1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <linux/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static struct ratelimit_state ext4_mount_msg_ratelimit; 59 60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 61 unsigned long journal_devnum); 62 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 63 static int ext4_commit_super(struct super_block *sb, int sync); 64 static void ext4_mark_recovery_complete(struct super_block *sb, 65 struct ext4_super_block *es); 66 static void ext4_clear_journal_err(struct super_block *sb, 67 struct ext4_super_block *es); 68 static int ext4_sync_fs(struct super_block *sb, int wait); 69 static int ext4_remount(struct super_block *sb, int *flags, char *data); 70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 71 static int ext4_unfreeze(struct super_block *sb); 72 static int ext4_freeze(struct super_block *sb); 73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 74 const char *dev_name, void *data); 75 static inline int ext2_feature_set_ok(struct super_block *sb); 76 static inline int ext3_feature_set_ok(struct super_block *sb); 77 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 78 static void ext4_destroy_lazyinit_thread(void); 79 static void ext4_unregister_li_request(struct super_block *sb); 80 static void ext4_clear_request_list(void); 81 static struct inode *ext4_get_journal_inode(struct super_block *sb, 82 unsigned int journal_inum); 83 84 /* 85 * Lock ordering 86 * 87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 88 * i_mmap_rwsem (inode->i_mmap_rwsem)! 89 * 90 * page fault path: 91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 92 * page lock -> i_data_sem (rw) 93 * 94 * buffered write path: 95 * sb_start_write -> i_mutex -> mmap_sem 96 * sb_start_write -> i_mutex -> transaction start -> page lock -> 97 * i_data_sem (rw) 98 * 99 * truncate: 100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 101 * i_mmap_rwsem (w) -> page lock 102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) -> 103 * transaction start -> i_data_sem (rw) 104 * 105 * direct IO: 106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem 107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> 108 * transaction start -> i_data_sem (rw) 109 * 110 * writepages: 111 * transaction start -> page lock(s) -> i_data_sem (rw) 112 */ 113 114 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 115 static struct file_system_type ext2_fs_type = { 116 .owner = THIS_MODULE, 117 .name = "ext2", 118 .mount = ext4_mount, 119 .kill_sb = kill_block_super, 120 .fs_flags = FS_REQUIRES_DEV, 121 }; 122 MODULE_ALIAS_FS("ext2"); 123 MODULE_ALIAS("ext2"); 124 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 125 #else 126 #define IS_EXT2_SB(sb) (0) 127 #endif 128 129 130 static struct file_system_type ext3_fs_type = { 131 .owner = THIS_MODULE, 132 .name = "ext3", 133 .mount = ext4_mount, 134 .kill_sb = kill_block_super, 135 .fs_flags = FS_REQUIRES_DEV, 136 }; 137 MODULE_ALIAS_FS("ext3"); 138 MODULE_ALIAS("ext3"); 139 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 140 141 static int ext4_verify_csum_type(struct super_block *sb, 142 struct ext4_super_block *es) 143 { 144 if (!ext4_has_feature_metadata_csum(sb)) 145 return 1; 146 147 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 148 } 149 150 static __le32 ext4_superblock_csum(struct super_block *sb, 151 struct ext4_super_block *es) 152 { 153 struct ext4_sb_info *sbi = EXT4_SB(sb); 154 int offset = offsetof(struct ext4_super_block, s_checksum); 155 __u32 csum; 156 157 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 158 159 return cpu_to_le32(csum); 160 } 161 162 static int ext4_superblock_csum_verify(struct super_block *sb, 163 struct ext4_super_block *es) 164 { 165 if (!ext4_has_metadata_csum(sb)) 166 return 1; 167 168 return es->s_checksum == ext4_superblock_csum(sb, es); 169 } 170 171 void ext4_superblock_csum_set(struct super_block *sb) 172 { 173 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 174 175 if (!ext4_has_metadata_csum(sb)) 176 return; 177 178 es->s_checksum = ext4_superblock_csum(sb, es); 179 } 180 181 void *ext4_kvmalloc(size_t size, gfp_t flags) 182 { 183 void *ret; 184 185 ret = kmalloc(size, flags | __GFP_NOWARN); 186 if (!ret) 187 ret = __vmalloc(size, flags, PAGE_KERNEL); 188 return ret; 189 } 190 191 void *ext4_kvzalloc(size_t size, gfp_t flags) 192 { 193 void *ret; 194 195 ret = kzalloc(size, flags | __GFP_NOWARN); 196 if (!ret) 197 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 198 return ret; 199 } 200 201 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 202 struct ext4_group_desc *bg) 203 { 204 return le32_to_cpu(bg->bg_block_bitmap_lo) | 205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 206 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 207 } 208 209 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 210 struct ext4_group_desc *bg) 211 { 212 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 214 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 215 } 216 217 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 218 struct ext4_group_desc *bg) 219 { 220 return le32_to_cpu(bg->bg_inode_table_lo) | 221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 222 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 223 } 224 225 __u32 ext4_free_group_clusters(struct super_block *sb, 226 struct ext4_group_desc *bg) 227 { 228 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 230 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 231 } 232 233 __u32 ext4_free_inodes_count(struct super_block *sb, 234 struct ext4_group_desc *bg) 235 { 236 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 238 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 239 } 240 241 __u32 ext4_used_dirs_count(struct super_block *sb, 242 struct ext4_group_desc *bg) 243 { 244 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 245 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 246 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 247 } 248 249 __u32 ext4_itable_unused_count(struct super_block *sb, 250 struct ext4_group_desc *bg) 251 { 252 return le16_to_cpu(bg->bg_itable_unused_lo) | 253 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 254 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 255 } 256 257 void ext4_block_bitmap_set(struct super_block *sb, 258 struct ext4_group_desc *bg, ext4_fsblk_t blk) 259 { 260 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 262 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 263 } 264 265 void ext4_inode_bitmap_set(struct super_block *sb, 266 struct ext4_group_desc *bg, ext4_fsblk_t blk) 267 { 268 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 270 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 271 } 272 273 void ext4_inode_table_set(struct super_block *sb, 274 struct ext4_group_desc *bg, ext4_fsblk_t blk) 275 { 276 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 278 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 279 } 280 281 void ext4_free_group_clusters_set(struct super_block *sb, 282 struct ext4_group_desc *bg, __u32 count) 283 { 284 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 286 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 287 } 288 289 void ext4_free_inodes_set(struct super_block *sb, 290 struct ext4_group_desc *bg, __u32 count) 291 { 292 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 294 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 295 } 296 297 void ext4_used_dirs_set(struct super_block *sb, 298 struct ext4_group_desc *bg, __u32 count) 299 { 300 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 301 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 302 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 303 } 304 305 void ext4_itable_unused_set(struct super_block *sb, 306 struct ext4_group_desc *bg, __u32 count) 307 { 308 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 309 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 310 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 311 } 312 313 314 static void __save_error_info(struct super_block *sb, const char *func, 315 unsigned int line) 316 { 317 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 318 319 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 320 if (bdev_read_only(sb->s_bdev)) 321 return; 322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 323 es->s_last_error_time = cpu_to_le32(get_seconds()); 324 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 325 es->s_last_error_line = cpu_to_le32(line); 326 if (!es->s_first_error_time) { 327 es->s_first_error_time = es->s_last_error_time; 328 strncpy(es->s_first_error_func, func, 329 sizeof(es->s_first_error_func)); 330 es->s_first_error_line = cpu_to_le32(line); 331 es->s_first_error_ino = es->s_last_error_ino; 332 es->s_first_error_block = es->s_last_error_block; 333 } 334 /* 335 * Start the daily error reporting function if it hasn't been 336 * started already 337 */ 338 if (!es->s_error_count) 339 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 340 le32_add_cpu(&es->s_error_count, 1); 341 } 342 343 static void save_error_info(struct super_block *sb, const char *func, 344 unsigned int line) 345 { 346 __save_error_info(sb, func, line); 347 ext4_commit_super(sb, 1); 348 } 349 350 /* 351 * The del_gendisk() function uninitializes the disk-specific data 352 * structures, including the bdi structure, without telling anyone 353 * else. Once this happens, any attempt to call mark_buffer_dirty() 354 * (for example, by ext4_commit_super), will cause a kernel OOPS. 355 * This is a kludge to prevent these oops until we can put in a proper 356 * hook in del_gendisk() to inform the VFS and file system layers. 357 */ 358 static int block_device_ejected(struct super_block *sb) 359 { 360 struct inode *bd_inode = sb->s_bdev->bd_inode; 361 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 362 363 return bdi->dev == NULL; 364 } 365 366 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 367 { 368 struct super_block *sb = journal->j_private; 369 struct ext4_sb_info *sbi = EXT4_SB(sb); 370 int error = is_journal_aborted(journal); 371 struct ext4_journal_cb_entry *jce; 372 373 BUG_ON(txn->t_state == T_FINISHED); 374 spin_lock(&sbi->s_md_lock); 375 while (!list_empty(&txn->t_private_list)) { 376 jce = list_entry(txn->t_private_list.next, 377 struct ext4_journal_cb_entry, jce_list); 378 list_del_init(&jce->jce_list); 379 spin_unlock(&sbi->s_md_lock); 380 jce->jce_func(sb, jce, error); 381 spin_lock(&sbi->s_md_lock); 382 } 383 spin_unlock(&sbi->s_md_lock); 384 } 385 386 /* Deal with the reporting of failure conditions on a filesystem such as 387 * inconsistencies detected or read IO failures. 388 * 389 * On ext2, we can store the error state of the filesystem in the 390 * superblock. That is not possible on ext4, because we may have other 391 * write ordering constraints on the superblock which prevent us from 392 * writing it out straight away; and given that the journal is about to 393 * be aborted, we can't rely on the current, or future, transactions to 394 * write out the superblock safely. 395 * 396 * We'll just use the jbd2_journal_abort() error code to record an error in 397 * the journal instead. On recovery, the journal will complain about 398 * that error until we've noted it down and cleared it. 399 */ 400 401 static void ext4_handle_error(struct super_block *sb) 402 { 403 if (sb->s_flags & MS_RDONLY) 404 return; 405 406 if (!test_opt(sb, ERRORS_CONT)) { 407 journal_t *journal = EXT4_SB(sb)->s_journal; 408 409 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 410 if (journal) 411 jbd2_journal_abort(journal, -EIO); 412 } 413 if (test_opt(sb, ERRORS_RO)) { 414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 415 /* 416 * Make sure updated value of ->s_mount_flags will be visible 417 * before ->s_flags update 418 */ 419 smp_wmb(); 420 sb->s_flags |= MS_RDONLY; 421 } 422 if (test_opt(sb, ERRORS_PANIC)) { 423 if (EXT4_SB(sb)->s_journal && 424 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 425 return; 426 panic("EXT4-fs (device %s): panic forced after error\n", 427 sb->s_id); 428 } 429 } 430 431 #define ext4_error_ratelimit(sb) \ 432 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 433 "EXT4-fs error") 434 435 void __ext4_error(struct super_block *sb, const char *function, 436 unsigned int line, const char *fmt, ...) 437 { 438 struct va_format vaf; 439 va_list args; 440 441 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 442 return; 443 444 if (ext4_error_ratelimit(sb)) { 445 va_start(args, fmt); 446 vaf.fmt = fmt; 447 vaf.va = &args; 448 printk(KERN_CRIT 449 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 450 sb->s_id, function, line, current->comm, &vaf); 451 va_end(args); 452 } 453 save_error_info(sb, function, line); 454 ext4_handle_error(sb); 455 } 456 457 void __ext4_error_inode(struct inode *inode, const char *function, 458 unsigned int line, ext4_fsblk_t block, 459 const char *fmt, ...) 460 { 461 va_list args; 462 struct va_format vaf; 463 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 464 465 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 466 return; 467 468 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 469 es->s_last_error_block = cpu_to_le64(block); 470 if (ext4_error_ratelimit(inode->i_sb)) { 471 va_start(args, fmt); 472 vaf.fmt = fmt; 473 vaf.va = &args; 474 if (block) 475 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 476 "inode #%lu: block %llu: comm %s: %pV\n", 477 inode->i_sb->s_id, function, line, inode->i_ino, 478 block, current->comm, &vaf); 479 else 480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 481 "inode #%lu: comm %s: %pV\n", 482 inode->i_sb->s_id, function, line, inode->i_ino, 483 current->comm, &vaf); 484 va_end(args); 485 } 486 save_error_info(inode->i_sb, function, line); 487 ext4_handle_error(inode->i_sb); 488 } 489 490 void __ext4_error_file(struct file *file, const char *function, 491 unsigned int line, ext4_fsblk_t block, 492 const char *fmt, ...) 493 { 494 va_list args; 495 struct va_format vaf; 496 struct ext4_super_block *es; 497 struct inode *inode = file_inode(file); 498 char pathname[80], *path; 499 500 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 501 return; 502 503 es = EXT4_SB(inode->i_sb)->s_es; 504 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 505 if (ext4_error_ratelimit(inode->i_sb)) { 506 path = file_path(file, pathname, sizeof(pathname)); 507 if (IS_ERR(path)) 508 path = "(unknown)"; 509 va_start(args, fmt); 510 vaf.fmt = fmt; 511 vaf.va = &args; 512 if (block) 513 printk(KERN_CRIT 514 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 515 "block %llu: comm %s: path %s: %pV\n", 516 inode->i_sb->s_id, function, line, inode->i_ino, 517 block, current->comm, path, &vaf); 518 else 519 printk(KERN_CRIT 520 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 521 "comm %s: path %s: %pV\n", 522 inode->i_sb->s_id, function, line, inode->i_ino, 523 current->comm, path, &vaf); 524 va_end(args); 525 } 526 save_error_info(inode->i_sb, function, line); 527 ext4_handle_error(inode->i_sb); 528 } 529 530 const char *ext4_decode_error(struct super_block *sb, int errno, 531 char nbuf[16]) 532 { 533 char *errstr = NULL; 534 535 switch (errno) { 536 case -EFSCORRUPTED: 537 errstr = "Corrupt filesystem"; 538 break; 539 case -EFSBADCRC: 540 errstr = "Filesystem failed CRC"; 541 break; 542 case -EIO: 543 errstr = "IO failure"; 544 break; 545 case -ENOMEM: 546 errstr = "Out of memory"; 547 break; 548 case -EROFS: 549 if (!sb || (EXT4_SB(sb)->s_journal && 550 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 551 errstr = "Journal has aborted"; 552 else 553 errstr = "Readonly filesystem"; 554 break; 555 default: 556 /* If the caller passed in an extra buffer for unknown 557 * errors, textualise them now. Else we just return 558 * NULL. */ 559 if (nbuf) { 560 /* Check for truncated error codes... */ 561 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 562 errstr = nbuf; 563 } 564 break; 565 } 566 567 return errstr; 568 } 569 570 /* __ext4_std_error decodes expected errors from journaling functions 571 * automatically and invokes the appropriate error response. */ 572 573 void __ext4_std_error(struct super_block *sb, const char *function, 574 unsigned int line, int errno) 575 { 576 char nbuf[16]; 577 const char *errstr; 578 579 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 580 return; 581 582 /* Special case: if the error is EROFS, and we're not already 583 * inside a transaction, then there's really no point in logging 584 * an error. */ 585 if (errno == -EROFS && journal_current_handle() == NULL && 586 (sb->s_flags & MS_RDONLY)) 587 return; 588 589 if (ext4_error_ratelimit(sb)) { 590 errstr = ext4_decode_error(sb, errno, nbuf); 591 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 592 sb->s_id, function, line, errstr); 593 } 594 595 save_error_info(sb, function, line); 596 ext4_handle_error(sb); 597 } 598 599 /* 600 * ext4_abort is a much stronger failure handler than ext4_error. The 601 * abort function may be used to deal with unrecoverable failures such 602 * as journal IO errors or ENOMEM at a critical moment in log management. 603 * 604 * We unconditionally force the filesystem into an ABORT|READONLY state, 605 * unless the error response on the fs has been set to panic in which 606 * case we take the easy way out and panic immediately. 607 */ 608 609 void __ext4_abort(struct super_block *sb, const char *function, 610 unsigned int line, const char *fmt, ...) 611 { 612 struct va_format vaf; 613 va_list args; 614 615 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 616 return; 617 618 save_error_info(sb, function, line); 619 va_start(args, fmt); 620 vaf.fmt = fmt; 621 vaf.va = &args; 622 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 623 sb->s_id, function, line, &vaf); 624 va_end(args); 625 626 if ((sb->s_flags & MS_RDONLY) == 0) { 627 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 628 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 629 /* 630 * Make sure updated value of ->s_mount_flags will be visible 631 * before ->s_flags update 632 */ 633 smp_wmb(); 634 sb->s_flags |= MS_RDONLY; 635 if (EXT4_SB(sb)->s_journal) 636 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 637 save_error_info(sb, function, line); 638 } 639 if (test_opt(sb, ERRORS_PANIC)) { 640 if (EXT4_SB(sb)->s_journal && 641 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 642 return; 643 panic("EXT4-fs panic from previous error\n"); 644 } 645 } 646 647 void __ext4_msg(struct super_block *sb, 648 const char *prefix, const char *fmt, ...) 649 { 650 struct va_format vaf; 651 va_list args; 652 653 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 654 return; 655 656 va_start(args, fmt); 657 vaf.fmt = fmt; 658 vaf.va = &args; 659 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 660 va_end(args); 661 } 662 663 #define ext4_warning_ratelimit(sb) \ 664 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 665 "EXT4-fs warning") 666 667 void __ext4_warning(struct super_block *sb, const char *function, 668 unsigned int line, const char *fmt, ...) 669 { 670 struct va_format vaf; 671 va_list args; 672 673 if (!ext4_warning_ratelimit(sb)) 674 return; 675 676 va_start(args, fmt); 677 vaf.fmt = fmt; 678 vaf.va = &args; 679 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 680 sb->s_id, function, line, &vaf); 681 va_end(args); 682 } 683 684 void __ext4_warning_inode(const struct inode *inode, const char *function, 685 unsigned int line, const char *fmt, ...) 686 { 687 struct va_format vaf; 688 va_list args; 689 690 if (!ext4_warning_ratelimit(inode->i_sb)) 691 return; 692 693 va_start(args, fmt); 694 vaf.fmt = fmt; 695 vaf.va = &args; 696 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 697 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 698 function, line, inode->i_ino, current->comm, &vaf); 699 va_end(args); 700 } 701 702 void __ext4_grp_locked_error(const char *function, unsigned int line, 703 struct super_block *sb, ext4_group_t grp, 704 unsigned long ino, ext4_fsblk_t block, 705 const char *fmt, ...) 706 __releases(bitlock) 707 __acquires(bitlock) 708 { 709 struct va_format vaf; 710 va_list args; 711 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 712 713 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 714 return; 715 716 es->s_last_error_ino = cpu_to_le32(ino); 717 es->s_last_error_block = cpu_to_le64(block); 718 __save_error_info(sb, function, line); 719 720 if (ext4_error_ratelimit(sb)) { 721 va_start(args, fmt); 722 vaf.fmt = fmt; 723 vaf.va = &args; 724 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 725 sb->s_id, function, line, grp); 726 if (ino) 727 printk(KERN_CONT "inode %lu: ", ino); 728 if (block) 729 printk(KERN_CONT "block %llu:", 730 (unsigned long long) block); 731 printk(KERN_CONT "%pV\n", &vaf); 732 va_end(args); 733 } 734 735 if (test_opt(sb, ERRORS_CONT)) { 736 ext4_commit_super(sb, 0); 737 return; 738 } 739 740 ext4_unlock_group(sb, grp); 741 ext4_handle_error(sb); 742 /* 743 * We only get here in the ERRORS_RO case; relocking the group 744 * may be dangerous, but nothing bad will happen since the 745 * filesystem will have already been marked read/only and the 746 * journal has been aborted. We return 1 as a hint to callers 747 * who might what to use the return value from 748 * ext4_grp_locked_error() to distinguish between the 749 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 750 * aggressively from the ext4 function in question, with a 751 * more appropriate error code. 752 */ 753 ext4_lock_group(sb, grp); 754 return; 755 } 756 757 void ext4_update_dynamic_rev(struct super_block *sb) 758 { 759 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 760 761 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 762 return; 763 764 ext4_warning(sb, 765 "updating to rev %d because of new feature flag, " 766 "running e2fsck is recommended", 767 EXT4_DYNAMIC_REV); 768 769 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 770 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 771 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 772 /* leave es->s_feature_*compat flags alone */ 773 /* es->s_uuid will be set by e2fsck if empty */ 774 775 /* 776 * The rest of the superblock fields should be zero, and if not it 777 * means they are likely already in use, so leave them alone. We 778 * can leave it up to e2fsck to clean up any inconsistencies there. 779 */ 780 } 781 782 /* 783 * Open the external journal device 784 */ 785 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 786 { 787 struct block_device *bdev; 788 char b[BDEVNAME_SIZE]; 789 790 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 791 if (IS_ERR(bdev)) 792 goto fail; 793 return bdev; 794 795 fail: 796 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 797 __bdevname(dev, b), PTR_ERR(bdev)); 798 return NULL; 799 } 800 801 /* 802 * Release the journal device 803 */ 804 static void ext4_blkdev_put(struct block_device *bdev) 805 { 806 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 807 } 808 809 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 810 { 811 struct block_device *bdev; 812 bdev = sbi->journal_bdev; 813 if (bdev) { 814 ext4_blkdev_put(bdev); 815 sbi->journal_bdev = NULL; 816 } 817 } 818 819 static inline struct inode *orphan_list_entry(struct list_head *l) 820 { 821 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 822 } 823 824 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 825 { 826 struct list_head *l; 827 828 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 829 le32_to_cpu(sbi->s_es->s_last_orphan)); 830 831 printk(KERN_ERR "sb_info orphan list:\n"); 832 list_for_each(l, &sbi->s_orphan) { 833 struct inode *inode = orphan_list_entry(l); 834 printk(KERN_ERR " " 835 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 836 inode->i_sb->s_id, inode->i_ino, inode, 837 inode->i_mode, inode->i_nlink, 838 NEXT_ORPHAN(inode)); 839 } 840 } 841 842 static void ext4_put_super(struct super_block *sb) 843 { 844 struct ext4_sb_info *sbi = EXT4_SB(sb); 845 struct ext4_super_block *es = sbi->s_es; 846 int aborted = 0; 847 int i, err; 848 849 ext4_unregister_li_request(sb); 850 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 851 852 flush_workqueue(sbi->rsv_conversion_wq); 853 destroy_workqueue(sbi->rsv_conversion_wq); 854 855 if (sbi->s_journal) { 856 aborted = is_journal_aborted(sbi->s_journal); 857 err = jbd2_journal_destroy(sbi->s_journal); 858 sbi->s_journal = NULL; 859 if ((err < 0) && !aborted) 860 ext4_abort(sb, "Couldn't clean up the journal"); 861 } 862 863 ext4_unregister_sysfs(sb); 864 ext4_es_unregister_shrinker(sbi); 865 del_timer_sync(&sbi->s_err_report); 866 ext4_release_system_zone(sb); 867 ext4_mb_release(sb); 868 ext4_ext_release(sb); 869 870 if (!(sb->s_flags & MS_RDONLY) && !aborted) { 871 ext4_clear_feature_journal_needs_recovery(sb); 872 es->s_state = cpu_to_le16(sbi->s_mount_state); 873 } 874 if (!(sb->s_flags & MS_RDONLY)) 875 ext4_commit_super(sb, 1); 876 877 for (i = 0; i < sbi->s_gdb_count; i++) 878 brelse(sbi->s_group_desc[i]); 879 kvfree(sbi->s_group_desc); 880 kvfree(sbi->s_flex_groups); 881 percpu_counter_destroy(&sbi->s_freeclusters_counter); 882 percpu_counter_destroy(&sbi->s_freeinodes_counter); 883 percpu_counter_destroy(&sbi->s_dirs_counter); 884 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 885 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 886 #ifdef CONFIG_QUOTA 887 for (i = 0; i < EXT4_MAXQUOTAS; i++) 888 kfree(sbi->s_qf_names[i]); 889 #endif 890 891 /* Debugging code just in case the in-memory inode orphan list 892 * isn't empty. The on-disk one can be non-empty if we've 893 * detected an error and taken the fs readonly, but the 894 * in-memory list had better be clean by this point. */ 895 if (!list_empty(&sbi->s_orphan)) 896 dump_orphan_list(sb, sbi); 897 J_ASSERT(list_empty(&sbi->s_orphan)); 898 899 sync_blockdev(sb->s_bdev); 900 invalidate_bdev(sb->s_bdev); 901 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 902 /* 903 * Invalidate the journal device's buffers. We don't want them 904 * floating about in memory - the physical journal device may 905 * hotswapped, and it breaks the `ro-after' testing code. 906 */ 907 sync_blockdev(sbi->journal_bdev); 908 invalidate_bdev(sbi->journal_bdev); 909 ext4_blkdev_remove(sbi); 910 } 911 if (sbi->s_mb_cache) { 912 ext4_xattr_destroy_cache(sbi->s_mb_cache); 913 sbi->s_mb_cache = NULL; 914 } 915 if (sbi->s_mmp_tsk) 916 kthread_stop(sbi->s_mmp_tsk); 917 brelse(sbi->s_sbh); 918 sb->s_fs_info = NULL; 919 /* 920 * Now that we are completely done shutting down the 921 * superblock, we need to actually destroy the kobject. 922 */ 923 kobject_put(&sbi->s_kobj); 924 wait_for_completion(&sbi->s_kobj_unregister); 925 if (sbi->s_chksum_driver) 926 crypto_free_shash(sbi->s_chksum_driver); 927 kfree(sbi->s_blockgroup_lock); 928 kfree(sbi); 929 } 930 931 static struct kmem_cache *ext4_inode_cachep; 932 933 /* 934 * Called inside transaction, so use GFP_NOFS 935 */ 936 static struct inode *ext4_alloc_inode(struct super_block *sb) 937 { 938 struct ext4_inode_info *ei; 939 940 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 941 if (!ei) 942 return NULL; 943 944 ei->vfs_inode.i_version = 1; 945 spin_lock_init(&ei->i_raw_lock); 946 INIT_LIST_HEAD(&ei->i_prealloc_list); 947 spin_lock_init(&ei->i_prealloc_lock); 948 ext4_es_init_tree(&ei->i_es_tree); 949 rwlock_init(&ei->i_es_lock); 950 INIT_LIST_HEAD(&ei->i_es_list); 951 ei->i_es_all_nr = 0; 952 ei->i_es_shk_nr = 0; 953 ei->i_es_shrink_lblk = 0; 954 ei->i_reserved_data_blocks = 0; 955 ei->i_reserved_meta_blocks = 0; 956 ei->i_allocated_meta_blocks = 0; 957 ei->i_da_metadata_calc_len = 0; 958 ei->i_da_metadata_calc_last_lblock = 0; 959 spin_lock_init(&(ei->i_block_reservation_lock)); 960 #ifdef CONFIG_QUOTA 961 ei->i_reserved_quota = 0; 962 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 963 #endif 964 ei->jinode = NULL; 965 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 966 spin_lock_init(&ei->i_completed_io_lock); 967 ei->i_sync_tid = 0; 968 ei->i_datasync_tid = 0; 969 atomic_set(&ei->i_unwritten, 0); 970 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 971 return &ei->vfs_inode; 972 } 973 974 static int ext4_drop_inode(struct inode *inode) 975 { 976 int drop = generic_drop_inode(inode); 977 978 trace_ext4_drop_inode(inode, drop); 979 return drop; 980 } 981 982 static void ext4_i_callback(struct rcu_head *head) 983 { 984 struct inode *inode = container_of(head, struct inode, i_rcu); 985 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 986 } 987 988 static void ext4_destroy_inode(struct inode *inode) 989 { 990 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 991 ext4_msg(inode->i_sb, KERN_ERR, 992 "Inode %lu (%p): orphan list check failed!", 993 inode->i_ino, EXT4_I(inode)); 994 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 995 EXT4_I(inode), sizeof(struct ext4_inode_info), 996 true); 997 dump_stack(); 998 } 999 call_rcu(&inode->i_rcu, ext4_i_callback); 1000 } 1001 1002 static void init_once(void *foo) 1003 { 1004 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1005 1006 INIT_LIST_HEAD(&ei->i_orphan); 1007 init_rwsem(&ei->xattr_sem); 1008 init_rwsem(&ei->i_data_sem); 1009 init_rwsem(&ei->i_mmap_sem); 1010 inode_init_once(&ei->vfs_inode); 1011 } 1012 1013 static int __init init_inodecache(void) 1014 { 1015 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 1016 sizeof(struct ext4_inode_info), 1017 0, (SLAB_RECLAIM_ACCOUNT| 1018 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1019 init_once); 1020 if (ext4_inode_cachep == NULL) 1021 return -ENOMEM; 1022 return 0; 1023 } 1024 1025 static void destroy_inodecache(void) 1026 { 1027 /* 1028 * Make sure all delayed rcu free inodes are flushed before we 1029 * destroy cache. 1030 */ 1031 rcu_barrier(); 1032 kmem_cache_destroy(ext4_inode_cachep); 1033 } 1034 1035 void ext4_clear_inode(struct inode *inode) 1036 { 1037 invalidate_inode_buffers(inode); 1038 clear_inode(inode); 1039 dquot_drop(inode); 1040 ext4_discard_preallocations(inode); 1041 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1042 if (EXT4_I(inode)->jinode) { 1043 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1044 EXT4_I(inode)->jinode); 1045 jbd2_free_inode(EXT4_I(inode)->jinode); 1046 EXT4_I(inode)->jinode = NULL; 1047 } 1048 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1049 fscrypt_put_encryption_info(inode, NULL); 1050 #endif 1051 } 1052 1053 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1054 u64 ino, u32 generation) 1055 { 1056 struct inode *inode; 1057 1058 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1059 return ERR_PTR(-ESTALE); 1060 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1061 return ERR_PTR(-ESTALE); 1062 1063 /* iget isn't really right if the inode is currently unallocated!! 1064 * 1065 * ext4_read_inode will return a bad_inode if the inode had been 1066 * deleted, so we should be safe. 1067 * 1068 * Currently we don't know the generation for parent directory, so 1069 * a generation of 0 means "accept any" 1070 */ 1071 inode = ext4_iget_normal(sb, ino); 1072 if (IS_ERR(inode)) 1073 return ERR_CAST(inode); 1074 if (generation && inode->i_generation != generation) { 1075 iput(inode); 1076 return ERR_PTR(-ESTALE); 1077 } 1078 1079 return inode; 1080 } 1081 1082 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1083 int fh_len, int fh_type) 1084 { 1085 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1086 ext4_nfs_get_inode); 1087 } 1088 1089 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1090 int fh_len, int fh_type) 1091 { 1092 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1093 ext4_nfs_get_inode); 1094 } 1095 1096 /* 1097 * Try to release metadata pages (indirect blocks, directories) which are 1098 * mapped via the block device. Since these pages could have journal heads 1099 * which would prevent try_to_free_buffers() from freeing them, we must use 1100 * jbd2 layer's try_to_free_buffers() function to release them. 1101 */ 1102 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1103 gfp_t wait) 1104 { 1105 journal_t *journal = EXT4_SB(sb)->s_journal; 1106 1107 WARN_ON(PageChecked(page)); 1108 if (!page_has_buffers(page)) 1109 return 0; 1110 if (journal) 1111 return jbd2_journal_try_to_free_buffers(journal, page, 1112 wait & ~__GFP_DIRECT_RECLAIM); 1113 return try_to_free_buffers(page); 1114 } 1115 1116 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1117 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1118 { 1119 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1120 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1121 } 1122 1123 static int ext4_prepare_context(struct inode *inode) 1124 { 1125 return ext4_convert_inline_data(inode); 1126 } 1127 1128 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1129 void *fs_data) 1130 { 1131 handle_t *handle = fs_data; 1132 int res, res2, retries = 0; 1133 1134 /* 1135 * If a journal handle was specified, then the encryption context is 1136 * being set on a new inode via inheritance and is part of a larger 1137 * transaction to create the inode. Otherwise the encryption context is 1138 * being set on an existing inode in its own transaction. Only in the 1139 * latter case should the "retry on ENOSPC" logic be used. 1140 */ 1141 1142 if (handle) { 1143 res = ext4_xattr_set_handle(handle, inode, 1144 EXT4_XATTR_INDEX_ENCRYPTION, 1145 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1146 ctx, len, 0); 1147 if (!res) { 1148 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1149 ext4_clear_inode_state(inode, 1150 EXT4_STATE_MAY_INLINE_DATA); 1151 /* 1152 * Update inode->i_flags - e.g. S_DAX may get disabled 1153 */ 1154 ext4_set_inode_flags(inode); 1155 } 1156 return res; 1157 } 1158 1159 retry: 1160 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1161 ext4_jbd2_credits_xattr(inode)); 1162 if (IS_ERR(handle)) 1163 return PTR_ERR(handle); 1164 1165 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1166 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1167 ctx, len, 0); 1168 if (!res) { 1169 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1170 /* Update inode->i_flags - e.g. S_DAX may get disabled */ 1171 ext4_set_inode_flags(inode); 1172 res = ext4_mark_inode_dirty(handle, inode); 1173 if (res) 1174 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1175 } 1176 res2 = ext4_journal_stop(handle); 1177 1178 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1179 goto retry; 1180 if (!res) 1181 res = res2; 1182 return res; 1183 } 1184 1185 static int ext4_dummy_context(struct inode *inode) 1186 { 1187 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1188 } 1189 1190 static unsigned ext4_max_namelen(struct inode *inode) 1191 { 1192 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize : 1193 EXT4_NAME_LEN; 1194 } 1195 1196 static const struct fscrypt_operations ext4_cryptops = { 1197 .key_prefix = "ext4:", 1198 .get_context = ext4_get_context, 1199 .prepare_context = ext4_prepare_context, 1200 .set_context = ext4_set_context, 1201 .dummy_context = ext4_dummy_context, 1202 .is_encrypted = ext4_encrypted_inode, 1203 .empty_dir = ext4_empty_dir, 1204 .max_namelen = ext4_max_namelen, 1205 }; 1206 #else 1207 static const struct fscrypt_operations ext4_cryptops = { 1208 .is_encrypted = ext4_encrypted_inode, 1209 }; 1210 #endif 1211 1212 #ifdef CONFIG_QUOTA 1213 static char *quotatypes[] = INITQFNAMES; 1214 #define QTYPE2NAME(t) (quotatypes[t]) 1215 1216 static int ext4_write_dquot(struct dquot *dquot); 1217 static int ext4_acquire_dquot(struct dquot *dquot); 1218 static int ext4_release_dquot(struct dquot *dquot); 1219 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1220 static int ext4_write_info(struct super_block *sb, int type); 1221 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1222 const struct path *path); 1223 static int ext4_quota_off(struct super_block *sb, int type); 1224 static int ext4_quota_on_mount(struct super_block *sb, int type); 1225 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1226 size_t len, loff_t off); 1227 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1228 const char *data, size_t len, loff_t off); 1229 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1230 unsigned int flags); 1231 static int ext4_enable_quotas(struct super_block *sb); 1232 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1233 1234 static struct dquot **ext4_get_dquots(struct inode *inode) 1235 { 1236 return EXT4_I(inode)->i_dquot; 1237 } 1238 1239 static const struct dquot_operations ext4_quota_operations = { 1240 .get_reserved_space = ext4_get_reserved_space, 1241 .write_dquot = ext4_write_dquot, 1242 .acquire_dquot = ext4_acquire_dquot, 1243 .release_dquot = ext4_release_dquot, 1244 .mark_dirty = ext4_mark_dquot_dirty, 1245 .write_info = ext4_write_info, 1246 .alloc_dquot = dquot_alloc, 1247 .destroy_dquot = dquot_destroy, 1248 .get_projid = ext4_get_projid, 1249 .get_next_id = ext4_get_next_id, 1250 }; 1251 1252 static const struct quotactl_ops ext4_qctl_operations = { 1253 .quota_on = ext4_quota_on, 1254 .quota_off = ext4_quota_off, 1255 .quota_sync = dquot_quota_sync, 1256 .get_state = dquot_get_state, 1257 .set_info = dquot_set_dqinfo, 1258 .get_dqblk = dquot_get_dqblk, 1259 .set_dqblk = dquot_set_dqblk, 1260 .get_nextdqblk = dquot_get_next_dqblk, 1261 }; 1262 #endif 1263 1264 static const struct super_operations ext4_sops = { 1265 .alloc_inode = ext4_alloc_inode, 1266 .destroy_inode = ext4_destroy_inode, 1267 .write_inode = ext4_write_inode, 1268 .dirty_inode = ext4_dirty_inode, 1269 .drop_inode = ext4_drop_inode, 1270 .evict_inode = ext4_evict_inode, 1271 .put_super = ext4_put_super, 1272 .sync_fs = ext4_sync_fs, 1273 .freeze_fs = ext4_freeze, 1274 .unfreeze_fs = ext4_unfreeze, 1275 .statfs = ext4_statfs, 1276 .remount_fs = ext4_remount, 1277 .show_options = ext4_show_options, 1278 #ifdef CONFIG_QUOTA 1279 .quota_read = ext4_quota_read, 1280 .quota_write = ext4_quota_write, 1281 .get_dquots = ext4_get_dquots, 1282 #endif 1283 .bdev_try_to_free_page = bdev_try_to_free_page, 1284 }; 1285 1286 static const struct export_operations ext4_export_ops = { 1287 .fh_to_dentry = ext4_fh_to_dentry, 1288 .fh_to_parent = ext4_fh_to_parent, 1289 .get_parent = ext4_get_parent, 1290 }; 1291 1292 enum { 1293 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1294 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1295 Opt_nouid32, Opt_debug, Opt_removed, 1296 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1297 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1298 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1299 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1300 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1301 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1302 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1303 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1304 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1305 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1306 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1307 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1308 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1309 Opt_inode_readahead_blks, Opt_journal_ioprio, 1310 Opt_dioread_nolock, Opt_dioread_lock, 1311 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1312 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1313 }; 1314 1315 static const match_table_t tokens = { 1316 {Opt_bsd_df, "bsddf"}, 1317 {Opt_minix_df, "minixdf"}, 1318 {Opt_grpid, "grpid"}, 1319 {Opt_grpid, "bsdgroups"}, 1320 {Opt_nogrpid, "nogrpid"}, 1321 {Opt_nogrpid, "sysvgroups"}, 1322 {Opt_resgid, "resgid=%u"}, 1323 {Opt_resuid, "resuid=%u"}, 1324 {Opt_sb, "sb=%u"}, 1325 {Opt_err_cont, "errors=continue"}, 1326 {Opt_err_panic, "errors=panic"}, 1327 {Opt_err_ro, "errors=remount-ro"}, 1328 {Opt_nouid32, "nouid32"}, 1329 {Opt_debug, "debug"}, 1330 {Opt_removed, "oldalloc"}, 1331 {Opt_removed, "orlov"}, 1332 {Opt_user_xattr, "user_xattr"}, 1333 {Opt_nouser_xattr, "nouser_xattr"}, 1334 {Opt_acl, "acl"}, 1335 {Opt_noacl, "noacl"}, 1336 {Opt_noload, "norecovery"}, 1337 {Opt_noload, "noload"}, 1338 {Opt_removed, "nobh"}, 1339 {Opt_removed, "bh"}, 1340 {Opt_commit, "commit=%u"}, 1341 {Opt_min_batch_time, "min_batch_time=%u"}, 1342 {Opt_max_batch_time, "max_batch_time=%u"}, 1343 {Opt_journal_dev, "journal_dev=%u"}, 1344 {Opt_journal_path, "journal_path=%s"}, 1345 {Opt_journal_checksum, "journal_checksum"}, 1346 {Opt_nojournal_checksum, "nojournal_checksum"}, 1347 {Opt_journal_async_commit, "journal_async_commit"}, 1348 {Opt_abort, "abort"}, 1349 {Opt_data_journal, "data=journal"}, 1350 {Opt_data_ordered, "data=ordered"}, 1351 {Opt_data_writeback, "data=writeback"}, 1352 {Opt_data_err_abort, "data_err=abort"}, 1353 {Opt_data_err_ignore, "data_err=ignore"}, 1354 {Opt_offusrjquota, "usrjquota="}, 1355 {Opt_usrjquota, "usrjquota=%s"}, 1356 {Opt_offgrpjquota, "grpjquota="}, 1357 {Opt_grpjquota, "grpjquota=%s"}, 1358 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1359 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1360 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1361 {Opt_grpquota, "grpquota"}, 1362 {Opt_noquota, "noquota"}, 1363 {Opt_quota, "quota"}, 1364 {Opt_usrquota, "usrquota"}, 1365 {Opt_prjquota, "prjquota"}, 1366 {Opt_barrier, "barrier=%u"}, 1367 {Opt_barrier, "barrier"}, 1368 {Opt_nobarrier, "nobarrier"}, 1369 {Opt_i_version, "i_version"}, 1370 {Opt_dax, "dax"}, 1371 {Opt_stripe, "stripe=%u"}, 1372 {Opt_delalloc, "delalloc"}, 1373 {Opt_lazytime, "lazytime"}, 1374 {Opt_nolazytime, "nolazytime"}, 1375 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1376 {Opt_nodelalloc, "nodelalloc"}, 1377 {Opt_removed, "mblk_io_submit"}, 1378 {Opt_removed, "nomblk_io_submit"}, 1379 {Opt_block_validity, "block_validity"}, 1380 {Opt_noblock_validity, "noblock_validity"}, 1381 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1382 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1383 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1384 {Opt_auto_da_alloc, "auto_da_alloc"}, 1385 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1386 {Opt_dioread_nolock, "dioread_nolock"}, 1387 {Opt_dioread_lock, "dioread_lock"}, 1388 {Opt_discard, "discard"}, 1389 {Opt_nodiscard, "nodiscard"}, 1390 {Opt_init_itable, "init_itable=%u"}, 1391 {Opt_init_itable, "init_itable"}, 1392 {Opt_noinit_itable, "noinit_itable"}, 1393 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1394 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1395 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1396 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1397 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1398 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1399 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1400 {Opt_err, NULL}, 1401 }; 1402 1403 static ext4_fsblk_t get_sb_block(void **data) 1404 { 1405 ext4_fsblk_t sb_block; 1406 char *options = (char *) *data; 1407 1408 if (!options || strncmp(options, "sb=", 3) != 0) 1409 return 1; /* Default location */ 1410 1411 options += 3; 1412 /* TODO: use simple_strtoll with >32bit ext4 */ 1413 sb_block = simple_strtoul(options, &options, 0); 1414 if (*options && *options != ',') { 1415 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1416 (char *) *data); 1417 return 1; 1418 } 1419 if (*options == ',') 1420 options++; 1421 *data = (void *) options; 1422 1423 return sb_block; 1424 } 1425 1426 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1427 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1428 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1429 1430 #ifdef CONFIG_QUOTA 1431 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1432 { 1433 struct ext4_sb_info *sbi = EXT4_SB(sb); 1434 char *qname; 1435 int ret = -1; 1436 1437 if (sb_any_quota_loaded(sb) && 1438 !sbi->s_qf_names[qtype]) { 1439 ext4_msg(sb, KERN_ERR, 1440 "Cannot change journaled " 1441 "quota options when quota turned on"); 1442 return -1; 1443 } 1444 if (ext4_has_feature_quota(sb)) { 1445 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1446 "ignored when QUOTA feature is enabled"); 1447 return 1; 1448 } 1449 qname = match_strdup(args); 1450 if (!qname) { 1451 ext4_msg(sb, KERN_ERR, 1452 "Not enough memory for storing quotafile name"); 1453 return -1; 1454 } 1455 if (sbi->s_qf_names[qtype]) { 1456 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1457 ret = 1; 1458 else 1459 ext4_msg(sb, KERN_ERR, 1460 "%s quota file already specified", 1461 QTYPE2NAME(qtype)); 1462 goto errout; 1463 } 1464 if (strchr(qname, '/')) { 1465 ext4_msg(sb, KERN_ERR, 1466 "quotafile must be on filesystem root"); 1467 goto errout; 1468 } 1469 sbi->s_qf_names[qtype] = qname; 1470 set_opt(sb, QUOTA); 1471 return 1; 1472 errout: 1473 kfree(qname); 1474 return ret; 1475 } 1476 1477 static int clear_qf_name(struct super_block *sb, int qtype) 1478 { 1479 1480 struct ext4_sb_info *sbi = EXT4_SB(sb); 1481 1482 if (sb_any_quota_loaded(sb) && 1483 sbi->s_qf_names[qtype]) { 1484 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1485 " when quota turned on"); 1486 return -1; 1487 } 1488 kfree(sbi->s_qf_names[qtype]); 1489 sbi->s_qf_names[qtype] = NULL; 1490 return 1; 1491 } 1492 #endif 1493 1494 #define MOPT_SET 0x0001 1495 #define MOPT_CLEAR 0x0002 1496 #define MOPT_NOSUPPORT 0x0004 1497 #define MOPT_EXPLICIT 0x0008 1498 #define MOPT_CLEAR_ERR 0x0010 1499 #define MOPT_GTE0 0x0020 1500 #ifdef CONFIG_QUOTA 1501 #define MOPT_Q 0 1502 #define MOPT_QFMT 0x0040 1503 #else 1504 #define MOPT_Q MOPT_NOSUPPORT 1505 #define MOPT_QFMT MOPT_NOSUPPORT 1506 #endif 1507 #define MOPT_DATAJ 0x0080 1508 #define MOPT_NO_EXT2 0x0100 1509 #define MOPT_NO_EXT3 0x0200 1510 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1511 #define MOPT_STRING 0x0400 1512 1513 static const struct mount_opts { 1514 int token; 1515 int mount_opt; 1516 int flags; 1517 } ext4_mount_opts[] = { 1518 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1519 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1520 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1521 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1522 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1523 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1524 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1525 MOPT_EXT4_ONLY | MOPT_SET}, 1526 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1527 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1528 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1529 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1530 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1531 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1532 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1533 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1534 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1535 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1536 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1537 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1538 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1539 EXT4_MOUNT_JOURNAL_CHECKSUM), 1540 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1541 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1542 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1543 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1544 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1545 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1546 MOPT_NO_EXT2}, 1547 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1548 MOPT_NO_EXT2}, 1549 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1550 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1551 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1552 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1553 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1554 {Opt_commit, 0, MOPT_GTE0}, 1555 {Opt_max_batch_time, 0, MOPT_GTE0}, 1556 {Opt_min_batch_time, 0, MOPT_GTE0}, 1557 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1558 {Opt_init_itable, 0, MOPT_GTE0}, 1559 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1560 {Opt_stripe, 0, MOPT_GTE0}, 1561 {Opt_resuid, 0, MOPT_GTE0}, 1562 {Opt_resgid, 0, MOPT_GTE0}, 1563 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1564 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1565 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1566 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1567 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1568 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1569 MOPT_NO_EXT2 | MOPT_DATAJ}, 1570 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1571 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1572 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1573 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1574 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1575 #else 1576 {Opt_acl, 0, MOPT_NOSUPPORT}, 1577 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1578 #endif 1579 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1580 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1581 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1582 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1583 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1584 MOPT_SET | MOPT_Q}, 1585 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1586 MOPT_SET | MOPT_Q}, 1587 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1588 MOPT_SET | MOPT_Q}, 1589 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1590 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1591 MOPT_CLEAR | MOPT_Q}, 1592 {Opt_usrjquota, 0, MOPT_Q}, 1593 {Opt_grpjquota, 0, MOPT_Q}, 1594 {Opt_offusrjquota, 0, MOPT_Q}, 1595 {Opt_offgrpjquota, 0, MOPT_Q}, 1596 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1597 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1598 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1599 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1600 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1601 {Opt_err, 0, 0} 1602 }; 1603 1604 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1605 substring_t *args, unsigned long *journal_devnum, 1606 unsigned int *journal_ioprio, int is_remount) 1607 { 1608 struct ext4_sb_info *sbi = EXT4_SB(sb); 1609 const struct mount_opts *m; 1610 kuid_t uid; 1611 kgid_t gid; 1612 int arg = 0; 1613 1614 #ifdef CONFIG_QUOTA 1615 if (token == Opt_usrjquota) 1616 return set_qf_name(sb, USRQUOTA, &args[0]); 1617 else if (token == Opt_grpjquota) 1618 return set_qf_name(sb, GRPQUOTA, &args[0]); 1619 else if (token == Opt_offusrjquota) 1620 return clear_qf_name(sb, USRQUOTA); 1621 else if (token == Opt_offgrpjquota) 1622 return clear_qf_name(sb, GRPQUOTA); 1623 #endif 1624 switch (token) { 1625 case Opt_noacl: 1626 case Opt_nouser_xattr: 1627 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1628 break; 1629 case Opt_sb: 1630 return 1; /* handled by get_sb_block() */ 1631 case Opt_removed: 1632 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1633 return 1; 1634 case Opt_abort: 1635 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1636 return 1; 1637 case Opt_i_version: 1638 sb->s_flags |= MS_I_VERSION; 1639 return 1; 1640 case Opt_lazytime: 1641 sb->s_flags |= MS_LAZYTIME; 1642 return 1; 1643 case Opt_nolazytime: 1644 sb->s_flags &= ~MS_LAZYTIME; 1645 return 1; 1646 } 1647 1648 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1649 if (token == m->token) 1650 break; 1651 1652 if (m->token == Opt_err) { 1653 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1654 "or missing value", opt); 1655 return -1; 1656 } 1657 1658 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1659 ext4_msg(sb, KERN_ERR, 1660 "Mount option \"%s\" incompatible with ext2", opt); 1661 return -1; 1662 } 1663 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1664 ext4_msg(sb, KERN_ERR, 1665 "Mount option \"%s\" incompatible with ext3", opt); 1666 return -1; 1667 } 1668 1669 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1670 return -1; 1671 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1672 return -1; 1673 if (m->flags & MOPT_EXPLICIT) { 1674 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1675 set_opt2(sb, EXPLICIT_DELALLOC); 1676 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1677 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1678 } else 1679 return -1; 1680 } 1681 if (m->flags & MOPT_CLEAR_ERR) 1682 clear_opt(sb, ERRORS_MASK); 1683 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1684 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1685 "options when quota turned on"); 1686 return -1; 1687 } 1688 1689 if (m->flags & MOPT_NOSUPPORT) { 1690 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1691 } else if (token == Opt_commit) { 1692 if (arg == 0) 1693 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1694 sbi->s_commit_interval = HZ * arg; 1695 } else if (token == Opt_debug_want_extra_isize) { 1696 sbi->s_want_extra_isize = arg; 1697 } else if (token == Opt_max_batch_time) { 1698 sbi->s_max_batch_time = arg; 1699 } else if (token == Opt_min_batch_time) { 1700 sbi->s_min_batch_time = arg; 1701 } else if (token == Opt_inode_readahead_blks) { 1702 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1703 ext4_msg(sb, KERN_ERR, 1704 "EXT4-fs: inode_readahead_blks must be " 1705 "0 or a power of 2 smaller than 2^31"); 1706 return -1; 1707 } 1708 sbi->s_inode_readahead_blks = arg; 1709 } else if (token == Opt_init_itable) { 1710 set_opt(sb, INIT_INODE_TABLE); 1711 if (!args->from) 1712 arg = EXT4_DEF_LI_WAIT_MULT; 1713 sbi->s_li_wait_mult = arg; 1714 } else if (token == Opt_max_dir_size_kb) { 1715 sbi->s_max_dir_size_kb = arg; 1716 } else if (token == Opt_stripe) { 1717 sbi->s_stripe = arg; 1718 } else if (token == Opt_resuid) { 1719 uid = make_kuid(current_user_ns(), arg); 1720 if (!uid_valid(uid)) { 1721 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1722 return -1; 1723 } 1724 sbi->s_resuid = uid; 1725 } else if (token == Opt_resgid) { 1726 gid = make_kgid(current_user_ns(), arg); 1727 if (!gid_valid(gid)) { 1728 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1729 return -1; 1730 } 1731 sbi->s_resgid = gid; 1732 } else if (token == Opt_journal_dev) { 1733 if (is_remount) { 1734 ext4_msg(sb, KERN_ERR, 1735 "Cannot specify journal on remount"); 1736 return -1; 1737 } 1738 *journal_devnum = arg; 1739 } else if (token == Opt_journal_path) { 1740 char *journal_path; 1741 struct inode *journal_inode; 1742 struct path path; 1743 int error; 1744 1745 if (is_remount) { 1746 ext4_msg(sb, KERN_ERR, 1747 "Cannot specify journal on remount"); 1748 return -1; 1749 } 1750 journal_path = match_strdup(&args[0]); 1751 if (!journal_path) { 1752 ext4_msg(sb, KERN_ERR, "error: could not dup " 1753 "journal device string"); 1754 return -1; 1755 } 1756 1757 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1758 if (error) { 1759 ext4_msg(sb, KERN_ERR, "error: could not find " 1760 "journal device path: error %d", error); 1761 kfree(journal_path); 1762 return -1; 1763 } 1764 1765 journal_inode = d_inode(path.dentry); 1766 if (!S_ISBLK(journal_inode->i_mode)) { 1767 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1768 "is not a block device", journal_path); 1769 path_put(&path); 1770 kfree(journal_path); 1771 return -1; 1772 } 1773 1774 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1775 path_put(&path); 1776 kfree(journal_path); 1777 } else if (token == Opt_journal_ioprio) { 1778 if (arg > 7) { 1779 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1780 " (must be 0-7)"); 1781 return -1; 1782 } 1783 *journal_ioprio = 1784 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1785 } else if (token == Opt_test_dummy_encryption) { 1786 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1787 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1788 ext4_msg(sb, KERN_WARNING, 1789 "Test dummy encryption mode enabled"); 1790 #else 1791 ext4_msg(sb, KERN_WARNING, 1792 "Test dummy encryption mount option ignored"); 1793 #endif 1794 } else if (m->flags & MOPT_DATAJ) { 1795 if (is_remount) { 1796 if (!sbi->s_journal) 1797 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1798 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1799 ext4_msg(sb, KERN_ERR, 1800 "Cannot change data mode on remount"); 1801 return -1; 1802 } 1803 } else { 1804 clear_opt(sb, DATA_FLAGS); 1805 sbi->s_mount_opt |= m->mount_opt; 1806 } 1807 #ifdef CONFIG_QUOTA 1808 } else if (m->flags & MOPT_QFMT) { 1809 if (sb_any_quota_loaded(sb) && 1810 sbi->s_jquota_fmt != m->mount_opt) { 1811 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1812 "quota options when quota turned on"); 1813 return -1; 1814 } 1815 if (ext4_has_feature_quota(sb)) { 1816 ext4_msg(sb, KERN_INFO, 1817 "Quota format mount options ignored " 1818 "when QUOTA feature is enabled"); 1819 return 1; 1820 } 1821 sbi->s_jquota_fmt = m->mount_opt; 1822 #endif 1823 } else if (token == Opt_dax) { 1824 #ifdef CONFIG_FS_DAX 1825 ext4_msg(sb, KERN_WARNING, 1826 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1827 sbi->s_mount_opt |= m->mount_opt; 1828 #else 1829 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1830 return -1; 1831 #endif 1832 } else if (token == Opt_data_err_abort) { 1833 sbi->s_mount_opt |= m->mount_opt; 1834 } else if (token == Opt_data_err_ignore) { 1835 sbi->s_mount_opt &= ~m->mount_opt; 1836 } else { 1837 if (!args->from) 1838 arg = 1; 1839 if (m->flags & MOPT_CLEAR) 1840 arg = !arg; 1841 else if (unlikely(!(m->flags & MOPT_SET))) { 1842 ext4_msg(sb, KERN_WARNING, 1843 "buggy handling of option %s", opt); 1844 WARN_ON(1); 1845 return -1; 1846 } 1847 if (arg != 0) 1848 sbi->s_mount_opt |= m->mount_opt; 1849 else 1850 sbi->s_mount_opt &= ~m->mount_opt; 1851 } 1852 return 1; 1853 } 1854 1855 static int parse_options(char *options, struct super_block *sb, 1856 unsigned long *journal_devnum, 1857 unsigned int *journal_ioprio, 1858 int is_remount) 1859 { 1860 struct ext4_sb_info *sbi = EXT4_SB(sb); 1861 char *p; 1862 substring_t args[MAX_OPT_ARGS]; 1863 int token; 1864 1865 if (!options) 1866 return 1; 1867 1868 while ((p = strsep(&options, ",")) != NULL) { 1869 if (!*p) 1870 continue; 1871 /* 1872 * Initialize args struct so we know whether arg was 1873 * found; some options take optional arguments. 1874 */ 1875 args[0].to = args[0].from = NULL; 1876 token = match_token(p, tokens, args); 1877 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1878 journal_ioprio, is_remount) < 0) 1879 return 0; 1880 } 1881 #ifdef CONFIG_QUOTA 1882 /* 1883 * We do the test below only for project quotas. 'usrquota' and 1884 * 'grpquota' mount options are allowed even without quota feature 1885 * to support legacy quotas in quota files. 1886 */ 1887 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 1888 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 1889 "Cannot enable project quota enforcement."); 1890 return 0; 1891 } 1892 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1893 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1894 clear_opt(sb, USRQUOTA); 1895 1896 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1897 clear_opt(sb, GRPQUOTA); 1898 1899 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1900 ext4_msg(sb, KERN_ERR, "old and new quota " 1901 "format mixing"); 1902 return 0; 1903 } 1904 1905 if (!sbi->s_jquota_fmt) { 1906 ext4_msg(sb, KERN_ERR, "journaled quota format " 1907 "not specified"); 1908 return 0; 1909 } 1910 } 1911 #endif 1912 if (test_opt(sb, DIOREAD_NOLOCK)) { 1913 int blocksize = 1914 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1915 1916 if (blocksize < PAGE_SIZE) { 1917 ext4_msg(sb, KERN_ERR, "can't mount with " 1918 "dioread_nolock if block size != PAGE_SIZE"); 1919 return 0; 1920 } 1921 } 1922 return 1; 1923 } 1924 1925 static inline void ext4_show_quota_options(struct seq_file *seq, 1926 struct super_block *sb) 1927 { 1928 #if defined(CONFIG_QUOTA) 1929 struct ext4_sb_info *sbi = EXT4_SB(sb); 1930 1931 if (sbi->s_jquota_fmt) { 1932 char *fmtname = ""; 1933 1934 switch (sbi->s_jquota_fmt) { 1935 case QFMT_VFS_OLD: 1936 fmtname = "vfsold"; 1937 break; 1938 case QFMT_VFS_V0: 1939 fmtname = "vfsv0"; 1940 break; 1941 case QFMT_VFS_V1: 1942 fmtname = "vfsv1"; 1943 break; 1944 } 1945 seq_printf(seq, ",jqfmt=%s", fmtname); 1946 } 1947 1948 if (sbi->s_qf_names[USRQUOTA]) 1949 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1950 1951 if (sbi->s_qf_names[GRPQUOTA]) 1952 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1953 #endif 1954 } 1955 1956 static const char *token2str(int token) 1957 { 1958 const struct match_token *t; 1959 1960 for (t = tokens; t->token != Opt_err; t++) 1961 if (t->token == token && !strchr(t->pattern, '=')) 1962 break; 1963 return t->pattern; 1964 } 1965 1966 /* 1967 * Show an option if 1968 * - it's set to a non-default value OR 1969 * - if the per-sb default is different from the global default 1970 */ 1971 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1972 int nodefs) 1973 { 1974 struct ext4_sb_info *sbi = EXT4_SB(sb); 1975 struct ext4_super_block *es = sbi->s_es; 1976 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1977 const struct mount_opts *m; 1978 char sep = nodefs ? '\n' : ','; 1979 1980 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1981 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1982 1983 if (sbi->s_sb_block != 1) 1984 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1985 1986 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1987 int want_set = m->flags & MOPT_SET; 1988 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1989 (m->flags & MOPT_CLEAR_ERR)) 1990 continue; 1991 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1992 continue; /* skip if same as the default */ 1993 if ((want_set && 1994 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1995 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1996 continue; /* select Opt_noFoo vs Opt_Foo */ 1997 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1998 } 1999 2000 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2001 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2002 SEQ_OPTS_PRINT("resuid=%u", 2003 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2004 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2005 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2006 SEQ_OPTS_PRINT("resgid=%u", 2007 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2008 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2009 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2010 SEQ_OPTS_PUTS("errors=remount-ro"); 2011 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2012 SEQ_OPTS_PUTS("errors=continue"); 2013 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2014 SEQ_OPTS_PUTS("errors=panic"); 2015 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2016 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2017 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2018 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2019 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2020 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2021 if (sb->s_flags & MS_I_VERSION) 2022 SEQ_OPTS_PUTS("i_version"); 2023 if (nodefs || sbi->s_stripe) 2024 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2025 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 2026 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2027 SEQ_OPTS_PUTS("data=journal"); 2028 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2029 SEQ_OPTS_PUTS("data=ordered"); 2030 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2031 SEQ_OPTS_PUTS("data=writeback"); 2032 } 2033 if (nodefs || 2034 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2035 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2036 sbi->s_inode_readahead_blks); 2037 2038 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 2039 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2040 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2041 if (nodefs || sbi->s_max_dir_size_kb) 2042 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2043 if (test_opt(sb, DATA_ERR_ABORT)) 2044 SEQ_OPTS_PUTS("data_err=abort"); 2045 2046 ext4_show_quota_options(seq, sb); 2047 return 0; 2048 } 2049 2050 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2051 { 2052 return _ext4_show_options(seq, root->d_sb, 0); 2053 } 2054 2055 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2056 { 2057 struct super_block *sb = seq->private; 2058 int rc; 2059 2060 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 2061 rc = _ext4_show_options(seq, sb, 1); 2062 seq_puts(seq, "\n"); 2063 return rc; 2064 } 2065 2066 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2067 int read_only) 2068 { 2069 struct ext4_sb_info *sbi = EXT4_SB(sb); 2070 int res = 0; 2071 2072 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2073 ext4_msg(sb, KERN_ERR, "revision level too high, " 2074 "forcing read-only mode"); 2075 res = MS_RDONLY; 2076 } 2077 if (read_only) 2078 goto done; 2079 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2080 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2081 "running e2fsck is recommended"); 2082 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2083 ext4_msg(sb, KERN_WARNING, 2084 "warning: mounting fs with errors, " 2085 "running e2fsck is recommended"); 2086 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2087 le16_to_cpu(es->s_mnt_count) >= 2088 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2089 ext4_msg(sb, KERN_WARNING, 2090 "warning: maximal mount count reached, " 2091 "running e2fsck is recommended"); 2092 else if (le32_to_cpu(es->s_checkinterval) && 2093 (le32_to_cpu(es->s_lastcheck) + 2094 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 2095 ext4_msg(sb, KERN_WARNING, 2096 "warning: checktime reached, " 2097 "running e2fsck is recommended"); 2098 if (!sbi->s_journal) 2099 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2100 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2101 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2102 le16_add_cpu(&es->s_mnt_count, 1); 2103 es->s_mtime = cpu_to_le32(get_seconds()); 2104 ext4_update_dynamic_rev(sb); 2105 if (sbi->s_journal) 2106 ext4_set_feature_journal_needs_recovery(sb); 2107 2108 ext4_commit_super(sb, 1); 2109 done: 2110 if (test_opt(sb, DEBUG)) 2111 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2112 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2113 sb->s_blocksize, 2114 sbi->s_groups_count, 2115 EXT4_BLOCKS_PER_GROUP(sb), 2116 EXT4_INODES_PER_GROUP(sb), 2117 sbi->s_mount_opt, sbi->s_mount_opt2); 2118 2119 cleancache_init_fs(sb); 2120 return res; 2121 } 2122 2123 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2124 { 2125 struct ext4_sb_info *sbi = EXT4_SB(sb); 2126 struct flex_groups *new_groups; 2127 int size; 2128 2129 if (!sbi->s_log_groups_per_flex) 2130 return 0; 2131 2132 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2133 if (size <= sbi->s_flex_groups_allocated) 2134 return 0; 2135 2136 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2137 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 2138 if (!new_groups) { 2139 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2140 size / (int) sizeof(struct flex_groups)); 2141 return -ENOMEM; 2142 } 2143 2144 if (sbi->s_flex_groups) { 2145 memcpy(new_groups, sbi->s_flex_groups, 2146 (sbi->s_flex_groups_allocated * 2147 sizeof(struct flex_groups))); 2148 kvfree(sbi->s_flex_groups); 2149 } 2150 sbi->s_flex_groups = new_groups; 2151 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2152 return 0; 2153 } 2154 2155 static int ext4_fill_flex_info(struct super_block *sb) 2156 { 2157 struct ext4_sb_info *sbi = EXT4_SB(sb); 2158 struct ext4_group_desc *gdp = NULL; 2159 ext4_group_t flex_group; 2160 int i, err; 2161 2162 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2163 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2164 sbi->s_log_groups_per_flex = 0; 2165 return 1; 2166 } 2167 2168 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2169 if (err) 2170 goto failed; 2171 2172 for (i = 0; i < sbi->s_groups_count; i++) { 2173 gdp = ext4_get_group_desc(sb, i, NULL); 2174 2175 flex_group = ext4_flex_group(sbi, i); 2176 atomic_add(ext4_free_inodes_count(sb, gdp), 2177 &sbi->s_flex_groups[flex_group].free_inodes); 2178 atomic64_add(ext4_free_group_clusters(sb, gdp), 2179 &sbi->s_flex_groups[flex_group].free_clusters); 2180 atomic_add(ext4_used_dirs_count(sb, gdp), 2181 &sbi->s_flex_groups[flex_group].used_dirs); 2182 } 2183 2184 return 1; 2185 failed: 2186 return 0; 2187 } 2188 2189 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2190 struct ext4_group_desc *gdp) 2191 { 2192 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2193 __u16 crc = 0; 2194 __le32 le_group = cpu_to_le32(block_group); 2195 struct ext4_sb_info *sbi = EXT4_SB(sb); 2196 2197 if (ext4_has_metadata_csum(sbi->s_sb)) { 2198 /* Use new metadata_csum algorithm */ 2199 __u32 csum32; 2200 __u16 dummy_csum = 0; 2201 2202 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2203 sizeof(le_group)); 2204 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2205 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2206 sizeof(dummy_csum)); 2207 offset += sizeof(dummy_csum); 2208 if (offset < sbi->s_desc_size) 2209 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2210 sbi->s_desc_size - offset); 2211 2212 crc = csum32 & 0xFFFF; 2213 goto out; 2214 } 2215 2216 /* old crc16 code */ 2217 if (!ext4_has_feature_gdt_csum(sb)) 2218 return 0; 2219 2220 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2221 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2222 crc = crc16(crc, (__u8 *)gdp, offset); 2223 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2224 /* for checksum of struct ext4_group_desc do the rest...*/ 2225 if (ext4_has_feature_64bit(sb) && 2226 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2227 crc = crc16(crc, (__u8 *)gdp + offset, 2228 le16_to_cpu(sbi->s_es->s_desc_size) - 2229 offset); 2230 2231 out: 2232 return cpu_to_le16(crc); 2233 } 2234 2235 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2236 struct ext4_group_desc *gdp) 2237 { 2238 if (ext4_has_group_desc_csum(sb) && 2239 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2240 return 0; 2241 2242 return 1; 2243 } 2244 2245 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2246 struct ext4_group_desc *gdp) 2247 { 2248 if (!ext4_has_group_desc_csum(sb)) 2249 return; 2250 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2251 } 2252 2253 /* Called at mount-time, super-block is locked */ 2254 static int ext4_check_descriptors(struct super_block *sb, 2255 ext4_fsblk_t sb_block, 2256 ext4_group_t *first_not_zeroed) 2257 { 2258 struct ext4_sb_info *sbi = EXT4_SB(sb); 2259 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2260 ext4_fsblk_t last_block; 2261 ext4_fsblk_t block_bitmap; 2262 ext4_fsblk_t inode_bitmap; 2263 ext4_fsblk_t inode_table; 2264 int flexbg_flag = 0; 2265 ext4_group_t i, grp = sbi->s_groups_count; 2266 2267 if (ext4_has_feature_flex_bg(sb)) 2268 flexbg_flag = 1; 2269 2270 ext4_debug("Checking group descriptors"); 2271 2272 for (i = 0; i < sbi->s_groups_count; i++) { 2273 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2274 2275 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2276 last_block = ext4_blocks_count(sbi->s_es) - 1; 2277 else 2278 last_block = first_block + 2279 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2280 2281 if ((grp == sbi->s_groups_count) && 2282 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2283 grp = i; 2284 2285 block_bitmap = ext4_block_bitmap(sb, gdp); 2286 if (block_bitmap == sb_block) { 2287 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2288 "Block bitmap for group %u overlaps " 2289 "superblock", i); 2290 } 2291 if (block_bitmap < first_block || block_bitmap > last_block) { 2292 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2293 "Block bitmap for group %u not in group " 2294 "(block %llu)!", i, block_bitmap); 2295 return 0; 2296 } 2297 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2298 if (inode_bitmap == sb_block) { 2299 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2300 "Inode bitmap for group %u overlaps " 2301 "superblock", i); 2302 } 2303 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2304 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2305 "Inode bitmap for group %u not in group " 2306 "(block %llu)!", i, inode_bitmap); 2307 return 0; 2308 } 2309 inode_table = ext4_inode_table(sb, gdp); 2310 if (inode_table == sb_block) { 2311 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2312 "Inode table for group %u overlaps " 2313 "superblock", i); 2314 } 2315 if (inode_table < first_block || 2316 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2317 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2318 "Inode table for group %u not in group " 2319 "(block %llu)!", i, inode_table); 2320 return 0; 2321 } 2322 ext4_lock_group(sb, i); 2323 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2324 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2325 "Checksum for group %u failed (%u!=%u)", 2326 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2327 gdp)), le16_to_cpu(gdp->bg_checksum)); 2328 if (!(sb->s_flags & MS_RDONLY)) { 2329 ext4_unlock_group(sb, i); 2330 return 0; 2331 } 2332 } 2333 ext4_unlock_group(sb, i); 2334 if (!flexbg_flag) 2335 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2336 } 2337 if (NULL != first_not_zeroed) 2338 *first_not_zeroed = grp; 2339 return 1; 2340 } 2341 2342 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2343 * the superblock) which were deleted from all directories, but held open by 2344 * a process at the time of a crash. We walk the list and try to delete these 2345 * inodes at recovery time (only with a read-write filesystem). 2346 * 2347 * In order to keep the orphan inode chain consistent during traversal (in 2348 * case of crash during recovery), we link each inode into the superblock 2349 * orphan list_head and handle it the same way as an inode deletion during 2350 * normal operation (which journals the operations for us). 2351 * 2352 * We only do an iget() and an iput() on each inode, which is very safe if we 2353 * accidentally point at an in-use or already deleted inode. The worst that 2354 * can happen in this case is that we get a "bit already cleared" message from 2355 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2356 * e2fsck was run on this filesystem, and it must have already done the orphan 2357 * inode cleanup for us, so we can safely abort without any further action. 2358 */ 2359 static void ext4_orphan_cleanup(struct super_block *sb, 2360 struct ext4_super_block *es) 2361 { 2362 unsigned int s_flags = sb->s_flags; 2363 int ret, nr_orphans = 0, nr_truncates = 0; 2364 #ifdef CONFIG_QUOTA 2365 int i; 2366 #endif 2367 if (!es->s_last_orphan) { 2368 jbd_debug(4, "no orphan inodes to clean up\n"); 2369 return; 2370 } 2371 2372 if (bdev_read_only(sb->s_bdev)) { 2373 ext4_msg(sb, KERN_ERR, "write access " 2374 "unavailable, skipping orphan cleanup"); 2375 return; 2376 } 2377 2378 /* Check if feature set would not allow a r/w mount */ 2379 if (!ext4_feature_set_ok(sb, 0)) { 2380 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2381 "unknown ROCOMPAT features"); 2382 return; 2383 } 2384 2385 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2386 /* don't clear list on RO mount w/ errors */ 2387 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2388 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2389 "clearing orphan list.\n"); 2390 es->s_last_orphan = 0; 2391 } 2392 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2393 return; 2394 } 2395 2396 if (s_flags & MS_RDONLY) { 2397 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2398 sb->s_flags &= ~MS_RDONLY; 2399 } 2400 #ifdef CONFIG_QUOTA 2401 /* Needed for iput() to work correctly and not trash data */ 2402 sb->s_flags |= MS_ACTIVE; 2403 /* Turn on quotas so that they are updated correctly */ 2404 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2405 if (EXT4_SB(sb)->s_qf_names[i]) { 2406 int ret = ext4_quota_on_mount(sb, i); 2407 if (ret < 0) 2408 ext4_msg(sb, KERN_ERR, 2409 "Cannot turn on journaled " 2410 "quota: error %d", ret); 2411 } 2412 } 2413 #endif 2414 2415 while (es->s_last_orphan) { 2416 struct inode *inode; 2417 2418 /* 2419 * We may have encountered an error during cleanup; if 2420 * so, skip the rest. 2421 */ 2422 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2423 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2424 es->s_last_orphan = 0; 2425 break; 2426 } 2427 2428 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2429 if (IS_ERR(inode)) { 2430 es->s_last_orphan = 0; 2431 break; 2432 } 2433 2434 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2435 dquot_initialize(inode); 2436 if (inode->i_nlink) { 2437 if (test_opt(sb, DEBUG)) 2438 ext4_msg(sb, KERN_DEBUG, 2439 "%s: truncating inode %lu to %lld bytes", 2440 __func__, inode->i_ino, inode->i_size); 2441 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2442 inode->i_ino, inode->i_size); 2443 inode_lock(inode); 2444 truncate_inode_pages(inode->i_mapping, inode->i_size); 2445 ret = ext4_truncate(inode); 2446 if (ret) 2447 ext4_std_error(inode->i_sb, ret); 2448 inode_unlock(inode); 2449 nr_truncates++; 2450 } else { 2451 if (test_opt(sb, DEBUG)) 2452 ext4_msg(sb, KERN_DEBUG, 2453 "%s: deleting unreferenced inode %lu", 2454 __func__, inode->i_ino); 2455 jbd_debug(2, "deleting unreferenced inode %lu\n", 2456 inode->i_ino); 2457 nr_orphans++; 2458 } 2459 iput(inode); /* The delete magic happens here! */ 2460 } 2461 2462 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2463 2464 if (nr_orphans) 2465 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2466 PLURAL(nr_orphans)); 2467 if (nr_truncates) 2468 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2469 PLURAL(nr_truncates)); 2470 #ifdef CONFIG_QUOTA 2471 /* Turn quotas off */ 2472 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2473 if (sb_dqopt(sb)->files[i]) 2474 dquot_quota_off(sb, i); 2475 } 2476 #endif 2477 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2478 } 2479 2480 /* 2481 * Maximal extent format file size. 2482 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2483 * extent format containers, within a sector_t, and within i_blocks 2484 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2485 * so that won't be a limiting factor. 2486 * 2487 * However there is other limiting factor. We do store extents in the form 2488 * of starting block and length, hence the resulting length of the extent 2489 * covering maximum file size must fit into on-disk format containers as 2490 * well. Given that length is always by 1 unit bigger than max unit (because 2491 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2492 * 2493 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2494 */ 2495 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2496 { 2497 loff_t res; 2498 loff_t upper_limit = MAX_LFS_FILESIZE; 2499 2500 /* small i_blocks in vfs inode? */ 2501 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2502 /* 2503 * CONFIG_LBDAF is not enabled implies the inode 2504 * i_block represent total blocks in 512 bytes 2505 * 32 == size of vfs inode i_blocks * 8 2506 */ 2507 upper_limit = (1LL << 32) - 1; 2508 2509 /* total blocks in file system block size */ 2510 upper_limit >>= (blkbits - 9); 2511 upper_limit <<= blkbits; 2512 } 2513 2514 /* 2515 * 32-bit extent-start container, ee_block. We lower the maxbytes 2516 * by one fs block, so ee_len can cover the extent of maximum file 2517 * size 2518 */ 2519 res = (1LL << 32) - 1; 2520 res <<= blkbits; 2521 2522 /* Sanity check against vm- & vfs- imposed limits */ 2523 if (res > upper_limit) 2524 res = upper_limit; 2525 2526 return res; 2527 } 2528 2529 /* 2530 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2531 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2532 * We need to be 1 filesystem block less than the 2^48 sector limit. 2533 */ 2534 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2535 { 2536 loff_t res = EXT4_NDIR_BLOCKS; 2537 int meta_blocks; 2538 loff_t upper_limit; 2539 /* This is calculated to be the largest file size for a dense, block 2540 * mapped file such that the file's total number of 512-byte sectors, 2541 * including data and all indirect blocks, does not exceed (2^48 - 1). 2542 * 2543 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2544 * number of 512-byte sectors of the file. 2545 */ 2546 2547 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2548 /* 2549 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2550 * the inode i_block field represents total file blocks in 2551 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2552 */ 2553 upper_limit = (1LL << 32) - 1; 2554 2555 /* total blocks in file system block size */ 2556 upper_limit >>= (bits - 9); 2557 2558 } else { 2559 /* 2560 * We use 48 bit ext4_inode i_blocks 2561 * With EXT4_HUGE_FILE_FL set the i_blocks 2562 * represent total number of blocks in 2563 * file system block size 2564 */ 2565 upper_limit = (1LL << 48) - 1; 2566 2567 } 2568 2569 /* indirect blocks */ 2570 meta_blocks = 1; 2571 /* double indirect blocks */ 2572 meta_blocks += 1 + (1LL << (bits-2)); 2573 /* tripple indirect blocks */ 2574 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2575 2576 upper_limit -= meta_blocks; 2577 upper_limit <<= bits; 2578 2579 res += 1LL << (bits-2); 2580 res += 1LL << (2*(bits-2)); 2581 res += 1LL << (3*(bits-2)); 2582 res <<= bits; 2583 if (res > upper_limit) 2584 res = upper_limit; 2585 2586 if (res > MAX_LFS_FILESIZE) 2587 res = MAX_LFS_FILESIZE; 2588 2589 return res; 2590 } 2591 2592 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2593 ext4_fsblk_t logical_sb_block, int nr) 2594 { 2595 struct ext4_sb_info *sbi = EXT4_SB(sb); 2596 ext4_group_t bg, first_meta_bg; 2597 int has_super = 0; 2598 2599 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2600 2601 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2602 return logical_sb_block + nr + 1; 2603 bg = sbi->s_desc_per_block * nr; 2604 if (ext4_bg_has_super(sb, bg)) 2605 has_super = 1; 2606 2607 /* 2608 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2609 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2610 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2611 * compensate. 2612 */ 2613 if (sb->s_blocksize == 1024 && nr == 0 && 2614 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2615 has_super++; 2616 2617 return (has_super + ext4_group_first_block_no(sb, bg)); 2618 } 2619 2620 /** 2621 * ext4_get_stripe_size: Get the stripe size. 2622 * @sbi: In memory super block info 2623 * 2624 * If we have specified it via mount option, then 2625 * use the mount option value. If the value specified at mount time is 2626 * greater than the blocks per group use the super block value. 2627 * If the super block value is greater than blocks per group return 0. 2628 * Allocator needs it be less than blocks per group. 2629 * 2630 */ 2631 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2632 { 2633 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2634 unsigned long stripe_width = 2635 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2636 int ret; 2637 2638 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2639 ret = sbi->s_stripe; 2640 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2641 ret = stripe_width; 2642 else if (stride && stride <= sbi->s_blocks_per_group) 2643 ret = stride; 2644 else 2645 ret = 0; 2646 2647 /* 2648 * If the stripe width is 1, this makes no sense and 2649 * we set it to 0 to turn off stripe handling code. 2650 */ 2651 if (ret <= 1) 2652 ret = 0; 2653 2654 return ret; 2655 } 2656 2657 /* 2658 * Check whether this filesystem can be mounted based on 2659 * the features present and the RDONLY/RDWR mount requested. 2660 * Returns 1 if this filesystem can be mounted as requested, 2661 * 0 if it cannot be. 2662 */ 2663 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2664 { 2665 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2666 ext4_msg(sb, KERN_ERR, 2667 "Couldn't mount because of " 2668 "unsupported optional features (%x)", 2669 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2670 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2671 return 0; 2672 } 2673 2674 if (readonly) 2675 return 1; 2676 2677 if (ext4_has_feature_readonly(sb)) { 2678 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2679 sb->s_flags |= MS_RDONLY; 2680 return 1; 2681 } 2682 2683 /* Check that feature set is OK for a read-write mount */ 2684 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2685 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2686 "unsupported optional features (%x)", 2687 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2688 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2689 return 0; 2690 } 2691 /* 2692 * Large file size enabled file system can only be mounted 2693 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2694 */ 2695 if (ext4_has_feature_huge_file(sb)) { 2696 if (sizeof(blkcnt_t) < sizeof(u64)) { 2697 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2698 "cannot be mounted RDWR without " 2699 "CONFIG_LBDAF"); 2700 return 0; 2701 } 2702 } 2703 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2704 ext4_msg(sb, KERN_ERR, 2705 "Can't support bigalloc feature without " 2706 "extents feature\n"); 2707 return 0; 2708 } 2709 2710 #ifndef CONFIG_QUOTA 2711 if (ext4_has_feature_quota(sb) && !readonly) { 2712 ext4_msg(sb, KERN_ERR, 2713 "Filesystem with quota feature cannot be mounted RDWR " 2714 "without CONFIG_QUOTA"); 2715 return 0; 2716 } 2717 if (ext4_has_feature_project(sb) && !readonly) { 2718 ext4_msg(sb, KERN_ERR, 2719 "Filesystem with project quota feature cannot be mounted RDWR " 2720 "without CONFIG_QUOTA"); 2721 return 0; 2722 } 2723 #endif /* CONFIG_QUOTA */ 2724 return 1; 2725 } 2726 2727 /* 2728 * This function is called once a day if we have errors logged 2729 * on the file system 2730 */ 2731 static void print_daily_error_info(unsigned long arg) 2732 { 2733 struct super_block *sb = (struct super_block *) arg; 2734 struct ext4_sb_info *sbi; 2735 struct ext4_super_block *es; 2736 2737 sbi = EXT4_SB(sb); 2738 es = sbi->s_es; 2739 2740 if (es->s_error_count) 2741 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2742 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2743 le32_to_cpu(es->s_error_count)); 2744 if (es->s_first_error_time) { 2745 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2746 sb->s_id, le32_to_cpu(es->s_first_error_time), 2747 (int) sizeof(es->s_first_error_func), 2748 es->s_first_error_func, 2749 le32_to_cpu(es->s_first_error_line)); 2750 if (es->s_first_error_ino) 2751 printk(KERN_CONT ": inode %u", 2752 le32_to_cpu(es->s_first_error_ino)); 2753 if (es->s_first_error_block) 2754 printk(KERN_CONT ": block %llu", (unsigned long long) 2755 le64_to_cpu(es->s_first_error_block)); 2756 printk(KERN_CONT "\n"); 2757 } 2758 if (es->s_last_error_time) { 2759 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2760 sb->s_id, le32_to_cpu(es->s_last_error_time), 2761 (int) sizeof(es->s_last_error_func), 2762 es->s_last_error_func, 2763 le32_to_cpu(es->s_last_error_line)); 2764 if (es->s_last_error_ino) 2765 printk(KERN_CONT ": inode %u", 2766 le32_to_cpu(es->s_last_error_ino)); 2767 if (es->s_last_error_block) 2768 printk(KERN_CONT ": block %llu", (unsigned long long) 2769 le64_to_cpu(es->s_last_error_block)); 2770 printk(KERN_CONT "\n"); 2771 } 2772 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2773 } 2774 2775 /* Find next suitable group and run ext4_init_inode_table */ 2776 static int ext4_run_li_request(struct ext4_li_request *elr) 2777 { 2778 struct ext4_group_desc *gdp = NULL; 2779 ext4_group_t group, ngroups; 2780 struct super_block *sb; 2781 unsigned long timeout = 0; 2782 int ret = 0; 2783 2784 sb = elr->lr_super; 2785 ngroups = EXT4_SB(sb)->s_groups_count; 2786 2787 for (group = elr->lr_next_group; group < ngroups; group++) { 2788 gdp = ext4_get_group_desc(sb, group, NULL); 2789 if (!gdp) { 2790 ret = 1; 2791 break; 2792 } 2793 2794 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2795 break; 2796 } 2797 2798 if (group >= ngroups) 2799 ret = 1; 2800 2801 if (!ret) { 2802 timeout = jiffies; 2803 ret = ext4_init_inode_table(sb, group, 2804 elr->lr_timeout ? 0 : 1); 2805 if (elr->lr_timeout == 0) { 2806 timeout = (jiffies - timeout) * 2807 elr->lr_sbi->s_li_wait_mult; 2808 elr->lr_timeout = timeout; 2809 } 2810 elr->lr_next_sched = jiffies + elr->lr_timeout; 2811 elr->lr_next_group = group + 1; 2812 } 2813 return ret; 2814 } 2815 2816 /* 2817 * Remove lr_request from the list_request and free the 2818 * request structure. Should be called with li_list_mtx held 2819 */ 2820 static void ext4_remove_li_request(struct ext4_li_request *elr) 2821 { 2822 struct ext4_sb_info *sbi; 2823 2824 if (!elr) 2825 return; 2826 2827 sbi = elr->lr_sbi; 2828 2829 list_del(&elr->lr_request); 2830 sbi->s_li_request = NULL; 2831 kfree(elr); 2832 } 2833 2834 static void ext4_unregister_li_request(struct super_block *sb) 2835 { 2836 mutex_lock(&ext4_li_mtx); 2837 if (!ext4_li_info) { 2838 mutex_unlock(&ext4_li_mtx); 2839 return; 2840 } 2841 2842 mutex_lock(&ext4_li_info->li_list_mtx); 2843 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2844 mutex_unlock(&ext4_li_info->li_list_mtx); 2845 mutex_unlock(&ext4_li_mtx); 2846 } 2847 2848 static struct task_struct *ext4_lazyinit_task; 2849 2850 /* 2851 * This is the function where ext4lazyinit thread lives. It walks 2852 * through the request list searching for next scheduled filesystem. 2853 * When such a fs is found, run the lazy initialization request 2854 * (ext4_rn_li_request) and keep track of the time spend in this 2855 * function. Based on that time we compute next schedule time of 2856 * the request. When walking through the list is complete, compute 2857 * next waking time and put itself into sleep. 2858 */ 2859 static int ext4_lazyinit_thread(void *arg) 2860 { 2861 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2862 struct list_head *pos, *n; 2863 struct ext4_li_request *elr; 2864 unsigned long next_wakeup, cur; 2865 2866 BUG_ON(NULL == eli); 2867 2868 cont_thread: 2869 while (true) { 2870 next_wakeup = MAX_JIFFY_OFFSET; 2871 2872 mutex_lock(&eli->li_list_mtx); 2873 if (list_empty(&eli->li_request_list)) { 2874 mutex_unlock(&eli->li_list_mtx); 2875 goto exit_thread; 2876 } 2877 list_for_each_safe(pos, n, &eli->li_request_list) { 2878 int err = 0; 2879 int progress = 0; 2880 elr = list_entry(pos, struct ext4_li_request, 2881 lr_request); 2882 2883 if (time_before(jiffies, elr->lr_next_sched)) { 2884 if (time_before(elr->lr_next_sched, next_wakeup)) 2885 next_wakeup = elr->lr_next_sched; 2886 continue; 2887 } 2888 if (down_read_trylock(&elr->lr_super->s_umount)) { 2889 if (sb_start_write_trylock(elr->lr_super)) { 2890 progress = 1; 2891 /* 2892 * We hold sb->s_umount, sb can not 2893 * be removed from the list, it is 2894 * now safe to drop li_list_mtx 2895 */ 2896 mutex_unlock(&eli->li_list_mtx); 2897 err = ext4_run_li_request(elr); 2898 sb_end_write(elr->lr_super); 2899 mutex_lock(&eli->li_list_mtx); 2900 n = pos->next; 2901 } 2902 up_read((&elr->lr_super->s_umount)); 2903 } 2904 /* error, remove the lazy_init job */ 2905 if (err) { 2906 ext4_remove_li_request(elr); 2907 continue; 2908 } 2909 if (!progress) { 2910 elr->lr_next_sched = jiffies + 2911 (prandom_u32() 2912 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2913 } 2914 if (time_before(elr->lr_next_sched, next_wakeup)) 2915 next_wakeup = elr->lr_next_sched; 2916 } 2917 mutex_unlock(&eli->li_list_mtx); 2918 2919 try_to_freeze(); 2920 2921 cur = jiffies; 2922 if ((time_after_eq(cur, next_wakeup)) || 2923 (MAX_JIFFY_OFFSET == next_wakeup)) { 2924 cond_resched(); 2925 continue; 2926 } 2927 2928 schedule_timeout_interruptible(next_wakeup - cur); 2929 2930 if (kthread_should_stop()) { 2931 ext4_clear_request_list(); 2932 goto exit_thread; 2933 } 2934 } 2935 2936 exit_thread: 2937 /* 2938 * It looks like the request list is empty, but we need 2939 * to check it under the li_list_mtx lock, to prevent any 2940 * additions into it, and of course we should lock ext4_li_mtx 2941 * to atomically free the list and ext4_li_info, because at 2942 * this point another ext4 filesystem could be registering 2943 * new one. 2944 */ 2945 mutex_lock(&ext4_li_mtx); 2946 mutex_lock(&eli->li_list_mtx); 2947 if (!list_empty(&eli->li_request_list)) { 2948 mutex_unlock(&eli->li_list_mtx); 2949 mutex_unlock(&ext4_li_mtx); 2950 goto cont_thread; 2951 } 2952 mutex_unlock(&eli->li_list_mtx); 2953 kfree(ext4_li_info); 2954 ext4_li_info = NULL; 2955 mutex_unlock(&ext4_li_mtx); 2956 2957 return 0; 2958 } 2959 2960 static void ext4_clear_request_list(void) 2961 { 2962 struct list_head *pos, *n; 2963 struct ext4_li_request *elr; 2964 2965 mutex_lock(&ext4_li_info->li_list_mtx); 2966 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2967 elr = list_entry(pos, struct ext4_li_request, 2968 lr_request); 2969 ext4_remove_li_request(elr); 2970 } 2971 mutex_unlock(&ext4_li_info->li_list_mtx); 2972 } 2973 2974 static int ext4_run_lazyinit_thread(void) 2975 { 2976 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2977 ext4_li_info, "ext4lazyinit"); 2978 if (IS_ERR(ext4_lazyinit_task)) { 2979 int err = PTR_ERR(ext4_lazyinit_task); 2980 ext4_clear_request_list(); 2981 kfree(ext4_li_info); 2982 ext4_li_info = NULL; 2983 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2984 "initialization thread\n", 2985 err); 2986 return err; 2987 } 2988 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2989 return 0; 2990 } 2991 2992 /* 2993 * Check whether it make sense to run itable init. thread or not. 2994 * If there is at least one uninitialized inode table, return 2995 * corresponding group number, else the loop goes through all 2996 * groups and return total number of groups. 2997 */ 2998 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2999 { 3000 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3001 struct ext4_group_desc *gdp = NULL; 3002 3003 for (group = 0; group < ngroups; group++) { 3004 gdp = ext4_get_group_desc(sb, group, NULL); 3005 if (!gdp) 3006 continue; 3007 3008 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3009 break; 3010 } 3011 3012 return group; 3013 } 3014 3015 static int ext4_li_info_new(void) 3016 { 3017 struct ext4_lazy_init *eli = NULL; 3018 3019 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3020 if (!eli) 3021 return -ENOMEM; 3022 3023 INIT_LIST_HEAD(&eli->li_request_list); 3024 mutex_init(&eli->li_list_mtx); 3025 3026 eli->li_state |= EXT4_LAZYINIT_QUIT; 3027 3028 ext4_li_info = eli; 3029 3030 return 0; 3031 } 3032 3033 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3034 ext4_group_t start) 3035 { 3036 struct ext4_sb_info *sbi = EXT4_SB(sb); 3037 struct ext4_li_request *elr; 3038 3039 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3040 if (!elr) 3041 return NULL; 3042 3043 elr->lr_super = sb; 3044 elr->lr_sbi = sbi; 3045 elr->lr_next_group = start; 3046 3047 /* 3048 * Randomize first schedule time of the request to 3049 * spread the inode table initialization requests 3050 * better. 3051 */ 3052 elr->lr_next_sched = jiffies + (prandom_u32() % 3053 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3054 return elr; 3055 } 3056 3057 int ext4_register_li_request(struct super_block *sb, 3058 ext4_group_t first_not_zeroed) 3059 { 3060 struct ext4_sb_info *sbi = EXT4_SB(sb); 3061 struct ext4_li_request *elr = NULL; 3062 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3063 int ret = 0; 3064 3065 mutex_lock(&ext4_li_mtx); 3066 if (sbi->s_li_request != NULL) { 3067 /* 3068 * Reset timeout so it can be computed again, because 3069 * s_li_wait_mult might have changed. 3070 */ 3071 sbi->s_li_request->lr_timeout = 0; 3072 goto out; 3073 } 3074 3075 if (first_not_zeroed == ngroups || 3076 (sb->s_flags & MS_RDONLY) || 3077 !test_opt(sb, INIT_INODE_TABLE)) 3078 goto out; 3079 3080 elr = ext4_li_request_new(sb, first_not_zeroed); 3081 if (!elr) { 3082 ret = -ENOMEM; 3083 goto out; 3084 } 3085 3086 if (NULL == ext4_li_info) { 3087 ret = ext4_li_info_new(); 3088 if (ret) 3089 goto out; 3090 } 3091 3092 mutex_lock(&ext4_li_info->li_list_mtx); 3093 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3094 mutex_unlock(&ext4_li_info->li_list_mtx); 3095 3096 sbi->s_li_request = elr; 3097 /* 3098 * set elr to NULL here since it has been inserted to 3099 * the request_list and the removal and free of it is 3100 * handled by ext4_clear_request_list from now on. 3101 */ 3102 elr = NULL; 3103 3104 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3105 ret = ext4_run_lazyinit_thread(); 3106 if (ret) 3107 goto out; 3108 } 3109 out: 3110 mutex_unlock(&ext4_li_mtx); 3111 if (ret) 3112 kfree(elr); 3113 return ret; 3114 } 3115 3116 /* 3117 * We do not need to lock anything since this is called on 3118 * module unload. 3119 */ 3120 static void ext4_destroy_lazyinit_thread(void) 3121 { 3122 /* 3123 * If thread exited earlier 3124 * there's nothing to be done. 3125 */ 3126 if (!ext4_li_info || !ext4_lazyinit_task) 3127 return; 3128 3129 kthread_stop(ext4_lazyinit_task); 3130 } 3131 3132 static int set_journal_csum_feature_set(struct super_block *sb) 3133 { 3134 int ret = 1; 3135 int compat, incompat; 3136 struct ext4_sb_info *sbi = EXT4_SB(sb); 3137 3138 if (ext4_has_metadata_csum(sb)) { 3139 /* journal checksum v3 */ 3140 compat = 0; 3141 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3142 } else { 3143 /* journal checksum v1 */ 3144 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3145 incompat = 0; 3146 } 3147 3148 jbd2_journal_clear_features(sbi->s_journal, 3149 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3150 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3151 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3152 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3153 ret = jbd2_journal_set_features(sbi->s_journal, 3154 compat, 0, 3155 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3156 incompat); 3157 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3158 ret = jbd2_journal_set_features(sbi->s_journal, 3159 compat, 0, 3160 incompat); 3161 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3162 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3163 } else { 3164 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3165 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3166 } 3167 3168 return ret; 3169 } 3170 3171 /* 3172 * Note: calculating the overhead so we can be compatible with 3173 * historical BSD practice is quite difficult in the face of 3174 * clusters/bigalloc. This is because multiple metadata blocks from 3175 * different block group can end up in the same allocation cluster. 3176 * Calculating the exact overhead in the face of clustered allocation 3177 * requires either O(all block bitmaps) in memory or O(number of block 3178 * groups**2) in time. We will still calculate the superblock for 3179 * older file systems --- and if we come across with a bigalloc file 3180 * system with zero in s_overhead_clusters the estimate will be close to 3181 * correct especially for very large cluster sizes --- but for newer 3182 * file systems, it's better to calculate this figure once at mkfs 3183 * time, and store it in the superblock. If the superblock value is 3184 * present (even for non-bigalloc file systems), we will use it. 3185 */ 3186 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3187 char *buf) 3188 { 3189 struct ext4_sb_info *sbi = EXT4_SB(sb); 3190 struct ext4_group_desc *gdp; 3191 ext4_fsblk_t first_block, last_block, b; 3192 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3193 int s, j, count = 0; 3194 3195 if (!ext4_has_feature_bigalloc(sb)) 3196 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3197 sbi->s_itb_per_group + 2); 3198 3199 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3200 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3201 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3202 for (i = 0; i < ngroups; i++) { 3203 gdp = ext4_get_group_desc(sb, i, NULL); 3204 b = ext4_block_bitmap(sb, gdp); 3205 if (b >= first_block && b <= last_block) { 3206 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3207 count++; 3208 } 3209 b = ext4_inode_bitmap(sb, gdp); 3210 if (b >= first_block && b <= last_block) { 3211 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3212 count++; 3213 } 3214 b = ext4_inode_table(sb, gdp); 3215 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3216 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3217 int c = EXT4_B2C(sbi, b - first_block); 3218 ext4_set_bit(c, buf); 3219 count++; 3220 } 3221 if (i != grp) 3222 continue; 3223 s = 0; 3224 if (ext4_bg_has_super(sb, grp)) { 3225 ext4_set_bit(s++, buf); 3226 count++; 3227 } 3228 j = ext4_bg_num_gdb(sb, grp); 3229 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3230 ext4_error(sb, "Invalid number of block group " 3231 "descriptor blocks: %d", j); 3232 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3233 } 3234 count += j; 3235 for (; j > 0; j--) 3236 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3237 } 3238 if (!count) 3239 return 0; 3240 return EXT4_CLUSTERS_PER_GROUP(sb) - 3241 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3242 } 3243 3244 /* 3245 * Compute the overhead and stash it in sbi->s_overhead 3246 */ 3247 int ext4_calculate_overhead(struct super_block *sb) 3248 { 3249 struct ext4_sb_info *sbi = EXT4_SB(sb); 3250 struct ext4_super_block *es = sbi->s_es; 3251 struct inode *j_inode; 3252 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3253 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3254 ext4_fsblk_t overhead = 0; 3255 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3256 3257 if (!buf) 3258 return -ENOMEM; 3259 3260 /* 3261 * Compute the overhead (FS structures). This is constant 3262 * for a given filesystem unless the number of block groups 3263 * changes so we cache the previous value until it does. 3264 */ 3265 3266 /* 3267 * All of the blocks before first_data_block are overhead 3268 */ 3269 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3270 3271 /* 3272 * Add the overhead found in each block group 3273 */ 3274 for (i = 0; i < ngroups; i++) { 3275 int blks; 3276 3277 blks = count_overhead(sb, i, buf); 3278 overhead += blks; 3279 if (blks) 3280 memset(buf, 0, PAGE_SIZE); 3281 cond_resched(); 3282 } 3283 3284 /* 3285 * Add the internal journal blocks whether the journal has been 3286 * loaded or not 3287 */ 3288 if (sbi->s_journal && !sbi->journal_bdev) 3289 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3290 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3291 j_inode = ext4_get_journal_inode(sb, j_inum); 3292 if (j_inode) { 3293 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3294 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3295 iput(j_inode); 3296 } else { 3297 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3298 } 3299 } 3300 sbi->s_overhead = overhead; 3301 smp_wmb(); 3302 free_page((unsigned long) buf); 3303 return 0; 3304 } 3305 3306 static void ext4_set_resv_clusters(struct super_block *sb) 3307 { 3308 ext4_fsblk_t resv_clusters; 3309 struct ext4_sb_info *sbi = EXT4_SB(sb); 3310 3311 /* 3312 * There's no need to reserve anything when we aren't using extents. 3313 * The space estimates are exact, there are no unwritten extents, 3314 * hole punching doesn't need new metadata... This is needed especially 3315 * to keep ext2/3 backward compatibility. 3316 */ 3317 if (!ext4_has_feature_extents(sb)) 3318 return; 3319 /* 3320 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3321 * This should cover the situations where we can not afford to run 3322 * out of space like for example punch hole, or converting 3323 * unwritten extents in delalloc path. In most cases such 3324 * allocation would require 1, or 2 blocks, higher numbers are 3325 * very rare. 3326 */ 3327 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3328 sbi->s_cluster_bits); 3329 3330 do_div(resv_clusters, 50); 3331 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3332 3333 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3334 } 3335 3336 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3337 { 3338 char *orig_data = kstrdup(data, GFP_KERNEL); 3339 struct buffer_head *bh; 3340 struct ext4_super_block *es = NULL; 3341 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3342 ext4_fsblk_t block; 3343 ext4_fsblk_t sb_block = get_sb_block(&data); 3344 ext4_fsblk_t logical_sb_block; 3345 unsigned long offset = 0; 3346 unsigned long journal_devnum = 0; 3347 unsigned long def_mount_opts; 3348 struct inode *root; 3349 const char *descr; 3350 int ret = -ENOMEM; 3351 int blocksize, clustersize; 3352 unsigned int db_count; 3353 unsigned int i; 3354 int needs_recovery, has_huge_files, has_bigalloc; 3355 __u64 blocks_count; 3356 int err = 0; 3357 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3358 ext4_group_t first_not_zeroed; 3359 3360 if ((data && !orig_data) || !sbi) 3361 goto out_free_base; 3362 3363 sbi->s_blockgroup_lock = 3364 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3365 if (!sbi->s_blockgroup_lock) 3366 goto out_free_base; 3367 3368 sb->s_fs_info = sbi; 3369 sbi->s_sb = sb; 3370 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3371 sbi->s_sb_block = sb_block; 3372 if (sb->s_bdev->bd_part) 3373 sbi->s_sectors_written_start = 3374 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3375 3376 /* Cleanup superblock name */ 3377 strreplace(sb->s_id, '/', '!'); 3378 3379 /* -EINVAL is default */ 3380 ret = -EINVAL; 3381 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3382 if (!blocksize) { 3383 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3384 goto out_fail; 3385 } 3386 3387 /* 3388 * The ext4 superblock will not be buffer aligned for other than 1kB 3389 * block sizes. We need to calculate the offset from buffer start. 3390 */ 3391 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3392 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3393 offset = do_div(logical_sb_block, blocksize); 3394 } else { 3395 logical_sb_block = sb_block; 3396 } 3397 3398 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3399 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3400 goto out_fail; 3401 } 3402 /* 3403 * Note: s_es must be initialized as soon as possible because 3404 * some ext4 macro-instructions depend on its value 3405 */ 3406 es = (struct ext4_super_block *) (bh->b_data + offset); 3407 sbi->s_es = es; 3408 sb->s_magic = le16_to_cpu(es->s_magic); 3409 if (sb->s_magic != EXT4_SUPER_MAGIC) 3410 goto cantfind_ext4; 3411 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3412 3413 /* Warn if metadata_csum and gdt_csum are both set. */ 3414 if (ext4_has_feature_metadata_csum(sb) && 3415 ext4_has_feature_gdt_csum(sb)) 3416 ext4_warning(sb, "metadata_csum and uninit_bg are " 3417 "redundant flags; please run fsck."); 3418 3419 /* Check for a known checksum algorithm */ 3420 if (!ext4_verify_csum_type(sb, es)) { 3421 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3422 "unknown checksum algorithm."); 3423 silent = 1; 3424 goto cantfind_ext4; 3425 } 3426 3427 /* Load the checksum driver */ 3428 if (ext4_has_feature_metadata_csum(sb)) { 3429 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3430 if (IS_ERR(sbi->s_chksum_driver)) { 3431 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3432 ret = PTR_ERR(sbi->s_chksum_driver); 3433 sbi->s_chksum_driver = NULL; 3434 goto failed_mount; 3435 } 3436 } 3437 3438 /* Check superblock checksum */ 3439 if (!ext4_superblock_csum_verify(sb, es)) { 3440 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3441 "invalid superblock checksum. Run e2fsck?"); 3442 silent = 1; 3443 ret = -EFSBADCRC; 3444 goto cantfind_ext4; 3445 } 3446 3447 /* Precompute checksum seed for all metadata */ 3448 if (ext4_has_feature_csum_seed(sb)) 3449 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3450 else if (ext4_has_metadata_csum(sb)) 3451 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3452 sizeof(es->s_uuid)); 3453 3454 /* Set defaults before we parse the mount options */ 3455 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3456 set_opt(sb, INIT_INODE_TABLE); 3457 if (def_mount_opts & EXT4_DEFM_DEBUG) 3458 set_opt(sb, DEBUG); 3459 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3460 set_opt(sb, GRPID); 3461 if (def_mount_opts & EXT4_DEFM_UID16) 3462 set_opt(sb, NO_UID32); 3463 /* xattr user namespace & acls are now defaulted on */ 3464 set_opt(sb, XATTR_USER); 3465 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3466 set_opt(sb, POSIX_ACL); 3467 #endif 3468 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3469 if (ext4_has_metadata_csum(sb)) 3470 set_opt(sb, JOURNAL_CHECKSUM); 3471 3472 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3473 set_opt(sb, JOURNAL_DATA); 3474 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3475 set_opt(sb, ORDERED_DATA); 3476 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3477 set_opt(sb, WRITEBACK_DATA); 3478 3479 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3480 set_opt(sb, ERRORS_PANIC); 3481 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3482 set_opt(sb, ERRORS_CONT); 3483 else 3484 set_opt(sb, ERRORS_RO); 3485 /* block_validity enabled by default; disable with noblock_validity */ 3486 set_opt(sb, BLOCK_VALIDITY); 3487 if (def_mount_opts & EXT4_DEFM_DISCARD) 3488 set_opt(sb, DISCARD); 3489 3490 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3491 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3492 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3493 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3494 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3495 3496 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3497 set_opt(sb, BARRIER); 3498 3499 /* 3500 * enable delayed allocation by default 3501 * Use -o nodelalloc to turn it off 3502 */ 3503 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3504 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3505 set_opt(sb, DELALLOC); 3506 3507 /* 3508 * set default s_li_wait_mult for lazyinit, for the case there is 3509 * no mount option specified. 3510 */ 3511 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3512 3513 if (sbi->s_es->s_mount_opts[0]) { 3514 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3515 sizeof(sbi->s_es->s_mount_opts), 3516 GFP_KERNEL); 3517 if (!s_mount_opts) 3518 goto failed_mount; 3519 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3520 &journal_ioprio, 0)) { 3521 ext4_msg(sb, KERN_WARNING, 3522 "failed to parse options in superblock: %s", 3523 s_mount_opts); 3524 } 3525 kfree(s_mount_opts); 3526 } 3527 sbi->s_def_mount_opt = sbi->s_mount_opt; 3528 if (!parse_options((char *) data, sb, &journal_devnum, 3529 &journal_ioprio, 0)) 3530 goto failed_mount; 3531 3532 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3533 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3534 "with data=journal disables delayed " 3535 "allocation and O_DIRECT support!\n"); 3536 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3537 ext4_msg(sb, KERN_ERR, "can't mount with " 3538 "both data=journal and delalloc"); 3539 goto failed_mount; 3540 } 3541 if (test_opt(sb, DIOREAD_NOLOCK)) { 3542 ext4_msg(sb, KERN_ERR, "can't mount with " 3543 "both data=journal and dioread_nolock"); 3544 goto failed_mount; 3545 } 3546 if (test_opt(sb, DAX)) { 3547 ext4_msg(sb, KERN_ERR, "can't mount with " 3548 "both data=journal and dax"); 3549 goto failed_mount; 3550 } 3551 if (ext4_has_feature_encrypt(sb)) { 3552 ext4_msg(sb, KERN_WARNING, 3553 "encrypted files will use data=ordered " 3554 "instead of data journaling mode"); 3555 } 3556 if (test_opt(sb, DELALLOC)) 3557 clear_opt(sb, DELALLOC); 3558 } else { 3559 sb->s_iflags |= SB_I_CGROUPWB; 3560 } 3561 3562 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3563 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3564 3565 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3566 (ext4_has_compat_features(sb) || 3567 ext4_has_ro_compat_features(sb) || 3568 ext4_has_incompat_features(sb))) 3569 ext4_msg(sb, KERN_WARNING, 3570 "feature flags set on rev 0 fs, " 3571 "running e2fsck is recommended"); 3572 3573 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3574 set_opt2(sb, HURD_COMPAT); 3575 if (ext4_has_feature_64bit(sb)) { 3576 ext4_msg(sb, KERN_ERR, 3577 "The Hurd can't support 64-bit file systems"); 3578 goto failed_mount; 3579 } 3580 } 3581 3582 if (IS_EXT2_SB(sb)) { 3583 if (ext2_feature_set_ok(sb)) 3584 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3585 "using the ext4 subsystem"); 3586 else { 3587 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3588 "to feature incompatibilities"); 3589 goto failed_mount; 3590 } 3591 } 3592 3593 if (IS_EXT3_SB(sb)) { 3594 if (ext3_feature_set_ok(sb)) 3595 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3596 "using the ext4 subsystem"); 3597 else { 3598 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3599 "to feature incompatibilities"); 3600 goto failed_mount; 3601 } 3602 } 3603 3604 /* 3605 * Check feature flags regardless of the revision level, since we 3606 * previously didn't change the revision level when setting the flags, 3607 * so there is a chance incompat flags are set on a rev 0 filesystem. 3608 */ 3609 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3610 goto failed_mount; 3611 3612 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3613 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3614 blocksize > EXT4_MAX_BLOCK_SIZE) { 3615 ext4_msg(sb, KERN_ERR, 3616 "Unsupported filesystem blocksize %d (%d log_block_size)", 3617 blocksize, le32_to_cpu(es->s_log_block_size)); 3618 goto failed_mount; 3619 } 3620 if (le32_to_cpu(es->s_log_block_size) > 3621 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3622 ext4_msg(sb, KERN_ERR, 3623 "Invalid log block size: %u", 3624 le32_to_cpu(es->s_log_block_size)); 3625 goto failed_mount; 3626 } 3627 3628 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3629 ext4_msg(sb, KERN_ERR, 3630 "Number of reserved GDT blocks insanely large: %d", 3631 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3632 goto failed_mount; 3633 } 3634 3635 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3636 err = bdev_dax_supported(sb, blocksize); 3637 if (err) 3638 goto failed_mount; 3639 } 3640 3641 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3642 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3643 es->s_encryption_level); 3644 goto failed_mount; 3645 } 3646 3647 if (sb->s_blocksize != blocksize) { 3648 /* Validate the filesystem blocksize */ 3649 if (!sb_set_blocksize(sb, blocksize)) { 3650 ext4_msg(sb, KERN_ERR, "bad block size %d", 3651 blocksize); 3652 goto failed_mount; 3653 } 3654 3655 brelse(bh); 3656 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3657 offset = do_div(logical_sb_block, blocksize); 3658 bh = sb_bread_unmovable(sb, logical_sb_block); 3659 if (!bh) { 3660 ext4_msg(sb, KERN_ERR, 3661 "Can't read superblock on 2nd try"); 3662 goto failed_mount; 3663 } 3664 es = (struct ext4_super_block *)(bh->b_data + offset); 3665 sbi->s_es = es; 3666 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3667 ext4_msg(sb, KERN_ERR, 3668 "Magic mismatch, very weird!"); 3669 goto failed_mount; 3670 } 3671 } 3672 3673 has_huge_files = ext4_has_feature_huge_file(sb); 3674 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3675 has_huge_files); 3676 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3677 3678 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3679 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3680 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3681 } else { 3682 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3683 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3684 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3685 (!is_power_of_2(sbi->s_inode_size)) || 3686 (sbi->s_inode_size > blocksize)) { 3687 ext4_msg(sb, KERN_ERR, 3688 "unsupported inode size: %d", 3689 sbi->s_inode_size); 3690 goto failed_mount; 3691 } 3692 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3693 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3694 } 3695 3696 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3697 if (ext4_has_feature_64bit(sb)) { 3698 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3699 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3700 !is_power_of_2(sbi->s_desc_size)) { 3701 ext4_msg(sb, KERN_ERR, 3702 "unsupported descriptor size %lu", 3703 sbi->s_desc_size); 3704 goto failed_mount; 3705 } 3706 } else 3707 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3708 3709 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3710 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3711 3712 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3713 if (sbi->s_inodes_per_block == 0) 3714 goto cantfind_ext4; 3715 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3716 sbi->s_inodes_per_group > blocksize * 8) { 3717 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3718 sbi->s_blocks_per_group); 3719 goto failed_mount; 3720 } 3721 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3722 sbi->s_inodes_per_block; 3723 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3724 sbi->s_sbh = bh; 3725 sbi->s_mount_state = le16_to_cpu(es->s_state); 3726 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3727 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3728 3729 for (i = 0; i < 4; i++) 3730 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3731 sbi->s_def_hash_version = es->s_def_hash_version; 3732 if (ext4_has_feature_dir_index(sb)) { 3733 i = le32_to_cpu(es->s_flags); 3734 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3735 sbi->s_hash_unsigned = 3; 3736 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3737 #ifdef __CHAR_UNSIGNED__ 3738 if (!(sb->s_flags & MS_RDONLY)) 3739 es->s_flags |= 3740 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3741 sbi->s_hash_unsigned = 3; 3742 #else 3743 if (!(sb->s_flags & MS_RDONLY)) 3744 es->s_flags |= 3745 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3746 #endif 3747 } 3748 } 3749 3750 /* Handle clustersize */ 3751 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3752 has_bigalloc = ext4_has_feature_bigalloc(sb); 3753 if (has_bigalloc) { 3754 if (clustersize < blocksize) { 3755 ext4_msg(sb, KERN_ERR, 3756 "cluster size (%d) smaller than " 3757 "block size (%d)", clustersize, blocksize); 3758 goto failed_mount; 3759 } 3760 if (le32_to_cpu(es->s_log_cluster_size) > 3761 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3762 ext4_msg(sb, KERN_ERR, 3763 "Invalid log cluster size: %u", 3764 le32_to_cpu(es->s_log_cluster_size)); 3765 goto failed_mount; 3766 } 3767 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3768 le32_to_cpu(es->s_log_block_size); 3769 sbi->s_clusters_per_group = 3770 le32_to_cpu(es->s_clusters_per_group); 3771 if (sbi->s_clusters_per_group > blocksize * 8) { 3772 ext4_msg(sb, KERN_ERR, 3773 "#clusters per group too big: %lu", 3774 sbi->s_clusters_per_group); 3775 goto failed_mount; 3776 } 3777 if (sbi->s_blocks_per_group != 3778 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3779 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3780 "clusters per group (%lu) inconsistent", 3781 sbi->s_blocks_per_group, 3782 sbi->s_clusters_per_group); 3783 goto failed_mount; 3784 } 3785 } else { 3786 if (clustersize != blocksize) { 3787 ext4_warning(sb, "fragment/cluster size (%d) != " 3788 "block size (%d)", clustersize, 3789 blocksize); 3790 clustersize = blocksize; 3791 } 3792 if (sbi->s_blocks_per_group > blocksize * 8) { 3793 ext4_msg(sb, KERN_ERR, 3794 "#blocks per group too big: %lu", 3795 sbi->s_blocks_per_group); 3796 goto failed_mount; 3797 } 3798 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3799 sbi->s_cluster_bits = 0; 3800 } 3801 sbi->s_cluster_ratio = clustersize / blocksize; 3802 3803 /* Do we have standard group size of clustersize * 8 blocks ? */ 3804 if (sbi->s_blocks_per_group == clustersize << 3) 3805 set_opt2(sb, STD_GROUP_SIZE); 3806 3807 /* 3808 * Test whether we have more sectors than will fit in sector_t, 3809 * and whether the max offset is addressable by the page cache. 3810 */ 3811 err = generic_check_addressable(sb->s_blocksize_bits, 3812 ext4_blocks_count(es)); 3813 if (err) { 3814 ext4_msg(sb, KERN_ERR, "filesystem" 3815 " too large to mount safely on this system"); 3816 if (sizeof(sector_t) < 8) 3817 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3818 goto failed_mount; 3819 } 3820 3821 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3822 goto cantfind_ext4; 3823 3824 /* check blocks count against device size */ 3825 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3826 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3827 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3828 "exceeds size of device (%llu blocks)", 3829 ext4_blocks_count(es), blocks_count); 3830 goto failed_mount; 3831 } 3832 3833 /* 3834 * It makes no sense for the first data block to be beyond the end 3835 * of the filesystem. 3836 */ 3837 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3838 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3839 "block %u is beyond end of filesystem (%llu)", 3840 le32_to_cpu(es->s_first_data_block), 3841 ext4_blocks_count(es)); 3842 goto failed_mount; 3843 } 3844 blocks_count = (ext4_blocks_count(es) - 3845 le32_to_cpu(es->s_first_data_block) + 3846 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3847 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3848 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3849 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3850 "(block count %llu, first data block %u, " 3851 "blocks per group %lu)", sbi->s_groups_count, 3852 ext4_blocks_count(es), 3853 le32_to_cpu(es->s_first_data_block), 3854 EXT4_BLOCKS_PER_GROUP(sb)); 3855 goto failed_mount; 3856 } 3857 sbi->s_groups_count = blocks_count; 3858 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3859 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3860 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3861 EXT4_DESC_PER_BLOCK(sb); 3862 if (ext4_has_feature_meta_bg(sb)) { 3863 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 3864 ext4_msg(sb, KERN_WARNING, 3865 "first meta block group too large: %u " 3866 "(group descriptor block count %u)", 3867 le32_to_cpu(es->s_first_meta_bg), db_count); 3868 goto failed_mount; 3869 } 3870 } 3871 sbi->s_group_desc = ext4_kvmalloc(db_count * 3872 sizeof(struct buffer_head *), 3873 GFP_KERNEL); 3874 if (sbi->s_group_desc == NULL) { 3875 ext4_msg(sb, KERN_ERR, "not enough memory"); 3876 ret = -ENOMEM; 3877 goto failed_mount; 3878 } 3879 3880 bgl_lock_init(sbi->s_blockgroup_lock); 3881 3882 for (i = 0; i < db_count; i++) { 3883 block = descriptor_loc(sb, logical_sb_block, i); 3884 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3885 if (!sbi->s_group_desc[i]) { 3886 ext4_msg(sb, KERN_ERR, 3887 "can't read group descriptor %d", i); 3888 db_count = i; 3889 goto failed_mount2; 3890 } 3891 } 3892 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 3893 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3894 ret = -EFSCORRUPTED; 3895 goto failed_mount2; 3896 } 3897 3898 sbi->s_gdb_count = db_count; 3899 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3900 spin_lock_init(&sbi->s_next_gen_lock); 3901 3902 setup_timer(&sbi->s_err_report, print_daily_error_info, 3903 (unsigned long) sb); 3904 3905 /* Register extent status tree shrinker */ 3906 if (ext4_es_register_shrinker(sbi)) 3907 goto failed_mount3; 3908 3909 sbi->s_stripe = ext4_get_stripe_size(sbi); 3910 sbi->s_extent_max_zeroout_kb = 32; 3911 3912 /* 3913 * set up enough so that it can read an inode 3914 */ 3915 sb->s_op = &ext4_sops; 3916 sb->s_export_op = &ext4_export_ops; 3917 sb->s_xattr = ext4_xattr_handlers; 3918 sb->s_cop = &ext4_cryptops; 3919 #ifdef CONFIG_QUOTA 3920 sb->dq_op = &ext4_quota_operations; 3921 if (ext4_has_feature_quota(sb)) 3922 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3923 else 3924 sb->s_qcop = &ext4_qctl_operations; 3925 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3926 #endif 3927 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3928 3929 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3930 mutex_init(&sbi->s_orphan_lock); 3931 3932 sb->s_root = NULL; 3933 3934 needs_recovery = (es->s_last_orphan != 0 || 3935 ext4_has_feature_journal_needs_recovery(sb)); 3936 3937 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3938 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3939 goto failed_mount3a; 3940 3941 /* 3942 * The first inode we look at is the journal inode. Don't try 3943 * root first: it may be modified in the journal! 3944 */ 3945 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3946 err = ext4_load_journal(sb, es, journal_devnum); 3947 if (err) 3948 goto failed_mount3a; 3949 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3950 ext4_has_feature_journal_needs_recovery(sb)) { 3951 ext4_msg(sb, KERN_ERR, "required journal recovery " 3952 "suppressed and not mounted read-only"); 3953 goto failed_mount_wq; 3954 } else { 3955 /* Nojournal mode, all journal mount options are illegal */ 3956 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3957 ext4_msg(sb, KERN_ERR, "can't mount with " 3958 "journal_checksum, fs mounted w/o journal"); 3959 goto failed_mount_wq; 3960 } 3961 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3962 ext4_msg(sb, KERN_ERR, "can't mount with " 3963 "journal_async_commit, fs mounted w/o journal"); 3964 goto failed_mount_wq; 3965 } 3966 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3967 ext4_msg(sb, KERN_ERR, "can't mount with " 3968 "commit=%lu, fs mounted w/o journal", 3969 sbi->s_commit_interval / HZ); 3970 goto failed_mount_wq; 3971 } 3972 if (EXT4_MOUNT_DATA_FLAGS & 3973 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3974 ext4_msg(sb, KERN_ERR, "can't mount with " 3975 "data=, fs mounted w/o journal"); 3976 goto failed_mount_wq; 3977 } 3978 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3979 clear_opt(sb, JOURNAL_CHECKSUM); 3980 clear_opt(sb, DATA_FLAGS); 3981 sbi->s_journal = NULL; 3982 needs_recovery = 0; 3983 goto no_journal; 3984 } 3985 3986 if (ext4_has_feature_64bit(sb) && 3987 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3988 JBD2_FEATURE_INCOMPAT_64BIT)) { 3989 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3990 goto failed_mount_wq; 3991 } 3992 3993 if (!set_journal_csum_feature_set(sb)) { 3994 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3995 "feature set"); 3996 goto failed_mount_wq; 3997 } 3998 3999 /* We have now updated the journal if required, so we can 4000 * validate the data journaling mode. */ 4001 switch (test_opt(sb, DATA_FLAGS)) { 4002 case 0: 4003 /* No mode set, assume a default based on the journal 4004 * capabilities: ORDERED_DATA if the journal can 4005 * cope, else JOURNAL_DATA 4006 */ 4007 if (jbd2_journal_check_available_features 4008 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 4009 set_opt(sb, ORDERED_DATA); 4010 else 4011 set_opt(sb, JOURNAL_DATA); 4012 break; 4013 4014 case EXT4_MOUNT_ORDERED_DATA: 4015 case EXT4_MOUNT_WRITEBACK_DATA: 4016 if (!jbd2_journal_check_available_features 4017 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4018 ext4_msg(sb, KERN_ERR, "Journal does not support " 4019 "requested data journaling mode"); 4020 goto failed_mount_wq; 4021 } 4022 default: 4023 break; 4024 } 4025 4026 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4027 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4028 ext4_msg(sb, KERN_ERR, "can't mount with " 4029 "journal_async_commit in data=ordered mode"); 4030 goto failed_mount_wq; 4031 } 4032 4033 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4034 4035 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4036 4037 no_journal: 4038 sbi->s_mb_cache = ext4_xattr_create_cache(); 4039 if (!sbi->s_mb_cache) { 4040 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 4041 goto failed_mount_wq; 4042 } 4043 4044 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4045 (blocksize != PAGE_SIZE)) { 4046 ext4_msg(sb, KERN_ERR, 4047 "Unsupported blocksize for fs encryption"); 4048 goto failed_mount_wq; 4049 } 4050 4051 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 4052 !ext4_has_feature_encrypt(sb)) { 4053 ext4_set_feature_encrypt(sb); 4054 ext4_commit_super(sb, 1); 4055 } 4056 4057 /* 4058 * Get the # of file system overhead blocks from the 4059 * superblock if present. 4060 */ 4061 if (es->s_overhead_clusters) 4062 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4063 else { 4064 err = ext4_calculate_overhead(sb); 4065 if (err) 4066 goto failed_mount_wq; 4067 } 4068 4069 /* 4070 * The maximum number of concurrent works can be high and 4071 * concurrency isn't really necessary. Limit it to 1. 4072 */ 4073 EXT4_SB(sb)->rsv_conversion_wq = 4074 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4075 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4076 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4077 ret = -ENOMEM; 4078 goto failed_mount4; 4079 } 4080 4081 /* 4082 * The jbd2_journal_load will have done any necessary log recovery, 4083 * so we can safely mount the rest of the filesystem now. 4084 */ 4085 4086 root = ext4_iget(sb, EXT4_ROOT_INO); 4087 if (IS_ERR(root)) { 4088 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4089 ret = PTR_ERR(root); 4090 root = NULL; 4091 goto failed_mount4; 4092 } 4093 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4094 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4095 iput(root); 4096 goto failed_mount4; 4097 } 4098 sb->s_root = d_make_root(root); 4099 if (!sb->s_root) { 4100 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4101 ret = -ENOMEM; 4102 goto failed_mount4; 4103 } 4104 4105 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 4106 sb->s_flags |= MS_RDONLY; 4107 4108 /* determine the minimum size of new large inodes, if present */ 4109 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4110 sbi->s_want_extra_isize == 0) { 4111 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4112 EXT4_GOOD_OLD_INODE_SIZE; 4113 if (ext4_has_feature_extra_isize(sb)) { 4114 if (sbi->s_want_extra_isize < 4115 le16_to_cpu(es->s_want_extra_isize)) 4116 sbi->s_want_extra_isize = 4117 le16_to_cpu(es->s_want_extra_isize); 4118 if (sbi->s_want_extra_isize < 4119 le16_to_cpu(es->s_min_extra_isize)) 4120 sbi->s_want_extra_isize = 4121 le16_to_cpu(es->s_min_extra_isize); 4122 } 4123 } 4124 /* Check if enough inode space is available */ 4125 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4126 sbi->s_inode_size) { 4127 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4128 EXT4_GOOD_OLD_INODE_SIZE; 4129 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4130 "available"); 4131 } 4132 4133 ext4_set_resv_clusters(sb); 4134 4135 err = ext4_setup_system_zone(sb); 4136 if (err) { 4137 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4138 "zone (%d)", err); 4139 goto failed_mount4a; 4140 } 4141 4142 ext4_ext_init(sb); 4143 err = ext4_mb_init(sb); 4144 if (err) { 4145 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4146 err); 4147 goto failed_mount5; 4148 } 4149 4150 block = ext4_count_free_clusters(sb); 4151 ext4_free_blocks_count_set(sbi->s_es, 4152 EXT4_C2B(sbi, block)); 4153 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4154 GFP_KERNEL); 4155 if (!err) { 4156 unsigned long freei = ext4_count_free_inodes(sb); 4157 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4158 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4159 GFP_KERNEL); 4160 } 4161 if (!err) 4162 err = percpu_counter_init(&sbi->s_dirs_counter, 4163 ext4_count_dirs(sb), GFP_KERNEL); 4164 if (!err) 4165 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4166 GFP_KERNEL); 4167 if (!err) 4168 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4169 4170 if (err) { 4171 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4172 goto failed_mount6; 4173 } 4174 4175 if (ext4_has_feature_flex_bg(sb)) 4176 if (!ext4_fill_flex_info(sb)) { 4177 ext4_msg(sb, KERN_ERR, 4178 "unable to initialize " 4179 "flex_bg meta info!"); 4180 goto failed_mount6; 4181 } 4182 4183 err = ext4_register_li_request(sb, first_not_zeroed); 4184 if (err) 4185 goto failed_mount6; 4186 4187 err = ext4_register_sysfs(sb); 4188 if (err) 4189 goto failed_mount7; 4190 4191 #ifdef CONFIG_QUOTA 4192 /* Enable quota usage during mount. */ 4193 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 4194 err = ext4_enable_quotas(sb); 4195 if (err) 4196 goto failed_mount8; 4197 } 4198 #endif /* CONFIG_QUOTA */ 4199 4200 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4201 ext4_orphan_cleanup(sb, es); 4202 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4203 if (needs_recovery) { 4204 ext4_msg(sb, KERN_INFO, "recovery complete"); 4205 ext4_mark_recovery_complete(sb, es); 4206 } 4207 if (EXT4_SB(sb)->s_journal) { 4208 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4209 descr = " journalled data mode"; 4210 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4211 descr = " ordered data mode"; 4212 else 4213 descr = " writeback data mode"; 4214 } else 4215 descr = "out journal"; 4216 4217 if (test_opt(sb, DISCARD)) { 4218 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4219 if (!blk_queue_discard(q)) 4220 ext4_msg(sb, KERN_WARNING, 4221 "mounting with \"discard\" option, but " 4222 "the device does not support discard"); 4223 } 4224 4225 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4226 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4227 "Opts: %.*s%s%s", descr, 4228 (int) sizeof(sbi->s_es->s_mount_opts), 4229 sbi->s_es->s_mount_opts, 4230 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4231 4232 if (es->s_error_count) 4233 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4234 4235 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4236 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4237 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4238 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4239 4240 kfree(orig_data); 4241 return 0; 4242 4243 cantfind_ext4: 4244 if (!silent) 4245 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4246 goto failed_mount; 4247 4248 #ifdef CONFIG_QUOTA 4249 failed_mount8: 4250 ext4_unregister_sysfs(sb); 4251 #endif 4252 failed_mount7: 4253 ext4_unregister_li_request(sb); 4254 failed_mount6: 4255 ext4_mb_release(sb); 4256 if (sbi->s_flex_groups) 4257 kvfree(sbi->s_flex_groups); 4258 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4259 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4260 percpu_counter_destroy(&sbi->s_dirs_counter); 4261 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4262 failed_mount5: 4263 ext4_ext_release(sb); 4264 ext4_release_system_zone(sb); 4265 failed_mount4a: 4266 dput(sb->s_root); 4267 sb->s_root = NULL; 4268 failed_mount4: 4269 ext4_msg(sb, KERN_ERR, "mount failed"); 4270 if (EXT4_SB(sb)->rsv_conversion_wq) 4271 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4272 failed_mount_wq: 4273 if (sbi->s_mb_cache) { 4274 ext4_xattr_destroy_cache(sbi->s_mb_cache); 4275 sbi->s_mb_cache = NULL; 4276 } 4277 if (sbi->s_journal) { 4278 jbd2_journal_destroy(sbi->s_journal); 4279 sbi->s_journal = NULL; 4280 } 4281 failed_mount3a: 4282 ext4_es_unregister_shrinker(sbi); 4283 failed_mount3: 4284 del_timer_sync(&sbi->s_err_report); 4285 if (sbi->s_mmp_tsk) 4286 kthread_stop(sbi->s_mmp_tsk); 4287 failed_mount2: 4288 for (i = 0; i < db_count; i++) 4289 brelse(sbi->s_group_desc[i]); 4290 kvfree(sbi->s_group_desc); 4291 failed_mount: 4292 if (sbi->s_chksum_driver) 4293 crypto_free_shash(sbi->s_chksum_driver); 4294 #ifdef CONFIG_QUOTA 4295 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4296 kfree(sbi->s_qf_names[i]); 4297 #endif 4298 ext4_blkdev_remove(sbi); 4299 brelse(bh); 4300 out_fail: 4301 sb->s_fs_info = NULL; 4302 kfree(sbi->s_blockgroup_lock); 4303 out_free_base: 4304 kfree(sbi); 4305 kfree(orig_data); 4306 return err ? err : ret; 4307 } 4308 4309 /* 4310 * Setup any per-fs journal parameters now. We'll do this both on 4311 * initial mount, once the journal has been initialised but before we've 4312 * done any recovery; and again on any subsequent remount. 4313 */ 4314 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4315 { 4316 struct ext4_sb_info *sbi = EXT4_SB(sb); 4317 4318 journal->j_commit_interval = sbi->s_commit_interval; 4319 journal->j_min_batch_time = sbi->s_min_batch_time; 4320 journal->j_max_batch_time = sbi->s_max_batch_time; 4321 4322 write_lock(&journal->j_state_lock); 4323 if (test_opt(sb, BARRIER)) 4324 journal->j_flags |= JBD2_BARRIER; 4325 else 4326 journal->j_flags &= ~JBD2_BARRIER; 4327 if (test_opt(sb, DATA_ERR_ABORT)) 4328 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4329 else 4330 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4331 write_unlock(&journal->j_state_lock); 4332 } 4333 4334 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4335 unsigned int journal_inum) 4336 { 4337 struct inode *journal_inode; 4338 4339 /* 4340 * Test for the existence of a valid inode on disk. Bad things 4341 * happen if we iget() an unused inode, as the subsequent iput() 4342 * will try to delete it. 4343 */ 4344 journal_inode = ext4_iget(sb, journal_inum); 4345 if (IS_ERR(journal_inode)) { 4346 ext4_msg(sb, KERN_ERR, "no journal found"); 4347 return NULL; 4348 } 4349 if (!journal_inode->i_nlink) { 4350 make_bad_inode(journal_inode); 4351 iput(journal_inode); 4352 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4353 return NULL; 4354 } 4355 4356 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4357 journal_inode, journal_inode->i_size); 4358 if (!S_ISREG(journal_inode->i_mode)) { 4359 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4360 iput(journal_inode); 4361 return NULL; 4362 } 4363 return journal_inode; 4364 } 4365 4366 static journal_t *ext4_get_journal(struct super_block *sb, 4367 unsigned int journal_inum) 4368 { 4369 struct inode *journal_inode; 4370 journal_t *journal; 4371 4372 BUG_ON(!ext4_has_feature_journal(sb)); 4373 4374 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4375 if (!journal_inode) 4376 return NULL; 4377 4378 journal = jbd2_journal_init_inode(journal_inode); 4379 if (!journal) { 4380 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4381 iput(journal_inode); 4382 return NULL; 4383 } 4384 journal->j_private = sb; 4385 ext4_init_journal_params(sb, journal); 4386 return journal; 4387 } 4388 4389 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4390 dev_t j_dev) 4391 { 4392 struct buffer_head *bh; 4393 journal_t *journal; 4394 ext4_fsblk_t start; 4395 ext4_fsblk_t len; 4396 int hblock, blocksize; 4397 ext4_fsblk_t sb_block; 4398 unsigned long offset; 4399 struct ext4_super_block *es; 4400 struct block_device *bdev; 4401 4402 BUG_ON(!ext4_has_feature_journal(sb)); 4403 4404 bdev = ext4_blkdev_get(j_dev, sb); 4405 if (bdev == NULL) 4406 return NULL; 4407 4408 blocksize = sb->s_blocksize; 4409 hblock = bdev_logical_block_size(bdev); 4410 if (blocksize < hblock) { 4411 ext4_msg(sb, KERN_ERR, 4412 "blocksize too small for journal device"); 4413 goto out_bdev; 4414 } 4415 4416 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4417 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4418 set_blocksize(bdev, blocksize); 4419 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4420 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4421 "external journal"); 4422 goto out_bdev; 4423 } 4424 4425 es = (struct ext4_super_block *) (bh->b_data + offset); 4426 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4427 !(le32_to_cpu(es->s_feature_incompat) & 4428 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4429 ext4_msg(sb, KERN_ERR, "external journal has " 4430 "bad superblock"); 4431 brelse(bh); 4432 goto out_bdev; 4433 } 4434 4435 if ((le32_to_cpu(es->s_feature_ro_compat) & 4436 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4437 es->s_checksum != ext4_superblock_csum(sb, es)) { 4438 ext4_msg(sb, KERN_ERR, "external journal has " 4439 "corrupt superblock"); 4440 brelse(bh); 4441 goto out_bdev; 4442 } 4443 4444 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4445 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4446 brelse(bh); 4447 goto out_bdev; 4448 } 4449 4450 len = ext4_blocks_count(es); 4451 start = sb_block + 1; 4452 brelse(bh); /* we're done with the superblock */ 4453 4454 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4455 start, len, blocksize); 4456 if (!journal) { 4457 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4458 goto out_bdev; 4459 } 4460 journal->j_private = sb; 4461 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4462 wait_on_buffer(journal->j_sb_buffer); 4463 if (!buffer_uptodate(journal->j_sb_buffer)) { 4464 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4465 goto out_journal; 4466 } 4467 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4468 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4469 "user (unsupported) - %d", 4470 be32_to_cpu(journal->j_superblock->s_nr_users)); 4471 goto out_journal; 4472 } 4473 EXT4_SB(sb)->journal_bdev = bdev; 4474 ext4_init_journal_params(sb, journal); 4475 return journal; 4476 4477 out_journal: 4478 jbd2_journal_destroy(journal); 4479 out_bdev: 4480 ext4_blkdev_put(bdev); 4481 return NULL; 4482 } 4483 4484 static int ext4_load_journal(struct super_block *sb, 4485 struct ext4_super_block *es, 4486 unsigned long journal_devnum) 4487 { 4488 journal_t *journal; 4489 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4490 dev_t journal_dev; 4491 int err = 0; 4492 int really_read_only; 4493 4494 BUG_ON(!ext4_has_feature_journal(sb)); 4495 4496 if (journal_devnum && 4497 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4498 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4499 "numbers have changed"); 4500 journal_dev = new_decode_dev(journal_devnum); 4501 } else 4502 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4503 4504 really_read_only = bdev_read_only(sb->s_bdev); 4505 4506 /* 4507 * Are we loading a blank journal or performing recovery after a 4508 * crash? For recovery, we need to check in advance whether we 4509 * can get read-write access to the device. 4510 */ 4511 if (ext4_has_feature_journal_needs_recovery(sb)) { 4512 if (sb->s_flags & MS_RDONLY) { 4513 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4514 "required on readonly filesystem"); 4515 if (really_read_only) { 4516 ext4_msg(sb, KERN_ERR, "write access " 4517 "unavailable, cannot proceed"); 4518 return -EROFS; 4519 } 4520 ext4_msg(sb, KERN_INFO, "write access will " 4521 "be enabled during recovery"); 4522 } 4523 } 4524 4525 if (journal_inum && journal_dev) { 4526 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4527 "and inode journals!"); 4528 return -EINVAL; 4529 } 4530 4531 if (journal_inum) { 4532 if (!(journal = ext4_get_journal(sb, journal_inum))) 4533 return -EINVAL; 4534 } else { 4535 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4536 return -EINVAL; 4537 } 4538 4539 if (!(journal->j_flags & JBD2_BARRIER)) 4540 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4541 4542 if (!ext4_has_feature_journal_needs_recovery(sb)) 4543 err = jbd2_journal_wipe(journal, !really_read_only); 4544 if (!err) { 4545 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4546 if (save) 4547 memcpy(save, ((char *) es) + 4548 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4549 err = jbd2_journal_load(journal); 4550 if (save) 4551 memcpy(((char *) es) + EXT4_S_ERR_START, 4552 save, EXT4_S_ERR_LEN); 4553 kfree(save); 4554 } 4555 4556 if (err) { 4557 ext4_msg(sb, KERN_ERR, "error loading journal"); 4558 jbd2_journal_destroy(journal); 4559 return err; 4560 } 4561 4562 EXT4_SB(sb)->s_journal = journal; 4563 ext4_clear_journal_err(sb, es); 4564 4565 if (!really_read_only && journal_devnum && 4566 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4567 es->s_journal_dev = cpu_to_le32(journal_devnum); 4568 4569 /* Make sure we flush the recovery flag to disk. */ 4570 ext4_commit_super(sb, 1); 4571 } 4572 4573 return 0; 4574 } 4575 4576 static int ext4_commit_super(struct super_block *sb, int sync) 4577 { 4578 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4579 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4580 int error = 0; 4581 4582 if (!sbh || block_device_ejected(sb)) 4583 return error; 4584 /* 4585 * If the file system is mounted read-only, don't update the 4586 * superblock write time. This avoids updating the superblock 4587 * write time when we are mounting the root file system 4588 * read/only but we need to replay the journal; at that point, 4589 * for people who are east of GMT and who make their clock 4590 * tick in localtime for Windows bug-for-bug compatibility, 4591 * the clock is set in the future, and this will cause e2fsck 4592 * to complain and force a full file system check. 4593 */ 4594 if (!(sb->s_flags & MS_RDONLY)) 4595 es->s_wtime = cpu_to_le32(get_seconds()); 4596 if (sb->s_bdev->bd_part) 4597 es->s_kbytes_written = 4598 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4599 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4600 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4601 else 4602 es->s_kbytes_written = 4603 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4604 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4605 ext4_free_blocks_count_set(es, 4606 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4607 &EXT4_SB(sb)->s_freeclusters_counter))); 4608 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4609 es->s_free_inodes_count = 4610 cpu_to_le32(percpu_counter_sum_positive( 4611 &EXT4_SB(sb)->s_freeinodes_counter)); 4612 BUFFER_TRACE(sbh, "marking dirty"); 4613 ext4_superblock_csum_set(sb); 4614 if (sync) 4615 lock_buffer(sbh); 4616 if (buffer_write_io_error(sbh)) { 4617 /* 4618 * Oh, dear. A previous attempt to write the 4619 * superblock failed. This could happen because the 4620 * USB device was yanked out. Or it could happen to 4621 * be a transient write error and maybe the block will 4622 * be remapped. Nothing we can do but to retry the 4623 * write and hope for the best. 4624 */ 4625 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4626 "superblock detected"); 4627 clear_buffer_write_io_error(sbh); 4628 set_buffer_uptodate(sbh); 4629 } 4630 mark_buffer_dirty(sbh); 4631 if (sync) { 4632 unlock_buffer(sbh); 4633 error = __sync_dirty_buffer(sbh, 4634 test_opt(sb, BARRIER) ? REQ_FUA : REQ_SYNC); 4635 if (error) 4636 return error; 4637 4638 error = buffer_write_io_error(sbh); 4639 if (error) { 4640 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4641 "superblock"); 4642 clear_buffer_write_io_error(sbh); 4643 set_buffer_uptodate(sbh); 4644 } 4645 } 4646 return error; 4647 } 4648 4649 /* 4650 * Have we just finished recovery? If so, and if we are mounting (or 4651 * remounting) the filesystem readonly, then we will end up with a 4652 * consistent fs on disk. Record that fact. 4653 */ 4654 static void ext4_mark_recovery_complete(struct super_block *sb, 4655 struct ext4_super_block *es) 4656 { 4657 journal_t *journal = EXT4_SB(sb)->s_journal; 4658 4659 if (!ext4_has_feature_journal(sb)) { 4660 BUG_ON(journal != NULL); 4661 return; 4662 } 4663 jbd2_journal_lock_updates(journal); 4664 if (jbd2_journal_flush(journal) < 0) 4665 goto out; 4666 4667 if (ext4_has_feature_journal_needs_recovery(sb) && 4668 sb->s_flags & MS_RDONLY) { 4669 ext4_clear_feature_journal_needs_recovery(sb); 4670 ext4_commit_super(sb, 1); 4671 } 4672 4673 out: 4674 jbd2_journal_unlock_updates(journal); 4675 } 4676 4677 /* 4678 * If we are mounting (or read-write remounting) a filesystem whose journal 4679 * has recorded an error from a previous lifetime, move that error to the 4680 * main filesystem now. 4681 */ 4682 static void ext4_clear_journal_err(struct super_block *sb, 4683 struct ext4_super_block *es) 4684 { 4685 journal_t *journal; 4686 int j_errno; 4687 const char *errstr; 4688 4689 BUG_ON(!ext4_has_feature_journal(sb)); 4690 4691 journal = EXT4_SB(sb)->s_journal; 4692 4693 /* 4694 * Now check for any error status which may have been recorded in the 4695 * journal by a prior ext4_error() or ext4_abort() 4696 */ 4697 4698 j_errno = jbd2_journal_errno(journal); 4699 if (j_errno) { 4700 char nbuf[16]; 4701 4702 errstr = ext4_decode_error(sb, j_errno, nbuf); 4703 ext4_warning(sb, "Filesystem error recorded " 4704 "from previous mount: %s", errstr); 4705 ext4_warning(sb, "Marking fs in need of filesystem check."); 4706 4707 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4708 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4709 ext4_commit_super(sb, 1); 4710 4711 jbd2_journal_clear_err(journal); 4712 jbd2_journal_update_sb_errno(journal); 4713 } 4714 } 4715 4716 /* 4717 * Force the running and committing transactions to commit, 4718 * and wait on the commit. 4719 */ 4720 int ext4_force_commit(struct super_block *sb) 4721 { 4722 journal_t *journal; 4723 4724 if (sb->s_flags & MS_RDONLY) 4725 return 0; 4726 4727 journal = EXT4_SB(sb)->s_journal; 4728 return ext4_journal_force_commit(journal); 4729 } 4730 4731 static int ext4_sync_fs(struct super_block *sb, int wait) 4732 { 4733 int ret = 0; 4734 tid_t target; 4735 bool needs_barrier = false; 4736 struct ext4_sb_info *sbi = EXT4_SB(sb); 4737 4738 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 4739 return 0; 4740 4741 trace_ext4_sync_fs(sb, wait); 4742 flush_workqueue(sbi->rsv_conversion_wq); 4743 /* 4744 * Writeback quota in non-journalled quota case - journalled quota has 4745 * no dirty dquots 4746 */ 4747 dquot_writeback_dquots(sb, -1); 4748 /* 4749 * Data writeback is possible w/o journal transaction, so barrier must 4750 * being sent at the end of the function. But we can skip it if 4751 * transaction_commit will do it for us. 4752 */ 4753 if (sbi->s_journal) { 4754 target = jbd2_get_latest_transaction(sbi->s_journal); 4755 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4756 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4757 needs_barrier = true; 4758 4759 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4760 if (wait) 4761 ret = jbd2_log_wait_commit(sbi->s_journal, 4762 target); 4763 } 4764 } else if (wait && test_opt(sb, BARRIER)) 4765 needs_barrier = true; 4766 if (needs_barrier) { 4767 int err; 4768 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4769 if (!ret) 4770 ret = err; 4771 } 4772 4773 return ret; 4774 } 4775 4776 /* 4777 * LVM calls this function before a (read-only) snapshot is created. This 4778 * gives us a chance to flush the journal completely and mark the fs clean. 4779 * 4780 * Note that only this function cannot bring a filesystem to be in a clean 4781 * state independently. It relies on upper layer to stop all data & metadata 4782 * modifications. 4783 */ 4784 static int ext4_freeze(struct super_block *sb) 4785 { 4786 int error = 0; 4787 journal_t *journal; 4788 4789 if (sb->s_flags & MS_RDONLY) 4790 return 0; 4791 4792 journal = EXT4_SB(sb)->s_journal; 4793 4794 if (journal) { 4795 /* Now we set up the journal barrier. */ 4796 jbd2_journal_lock_updates(journal); 4797 4798 /* 4799 * Don't clear the needs_recovery flag if we failed to 4800 * flush the journal. 4801 */ 4802 error = jbd2_journal_flush(journal); 4803 if (error < 0) 4804 goto out; 4805 4806 /* Journal blocked and flushed, clear needs_recovery flag. */ 4807 ext4_clear_feature_journal_needs_recovery(sb); 4808 } 4809 4810 error = ext4_commit_super(sb, 1); 4811 out: 4812 if (journal) 4813 /* we rely on upper layer to stop further updates */ 4814 jbd2_journal_unlock_updates(journal); 4815 return error; 4816 } 4817 4818 /* 4819 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4820 * flag here, even though the filesystem is not technically dirty yet. 4821 */ 4822 static int ext4_unfreeze(struct super_block *sb) 4823 { 4824 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb))) 4825 return 0; 4826 4827 if (EXT4_SB(sb)->s_journal) { 4828 /* Reset the needs_recovery flag before the fs is unlocked. */ 4829 ext4_set_feature_journal_needs_recovery(sb); 4830 } 4831 4832 ext4_commit_super(sb, 1); 4833 return 0; 4834 } 4835 4836 /* 4837 * Structure to save mount options for ext4_remount's benefit 4838 */ 4839 struct ext4_mount_options { 4840 unsigned long s_mount_opt; 4841 unsigned long s_mount_opt2; 4842 kuid_t s_resuid; 4843 kgid_t s_resgid; 4844 unsigned long s_commit_interval; 4845 u32 s_min_batch_time, s_max_batch_time; 4846 #ifdef CONFIG_QUOTA 4847 int s_jquota_fmt; 4848 char *s_qf_names[EXT4_MAXQUOTAS]; 4849 #endif 4850 }; 4851 4852 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4853 { 4854 struct ext4_super_block *es; 4855 struct ext4_sb_info *sbi = EXT4_SB(sb); 4856 unsigned long old_sb_flags; 4857 struct ext4_mount_options old_opts; 4858 int enable_quota = 0; 4859 ext4_group_t g; 4860 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4861 int err = 0; 4862 #ifdef CONFIG_QUOTA 4863 int i, j; 4864 #endif 4865 char *orig_data = kstrdup(data, GFP_KERNEL); 4866 4867 /* Store the original options */ 4868 old_sb_flags = sb->s_flags; 4869 old_opts.s_mount_opt = sbi->s_mount_opt; 4870 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4871 old_opts.s_resuid = sbi->s_resuid; 4872 old_opts.s_resgid = sbi->s_resgid; 4873 old_opts.s_commit_interval = sbi->s_commit_interval; 4874 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4875 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4876 #ifdef CONFIG_QUOTA 4877 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4878 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4879 if (sbi->s_qf_names[i]) { 4880 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4881 GFP_KERNEL); 4882 if (!old_opts.s_qf_names[i]) { 4883 for (j = 0; j < i; j++) 4884 kfree(old_opts.s_qf_names[j]); 4885 kfree(orig_data); 4886 return -ENOMEM; 4887 } 4888 } else 4889 old_opts.s_qf_names[i] = NULL; 4890 #endif 4891 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4892 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4893 4894 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4895 err = -EINVAL; 4896 goto restore_opts; 4897 } 4898 4899 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4900 test_opt(sb, JOURNAL_CHECKSUM)) { 4901 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4902 "during remount not supported; ignoring"); 4903 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4904 } 4905 4906 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4907 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4908 ext4_msg(sb, KERN_ERR, "can't mount with " 4909 "both data=journal and delalloc"); 4910 err = -EINVAL; 4911 goto restore_opts; 4912 } 4913 if (test_opt(sb, DIOREAD_NOLOCK)) { 4914 ext4_msg(sb, KERN_ERR, "can't mount with " 4915 "both data=journal and dioread_nolock"); 4916 err = -EINVAL; 4917 goto restore_opts; 4918 } 4919 if (test_opt(sb, DAX)) { 4920 ext4_msg(sb, KERN_ERR, "can't mount with " 4921 "both data=journal and dax"); 4922 err = -EINVAL; 4923 goto restore_opts; 4924 } 4925 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 4926 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4927 ext4_msg(sb, KERN_ERR, "can't mount with " 4928 "journal_async_commit in data=ordered mode"); 4929 err = -EINVAL; 4930 goto restore_opts; 4931 } 4932 } 4933 4934 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4935 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4936 "dax flag with busy inodes while remounting"); 4937 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4938 } 4939 4940 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4941 ext4_abort(sb, "Abort forced by user"); 4942 4943 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4944 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4945 4946 es = sbi->s_es; 4947 4948 if (sbi->s_journal) { 4949 ext4_init_journal_params(sb, sbi->s_journal); 4950 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4951 } 4952 4953 if (*flags & MS_LAZYTIME) 4954 sb->s_flags |= MS_LAZYTIME; 4955 4956 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4957 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4958 err = -EROFS; 4959 goto restore_opts; 4960 } 4961 4962 if (*flags & MS_RDONLY) { 4963 err = sync_filesystem(sb); 4964 if (err < 0) 4965 goto restore_opts; 4966 err = dquot_suspend(sb, -1); 4967 if (err < 0) 4968 goto restore_opts; 4969 4970 /* 4971 * First of all, the unconditional stuff we have to do 4972 * to disable replay of the journal when we next remount 4973 */ 4974 sb->s_flags |= MS_RDONLY; 4975 4976 /* 4977 * OK, test if we are remounting a valid rw partition 4978 * readonly, and if so set the rdonly flag and then 4979 * mark the partition as valid again. 4980 */ 4981 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4982 (sbi->s_mount_state & EXT4_VALID_FS)) 4983 es->s_state = cpu_to_le16(sbi->s_mount_state); 4984 4985 if (sbi->s_journal) 4986 ext4_mark_recovery_complete(sb, es); 4987 } else { 4988 /* Make sure we can mount this feature set readwrite */ 4989 if (ext4_has_feature_readonly(sb) || 4990 !ext4_feature_set_ok(sb, 0)) { 4991 err = -EROFS; 4992 goto restore_opts; 4993 } 4994 /* 4995 * Make sure the group descriptor checksums 4996 * are sane. If they aren't, refuse to remount r/w. 4997 */ 4998 for (g = 0; g < sbi->s_groups_count; g++) { 4999 struct ext4_group_desc *gdp = 5000 ext4_get_group_desc(sb, g, NULL); 5001 5002 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5003 ext4_msg(sb, KERN_ERR, 5004 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5005 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5006 le16_to_cpu(gdp->bg_checksum)); 5007 err = -EFSBADCRC; 5008 goto restore_opts; 5009 } 5010 } 5011 5012 /* 5013 * If we have an unprocessed orphan list hanging 5014 * around from a previously readonly bdev mount, 5015 * require a full umount/remount for now. 5016 */ 5017 if (es->s_last_orphan) { 5018 ext4_msg(sb, KERN_WARNING, "Couldn't " 5019 "remount RDWR because of unprocessed " 5020 "orphan inode list. Please " 5021 "umount/remount instead"); 5022 err = -EINVAL; 5023 goto restore_opts; 5024 } 5025 5026 /* 5027 * Mounting a RDONLY partition read-write, so reread 5028 * and store the current valid flag. (It may have 5029 * been changed by e2fsck since we originally mounted 5030 * the partition.) 5031 */ 5032 if (sbi->s_journal) 5033 ext4_clear_journal_err(sb, es); 5034 sbi->s_mount_state = le16_to_cpu(es->s_state); 5035 if (!ext4_setup_super(sb, es, 0)) 5036 sb->s_flags &= ~MS_RDONLY; 5037 if (ext4_has_feature_mmp(sb)) 5038 if (ext4_multi_mount_protect(sb, 5039 le64_to_cpu(es->s_mmp_block))) { 5040 err = -EROFS; 5041 goto restore_opts; 5042 } 5043 enable_quota = 1; 5044 } 5045 } 5046 5047 /* 5048 * Reinitialize lazy itable initialization thread based on 5049 * current settings 5050 */ 5051 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 5052 ext4_unregister_li_request(sb); 5053 else { 5054 ext4_group_t first_not_zeroed; 5055 first_not_zeroed = ext4_has_uninit_itable(sb); 5056 ext4_register_li_request(sb, first_not_zeroed); 5057 } 5058 5059 ext4_setup_system_zone(sb); 5060 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 5061 ext4_commit_super(sb, 1); 5062 5063 #ifdef CONFIG_QUOTA 5064 /* Release old quota file names */ 5065 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5066 kfree(old_opts.s_qf_names[i]); 5067 if (enable_quota) { 5068 if (sb_any_quota_suspended(sb)) 5069 dquot_resume(sb, -1); 5070 else if (ext4_has_feature_quota(sb)) { 5071 err = ext4_enable_quotas(sb); 5072 if (err) 5073 goto restore_opts; 5074 } 5075 } 5076 #endif 5077 5078 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 5079 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5080 kfree(orig_data); 5081 return 0; 5082 5083 restore_opts: 5084 sb->s_flags = old_sb_flags; 5085 sbi->s_mount_opt = old_opts.s_mount_opt; 5086 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5087 sbi->s_resuid = old_opts.s_resuid; 5088 sbi->s_resgid = old_opts.s_resgid; 5089 sbi->s_commit_interval = old_opts.s_commit_interval; 5090 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5091 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5092 #ifdef CONFIG_QUOTA 5093 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5094 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5095 kfree(sbi->s_qf_names[i]); 5096 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 5097 } 5098 #endif 5099 kfree(orig_data); 5100 return err; 5101 } 5102 5103 #ifdef CONFIG_QUOTA 5104 static int ext4_statfs_project(struct super_block *sb, 5105 kprojid_t projid, struct kstatfs *buf) 5106 { 5107 struct kqid qid; 5108 struct dquot *dquot; 5109 u64 limit; 5110 u64 curblock; 5111 5112 qid = make_kqid_projid(projid); 5113 dquot = dqget(sb, qid); 5114 if (IS_ERR(dquot)) 5115 return PTR_ERR(dquot); 5116 spin_lock(&dq_data_lock); 5117 5118 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5119 dquot->dq_dqb.dqb_bsoftlimit : 5120 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5121 if (limit && buf->f_blocks > limit) { 5122 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 5123 buf->f_blocks = limit; 5124 buf->f_bfree = buf->f_bavail = 5125 (buf->f_blocks > curblock) ? 5126 (buf->f_blocks - curblock) : 0; 5127 } 5128 5129 limit = dquot->dq_dqb.dqb_isoftlimit ? 5130 dquot->dq_dqb.dqb_isoftlimit : 5131 dquot->dq_dqb.dqb_ihardlimit; 5132 if (limit && buf->f_files > limit) { 5133 buf->f_files = limit; 5134 buf->f_ffree = 5135 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5136 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5137 } 5138 5139 spin_unlock(&dq_data_lock); 5140 dqput(dquot); 5141 return 0; 5142 } 5143 #endif 5144 5145 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5146 { 5147 struct super_block *sb = dentry->d_sb; 5148 struct ext4_sb_info *sbi = EXT4_SB(sb); 5149 struct ext4_super_block *es = sbi->s_es; 5150 ext4_fsblk_t overhead = 0, resv_blocks; 5151 u64 fsid; 5152 s64 bfree; 5153 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5154 5155 if (!test_opt(sb, MINIX_DF)) 5156 overhead = sbi->s_overhead; 5157 5158 buf->f_type = EXT4_SUPER_MAGIC; 5159 buf->f_bsize = sb->s_blocksize; 5160 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5161 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5162 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5163 /* prevent underflow in case that few free space is available */ 5164 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5165 buf->f_bavail = buf->f_bfree - 5166 (ext4_r_blocks_count(es) + resv_blocks); 5167 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5168 buf->f_bavail = 0; 5169 buf->f_files = le32_to_cpu(es->s_inodes_count); 5170 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5171 buf->f_namelen = EXT4_NAME_LEN; 5172 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5173 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5174 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5175 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5176 5177 #ifdef CONFIG_QUOTA 5178 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5179 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5180 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5181 #endif 5182 return 0; 5183 } 5184 5185 /* Helper function for writing quotas on sync - we need to start transaction 5186 * before quota file is locked for write. Otherwise the are possible deadlocks: 5187 * Process 1 Process 2 5188 * ext4_create() quota_sync() 5189 * jbd2_journal_start() write_dquot() 5190 * dquot_initialize() down(dqio_mutex) 5191 * down(dqio_mutex) jbd2_journal_start() 5192 * 5193 */ 5194 5195 #ifdef CONFIG_QUOTA 5196 5197 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5198 { 5199 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5200 } 5201 5202 static int ext4_write_dquot(struct dquot *dquot) 5203 { 5204 int ret, err; 5205 handle_t *handle; 5206 struct inode *inode; 5207 5208 inode = dquot_to_inode(dquot); 5209 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5210 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5211 if (IS_ERR(handle)) 5212 return PTR_ERR(handle); 5213 ret = dquot_commit(dquot); 5214 err = ext4_journal_stop(handle); 5215 if (!ret) 5216 ret = err; 5217 return ret; 5218 } 5219 5220 static int ext4_acquire_dquot(struct dquot *dquot) 5221 { 5222 int ret, err; 5223 handle_t *handle; 5224 5225 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5226 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5227 if (IS_ERR(handle)) 5228 return PTR_ERR(handle); 5229 ret = dquot_acquire(dquot); 5230 err = ext4_journal_stop(handle); 5231 if (!ret) 5232 ret = err; 5233 return ret; 5234 } 5235 5236 static int ext4_release_dquot(struct dquot *dquot) 5237 { 5238 int ret, err; 5239 handle_t *handle; 5240 5241 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5242 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5243 if (IS_ERR(handle)) { 5244 /* Release dquot anyway to avoid endless cycle in dqput() */ 5245 dquot_release(dquot); 5246 return PTR_ERR(handle); 5247 } 5248 ret = dquot_release(dquot); 5249 err = ext4_journal_stop(handle); 5250 if (!ret) 5251 ret = err; 5252 return ret; 5253 } 5254 5255 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5256 { 5257 struct super_block *sb = dquot->dq_sb; 5258 struct ext4_sb_info *sbi = EXT4_SB(sb); 5259 5260 /* Are we journaling quotas? */ 5261 if (ext4_has_feature_quota(sb) || 5262 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5263 dquot_mark_dquot_dirty(dquot); 5264 return ext4_write_dquot(dquot); 5265 } else { 5266 return dquot_mark_dquot_dirty(dquot); 5267 } 5268 } 5269 5270 static int ext4_write_info(struct super_block *sb, int type) 5271 { 5272 int ret, err; 5273 handle_t *handle; 5274 5275 /* Data block + inode block */ 5276 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5277 if (IS_ERR(handle)) 5278 return PTR_ERR(handle); 5279 ret = dquot_commit_info(sb, type); 5280 err = ext4_journal_stop(handle); 5281 if (!ret) 5282 ret = err; 5283 return ret; 5284 } 5285 5286 /* 5287 * Turn on quotas during mount time - we need to find 5288 * the quota file and such... 5289 */ 5290 static int ext4_quota_on_mount(struct super_block *sb, int type) 5291 { 5292 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 5293 EXT4_SB(sb)->s_jquota_fmt, type); 5294 } 5295 5296 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5297 { 5298 struct ext4_inode_info *ei = EXT4_I(inode); 5299 5300 /* The first argument of lockdep_set_subclass has to be 5301 * *exactly* the same as the argument to init_rwsem() --- in 5302 * this case, in init_once() --- or lockdep gets unhappy 5303 * because the name of the lock is set using the 5304 * stringification of the argument to init_rwsem(). 5305 */ 5306 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5307 lockdep_set_subclass(&ei->i_data_sem, subclass); 5308 } 5309 5310 /* 5311 * Standard function to be called on quota_on 5312 */ 5313 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5314 const struct path *path) 5315 { 5316 int err; 5317 5318 if (!test_opt(sb, QUOTA)) 5319 return -EINVAL; 5320 5321 /* Quotafile not on the same filesystem? */ 5322 if (path->dentry->d_sb != sb) 5323 return -EXDEV; 5324 /* Journaling quota? */ 5325 if (EXT4_SB(sb)->s_qf_names[type]) { 5326 /* Quotafile not in fs root? */ 5327 if (path->dentry->d_parent != sb->s_root) 5328 ext4_msg(sb, KERN_WARNING, 5329 "Quota file not on filesystem root. " 5330 "Journaled quota will not work"); 5331 } 5332 5333 /* 5334 * When we journal data on quota file, we have to flush journal to see 5335 * all updates to the file when we bypass pagecache... 5336 */ 5337 if (EXT4_SB(sb)->s_journal && 5338 ext4_should_journal_data(d_inode(path->dentry))) { 5339 /* 5340 * We don't need to lock updates but journal_flush() could 5341 * otherwise be livelocked... 5342 */ 5343 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5344 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5345 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5346 if (err) 5347 return err; 5348 } 5349 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5350 err = dquot_quota_on(sb, type, format_id, path); 5351 if (err) 5352 lockdep_set_quota_inode(path->dentry->d_inode, 5353 I_DATA_SEM_NORMAL); 5354 return err; 5355 } 5356 5357 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5358 unsigned int flags) 5359 { 5360 int err; 5361 struct inode *qf_inode; 5362 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5363 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5364 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5365 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5366 }; 5367 5368 BUG_ON(!ext4_has_feature_quota(sb)); 5369 5370 if (!qf_inums[type]) 5371 return -EPERM; 5372 5373 qf_inode = ext4_iget(sb, qf_inums[type]); 5374 if (IS_ERR(qf_inode)) { 5375 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5376 return PTR_ERR(qf_inode); 5377 } 5378 5379 /* Don't account quota for quota files to avoid recursion */ 5380 qf_inode->i_flags |= S_NOQUOTA; 5381 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5382 err = dquot_enable(qf_inode, type, format_id, flags); 5383 iput(qf_inode); 5384 if (err) 5385 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5386 5387 return err; 5388 } 5389 5390 /* Enable usage tracking for all quota types. */ 5391 static int ext4_enable_quotas(struct super_block *sb) 5392 { 5393 int type, err = 0; 5394 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5395 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5396 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5397 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5398 }; 5399 bool quota_mopt[EXT4_MAXQUOTAS] = { 5400 test_opt(sb, USRQUOTA), 5401 test_opt(sb, GRPQUOTA), 5402 test_opt(sb, PRJQUOTA), 5403 }; 5404 5405 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5406 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5407 if (qf_inums[type]) { 5408 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5409 DQUOT_USAGE_ENABLED | 5410 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5411 if (err) { 5412 ext4_warning(sb, 5413 "Failed to enable quota tracking " 5414 "(type=%d, err=%d). Please run " 5415 "e2fsck to fix.", type, err); 5416 return err; 5417 } 5418 } 5419 } 5420 return 0; 5421 } 5422 5423 static int ext4_quota_off(struct super_block *sb, int type) 5424 { 5425 struct inode *inode = sb_dqopt(sb)->files[type]; 5426 handle_t *handle; 5427 5428 /* Force all delayed allocation blocks to be allocated. 5429 * Caller already holds s_umount sem */ 5430 if (test_opt(sb, DELALLOC)) 5431 sync_filesystem(sb); 5432 5433 if (!inode) 5434 goto out; 5435 5436 /* Update modification times of quota files when userspace can 5437 * start looking at them */ 5438 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5439 if (IS_ERR(handle)) 5440 goto out; 5441 inode->i_mtime = inode->i_ctime = current_time(inode); 5442 ext4_mark_inode_dirty(handle, inode); 5443 ext4_journal_stop(handle); 5444 5445 out: 5446 return dquot_quota_off(sb, type); 5447 } 5448 5449 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5450 * acquiring the locks... As quota files are never truncated and quota code 5451 * itself serializes the operations (and no one else should touch the files) 5452 * we don't have to be afraid of races */ 5453 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5454 size_t len, loff_t off) 5455 { 5456 struct inode *inode = sb_dqopt(sb)->files[type]; 5457 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5458 int offset = off & (sb->s_blocksize - 1); 5459 int tocopy; 5460 size_t toread; 5461 struct buffer_head *bh; 5462 loff_t i_size = i_size_read(inode); 5463 5464 if (off > i_size) 5465 return 0; 5466 if (off+len > i_size) 5467 len = i_size-off; 5468 toread = len; 5469 while (toread > 0) { 5470 tocopy = sb->s_blocksize - offset < toread ? 5471 sb->s_blocksize - offset : toread; 5472 bh = ext4_bread(NULL, inode, blk, 0); 5473 if (IS_ERR(bh)) 5474 return PTR_ERR(bh); 5475 if (!bh) /* A hole? */ 5476 memset(data, 0, tocopy); 5477 else 5478 memcpy(data, bh->b_data+offset, tocopy); 5479 brelse(bh); 5480 offset = 0; 5481 toread -= tocopy; 5482 data += tocopy; 5483 blk++; 5484 } 5485 return len; 5486 } 5487 5488 /* Write to quotafile (we know the transaction is already started and has 5489 * enough credits) */ 5490 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5491 const char *data, size_t len, loff_t off) 5492 { 5493 struct inode *inode = sb_dqopt(sb)->files[type]; 5494 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5495 int err, offset = off & (sb->s_blocksize - 1); 5496 int retries = 0; 5497 struct buffer_head *bh; 5498 handle_t *handle = journal_current_handle(); 5499 5500 if (EXT4_SB(sb)->s_journal && !handle) { 5501 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5502 " cancelled because transaction is not started", 5503 (unsigned long long)off, (unsigned long long)len); 5504 return -EIO; 5505 } 5506 /* 5507 * Since we account only one data block in transaction credits, 5508 * then it is impossible to cross a block boundary. 5509 */ 5510 if (sb->s_blocksize - offset < len) { 5511 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5512 " cancelled because not block aligned", 5513 (unsigned long long)off, (unsigned long long)len); 5514 return -EIO; 5515 } 5516 5517 do { 5518 bh = ext4_bread(handle, inode, blk, 5519 EXT4_GET_BLOCKS_CREATE | 5520 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5521 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5522 ext4_should_retry_alloc(inode->i_sb, &retries)); 5523 if (IS_ERR(bh)) 5524 return PTR_ERR(bh); 5525 if (!bh) 5526 goto out; 5527 BUFFER_TRACE(bh, "get write access"); 5528 err = ext4_journal_get_write_access(handle, bh); 5529 if (err) { 5530 brelse(bh); 5531 return err; 5532 } 5533 lock_buffer(bh); 5534 memcpy(bh->b_data+offset, data, len); 5535 flush_dcache_page(bh->b_page); 5536 unlock_buffer(bh); 5537 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5538 brelse(bh); 5539 out: 5540 if (inode->i_size < off + len) { 5541 i_size_write(inode, off + len); 5542 EXT4_I(inode)->i_disksize = inode->i_size; 5543 ext4_mark_inode_dirty(handle, inode); 5544 } 5545 return len; 5546 } 5547 5548 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5549 { 5550 const struct quota_format_ops *ops; 5551 5552 if (!sb_has_quota_loaded(sb, qid->type)) 5553 return -ESRCH; 5554 ops = sb_dqopt(sb)->ops[qid->type]; 5555 if (!ops || !ops->get_next_id) 5556 return -ENOSYS; 5557 return dquot_get_next_id(sb, qid); 5558 } 5559 #endif 5560 5561 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5562 const char *dev_name, void *data) 5563 { 5564 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5565 } 5566 5567 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5568 static inline void register_as_ext2(void) 5569 { 5570 int err = register_filesystem(&ext2_fs_type); 5571 if (err) 5572 printk(KERN_WARNING 5573 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5574 } 5575 5576 static inline void unregister_as_ext2(void) 5577 { 5578 unregister_filesystem(&ext2_fs_type); 5579 } 5580 5581 static inline int ext2_feature_set_ok(struct super_block *sb) 5582 { 5583 if (ext4_has_unknown_ext2_incompat_features(sb)) 5584 return 0; 5585 if (sb->s_flags & MS_RDONLY) 5586 return 1; 5587 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5588 return 0; 5589 return 1; 5590 } 5591 #else 5592 static inline void register_as_ext2(void) { } 5593 static inline void unregister_as_ext2(void) { } 5594 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5595 #endif 5596 5597 static inline void register_as_ext3(void) 5598 { 5599 int err = register_filesystem(&ext3_fs_type); 5600 if (err) 5601 printk(KERN_WARNING 5602 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5603 } 5604 5605 static inline void unregister_as_ext3(void) 5606 { 5607 unregister_filesystem(&ext3_fs_type); 5608 } 5609 5610 static inline int ext3_feature_set_ok(struct super_block *sb) 5611 { 5612 if (ext4_has_unknown_ext3_incompat_features(sb)) 5613 return 0; 5614 if (!ext4_has_feature_journal(sb)) 5615 return 0; 5616 if (sb->s_flags & MS_RDONLY) 5617 return 1; 5618 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5619 return 0; 5620 return 1; 5621 } 5622 5623 static struct file_system_type ext4_fs_type = { 5624 .owner = THIS_MODULE, 5625 .name = "ext4", 5626 .mount = ext4_mount, 5627 .kill_sb = kill_block_super, 5628 .fs_flags = FS_REQUIRES_DEV, 5629 }; 5630 MODULE_ALIAS_FS("ext4"); 5631 5632 /* Shared across all ext4 file systems */ 5633 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5634 5635 static int __init ext4_init_fs(void) 5636 { 5637 int i, err; 5638 5639 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5640 ext4_li_info = NULL; 5641 mutex_init(&ext4_li_mtx); 5642 5643 /* Build-time check for flags consistency */ 5644 ext4_check_flag_values(); 5645 5646 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5647 init_waitqueue_head(&ext4__ioend_wq[i]); 5648 5649 err = ext4_init_es(); 5650 if (err) 5651 return err; 5652 5653 err = ext4_init_pageio(); 5654 if (err) 5655 goto out5; 5656 5657 err = ext4_init_system_zone(); 5658 if (err) 5659 goto out4; 5660 5661 err = ext4_init_sysfs(); 5662 if (err) 5663 goto out3; 5664 5665 err = ext4_init_mballoc(); 5666 if (err) 5667 goto out2; 5668 err = init_inodecache(); 5669 if (err) 5670 goto out1; 5671 register_as_ext3(); 5672 register_as_ext2(); 5673 err = register_filesystem(&ext4_fs_type); 5674 if (err) 5675 goto out; 5676 5677 return 0; 5678 out: 5679 unregister_as_ext2(); 5680 unregister_as_ext3(); 5681 destroy_inodecache(); 5682 out1: 5683 ext4_exit_mballoc(); 5684 out2: 5685 ext4_exit_sysfs(); 5686 out3: 5687 ext4_exit_system_zone(); 5688 out4: 5689 ext4_exit_pageio(); 5690 out5: 5691 ext4_exit_es(); 5692 5693 return err; 5694 } 5695 5696 static void __exit ext4_exit_fs(void) 5697 { 5698 ext4_destroy_lazyinit_thread(); 5699 unregister_as_ext2(); 5700 unregister_as_ext3(); 5701 unregister_filesystem(&ext4_fs_type); 5702 destroy_inodecache(); 5703 ext4_exit_mballoc(); 5704 ext4_exit_sysfs(); 5705 ext4_exit_system_zone(); 5706 ext4_exit_pageio(); 5707 ext4_exit_es(); 5708 } 5709 5710 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5711 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5712 MODULE_LICENSE("GPL"); 5713 module_init(ext4_init_fs) 5714 module_exit(ext4_exit_fs) 5715