2458 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2459 "Inode bitmap for group %u overlaps " 2460 "superblock", i); 2461 if (!sb_rdonly(sb)) 2462 return 0; 2463 } 2464 if (inode_bitmap >= sb_block + 1 && 2465 inode_bitmap <= last_bg_block) { 2466 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2467 "Inode bitmap for group %u overlaps " 2468 "block group descriptors", i); 2469 if (!sb_rdonly(sb)) 2470 return 0; 2471 } 2472 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2473 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2474 "Inode bitmap for group %u not in group " 2475 "(block %llu)!", i, inode_bitmap); 2476 return 0; 2477 } 2478 inode_table = ext4_inode_table(sb, gdp); 2479 if (inode_table == sb_block) { 2480 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2481 "Inode table for group %u overlaps " 2482 "superblock", i); 2483 if (!sb_rdonly(sb)) 2484 return 0; 2485 } 2486 if (inode_table >= sb_block + 1 && 2487 inode_table <= last_bg_block) { 2488 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2489 "Inode table for group %u overlaps " 2490 "block group descriptors", i); 2491 if (!sb_rdonly(sb)) 2492 return 0; 2493 } 2494 if (inode_table < first_block || 2495 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2496 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2497 "Inode table for group %u not in group " 2498 "(block %llu)!", i, inode_table); 2499 return 0; 2500 } 2501 ext4_lock_group(sb, i); 2502 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2503 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2504 "Checksum for group %u failed (%u!=%u)", 2505 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2506 gdp)), le16_to_cpu(gdp->bg_checksum)); 2507 if (!sb_rdonly(sb)) { 2508 ext4_unlock_group(sb, i); 2509 return 0; 2510 } 2511 } 2512 ext4_unlock_group(sb, i); 2513 if (!flexbg_flag) 2514 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2515 } 2516 if (NULL != first_not_zeroed) 2517 *first_not_zeroed = grp; 2518 return 1; 2519 } 2520 2521 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2522 * the superblock) which were deleted from all directories, but held open by 2523 * a process at the time of a crash. We walk the list and try to delete these 2524 * inodes at recovery time (only with a read-write filesystem). 2525 * 2526 * In order to keep the orphan inode chain consistent during traversal (in 2527 * case of crash during recovery), we link each inode into the superblock 2528 * orphan list_head and handle it the same way as an inode deletion during 2529 * normal operation (which journals the operations for us). 2530 * 2531 * We only do an iget() and an iput() on each inode, which is very safe if we 2532 * accidentally point at an in-use or already deleted inode. The worst that 2533 * can happen in this case is that we get a "bit already cleared" message from 2534 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2535 * e2fsck was run on this filesystem, and it must have already done the orphan 2536 * inode cleanup for us, so we can safely abort without any further action. 2537 */ 2538 static void ext4_orphan_cleanup(struct super_block *sb, 2539 struct ext4_super_block *es) 2540 { 2541 unsigned int s_flags = sb->s_flags; 2542 int ret, nr_orphans = 0, nr_truncates = 0; 2543 #ifdef CONFIG_QUOTA 2544 int quota_update = 0; 2545 int i; 2546 #endif 2547 if (!es->s_last_orphan) { 2548 jbd_debug(4, "no orphan inodes to clean up\n"); 2549 return; 2550 } 2551 2552 if (bdev_read_only(sb->s_bdev)) { 2553 ext4_msg(sb, KERN_ERR, "write access " 2554 "unavailable, skipping orphan cleanup"); 2555 return; 2556 } 2557 2558 /* Check if feature set would not allow a r/w mount */ 2559 if (!ext4_feature_set_ok(sb, 0)) { 2560 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2561 "unknown ROCOMPAT features"); 2562 return; 2563 } 2564 2565 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2566 /* don't clear list on RO mount w/ errors */ 2567 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2568 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2569 "clearing orphan list.\n"); 2570 es->s_last_orphan = 0; 2571 } 2572 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2573 return; 2574 } 2575 2576 if (s_flags & SB_RDONLY) { 2577 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2578 sb->s_flags &= ~SB_RDONLY; 2579 } 2580 #ifdef CONFIG_QUOTA 2581 /* Needed for iput() to work correctly and not trash data */ 2582 sb->s_flags |= SB_ACTIVE; 2583 2584 /* 2585 * Turn on quotas which were not enabled for read-only mounts if 2586 * filesystem has quota feature, so that they are updated correctly. 2587 */ 2588 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2589 int ret = ext4_enable_quotas(sb); 2590 2591 if (!ret) 2592 quota_update = 1; 2593 else 2594 ext4_msg(sb, KERN_ERR, 2595 "Cannot turn on quotas: error %d", ret); 2596 } 2597 2598 /* Turn on journaled quotas used for old sytle */ 2599 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2600 if (EXT4_SB(sb)->s_qf_names[i]) { 2601 int ret = ext4_quota_on_mount(sb, i); 2602 2603 if (!ret) 2604 quota_update = 1; 2605 else 2606 ext4_msg(sb, KERN_ERR, 2607 "Cannot turn on journaled " 2608 "quota: type %d: error %d", i, ret); 2609 } 2610 } 2611 #endif 2612 2613 while (es->s_last_orphan) { 2614 struct inode *inode; 2615 2616 /* 2617 * We may have encountered an error during cleanup; if 2618 * so, skip the rest. 2619 */ 2620 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2621 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2622 es->s_last_orphan = 0; 2623 break; 2624 } 2625 2626 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2627 if (IS_ERR(inode)) { 2628 es->s_last_orphan = 0; 2629 break; 2630 } 2631 2632 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2633 dquot_initialize(inode); 2634 if (inode->i_nlink) { 2635 if (test_opt(sb, DEBUG)) 2636 ext4_msg(sb, KERN_DEBUG, 2637 "%s: truncating inode %lu to %lld bytes", 2638 __func__, inode->i_ino, inode->i_size); 2639 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2640 inode->i_ino, inode->i_size); 2641 inode_lock(inode); 2642 truncate_inode_pages(inode->i_mapping, inode->i_size); 2643 ret = ext4_truncate(inode); 2644 if (ret) 2645 ext4_std_error(inode->i_sb, ret); 2646 inode_unlock(inode); 2647 nr_truncates++; 2648 } else { 2649 if (test_opt(sb, DEBUG)) 2650 ext4_msg(sb, KERN_DEBUG, 2651 "%s: deleting unreferenced inode %lu", 2652 __func__, inode->i_ino); 2653 jbd_debug(2, "deleting unreferenced inode %lu\n", 2654 inode->i_ino); 2655 nr_orphans++; 2656 } 2657 iput(inode); /* The delete magic happens here! */ 2658 } 2659 2660 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2661 2662 if (nr_orphans) 2663 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2664 PLURAL(nr_orphans)); 2665 if (nr_truncates) 2666 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2667 PLURAL(nr_truncates)); 2668 #ifdef CONFIG_QUOTA 2669 /* Turn off quotas if they were enabled for orphan cleanup */ 2670 if (quota_update) { 2671 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2672 if (sb_dqopt(sb)->files[i]) 2673 dquot_quota_off(sb, i); 2674 } 2675 } 2676 #endif 2677 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2678 } 2679 2680 /* 2681 * Maximal extent format file size. 2682 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2683 * extent format containers, within a sector_t, and within i_blocks 2684 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2685 * so that won't be a limiting factor. 2686 * 2687 * However there is other limiting factor. We do store extents in the form 2688 * of starting block and length, hence the resulting length of the extent 2689 * covering maximum file size must fit into on-disk format containers as 2690 * well. Given that length is always by 1 unit bigger than max unit (because 2691 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2692 * 2693 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2694 */ 2695 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2696 { 2697 loff_t res; 2698 loff_t upper_limit = MAX_LFS_FILESIZE; 2699 2700 /* small i_blocks in vfs inode? */ 2701 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2702 /* 2703 * CONFIG_LBDAF is not enabled implies the inode 2704 * i_block represent total blocks in 512 bytes 2705 * 32 == size of vfs inode i_blocks * 8 2706 */ 2707 upper_limit = (1LL << 32) - 1; 2708 2709 /* total blocks in file system block size */ 2710 upper_limit >>= (blkbits - 9); 2711 upper_limit <<= blkbits; 2712 } 2713 2714 /* 2715 * 32-bit extent-start container, ee_block. We lower the maxbytes 2716 * by one fs block, so ee_len can cover the extent of maximum file 2717 * size 2718 */ 2719 res = (1LL << 32) - 1; 2720 res <<= blkbits; 2721 2722 /* Sanity check against vm- & vfs- imposed limits */ 2723 if (res > upper_limit) 2724 res = upper_limit; 2725 2726 return res; 2727 } 2728 2729 /* 2730 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2731 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2732 * We need to be 1 filesystem block less than the 2^48 sector limit. 2733 */ 2734 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2735 { 2736 loff_t res = EXT4_NDIR_BLOCKS; 2737 int meta_blocks; 2738 loff_t upper_limit; 2739 /* This is calculated to be the largest file size for a dense, block 2740 * mapped file such that the file's total number of 512-byte sectors, 2741 * including data and all indirect blocks, does not exceed (2^48 - 1). 2742 * 2743 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2744 * number of 512-byte sectors of the file. 2745 */ 2746 2747 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2748 /* 2749 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2750 * the inode i_block field represents total file blocks in 2751 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2752 */ 2753 upper_limit = (1LL << 32) - 1; 2754 2755 /* total blocks in file system block size */ 2756 upper_limit >>= (bits - 9); 2757 2758 } else { 2759 /* 2760 * We use 48 bit ext4_inode i_blocks 2761 * With EXT4_HUGE_FILE_FL set the i_blocks 2762 * represent total number of blocks in 2763 * file system block size 2764 */ 2765 upper_limit = (1LL << 48) - 1; 2766 2767 } 2768 2769 /* indirect blocks */ 2770 meta_blocks = 1; 2771 /* double indirect blocks */ 2772 meta_blocks += 1 + (1LL << (bits-2)); 2773 /* tripple indirect blocks */ 2774 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2775 2776 upper_limit -= meta_blocks; 2777 upper_limit <<= bits; 2778 2779 res += 1LL << (bits-2); 2780 res += 1LL << (2*(bits-2)); 2781 res += 1LL << (3*(bits-2)); 2782 res <<= bits; 2783 if (res > upper_limit) 2784 res = upper_limit; 2785 2786 if (res > MAX_LFS_FILESIZE) 2787 res = MAX_LFS_FILESIZE; 2788 2789 return res; 2790 } 2791 2792 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2793 ext4_fsblk_t logical_sb_block, int nr) 2794 { 2795 struct ext4_sb_info *sbi = EXT4_SB(sb); 2796 ext4_group_t bg, first_meta_bg; 2797 int has_super = 0; 2798 2799 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2800 2801 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2802 return logical_sb_block + nr + 1; 2803 bg = sbi->s_desc_per_block * nr; 2804 if (ext4_bg_has_super(sb, bg)) 2805 has_super = 1; 2806 2807 /* 2808 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2809 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2810 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2811 * compensate. 2812 */ 2813 if (sb->s_blocksize == 1024 && nr == 0 && 2814 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2815 has_super++; 2816 2817 return (has_super + ext4_group_first_block_no(sb, bg)); 2818 } 2819 2820 /** 2821 * ext4_get_stripe_size: Get the stripe size. 2822 * @sbi: In memory super block info 2823 * 2824 * If we have specified it via mount option, then 2825 * use the mount option value. If the value specified at mount time is 2826 * greater than the blocks per group use the super block value. 2827 * If the super block value is greater than blocks per group return 0. 2828 * Allocator needs it be less than blocks per group. 2829 * 2830 */ 2831 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2832 { 2833 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2834 unsigned long stripe_width = 2835 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2836 int ret; 2837 2838 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2839 ret = sbi->s_stripe; 2840 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2841 ret = stripe_width; 2842 else if (stride && stride <= sbi->s_blocks_per_group) 2843 ret = stride; 2844 else 2845 ret = 0; 2846 2847 /* 2848 * If the stripe width is 1, this makes no sense and 2849 * we set it to 0 to turn off stripe handling code. 2850 */ 2851 if (ret <= 1) 2852 ret = 0; 2853 2854 return ret; 2855 } 2856 2857 /* 2858 * Check whether this filesystem can be mounted based on 2859 * the features present and the RDONLY/RDWR mount requested. 2860 * Returns 1 if this filesystem can be mounted as requested, 2861 * 0 if it cannot be. 2862 */ 2863 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2864 { 2865 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2866 ext4_msg(sb, KERN_ERR, 2867 "Couldn't mount because of " 2868 "unsupported optional features (%x)", 2869 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2870 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2871 return 0; 2872 } 2873 2874 if (readonly) 2875 return 1; 2876 2877 if (ext4_has_feature_readonly(sb)) { 2878 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2879 sb->s_flags |= SB_RDONLY; 2880 return 1; 2881 } 2882 2883 /* Check that feature set is OK for a read-write mount */ 2884 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2885 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2886 "unsupported optional features (%x)", 2887 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2888 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2889 return 0; 2890 } 2891 /* 2892 * Large file size enabled file system can only be mounted 2893 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2894 */ 2895 if (ext4_has_feature_huge_file(sb)) { 2896 if (sizeof(blkcnt_t) < sizeof(u64)) { 2897 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2898 "cannot be mounted RDWR without " 2899 "CONFIG_LBDAF"); 2900 return 0; 2901 } 2902 } 2903 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2904 ext4_msg(sb, KERN_ERR, 2905 "Can't support bigalloc feature without " 2906 "extents feature\n"); 2907 return 0; 2908 } 2909 2910 #ifndef CONFIG_QUOTA 2911 if (ext4_has_feature_quota(sb) && !readonly) { 2912 ext4_msg(sb, KERN_ERR, 2913 "Filesystem with quota feature cannot be mounted RDWR " 2914 "without CONFIG_QUOTA"); 2915 return 0; 2916 } 2917 if (ext4_has_feature_project(sb) && !readonly) { 2918 ext4_msg(sb, KERN_ERR, 2919 "Filesystem with project quota feature cannot be mounted RDWR " 2920 "without CONFIG_QUOTA"); 2921 return 0; 2922 } 2923 #endif /* CONFIG_QUOTA */ 2924 return 1; 2925 } 2926 2927 /* 2928 * This function is called once a day if we have errors logged 2929 * on the file system 2930 */ 2931 static void print_daily_error_info(struct timer_list *t) 2932 { 2933 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2934 struct super_block *sb = sbi->s_sb; 2935 struct ext4_super_block *es = sbi->s_es; 2936 2937 if (es->s_error_count) 2938 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2939 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2940 le32_to_cpu(es->s_error_count)); 2941 if (es->s_first_error_time) { 2942 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 2943 sb->s_id, 2944 ext4_get_tstamp(es, s_first_error_time), 2945 (int) sizeof(es->s_first_error_func), 2946 es->s_first_error_func, 2947 le32_to_cpu(es->s_first_error_line)); 2948 if (es->s_first_error_ino) 2949 printk(KERN_CONT ": inode %u", 2950 le32_to_cpu(es->s_first_error_ino)); 2951 if (es->s_first_error_block) 2952 printk(KERN_CONT ": block %llu", (unsigned long long) 2953 le64_to_cpu(es->s_first_error_block)); 2954 printk(KERN_CONT "\n"); 2955 } 2956 if (es->s_last_error_time) { 2957 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 2958 sb->s_id, 2959 ext4_get_tstamp(es, s_last_error_time), 2960 (int) sizeof(es->s_last_error_func), 2961 es->s_last_error_func, 2962 le32_to_cpu(es->s_last_error_line)); 2963 if (es->s_last_error_ino) 2964 printk(KERN_CONT ": inode %u", 2965 le32_to_cpu(es->s_last_error_ino)); 2966 if (es->s_last_error_block) 2967 printk(KERN_CONT ": block %llu", (unsigned long long) 2968 le64_to_cpu(es->s_last_error_block)); 2969 printk(KERN_CONT "\n"); 2970 } 2971 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2972 } 2973 2974 /* Find next suitable group and run ext4_init_inode_table */ 2975 static int ext4_run_li_request(struct ext4_li_request *elr) 2976 { 2977 struct ext4_group_desc *gdp = NULL; 2978 ext4_group_t group, ngroups; 2979 struct super_block *sb; 2980 unsigned long timeout = 0; 2981 int ret = 0; 2982 2983 sb = elr->lr_super; 2984 ngroups = EXT4_SB(sb)->s_groups_count; 2985 2986 for (group = elr->lr_next_group; group < ngroups; group++) { 2987 gdp = ext4_get_group_desc(sb, group, NULL); 2988 if (!gdp) { 2989 ret = 1; 2990 break; 2991 } 2992 2993 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2994 break; 2995 } 2996 2997 if (group >= ngroups) 2998 ret = 1; 2999 3000 if (!ret) { 3001 timeout = jiffies; 3002 ret = ext4_init_inode_table(sb, group, 3003 elr->lr_timeout ? 0 : 1); 3004 if (elr->lr_timeout == 0) { 3005 timeout = (jiffies - timeout) * 3006 elr->lr_sbi->s_li_wait_mult; 3007 elr->lr_timeout = timeout; 3008 } 3009 elr->lr_next_sched = jiffies + elr->lr_timeout; 3010 elr->lr_next_group = group + 1; 3011 } 3012 return ret; 3013 } 3014 3015 /* 3016 * Remove lr_request from the list_request and free the 3017 * request structure. Should be called with li_list_mtx held 3018 */ 3019 static void ext4_remove_li_request(struct ext4_li_request *elr) 3020 { 3021 struct ext4_sb_info *sbi; 3022 3023 if (!elr) 3024 return; 3025 3026 sbi = elr->lr_sbi; 3027 3028 list_del(&elr->lr_request); 3029 sbi->s_li_request = NULL; 3030 kfree(elr); 3031 } 3032 3033 static void ext4_unregister_li_request(struct super_block *sb) 3034 { 3035 mutex_lock(&ext4_li_mtx); 3036 if (!ext4_li_info) { 3037 mutex_unlock(&ext4_li_mtx); 3038 return; 3039 } 3040 3041 mutex_lock(&ext4_li_info->li_list_mtx); 3042 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3043 mutex_unlock(&ext4_li_info->li_list_mtx); 3044 mutex_unlock(&ext4_li_mtx); 3045 } 3046 3047 static struct task_struct *ext4_lazyinit_task; 3048 3049 /* 3050 * This is the function where ext4lazyinit thread lives. It walks 3051 * through the request list searching for next scheduled filesystem. 3052 * When such a fs is found, run the lazy initialization request 3053 * (ext4_rn_li_request) and keep track of the time spend in this 3054 * function. Based on that time we compute next schedule time of 3055 * the request. When walking through the list is complete, compute 3056 * next waking time and put itself into sleep. 3057 */ 3058 static int ext4_lazyinit_thread(void *arg) 3059 { 3060 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3061 struct list_head *pos, *n; 3062 struct ext4_li_request *elr; 3063 unsigned long next_wakeup, cur; 3064 3065 BUG_ON(NULL == eli); 3066 3067 cont_thread: 3068 while (true) { 3069 next_wakeup = MAX_JIFFY_OFFSET; 3070 3071 mutex_lock(&eli->li_list_mtx); 3072 if (list_empty(&eli->li_request_list)) { 3073 mutex_unlock(&eli->li_list_mtx); 3074 goto exit_thread; 3075 } 3076 list_for_each_safe(pos, n, &eli->li_request_list) { 3077 int err = 0; 3078 int progress = 0; 3079 elr = list_entry(pos, struct ext4_li_request, 3080 lr_request); 3081 3082 if (time_before(jiffies, elr->lr_next_sched)) { 3083 if (time_before(elr->lr_next_sched, next_wakeup)) 3084 next_wakeup = elr->lr_next_sched; 3085 continue; 3086 } 3087 if (down_read_trylock(&elr->lr_super->s_umount)) { 3088 if (sb_start_write_trylock(elr->lr_super)) { 3089 progress = 1; 3090 /* 3091 * We hold sb->s_umount, sb can not 3092 * be removed from the list, it is 3093 * now safe to drop li_list_mtx 3094 */ 3095 mutex_unlock(&eli->li_list_mtx); 3096 err = ext4_run_li_request(elr); 3097 sb_end_write(elr->lr_super); 3098 mutex_lock(&eli->li_list_mtx); 3099 n = pos->next; 3100 } 3101 up_read((&elr->lr_super->s_umount)); 3102 } 3103 /* error, remove the lazy_init job */ 3104 if (err) { 3105 ext4_remove_li_request(elr); 3106 continue; 3107 } 3108 if (!progress) { 3109 elr->lr_next_sched = jiffies + 3110 (prandom_u32() 3111 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3112 } 3113 if (time_before(elr->lr_next_sched, next_wakeup)) 3114 next_wakeup = elr->lr_next_sched; 3115 } 3116 mutex_unlock(&eli->li_list_mtx); 3117 3118 try_to_freeze(); 3119 3120 cur = jiffies; 3121 if ((time_after_eq(cur, next_wakeup)) || 3122 (MAX_JIFFY_OFFSET == next_wakeup)) { 3123 cond_resched(); 3124 continue; 3125 } 3126 3127 schedule_timeout_interruptible(next_wakeup - cur); 3128 3129 if (kthread_should_stop()) { 3130 ext4_clear_request_list(); 3131 goto exit_thread; 3132 } 3133 } 3134 3135 exit_thread: 3136 /* 3137 * It looks like the request list is empty, but we need 3138 * to check it under the li_list_mtx lock, to prevent any 3139 * additions into it, and of course we should lock ext4_li_mtx 3140 * to atomically free the list and ext4_li_info, because at 3141 * this point another ext4 filesystem could be registering 3142 * new one. 3143 */ 3144 mutex_lock(&ext4_li_mtx); 3145 mutex_lock(&eli->li_list_mtx); 3146 if (!list_empty(&eli->li_request_list)) { 3147 mutex_unlock(&eli->li_list_mtx); 3148 mutex_unlock(&ext4_li_mtx); 3149 goto cont_thread; 3150 } 3151 mutex_unlock(&eli->li_list_mtx); 3152 kfree(ext4_li_info); 3153 ext4_li_info = NULL; 3154 mutex_unlock(&ext4_li_mtx); 3155 3156 return 0; 3157 } 3158 3159 static void ext4_clear_request_list(void) 3160 { 3161 struct list_head *pos, *n; 3162 struct ext4_li_request *elr; 3163 3164 mutex_lock(&ext4_li_info->li_list_mtx); 3165 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3166 elr = list_entry(pos, struct ext4_li_request, 3167 lr_request); 3168 ext4_remove_li_request(elr); 3169 } 3170 mutex_unlock(&ext4_li_info->li_list_mtx); 3171 } 3172 3173 static int ext4_run_lazyinit_thread(void) 3174 { 3175 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3176 ext4_li_info, "ext4lazyinit"); 3177 if (IS_ERR(ext4_lazyinit_task)) { 3178 int err = PTR_ERR(ext4_lazyinit_task); 3179 ext4_clear_request_list(); 3180 kfree(ext4_li_info); 3181 ext4_li_info = NULL; 3182 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3183 "initialization thread\n", 3184 err); 3185 return err; 3186 } 3187 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3188 return 0; 3189 } 3190 3191 /* 3192 * Check whether it make sense to run itable init. thread or not. 3193 * If there is at least one uninitialized inode table, return 3194 * corresponding group number, else the loop goes through all 3195 * groups and return total number of groups. 3196 */ 3197 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3198 { 3199 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3200 struct ext4_group_desc *gdp = NULL; 3201 3202 if (!ext4_has_group_desc_csum(sb)) 3203 return ngroups; 3204 3205 for (group = 0; group < ngroups; group++) { 3206 gdp = ext4_get_group_desc(sb, group, NULL); 3207 if (!gdp) 3208 continue; 3209 3210 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3211 break; 3212 } 3213 3214 return group; 3215 } 3216 3217 static int ext4_li_info_new(void) 3218 { 3219 struct ext4_lazy_init *eli = NULL; 3220 3221 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3222 if (!eli) 3223 return -ENOMEM; 3224 3225 INIT_LIST_HEAD(&eli->li_request_list); 3226 mutex_init(&eli->li_list_mtx); 3227 3228 eli->li_state |= EXT4_LAZYINIT_QUIT; 3229 3230 ext4_li_info = eli; 3231 3232 return 0; 3233 } 3234 3235 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3236 ext4_group_t start) 3237 { 3238 struct ext4_sb_info *sbi = EXT4_SB(sb); 3239 struct ext4_li_request *elr; 3240 3241 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3242 if (!elr) 3243 return NULL; 3244 3245 elr->lr_super = sb; 3246 elr->lr_sbi = sbi; 3247 elr->lr_next_group = start; 3248 3249 /* 3250 * Randomize first schedule time of the request to 3251 * spread the inode table initialization requests 3252 * better. 3253 */ 3254 elr->lr_next_sched = jiffies + (prandom_u32() % 3255 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3256 return elr; 3257 } 3258 3259 int ext4_register_li_request(struct super_block *sb, 3260 ext4_group_t first_not_zeroed) 3261 { 3262 struct ext4_sb_info *sbi = EXT4_SB(sb); 3263 struct ext4_li_request *elr = NULL; 3264 ext4_group_t ngroups = sbi->s_groups_count; 3265 int ret = 0; 3266 3267 mutex_lock(&ext4_li_mtx); 3268 if (sbi->s_li_request != NULL) { 3269 /* 3270 * Reset timeout so it can be computed again, because 3271 * s_li_wait_mult might have changed. 3272 */ 3273 sbi->s_li_request->lr_timeout = 0; 3274 goto out; 3275 } 3276 3277 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3278 !test_opt(sb, INIT_INODE_TABLE)) 3279 goto out; 3280 3281 elr = ext4_li_request_new(sb, first_not_zeroed); 3282 if (!elr) { 3283 ret = -ENOMEM; 3284 goto out; 3285 } 3286 3287 if (NULL == ext4_li_info) { 3288 ret = ext4_li_info_new(); 3289 if (ret) 3290 goto out; 3291 } 3292 3293 mutex_lock(&ext4_li_info->li_list_mtx); 3294 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3295 mutex_unlock(&ext4_li_info->li_list_mtx); 3296 3297 sbi->s_li_request = elr; 3298 /* 3299 * set elr to NULL here since it has been inserted to 3300 * the request_list and the removal and free of it is 3301 * handled by ext4_clear_request_list from now on. 3302 */ 3303 elr = NULL; 3304 3305 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3306 ret = ext4_run_lazyinit_thread(); 3307 if (ret) 3308 goto out; 3309 } 3310 out: 3311 mutex_unlock(&ext4_li_mtx); 3312 if (ret) 3313 kfree(elr); 3314 return ret; 3315 } 3316 3317 /* 3318 * We do not need to lock anything since this is called on 3319 * module unload. 3320 */ 3321 static void ext4_destroy_lazyinit_thread(void) 3322 { 3323 /* 3324 * If thread exited earlier 3325 * there's nothing to be done. 3326 */ 3327 if (!ext4_li_info || !ext4_lazyinit_task) 3328 return; 3329 3330 kthread_stop(ext4_lazyinit_task); 3331 } 3332 3333 static int set_journal_csum_feature_set(struct super_block *sb) 3334 { 3335 int ret = 1; 3336 int compat, incompat; 3337 struct ext4_sb_info *sbi = EXT4_SB(sb); 3338 3339 if (ext4_has_metadata_csum(sb)) { 3340 /* journal checksum v3 */ 3341 compat = 0; 3342 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3343 } else { 3344 /* journal checksum v1 */ 3345 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3346 incompat = 0; 3347 } 3348 3349 jbd2_journal_clear_features(sbi->s_journal, 3350 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3351 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3352 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3353 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3354 ret = jbd2_journal_set_features(sbi->s_journal, 3355 compat, 0, 3356 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3357 incompat); 3358 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3359 ret = jbd2_journal_set_features(sbi->s_journal, 3360 compat, 0, 3361 incompat); 3362 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3363 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3364 } else { 3365 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3366 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3367 } 3368 3369 return ret; 3370 } 3371 3372 /* 3373 * Note: calculating the overhead so we can be compatible with 3374 * historical BSD practice is quite difficult in the face of 3375 * clusters/bigalloc. This is because multiple metadata blocks from 3376 * different block group can end up in the same allocation cluster. 3377 * Calculating the exact overhead in the face of clustered allocation 3378 * requires either O(all block bitmaps) in memory or O(number of block 3379 * groups**2) in time. We will still calculate the superblock for 3380 * older file systems --- and if we come across with a bigalloc file 3381 * system with zero in s_overhead_clusters the estimate will be close to 3382 * correct especially for very large cluster sizes --- but for newer 3383 * file systems, it's better to calculate this figure once at mkfs 3384 * time, and store it in the superblock. If the superblock value is 3385 * present (even for non-bigalloc file systems), we will use it. 3386 */ 3387 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3388 char *buf) 3389 { 3390 struct ext4_sb_info *sbi = EXT4_SB(sb); 3391 struct ext4_group_desc *gdp; 3392 ext4_fsblk_t first_block, last_block, b; 3393 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3394 int s, j, count = 0; 3395 3396 if (!ext4_has_feature_bigalloc(sb)) 3397 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3398 sbi->s_itb_per_group + 2); 3399 3400 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3401 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3402 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3403 for (i = 0; i < ngroups; i++) { 3404 gdp = ext4_get_group_desc(sb, i, NULL); 3405 b = ext4_block_bitmap(sb, gdp); 3406 if (b >= first_block && b <= last_block) { 3407 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3408 count++; 3409 } 3410 b = ext4_inode_bitmap(sb, gdp); 3411 if (b >= first_block && b <= last_block) { 3412 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3413 count++; 3414 } 3415 b = ext4_inode_table(sb, gdp); 3416 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3417 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3418 int c = EXT4_B2C(sbi, b - first_block); 3419 ext4_set_bit(c, buf); 3420 count++; 3421 } 3422 if (i != grp) 3423 continue; 3424 s = 0; 3425 if (ext4_bg_has_super(sb, grp)) { 3426 ext4_set_bit(s++, buf); 3427 count++; 3428 } 3429 j = ext4_bg_num_gdb(sb, grp); 3430 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3431 ext4_error(sb, "Invalid number of block group " 3432 "descriptor blocks: %d", j); 3433 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3434 } 3435 count += j; 3436 for (; j > 0; j--) 3437 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3438 } 3439 if (!count) 3440 return 0; 3441 return EXT4_CLUSTERS_PER_GROUP(sb) - 3442 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3443 } 3444 3445 /* 3446 * Compute the overhead and stash it in sbi->s_overhead 3447 */ 3448 int ext4_calculate_overhead(struct super_block *sb) 3449 { 3450 struct ext4_sb_info *sbi = EXT4_SB(sb); 3451 struct ext4_super_block *es = sbi->s_es; 3452 struct inode *j_inode; 3453 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3454 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3455 ext4_fsblk_t overhead = 0; 3456 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3457 3458 if (!buf) 3459 return -ENOMEM; 3460 3461 /* 3462 * Compute the overhead (FS structures). This is constant 3463 * for a given filesystem unless the number of block groups 3464 * changes so we cache the previous value until it does. 3465 */ 3466 3467 /* 3468 * All of the blocks before first_data_block are overhead 3469 */ 3470 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3471 3472 /* 3473 * Add the overhead found in each block group 3474 */ 3475 for (i = 0; i < ngroups; i++) { 3476 int blks; 3477 3478 blks = count_overhead(sb, i, buf); 3479 overhead += blks; 3480 if (blks) 3481 memset(buf, 0, PAGE_SIZE); 3482 cond_resched(); 3483 } 3484 3485 /* 3486 * Add the internal journal blocks whether the journal has been 3487 * loaded or not 3488 */ 3489 if (sbi->s_journal && !sbi->journal_bdev) 3490 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3491 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3492 j_inode = ext4_get_journal_inode(sb, j_inum); 3493 if (j_inode) { 3494 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3495 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3496 iput(j_inode); 3497 } else { 3498 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3499 } 3500 } 3501 sbi->s_overhead = overhead; 3502 smp_wmb(); 3503 free_page((unsigned long) buf); 3504 return 0; 3505 } 3506 3507 static void ext4_set_resv_clusters(struct super_block *sb) 3508 { 3509 ext4_fsblk_t resv_clusters; 3510 struct ext4_sb_info *sbi = EXT4_SB(sb); 3511 3512 /* 3513 * There's no need to reserve anything when we aren't using extents. 3514 * The space estimates are exact, there are no unwritten extents, 3515 * hole punching doesn't need new metadata... This is needed especially 3516 * to keep ext2/3 backward compatibility. 3517 */ 3518 if (!ext4_has_feature_extents(sb)) 3519 return; 3520 /* 3521 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3522 * This should cover the situations where we can not afford to run 3523 * out of space like for example punch hole, or converting 3524 * unwritten extents in delalloc path. In most cases such 3525 * allocation would require 1, or 2 blocks, higher numbers are 3526 * very rare. 3527 */ 3528 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3529 sbi->s_cluster_bits); 3530 3531 do_div(resv_clusters, 50); 3532 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3533 3534 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3535 } 3536 3537 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3538 { 3539 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3540 char *orig_data = kstrdup(data, GFP_KERNEL); 3541 struct buffer_head *bh; 3542 struct ext4_super_block *es = NULL; 3543 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3544 ext4_fsblk_t block; 3545 ext4_fsblk_t sb_block = get_sb_block(&data); 3546 ext4_fsblk_t logical_sb_block; 3547 unsigned long offset = 0; 3548 unsigned long journal_devnum = 0; 3549 unsigned long def_mount_opts; 3550 struct inode *root; 3551 const char *descr; 3552 int ret = -ENOMEM; 3553 int blocksize, clustersize; 3554 unsigned int db_count; 3555 unsigned int i; 3556 int needs_recovery, has_huge_files, has_bigalloc; 3557 __u64 blocks_count; 3558 int err = 0; 3559 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3560 ext4_group_t first_not_zeroed; 3561 3562 if ((data && !orig_data) || !sbi) 3563 goto out_free_base; 3564 3565 sbi->s_daxdev = dax_dev; 3566 sbi->s_blockgroup_lock = 3567 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3568 if (!sbi->s_blockgroup_lock) 3569 goto out_free_base; 3570 3571 sb->s_fs_info = sbi; 3572 sbi->s_sb = sb; 3573 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3574 sbi->s_sb_block = sb_block; 3575 if (sb->s_bdev->bd_part) 3576 sbi->s_sectors_written_start = 3577 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3578 3579 /* Cleanup superblock name */ 3580 strreplace(sb->s_id, '/', '!'); 3581 3582 /* -EINVAL is default */ 3583 ret = -EINVAL; 3584 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3585 if (!blocksize) { 3586 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3587 goto out_fail; 3588 } 3589 3590 /* 3591 * The ext4 superblock will not be buffer aligned for other than 1kB 3592 * block sizes. We need to calculate the offset from buffer start. 3593 */ 3594 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3595 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3596 offset = do_div(logical_sb_block, blocksize); 3597 } else { 3598 logical_sb_block = sb_block; 3599 } 3600 3601 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3602 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3603 goto out_fail; 3604 } 3605 /* 3606 * Note: s_es must be initialized as soon as possible because 3607 * some ext4 macro-instructions depend on its value 3608 */ 3609 es = (struct ext4_super_block *) (bh->b_data + offset); 3610 sbi->s_es = es; 3611 sb->s_magic = le16_to_cpu(es->s_magic); 3612 if (sb->s_magic != EXT4_SUPER_MAGIC) 3613 goto cantfind_ext4; 3614 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3615 3616 /* Warn if metadata_csum and gdt_csum are both set. */ 3617 if (ext4_has_feature_metadata_csum(sb) && 3618 ext4_has_feature_gdt_csum(sb)) 3619 ext4_warning(sb, "metadata_csum and uninit_bg are " 3620 "redundant flags; please run fsck."); 3621 3622 /* Check for a known checksum algorithm */ 3623 if (!ext4_verify_csum_type(sb, es)) { 3624 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3625 "unknown checksum algorithm."); 3626 silent = 1; 3627 goto cantfind_ext4; 3628 } 3629 3630 /* Load the checksum driver */ 3631 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3632 if (IS_ERR(sbi->s_chksum_driver)) { 3633 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3634 ret = PTR_ERR(sbi->s_chksum_driver); 3635 sbi->s_chksum_driver = NULL; 3636 goto failed_mount; 3637 } 3638 3639 /* Check superblock checksum */ 3640 if (!ext4_superblock_csum_verify(sb, es)) { 3641 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3642 "invalid superblock checksum. Run e2fsck?"); 3643 silent = 1; 3644 ret = -EFSBADCRC; 3645 goto cantfind_ext4; 3646 } 3647 3648 /* Precompute checksum seed for all metadata */ 3649 if (ext4_has_feature_csum_seed(sb)) 3650 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3651 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3652 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3653 sizeof(es->s_uuid)); 3654 3655 /* Set defaults before we parse the mount options */ 3656 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3657 set_opt(sb, INIT_INODE_TABLE); 3658 if (def_mount_opts & EXT4_DEFM_DEBUG) 3659 set_opt(sb, DEBUG); 3660 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3661 set_opt(sb, GRPID); 3662 if (def_mount_opts & EXT4_DEFM_UID16) 3663 set_opt(sb, NO_UID32); 3664 /* xattr user namespace & acls are now defaulted on */ 3665 set_opt(sb, XATTR_USER); 3666 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3667 set_opt(sb, POSIX_ACL); 3668 #endif 3669 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3670 if (ext4_has_metadata_csum(sb)) 3671 set_opt(sb, JOURNAL_CHECKSUM); 3672 3673 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3674 set_opt(sb, JOURNAL_DATA); 3675 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3676 set_opt(sb, ORDERED_DATA); 3677 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3678 set_opt(sb, WRITEBACK_DATA); 3679 3680 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3681 set_opt(sb, ERRORS_PANIC); 3682 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3683 set_opt(sb, ERRORS_CONT); 3684 else 3685 set_opt(sb, ERRORS_RO); 3686 /* block_validity enabled by default; disable with noblock_validity */ 3687 set_opt(sb, BLOCK_VALIDITY); 3688 if (def_mount_opts & EXT4_DEFM_DISCARD) 3689 set_opt(sb, DISCARD); 3690 3691 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3692 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3693 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3694 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3695 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3696 3697 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3698 set_opt(sb, BARRIER); 3699 3700 /* 3701 * enable delayed allocation by default 3702 * Use -o nodelalloc to turn it off 3703 */ 3704 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3705 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3706 set_opt(sb, DELALLOC); 3707 3708 /* 3709 * set default s_li_wait_mult for lazyinit, for the case there is 3710 * no mount option specified. 3711 */ 3712 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3713 3714 if (sbi->s_es->s_mount_opts[0]) { 3715 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3716 sizeof(sbi->s_es->s_mount_opts), 3717 GFP_KERNEL); 3718 if (!s_mount_opts) 3719 goto failed_mount; 3720 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3721 &journal_ioprio, 0)) { 3722 ext4_msg(sb, KERN_WARNING, 3723 "failed to parse options in superblock: %s", 3724 s_mount_opts); 3725 } 3726 kfree(s_mount_opts); 3727 } 3728 sbi->s_def_mount_opt = sbi->s_mount_opt; 3729 if (!parse_options((char *) data, sb, &journal_devnum, 3730 &journal_ioprio, 0)) 3731 goto failed_mount; 3732 3733 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3734 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3735 "with data=journal disables delayed " 3736 "allocation and O_DIRECT support!\n"); 3737 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3738 ext4_msg(sb, KERN_ERR, "can't mount with " 3739 "both data=journal and delalloc"); 3740 goto failed_mount; 3741 } 3742 if (test_opt(sb, DIOREAD_NOLOCK)) { 3743 ext4_msg(sb, KERN_ERR, "can't mount with " 3744 "both data=journal and dioread_nolock"); 3745 goto failed_mount; 3746 } 3747 if (test_opt(sb, DAX)) { 3748 ext4_msg(sb, KERN_ERR, "can't mount with " 3749 "both data=journal and dax"); 3750 goto failed_mount; 3751 } 3752 if (ext4_has_feature_encrypt(sb)) { 3753 ext4_msg(sb, KERN_WARNING, 3754 "encrypted files will use data=ordered " 3755 "instead of data journaling mode"); 3756 } 3757 if (test_opt(sb, DELALLOC)) 3758 clear_opt(sb, DELALLOC); 3759 } else { 3760 sb->s_iflags |= SB_I_CGROUPWB; 3761 } 3762 3763 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3764 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3765 3766 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3767 (ext4_has_compat_features(sb) || 3768 ext4_has_ro_compat_features(sb) || 3769 ext4_has_incompat_features(sb))) 3770 ext4_msg(sb, KERN_WARNING, 3771 "feature flags set on rev 0 fs, " 3772 "running e2fsck is recommended"); 3773 3774 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3775 set_opt2(sb, HURD_COMPAT); 3776 if (ext4_has_feature_64bit(sb)) { 3777 ext4_msg(sb, KERN_ERR, 3778 "The Hurd can't support 64-bit file systems"); 3779 goto failed_mount; 3780 } 3781 3782 /* 3783 * ea_inode feature uses l_i_version field which is not 3784 * available in HURD_COMPAT mode. 3785 */ 3786 if (ext4_has_feature_ea_inode(sb)) { 3787 ext4_msg(sb, KERN_ERR, 3788 "ea_inode feature is not supported for Hurd"); 3789 goto failed_mount; 3790 } 3791 } 3792 3793 if (IS_EXT2_SB(sb)) { 3794 if (ext2_feature_set_ok(sb)) 3795 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3796 "using the ext4 subsystem"); 3797 else { 3798 /* 3799 * If we're probing be silent, if this looks like 3800 * it's actually an ext[34] filesystem. 3801 */ 3802 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3803 goto failed_mount; 3804 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3805 "to feature incompatibilities"); 3806 goto failed_mount; 3807 } 3808 } 3809 3810 if (IS_EXT3_SB(sb)) { 3811 if (ext3_feature_set_ok(sb)) 3812 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3813 "using the ext4 subsystem"); 3814 else { 3815 /* 3816 * If we're probing be silent, if this looks like 3817 * it's actually an ext4 filesystem. 3818 */ 3819 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3820 goto failed_mount; 3821 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3822 "to feature incompatibilities"); 3823 goto failed_mount; 3824 } 3825 } 3826 3827 /* 3828 * Check feature flags regardless of the revision level, since we 3829 * previously didn't change the revision level when setting the flags, 3830 * so there is a chance incompat flags are set on a rev 0 filesystem. 3831 */ 3832 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3833 goto failed_mount; 3834 3835 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3836 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3837 blocksize > EXT4_MAX_BLOCK_SIZE) { 3838 ext4_msg(sb, KERN_ERR, 3839 "Unsupported filesystem blocksize %d (%d log_block_size)", 3840 blocksize, le32_to_cpu(es->s_log_block_size)); 3841 goto failed_mount; 3842 } 3843 if (le32_to_cpu(es->s_log_block_size) > 3844 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3845 ext4_msg(sb, KERN_ERR, 3846 "Invalid log block size: %u", 3847 le32_to_cpu(es->s_log_block_size)); 3848 goto failed_mount; 3849 } 3850 if (le32_to_cpu(es->s_log_cluster_size) > 3851 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3852 ext4_msg(sb, KERN_ERR, 3853 "Invalid log cluster size: %u", 3854 le32_to_cpu(es->s_log_cluster_size)); 3855 goto failed_mount; 3856 } 3857 3858 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3859 ext4_msg(sb, KERN_ERR, 3860 "Number of reserved GDT blocks insanely large: %d", 3861 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3862 goto failed_mount; 3863 } 3864 3865 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3866 if (ext4_has_feature_inline_data(sb)) { 3867 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3868 " that may contain inline data"); 3869 goto failed_mount; 3870 } 3871 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 3872 ext4_msg(sb, KERN_ERR, 3873 "DAX unsupported by block device."); 3874 goto failed_mount; 3875 } 3876 } 3877 3878 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3879 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3880 es->s_encryption_level); 3881 goto failed_mount; 3882 } 3883 3884 if (sb->s_blocksize != blocksize) { 3885 /* Validate the filesystem blocksize */ 3886 if (!sb_set_blocksize(sb, blocksize)) { 3887 ext4_msg(sb, KERN_ERR, "bad block size %d", 3888 blocksize); 3889 goto failed_mount; 3890 } 3891 3892 brelse(bh); 3893 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3894 offset = do_div(logical_sb_block, blocksize); 3895 bh = sb_bread_unmovable(sb, logical_sb_block); 3896 if (!bh) { 3897 ext4_msg(sb, KERN_ERR, 3898 "Can't read superblock on 2nd try"); 3899 goto failed_mount; 3900 } 3901 es = (struct ext4_super_block *)(bh->b_data + offset); 3902 sbi->s_es = es; 3903 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3904 ext4_msg(sb, KERN_ERR, 3905 "Magic mismatch, very weird!"); 3906 goto failed_mount; 3907 } 3908 } 3909 3910 has_huge_files = ext4_has_feature_huge_file(sb); 3911 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3912 has_huge_files); 3913 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3914 3915 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3916 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3917 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3918 } else { 3919 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3920 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3921 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3922 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3923 sbi->s_first_ino); 3924 goto failed_mount; 3925 } 3926 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3927 (!is_power_of_2(sbi->s_inode_size)) || 3928 (sbi->s_inode_size > blocksize)) { 3929 ext4_msg(sb, KERN_ERR, 3930 "unsupported inode size: %d", 3931 sbi->s_inode_size); 3932 goto failed_mount; 3933 } 3934 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3935 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3936 } 3937 3938 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3939 if (ext4_has_feature_64bit(sb)) { 3940 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3941 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3942 !is_power_of_2(sbi->s_desc_size)) { 3943 ext4_msg(sb, KERN_ERR, 3944 "unsupported descriptor size %lu", 3945 sbi->s_desc_size); 3946 goto failed_mount; 3947 } 3948 } else 3949 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3950 3951 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3952 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3953 3954 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3955 if (sbi->s_inodes_per_block == 0) 3956 goto cantfind_ext4; 3957 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3958 sbi->s_inodes_per_group > blocksize * 8) { 3959 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3960 sbi->s_blocks_per_group); 3961 goto failed_mount; 3962 } 3963 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3964 sbi->s_inodes_per_block; 3965 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3966 sbi->s_sbh = bh; 3967 sbi->s_mount_state = le16_to_cpu(es->s_state); 3968 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3969 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3970 3971 for (i = 0; i < 4; i++) 3972 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3973 sbi->s_def_hash_version = es->s_def_hash_version; 3974 if (ext4_has_feature_dir_index(sb)) { 3975 i = le32_to_cpu(es->s_flags); 3976 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3977 sbi->s_hash_unsigned = 3; 3978 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3979 #ifdef __CHAR_UNSIGNED__ 3980 if (!sb_rdonly(sb)) 3981 es->s_flags |= 3982 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3983 sbi->s_hash_unsigned = 3; 3984 #else 3985 if (!sb_rdonly(sb)) 3986 es->s_flags |= 3987 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3988 #endif 3989 } 3990 } 3991 3992 /* Handle clustersize */ 3993 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3994 has_bigalloc = ext4_has_feature_bigalloc(sb); 3995 if (has_bigalloc) { 3996 if (clustersize < blocksize) { 3997 ext4_msg(sb, KERN_ERR, 3998 "cluster size (%d) smaller than " 3999 "block size (%d)", clustersize, blocksize); 4000 goto failed_mount; 4001 } 4002 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4003 le32_to_cpu(es->s_log_block_size); 4004 sbi->s_clusters_per_group = 4005 le32_to_cpu(es->s_clusters_per_group); 4006 if (sbi->s_clusters_per_group > blocksize * 8) { 4007 ext4_msg(sb, KERN_ERR, 4008 "#clusters per group too big: %lu", 4009 sbi->s_clusters_per_group); 4010 goto failed_mount; 4011 } 4012 if (sbi->s_blocks_per_group != 4013 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4014 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4015 "clusters per group (%lu) inconsistent", 4016 sbi->s_blocks_per_group, 4017 sbi->s_clusters_per_group); 4018 goto failed_mount; 4019 } 4020 } else { 4021 if (clustersize != blocksize) { 4022 ext4_msg(sb, KERN_ERR, 4023 "fragment/cluster size (%d) != " 4024 "block size (%d)", clustersize, blocksize); 4025 goto failed_mount; 4026 } 4027 if (sbi->s_blocks_per_group > blocksize * 8) { 4028 ext4_msg(sb, KERN_ERR, 4029 "#blocks per group too big: %lu", 4030 sbi->s_blocks_per_group); 4031 goto failed_mount; 4032 } 4033 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4034 sbi->s_cluster_bits = 0; 4035 } 4036 sbi->s_cluster_ratio = clustersize / blocksize; 4037 4038 /* Do we have standard group size of clustersize * 8 blocks ? */ 4039 if (sbi->s_blocks_per_group == clustersize << 3) 4040 set_opt2(sb, STD_GROUP_SIZE); 4041 4042 /* 4043 * Test whether we have more sectors than will fit in sector_t, 4044 * and whether the max offset is addressable by the page cache. 4045 */ 4046 err = generic_check_addressable(sb->s_blocksize_bits, 4047 ext4_blocks_count(es)); 4048 if (err) { 4049 ext4_msg(sb, KERN_ERR, "filesystem" 4050 " too large to mount safely on this system"); 4051 if (sizeof(sector_t) < 8) 4052 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 4053 goto failed_mount; 4054 } 4055 4056 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4057 goto cantfind_ext4; 4058 4059 /* check blocks count against device size */ 4060 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4061 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4062 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4063 "exceeds size of device (%llu blocks)", 4064 ext4_blocks_count(es), blocks_count); 4065 goto failed_mount; 4066 } 4067 4068 /* 4069 * It makes no sense for the first data block to be beyond the end 4070 * of the filesystem. 4071 */ 4072 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4073 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4074 "block %u is beyond end of filesystem (%llu)", 4075 le32_to_cpu(es->s_first_data_block), 4076 ext4_blocks_count(es)); 4077 goto failed_mount; 4078 } 4079 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4080 (sbi->s_cluster_ratio == 1)) { 4081 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4082 "block is 0 with a 1k block and cluster size"); 4083 goto failed_mount; 4084 } 4085 4086 blocks_count = (ext4_blocks_count(es) - 4087 le32_to_cpu(es->s_first_data_block) + 4088 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4089 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4090 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4091 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4092 "(block count %llu, first data block %u, " 4093 "blocks per group %lu)", sbi->s_groups_count, 4094 ext4_blocks_count(es), 4095 le32_to_cpu(es->s_first_data_block), 4096 EXT4_BLOCKS_PER_GROUP(sb)); 4097 goto failed_mount; 4098 } 4099 sbi->s_groups_count = blocks_count; 4100 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4101 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4102 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4103 le32_to_cpu(es->s_inodes_count)) { 4104 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4105 le32_to_cpu(es->s_inodes_count), 4106 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4107 ret = -EINVAL; 4108 goto failed_mount; 4109 } 4110 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4111 EXT4_DESC_PER_BLOCK(sb); 4112 if (ext4_has_feature_meta_bg(sb)) { 4113 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4114 ext4_msg(sb, KERN_WARNING, 4115 "first meta block group too large: %u " 4116 "(group descriptor block count %u)", 4117 le32_to_cpu(es->s_first_meta_bg), db_count); 4118 goto failed_mount; 4119 } 4120 } 4121 sbi->s_group_desc = kvmalloc_array(db_count, 4122 sizeof(struct buffer_head *), 4123 GFP_KERNEL); 4124 if (sbi->s_group_desc == NULL) { 4125 ext4_msg(sb, KERN_ERR, "not enough memory"); 4126 ret = -ENOMEM; 4127 goto failed_mount; 4128 } 4129 4130 bgl_lock_init(sbi->s_blockgroup_lock); 4131 4132 /* Pre-read the descriptors into the buffer cache */ 4133 for (i = 0; i < db_count; i++) { 4134 block = descriptor_loc(sb, logical_sb_block, i); 4135 sb_breadahead(sb, block); 4136 } 4137 4138 for (i = 0; i < db_count; i++) { 4139 block = descriptor_loc(sb, logical_sb_block, i); 4140 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4141 if (!sbi->s_group_desc[i]) { 4142 ext4_msg(sb, KERN_ERR, 4143 "can't read group descriptor %d", i); 4144 db_count = i; 4145 goto failed_mount2; 4146 } 4147 } 4148 sbi->s_gdb_count = db_count; 4149 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4150 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4151 ret = -EFSCORRUPTED; 4152 goto failed_mount2; 4153 } 4154 4155 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4156 4157 /* Register extent status tree shrinker */ 4158 if (ext4_es_register_shrinker(sbi)) 4159 goto failed_mount3; 4160 4161 sbi->s_stripe = ext4_get_stripe_size(sbi); 4162 sbi->s_extent_max_zeroout_kb = 32; 4163 4164 /* 4165 * set up enough so that it can read an inode 4166 */ 4167 sb->s_op = &ext4_sops; 4168 sb->s_export_op = &ext4_export_ops; 4169 sb->s_xattr = ext4_xattr_handlers; 4170 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4171 sb->s_cop = &ext4_cryptops; 4172 #endif 4173 #ifdef CONFIG_QUOTA 4174 sb->dq_op = &ext4_quota_operations; 4175 if (ext4_has_feature_quota(sb)) 4176 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4177 else 4178 sb->s_qcop = &ext4_qctl_operations; 4179 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4180 #endif 4181 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4182 4183 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4184 mutex_init(&sbi->s_orphan_lock); 4185 4186 sb->s_root = NULL; 4187 4188 needs_recovery = (es->s_last_orphan != 0 || 4189 ext4_has_feature_journal_needs_recovery(sb)); 4190 4191 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4192 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4193 goto failed_mount3a; 4194 4195 /* 4196 * The first inode we look at is the journal inode. Don't try 4197 * root first: it may be modified in the journal! 4198 */ 4199 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4200 err = ext4_load_journal(sb, es, journal_devnum); 4201 if (err) 4202 goto failed_mount3a; 4203 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4204 ext4_has_feature_journal_needs_recovery(sb)) { 4205 ext4_msg(sb, KERN_ERR, "required journal recovery " 4206 "suppressed and not mounted read-only"); 4207 goto failed_mount_wq; 4208 } else { 4209 /* Nojournal mode, all journal mount options are illegal */ 4210 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4211 ext4_msg(sb, KERN_ERR, "can't mount with " 4212 "journal_checksum, fs mounted w/o journal"); 4213 goto failed_mount_wq; 4214 } 4215 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4216 ext4_msg(sb, KERN_ERR, "can't mount with " 4217 "journal_async_commit, fs mounted w/o journal"); 4218 goto failed_mount_wq; 4219 } 4220 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4221 ext4_msg(sb, KERN_ERR, "can't mount with " 4222 "commit=%lu, fs mounted w/o journal", 4223 sbi->s_commit_interval / HZ); 4224 goto failed_mount_wq; 4225 } 4226 if (EXT4_MOUNT_DATA_FLAGS & 4227 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4228 ext4_msg(sb, KERN_ERR, "can't mount with " 4229 "data=, fs mounted w/o journal"); 4230 goto failed_mount_wq; 4231 } 4232 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4233 clear_opt(sb, JOURNAL_CHECKSUM); 4234 clear_opt(sb, DATA_FLAGS); 4235 sbi->s_journal = NULL; 4236 needs_recovery = 0; 4237 goto no_journal; 4238 } 4239 4240 if (ext4_has_feature_64bit(sb) && 4241 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4242 JBD2_FEATURE_INCOMPAT_64BIT)) { 4243 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4244 goto failed_mount_wq; 4245 } 4246 4247 if (!set_journal_csum_feature_set(sb)) { 4248 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4249 "feature set"); 4250 goto failed_mount_wq; 4251 } 4252 4253 /* We have now updated the journal if required, so we can 4254 * validate the data journaling mode. */ 4255 switch (test_opt(sb, DATA_FLAGS)) { 4256 case 0: 4257 /* No mode set, assume a default based on the journal 4258 * capabilities: ORDERED_DATA if the journal can 4259 * cope, else JOURNAL_DATA 4260 */ 4261 if (jbd2_journal_check_available_features 4262 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4263 set_opt(sb, ORDERED_DATA); 4264 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4265 } else { 4266 set_opt(sb, JOURNAL_DATA); 4267 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4268 } 4269 break; 4270 4271 case EXT4_MOUNT_ORDERED_DATA: 4272 case EXT4_MOUNT_WRITEBACK_DATA: 4273 if (!jbd2_journal_check_available_features 4274 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4275 ext4_msg(sb, KERN_ERR, "Journal does not support " 4276 "requested data journaling mode"); 4277 goto failed_mount_wq; 4278 } 4279 default: 4280 break; 4281 } 4282 4283 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4284 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4285 ext4_msg(sb, KERN_ERR, "can't mount with " 4286 "journal_async_commit in data=ordered mode"); 4287 goto failed_mount_wq; 4288 } 4289 4290 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4291 4292 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4293 4294 no_journal: 4295 if (!test_opt(sb, NO_MBCACHE)) { 4296 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4297 if (!sbi->s_ea_block_cache) { 4298 ext4_msg(sb, KERN_ERR, 4299 "Failed to create ea_block_cache"); 4300 goto failed_mount_wq; 4301 } 4302 4303 if (ext4_has_feature_ea_inode(sb)) { 4304 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4305 if (!sbi->s_ea_inode_cache) { 4306 ext4_msg(sb, KERN_ERR, 4307 "Failed to create ea_inode_cache"); 4308 goto failed_mount_wq; 4309 } 4310 } 4311 } 4312 4313 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4314 (blocksize != PAGE_SIZE)) { 4315 ext4_msg(sb, KERN_ERR, 4316 "Unsupported blocksize for fs encryption"); 4317 goto failed_mount_wq; 4318 } 4319 4320 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4321 !ext4_has_feature_encrypt(sb)) { 4322 ext4_set_feature_encrypt(sb); 4323 ext4_commit_super(sb, 1); 4324 } 4325 4326 /* 4327 * Get the # of file system overhead blocks from the 4328 * superblock if present. 4329 */ 4330 if (es->s_overhead_clusters) 4331 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4332 else { 4333 err = ext4_calculate_overhead(sb); 4334 if (err) 4335 goto failed_mount_wq; 4336 } 4337 4338 /* 4339 * The maximum number of concurrent works can be high and 4340 * concurrency isn't really necessary. Limit it to 1. 4341 */ 4342 EXT4_SB(sb)->rsv_conversion_wq = 4343 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4344 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4345 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4346 ret = -ENOMEM; 4347 goto failed_mount4; 4348 } 4349 4350 /* 4351 * The jbd2_journal_load will have done any necessary log recovery, 4352 * so we can safely mount the rest of the filesystem now. 4353 */ 4354 4355 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4356 if (IS_ERR(root)) { 4357 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4358 ret = PTR_ERR(root); 4359 root = NULL; 4360 goto failed_mount4; 4361 } 4362 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4363 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4364 iput(root); 4365 goto failed_mount4; 4366 } 4367 sb->s_root = d_make_root(root); 4368 if (!sb->s_root) { 4369 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4370 ret = -ENOMEM; 4371 goto failed_mount4; 4372 } 4373 4374 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4375 if (ret == -EROFS) { 4376 sb->s_flags |= SB_RDONLY; 4377 ret = 0; 4378 } else if (ret) 4379 goto failed_mount4a; 4380 4381 /* determine the minimum size of new large inodes, if present */ 4382 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4383 sbi->s_want_extra_isize == 0) { 4384 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4385 EXT4_GOOD_OLD_INODE_SIZE; 4386 if (ext4_has_feature_extra_isize(sb)) { 4387 if (sbi->s_want_extra_isize < 4388 le16_to_cpu(es->s_want_extra_isize)) 4389 sbi->s_want_extra_isize = 4390 le16_to_cpu(es->s_want_extra_isize); 4391 if (sbi->s_want_extra_isize < 4392 le16_to_cpu(es->s_min_extra_isize)) 4393 sbi->s_want_extra_isize = 4394 le16_to_cpu(es->s_min_extra_isize); 4395 } 4396 } 4397 /* Check if enough inode space is available */ 4398 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4399 sbi->s_inode_size) { 4400 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4401 EXT4_GOOD_OLD_INODE_SIZE; 4402 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4403 "available"); 4404 } 4405 4406 ext4_set_resv_clusters(sb); 4407 4408 err = ext4_setup_system_zone(sb); 4409 if (err) { 4410 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4411 "zone (%d)", err); 4412 goto failed_mount4a; 4413 } 4414 4415 ext4_ext_init(sb); 4416 err = ext4_mb_init(sb); 4417 if (err) { 4418 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4419 err); 4420 goto failed_mount5; 4421 } 4422 4423 block = ext4_count_free_clusters(sb); 4424 ext4_free_blocks_count_set(sbi->s_es, 4425 EXT4_C2B(sbi, block)); 4426 ext4_superblock_csum_set(sb); 4427 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4428 GFP_KERNEL); 4429 if (!err) { 4430 unsigned long freei = ext4_count_free_inodes(sb); 4431 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4432 ext4_superblock_csum_set(sb); 4433 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4434 GFP_KERNEL); 4435 } 4436 if (!err) 4437 err = percpu_counter_init(&sbi->s_dirs_counter, 4438 ext4_count_dirs(sb), GFP_KERNEL); 4439 if (!err) 4440 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4441 GFP_KERNEL); 4442 if (!err) 4443 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4444 4445 if (err) { 4446 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4447 goto failed_mount6; 4448 } 4449 4450 if (ext4_has_feature_flex_bg(sb)) 4451 if (!ext4_fill_flex_info(sb)) { 4452 ext4_msg(sb, KERN_ERR, 4453 "unable to initialize " 4454 "flex_bg meta info!"); 4455 goto failed_mount6; 4456 } 4457 4458 err = ext4_register_li_request(sb, first_not_zeroed); 4459 if (err) 4460 goto failed_mount6; 4461 4462 err = ext4_register_sysfs(sb); 4463 if (err) 4464 goto failed_mount7; 4465 4466 #ifdef CONFIG_QUOTA 4467 /* Enable quota usage during mount. */ 4468 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4469 err = ext4_enable_quotas(sb); 4470 if (err) 4471 goto failed_mount8; 4472 } 4473 #endif /* CONFIG_QUOTA */ 4474 4475 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4476 ext4_orphan_cleanup(sb, es); 4477 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4478 if (needs_recovery) { 4479 ext4_msg(sb, KERN_INFO, "recovery complete"); 4480 ext4_mark_recovery_complete(sb, es); 4481 } 4482 if (EXT4_SB(sb)->s_journal) { 4483 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4484 descr = " journalled data mode"; 4485 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4486 descr = " ordered data mode"; 4487 else 4488 descr = " writeback data mode"; 4489 } else 4490 descr = "out journal"; 4491 4492 if (test_opt(sb, DISCARD)) { 4493 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4494 if (!blk_queue_discard(q)) 4495 ext4_msg(sb, KERN_WARNING, 4496 "mounting with \"discard\" option, but " 4497 "the device does not support discard"); 4498 } 4499 4500 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4501 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4502 "Opts: %.*s%s%s", descr, 4503 (int) sizeof(sbi->s_es->s_mount_opts), 4504 sbi->s_es->s_mount_opts, 4505 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4506 4507 if (es->s_error_count) 4508 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4509 4510 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4511 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4512 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4513 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4514 4515 kfree(orig_data); 4516 return 0; 4517 4518 cantfind_ext4: 4519 if (!silent) 4520 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4521 goto failed_mount; 4522 4523 #ifdef CONFIG_QUOTA 4524 failed_mount8: 4525 ext4_unregister_sysfs(sb); 4526 #endif 4527 failed_mount7: 4528 ext4_unregister_li_request(sb); 4529 failed_mount6: 4530 ext4_mb_release(sb); 4531 if (sbi->s_flex_groups) 4532 kvfree(sbi->s_flex_groups); 4533 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4534 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4535 percpu_counter_destroy(&sbi->s_dirs_counter); 4536 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4537 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 4538 failed_mount5: 4539 ext4_ext_release(sb); 4540 ext4_release_system_zone(sb); 4541 failed_mount4a: 4542 dput(sb->s_root); 4543 sb->s_root = NULL; 4544 failed_mount4: 4545 ext4_msg(sb, KERN_ERR, "mount failed"); 4546 if (EXT4_SB(sb)->rsv_conversion_wq) 4547 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4548 failed_mount_wq: 4549 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4550 sbi->s_ea_inode_cache = NULL; 4551 4552 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4553 sbi->s_ea_block_cache = NULL; 4554 4555 if (sbi->s_journal) { 4556 jbd2_journal_destroy(sbi->s_journal); 4557 sbi->s_journal = NULL; 4558 } 4559 failed_mount3a: 4560 ext4_es_unregister_shrinker(sbi); 4561 failed_mount3: 4562 del_timer_sync(&sbi->s_err_report); 4563 if (sbi->s_mmp_tsk) 4564 kthread_stop(sbi->s_mmp_tsk); 4565 failed_mount2: 4566 for (i = 0; i < db_count; i++) 4567 brelse(sbi->s_group_desc[i]); 4568 kvfree(sbi->s_group_desc); 4569 failed_mount: 4570 if (sbi->s_chksum_driver) 4571 crypto_free_shash(sbi->s_chksum_driver); 4572 #ifdef CONFIG_QUOTA 4573 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4574 kfree(sbi->s_qf_names[i]); 4575 #endif 4576 ext4_blkdev_remove(sbi); 4577 brelse(bh); 4578 out_fail: 4579 sb->s_fs_info = NULL; 4580 kfree(sbi->s_blockgroup_lock); 4581 out_free_base: 4582 kfree(sbi); 4583 kfree(orig_data); 4584 fs_put_dax(dax_dev); 4585 return err ? err : ret; 4586 } 4587 4588 /* 4589 * Setup any per-fs journal parameters now. We'll do this both on 4590 * initial mount, once the journal has been initialised but before we've 4591 * done any recovery; and again on any subsequent remount. 4592 */ 4593 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4594 { 4595 struct ext4_sb_info *sbi = EXT4_SB(sb); 4596 4597 journal->j_commit_interval = sbi->s_commit_interval; 4598 journal->j_min_batch_time = sbi->s_min_batch_time; 4599 journal->j_max_batch_time = sbi->s_max_batch_time; 4600 4601 write_lock(&journal->j_state_lock); 4602 if (test_opt(sb, BARRIER)) 4603 journal->j_flags |= JBD2_BARRIER; 4604 else 4605 journal->j_flags &= ~JBD2_BARRIER; 4606 if (test_opt(sb, DATA_ERR_ABORT)) 4607 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4608 else 4609 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4610 write_unlock(&journal->j_state_lock); 4611 } 4612 4613 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4614 unsigned int journal_inum) 4615 { 4616 struct inode *journal_inode; 4617 4618 /* 4619 * Test for the existence of a valid inode on disk. Bad things 4620 * happen if we iget() an unused inode, as the subsequent iput() 4621 * will try to delete it. 4622 */ 4623 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4624 if (IS_ERR(journal_inode)) { 4625 ext4_msg(sb, KERN_ERR, "no journal found"); 4626 return NULL; 4627 } 4628 if (!journal_inode->i_nlink) { 4629 make_bad_inode(journal_inode); 4630 iput(journal_inode); 4631 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4632 return NULL; 4633 } 4634 4635 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4636 journal_inode, journal_inode->i_size); 4637 if (!S_ISREG(journal_inode->i_mode)) { 4638 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4639 iput(journal_inode); 4640 return NULL; 4641 } 4642 return journal_inode; 4643 } 4644 4645 static journal_t *ext4_get_journal(struct super_block *sb, 4646 unsigned int journal_inum) 4647 { 4648 struct inode *journal_inode; 4649 journal_t *journal; 4650 4651 BUG_ON(!ext4_has_feature_journal(sb)); 4652 4653 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4654 if (!journal_inode) 4655 return NULL; 4656 4657 journal = jbd2_journal_init_inode(journal_inode); 4658 if (!journal) { 4659 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4660 iput(journal_inode); 4661 return NULL; 4662 } 4663 journal->j_private = sb; 4664 ext4_init_journal_params(sb, journal); 4665 return journal; 4666 } 4667 4668 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4669 dev_t j_dev) 4670 { 4671 struct buffer_head *bh; 4672 journal_t *journal; 4673 ext4_fsblk_t start; 4674 ext4_fsblk_t len; 4675 int hblock, blocksize; 4676 ext4_fsblk_t sb_block; 4677 unsigned long offset; 4678 struct ext4_super_block *es; 4679 struct block_device *bdev; 4680 4681 BUG_ON(!ext4_has_feature_journal(sb)); 4682 4683 bdev = ext4_blkdev_get(j_dev, sb); 4684 if (bdev == NULL) 4685 return NULL; 4686 4687 blocksize = sb->s_blocksize; 4688 hblock = bdev_logical_block_size(bdev); 4689 if (blocksize < hblock) { 4690 ext4_msg(sb, KERN_ERR, 4691 "blocksize too small for journal device"); 4692 goto out_bdev; 4693 } 4694 4695 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4696 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4697 set_blocksize(bdev, blocksize); 4698 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4699 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4700 "external journal"); 4701 goto out_bdev; 4702 } 4703 4704 es = (struct ext4_super_block *) (bh->b_data + offset); 4705 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4706 !(le32_to_cpu(es->s_feature_incompat) & 4707 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4708 ext4_msg(sb, KERN_ERR, "external journal has " 4709 "bad superblock"); 4710 brelse(bh); 4711 goto out_bdev; 4712 } 4713 4714 if ((le32_to_cpu(es->s_feature_ro_compat) & 4715 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4716 es->s_checksum != ext4_superblock_csum(sb, es)) { 4717 ext4_msg(sb, KERN_ERR, "external journal has " 4718 "corrupt superblock"); 4719 brelse(bh); 4720 goto out_bdev; 4721 } 4722 4723 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4724 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4725 brelse(bh); 4726 goto out_bdev; 4727 } 4728 4729 len = ext4_blocks_count(es); 4730 start = sb_block + 1; 4731 brelse(bh); /* we're done with the superblock */ 4732 4733 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4734 start, len, blocksize); 4735 if (!journal) { 4736 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4737 goto out_bdev; 4738 } 4739 journal->j_private = sb; 4740 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4741 wait_on_buffer(journal->j_sb_buffer); 4742 if (!buffer_uptodate(journal->j_sb_buffer)) { 4743 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4744 goto out_journal; 4745 } 4746 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4747 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4748 "user (unsupported) - %d", 4749 be32_to_cpu(journal->j_superblock->s_nr_users)); 4750 goto out_journal; 4751 } 4752 EXT4_SB(sb)->journal_bdev = bdev; 4753 ext4_init_journal_params(sb, journal); 4754 return journal; 4755 4756 out_journal: 4757 jbd2_journal_destroy(journal); 4758 out_bdev: 4759 ext4_blkdev_put(bdev); 4760 return NULL; 4761 } 4762 4763 static int ext4_load_journal(struct super_block *sb, 4764 struct ext4_super_block *es, 4765 unsigned long journal_devnum) 4766 { 4767 journal_t *journal; 4768 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4769 dev_t journal_dev; 4770 int err = 0; 4771 int really_read_only; 4772 4773 BUG_ON(!ext4_has_feature_journal(sb)); 4774 4775 if (journal_devnum && 4776 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4777 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4778 "numbers have changed"); 4779 journal_dev = new_decode_dev(journal_devnum); 4780 } else 4781 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4782 4783 really_read_only = bdev_read_only(sb->s_bdev); 4784 4785 /* 4786 * Are we loading a blank journal or performing recovery after a 4787 * crash? For recovery, we need to check in advance whether we 4788 * can get read-write access to the device. 4789 */ 4790 if (ext4_has_feature_journal_needs_recovery(sb)) { 4791 if (sb_rdonly(sb)) { 4792 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4793 "required on readonly filesystem"); 4794 if (really_read_only) { 4795 ext4_msg(sb, KERN_ERR, "write access " 4796 "unavailable, cannot proceed " 4797 "(try mounting with noload)"); 4798 return -EROFS; 4799 } 4800 ext4_msg(sb, KERN_INFO, "write access will " 4801 "be enabled during recovery"); 4802 } 4803 } 4804 4805 if (journal_inum && journal_dev) { 4806 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4807 "and inode journals!"); 4808 return -EINVAL; 4809 } 4810 4811 if (journal_inum) { 4812 if (!(journal = ext4_get_journal(sb, journal_inum))) 4813 return -EINVAL; 4814 } else { 4815 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4816 return -EINVAL; 4817 } 4818 4819 if (!(journal->j_flags & JBD2_BARRIER)) 4820 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4821 4822 if (!ext4_has_feature_journal_needs_recovery(sb)) 4823 err = jbd2_journal_wipe(journal, !really_read_only); 4824 if (!err) { 4825 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4826 if (save) 4827 memcpy(save, ((char *) es) + 4828 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4829 err = jbd2_journal_load(journal); 4830 if (save) 4831 memcpy(((char *) es) + EXT4_S_ERR_START, 4832 save, EXT4_S_ERR_LEN); 4833 kfree(save); 4834 } 4835 4836 if (err) { 4837 ext4_msg(sb, KERN_ERR, "error loading journal"); 4838 jbd2_journal_destroy(journal); 4839 return err; 4840 } 4841 4842 EXT4_SB(sb)->s_journal = journal; 4843 ext4_clear_journal_err(sb, es); 4844 4845 if (!really_read_only && journal_devnum && 4846 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4847 es->s_journal_dev = cpu_to_le32(journal_devnum); 4848 4849 /* Make sure we flush the recovery flag to disk. */ 4850 ext4_commit_super(sb, 1); 4851 } 4852 4853 return 0; 4854 } 4855 4856 static int ext4_commit_super(struct super_block *sb, int sync) 4857 { 4858 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4859 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4860 int error = 0; 4861 4862 if (!sbh || block_device_ejected(sb)) 4863 return error; 4864 4865 /* 4866 * The superblock bh should be mapped, but it might not be if the 4867 * device was hot-removed. Not much we can do but fail the I/O. 4868 */ 4869 if (!buffer_mapped(sbh)) 4870 return error; 4871 4872 /* 4873 * If the file system is mounted read-only, don't update the 4874 * superblock write time. This avoids updating the superblock 4875 * write time when we are mounting the root file system 4876 * read/only but we need to replay the journal; at that point, 4877 * for people who are east of GMT and who make their clock 4878 * tick in localtime for Windows bug-for-bug compatibility, 4879 * the clock is set in the future, and this will cause e2fsck 4880 * to complain and force a full file system check. 4881 */ 4882 if (!(sb->s_flags & SB_RDONLY)) 4883 ext4_update_tstamp(es, s_wtime); 4884 if (sb->s_bdev->bd_part) 4885 es->s_kbytes_written = 4886 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4887 ((part_stat_read(sb->s_bdev->bd_part, 4888 sectors[STAT_WRITE]) - 4889 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4890 else 4891 es->s_kbytes_written = 4892 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4893 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4894 ext4_free_blocks_count_set(es, 4895 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4896 &EXT4_SB(sb)->s_freeclusters_counter))); 4897 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4898 es->s_free_inodes_count = 4899 cpu_to_le32(percpu_counter_sum_positive( 4900 &EXT4_SB(sb)->s_freeinodes_counter)); 4901 BUFFER_TRACE(sbh, "marking dirty"); 4902 ext4_superblock_csum_set(sb); 4903 if (sync) 4904 lock_buffer(sbh); 4905 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 4906 /* 4907 * Oh, dear. A previous attempt to write the 4908 * superblock failed. This could happen because the 4909 * USB device was yanked out. Or it could happen to 4910 * be a transient write error and maybe the block will 4911 * be remapped. Nothing we can do but to retry the 4912 * write and hope for the best. 4913 */ 4914 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4915 "superblock detected"); 4916 clear_buffer_write_io_error(sbh); 4917 set_buffer_uptodate(sbh); 4918 } 4919 mark_buffer_dirty(sbh); 4920 if (sync) { 4921 unlock_buffer(sbh); 4922 error = __sync_dirty_buffer(sbh, 4923 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4924 if (buffer_write_io_error(sbh)) { 4925 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4926 "superblock"); 4927 clear_buffer_write_io_error(sbh); 4928 set_buffer_uptodate(sbh); 4929 } 4930 } 4931 return error; 4932 } 4933 4934 /* 4935 * Have we just finished recovery? If so, and if we are mounting (or 4936 * remounting) the filesystem readonly, then we will end up with a 4937 * consistent fs on disk. Record that fact. 4938 */ 4939 static void ext4_mark_recovery_complete(struct super_block *sb, 4940 struct ext4_super_block *es) 4941 { 4942 journal_t *journal = EXT4_SB(sb)->s_journal; 4943 4944 if (!ext4_has_feature_journal(sb)) { 4945 BUG_ON(journal != NULL); 4946 return; 4947 } 4948 jbd2_journal_lock_updates(journal); 4949 if (jbd2_journal_flush(journal) < 0) 4950 goto out; 4951 4952 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4953 ext4_clear_feature_journal_needs_recovery(sb); 4954 ext4_commit_super(sb, 1); 4955 } 4956 4957 out: 4958 jbd2_journal_unlock_updates(journal); 4959 } 4960 4961 /* 4962 * If we are mounting (or read-write remounting) a filesystem whose journal 4963 * has recorded an error from a previous lifetime, move that error to the 4964 * main filesystem now. 4965 */ 4966 static void ext4_clear_journal_err(struct super_block *sb, 4967 struct ext4_super_block *es) 4968 { 4969 journal_t *journal; 4970 int j_errno; 4971 const char *errstr; 4972 4973 BUG_ON(!ext4_has_feature_journal(sb)); 4974 4975 journal = EXT4_SB(sb)->s_journal; 4976 4977 /* 4978 * Now check for any error status which may have been recorded in the 4979 * journal by a prior ext4_error() or ext4_abort() 4980 */ 4981 4982 j_errno = jbd2_journal_errno(journal); 4983 if (j_errno) { 4984 char nbuf[16]; 4985 4986 errstr = ext4_decode_error(sb, j_errno, nbuf); 4987 ext4_warning(sb, "Filesystem error recorded " 4988 "from previous mount: %s", errstr); 4989 ext4_warning(sb, "Marking fs in need of filesystem check."); 4990 4991 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4992 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4993 ext4_commit_super(sb, 1); 4994 4995 jbd2_journal_clear_err(journal); 4996 jbd2_journal_update_sb_errno(journal); 4997 } 4998 } 4999 5000 /* 5001 * Force the running and committing transactions to commit, 5002 * and wait on the commit. 5003 */ 5004 int ext4_force_commit(struct super_block *sb) 5005 { 5006 journal_t *journal; 5007 5008 if (sb_rdonly(sb)) 5009 return 0; 5010 5011 journal = EXT4_SB(sb)->s_journal; 5012 return ext4_journal_force_commit(journal); 5013 } 5014 5015 static int ext4_sync_fs(struct super_block *sb, int wait) 5016 { 5017 int ret = 0; 5018 tid_t target; 5019 bool needs_barrier = false; 5020 struct ext4_sb_info *sbi = EXT4_SB(sb); 5021 5022 if (unlikely(ext4_forced_shutdown(sbi))) 5023 return 0; 5024 5025 trace_ext4_sync_fs(sb, wait); 5026 flush_workqueue(sbi->rsv_conversion_wq); 5027 /* 5028 * Writeback quota in non-journalled quota case - journalled quota has 5029 * no dirty dquots 5030 */ 5031 dquot_writeback_dquots(sb, -1); 5032 /* 5033 * Data writeback is possible w/o journal transaction, so barrier must 5034 * being sent at the end of the function. But we can skip it if 5035 * transaction_commit will do it for us. 5036 */ 5037 if (sbi->s_journal) { 5038 target = jbd2_get_latest_transaction(sbi->s_journal); 5039 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5040 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5041 needs_barrier = true; 5042 5043 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5044 if (wait) 5045 ret = jbd2_log_wait_commit(sbi->s_journal, 5046 target); 5047 } 5048 } else if (wait && test_opt(sb, BARRIER)) 5049 needs_barrier = true; 5050 if (needs_barrier) { 5051 int err; 5052 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5053 if (!ret) 5054 ret = err; 5055 } 5056 5057 return ret; 5058 } 5059 5060 /* 5061 * LVM calls this function before a (read-only) snapshot is created. This 5062 * gives us a chance to flush the journal completely and mark the fs clean. 5063 * 5064 * Note that only this function cannot bring a filesystem to be in a clean 5065 * state independently. It relies on upper layer to stop all data & metadata 5066 * modifications. 5067 */ 5068 static int ext4_freeze(struct super_block *sb) 5069 { 5070 int error = 0; 5071 journal_t *journal; 5072 5073 if (sb_rdonly(sb)) 5074 return 0; 5075 5076 journal = EXT4_SB(sb)->s_journal; 5077 5078 if (journal) { 5079 /* Now we set up the journal barrier. */ 5080 jbd2_journal_lock_updates(journal); 5081 5082 /* 5083 * Don't clear the needs_recovery flag if we failed to 5084 * flush the journal. 5085 */ 5086 error = jbd2_journal_flush(journal); 5087 if (error < 0) 5088 goto out; 5089 5090 /* Journal blocked and flushed, clear needs_recovery flag. */ 5091 ext4_clear_feature_journal_needs_recovery(sb); 5092 } 5093 5094 error = ext4_commit_super(sb, 1); 5095 out: 5096 if (journal) 5097 /* we rely on upper layer to stop further updates */ 5098 jbd2_journal_unlock_updates(journal); 5099 return error; 5100 } 5101 5102 /* 5103 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5104 * flag here, even though the filesystem is not technically dirty yet. 5105 */ 5106 static int ext4_unfreeze(struct super_block *sb) 5107 { 5108 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5109 return 0; 5110 5111 if (EXT4_SB(sb)->s_journal) { 5112 /* Reset the needs_recovery flag before the fs is unlocked. */ 5113 ext4_set_feature_journal_needs_recovery(sb); 5114 } 5115 5116 ext4_commit_super(sb, 1); 5117 return 0; 5118 } 5119 5120 /* 5121 * Structure to save mount options for ext4_remount's benefit 5122 */ 5123 struct ext4_mount_options { 5124 unsigned long s_mount_opt; 5125 unsigned long s_mount_opt2; 5126 kuid_t s_resuid; 5127 kgid_t s_resgid; 5128 unsigned long s_commit_interval; 5129 u32 s_min_batch_time, s_max_batch_time; 5130 #ifdef CONFIG_QUOTA 5131 int s_jquota_fmt; 5132 char *s_qf_names[EXT4_MAXQUOTAS]; 5133 #endif 5134 }; 5135 5136 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5137 { 5138 struct ext4_super_block *es; 5139 struct ext4_sb_info *sbi = EXT4_SB(sb); 5140 unsigned long old_sb_flags; 5141 struct ext4_mount_options old_opts; 5142 int enable_quota = 0; 5143 ext4_group_t g; 5144 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5145 int err = 0; 5146 #ifdef CONFIG_QUOTA 5147 int i, j; 5148 char *to_free[EXT4_MAXQUOTAS]; 5149 #endif 5150 char *orig_data = kstrdup(data, GFP_KERNEL); 5151 5152 if (data && !orig_data) 5153 return -ENOMEM; 5154 5155 /* Store the original options */ 5156 old_sb_flags = sb->s_flags; 5157 old_opts.s_mount_opt = sbi->s_mount_opt; 5158 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5159 old_opts.s_resuid = sbi->s_resuid; 5160 old_opts.s_resgid = sbi->s_resgid; 5161 old_opts.s_commit_interval = sbi->s_commit_interval; 5162 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5163 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5164 #ifdef CONFIG_QUOTA 5165 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5166 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5167 if (sbi->s_qf_names[i]) { 5168 char *qf_name = get_qf_name(sb, sbi, i); 5169 5170 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5171 if (!old_opts.s_qf_names[i]) { 5172 for (j = 0; j < i; j++) 5173 kfree(old_opts.s_qf_names[j]); 5174 kfree(orig_data); 5175 return -ENOMEM; 5176 } 5177 } else 5178 old_opts.s_qf_names[i] = NULL; 5179 #endif 5180 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5181 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5182 5183 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5184 err = -EINVAL; 5185 goto restore_opts; 5186 } 5187 5188 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5189 test_opt(sb, JOURNAL_CHECKSUM)) { 5190 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5191 "during remount not supported; ignoring"); 5192 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5193 } 5194 5195 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5196 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5197 ext4_msg(sb, KERN_ERR, "can't mount with " 5198 "both data=journal and delalloc"); 5199 err = -EINVAL; 5200 goto restore_opts; 5201 } 5202 if (test_opt(sb, DIOREAD_NOLOCK)) { 5203 ext4_msg(sb, KERN_ERR, "can't mount with " 5204 "both data=journal and dioread_nolock"); 5205 err = -EINVAL; 5206 goto restore_opts; 5207 } 5208 if (test_opt(sb, DAX)) { 5209 ext4_msg(sb, KERN_ERR, "can't mount with " 5210 "both data=journal and dax"); 5211 err = -EINVAL; 5212 goto restore_opts; 5213 } 5214 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5215 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5216 ext4_msg(sb, KERN_ERR, "can't mount with " 5217 "journal_async_commit in data=ordered mode"); 5218 err = -EINVAL; 5219 goto restore_opts; 5220 } 5221 } 5222 5223 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5224 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5225 err = -EINVAL; 5226 goto restore_opts; 5227 } 5228 5229 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5230 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5231 "dax flag with busy inodes while remounting"); 5232 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5233 } 5234 5235 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5236 ext4_abort(sb, "Abort forced by user"); 5237 5238 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5239 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5240 5241 es = sbi->s_es; 5242 5243 if (sbi->s_journal) { 5244 ext4_init_journal_params(sb, sbi->s_journal); 5245 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5246 } 5247 5248 if (*flags & SB_LAZYTIME) 5249 sb->s_flags |= SB_LAZYTIME; 5250 5251 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5252 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5253 err = -EROFS; 5254 goto restore_opts; 5255 } 5256 5257 if (*flags & SB_RDONLY) { 5258 err = sync_filesystem(sb); 5259 if (err < 0) 5260 goto restore_opts; 5261 err = dquot_suspend(sb, -1); 5262 if (err < 0) 5263 goto restore_opts; 5264 5265 /* 5266 * First of all, the unconditional stuff we have to do 5267 * to disable replay of the journal when we next remount 5268 */ 5269 sb->s_flags |= SB_RDONLY; 5270 5271 /* 5272 * OK, test if we are remounting a valid rw partition 5273 * readonly, and if so set the rdonly flag and then 5274 * mark the partition as valid again. 5275 */ 5276 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5277 (sbi->s_mount_state & EXT4_VALID_FS)) 5278 es->s_state = cpu_to_le16(sbi->s_mount_state); 5279 5280 if (sbi->s_journal) 5281 ext4_mark_recovery_complete(sb, es); 5282 if (sbi->s_mmp_tsk) 5283 kthread_stop(sbi->s_mmp_tsk); 5284 } else { 5285 /* Make sure we can mount this feature set readwrite */ 5286 if (ext4_has_feature_readonly(sb) || 5287 !ext4_feature_set_ok(sb, 0)) { 5288 err = -EROFS; 5289 goto restore_opts; 5290 } 5291 /* 5292 * Make sure the group descriptor checksums 5293 * are sane. If they aren't, refuse to remount r/w. 5294 */ 5295 for (g = 0; g < sbi->s_groups_count; g++) { 5296 struct ext4_group_desc *gdp = 5297 ext4_get_group_desc(sb, g, NULL); 5298 5299 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5300 ext4_msg(sb, KERN_ERR, 5301 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5302 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5303 le16_to_cpu(gdp->bg_checksum)); 5304 err = -EFSBADCRC; 5305 goto restore_opts; 5306 } 5307 } 5308 5309 /* 5310 * If we have an unprocessed orphan list hanging 5311 * around from a previously readonly bdev mount, 5312 * require a full umount/remount for now. 5313 */ 5314 if (es->s_last_orphan) { 5315 ext4_msg(sb, KERN_WARNING, "Couldn't " 5316 "remount RDWR because of unprocessed " 5317 "orphan inode list. Please " 5318 "umount/remount instead"); 5319 err = -EINVAL; 5320 goto restore_opts; 5321 } 5322 5323 /* 5324 * Mounting a RDONLY partition read-write, so reread 5325 * and store the current valid flag. (It may have 5326 * been changed by e2fsck since we originally mounted 5327 * the partition.) 5328 */ 5329 if (sbi->s_journal) 5330 ext4_clear_journal_err(sb, es); 5331 sbi->s_mount_state = le16_to_cpu(es->s_state); 5332 5333 err = ext4_setup_super(sb, es, 0); 5334 if (err) 5335 goto restore_opts; 5336 5337 sb->s_flags &= ~SB_RDONLY; 5338 if (ext4_has_feature_mmp(sb)) 5339 if (ext4_multi_mount_protect(sb, 5340 le64_to_cpu(es->s_mmp_block))) { 5341 err = -EROFS; 5342 goto restore_opts; 5343 } 5344 enable_quota = 1; 5345 } 5346 } 5347 5348 /* 5349 * Reinitialize lazy itable initialization thread based on 5350 * current settings 5351 */ 5352 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5353 ext4_unregister_li_request(sb); 5354 else { 5355 ext4_group_t first_not_zeroed; 5356 first_not_zeroed = ext4_has_uninit_itable(sb); 5357 ext4_register_li_request(sb, first_not_zeroed); 5358 } 5359 5360 ext4_setup_system_zone(sb); 5361 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5362 err = ext4_commit_super(sb, 1); 5363 if (err) 5364 goto restore_opts; 5365 } 5366 5367 #ifdef CONFIG_QUOTA 5368 /* Release old quota file names */ 5369 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5370 kfree(old_opts.s_qf_names[i]); 5371 if (enable_quota) { 5372 if (sb_any_quota_suspended(sb)) 5373 dquot_resume(sb, -1); 5374 else if (ext4_has_feature_quota(sb)) { 5375 err = ext4_enable_quotas(sb); 5376 if (err) 5377 goto restore_opts; 5378 } 5379 } 5380 #endif 5381 5382 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5383 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5384 kfree(orig_data); 5385 return 0; 5386 5387 restore_opts: 5388 sb->s_flags = old_sb_flags; 5389 sbi->s_mount_opt = old_opts.s_mount_opt; 5390 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5391 sbi->s_resuid = old_opts.s_resuid; 5392 sbi->s_resgid = old_opts.s_resgid; 5393 sbi->s_commit_interval = old_opts.s_commit_interval; 5394 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5395 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5396 #ifdef CONFIG_QUOTA 5397 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5398 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5399 to_free[i] = get_qf_name(sb, sbi, i); 5400 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5401 } 5402 synchronize_rcu(); 5403 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5404 kfree(to_free[i]); 5405 #endif 5406 kfree(orig_data); 5407 return err; 5408 } 5409 5410 #ifdef CONFIG_QUOTA 5411 static int ext4_statfs_project(struct super_block *sb, 5412 kprojid_t projid, struct kstatfs *buf) 5413 { 5414 struct kqid qid; 5415 struct dquot *dquot; 5416 u64 limit; 5417 u64 curblock; 5418 5419 qid = make_kqid_projid(projid); 5420 dquot = dqget(sb, qid); 5421 if (IS_ERR(dquot)) 5422 return PTR_ERR(dquot); 5423 spin_lock(&dquot->dq_dqb_lock); 5424 5425 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5426 dquot->dq_dqb.dqb_bsoftlimit : 5427 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5428 if (limit && buf->f_blocks > limit) { 5429 curblock = (dquot->dq_dqb.dqb_curspace + 5430 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5431 buf->f_blocks = limit; 5432 buf->f_bfree = buf->f_bavail = 5433 (buf->f_blocks > curblock) ? 5434 (buf->f_blocks - curblock) : 0; 5435 } 5436 5437 limit = dquot->dq_dqb.dqb_isoftlimit ? 5438 dquot->dq_dqb.dqb_isoftlimit : 5439 dquot->dq_dqb.dqb_ihardlimit; 5440 if (limit && buf->f_files > limit) { 5441 buf->f_files = limit; 5442 buf->f_ffree = 5443 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5444 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5445 } 5446 5447 spin_unlock(&dquot->dq_dqb_lock); 5448 dqput(dquot); 5449 return 0; 5450 } 5451 #endif 5452 5453 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5454 { 5455 struct super_block *sb = dentry->d_sb; 5456 struct ext4_sb_info *sbi = EXT4_SB(sb); 5457 struct ext4_super_block *es = sbi->s_es; 5458 ext4_fsblk_t overhead = 0, resv_blocks; 5459 u64 fsid; 5460 s64 bfree; 5461 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5462 5463 if (!test_opt(sb, MINIX_DF)) 5464 overhead = sbi->s_overhead; 5465 5466 buf->f_type = EXT4_SUPER_MAGIC; 5467 buf->f_bsize = sb->s_blocksize; 5468 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5469 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5470 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5471 /* prevent underflow in case that few free space is available */ 5472 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5473 buf->f_bavail = buf->f_bfree - 5474 (ext4_r_blocks_count(es) + resv_blocks); 5475 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5476 buf->f_bavail = 0; 5477 buf->f_files = le32_to_cpu(es->s_inodes_count); 5478 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5479 buf->f_namelen = EXT4_NAME_LEN; 5480 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5481 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5482 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5483 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5484 5485 #ifdef CONFIG_QUOTA 5486 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5487 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5488 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5489 #endif 5490 return 0; 5491 } 5492 5493 5494 #ifdef CONFIG_QUOTA 5495 5496 /* 5497 * Helper functions so that transaction is started before we acquire dqio_sem 5498 * to keep correct lock ordering of transaction > dqio_sem 5499 */ 5500 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5501 { 5502 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5503 } 5504 5505 static int ext4_write_dquot(struct dquot *dquot) 5506 { 5507 int ret, err; 5508 handle_t *handle; 5509 struct inode *inode; 5510 5511 inode = dquot_to_inode(dquot); 5512 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5513 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5514 if (IS_ERR(handle)) 5515 return PTR_ERR(handle); 5516 ret = dquot_commit(dquot); 5517 err = ext4_journal_stop(handle); 5518 if (!ret) 5519 ret = err; 5520 return ret; 5521 } 5522 5523 static int ext4_acquire_dquot(struct dquot *dquot) 5524 { 5525 int ret, err; 5526 handle_t *handle; 5527 5528 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5529 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5530 if (IS_ERR(handle)) 5531 return PTR_ERR(handle); 5532 ret = dquot_acquire(dquot); 5533 err = ext4_journal_stop(handle); 5534 if (!ret) 5535 ret = err; 5536 return ret; 5537 } 5538 5539 static int ext4_release_dquot(struct dquot *dquot) 5540 { 5541 int ret, err; 5542 handle_t *handle; 5543 5544 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5545 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5546 if (IS_ERR(handle)) { 5547 /* Release dquot anyway to avoid endless cycle in dqput() */ 5548 dquot_release(dquot); 5549 return PTR_ERR(handle); 5550 } 5551 ret = dquot_release(dquot); 5552 err = ext4_journal_stop(handle); 5553 if (!ret) 5554 ret = err; 5555 return ret; 5556 } 5557 5558 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5559 { 5560 struct super_block *sb = dquot->dq_sb; 5561 struct ext4_sb_info *sbi = EXT4_SB(sb); 5562 5563 /* Are we journaling quotas? */ 5564 if (ext4_has_feature_quota(sb) || 5565 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5566 dquot_mark_dquot_dirty(dquot); 5567 return ext4_write_dquot(dquot); 5568 } else { 5569 return dquot_mark_dquot_dirty(dquot); 5570 } 5571 } 5572 5573 static int ext4_write_info(struct super_block *sb, int type) 5574 { 5575 int ret, err; 5576 handle_t *handle; 5577 5578 /* Data block + inode block */ 5579 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5580 if (IS_ERR(handle)) 5581 return PTR_ERR(handle); 5582 ret = dquot_commit_info(sb, type); 5583 err = ext4_journal_stop(handle); 5584 if (!ret) 5585 ret = err; 5586 return ret; 5587 } 5588 5589 /* 5590 * Turn on quotas during mount time - we need to find 5591 * the quota file and such... 5592 */ 5593 static int ext4_quota_on_mount(struct super_block *sb, int type) 5594 { 5595 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5596 EXT4_SB(sb)->s_jquota_fmt, type); 5597 } 5598 5599 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5600 { 5601 struct ext4_inode_info *ei = EXT4_I(inode); 5602 5603 /* The first argument of lockdep_set_subclass has to be 5604 * *exactly* the same as the argument to init_rwsem() --- in 5605 * this case, in init_once() --- or lockdep gets unhappy 5606 * because the name of the lock is set using the 5607 * stringification of the argument to init_rwsem(). 5608 */ 5609 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5610 lockdep_set_subclass(&ei->i_data_sem, subclass); 5611 } 5612 5613 /* 5614 * Standard function to be called on quota_on 5615 */ 5616 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5617 const struct path *path) 5618 { 5619 int err; 5620 5621 if (!test_opt(sb, QUOTA)) 5622 return -EINVAL; 5623 5624 /* Quotafile not on the same filesystem? */ 5625 if (path->dentry->d_sb != sb) 5626 return -EXDEV; 5627 /* Journaling quota? */ 5628 if (EXT4_SB(sb)->s_qf_names[type]) { 5629 /* Quotafile not in fs root? */ 5630 if (path->dentry->d_parent != sb->s_root) 5631 ext4_msg(sb, KERN_WARNING, 5632 "Quota file not on filesystem root. " 5633 "Journaled quota will not work"); 5634 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5635 } else { 5636 /* 5637 * Clear the flag just in case mount options changed since 5638 * last time. 5639 */ 5640 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5641 } 5642 5643 /* 5644 * When we journal data on quota file, we have to flush journal to see 5645 * all updates to the file when we bypass pagecache... 5646 */ 5647 if (EXT4_SB(sb)->s_journal && 5648 ext4_should_journal_data(d_inode(path->dentry))) { 5649 /* 5650 * We don't need to lock updates but journal_flush() could 5651 * otherwise be livelocked... 5652 */ 5653 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5654 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5655 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5656 if (err) 5657 return err; 5658 } 5659 5660 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5661 err = dquot_quota_on(sb, type, format_id, path); 5662 if (err) { 5663 lockdep_set_quota_inode(path->dentry->d_inode, 5664 I_DATA_SEM_NORMAL); 5665 } else { 5666 struct inode *inode = d_inode(path->dentry); 5667 handle_t *handle; 5668 5669 /* 5670 * Set inode flags to prevent userspace from messing with quota 5671 * files. If this fails, we return success anyway since quotas 5672 * are already enabled and this is not a hard failure. 5673 */ 5674 inode_lock(inode); 5675 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5676 if (IS_ERR(handle)) 5677 goto unlock_inode; 5678 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5679 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5680 S_NOATIME | S_IMMUTABLE); 5681 ext4_mark_inode_dirty(handle, inode); 5682 ext4_journal_stop(handle); 5683 unlock_inode: 5684 inode_unlock(inode); 5685 } 5686 return err; 5687 } 5688 5689 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5690 unsigned int flags) 5691 { 5692 int err; 5693 struct inode *qf_inode; 5694 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5695 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5696 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5697 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5698 }; 5699 5700 BUG_ON(!ext4_has_feature_quota(sb)); 5701 5702 if (!qf_inums[type]) 5703 return -EPERM; 5704 5705 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 5706 if (IS_ERR(qf_inode)) { 5707 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5708 return PTR_ERR(qf_inode); 5709 } 5710 5711 /* Don't account quota for quota files to avoid recursion */ 5712 qf_inode->i_flags |= S_NOQUOTA; 5713 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5714 err = dquot_enable(qf_inode, type, format_id, flags); 5715 if (err) 5716 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5717 iput(qf_inode); 5718 5719 return err; 5720 } 5721 5722 /* Enable usage tracking for all quota types. */ 5723 static int ext4_enable_quotas(struct super_block *sb) 5724 { 5725 int type, err = 0; 5726 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5727 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5728 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5729 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5730 }; 5731 bool quota_mopt[EXT4_MAXQUOTAS] = { 5732 test_opt(sb, USRQUOTA), 5733 test_opt(sb, GRPQUOTA), 5734 test_opt(sb, PRJQUOTA), 5735 }; 5736 5737 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5738 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5739 if (qf_inums[type]) { 5740 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5741 DQUOT_USAGE_ENABLED | 5742 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5743 if (err) { 5744 ext4_warning(sb, 5745 "Failed to enable quota tracking " 5746 "(type=%d, err=%d). Please run " 5747 "e2fsck to fix.", type, err); 5748 for (type--; type >= 0; type--) 5749 dquot_quota_off(sb, type); 5750 5751 return err; 5752 } 5753 } 5754 } 5755 return 0; 5756 } 5757 5758 static int ext4_quota_off(struct super_block *sb, int type) 5759 { 5760 struct inode *inode = sb_dqopt(sb)->files[type]; 5761 handle_t *handle; 5762 int err; 5763 5764 /* Force all delayed allocation blocks to be allocated. 5765 * Caller already holds s_umount sem */ 5766 if (test_opt(sb, DELALLOC)) 5767 sync_filesystem(sb); 5768 5769 if (!inode || !igrab(inode)) 5770 goto out; 5771 5772 err = dquot_quota_off(sb, type); 5773 if (err || ext4_has_feature_quota(sb)) 5774 goto out_put; 5775 5776 inode_lock(inode); 5777 /* 5778 * Update modification times of quota files when userspace can 5779 * start looking at them. If we fail, we return success anyway since 5780 * this is not a hard failure and quotas are already disabled. 5781 */ 5782 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5783 if (IS_ERR(handle)) 5784 goto out_unlock; 5785 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5786 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5787 inode->i_mtime = inode->i_ctime = current_time(inode); 5788 ext4_mark_inode_dirty(handle, inode); 5789 ext4_journal_stop(handle); 5790 out_unlock: 5791 inode_unlock(inode); 5792 out_put: 5793 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5794 iput(inode); 5795 return err; 5796 out: 5797 return dquot_quota_off(sb, type); 5798 } 5799 5800 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5801 * acquiring the locks... As quota files are never truncated and quota code 5802 * itself serializes the operations (and no one else should touch the files) 5803 * we don't have to be afraid of races */ 5804 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5805 size_t len, loff_t off) 5806 { 5807 struct inode *inode = sb_dqopt(sb)->files[type]; 5808 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5809 int offset = off & (sb->s_blocksize - 1); 5810 int tocopy; 5811 size_t toread; 5812 struct buffer_head *bh; 5813 loff_t i_size = i_size_read(inode); 5814 5815 if (off > i_size) 5816 return 0; 5817 if (off+len > i_size) 5818 len = i_size-off; 5819 toread = len; 5820 while (toread > 0) { 5821 tocopy = sb->s_blocksize - offset < toread ? 5822 sb->s_blocksize - offset : toread; 5823 bh = ext4_bread(NULL, inode, blk, 0); 5824 if (IS_ERR(bh)) 5825 return PTR_ERR(bh); 5826 if (!bh) /* A hole? */ 5827 memset(data, 0, tocopy); 5828 else 5829 memcpy(data, bh->b_data+offset, tocopy); 5830 brelse(bh); 5831 offset = 0; 5832 toread -= tocopy; 5833 data += tocopy; 5834 blk++; 5835 } 5836 return len; 5837 } 5838 5839 /* Write to quotafile (we know the transaction is already started and has 5840 * enough credits) */ 5841 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5842 const char *data, size_t len, loff_t off) 5843 { 5844 struct inode *inode = sb_dqopt(sb)->files[type]; 5845 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5846 int err, offset = off & (sb->s_blocksize - 1); 5847 int retries = 0; 5848 struct buffer_head *bh; 5849 handle_t *handle = journal_current_handle(); 5850 5851 if (EXT4_SB(sb)->s_journal && !handle) { 5852 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5853 " cancelled because transaction is not started", 5854 (unsigned long long)off, (unsigned long long)len); 5855 return -EIO; 5856 } 5857 /* 5858 * Since we account only one data block in transaction credits, 5859 * then it is impossible to cross a block boundary. 5860 */ 5861 if (sb->s_blocksize - offset < len) { 5862 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5863 " cancelled because not block aligned", 5864 (unsigned long long)off, (unsigned long long)len); 5865 return -EIO; 5866 } 5867 5868 do { 5869 bh = ext4_bread(handle, inode, blk, 5870 EXT4_GET_BLOCKS_CREATE | 5871 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5872 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5873 ext4_should_retry_alloc(inode->i_sb, &retries)); 5874 if (IS_ERR(bh)) 5875 return PTR_ERR(bh); 5876 if (!bh) 5877 goto out; 5878 BUFFER_TRACE(bh, "get write access"); 5879 err = ext4_journal_get_write_access(handle, bh); 5880 if (err) { 5881 brelse(bh); 5882 return err; 5883 } 5884 lock_buffer(bh); 5885 memcpy(bh->b_data+offset, data, len); 5886 flush_dcache_page(bh->b_page); 5887 unlock_buffer(bh); 5888 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5889 brelse(bh); 5890 out: 5891 if (inode->i_size < off + len) { 5892 i_size_write(inode, off + len); 5893 EXT4_I(inode)->i_disksize = inode->i_size; 5894 ext4_mark_inode_dirty(handle, inode); 5895 } 5896 return len; 5897 } 5898 5899 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5900 { 5901 const struct quota_format_ops *ops; 5902 5903 if (!sb_has_quota_loaded(sb, qid->type)) 5904 return -ESRCH; 5905 ops = sb_dqopt(sb)->ops[qid->type]; 5906 if (!ops || !ops->get_next_id) 5907 return -ENOSYS; 5908 return dquot_get_next_id(sb, qid); 5909 } 5910 #endif 5911 5912 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5913 const char *dev_name, void *data) 5914 { 5915 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5916 } 5917 5918 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5919 static inline void register_as_ext2(void) 5920 { 5921 int err = register_filesystem(&ext2_fs_type); 5922 if (err) 5923 printk(KERN_WARNING 5924 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5925 } 5926 5927 static inline void unregister_as_ext2(void) 5928 { 5929 unregister_filesystem(&ext2_fs_type); 5930 } 5931 5932 static inline int ext2_feature_set_ok(struct super_block *sb) 5933 { 5934 if (ext4_has_unknown_ext2_incompat_features(sb)) 5935 return 0; 5936 if (sb_rdonly(sb)) 5937 return 1; 5938 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5939 return 0; 5940 return 1; 5941 } 5942 #else 5943 static inline void register_as_ext2(void) { } 5944 static inline void unregister_as_ext2(void) { } 5945 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5946 #endif 5947 5948 static inline void register_as_ext3(void) 5949 { 5950 int err = register_filesystem(&ext3_fs_type); 5951 if (err) 5952 printk(KERN_WARNING 5953 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5954 } 5955 5956 static inline void unregister_as_ext3(void) 5957 { 5958 unregister_filesystem(&ext3_fs_type); 5959 } 5960 5961 static inline int ext3_feature_set_ok(struct super_block *sb) 5962 { 5963 if (ext4_has_unknown_ext3_incompat_features(sb)) 5964 return 0; 5965 if (!ext4_has_feature_journal(sb)) 5966 return 0; 5967 if (sb_rdonly(sb)) 5968 return 1; 5969 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5970 return 0; 5971 return 1; 5972 } 5973 5974 static struct file_system_type ext4_fs_type = { 5975 .owner = THIS_MODULE, 5976 .name = "ext4", 5977 .mount = ext4_mount, 5978 .kill_sb = kill_block_super, 5979 .fs_flags = FS_REQUIRES_DEV, 5980 }; 5981 MODULE_ALIAS_FS("ext4"); 5982 5983 /* Shared across all ext4 file systems */ 5984 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5985 5986 static int __init ext4_init_fs(void) 5987 { 5988 int i, err; 5989 5990 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5991 ext4_li_info = NULL; 5992 mutex_init(&ext4_li_mtx); 5993 5994 /* Build-time check for flags consistency */ 5995 ext4_check_flag_values(); 5996 5997 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5998 init_waitqueue_head(&ext4__ioend_wq[i]); 5999 6000 err = ext4_init_es(); 6001 if (err) 6002 return err; 6003 6004 err = ext4_init_pending(); 6005 if (err) 6006 goto out6; 6007 6008 err = ext4_init_pageio(); 6009 if (err) 6010 goto out5; 6011 6012 err = ext4_init_system_zone(); 6013 if (err) 6014 goto out4; 6015 6016 err = ext4_init_sysfs(); 6017 if (err) 6018 goto out3; 6019 6020 err = ext4_init_mballoc(); 6021 if (err) 6022 goto out2; 6023 err = init_inodecache(); 6024 if (err) 6025 goto out1; 6026 register_as_ext3(); 6027 register_as_ext2(); 6028 err = register_filesystem(&ext4_fs_type); 6029 if (err) 6030 goto out; 6031 6032 return 0; 6033 out: 6034 unregister_as_ext2(); 6035 unregister_as_ext3(); 6036 destroy_inodecache(); 6037 out1: 6038 ext4_exit_mballoc(); 6039 out2: 6040 ext4_exit_sysfs(); 6041 out3: 6042 ext4_exit_system_zone(); 6043 out4: 6044 ext4_exit_pageio(); 6045 out5: 6046 ext4_exit_pending(); 6047 out6: 6048 ext4_exit_es(); 6049 6050 return err; 6051 } 6052 6053 static void __exit ext4_exit_fs(void) 6054 { 6055 ext4_destroy_lazyinit_thread(); 6056 unregister_as_ext2(); 6057 unregister_as_ext3(); 6058 unregister_filesystem(&ext4_fs_type); 6059 destroy_inodecache(); 6060 ext4_exit_mballoc(); 6061 ext4_exit_sysfs(); 6062 ext4_exit_system_zone(); 6063 ext4_exit_pageio(); 6064 ext4_exit_es(); 6065 ext4_exit_pending(); 6066 } 6067 6068 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6069 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6070 MODULE_LICENSE("GPL"); 6071 MODULE_SOFTDEP("pre: crc32c"); 6072 module_init(ext4_init_fs) 6073 module_exit(ext4_exit_fs) 6074