1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static void ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static void ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_sem 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_sem 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 /* 145 * This works like sb_bread() except it uses ERR_PTR for error 146 * returns. Currently with sb_bread it's impossible to distinguish 147 * between ENOMEM and EIO situations (since both result in a NULL 148 * return. 149 */ 150 struct buffer_head * 151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 152 { 153 struct buffer_head *bh = sb_getblk(sb, block); 154 155 if (bh == NULL) 156 return ERR_PTR(-ENOMEM); 157 if (ext4_buffer_uptodate(bh)) 158 return bh; 159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 160 wait_on_buffer(bh); 161 if (buffer_uptodate(bh)) 162 return bh; 163 put_bh(bh); 164 return ERR_PTR(-EIO); 165 } 166 167 static int ext4_verify_csum_type(struct super_block *sb, 168 struct ext4_super_block *es) 169 { 170 if (!ext4_has_feature_metadata_csum(sb)) 171 return 1; 172 173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 174 } 175 176 static __le32 ext4_superblock_csum(struct super_block *sb, 177 struct ext4_super_block *es) 178 { 179 struct ext4_sb_info *sbi = EXT4_SB(sb); 180 int offset = offsetof(struct ext4_super_block, s_checksum); 181 __u32 csum; 182 183 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 184 185 return cpu_to_le32(csum); 186 } 187 188 static int ext4_superblock_csum_verify(struct super_block *sb, 189 struct ext4_super_block *es) 190 { 191 if (!ext4_has_metadata_csum(sb)) 192 return 1; 193 194 return es->s_checksum == ext4_superblock_csum(sb, es); 195 } 196 197 void ext4_superblock_csum_set(struct super_block *sb) 198 { 199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 200 201 if (!ext4_has_metadata_csum(sb)) 202 return; 203 204 es->s_checksum = ext4_superblock_csum(sb, es); 205 } 206 207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_block_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 221 } 222 223 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le32_to_cpu(bg->bg_inode_table_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 229 } 230 231 __u32 ext4_free_group_clusters(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_free_inodes_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_used_dirs_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 253 } 254 255 __u32 ext4_itable_unused_count(struct super_block *sb, 256 struct ext4_group_desc *bg) 257 { 258 return le16_to_cpu(bg->bg_itable_unused_lo) | 259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 261 } 262 263 void ext4_block_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_bitmap_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_inode_table_set(struct super_block *sb, 280 struct ext4_group_desc *bg, ext4_fsblk_t blk) 281 { 282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 285 } 286 287 void ext4_free_group_clusters_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_free_inodes_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_used_dirs_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 309 } 310 311 void ext4_itable_unused_set(struct super_block *sb, 312 struct ext4_group_desc *bg, __u32 count) 313 { 314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 317 } 318 319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 320 { 321 time64_t now = ktime_get_real_seconds(); 322 323 now = clamp_val(now, 0, (1ull << 40) - 1); 324 325 *lo = cpu_to_le32(lower_32_bits(now)); 326 *hi = upper_32_bits(now); 327 } 328 329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 330 { 331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 332 } 333 #define ext4_update_tstamp(es, tstamp) \ 334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 335 #define ext4_get_tstamp(es, tstamp) \ 336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 337 338 static void __save_error_info(struct super_block *sb, int error, 339 __u32 ino, __u64 block, 340 const char *func, unsigned int line) 341 { 342 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 343 int err; 344 345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 346 if (bdev_read_only(sb->s_bdev)) 347 return; 348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 349 ext4_update_tstamp(es, s_last_error_time); 350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 351 es->s_last_error_line = cpu_to_le32(line); 352 es->s_last_error_ino = cpu_to_le32(ino); 353 es->s_last_error_block = cpu_to_le64(block); 354 switch (error) { 355 case EIO: 356 err = EXT4_ERR_EIO; 357 break; 358 case ENOMEM: 359 err = EXT4_ERR_ENOMEM; 360 break; 361 case EFSBADCRC: 362 err = EXT4_ERR_EFSBADCRC; 363 break; 364 case 0: 365 case EFSCORRUPTED: 366 err = EXT4_ERR_EFSCORRUPTED; 367 break; 368 case ENOSPC: 369 err = EXT4_ERR_ENOSPC; 370 break; 371 case ENOKEY: 372 err = EXT4_ERR_ENOKEY; 373 break; 374 case EROFS: 375 err = EXT4_ERR_EROFS; 376 break; 377 case EFBIG: 378 err = EXT4_ERR_EFBIG; 379 break; 380 case EEXIST: 381 err = EXT4_ERR_EEXIST; 382 break; 383 case ERANGE: 384 err = EXT4_ERR_ERANGE; 385 break; 386 case EOVERFLOW: 387 err = EXT4_ERR_EOVERFLOW; 388 break; 389 case EBUSY: 390 err = EXT4_ERR_EBUSY; 391 break; 392 case ENOTDIR: 393 err = EXT4_ERR_ENOTDIR; 394 break; 395 case ENOTEMPTY: 396 err = EXT4_ERR_ENOTEMPTY; 397 break; 398 case ESHUTDOWN: 399 err = EXT4_ERR_ESHUTDOWN; 400 break; 401 case EFAULT: 402 err = EXT4_ERR_EFAULT; 403 break; 404 default: 405 err = EXT4_ERR_UNKNOWN; 406 } 407 es->s_last_error_errcode = err; 408 if (!es->s_first_error_time) { 409 es->s_first_error_time = es->s_last_error_time; 410 es->s_first_error_time_hi = es->s_last_error_time_hi; 411 strncpy(es->s_first_error_func, func, 412 sizeof(es->s_first_error_func)); 413 es->s_first_error_line = cpu_to_le32(line); 414 es->s_first_error_ino = es->s_last_error_ino; 415 es->s_first_error_block = es->s_last_error_block; 416 es->s_first_error_errcode = es->s_last_error_errcode; 417 } 418 /* 419 * Start the daily error reporting function if it hasn't been 420 * started already 421 */ 422 if (!es->s_error_count) 423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 424 le32_add_cpu(&es->s_error_count, 1); 425 } 426 427 static void save_error_info(struct super_block *sb, int error, 428 __u32 ino, __u64 block, 429 const char *func, unsigned int line) 430 { 431 __save_error_info(sb, error, ino, block, func, line); 432 if (!bdev_read_only(sb->s_bdev)) 433 ext4_commit_super(sb, 1); 434 } 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 static bool system_going_down(void) 476 { 477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 478 || system_state == SYSTEM_RESTART; 479 } 480 481 /* Deal with the reporting of failure conditions on a filesystem such as 482 * inconsistencies detected or read IO failures. 483 * 484 * On ext2, we can store the error state of the filesystem in the 485 * superblock. That is not possible on ext4, because we may have other 486 * write ordering constraints on the superblock which prevent us from 487 * writing it out straight away; and given that the journal is about to 488 * be aborted, we can't rely on the current, or future, transactions to 489 * write out the superblock safely. 490 * 491 * We'll just use the jbd2_journal_abort() error code to record an error in 492 * the journal instead. On recovery, the journal will complain about 493 * that error until we've noted it down and cleared it. 494 */ 495 496 static void ext4_handle_error(struct super_block *sb) 497 { 498 if (test_opt(sb, WARN_ON_ERROR)) 499 WARN_ON_ONCE(1); 500 501 if (sb_rdonly(sb)) 502 return; 503 504 if (!test_opt(sb, ERRORS_CONT)) { 505 journal_t *journal = EXT4_SB(sb)->s_journal; 506 507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 508 if (journal) 509 jbd2_journal_abort(journal, -EIO); 510 } 511 /* 512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 513 * could panic during 'reboot -f' as the underlying device got already 514 * disabled. 515 */ 516 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 518 /* 519 * Make sure updated value of ->s_mount_flags will be visible 520 * before ->s_flags update 521 */ 522 smp_wmb(); 523 sb->s_flags |= SB_RDONLY; 524 } else if (test_opt(sb, ERRORS_PANIC)) { 525 if (EXT4_SB(sb)->s_journal && 526 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 527 return; 528 panic("EXT4-fs (device %s): panic forced after error\n", 529 sb->s_id); 530 } 531 } 532 533 #define ext4_error_ratelimit(sb) \ 534 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 535 "EXT4-fs error") 536 537 void __ext4_error(struct super_block *sb, const char *function, 538 unsigned int line, int error, __u64 block, 539 const char *fmt, ...) 540 { 541 struct va_format vaf; 542 va_list args; 543 544 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 545 return; 546 547 trace_ext4_error(sb, function, line); 548 if (ext4_error_ratelimit(sb)) { 549 va_start(args, fmt); 550 vaf.fmt = fmt; 551 vaf.va = &args; 552 printk(KERN_CRIT 553 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 554 sb->s_id, function, line, current->comm, &vaf); 555 va_end(args); 556 } 557 save_error_info(sb, error, 0, block, function, line); 558 ext4_handle_error(sb); 559 } 560 561 void __ext4_error_inode(struct inode *inode, const char *function, 562 unsigned int line, ext4_fsblk_t block, int error, 563 const char *fmt, ...) 564 { 565 va_list args; 566 struct va_format vaf; 567 568 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 569 return; 570 571 trace_ext4_error(inode->i_sb, function, line); 572 if (ext4_error_ratelimit(inode->i_sb)) { 573 va_start(args, fmt); 574 vaf.fmt = fmt; 575 vaf.va = &args; 576 if (block) 577 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 578 "inode #%lu: block %llu: comm %s: %pV\n", 579 inode->i_sb->s_id, function, line, inode->i_ino, 580 block, current->comm, &vaf); 581 else 582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 583 "inode #%lu: comm %s: %pV\n", 584 inode->i_sb->s_id, function, line, inode->i_ino, 585 current->comm, &vaf); 586 va_end(args); 587 } 588 save_error_info(inode->i_sb, error, inode->i_ino, block, 589 function, line); 590 ext4_handle_error(inode->i_sb); 591 } 592 593 void __ext4_error_file(struct file *file, const char *function, 594 unsigned int line, ext4_fsblk_t block, 595 const char *fmt, ...) 596 { 597 va_list args; 598 struct va_format vaf; 599 struct ext4_super_block *es; 600 struct inode *inode = file_inode(file); 601 char pathname[80], *path; 602 603 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 604 return; 605 606 trace_ext4_error(inode->i_sb, function, line); 607 es = EXT4_SB(inode->i_sb)->s_es; 608 if (ext4_error_ratelimit(inode->i_sb)) { 609 path = file_path(file, pathname, sizeof(pathname)); 610 if (IS_ERR(path)) 611 path = "(unknown)"; 612 va_start(args, fmt); 613 vaf.fmt = fmt; 614 vaf.va = &args; 615 if (block) 616 printk(KERN_CRIT 617 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 618 "block %llu: comm %s: path %s: %pV\n", 619 inode->i_sb->s_id, function, line, inode->i_ino, 620 block, current->comm, path, &vaf); 621 else 622 printk(KERN_CRIT 623 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 624 "comm %s: path %s: %pV\n", 625 inode->i_sb->s_id, function, line, inode->i_ino, 626 current->comm, path, &vaf); 627 va_end(args); 628 } 629 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block, 630 function, line); 631 ext4_handle_error(inode->i_sb); 632 } 633 634 const char *ext4_decode_error(struct super_block *sb, int errno, 635 char nbuf[16]) 636 { 637 char *errstr = NULL; 638 639 switch (errno) { 640 case -EFSCORRUPTED: 641 errstr = "Corrupt filesystem"; 642 break; 643 case -EFSBADCRC: 644 errstr = "Filesystem failed CRC"; 645 break; 646 case -EIO: 647 errstr = "IO failure"; 648 break; 649 case -ENOMEM: 650 errstr = "Out of memory"; 651 break; 652 case -EROFS: 653 if (!sb || (EXT4_SB(sb)->s_journal && 654 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 655 errstr = "Journal has aborted"; 656 else 657 errstr = "Readonly filesystem"; 658 break; 659 default: 660 /* If the caller passed in an extra buffer for unknown 661 * errors, textualise them now. Else we just return 662 * NULL. */ 663 if (nbuf) { 664 /* Check for truncated error codes... */ 665 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 666 errstr = nbuf; 667 } 668 break; 669 } 670 671 return errstr; 672 } 673 674 /* __ext4_std_error decodes expected errors from journaling functions 675 * automatically and invokes the appropriate error response. */ 676 677 void __ext4_std_error(struct super_block *sb, const char *function, 678 unsigned int line, int errno) 679 { 680 char nbuf[16]; 681 const char *errstr; 682 683 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 684 return; 685 686 /* Special case: if the error is EROFS, and we're not already 687 * inside a transaction, then there's really no point in logging 688 * an error. */ 689 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 690 return; 691 692 if (ext4_error_ratelimit(sb)) { 693 errstr = ext4_decode_error(sb, errno, nbuf); 694 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 695 sb->s_id, function, line, errstr); 696 } 697 698 save_error_info(sb, -errno, 0, 0, function, line); 699 ext4_handle_error(sb); 700 } 701 702 /* 703 * ext4_abort is a much stronger failure handler than ext4_error. The 704 * abort function may be used to deal with unrecoverable failures such 705 * as journal IO errors or ENOMEM at a critical moment in log management. 706 * 707 * We unconditionally force the filesystem into an ABORT|READONLY state, 708 * unless the error response on the fs has been set to panic in which 709 * case we take the easy way out and panic immediately. 710 */ 711 712 void __ext4_abort(struct super_block *sb, const char *function, 713 unsigned int line, int error, const char *fmt, ...) 714 { 715 struct va_format vaf; 716 va_list args; 717 718 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 719 return; 720 721 save_error_info(sb, error, 0, 0, function, line); 722 va_start(args, fmt); 723 vaf.fmt = fmt; 724 vaf.va = &args; 725 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 726 sb->s_id, function, line, &vaf); 727 va_end(args); 728 729 if (sb_rdonly(sb) == 0) { 730 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 731 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 732 /* 733 * Make sure updated value of ->s_mount_flags will be visible 734 * before ->s_flags update 735 */ 736 smp_wmb(); 737 sb->s_flags |= SB_RDONLY; 738 if (EXT4_SB(sb)->s_journal) 739 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 740 } 741 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 742 if (EXT4_SB(sb)->s_journal && 743 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 744 return; 745 panic("EXT4-fs panic from previous error\n"); 746 } 747 } 748 749 void __ext4_msg(struct super_block *sb, 750 const char *prefix, const char *fmt, ...) 751 { 752 struct va_format vaf; 753 va_list args; 754 755 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 756 return; 757 758 va_start(args, fmt); 759 vaf.fmt = fmt; 760 vaf.va = &args; 761 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 762 va_end(args); 763 } 764 765 #define ext4_warning_ratelimit(sb) \ 766 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 767 "EXT4-fs warning") 768 769 void __ext4_warning(struct super_block *sb, const char *function, 770 unsigned int line, const char *fmt, ...) 771 { 772 struct va_format vaf; 773 va_list args; 774 775 if (!ext4_warning_ratelimit(sb)) 776 return; 777 778 va_start(args, fmt); 779 vaf.fmt = fmt; 780 vaf.va = &args; 781 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 782 sb->s_id, function, line, &vaf); 783 va_end(args); 784 } 785 786 void __ext4_warning_inode(const struct inode *inode, const char *function, 787 unsigned int line, const char *fmt, ...) 788 { 789 struct va_format vaf; 790 va_list args; 791 792 if (!ext4_warning_ratelimit(inode->i_sb)) 793 return; 794 795 va_start(args, fmt); 796 vaf.fmt = fmt; 797 vaf.va = &args; 798 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 799 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 800 function, line, inode->i_ino, current->comm, &vaf); 801 va_end(args); 802 } 803 804 void __ext4_grp_locked_error(const char *function, unsigned int line, 805 struct super_block *sb, ext4_group_t grp, 806 unsigned long ino, ext4_fsblk_t block, 807 const char *fmt, ...) 808 __releases(bitlock) 809 __acquires(bitlock) 810 { 811 struct va_format vaf; 812 va_list args; 813 814 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 815 return; 816 817 trace_ext4_error(sb, function, line); 818 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line); 819 820 if (ext4_error_ratelimit(sb)) { 821 va_start(args, fmt); 822 vaf.fmt = fmt; 823 vaf.va = &args; 824 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 825 sb->s_id, function, line, grp); 826 if (ino) 827 printk(KERN_CONT "inode %lu: ", ino); 828 if (block) 829 printk(KERN_CONT "block %llu:", 830 (unsigned long long) block); 831 printk(KERN_CONT "%pV\n", &vaf); 832 va_end(args); 833 } 834 835 if (test_opt(sb, WARN_ON_ERROR)) 836 WARN_ON_ONCE(1); 837 838 if (test_opt(sb, ERRORS_CONT)) { 839 ext4_commit_super(sb, 0); 840 return; 841 } 842 843 ext4_unlock_group(sb, grp); 844 ext4_commit_super(sb, 1); 845 ext4_handle_error(sb); 846 /* 847 * We only get here in the ERRORS_RO case; relocking the group 848 * may be dangerous, but nothing bad will happen since the 849 * filesystem will have already been marked read/only and the 850 * journal has been aborted. We return 1 as a hint to callers 851 * who might what to use the return value from 852 * ext4_grp_locked_error() to distinguish between the 853 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 854 * aggressively from the ext4 function in question, with a 855 * more appropriate error code. 856 */ 857 ext4_lock_group(sb, grp); 858 return; 859 } 860 861 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 862 ext4_group_t group, 863 unsigned int flags) 864 { 865 struct ext4_sb_info *sbi = EXT4_SB(sb); 866 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 867 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 868 int ret; 869 870 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 871 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 872 &grp->bb_state); 873 if (!ret) 874 percpu_counter_sub(&sbi->s_freeclusters_counter, 875 grp->bb_free); 876 } 877 878 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 879 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 880 &grp->bb_state); 881 if (!ret && gdp) { 882 int count; 883 884 count = ext4_free_inodes_count(sb, gdp); 885 percpu_counter_sub(&sbi->s_freeinodes_counter, 886 count); 887 } 888 } 889 } 890 891 void ext4_update_dynamic_rev(struct super_block *sb) 892 { 893 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 894 895 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 896 return; 897 898 ext4_warning(sb, 899 "updating to rev %d because of new feature flag, " 900 "running e2fsck is recommended", 901 EXT4_DYNAMIC_REV); 902 903 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 904 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 905 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 906 /* leave es->s_feature_*compat flags alone */ 907 /* es->s_uuid will be set by e2fsck if empty */ 908 909 /* 910 * The rest of the superblock fields should be zero, and if not it 911 * means they are likely already in use, so leave them alone. We 912 * can leave it up to e2fsck to clean up any inconsistencies there. 913 */ 914 } 915 916 /* 917 * Open the external journal device 918 */ 919 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 920 { 921 struct block_device *bdev; 922 923 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 924 if (IS_ERR(bdev)) 925 goto fail; 926 return bdev; 927 928 fail: 929 ext4_msg(sb, KERN_ERR, 930 "failed to open journal device unknown-block(%u,%u) %ld", 931 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 932 return NULL; 933 } 934 935 /* 936 * Release the journal device 937 */ 938 static void ext4_blkdev_put(struct block_device *bdev) 939 { 940 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 941 } 942 943 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 944 { 945 struct block_device *bdev; 946 bdev = sbi->journal_bdev; 947 if (bdev) { 948 ext4_blkdev_put(bdev); 949 sbi->journal_bdev = NULL; 950 } 951 } 952 953 static inline struct inode *orphan_list_entry(struct list_head *l) 954 { 955 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 956 } 957 958 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 959 { 960 struct list_head *l; 961 962 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 963 le32_to_cpu(sbi->s_es->s_last_orphan)); 964 965 printk(KERN_ERR "sb_info orphan list:\n"); 966 list_for_each(l, &sbi->s_orphan) { 967 struct inode *inode = orphan_list_entry(l); 968 printk(KERN_ERR " " 969 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 970 inode->i_sb->s_id, inode->i_ino, inode, 971 inode->i_mode, inode->i_nlink, 972 NEXT_ORPHAN(inode)); 973 } 974 } 975 976 #ifdef CONFIG_QUOTA 977 static int ext4_quota_off(struct super_block *sb, int type); 978 979 static inline void ext4_quota_off_umount(struct super_block *sb) 980 { 981 int type; 982 983 /* Use our quota_off function to clear inode flags etc. */ 984 for (type = 0; type < EXT4_MAXQUOTAS; type++) 985 ext4_quota_off(sb, type); 986 } 987 988 /* 989 * This is a helper function which is used in the mount/remount 990 * codepaths (which holds s_umount) to fetch the quota file name. 991 */ 992 static inline char *get_qf_name(struct super_block *sb, 993 struct ext4_sb_info *sbi, 994 int type) 995 { 996 return rcu_dereference_protected(sbi->s_qf_names[type], 997 lockdep_is_held(&sb->s_umount)); 998 } 999 #else 1000 static inline void ext4_quota_off_umount(struct super_block *sb) 1001 { 1002 } 1003 #endif 1004 1005 static void ext4_put_super(struct super_block *sb) 1006 { 1007 struct ext4_sb_info *sbi = EXT4_SB(sb); 1008 struct ext4_super_block *es = sbi->s_es; 1009 struct buffer_head **group_desc; 1010 struct flex_groups **flex_groups; 1011 int aborted = 0; 1012 int i, err; 1013 1014 ext4_unregister_li_request(sb); 1015 ext4_quota_off_umount(sb); 1016 1017 destroy_workqueue(sbi->rsv_conversion_wq); 1018 1019 /* 1020 * Unregister sysfs before destroying jbd2 journal. 1021 * Since we could still access attr_journal_task attribute via sysfs 1022 * path which could have sbi->s_journal->j_task as NULL 1023 */ 1024 ext4_unregister_sysfs(sb); 1025 1026 if (sbi->s_journal) { 1027 aborted = is_journal_aborted(sbi->s_journal); 1028 err = jbd2_journal_destroy(sbi->s_journal); 1029 sbi->s_journal = NULL; 1030 if ((err < 0) && !aborted) { 1031 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1032 } 1033 } 1034 1035 ext4_es_unregister_shrinker(sbi); 1036 del_timer_sync(&sbi->s_err_report); 1037 ext4_release_system_zone(sb); 1038 ext4_mb_release(sb); 1039 ext4_ext_release(sb); 1040 1041 if (!sb_rdonly(sb) && !aborted) { 1042 ext4_clear_feature_journal_needs_recovery(sb); 1043 es->s_state = cpu_to_le16(sbi->s_mount_state); 1044 } 1045 if (!sb_rdonly(sb)) 1046 ext4_commit_super(sb, 1); 1047 1048 rcu_read_lock(); 1049 group_desc = rcu_dereference(sbi->s_group_desc); 1050 for (i = 0; i < sbi->s_gdb_count; i++) 1051 brelse(group_desc[i]); 1052 kvfree(group_desc); 1053 flex_groups = rcu_dereference(sbi->s_flex_groups); 1054 if (flex_groups) { 1055 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1056 kvfree(flex_groups[i]); 1057 kvfree(flex_groups); 1058 } 1059 rcu_read_unlock(); 1060 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1061 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1062 percpu_counter_destroy(&sbi->s_dirs_counter); 1063 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1064 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1065 #ifdef CONFIG_QUOTA 1066 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1067 kfree(get_qf_name(sb, sbi, i)); 1068 #endif 1069 1070 /* Debugging code just in case the in-memory inode orphan list 1071 * isn't empty. The on-disk one can be non-empty if we've 1072 * detected an error and taken the fs readonly, but the 1073 * in-memory list had better be clean by this point. */ 1074 if (!list_empty(&sbi->s_orphan)) 1075 dump_orphan_list(sb, sbi); 1076 J_ASSERT(list_empty(&sbi->s_orphan)); 1077 1078 sync_blockdev(sb->s_bdev); 1079 invalidate_bdev(sb->s_bdev); 1080 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1081 /* 1082 * Invalidate the journal device's buffers. We don't want them 1083 * floating about in memory - the physical journal device may 1084 * hotswapped, and it breaks the `ro-after' testing code. 1085 */ 1086 sync_blockdev(sbi->journal_bdev); 1087 invalidate_bdev(sbi->journal_bdev); 1088 ext4_blkdev_remove(sbi); 1089 } 1090 1091 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1092 sbi->s_ea_inode_cache = NULL; 1093 1094 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1095 sbi->s_ea_block_cache = NULL; 1096 1097 if (sbi->s_mmp_tsk) 1098 kthread_stop(sbi->s_mmp_tsk); 1099 brelse(sbi->s_sbh); 1100 sb->s_fs_info = NULL; 1101 /* 1102 * Now that we are completely done shutting down the 1103 * superblock, we need to actually destroy the kobject. 1104 */ 1105 kobject_put(&sbi->s_kobj); 1106 wait_for_completion(&sbi->s_kobj_unregister); 1107 if (sbi->s_chksum_driver) 1108 crypto_free_shash(sbi->s_chksum_driver); 1109 kfree(sbi->s_blockgroup_lock); 1110 fs_put_dax(sbi->s_daxdev); 1111 #ifdef CONFIG_UNICODE 1112 utf8_unload(sbi->s_encoding); 1113 #endif 1114 kfree(sbi); 1115 } 1116 1117 static struct kmem_cache *ext4_inode_cachep; 1118 1119 /* 1120 * Called inside transaction, so use GFP_NOFS 1121 */ 1122 static struct inode *ext4_alloc_inode(struct super_block *sb) 1123 { 1124 struct ext4_inode_info *ei; 1125 1126 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1127 if (!ei) 1128 return NULL; 1129 1130 inode_set_iversion(&ei->vfs_inode, 1); 1131 spin_lock_init(&ei->i_raw_lock); 1132 INIT_LIST_HEAD(&ei->i_prealloc_list); 1133 spin_lock_init(&ei->i_prealloc_lock); 1134 ext4_es_init_tree(&ei->i_es_tree); 1135 rwlock_init(&ei->i_es_lock); 1136 INIT_LIST_HEAD(&ei->i_es_list); 1137 ei->i_es_all_nr = 0; 1138 ei->i_es_shk_nr = 0; 1139 ei->i_es_shrink_lblk = 0; 1140 ei->i_reserved_data_blocks = 0; 1141 spin_lock_init(&(ei->i_block_reservation_lock)); 1142 ext4_init_pending_tree(&ei->i_pending_tree); 1143 #ifdef CONFIG_QUOTA 1144 ei->i_reserved_quota = 0; 1145 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1146 #endif 1147 ei->jinode = NULL; 1148 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1149 spin_lock_init(&ei->i_completed_io_lock); 1150 ei->i_sync_tid = 0; 1151 ei->i_datasync_tid = 0; 1152 atomic_set(&ei->i_unwritten, 0); 1153 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1154 return &ei->vfs_inode; 1155 } 1156 1157 static int ext4_drop_inode(struct inode *inode) 1158 { 1159 int drop = generic_drop_inode(inode); 1160 1161 if (!drop) 1162 drop = fscrypt_drop_inode(inode); 1163 1164 trace_ext4_drop_inode(inode, drop); 1165 return drop; 1166 } 1167 1168 static void ext4_free_in_core_inode(struct inode *inode) 1169 { 1170 fscrypt_free_inode(inode); 1171 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1172 } 1173 1174 static void ext4_destroy_inode(struct inode *inode) 1175 { 1176 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1177 ext4_msg(inode->i_sb, KERN_ERR, 1178 "Inode %lu (%p): orphan list check failed!", 1179 inode->i_ino, EXT4_I(inode)); 1180 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1181 EXT4_I(inode), sizeof(struct ext4_inode_info), 1182 true); 1183 dump_stack(); 1184 } 1185 } 1186 1187 static void init_once(void *foo) 1188 { 1189 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1190 1191 INIT_LIST_HEAD(&ei->i_orphan); 1192 init_rwsem(&ei->xattr_sem); 1193 init_rwsem(&ei->i_data_sem); 1194 init_rwsem(&ei->i_mmap_sem); 1195 inode_init_once(&ei->vfs_inode); 1196 } 1197 1198 static int __init init_inodecache(void) 1199 { 1200 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1201 sizeof(struct ext4_inode_info), 0, 1202 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1203 SLAB_ACCOUNT), 1204 offsetof(struct ext4_inode_info, i_data), 1205 sizeof_field(struct ext4_inode_info, i_data), 1206 init_once); 1207 if (ext4_inode_cachep == NULL) 1208 return -ENOMEM; 1209 return 0; 1210 } 1211 1212 static void destroy_inodecache(void) 1213 { 1214 /* 1215 * Make sure all delayed rcu free inodes are flushed before we 1216 * destroy cache. 1217 */ 1218 rcu_barrier(); 1219 kmem_cache_destroy(ext4_inode_cachep); 1220 } 1221 1222 void ext4_clear_inode(struct inode *inode) 1223 { 1224 invalidate_inode_buffers(inode); 1225 clear_inode(inode); 1226 ext4_discard_preallocations(inode); 1227 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1228 dquot_drop(inode); 1229 if (EXT4_I(inode)->jinode) { 1230 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1231 EXT4_I(inode)->jinode); 1232 jbd2_free_inode(EXT4_I(inode)->jinode); 1233 EXT4_I(inode)->jinode = NULL; 1234 } 1235 fscrypt_put_encryption_info(inode); 1236 fsverity_cleanup_inode(inode); 1237 } 1238 1239 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1240 u64 ino, u32 generation) 1241 { 1242 struct inode *inode; 1243 1244 /* 1245 * Currently we don't know the generation for parent directory, so 1246 * a generation of 0 means "accept any" 1247 */ 1248 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1249 if (IS_ERR(inode)) 1250 return ERR_CAST(inode); 1251 if (generation && inode->i_generation != generation) { 1252 iput(inode); 1253 return ERR_PTR(-ESTALE); 1254 } 1255 1256 return inode; 1257 } 1258 1259 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1260 int fh_len, int fh_type) 1261 { 1262 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1263 ext4_nfs_get_inode); 1264 } 1265 1266 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1267 int fh_len, int fh_type) 1268 { 1269 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1270 ext4_nfs_get_inode); 1271 } 1272 1273 static int ext4_nfs_commit_metadata(struct inode *inode) 1274 { 1275 struct writeback_control wbc = { 1276 .sync_mode = WB_SYNC_ALL 1277 }; 1278 1279 trace_ext4_nfs_commit_metadata(inode); 1280 return ext4_write_inode(inode, &wbc); 1281 } 1282 1283 /* 1284 * Try to release metadata pages (indirect blocks, directories) which are 1285 * mapped via the block device. Since these pages could have journal heads 1286 * which would prevent try_to_free_buffers() from freeing them, we must use 1287 * jbd2 layer's try_to_free_buffers() function to release them. 1288 */ 1289 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1290 gfp_t wait) 1291 { 1292 journal_t *journal = EXT4_SB(sb)->s_journal; 1293 1294 WARN_ON(PageChecked(page)); 1295 if (!page_has_buffers(page)) 1296 return 0; 1297 if (journal) 1298 return jbd2_journal_try_to_free_buffers(journal, page, 1299 wait & ~__GFP_DIRECT_RECLAIM); 1300 return try_to_free_buffers(page); 1301 } 1302 1303 #ifdef CONFIG_FS_ENCRYPTION 1304 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1305 { 1306 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1307 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1308 } 1309 1310 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1311 void *fs_data) 1312 { 1313 handle_t *handle = fs_data; 1314 int res, res2, credits, retries = 0; 1315 1316 /* 1317 * Encrypting the root directory is not allowed because e2fsck expects 1318 * lost+found to exist and be unencrypted, and encrypting the root 1319 * directory would imply encrypting the lost+found directory as well as 1320 * the filename "lost+found" itself. 1321 */ 1322 if (inode->i_ino == EXT4_ROOT_INO) 1323 return -EPERM; 1324 1325 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1326 return -EINVAL; 1327 1328 res = ext4_convert_inline_data(inode); 1329 if (res) 1330 return res; 1331 1332 /* 1333 * If a journal handle was specified, then the encryption context is 1334 * being set on a new inode via inheritance and is part of a larger 1335 * transaction to create the inode. Otherwise the encryption context is 1336 * being set on an existing inode in its own transaction. Only in the 1337 * latter case should the "retry on ENOSPC" logic be used. 1338 */ 1339 1340 if (handle) { 1341 res = ext4_xattr_set_handle(handle, inode, 1342 EXT4_XATTR_INDEX_ENCRYPTION, 1343 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1344 ctx, len, 0); 1345 if (!res) { 1346 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1347 ext4_clear_inode_state(inode, 1348 EXT4_STATE_MAY_INLINE_DATA); 1349 /* 1350 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1351 * S_DAX may be disabled 1352 */ 1353 ext4_set_inode_flags(inode); 1354 } 1355 return res; 1356 } 1357 1358 res = dquot_initialize(inode); 1359 if (res) 1360 return res; 1361 retry: 1362 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1363 &credits); 1364 if (res) 1365 return res; 1366 1367 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1368 if (IS_ERR(handle)) 1369 return PTR_ERR(handle); 1370 1371 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1372 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1373 ctx, len, 0); 1374 if (!res) { 1375 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1376 /* 1377 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1378 * S_DAX may be disabled 1379 */ 1380 ext4_set_inode_flags(inode); 1381 res = ext4_mark_inode_dirty(handle, inode); 1382 if (res) 1383 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1384 } 1385 res2 = ext4_journal_stop(handle); 1386 1387 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1388 goto retry; 1389 if (!res) 1390 res = res2; 1391 return res; 1392 } 1393 1394 static bool ext4_dummy_context(struct inode *inode) 1395 { 1396 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1397 } 1398 1399 static bool ext4_has_stable_inodes(struct super_block *sb) 1400 { 1401 return ext4_has_feature_stable_inodes(sb); 1402 } 1403 1404 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1405 int *ino_bits_ret, int *lblk_bits_ret) 1406 { 1407 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1408 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1409 } 1410 1411 static const struct fscrypt_operations ext4_cryptops = { 1412 .key_prefix = "ext4:", 1413 .get_context = ext4_get_context, 1414 .set_context = ext4_set_context, 1415 .dummy_context = ext4_dummy_context, 1416 .empty_dir = ext4_empty_dir, 1417 .max_namelen = EXT4_NAME_LEN, 1418 .has_stable_inodes = ext4_has_stable_inodes, 1419 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1420 }; 1421 #endif 1422 1423 #ifdef CONFIG_QUOTA 1424 static const char * const quotatypes[] = INITQFNAMES; 1425 #define QTYPE2NAME(t) (quotatypes[t]) 1426 1427 static int ext4_write_dquot(struct dquot *dquot); 1428 static int ext4_acquire_dquot(struct dquot *dquot); 1429 static int ext4_release_dquot(struct dquot *dquot); 1430 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1431 static int ext4_write_info(struct super_block *sb, int type); 1432 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1433 const struct path *path); 1434 static int ext4_quota_on_mount(struct super_block *sb, int type); 1435 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1436 size_t len, loff_t off); 1437 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1438 const char *data, size_t len, loff_t off); 1439 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1440 unsigned int flags); 1441 static int ext4_enable_quotas(struct super_block *sb); 1442 1443 static struct dquot **ext4_get_dquots(struct inode *inode) 1444 { 1445 return EXT4_I(inode)->i_dquot; 1446 } 1447 1448 static const struct dquot_operations ext4_quota_operations = { 1449 .get_reserved_space = ext4_get_reserved_space, 1450 .write_dquot = ext4_write_dquot, 1451 .acquire_dquot = ext4_acquire_dquot, 1452 .release_dquot = ext4_release_dquot, 1453 .mark_dirty = ext4_mark_dquot_dirty, 1454 .write_info = ext4_write_info, 1455 .alloc_dquot = dquot_alloc, 1456 .destroy_dquot = dquot_destroy, 1457 .get_projid = ext4_get_projid, 1458 .get_inode_usage = ext4_get_inode_usage, 1459 .get_next_id = dquot_get_next_id, 1460 }; 1461 1462 static const struct quotactl_ops ext4_qctl_operations = { 1463 .quota_on = ext4_quota_on, 1464 .quota_off = ext4_quota_off, 1465 .quota_sync = dquot_quota_sync, 1466 .get_state = dquot_get_state, 1467 .set_info = dquot_set_dqinfo, 1468 .get_dqblk = dquot_get_dqblk, 1469 .set_dqblk = dquot_set_dqblk, 1470 .get_nextdqblk = dquot_get_next_dqblk, 1471 }; 1472 #endif 1473 1474 static const struct super_operations ext4_sops = { 1475 .alloc_inode = ext4_alloc_inode, 1476 .free_inode = ext4_free_in_core_inode, 1477 .destroy_inode = ext4_destroy_inode, 1478 .write_inode = ext4_write_inode, 1479 .dirty_inode = ext4_dirty_inode, 1480 .drop_inode = ext4_drop_inode, 1481 .evict_inode = ext4_evict_inode, 1482 .put_super = ext4_put_super, 1483 .sync_fs = ext4_sync_fs, 1484 .freeze_fs = ext4_freeze, 1485 .unfreeze_fs = ext4_unfreeze, 1486 .statfs = ext4_statfs, 1487 .remount_fs = ext4_remount, 1488 .show_options = ext4_show_options, 1489 #ifdef CONFIG_QUOTA 1490 .quota_read = ext4_quota_read, 1491 .quota_write = ext4_quota_write, 1492 .get_dquots = ext4_get_dquots, 1493 #endif 1494 .bdev_try_to_free_page = bdev_try_to_free_page, 1495 }; 1496 1497 static const struct export_operations ext4_export_ops = { 1498 .fh_to_dentry = ext4_fh_to_dentry, 1499 .fh_to_parent = ext4_fh_to_parent, 1500 .get_parent = ext4_get_parent, 1501 .commit_metadata = ext4_nfs_commit_metadata, 1502 }; 1503 1504 enum { 1505 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1506 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1507 Opt_nouid32, Opt_debug, Opt_removed, 1508 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1509 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1510 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1511 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1512 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1513 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1514 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1515 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1516 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1517 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1518 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1519 Opt_nowarn_on_error, Opt_mblk_io_submit, 1520 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1521 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1522 Opt_inode_readahead_blks, Opt_journal_ioprio, 1523 Opt_dioread_nolock, Opt_dioread_lock, 1524 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1525 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1526 }; 1527 1528 static const match_table_t tokens = { 1529 {Opt_bsd_df, "bsddf"}, 1530 {Opt_minix_df, "minixdf"}, 1531 {Opt_grpid, "grpid"}, 1532 {Opt_grpid, "bsdgroups"}, 1533 {Opt_nogrpid, "nogrpid"}, 1534 {Opt_nogrpid, "sysvgroups"}, 1535 {Opt_resgid, "resgid=%u"}, 1536 {Opt_resuid, "resuid=%u"}, 1537 {Opt_sb, "sb=%u"}, 1538 {Opt_err_cont, "errors=continue"}, 1539 {Opt_err_panic, "errors=panic"}, 1540 {Opt_err_ro, "errors=remount-ro"}, 1541 {Opt_nouid32, "nouid32"}, 1542 {Opt_debug, "debug"}, 1543 {Opt_removed, "oldalloc"}, 1544 {Opt_removed, "orlov"}, 1545 {Opt_user_xattr, "user_xattr"}, 1546 {Opt_nouser_xattr, "nouser_xattr"}, 1547 {Opt_acl, "acl"}, 1548 {Opt_noacl, "noacl"}, 1549 {Opt_noload, "norecovery"}, 1550 {Opt_noload, "noload"}, 1551 {Opt_removed, "nobh"}, 1552 {Opt_removed, "bh"}, 1553 {Opt_commit, "commit=%u"}, 1554 {Opt_min_batch_time, "min_batch_time=%u"}, 1555 {Opt_max_batch_time, "max_batch_time=%u"}, 1556 {Opt_journal_dev, "journal_dev=%u"}, 1557 {Opt_journal_path, "journal_path=%s"}, 1558 {Opt_journal_checksum, "journal_checksum"}, 1559 {Opt_nojournal_checksum, "nojournal_checksum"}, 1560 {Opt_journal_async_commit, "journal_async_commit"}, 1561 {Opt_abort, "abort"}, 1562 {Opt_data_journal, "data=journal"}, 1563 {Opt_data_ordered, "data=ordered"}, 1564 {Opt_data_writeback, "data=writeback"}, 1565 {Opt_data_err_abort, "data_err=abort"}, 1566 {Opt_data_err_ignore, "data_err=ignore"}, 1567 {Opt_offusrjquota, "usrjquota="}, 1568 {Opt_usrjquota, "usrjquota=%s"}, 1569 {Opt_offgrpjquota, "grpjquota="}, 1570 {Opt_grpjquota, "grpjquota=%s"}, 1571 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1572 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1573 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1574 {Opt_grpquota, "grpquota"}, 1575 {Opt_noquota, "noquota"}, 1576 {Opt_quota, "quota"}, 1577 {Opt_usrquota, "usrquota"}, 1578 {Opt_prjquota, "prjquota"}, 1579 {Opt_barrier, "barrier=%u"}, 1580 {Opt_barrier, "barrier"}, 1581 {Opt_nobarrier, "nobarrier"}, 1582 {Opt_i_version, "i_version"}, 1583 {Opt_dax, "dax"}, 1584 {Opt_stripe, "stripe=%u"}, 1585 {Opt_delalloc, "delalloc"}, 1586 {Opt_warn_on_error, "warn_on_error"}, 1587 {Opt_nowarn_on_error, "nowarn_on_error"}, 1588 {Opt_lazytime, "lazytime"}, 1589 {Opt_nolazytime, "nolazytime"}, 1590 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1591 {Opt_nodelalloc, "nodelalloc"}, 1592 {Opt_removed, "mblk_io_submit"}, 1593 {Opt_removed, "nomblk_io_submit"}, 1594 {Opt_block_validity, "block_validity"}, 1595 {Opt_noblock_validity, "noblock_validity"}, 1596 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1597 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1598 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1599 {Opt_auto_da_alloc, "auto_da_alloc"}, 1600 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1601 {Opt_dioread_nolock, "dioread_nolock"}, 1602 {Opt_dioread_lock, "nodioread_nolock"}, 1603 {Opt_dioread_lock, "dioread_lock"}, 1604 {Opt_discard, "discard"}, 1605 {Opt_nodiscard, "nodiscard"}, 1606 {Opt_init_itable, "init_itable=%u"}, 1607 {Opt_init_itable, "init_itable"}, 1608 {Opt_noinit_itable, "noinit_itable"}, 1609 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1610 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1611 {Opt_nombcache, "nombcache"}, 1612 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1613 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1614 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1615 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1616 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1617 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1618 {Opt_err, NULL}, 1619 }; 1620 1621 static ext4_fsblk_t get_sb_block(void **data) 1622 { 1623 ext4_fsblk_t sb_block; 1624 char *options = (char *) *data; 1625 1626 if (!options || strncmp(options, "sb=", 3) != 0) 1627 return 1; /* Default location */ 1628 1629 options += 3; 1630 /* TODO: use simple_strtoll with >32bit ext4 */ 1631 sb_block = simple_strtoul(options, &options, 0); 1632 if (*options && *options != ',') { 1633 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1634 (char *) *data); 1635 return 1; 1636 } 1637 if (*options == ',') 1638 options++; 1639 *data = (void *) options; 1640 1641 return sb_block; 1642 } 1643 1644 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1645 static const char deprecated_msg[] = 1646 "Mount option \"%s\" will be removed by %s\n" 1647 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1648 1649 #ifdef CONFIG_QUOTA 1650 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1651 { 1652 struct ext4_sb_info *sbi = EXT4_SB(sb); 1653 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1654 int ret = -1; 1655 1656 if (sb_any_quota_loaded(sb) && !old_qname) { 1657 ext4_msg(sb, KERN_ERR, 1658 "Cannot change journaled " 1659 "quota options when quota turned on"); 1660 return -1; 1661 } 1662 if (ext4_has_feature_quota(sb)) { 1663 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1664 "ignored when QUOTA feature is enabled"); 1665 return 1; 1666 } 1667 qname = match_strdup(args); 1668 if (!qname) { 1669 ext4_msg(sb, KERN_ERR, 1670 "Not enough memory for storing quotafile name"); 1671 return -1; 1672 } 1673 if (old_qname) { 1674 if (strcmp(old_qname, qname) == 0) 1675 ret = 1; 1676 else 1677 ext4_msg(sb, KERN_ERR, 1678 "%s quota file already specified", 1679 QTYPE2NAME(qtype)); 1680 goto errout; 1681 } 1682 if (strchr(qname, '/')) { 1683 ext4_msg(sb, KERN_ERR, 1684 "quotafile must be on filesystem root"); 1685 goto errout; 1686 } 1687 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1688 set_opt(sb, QUOTA); 1689 return 1; 1690 errout: 1691 kfree(qname); 1692 return ret; 1693 } 1694 1695 static int clear_qf_name(struct super_block *sb, int qtype) 1696 { 1697 1698 struct ext4_sb_info *sbi = EXT4_SB(sb); 1699 char *old_qname = get_qf_name(sb, sbi, qtype); 1700 1701 if (sb_any_quota_loaded(sb) && old_qname) { 1702 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1703 " when quota turned on"); 1704 return -1; 1705 } 1706 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1707 synchronize_rcu(); 1708 kfree(old_qname); 1709 return 1; 1710 } 1711 #endif 1712 1713 #define MOPT_SET 0x0001 1714 #define MOPT_CLEAR 0x0002 1715 #define MOPT_NOSUPPORT 0x0004 1716 #define MOPT_EXPLICIT 0x0008 1717 #define MOPT_CLEAR_ERR 0x0010 1718 #define MOPT_GTE0 0x0020 1719 #ifdef CONFIG_QUOTA 1720 #define MOPT_Q 0 1721 #define MOPT_QFMT 0x0040 1722 #else 1723 #define MOPT_Q MOPT_NOSUPPORT 1724 #define MOPT_QFMT MOPT_NOSUPPORT 1725 #endif 1726 #define MOPT_DATAJ 0x0080 1727 #define MOPT_NO_EXT2 0x0100 1728 #define MOPT_NO_EXT3 0x0200 1729 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1730 #define MOPT_STRING 0x0400 1731 1732 static const struct mount_opts { 1733 int token; 1734 int mount_opt; 1735 int flags; 1736 } ext4_mount_opts[] = { 1737 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1738 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1739 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1740 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1741 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1742 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1743 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1744 MOPT_EXT4_ONLY | MOPT_SET}, 1745 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1746 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1747 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1748 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1749 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1750 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1751 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1752 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1753 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1754 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1755 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1756 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1757 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1758 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1759 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1760 EXT4_MOUNT_JOURNAL_CHECKSUM), 1761 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1762 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1763 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1764 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1765 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1766 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1767 MOPT_NO_EXT2}, 1768 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1769 MOPT_NO_EXT2}, 1770 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1771 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1772 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1773 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1774 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1775 {Opt_commit, 0, MOPT_GTE0}, 1776 {Opt_max_batch_time, 0, MOPT_GTE0}, 1777 {Opt_min_batch_time, 0, MOPT_GTE0}, 1778 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1779 {Opt_init_itable, 0, MOPT_GTE0}, 1780 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1781 {Opt_stripe, 0, MOPT_GTE0}, 1782 {Opt_resuid, 0, MOPT_GTE0}, 1783 {Opt_resgid, 0, MOPT_GTE0}, 1784 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1785 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1786 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1787 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1788 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1789 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1790 MOPT_NO_EXT2 | MOPT_DATAJ}, 1791 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1792 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1793 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1794 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1795 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1796 #else 1797 {Opt_acl, 0, MOPT_NOSUPPORT}, 1798 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1799 #endif 1800 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1801 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1802 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1803 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1804 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1805 MOPT_SET | MOPT_Q}, 1806 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1807 MOPT_SET | MOPT_Q}, 1808 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1809 MOPT_SET | MOPT_Q}, 1810 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1811 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1812 MOPT_CLEAR | MOPT_Q}, 1813 {Opt_usrjquota, 0, MOPT_Q}, 1814 {Opt_grpjquota, 0, MOPT_Q}, 1815 {Opt_offusrjquota, 0, MOPT_Q}, 1816 {Opt_offgrpjquota, 0, MOPT_Q}, 1817 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1818 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1819 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1820 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1821 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1822 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1823 {Opt_err, 0, 0} 1824 }; 1825 1826 #ifdef CONFIG_UNICODE 1827 static const struct ext4_sb_encodings { 1828 __u16 magic; 1829 char *name; 1830 char *version; 1831 } ext4_sb_encoding_map[] = { 1832 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1833 }; 1834 1835 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1836 const struct ext4_sb_encodings **encoding, 1837 __u16 *flags) 1838 { 1839 __u16 magic = le16_to_cpu(es->s_encoding); 1840 int i; 1841 1842 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1843 if (magic == ext4_sb_encoding_map[i].magic) 1844 break; 1845 1846 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 1847 return -EINVAL; 1848 1849 *encoding = &ext4_sb_encoding_map[i]; 1850 *flags = le16_to_cpu(es->s_encoding_flags); 1851 1852 return 0; 1853 } 1854 #endif 1855 1856 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1857 substring_t *args, unsigned long *journal_devnum, 1858 unsigned int *journal_ioprio, int is_remount) 1859 { 1860 struct ext4_sb_info *sbi = EXT4_SB(sb); 1861 const struct mount_opts *m; 1862 kuid_t uid; 1863 kgid_t gid; 1864 int arg = 0; 1865 1866 #ifdef CONFIG_QUOTA 1867 if (token == Opt_usrjquota) 1868 return set_qf_name(sb, USRQUOTA, &args[0]); 1869 else if (token == Opt_grpjquota) 1870 return set_qf_name(sb, GRPQUOTA, &args[0]); 1871 else if (token == Opt_offusrjquota) 1872 return clear_qf_name(sb, USRQUOTA); 1873 else if (token == Opt_offgrpjquota) 1874 return clear_qf_name(sb, GRPQUOTA); 1875 #endif 1876 switch (token) { 1877 case Opt_noacl: 1878 case Opt_nouser_xattr: 1879 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1880 break; 1881 case Opt_sb: 1882 return 1; /* handled by get_sb_block() */ 1883 case Opt_removed: 1884 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1885 return 1; 1886 case Opt_abort: 1887 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1888 return 1; 1889 case Opt_i_version: 1890 sb->s_flags |= SB_I_VERSION; 1891 return 1; 1892 case Opt_lazytime: 1893 sb->s_flags |= SB_LAZYTIME; 1894 return 1; 1895 case Opt_nolazytime: 1896 sb->s_flags &= ~SB_LAZYTIME; 1897 return 1; 1898 } 1899 1900 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1901 if (token == m->token) 1902 break; 1903 1904 if (m->token == Opt_err) { 1905 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1906 "or missing value", opt); 1907 return -1; 1908 } 1909 1910 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1911 ext4_msg(sb, KERN_ERR, 1912 "Mount option \"%s\" incompatible with ext2", opt); 1913 return -1; 1914 } 1915 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1916 ext4_msg(sb, KERN_ERR, 1917 "Mount option \"%s\" incompatible with ext3", opt); 1918 return -1; 1919 } 1920 1921 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1922 return -1; 1923 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1924 return -1; 1925 if (m->flags & MOPT_EXPLICIT) { 1926 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1927 set_opt2(sb, EXPLICIT_DELALLOC); 1928 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1929 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1930 } else 1931 return -1; 1932 } 1933 if (m->flags & MOPT_CLEAR_ERR) 1934 clear_opt(sb, ERRORS_MASK); 1935 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1936 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1937 "options when quota turned on"); 1938 return -1; 1939 } 1940 1941 if (m->flags & MOPT_NOSUPPORT) { 1942 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1943 } else if (token == Opt_commit) { 1944 if (arg == 0) 1945 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1946 else if (arg > INT_MAX / HZ) { 1947 ext4_msg(sb, KERN_ERR, 1948 "Invalid commit interval %d, " 1949 "must be smaller than %d", 1950 arg, INT_MAX / HZ); 1951 return -1; 1952 } 1953 sbi->s_commit_interval = HZ * arg; 1954 } else if (token == Opt_debug_want_extra_isize) { 1955 if ((arg & 1) || 1956 (arg < 4) || 1957 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 1958 ext4_msg(sb, KERN_ERR, 1959 "Invalid want_extra_isize %d", arg); 1960 return -1; 1961 } 1962 sbi->s_want_extra_isize = arg; 1963 } else if (token == Opt_max_batch_time) { 1964 sbi->s_max_batch_time = arg; 1965 } else if (token == Opt_min_batch_time) { 1966 sbi->s_min_batch_time = arg; 1967 } else if (token == Opt_inode_readahead_blks) { 1968 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1969 ext4_msg(sb, KERN_ERR, 1970 "EXT4-fs: inode_readahead_blks must be " 1971 "0 or a power of 2 smaller than 2^31"); 1972 return -1; 1973 } 1974 sbi->s_inode_readahead_blks = arg; 1975 } else if (token == Opt_init_itable) { 1976 set_opt(sb, INIT_INODE_TABLE); 1977 if (!args->from) 1978 arg = EXT4_DEF_LI_WAIT_MULT; 1979 sbi->s_li_wait_mult = arg; 1980 } else if (token == Opt_max_dir_size_kb) { 1981 sbi->s_max_dir_size_kb = arg; 1982 } else if (token == Opt_stripe) { 1983 sbi->s_stripe = arg; 1984 } else if (token == Opt_resuid) { 1985 uid = make_kuid(current_user_ns(), arg); 1986 if (!uid_valid(uid)) { 1987 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1988 return -1; 1989 } 1990 sbi->s_resuid = uid; 1991 } else if (token == Opt_resgid) { 1992 gid = make_kgid(current_user_ns(), arg); 1993 if (!gid_valid(gid)) { 1994 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1995 return -1; 1996 } 1997 sbi->s_resgid = gid; 1998 } else if (token == Opt_journal_dev) { 1999 if (is_remount) { 2000 ext4_msg(sb, KERN_ERR, 2001 "Cannot specify journal on remount"); 2002 return -1; 2003 } 2004 *journal_devnum = arg; 2005 } else if (token == Opt_journal_path) { 2006 char *journal_path; 2007 struct inode *journal_inode; 2008 struct path path; 2009 int error; 2010 2011 if (is_remount) { 2012 ext4_msg(sb, KERN_ERR, 2013 "Cannot specify journal on remount"); 2014 return -1; 2015 } 2016 journal_path = match_strdup(&args[0]); 2017 if (!journal_path) { 2018 ext4_msg(sb, KERN_ERR, "error: could not dup " 2019 "journal device string"); 2020 return -1; 2021 } 2022 2023 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2024 if (error) { 2025 ext4_msg(sb, KERN_ERR, "error: could not find " 2026 "journal device path: error %d", error); 2027 kfree(journal_path); 2028 return -1; 2029 } 2030 2031 journal_inode = d_inode(path.dentry); 2032 if (!S_ISBLK(journal_inode->i_mode)) { 2033 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2034 "is not a block device", journal_path); 2035 path_put(&path); 2036 kfree(journal_path); 2037 return -1; 2038 } 2039 2040 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2041 path_put(&path); 2042 kfree(journal_path); 2043 } else if (token == Opt_journal_ioprio) { 2044 if (arg > 7) { 2045 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2046 " (must be 0-7)"); 2047 return -1; 2048 } 2049 *journal_ioprio = 2050 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2051 } else if (token == Opt_test_dummy_encryption) { 2052 #ifdef CONFIG_FS_ENCRYPTION 2053 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 2054 ext4_msg(sb, KERN_WARNING, 2055 "Test dummy encryption mode enabled"); 2056 #else 2057 ext4_msg(sb, KERN_WARNING, 2058 "Test dummy encryption mount option ignored"); 2059 #endif 2060 } else if (m->flags & MOPT_DATAJ) { 2061 if (is_remount) { 2062 if (!sbi->s_journal) 2063 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2064 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2065 ext4_msg(sb, KERN_ERR, 2066 "Cannot change data mode on remount"); 2067 return -1; 2068 } 2069 } else { 2070 clear_opt(sb, DATA_FLAGS); 2071 sbi->s_mount_opt |= m->mount_opt; 2072 } 2073 #ifdef CONFIG_QUOTA 2074 } else if (m->flags & MOPT_QFMT) { 2075 if (sb_any_quota_loaded(sb) && 2076 sbi->s_jquota_fmt != m->mount_opt) { 2077 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2078 "quota options when quota turned on"); 2079 return -1; 2080 } 2081 if (ext4_has_feature_quota(sb)) { 2082 ext4_msg(sb, KERN_INFO, 2083 "Quota format mount options ignored " 2084 "when QUOTA feature is enabled"); 2085 return 1; 2086 } 2087 sbi->s_jquota_fmt = m->mount_opt; 2088 #endif 2089 } else if (token == Opt_dax) { 2090 #ifdef CONFIG_FS_DAX 2091 ext4_msg(sb, KERN_WARNING, 2092 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2093 sbi->s_mount_opt |= m->mount_opt; 2094 #else 2095 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2096 return -1; 2097 #endif 2098 } else if (token == Opt_data_err_abort) { 2099 sbi->s_mount_opt |= m->mount_opt; 2100 } else if (token == Opt_data_err_ignore) { 2101 sbi->s_mount_opt &= ~m->mount_opt; 2102 } else { 2103 if (!args->from) 2104 arg = 1; 2105 if (m->flags & MOPT_CLEAR) 2106 arg = !arg; 2107 else if (unlikely(!(m->flags & MOPT_SET))) { 2108 ext4_msg(sb, KERN_WARNING, 2109 "buggy handling of option %s", opt); 2110 WARN_ON(1); 2111 return -1; 2112 } 2113 if (arg != 0) 2114 sbi->s_mount_opt |= m->mount_opt; 2115 else 2116 sbi->s_mount_opt &= ~m->mount_opt; 2117 } 2118 return 1; 2119 } 2120 2121 static int parse_options(char *options, struct super_block *sb, 2122 unsigned long *journal_devnum, 2123 unsigned int *journal_ioprio, 2124 int is_remount) 2125 { 2126 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2127 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2128 substring_t args[MAX_OPT_ARGS]; 2129 int token; 2130 2131 if (!options) 2132 return 1; 2133 2134 while ((p = strsep(&options, ",")) != NULL) { 2135 if (!*p) 2136 continue; 2137 /* 2138 * Initialize args struct so we know whether arg was 2139 * found; some options take optional arguments. 2140 */ 2141 args[0].to = args[0].from = NULL; 2142 token = match_token(p, tokens, args); 2143 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2144 journal_ioprio, is_remount) < 0) 2145 return 0; 2146 } 2147 #ifdef CONFIG_QUOTA 2148 /* 2149 * We do the test below only for project quotas. 'usrquota' and 2150 * 'grpquota' mount options are allowed even without quota feature 2151 * to support legacy quotas in quota files. 2152 */ 2153 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2154 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2155 "Cannot enable project quota enforcement."); 2156 return 0; 2157 } 2158 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2159 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2160 if (usr_qf_name || grp_qf_name) { 2161 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2162 clear_opt(sb, USRQUOTA); 2163 2164 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2165 clear_opt(sb, GRPQUOTA); 2166 2167 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2168 ext4_msg(sb, KERN_ERR, "old and new quota " 2169 "format mixing"); 2170 return 0; 2171 } 2172 2173 if (!sbi->s_jquota_fmt) { 2174 ext4_msg(sb, KERN_ERR, "journaled quota format " 2175 "not specified"); 2176 return 0; 2177 } 2178 } 2179 #endif 2180 if (test_opt(sb, DIOREAD_NOLOCK)) { 2181 int blocksize = 2182 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2183 if (blocksize < PAGE_SIZE) 2184 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2185 "experimental mount option 'dioread_nolock' " 2186 "for blocksize < PAGE_SIZE"); 2187 } 2188 return 1; 2189 } 2190 2191 static inline void ext4_show_quota_options(struct seq_file *seq, 2192 struct super_block *sb) 2193 { 2194 #if defined(CONFIG_QUOTA) 2195 struct ext4_sb_info *sbi = EXT4_SB(sb); 2196 char *usr_qf_name, *grp_qf_name; 2197 2198 if (sbi->s_jquota_fmt) { 2199 char *fmtname = ""; 2200 2201 switch (sbi->s_jquota_fmt) { 2202 case QFMT_VFS_OLD: 2203 fmtname = "vfsold"; 2204 break; 2205 case QFMT_VFS_V0: 2206 fmtname = "vfsv0"; 2207 break; 2208 case QFMT_VFS_V1: 2209 fmtname = "vfsv1"; 2210 break; 2211 } 2212 seq_printf(seq, ",jqfmt=%s", fmtname); 2213 } 2214 2215 rcu_read_lock(); 2216 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2217 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2218 if (usr_qf_name) 2219 seq_show_option(seq, "usrjquota", usr_qf_name); 2220 if (grp_qf_name) 2221 seq_show_option(seq, "grpjquota", grp_qf_name); 2222 rcu_read_unlock(); 2223 #endif 2224 } 2225 2226 static const char *token2str(int token) 2227 { 2228 const struct match_token *t; 2229 2230 for (t = tokens; t->token != Opt_err; t++) 2231 if (t->token == token && !strchr(t->pattern, '=')) 2232 break; 2233 return t->pattern; 2234 } 2235 2236 /* 2237 * Show an option if 2238 * - it's set to a non-default value OR 2239 * - if the per-sb default is different from the global default 2240 */ 2241 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2242 int nodefs) 2243 { 2244 struct ext4_sb_info *sbi = EXT4_SB(sb); 2245 struct ext4_super_block *es = sbi->s_es; 2246 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2247 const struct mount_opts *m; 2248 char sep = nodefs ? '\n' : ','; 2249 2250 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2251 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2252 2253 if (sbi->s_sb_block != 1) 2254 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2255 2256 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2257 int want_set = m->flags & MOPT_SET; 2258 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2259 (m->flags & MOPT_CLEAR_ERR)) 2260 continue; 2261 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2262 continue; /* skip if same as the default */ 2263 if ((want_set && 2264 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2265 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2266 continue; /* select Opt_noFoo vs Opt_Foo */ 2267 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2268 } 2269 2270 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2271 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2272 SEQ_OPTS_PRINT("resuid=%u", 2273 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2274 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2275 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2276 SEQ_OPTS_PRINT("resgid=%u", 2277 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2278 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2279 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2280 SEQ_OPTS_PUTS("errors=remount-ro"); 2281 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2282 SEQ_OPTS_PUTS("errors=continue"); 2283 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2284 SEQ_OPTS_PUTS("errors=panic"); 2285 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2286 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2287 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2288 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2289 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2290 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2291 if (sb->s_flags & SB_I_VERSION) 2292 SEQ_OPTS_PUTS("i_version"); 2293 if (nodefs || sbi->s_stripe) 2294 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2295 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2296 (sbi->s_mount_opt ^ def_mount_opt)) { 2297 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2298 SEQ_OPTS_PUTS("data=journal"); 2299 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2300 SEQ_OPTS_PUTS("data=ordered"); 2301 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2302 SEQ_OPTS_PUTS("data=writeback"); 2303 } 2304 if (nodefs || 2305 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2306 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2307 sbi->s_inode_readahead_blks); 2308 2309 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2310 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2311 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2312 if (nodefs || sbi->s_max_dir_size_kb) 2313 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2314 if (test_opt(sb, DATA_ERR_ABORT)) 2315 SEQ_OPTS_PUTS("data_err=abort"); 2316 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2317 SEQ_OPTS_PUTS("test_dummy_encryption"); 2318 2319 ext4_show_quota_options(seq, sb); 2320 return 0; 2321 } 2322 2323 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2324 { 2325 return _ext4_show_options(seq, root->d_sb, 0); 2326 } 2327 2328 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2329 { 2330 struct super_block *sb = seq->private; 2331 int rc; 2332 2333 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2334 rc = _ext4_show_options(seq, sb, 1); 2335 seq_puts(seq, "\n"); 2336 return rc; 2337 } 2338 2339 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2340 int read_only) 2341 { 2342 struct ext4_sb_info *sbi = EXT4_SB(sb); 2343 int err = 0; 2344 2345 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2346 ext4_msg(sb, KERN_ERR, "revision level too high, " 2347 "forcing read-only mode"); 2348 err = -EROFS; 2349 } 2350 if (read_only) 2351 goto done; 2352 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2353 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2354 "running e2fsck is recommended"); 2355 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2356 ext4_msg(sb, KERN_WARNING, 2357 "warning: mounting fs with errors, " 2358 "running e2fsck is recommended"); 2359 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2360 le16_to_cpu(es->s_mnt_count) >= 2361 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2362 ext4_msg(sb, KERN_WARNING, 2363 "warning: maximal mount count reached, " 2364 "running e2fsck is recommended"); 2365 else if (le32_to_cpu(es->s_checkinterval) && 2366 (ext4_get_tstamp(es, s_lastcheck) + 2367 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2368 ext4_msg(sb, KERN_WARNING, 2369 "warning: checktime reached, " 2370 "running e2fsck is recommended"); 2371 if (!sbi->s_journal) 2372 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2373 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2374 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2375 le16_add_cpu(&es->s_mnt_count, 1); 2376 ext4_update_tstamp(es, s_mtime); 2377 if (sbi->s_journal) 2378 ext4_set_feature_journal_needs_recovery(sb); 2379 2380 err = ext4_commit_super(sb, 1); 2381 done: 2382 if (test_opt(sb, DEBUG)) 2383 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2384 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2385 sb->s_blocksize, 2386 sbi->s_groups_count, 2387 EXT4_BLOCKS_PER_GROUP(sb), 2388 EXT4_INODES_PER_GROUP(sb), 2389 sbi->s_mount_opt, sbi->s_mount_opt2); 2390 2391 cleancache_init_fs(sb); 2392 return err; 2393 } 2394 2395 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2396 { 2397 struct ext4_sb_info *sbi = EXT4_SB(sb); 2398 struct flex_groups **old_groups, **new_groups; 2399 int size, i, j; 2400 2401 if (!sbi->s_log_groups_per_flex) 2402 return 0; 2403 2404 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2405 if (size <= sbi->s_flex_groups_allocated) 2406 return 0; 2407 2408 new_groups = kvzalloc(roundup_pow_of_two(size * 2409 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2410 if (!new_groups) { 2411 ext4_msg(sb, KERN_ERR, 2412 "not enough memory for %d flex group pointers", size); 2413 return -ENOMEM; 2414 } 2415 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2416 new_groups[i] = kvzalloc(roundup_pow_of_two( 2417 sizeof(struct flex_groups)), 2418 GFP_KERNEL); 2419 if (!new_groups[i]) { 2420 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2421 kvfree(new_groups[j]); 2422 kvfree(new_groups); 2423 ext4_msg(sb, KERN_ERR, 2424 "not enough memory for %d flex groups", size); 2425 return -ENOMEM; 2426 } 2427 } 2428 rcu_read_lock(); 2429 old_groups = rcu_dereference(sbi->s_flex_groups); 2430 if (old_groups) 2431 memcpy(new_groups, old_groups, 2432 (sbi->s_flex_groups_allocated * 2433 sizeof(struct flex_groups *))); 2434 rcu_read_unlock(); 2435 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2436 sbi->s_flex_groups_allocated = size; 2437 if (old_groups) 2438 ext4_kvfree_array_rcu(old_groups); 2439 return 0; 2440 } 2441 2442 static int ext4_fill_flex_info(struct super_block *sb) 2443 { 2444 struct ext4_sb_info *sbi = EXT4_SB(sb); 2445 struct ext4_group_desc *gdp = NULL; 2446 struct flex_groups *fg; 2447 ext4_group_t flex_group; 2448 int i, err; 2449 2450 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2451 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2452 sbi->s_log_groups_per_flex = 0; 2453 return 1; 2454 } 2455 2456 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2457 if (err) 2458 goto failed; 2459 2460 for (i = 0; i < sbi->s_groups_count; i++) { 2461 gdp = ext4_get_group_desc(sb, i, NULL); 2462 2463 flex_group = ext4_flex_group(sbi, i); 2464 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2465 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2466 atomic64_add(ext4_free_group_clusters(sb, gdp), 2467 &fg->free_clusters); 2468 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2469 } 2470 2471 return 1; 2472 failed: 2473 return 0; 2474 } 2475 2476 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2477 struct ext4_group_desc *gdp) 2478 { 2479 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2480 __u16 crc = 0; 2481 __le32 le_group = cpu_to_le32(block_group); 2482 struct ext4_sb_info *sbi = EXT4_SB(sb); 2483 2484 if (ext4_has_metadata_csum(sbi->s_sb)) { 2485 /* Use new metadata_csum algorithm */ 2486 __u32 csum32; 2487 __u16 dummy_csum = 0; 2488 2489 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2490 sizeof(le_group)); 2491 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2492 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2493 sizeof(dummy_csum)); 2494 offset += sizeof(dummy_csum); 2495 if (offset < sbi->s_desc_size) 2496 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2497 sbi->s_desc_size - offset); 2498 2499 crc = csum32 & 0xFFFF; 2500 goto out; 2501 } 2502 2503 /* old crc16 code */ 2504 if (!ext4_has_feature_gdt_csum(sb)) 2505 return 0; 2506 2507 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2508 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2509 crc = crc16(crc, (__u8 *)gdp, offset); 2510 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2511 /* for checksum of struct ext4_group_desc do the rest...*/ 2512 if (ext4_has_feature_64bit(sb) && 2513 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2514 crc = crc16(crc, (__u8 *)gdp + offset, 2515 le16_to_cpu(sbi->s_es->s_desc_size) - 2516 offset); 2517 2518 out: 2519 return cpu_to_le16(crc); 2520 } 2521 2522 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2523 struct ext4_group_desc *gdp) 2524 { 2525 if (ext4_has_group_desc_csum(sb) && 2526 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2527 return 0; 2528 2529 return 1; 2530 } 2531 2532 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2533 struct ext4_group_desc *gdp) 2534 { 2535 if (!ext4_has_group_desc_csum(sb)) 2536 return; 2537 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2538 } 2539 2540 /* Called at mount-time, super-block is locked */ 2541 static int ext4_check_descriptors(struct super_block *sb, 2542 ext4_fsblk_t sb_block, 2543 ext4_group_t *first_not_zeroed) 2544 { 2545 struct ext4_sb_info *sbi = EXT4_SB(sb); 2546 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2547 ext4_fsblk_t last_block; 2548 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2549 ext4_fsblk_t block_bitmap; 2550 ext4_fsblk_t inode_bitmap; 2551 ext4_fsblk_t inode_table; 2552 int flexbg_flag = 0; 2553 ext4_group_t i, grp = sbi->s_groups_count; 2554 2555 if (ext4_has_feature_flex_bg(sb)) 2556 flexbg_flag = 1; 2557 2558 ext4_debug("Checking group descriptors"); 2559 2560 for (i = 0; i < sbi->s_groups_count; i++) { 2561 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2562 2563 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2564 last_block = ext4_blocks_count(sbi->s_es) - 1; 2565 else 2566 last_block = first_block + 2567 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2568 2569 if ((grp == sbi->s_groups_count) && 2570 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2571 grp = i; 2572 2573 block_bitmap = ext4_block_bitmap(sb, gdp); 2574 if (block_bitmap == sb_block) { 2575 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2576 "Block bitmap for group %u overlaps " 2577 "superblock", i); 2578 if (!sb_rdonly(sb)) 2579 return 0; 2580 } 2581 if (block_bitmap >= sb_block + 1 && 2582 block_bitmap <= last_bg_block) { 2583 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2584 "Block bitmap for group %u overlaps " 2585 "block group descriptors", i); 2586 if (!sb_rdonly(sb)) 2587 return 0; 2588 } 2589 if (block_bitmap < first_block || block_bitmap > last_block) { 2590 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2591 "Block bitmap for group %u not in group " 2592 "(block %llu)!", i, block_bitmap); 2593 return 0; 2594 } 2595 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2596 if (inode_bitmap == sb_block) { 2597 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2598 "Inode bitmap for group %u overlaps " 2599 "superblock", i); 2600 if (!sb_rdonly(sb)) 2601 return 0; 2602 } 2603 if (inode_bitmap >= sb_block + 1 && 2604 inode_bitmap <= last_bg_block) { 2605 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2606 "Inode bitmap for group %u overlaps " 2607 "block group descriptors", i); 2608 if (!sb_rdonly(sb)) 2609 return 0; 2610 } 2611 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2612 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2613 "Inode bitmap for group %u not in group " 2614 "(block %llu)!", i, inode_bitmap); 2615 return 0; 2616 } 2617 inode_table = ext4_inode_table(sb, gdp); 2618 if (inode_table == sb_block) { 2619 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2620 "Inode table for group %u overlaps " 2621 "superblock", i); 2622 if (!sb_rdonly(sb)) 2623 return 0; 2624 } 2625 if (inode_table >= sb_block + 1 && 2626 inode_table <= last_bg_block) { 2627 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2628 "Inode table for group %u overlaps " 2629 "block group descriptors", i); 2630 if (!sb_rdonly(sb)) 2631 return 0; 2632 } 2633 if (inode_table < first_block || 2634 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2635 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2636 "Inode table for group %u not in group " 2637 "(block %llu)!", i, inode_table); 2638 return 0; 2639 } 2640 ext4_lock_group(sb, i); 2641 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2642 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2643 "Checksum for group %u failed (%u!=%u)", 2644 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2645 gdp)), le16_to_cpu(gdp->bg_checksum)); 2646 if (!sb_rdonly(sb)) { 2647 ext4_unlock_group(sb, i); 2648 return 0; 2649 } 2650 } 2651 ext4_unlock_group(sb, i); 2652 if (!flexbg_flag) 2653 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2654 } 2655 if (NULL != first_not_zeroed) 2656 *first_not_zeroed = grp; 2657 return 1; 2658 } 2659 2660 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2661 * the superblock) which were deleted from all directories, but held open by 2662 * a process at the time of a crash. We walk the list and try to delete these 2663 * inodes at recovery time (only with a read-write filesystem). 2664 * 2665 * In order to keep the orphan inode chain consistent during traversal (in 2666 * case of crash during recovery), we link each inode into the superblock 2667 * orphan list_head and handle it the same way as an inode deletion during 2668 * normal operation (which journals the operations for us). 2669 * 2670 * We only do an iget() and an iput() on each inode, which is very safe if we 2671 * accidentally point at an in-use or already deleted inode. The worst that 2672 * can happen in this case is that we get a "bit already cleared" message from 2673 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2674 * e2fsck was run on this filesystem, and it must have already done the orphan 2675 * inode cleanup for us, so we can safely abort without any further action. 2676 */ 2677 static void ext4_orphan_cleanup(struct super_block *sb, 2678 struct ext4_super_block *es) 2679 { 2680 unsigned int s_flags = sb->s_flags; 2681 int ret, nr_orphans = 0, nr_truncates = 0; 2682 #ifdef CONFIG_QUOTA 2683 int quota_update = 0; 2684 int i; 2685 #endif 2686 if (!es->s_last_orphan) { 2687 jbd_debug(4, "no orphan inodes to clean up\n"); 2688 return; 2689 } 2690 2691 if (bdev_read_only(sb->s_bdev)) { 2692 ext4_msg(sb, KERN_ERR, "write access " 2693 "unavailable, skipping orphan cleanup"); 2694 return; 2695 } 2696 2697 /* Check if feature set would not allow a r/w mount */ 2698 if (!ext4_feature_set_ok(sb, 0)) { 2699 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2700 "unknown ROCOMPAT features"); 2701 return; 2702 } 2703 2704 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2705 /* don't clear list on RO mount w/ errors */ 2706 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2707 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2708 "clearing orphan list.\n"); 2709 es->s_last_orphan = 0; 2710 } 2711 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2712 return; 2713 } 2714 2715 if (s_flags & SB_RDONLY) { 2716 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2717 sb->s_flags &= ~SB_RDONLY; 2718 } 2719 #ifdef CONFIG_QUOTA 2720 /* Needed for iput() to work correctly and not trash data */ 2721 sb->s_flags |= SB_ACTIVE; 2722 2723 /* 2724 * Turn on quotas which were not enabled for read-only mounts if 2725 * filesystem has quota feature, so that they are updated correctly. 2726 */ 2727 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2728 int ret = ext4_enable_quotas(sb); 2729 2730 if (!ret) 2731 quota_update = 1; 2732 else 2733 ext4_msg(sb, KERN_ERR, 2734 "Cannot turn on quotas: error %d", ret); 2735 } 2736 2737 /* Turn on journaled quotas used for old sytle */ 2738 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2739 if (EXT4_SB(sb)->s_qf_names[i]) { 2740 int ret = ext4_quota_on_mount(sb, i); 2741 2742 if (!ret) 2743 quota_update = 1; 2744 else 2745 ext4_msg(sb, KERN_ERR, 2746 "Cannot turn on journaled " 2747 "quota: type %d: error %d", i, ret); 2748 } 2749 } 2750 #endif 2751 2752 while (es->s_last_orphan) { 2753 struct inode *inode; 2754 2755 /* 2756 * We may have encountered an error during cleanup; if 2757 * so, skip the rest. 2758 */ 2759 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2760 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2761 es->s_last_orphan = 0; 2762 break; 2763 } 2764 2765 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2766 if (IS_ERR(inode)) { 2767 es->s_last_orphan = 0; 2768 break; 2769 } 2770 2771 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2772 dquot_initialize(inode); 2773 if (inode->i_nlink) { 2774 if (test_opt(sb, DEBUG)) 2775 ext4_msg(sb, KERN_DEBUG, 2776 "%s: truncating inode %lu to %lld bytes", 2777 __func__, inode->i_ino, inode->i_size); 2778 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2779 inode->i_ino, inode->i_size); 2780 inode_lock(inode); 2781 truncate_inode_pages(inode->i_mapping, inode->i_size); 2782 ret = ext4_truncate(inode); 2783 if (ret) 2784 ext4_std_error(inode->i_sb, ret); 2785 inode_unlock(inode); 2786 nr_truncates++; 2787 } else { 2788 if (test_opt(sb, DEBUG)) 2789 ext4_msg(sb, KERN_DEBUG, 2790 "%s: deleting unreferenced inode %lu", 2791 __func__, inode->i_ino); 2792 jbd_debug(2, "deleting unreferenced inode %lu\n", 2793 inode->i_ino); 2794 nr_orphans++; 2795 } 2796 iput(inode); /* The delete magic happens here! */ 2797 } 2798 2799 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2800 2801 if (nr_orphans) 2802 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2803 PLURAL(nr_orphans)); 2804 if (nr_truncates) 2805 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2806 PLURAL(nr_truncates)); 2807 #ifdef CONFIG_QUOTA 2808 /* Turn off quotas if they were enabled for orphan cleanup */ 2809 if (quota_update) { 2810 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2811 if (sb_dqopt(sb)->files[i]) 2812 dquot_quota_off(sb, i); 2813 } 2814 } 2815 #endif 2816 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2817 } 2818 2819 /* 2820 * Maximal extent format file size. 2821 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2822 * extent format containers, within a sector_t, and within i_blocks 2823 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2824 * so that won't be a limiting factor. 2825 * 2826 * However there is other limiting factor. We do store extents in the form 2827 * of starting block and length, hence the resulting length of the extent 2828 * covering maximum file size must fit into on-disk format containers as 2829 * well. Given that length is always by 1 unit bigger than max unit (because 2830 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2831 * 2832 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2833 */ 2834 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2835 { 2836 loff_t res; 2837 loff_t upper_limit = MAX_LFS_FILESIZE; 2838 2839 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2840 2841 if (!has_huge_files) { 2842 upper_limit = (1LL << 32) - 1; 2843 2844 /* total blocks in file system block size */ 2845 upper_limit >>= (blkbits - 9); 2846 upper_limit <<= blkbits; 2847 } 2848 2849 /* 2850 * 32-bit extent-start container, ee_block. We lower the maxbytes 2851 * by one fs block, so ee_len can cover the extent of maximum file 2852 * size 2853 */ 2854 res = (1LL << 32) - 1; 2855 res <<= blkbits; 2856 2857 /* Sanity check against vm- & vfs- imposed limits */ 2858 if (res > upper_limit) 2859 res = upper_limit; 2860 2861 return res; 2862 } 2863 2864 /* 2865 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2866 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2867 * We need to be 1 filesystem block less than the 2^48 sector limit. 2868 */ 2869 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2870 { 2871 loff_t res = EXT4_NDIR_BLOCKS; 2872 int meta_blocks; 2873 loff_t upper_limit; 2874 /* This is calculated to be the largest file size for a dense, block 2875 * mapped file such that the file's total number of 512-byte sectors, 2876 * including data and all indirect blocks, does not exceed (2^48 - 1). 2877 * 2878 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2879 * number of 512-byte sectors of the file. 2880 */ 2881 2882 if (!has_huge_files) { 2883 /* 2884 * !has_huge_files or implies that the inode i_block field 2885 * represents total file blocks in 2^32 512-byte sectors == 2886 * size of vfs inode i_blocks * 8 2887 */ 2888 upper_limit = (1LL << 32) - 1; 2889 2890 /* total blocks in file system block size */ 2891 upper_limit >>= (bits - 9); 2892 2893 } else { 2894 /* 2895 * We use 48 bit ext4_inode i_blocks 2896 * With EXT4_HUGE_FILE_FL set the i_blocks 2897 * represent total number of blocks in 2898 * file system block size 2899 */ 2900 upper_limit = (1LL << 48) - 1; 2901 2902 } 2903 2904 /* indirect blocks */ 2905 meta_blocks = 1; 2906 /* double indirect blocks */ 2907 meta_blocks += 1 + (1LL << (bits-2)); 2908 /* tripple indirect blocks */ 2909 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2910 2911 upper_limit -= meta_blocks; 2912 upper_limit <<= bits; 2913 2914 res += 1LL << (bits-2); 2915 res += 1LL << (2*(bits-2)); 2916 res += 1LL << (3*(bits-2)); 2917 res <<= bits; 2918 if (res > upper_limit) 2919 res = upper_limit; 2920 2921 if (res > MAX_LFS_FILESIZE) 2922 res = MAX_LFS_FILESIZE; 2923 2924 return res; 2925 } 2926 2927 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2928 ext4_fsblk_t logical_sb_block, int nr) 2929 { 2930 struct ext4_sb_info *sbi = EXT4_SB(sb); 2931 ext4_group_t bg, first_meta_bg; 2932 int has_super = 0; 2933 2934 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2935 2936 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2937 return logical_sb_block + nr + 1; 2938 bg = sbi->s_desc_per_block * nr; 2939 if (ext4_bg_has_super(sb, bg)) 2940 has_super = 1; 2941 2942 /* 2943 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2944 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2945 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2946 * compensate. 2947 */ 2948 if (sb->s_blocksize == 1024 && nr == 0 && 2949 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2950 has_super++; 2951 2952 return (has_super + ext4_group_first_block_no(sb, bg)); 2953 } 2954 2955 /** 2956 * ext4_get_stripe_size: Get the stripe size. 2957 * @sbi: In memory super block info 2958 * 2959 * If we have specified it via mount option, then 2960 * use the mount option value. If the value specified at mount time is 2961 * greater than the blocks per group use the super block value. 2962 * If the super block value is greater than blocks per group return 0. 2963 * Allocator needs it be less than blocks per group. 2964 * 2965 */ 2966 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2967 { 2968 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2969 unsigned long stripe_width = 2970 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2971 int ret; 2972 2973 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2974 ret = sbi->s_stripe; 2975 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2976 ret = stripe_width; 2977 else if (stride && stride <= sbi->s_blocks_per_group) 2978 ret = stride; 2979 else 2980 ret = 0; 2981 2982 /* 2983 * If the stripe width is 1, this makes no sense and 2984 * we set it to 0 to turn off stripe handling code. 2985 */ 2986 if (ret <= 1) 2987 ret = 0; 2988 2989 return ret; 2990 } 2991 2992 /* 2993 * Check whether this filesystem can be mounted based on 2994 * the features present and the RDONLY/RDWR mount requested. 2995 * Returns 1 if this filesystem can be mounted as requested, 2996 * 0 if it cannot be. 2997 */ 2998 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2999 { 3000 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3001 ext4_msg(sb, KERN_ERR, 3002 "Couldn't mount because of " 3003 "unsupported optional features (%x)", 3004 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3005 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3006 return 0; 3007 } 3008 3009 #ifndef CONFIG_UNICODE 3010 if (ext4_has_feature_casefold(sb)) { 3011 ext4_msg(sb, KERN_ERR, 3012 "Filesystem with casefold feature cannot be " 3013 "mounted without CONFIG_UNICODE"); 3014 return 0; 3015 } 3016 #endif 3017 3018 if (readonly) 3019 return 1; 3020 3021 if (ext4_has_feature_readonly(sb)) { 3022 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3023 sb->s_flags |= SB_RDONLY; 3024 return 1; 3025 } 3026 3027 /* Check that feature set is OK for a read-write mount */ 3028 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3029 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3030 "unsupported optional features (%x)", 3031 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3032 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3033 return 0; 3034 } 3035 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3036 ext4_msg(sb, KERN_ERR, 3037 "Can't support bigalloc feature without " 3038 "extents feature\n"); 3039 return 0; 3040 } 3041 3042 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3043 if (!readonly && (ext4_has_feature_quota(sb) || 3044 ext4_has_feature_project(sb))) { 3045 ext4_msg(sb, KERN_ERR, 3046 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3047 return 0; 3048 } 3049 #endif /* CONFIG_QUOTA */ 3050 return 1; 3051 } 3052 3053 /* 3054 * This function is called once a day if we have errors logged 3055 * on the file system 3056 */ 3057 static void print_daily_error_info(struct timer_list *t) 3058 { 3059 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3060 struct super_block *sb = sbi->s_sb; 3061 struct ext4_super_block *es = sbi->s_es; 3062 3063 if (es->s_error_count) 3064 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3065 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3066 le32_to_cpu(es->s_error_count)); 3067 if (es->s_first_error_time) { 3068 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3069 sb->s_id, 3070 ext4_get_tstamp(es, s_first_error_time), 3071 (int) sizeof(es->s_first_error_func), 3072 es->s_first_error_func, 3073 le32_to_cpu(es->s_first_error_line)); 3074 if (es->s_first_error_ino) 3075 printk(KERN_CONT ": inode %u", 3076 le32_to_cpu(es->s_first_error_ino)); 3077 if (es->s_first_error_block) 3078 printk(KERN_CONT ": block %llu", (unsigned long long) 3079 le64_to_cpu(es->s_first_error_block)); 3080 printk(KERN_CONT "\n"); 3081 } 3082 if (es->s_last_error_time) { 3083 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3084 sb->s_id, 3085 ext4_get_tstamp(es, s_last_error_time), 3086 (int) sizeof(es->s_last_error_func), 3087 es->s_last_error_func, 3088 le32_to_cpu(es->s_last_error_line)); 3089 if (es->s_last_error_ino) 3090 printk(KERN_CONT ": inode %u", 3091 le32_to_cpu(es->s_last_error_ino)); 3092 if (es->s_last_error_block) 3093 printk(KERN_CONT ": block %llu", (unsigned long long) 3094 le64_to_cpu(es->s_last_error_block)); 3095 printk(KERN_CONT "\n"); 3096 } 3097 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3098 } 3099 3100 /* Find next suitable group and run ext4_init_inode_table */ 3101 static int ext4_run_li_request(struct ext4_li_request *elr) 3102 { 3103 struct ext4_group_desc *gdp = NULL; 3104 ext4_group_t group, ngroups; 3105 struct super_block *sb; 3106 unsigned long timeout = 0; 3107 int ret = 0; 3108 3109 sb = elr->lr_super; 3110 ngroups = EXT4_SB(sb)->s_groups_count; 3111 3112 for (group = elr->lr_next_group; group < ngroups; group++) { 3113 gdp = ext4_get_group_desc(sb, group, NULL); 3114 if (!gdp) { 3115 ret = 1; 3116 break; 3117 } 3118 3119 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3120 break; 3121 } 3122 3123 if (group >= ngroups) 3124 ret = 1; 3125 3126 if (!ret) { 3127 timeout = jiffies; 3128 ret = ext4_init_inode_table(sb, group, 3129 elr->lr_timeout ? 0 : 1); 3130 if (elr->lr_timeout == 0) { 3131 timeout = (jiffies - timeout) * 3132 elr->lr_sbi->s_li_wait_mult; 3133 elr->lr_timeout = timeout; 3134 } 3135 elr->lr_next_sched = jiffies + elr->lr_timeout; 3136 elr->lr_next_group = group + 1; 3137 } 3138 return ret; 3139 } 3140 3141 /* 3142 * Remove lr_request from the list_request and free the 3143 * request structure. Should be called with li_list_mtx held 3144 */ 3145 static void ext4_remove_li_request(struct ext4_li_request *elr) 3146 { 3147 struct ext4_sb_info *sbi; 3148 3149 if (!elr) 3150 return; 3151 3152 sbi = elr->lr_sbi; 3153 3154 list_del(&elr->lr_request); 3155 sbi->s_li_request = NULL; 3156 kfree(elr); 3157 } 3158 3159 static void ext4_unregister_li_request(struct super_block *sb) 3160 { 3161 mutex_lock(&ext4_li_mtx); 3162 if (!ext4_li_info) { 3163 mutex_unlock(&ext4_li_mtx); 3164 return; 3165 } 3166 3167 mutex_lock(&ext4_li_info->li_list_mtx); 3168 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3169 mutex_unlock(&ext4_li_info->li_list_mtx); 3170 mutex_unlock(&ext4_li_mtx); 3171 } 3172 3173 static struct task_struct *ext4_lazyinit_task; 3174 3175 /* 3176 * This is the function where ext4lazyinit thread lives. It walks 3177 * through the request list searching for next scheduled filesystem. 3178 * When such a fs is found, run the lazy initialization request 3179 * (ext4_rn_li_request) and keep track of the time spend in this 3180 * function. Based on that time we compute next schedule time of 3181 * the request. When walking through the list is complete, compute 3182 * next waking time and put itself into sleep. 3183 */ 3184 static int ext4_lazyinit_thread(void *arg) 3185 { 3186 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3187 struct list_head *pos, *n; 3188 struct ext4_li_request *elr; 3189 unsigned long next_wakeup, cur; 3190 3191 BUG_ON(NULL == eli); 3192 3193 cont_thread: 3194 while (true) { 3195 next_wakeup = MAX_JIFFY_OFFSET; 3196 3197 mutex_lock(&eli->li_list_mtx); 3198 if (list_empty(&eli->li_request_list)) { 3199 mutex_unlock(&eli->li_list_mtx); 3200 goto exit_thread; 3201 } 3202 list_for_each_safe(pos, n, &eli->li_request_list) { 3203 int err = 0; 3204 int progress = 0; 3205 elr = list_entry(pos, struct ext4_li_request, 3206 lr_request); 3207 3208 if (time_before(jiffies, elr->lr_next_sched)) { 3209 if (time_before(elr->lr_next_sched, next_wakeup)) 3210 next_wakeup = elr->lr_next_sched; 3211 continue; 3212 } 3213 if (down_read_trylock(&elr->lr_super->s_umount)) { 3214 if (sb_start_write_trylock(elr->lr_super)) { 3215 progress = 1; 3216 /* 3217 * We hold sb->s_umount, sb can not 3218 * be removed from the list, it is 3219 * now safe to drop li_list_mtx 3220 */ 3221 mutex_unlock(&eli->li_list_mtx); 3222 err = ext4_run_li_request(elr); 3223 sb_end_write(elr->lr_super); 3224 mutex_lock(&eli->li_list_mtx); 3225 n = pos->next; 3226 } 3227 up_read((&elr->lr_super->s_umount)); 3228 } 3229 /* error, remove the lazy_init job */ 3230 if (err) { 3231 ext4_remove_li_request(elr); 3232 continue; 3233 } 3234 if (!progress) { 3235 elr->lr_next_sched = jiffies + 3236 (prandom_u32() 3237 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3238 } 3239 if (time_before(elr->lr_next_sched, next_wakeup)) 3240 next_wakeup = elr->lr_next_sched; 3241 } 3242 mutex_unlock(&eli->li_list_mtx); 3243 3244 try_to_freeze(); 3245 3246 cur = jiffies; 3247 if ((time_after_eq(cur, next_wakeup)) || 3248 (MAX_JIFFY_OFFSET == next_wakeup)) { 3249 cond_resched(); 3250 continue; 3251 } 3252 3253 schedule_timeout_interruptible(next_wakeup - cur); 3254 3255 if (kthread_should_stop()) { 3256 ext4_clear_request_list(); 3257 goto exit_thread; 3258 } 3259 } 3260 3261 exit_thread: 3262 /* 3263 * It looks like the request list is empty, but we need 3264 * to check it under the li_list_mtx lock, to prevent any 3265 * additions into it, and of course we should lock ext4_li_mtx 3266 * to atomically free the list and ext4_li_info, because at 3267 * this point another ext4 filesystem could be registering 3268 * new one. 3269 */ 3270 mutex_lock(&ext4_li_mtx); 3271 mutex_lock(&eli->li_list_mtx); 3272 if (!list_empty(&eli->li_request_list)) { 3273 mutex_unlock(&eli->li_list_mtx); 3274 mutex_unlock(&ext4_li_mtx); 3275 goto cont_thread; 3276 } 3277 mutex_unlock(&eli->li_list_mtx); 3278 kfree(ext4_li_info); 3279 ext4_li_info = NULL; 3280 mutex_unlock(&ext4_li_mtx); 3281 3282 return 0; 3283 } 3284 3285 static void ext4_clear_request_list(void) 3286 { 3287 struct list_head *pos, *n; 3288 struct ext4_li_request *elr; 3289 3290 mutex_lock(&ext4_li_info->li_list_mtx); 3291 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3292 elr = list_entry(pos, struct ext4_li_request, 3293 lr_request); 3294 ext4_remove_li_request(elr); 3295 } 3296 mutex_unlock(&ext4_li_info->li_list_mtx); 3297 } 3298 3299 static int ext4_run_lazyinit_thread(void) 3300 { 3301 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3302 ext4_li_info, "ext4lazyinit"); 3303 if (IS_ERR(ext4_lazyinit_task)) { 3304 int err = PTR_ERR(ext4_lazyinit_task); 3305 ext4_clear_request_list(); 3306 kfree(ext4_li_info); 3307 ext4_li_info = NULL; 3308 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3309 "initialization thread\n", 3310 err); 3311 return err; 3312 } 3313 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3314 return 0; 3315 } 3316 3317 /* 3318 * Check whether it make sense to run itable init. thread or not. 3319 * If there is at least one uninitialized inode table, return 3320 * corresponding group number, else the loop goes through all 3321 * groups and return total number of groups. 3322 */ 3323 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3324 { 3325 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3326 struct ext4_group_desc *gdp = NULL; 3327 3328 if (!ext4_has_group_desc_csum(sb)) 3329 return ngroups; 3330 3331 for (group = 0; group < ngroups; group++) { 3332 gdp = ext4_get_group_desc(sb, group, NULL); 3333 if (!gdp) 3334 continue; 3335 3336 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3337 break; 3338 } 3339 3340 return group; 3341 } 3342 3343 static int ext4_li_info_new(void) 3344 { 3345 struct ext4_lazy_init *eli = NULL; 3346 3347 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3348 if (!eli) 3349 return -ENOMEM; 3350 3351 INIT_LIST_HEAD(&eli->li_request_list); 3352 mutex_init(&eli->li_list_mtx); 3353 3354 eli->li_state |= EXT4_LAZYINIT_QUIT; 3355 3356 ext4_li_info = eli; 3357 3358 return 0; 3359 } 3360 3361 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3362 ext4_group_t start) 3363 { 3364 struct ext4_sb_info *sbi = EXT4_SB(sb); 3365 struct ext4_li_request *elr; 3366 3367 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3368 if (!elr) 3369 return NULL; 3370 3371 elr->lr_super = sb; 3372 elr->lr_sbi = sbi; 3373 elr->lr_next_group = start; 3374 3375 /* 3376 * Randomize first schedule time of the request to 3377 * spread the inode table initialization requests 3378 * better. 3379 */ 3380 elr->lr_next_sched = jiffies + (prandom_u32() % 3381 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3382 return elr; 3383 } 3384 3385 int ext4_register_li_request(struct super_block *sb, 3386 ext4_group_t first_not_zeroed) 3387 { 3388 struct ext4_sb_info *sbi = EXT4_SB(sb); 3389 struct ext4_li_request *elr = NULL; 3390 ext4_group_t ngroups = sbi->s_groups_count; 3391 int ret = 0; 3392 3393 mutex_lock(&ext4_li_mtx); 3394 if (sbi->s_li_request != NULL) { 3395 /* 3396 * Reset timeout so it can be computed again, because 3397 * s_li_wait_mult might have changed. 3398 */ 3399 sbi->s_li_request->lr_timeout = 0; 3400 goto out; 3401 } 3402 3403 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3404 !test_opt(sb, INIT_INODE_TABLE)) 3405 goto out; 3406 3407 elr = ext4_li_request_new(sb, first_not_zeroed); 3408 if (!elr) { 3409 ret = -ENOMEM; 3410 goto out; 3411 } 3412 3413 if (NULL == ext4_li_info) { 3414 ret = ext4_li_info_new(); 3415 if (ret) 3416 goto out; 3417 } 3418 3419 mutex_lock(&ext4_li_info->li_list_mtx); 3420 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3421 mutex_unlock(&ext4_li_info->li_list_mtx); 3422 3423 sbi->s_li_request = elr; 3424 /* 3425 * set elr to NULL here since it has been inserted to 3426 * the request_list and the removal and free of it is 3427 * handled by ext4_clear_request_list from now on. 3428 */ 3429 elr = NULL; 3430 3431 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3432 ret = ext4_run_lazyinit_thread(); 3433 if (ret) 3434 goto out; 3435 } 3436 out: 3437 mutex_unlock(&ext4_li_mtx); 3438 if (ret) 3439 kfree(elr); 3440 return ret; 3441 } 3442 3443 /* 3444 * We do not need to lock anything since this is called on 3445 * module unload. 3446 */ 3447 static void ext4_destroy_lazyinit_thread(void) 3448 { 3449 /* 3450 * If thread exited earlier 3451 * there's nothing to be done. 3452 */ 3453 if (!ext4_li_info || !ext4_lazyinit_task) 3454 return; 3455 3456 kthread_stop(ext4_lazyinit_task); 3457 } 3458 3459 static int set_journal_csum_feature_set(struct super_block *sb) 3460 { 3461 int ret = 1; 3462 int compat, incompat; 3463 struct ext4_sb_info *sbi = EXT4_SB(sb); 3464 3465 if (ext4_has_metadata_csum(sb)) { 3466 /* journal checksum v3 */ 3467 compat = 0; 3468 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3469 } else { 3470 /* journal checksum v1 */ 3471 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3472 incompat = 0; 3473 } 3474 3475 jbd2_journal_clear_features(sbi->s_journal, 3476 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3477 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3478 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3479 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3480 ret = jbd2_journal_set_features(sbi->s_journal, 3481 compat, 0, 3482 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3483 incompat); 3484 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3485 ret = jbd2_journal_set_features(sbi->s_journal, 3486 compat, 0, 3487 incompat); 3488 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3489 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3490 } else { 3491 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3492 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3493 } 3494 3495 return ret; 3496 } 3497 3498 /* 3499 * Note: calculating the overhead so we can be compatible with 3500 * historical BSD practice is quite difficult in the face of 3501 * clusters/bigalloc. This is because multiple metadata blocks from 3502 * different block group can end up in the same allocation cluster. 3503 * Calculating the exact overhead in the face of clustered allocation 3504 * requires either O(all block bitmaps) in memory or O(number of block 3505 * groups**2) in time. We will still calculate the superblock for 3506 * older file systems --- and if we come across with a bigalloc file 3507 * system with zero in s_overhead_clusters the estimate will be close to 3508 * correct especially for very large cluster sizes --- but for newer 3509 * file systems, it's better to calculate this figure once at mkfs 3510 * time, and store it in the superblock. If the superblock value is 3511 * present (even for non-bigalloc file systems), we will use it. 3512 */ 3513 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3514 char *buf) 3515 { 3516 struct ext4_sb_info *sbi = EXT4_SB(sb); 3517 struct ext4_group_desc *gdp; 3518 ext4_fsblk_t first_block, last_block, b; 3519 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3520 int s, j, count = 0; 3521 3522 if (!ext4_has_feature_bigalloc(sb)) 3523 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3524 sbi->s_itb_per_group + 2); 3525 3526 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3527 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3528 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3529 for (i = 0; i < ngroups; i++) { 3530 gdp = ext4_get_group_desc(sb, i, NULL); 3531 b = ext4_block_bitmap(sb, gdp); 3532 if (b >= first_block && b <= last_block) { 3533 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3534 count++; 3535 } 3536 b = ext4_inode_bitmap(sb, gdp); 3537 if (b >= first_block && b <= last_block) { 3538 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3539 count++; 3540 } 3541 b = ext4_inode_table(sb, gdp); 3542 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3543 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3544 int c = EXT4_B2C(sbi, b - first_block); 3545 ext4_set_bit(c, buf); 3546 count++; 3547 } 3548 if (i != grp) 3549 continue; 3550 s = 0; 3551 if (ext4_bg_has_super(sb, grp)) { 3552 ext4_set_bit(s++, buf); 3553 count++; 3554 } 3555 j = ext4_bg_num_gdb(sb, grp); 3556 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3557 ext4_error(sb, "Invalid number of block group " 3558 "descriptor blocks: %d", j); 3559 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3560 } 3561 count += j; 3562 for (; j > 0; j--) 3563 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3564 } 3565 if (!count) 3566 return 0; 3567 return EXT4_CLUSTERS_PER_GROUP(sb) - 3568 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3569 } 3570 3571 /* 3572 * Compute the overhead and stash it in sbi->s_overhead 3573 */ 3574 int ext4_calculate_overhead(struct super_block *sb) 3575 { 3576 struct ext4_sb_info *sbi = EXT4_SB(sb); 3577 struct ext4_super_block *es = sbi->s_es; 3578 struct inode *j_inode; 3579 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3580 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3581 ext4_fsblk_t overhead = 0; 3582 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3583 3584 if (!buf) 3585 return -ENOMEM; 3586 3587 /* 3588 * Compute the overhead (FS structures). This is constant 3589 * for a given filesystem unless the number of block groups 3590 * changes so we cache the previous value until it does. 3591 */ 3592 3593 /* 3594 * All of the blocks before first_data_block are overhead 3595 */ 3596 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3597 3598 /* 3599 * Add the overhead found in each block group 3600 */ 3601 for (i = 0; i < ngroups; i++) { 3602 int blks; 3603 3604 blks = count_overhead(sb, i, buf); 3605 overhead += blks; 3606 if (blks) 3607 memset(buf, 0, PAGE_SIZE); 3608 cond_resched(); 3609 } 3610 3611 /* 3612 * Add the internal journal blocks whether the journal has been 3613 * loaded or not 3614 */ 3615 if (sbi->s_journal && !sbi->journal_bdev) 3616 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3617 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3618 /* j_inum for internal journal is non-zero */ 3619 j_inode = ext4_get_journal_inode(sb, j_inum); 3620 if (j_inode) { 3621 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3622 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3623 iput(j_inode); 3624 } else { 3625 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3626 } 3627 } 3628 sbi->s_overhead = overhead; 3629 smp_wmb(); 3630 free_page((unsigned long) buf); 3631 return 0; 3632 } 3633 3634 static void ext4_set_resv_clusters(struct super_block *sb) 3635 { 3636 ext4_fsblk_t resv_clusters; 3637 struct ext4_sb_info *sbi = EXT4_SB(sb); 3638 3639 /* 3640 * There's no need to reserve anything when we aren't using extents. 3641 * The space estimates are exact, there are no unwritten extents, 3642 * hole punching doesn't need new metadata... This is needed especially 3643 * to keep ext2/3 backward compatibility. 3644 */ 3645 if (!ext4_has_feature_extents(sb)) 3646 return; 3647 /* 3648 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3649 * This should cover the situations where we can not afford to run 3650 * out of space like for example punch hole, or converting 3651 * unwritten extents in delalloc path. In most cases such 3652 * allocation would require 1, or 2 blocks, higher numbers are 3653 * very rare. 3654 */ 3655 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3656 sbi->s_cluster_bits); 3657 3658 do_div(resv_clusters, 50); 3659 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3660 3661 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3662 } 3663 3664 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3665 { 3666 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3667 char *orig_data = kstrdup(data, GFP_KERNEL); 3668 struct buffer_head *bh, **group_desc; 3669 struct ext4_super_block *es = NULL; 3670 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3671 struct flex_groups **flex_groups; 3672 ext4_fsblk_t block; 3673 ext4_fsblk_t sb_block = get_sb_block(&data); 3674 ext4_fsblk_t logical_sb_block; 3675 unsigned long offset = 0; 3676 unsigned long journal_devnum = 0; 3677 unsigned long def_mount_opts; 3678 struct inode *root; 3679 const char *descr; 3680 int ret = -ENOMEM; 3681 int blocksize, clustersize; 3682 unsigned int db_count; 3683 unsigned int i; 3684 int needs_recovery, has_huge_files, has_bigalloc; 3685 __u64 blocks_count; 3686 int err = 0; 3687 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3688 ext4_group_t first_not_zeroed; 3689 3690 if ((data && !orig_data) || !sbi) 3691 goto out_free_base; 3692 3693 sbi->s_daxdev = dax_dev; 3694 sbi->s_blockgroup_lock = 3695 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3696 if (!sbi->s_blockgroup_lock) 3697 goto out_free_base; 3698 3699 sb->s_fs_info = sbi; 3700 sbi->s_sb = sb; 3701 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3702 sbi->s_sb_block = sb_block; 3703 if (sb->s_bdev->bd_part) 3704 sbi->s_sectors_written_start = 3705 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3706 3707 /* Cleanup superblock name */ 3708 strreplace(sb->s_id, '/', '!'); 3709 3710 /* -EINVAL is default */ 3711 ret = -EINVAL; 3712 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3713 if (!blocksize) { 3714 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3715 goto out_fail; 3716 } 3717 3718 /* 3719 * The ext4 superblock will not be buffer aligned for other than 1kB 3720 * block sizes. We need to calculate the offset from buffer start. 3721 */ 3722 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3723 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3724 offset = do_div(logical_sb_block, blocksize); 3725 } else { 3726 logical_sb_block = sb_block; 3727 } 3728 3729 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3730 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3731 goto out_fail; 3732 } 3733 /* 3734 * Note: s_es must be initialized as soon as possible because 3735 * some ext4 macro-instructions depend on its value 3736 */ 3737 es = (struct ext4_super_block *) (bh->b_data + offset); 3738 sbi->s_es = es; 3739 sb->s_magic = le16_to_cpu(es->s_magic); 3740 if (sb->s_magic != EXT4_SUPER_MAGIC) 3741 goto cantfind_ext4; 3742 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3743 3744 /* Warn if metadata_csum and gdt_csum are both set. */ 3745 if (ext4_has_feature_metadata_csum(sb) && 3746 ext4_has_feature_gdt_csum(sb)) 3747 ext4_warning(sb, "metadata_csum and uninit_bg are " 3748 "redundant flags; please run fsck."); 3749 3750 /* Check for a known checksum algorithm */ 3751 if (!ext4_verify_csum_type(sb, es)) { 3752 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3753 "unknown checksum algorithm."); 3754 silent = 1; 3755 goto cantfind_ext4; 3756 } 3757 3758 /* Load the checksum driver */ 3759 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3760 if (IS_ERR(sbi->s_chksum_driver)) { 3761 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3762 ret = PTR_ERR(sbi->s_chksum_driver); 3763 sbi->s_chksum_driver = NULL; 3764 goto failed_mount; 3765 } 3766 3767 /* Check superblock checksum */ 3768 if (!ext4_superblock_csum_verify(sb, es)) { 3769 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3770 "invalid superblock checksum. Run e2fsck?"); 3771 silent = 1; 3772 ret = -EFSBADCRC; 3773 goto cantfind_ext4; 3774 } 3775 3776 /* Precompute checksum seed for all metadata */ 3777 if (ext4_has_feature_csum_seed(sb)) 3778 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3779 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3780 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3781 sizeof(es->s_uuid)); 3782 3783 /* Set defaults before we parse the mount options */ 3784 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3785 set_opt(sb, INIT_INODE_TABLE); 3786 if (def_mount_opts & EXT4_DEFM_DEBUG) 3787 set_opt(sb, DEBUG); 3788 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3789 set_opt(sb, GRPID); 3790 if (def_mount_opts & EXT4_DEFM_UID16) 3791 set_opt(sb, NO_UID32); 3792 /* xattr user namespace & acls are now defaulted on */ 3793 set_opt(sb, XATTR_USER); 3794 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3795 set_opt(sb, POSIX_ACL); 3796 #endif 3797 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3798 if (ext4_has_metadata_csum(sb)) 3799 set_opt(sb, JOURNAL_CHECKSUM); 3800 3801 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3802 set_opt(sb, JOURNAL_DATA); 3803 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3804 set_opt(sb, ORDERED_DATA); 3805 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3806 set_opt(sb, WRITEBACK_DATA); 3807 3808 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3809 set_opt(sb, ERRORS_PANIC); 3810 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3811 set_opt(sb, ERRORS_CONT); 3812 else 3813 set_opt(sb, ERRORS_RO); 3814 /* block_validity enabled by default; disable with noblock_validity */ 3815 set_opt(sb, BLOCK_VALIDITY); 3816 if (def_mount_opts & EXT4_DEFM_DISCARD) 3817 set_opt(sb, DISCARD); 3818 3819 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3820 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3821 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3822 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3823 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3824 3825 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3826 set_opt(sb, BARRIER); 3827 3828 /* 3829 * enable delayed allocation by default 3830 * Use -o nodelalloc to turn it off 3831 */ 3832 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3833 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3834 set_opt(sb, DELALLOC); 3835 3836 /* 3837 * set default s_li_wait_mult for lazyinit, for the case there is 3838 * no mount option specified. 3839 */ 3840 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3841 3842 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3843 3844 if (blocksize == PAGE_SIZE) 3845 set_opt(sb, DIOREAD_NOLOCK); 3846 3847 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3848 blocksize > EXT4_MAX_BLOCK_SIZE) { 3849 ext4_msg(sb, KERN_ERR, 3850 "Unsupported filesystem blocksize %d (%d log_block_size)", 3851 blocksize, le32_to_cpu(es->s_log_block_size)); 3852 goto failed_mount; 3853 } 3854 3855 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3856 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3857 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3858 } else { 3859 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3860 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3861 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3862 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3863 sbi->s_first_ino); 3864 goto failed_mount; 3865 } 3866 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3867 (!is_power_of_2(sbi->s_inode_size)) || 3868 (sbi->s_inode_size > blocksize)) { 3869 ext4_msg(sb, KERN_ERR, 3870 "unsupported inode size: %d", 3871 sbi->s_inode_size); 3872 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 3873 goto failed_mount; 3874 } 3875 /* 3876 * i_atime_extra is the last extra field available for 3877 * [acm]times in struct ext4_inode. Checking for that 3878 * field should suffice to ensure we have extra space 3879 * for all three. 3880 */ 3881 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 3882 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 3883 sb->s_time_gran = 1; 3884 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 3885 } else { 3886 sb->s_time_gran = NSEC_PER_SEC; 3887 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 3888 } 3889 sb->s_time_min = EXT4_TIMESTAMP_MIN; 3890 } 3891 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3892 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3893 EXT4_GOOD_OLD_INODE_SIZE; 3894 if (ext4_has_feature_extra_isize(sb)) { 3895 unsigned v, max = (sbi->s_inode_size - 3896 EXT4_GOOD_OLD_INODE_SIZE); 3897 3898 v = le16_to_cpu(es->s_want_extra_isize); 3899 if (v > max) { 3900 ext4_msg(sb, KERN_ERR, 3901 "bad s_want_extra_isize: %d", v); 3902 goto failed_mount; 3903 } 3904 if (sbi->s_want_extra_isize < v) 3905 sbi->s_want_extra_isize = v; 3906 3907 v = le16_to_cpu(es->s_min_extra_isize); 3908 if (v > max) { 3909 ext4_msg(sb, KERN_ERR, 3910 "bad s_min_extra_isize: %d", v); 3911 goto failed_mount; 3912 } 3913 if (sbi->s_want_extra_isize < v) 3914 sbi->s_want_extra_isize = v; 3915 } 3916 } 3917 3918 if (sbi->s_es->s_mount_opts[0]) { 3919 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3920 sizeof(sbi->s_es->s_mount_opts), 3921 GFP_KERNEL); 3922 if (!s_mount_opts) 3923 goto failed_mount; 3924 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3925 &journal_ioprio, 0)) { 3926 ext4_msg(sb, KERN_WARNING, 3927 "failed to parse options in superblock: %s", 3928 s_mount_opts); 3929 } 3930 kfree(s_mount_opts); 3931 } 3932 sbi->s_def_mount_opt = sbi->s_mount_opt; 3933 if (!parse_options((char *) data, sb, &journal_devnum, 3934 &journal_ioprio, 0)) 3935 goto failed_mount; 3936 3937 #ifdef CONFIG_UNICODE 3938 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { 3939 const struct ext4_sb_encodings *encoding_info; 3940 struct unicode_map *encoding; 3941 __u16 encoding_flags; 3942 3943 if (ext4_has_feature_encrypt(sb)) { 3944 ext4_msg(sb, KERN_ERR, 3945 "Can't mount with encoding and encryption"); 3946 goto failed_mount; 3947 } 3948 3949 if (ext4_sb_read_encoding(es, &encoding_info, 3950 &encoding_flags)) { 3951 ext4_msg(sb, KERN_ERR, 3952 "Encoding requested by superblock is unknown"); 3953 goto failed_mount; 3954 } 3955 3956 encoding = utf8_load(encoding_info->version); 3957 if (IS_ERR(encoding)) { 3958 ext4_msg(sb, KERN_ERR, 3959 "can't mount with superblock charset: %s-%s " 3960 "not supported by the kernel. flags: 0x%x.", 3961 encoding_info->name, encoding_info->version, 3962 encoding_flags); 3963 goto failed_mount; 3964 } 3965 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 3966 "%s-%s with flags 0x%hx", encoding_info->name, 3967 encoding_info->version?:"\b", encoding_flags); 3968 3969 sbi->s_encoding = encoding; 3970 sbi->s_encoding_flags = encoding_flags; 3971 } 3972 #endif 3973 3974 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3975 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 3976 clear_opt(sb, DIOREAD_NOLOCK); 3977 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3978 ext4_msg(sb, KERN_ERR, "can't mount with " 3979 "both data=journal and delalloc"); 3980 goto failed_mount; 3981 } 3982 if (test_opt(sb, DIOREAD_NOLOCK)) { 3983 ext4_msg(sb, KERN_ERR, "can't mount with " 3984 "both data=journal and dioread_nolock"); 3985 goto failed_mount; 3986 } 3987 if (test_opt(sb, DAX)) { 3988 ext4_msg(sb, KERN_ERR, "can't mount with " 3989 "both data=journal and dax"); 3990 goto failed_mount; 3991 } 3992 if (ext4_has_feature_encrypt(sb)) { 3993 ext4_msg(sb, KERN_WARNING, 3994 "encrypted files will use data=ordered " 3995 "instead of data journaling mode"); 3996 } 3997 if (test_opt(sb, DELALLOC)) 3998 clear_opt(sb, DELALLOC); 3999 } else { 4000 sb->s_iflags |= SB_I_CGROUPWB; 4001 } 4002 4003 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4004 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4005 4006 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4007 (ext4_has_compat_features(sb) || 4008 ext4_has_ro_compat_features(sb) || 4009 ext4_has_incompat_features(sb))) 4010 ext4_msg(sb, KERN_WARNING, 4011 "feature flags set on rev 0 fs, " 4012 "running e2fsck is recommended"); 4013 4014 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4015 set_opt2(sb, HURD_COMPAT); 4016 if (ext4_has_feature_64bit(sb)) { 4017 ext4_msg(sb, KERN_ERR, 4018 "The Hurd can't support 64-bit file systems"); 4019 goto failed_mount; 4020 } 4021 4022 /* 4023 * ea_inode feature uses l_i_version field which is not 4024 * available in HURD_COMPAT mode. 4025 */ 4026 if (ext4_has_feature_ea_inode(sb)) { 4027 ext4_msg(sb, KERN_ERR, 4028 "ea_inode feature is not supported for Hurd"); 4029 goto failed_mount; 4030 } 4031 } 4032 4033 if (IS_EXT2_SB(sb)) { 4034 if (ext2_feature_set_ok(sb)) 4035 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4036 "using the ext4 subsystem"); 4037 else { 4038 /* 4039 * If we're probing be silent, if this looks like 4040 * it's actually an ext[34] filesystem. 4041 */ 4042 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4043 goto failed_mount; 4044 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4045 "to feature incompatibilities"); 4046 goto failed_mount; 4047 } 4048 } 4049 4050 if (IS_EXT3_SB(sb)) { 4051 if (ext3_feature_set_ok(sb)) 4052 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4053 "using the ext4 subsystem"); 4054 else { 4055 /* 4056 * If we're probing be silent, if this looks like 4057 * it's actually an ext4 filesystem. 4058 */ 4059 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4060 goto failed_mount; 4061 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4062 "to feature incompatibilities"); 4063 goto failed_mount; 4064 } 4065 } 4066 4067 /* 4068 * Check feature flags regardless of the revision level, since we 4069 * previously didn't change the revision level when setting the flags, 4070 * so there is a chance incompat flags are set on a rev 0 filesystem. 4071 */ 4072 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4073 goto failed_mount; 4074 4075 if (le32_to_cpu(es->s_log_block_size) > 4076 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4077 ext4_msg(sb, KERN_ERR, 4078 "Invalid log block size: %u", 4079 le32_to_cpu(es->s_log_block_size)); 4080 goto failed_mount; 4081 } 4082 if (le32_to_cpu(es->s_log_cluster_size) > 4083 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4084 ext4_msg(sb, KERN_ERR, 4085 "Invalid log cluster size: %u", 4086 le32_to_cpu(es->s_log_cluster_size)); 4087 goto failed_mount; 4088 } 4089 4090 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4091 ext4_msg(sb, KERN_ERR, 4092 "Number of reserved GDT blocks insanely large: %d", 4093 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4094 goto failed_mount; 4095 } 4096 4097 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 4098 if (ext4_has_feature_inline_data(sb)) { 4099 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4100 " that may contain inline data"); 4101 goto failed_mount; 4102 } 4103 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 4104 ext4_msg(sb, KERN_ERR, 4105 "DAX unsupported by block device."); 4106 goto failed_mount; 4107 } 4108 } 4109 4110 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4111 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4112 es->s_encryption_level); 4113 goto failed_mount; 4114 } 4115 4116 if (sb->s_blocksize != blocksize) { 4117 /* Validate the filesystem blocksize */ 4118 if (!sb_set_blocksize(sb, blocksize)) { 4119 ext4_msg(sb, KERN_ERR, "bad block size %d", 4120 blocksize); 4121 goto failed_mount; 4122 } 4123 4124 brelse(bh); 4125 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4126 offset = do_div(logical_sb_block, blocksize); 4127 bh = sb_bread_unmovable(sb, logical_sb_block); 4128 if (!bh) { 4129 ext4_msg(sb, KERN_ERR, 4130 "Can't read superblock on 2nd try"); 4131 goto failed_mount; 4132 } 4133 es = (struct ext4_super_block *)(bh->b_data + offset); 4134 sbi->s_es = es; 4135 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4136 ext4_msg(sb, KERN_ERR, 4137 "Magic mismatch, very weird!"); 4138 goto failed_mount; 4139 } 4140 } 4141 4142 has_huge_files = ext4_has_feature_huge_file(sb); 4143 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4144 has_huge_files); 4145 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4146 4147 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4148 if (ext4_has_feature_64bit(sb)) { 4149 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4150 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4151 !is_power_of_2(sbi->s_desc_size)) { 4152 ext4_msg(sb, KERN_ERR, 4153 "unsupported descriptor size %lu", 4154 sbi->s_desc_size); 4155 goto failed_mount; 4156 } 4157 } else 4158 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4159 4160 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4161 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4162 4163 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4164 if (sbi->s_inodes_per_block == 0) 4165 goto cantfind_ext4; 4166 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4167 sbi->s_inodes_per_group > blocksize * 8) { 4168 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4169 sbi->s_inodes_per_group); 4170 goto failed_mount; 4171 } 4172 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4173 sbi->s_inodes_per_block; 4174 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4175 sbi->s_sbh = bh; 4176 sbi->s_mount_state = le16_to_cpu(es->s_state); 4177 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4178 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4179 4180 for (i = 0; i < 4; i++) 4181 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4182 sbi->s_def_hash_version = es->s_def_hash_version; 4183 if (ext4_has_feature_dir_index(sb)) { 4184 i = le32_to_cpu(es->s_flags); 4185 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4186 sbi->s_hash_unsigned = 3; 4187 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4188 #ifdef __CHAR_UNSIGNED__ 4189 if (!sb_rdonly(sb)) 4190 es->s_flags |= 4191 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4192 sbi->s_hash_unsigned = 3; 4193 #else 4194 if (!sb_rdonly(sb)) 4195 es->s_flags |= 4196 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4197 #endif 4198 } 4199 } 4200 4201 /* Handle clustersize */ 4202 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4203 has_bigalloc = ext4_has_feature_bigalloc(sb); 4204 if (has_bigalloc) { 4205 if (clustersize < blocksize) { 4206 ext4_msg(sb, KERN_ERR, 4207 "cluster size (%d) smaller than " 4208 "block size (%d)", clustersize, blocksize); 4209 goto failed_mount; 4210 } 4211 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4212 le32_to_cpu(es->s_log_block_size); 4213 sbi->s_clusters_per_group = 4214 le32_to_cpu(es->s_clusters_per_group); 4215 if (sbi->s_clusters_per_group > blocksize * 8) { 4216 ext4_msg(sb, KERN_ERR, 4217 "#clusters per group too big: %lu", 4218 sbi->s_clusters_per_group); 4219 goto failed_mount; 4220 } 4221 if (sbi->s_blocks_per_group != 4222 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4223 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4224 "clusters per group (%lu) inconsistent", 4225 sbi->s_blocks_per_group, 4226 sbi->s_clusters_per_group); 4227 goto failed_mount; 4228 } 4229 } else { 4230 if (clustersize != blocksize) { 4231 ext4_msg(sb, KERN_ERR, 4232 "fragment/cluster size (%d) != " 4233 "block size (%d)", clustersize, blocksize); 4234 goto failed_mount; 4235 } 4236 if (sbi->s_blocks_per_group > blocksize * 8) { 4237 ext4_msg(sb, KERN_ERR, 4238 "#blocks per group too big: %lu", 4239 sbi->s_blocks_per_group); 4240 goto failed_mount; 4241 } 4242 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4243 sbi->s_cluster_bits = 0; 4244 } 4245 sbi->s_cluster_ratio = clustersize / blocksize; 4246 4247 /* Do we have standard group size of clustersize * 8 blocks ? */ 4248 if (sbi->s_blocks_per_group == clustersize << 3) 4249 set_opt2(sb, STD_GROUP_SIZE); 4250 4251 /* 4252 * Test whether we have more sectors than will fit in sector_t, 4253 * and whether the max offset is addressable by the page cache. 4254 */ 4255 err = generic_check_addressable(sb->s_blocksize_bits, 4256 ext4_blocks_count(es)); 4257 if (err) { 4258 ext4_msg(sb, KERN_ERR, "filesystem" 4259 " too large to mount safely on this system"); 4260 goto failed_mount; 4261 } 4262 4263 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4264 goto cantfind_ext4; 4265 4266 /* check blocks count against device size */ 4267 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4268 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4269 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4270 "exceeds size of device (%llu blocks)", 4271 ext4_blocks_count(es), blocks_count); 4272 goto failed_mount; 4273 } 4274 4275 /* 4276 * It makes no sense for the first data block to be beyond the end 4277 * of the filesystem. 4278 */ 4279 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4280 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4281 "block %u is beyond end of filesystem (%llu)", 4282 le32_to_cpu(es->s_first_data_block), 4283 ext4_blocks_count(es)); 4284 goto failed_mount; 4285 } 4286 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4287 (sbi->s_cluster_ratio == 1)) { 4288 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4289 "block is 0 with a 1k block and cluster size"); 4290 goto failed_mount; 4291 } 4292 4293 blocks_count = (ext4_blocks_count(es) - 4294 le32_to_cpu(es->s_first_data_block) + 4295 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4296 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4297 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4298 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4299 "(block count %llu, first data block %u, " 4300 "blocks per group %lu)", blocks_count, 4301 ext4_blocks_count(es), 4302 le32_to_cpu(es->s_first_data_block), 4303 EXT4_BLOCKS_PER_GROUP(sb)); 4304 goto failed_mount; 4305 } 4306 sbi->s_groups_count = blocks_count; 4307 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4308 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4309 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4310 le32_to_cpu(es->s_inodes_count)) { 4311 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4312 le32_to_cpu(es->s_inodes_count), 4313 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4314 ret = -EINVAL; 4315 goto failed_mount; 4316 } 4317 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4318 EXT4_DESC_PER_BLOCK(sb); 4319 if (ext4_has_feature_meta_bg(sb)) { 4320 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4321 ext4_msg(sb, KERN_WARNING, 4322 "first meta block group too large: %u " 4323 "(group descriptor block count %u)", 4324 le32_to_cpu(es->s_first_meta_bg), db_count); 4325 goto failed_mount; 4326 } 4327 } 4328 rcu_assign_pointer(sbi->s_group_desc, 4329 kvmalloc_array(db_count, 4330 sizeof(struct buffer_head *), 4331 GFP_KERNEL)); 4332 if (sbi->s_group_desc == NULL) { 4333 ext4_msg(sb, KERN_ERR, "not enough memory"); 4334 ret = -ENOMEM; 4335 goto failed_mount; 4336 } 4337 4338 bgl_lock_init(sbi->s_blockgroup_lock); 4339 4340 /* Pre-read the descriptors into the buffer cache */ 4341 for (i = 0; i < db_count; i++) { 4342 block = descriptor_loc(sb, logical_sb_block, i); 4343 sb_breadahead(sb, block); 4344 } 4345 4346 for (i = 0; i < db_count; i++) { 4347 struct buffer_head *bh; 4348 4349 block = descriptor_loc(sb, logical_sb_block, i); 4350 bh = sb_bread_unmovable(sb, block); 4351 if (!bh) { 4352 ext4_msg(sb, KERN_ERR, 4353 "can't read group descriptor %d", i); 4354 db_count = i; 4355 goto failed_mount2; 4356 } 4357 rcu_read_lock(); 4358 rcu_dereference(sbi->s_group_desc)[i] = bh; 4359 rcu_read_unlock(); 4360 } 4361 sbi->s_gdb_count = db_count; 4362 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4363 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4364 ret = -EFSCORRUPTED; 4365 goto failed_mount2; 4366 } 4367 4368 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4369 4370 /* Register extent status tree shrinker */ 4371 if (ext4_es_register_shrinker(sbi)) 4372 goto failed_mount3; 4373 4374 sbi->s_stripe = ext4_get_stripe_size(sbi); 4375 sbi->s_extent_max_zeroout_kb = 32; 4376 4377 /* 4378 * set up enough so that it can read an inode 4379 */ 4380 sb->s_op = &ext4_sops; 4381 sb->s_export_op = &ext4_export_ops; 4382 sb->s_xattr = ext4_xattr_handlers; 4383 #ifdef CONFIG_FS_ENCRYPTION 4384 sb->s_cop = &ext4_cryptops; 4385 #endif 4386 #ifdef CONFIG_FS_VERITY 4387 sb->s_vop = &ext4_verityops; 4388 #endif 4389 #ifdef CONFIG_QUOTA 4390 sb->dq_op = &ext4_quota_operations; 4391 if (ext4_has_feature_quota(sb)) 4392 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4393 else 4394 sb->s_qcop = &ext4_qctl_operations; 4395 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4396 #endif 4397 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4398 4399 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4400 mutex_init(&sbi->s_orphan_lock); 4401 4402 sb->s_root = NULL; 4403 4404 needs_recovery = (es->s_last_orphan != 0 || 4405 ext4_has_feature_journal_needs_recovery(sb)); 4406 4407 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4408 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4409 goto failed_mount3a; 4410 4411 /* 4412 * The first inode we look at is the journal inode. Don't try 4413 * root first: it may be modified in the journal! 4414 */ 4415 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4416 err = ext4_load_journal(sb, es, journal_devnum); 4417 if (err) 4418 goto failed_mount3a; 4419 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4420 ext4_has_feature_journal_needs_recovery(sb)) { 4421 ext4_msg(sb, KERN_ERR, "required journal recovery " 4422 "suppressed and not mounted read-only"); 4423 goto failed_mount_wq; 4424 } else { 4425 /* Nojournal mode, all journal mount options are illegal */ 4426 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4427 ext4_msg(sb, KERN_ERR, "can't mount with " 4428 "journal_checksum, fs mounted w/o journal"); 4429 goto failed_mount_wq; 4430 } 4431 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4432 ext4_msg(sb, KERN_ERR, "can't mount with " 4433 "journal_async_commit, fs mounted w/o journal"); 4434 goto failed_mount_wq; 4435 } 4436 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4437 ext4_msg(sb, KERN_ERR, "can't mount with " 4438 "commit=%lu, fs mounted w/o journal", 4439 sbi->s_commit_interval / HZ); 4440 goto failed_mount_wq; 4441 } 4442 if (EXT4_MOUNT_DATA_FLAGS & 4443 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4444 ext4_msg(sb, KERN_ERR, "can't mount with " 4445 "data=, fs mounted w/o journal"); 4446 goto failed_mount_wq; 4447 } 4448 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4449 clear_opt(sb, JOURNAL_CHECKSUM); 4450 clear_opt(sb, DATA_FLAGS); 4451 sbi->s_journal = NULL; 4452 needs_recovery = 0; 4453 goto no_journal; 4454 } 4455 4456 if (ext4_has_feature_64bit(sb) && 4457 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4458 JBD2_FEATURE_INCOMPAT_64BIT)) { 4459 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4460 goto failed_mount_wq; 4461 } 4462 4463 if (!set_journal_csum_feature_set(sb)) { 4464 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4465 "feature set"); 4466 goto failed_mount_wq; 4467 } 4468 4469 /* We have now updated the journal if required, so we can 4470 * validate the data journaling mode. */ 4471 switch (test_opt(sb, DATA_FLAGS)) { 4472 case 0: 4473 /* No mode set, assume a default based on the journal 4474 * capabilities: ORDERED_DATA if the journal can 4475 * cope, else JOURNAL_DATA 4476 */ 4477 if (jbd2_journal_check_available_features 4478 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4479 set_opt(sb, ORDERED_DATA); 4480 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4481 } else { 4482 set_opt(sb, JOURNAL_DATA); 4483 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4484 } 4485 break; 4486 4487 case EXT4_MOUNT_ORDERED_DATA: 4488 case EXT4_MOUNT_WRITEBACK_DATA: 4489 if (!jbd2_journal_check_available_features 4490 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4491 ext4_msg(sb, KERN_ERR, "Journal does not support " 4492 "requested data journaling mode"); 4493 goto failed_mount_wq; 4494 } 4495 default: 4496 break; 4497 } 4498 4499 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4500 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4501 ext4_msg(sb, KERN_ERR, "can't mount with " 4502 "journal_async_commit in data=ordered mode"); 4503 goto failed_mount_wq; 4504 } 4505 4506 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4507 4508 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4509 4510 no_journal: 4511 if (!test_opt(sb, NO_MBCACHE)) { 4512 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4513 if (!sbi->s_ea_block_cache) { 4514 ext4_msg(sb, KERN_ERR, 4515 "Failed to create ea_block_cache"); 4516 goto failed_mount_wq; 4517 } 4518 4519 if (ext4_has_feature_ea_inode(sb)) { 4520 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4521 if (!sbi->s_ea_inode_cache) { 4522 ext4_msg(sb, KERN_ERR, 4523 "Failed to create ea_inode_cache"); 4524 goto failed_mount_wq; 4525 } 4526 } 4527 } 4528 4529 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4530 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4531 goto failed_mount_wq; 4532 } 4533 4534 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4535 !ext4_has_feature_encrypt(sb)) { 4536 ext4_set_feature_encrypt(sb); 4537 ext4_commit_super(sb, 1); 4538 } 4539 4540 /* 4541 * Get the # of file system overhead blocks from the 4542 * superblock if present. 4543 */ 4544 if (es->s_overhead_clusters) 4545 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4546 else { 4547 err = ext4_calculate_overhead(sb); 4548 if (err) 4549 goto failed_mount_wq; 4550 } 4551 4552 /* 4553 * The maximum number of concurrent works can be high and 4554 * concurrency isn't really necessary. Limit it to 1. 4555 */ 4556 EXT4_SB(sb)->rsv_conversion_wq = 4557 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4558 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4559 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4560 ret = -ENOMEM; 4561 goto failed_mount4; 4562 } 4563 4564 /* 4565 * The jbd2_journal_load will have done any necessary log recovery, 4566 * so we can safely mount the rest of the filesystem now. 4567 */ 4568 4569 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4570 if (IS_ERR(root)) { 4571 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4572 ret = PTR_ERR(root); 4573 root = NULL; 4574 goto failed_mount4; 4575 } 4576 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4577 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4578 iput(root); 4579 goto failed_mount4; 4580 } 4581 4582 #ifdef CONFIG_UNICODE 4583 if (sbi->s_encoding) 4584 sb->s_d_op = &ext4_dentry_ops; 4585 #endif 4586 4587 sb->s_root = d_make_root(root); 4588 if (!sb->s_root) { 4589 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4590 ret = -ENOMEM; 4591 goto failed_mount4; 4592 } 4593 4594 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4595 if (ret == -EROFS) { 4596 sb->s_flags |= SB_RDONLY; 4597 ret = 0; 4598 } else if (ret) 4599 goto failed_mount4a; 4600 4601 ext4_set_resv_clusters(sb); 4602 4603 err = ext4_setup_system_zone(sb); 4604 if (err) { 4605 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4606 "zone (%d)", err); 4607 goto failed_mount4a; 4608 } 4609 4610 ext4_ext_init(sb); 4611 err = ext4_mb_init(sb); 4612 if (err) { 4613 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4614 err); 4615 goto failed_mount5; 4616 } 4617 4618 block = ext4_count_free_clusters(sb); 4619 ext4_free_blocks_count_set(sbi->s_es, 4620 EXT4_C2B(sbi, block)); 4621 ext4_superblock_csum_set(sb); 4622 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4623 GFP_KERNEL); 4624 if (!err) { 4625 unsigned long freei = ext4_count_free_inodes(sb); 4626 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4627 ext4_superblock_csum_set(sb); 4628 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4629 GFP_KERNEL); 4630 } 4631 if (!err) 4632 err = percpu_counter_init(&sbi->s_dirs_counter, 4633 ext4_count_dirs(sb), GFP_KERNEL); 4634 if (!err) 4635 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4636 GFP_KERNEL); 4637 if (!err) 4638 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4639 4640 if (err) { 4641 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4642 goto failed_mount6; 4643 } 4644 4645 if (ext4_has_feature_flex_bg(sb)) 4646 if (!ext4_fill_flex_info(sb)) { 4647 ext4_msg(sb, KERN_ERR, 4648 "unable to initialize " 4649 "flex_bg meta info!"); 4650 goto failed_mount6; 4651 } 4652 4653 err = ext4_register_li_request(sb, first_not_zeroed); 4654 if (err) 4655 goto failed_mount6; 4656 4657 err = ext4_register_sysfs(sb); 4658 if (err) 4659 goto failed_mount7; 4660 4661 #ifdef CONFIG_QUOTA 4662 /* Enable quota usage during mount. */ 4663 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4664 err = ext4_enable_quotas(sb); 4665 if (err) 4666 goto failed_mount8; 4667 } 4668 #endif /* CONFIG_QUOTA */ 4669 4670 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4671 ext4_orphan_cleanup(sb, es); 4672 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4673 if (needs_recovery) { 4674 ext4_msg(sb, KERN_INFO, "recovery complete"); 4675 ext4_mark_recovery_complete(sb, es); 4676 } 4677 if (EXT4_SB(sb)->s_journal) { 4678 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4679 descr = " journalled data mode"; 4680 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4681 descr = " ordered data mode"; 4682 else 4683 descr = " writeback data mode"; 4684 } else 4685 descr = "out journal"; 4686 4687 if (test_opt(sb, DISCARD)) { 4688 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4689 if (!blk_queue_discard(q)) 4690 ext4_msg(sb, KERN_WARNING, 4691 "mounting with \"discard\" option, but " 4692 "the device does not support discard"); 4693 } 4694 4695 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4696 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4697 "Opts: %.*s%s%s", descr, 4698 (int) sizeof(sbi->s_es->s_mount_opts), 4699 sbi->s_es->s_mount_opts, 4700 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4701 4702 if (es->s_error_count) 4703 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4704 4705 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4706 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4707 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4708 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4709 4710 kfree(orig_data); 4711 return 0; 4712 4713 cantfind_ext4: 4714 if (!silent) 4715 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4716 goto failed_mount; 4717 4718 #ifdef CONFIG_QUOTA 4719 failed_mount8: 4720 ext4_unregister_sysfs(sb); 4721 #endif 4722 failed_mount7: 4723 ext4_unregister_li_request(sb); 4724 failed_mount6: 4725 ext4_mb_release(sb); 4726 rcu_read_lock(); 4727 flex_groups = rcu_dereference(sbi->s_flex_groups); 4728 if (flex_groups) { 4729 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 4730 kvfree(flex_groups[i]); 4731 kvfree(flex_groups); 4732 } 4733 rcu_read_unlock(); 4734 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4735 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4736 percpu_counter_destroy(&sbi->s_dirs_counter); 4737 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4738 percpu_free_rwsem(&sbi->s_writepages_rwsem); 4739 failed_mount5: 4740 ext4_ext_release(sb); 4741 ext4_release_system_zone(sb); 4742 failed_mount4a: 4743 dput(sb->s_root); 4744 sb->s_root = NULL; 4745 failed_mount4: 4746 ext4_msg(sb, KERN_ERR, "mount failed"); 4747 if (EXT4_SB(sb)->rsv_conversion_wq) 4748 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4749 failed_mount_wq: 4750 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4751 sbi->s_ea_inode_cache = NULL; 4752 4753 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4754 sbi->s_ea_block_cache = NULL; 4755 4756 if (sbi->s_journal) { 4757 jbd2_journal_destroy(sbi->s_journal); 4758 sbi->s_journal = NULL; 4759 } 4760 failed_mount3a: 4761 ext4_es_unregister_shrinker(sbi); 4762 failed_mount3: 4763 del_timer_sync(&sbi->s_err_report); 4764 if (sbi->s_mmp_tsk) 4765 kthread_stop(sbi->s_mmp_tsk); 4766 failed_mount2: 4767 rcu_read_lock(); 4768 group_desc = rcu_dereference(sbi->s_group_desc); 4769 for (i = 0; i < db_count; i++) 4770 brelse(group_desc[i]); 4771 kvfree(group_desc); 4772 rcu_read_unlock(); 4773 failed_mount: 4774 if (sbi->s_chksum_driver) 4775 crypto_free_shash(sbi->s_chksum_driver); 4776 4777 #ifdef CONFIG_UNICODE 4778 utf8_unload(sbi->s_encoding); 4779 #endif 4780 4781 #ifdef CONFIG_QUOTA 4782 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4783 kfree(get_qf_name(sb, sbi, i)); 4784 #endif 4785 ext4_blkdev_remove(sbi); 4786 brelse(bh); 4787 out_fail: 4788 sb->s_fs_info = NULL; 4789 kfree(sbi->s_blockgroup_lock); 4790 out_free_base: 4791 kfree(sbi); 4792 kfree(orig_data); 4793 fs_put_dax(dax_dev); 4794 return err ? err : ret; 4795 } 4796 4797 /* 4798 * Setup any per-fs journal parameters now. We'll do this both on 4799 * initial mount, once the journal has been initialised but before we've 4800 * done any recovery; and again on any subsequent remount. 4801 */ 4802 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4803 { 4804 struct ext4_sb_info *sbi = EXT4_SB(sb); 4805 4806 journal->j_commit_interval = sbi->s_commit_interval; 4807 journal->j_min_batch_time = sbi->s_min_batch_time; 4808 journal->j_max_batch_time = sbi->s_max_batch_time; 4809 4810 write_lock(&journal->j_state_lock); 4811 if (test_opt(sb, BARRIER)) 4812 journal->j_flags |= JBD2_BARRIER; 4813 else 4814 journal->j_flags &= ~JBD2_BARRIER; 4815 if (test_opt(sb, DATA_ERR_ABORT)) 4816 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4817 else 4818 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4819 write_unlock(&journal->j_state_lock); 4820 } 4821 4822 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4823 unsigned int journal_inum) 4824 { 4825 struct inode *journal_inode; 4826 4827 /* 4828 * Test for the existence of a valid inode on disk. Bad things 4829 * happen if we iget() an unused inode, as the subsequent iput() 4830 * will try to delete it. 4831 */ 4832 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4833 if (IS_ERR(journal_inode)) { 4834 ext4_msg(sb, KERN_ERR, "no journal found"); 4835 return NULL; 4836 } 4837 if (!journal_inode->i_nlink) { 4838 make_bad_inode(journal_inode); 4839 iput(journal_inode); 4840 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4841 return NULL; 4842 } 4843 4844 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4845 journal_inode, journal_inode->i_size); 4846 if (!S_ISREG(journal_inode->i_mode)) { 4847 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4848 iput(journal_inode); 4849 return NULL; 4850 } 4851 return journal_inode; 4852 } 4853 4854 static journal_t *ext4_get_journal(struct super_block *sb, 4855 unsigned int journal_inum) 4856 { 4857 struct inode *journal_inode; 4858 journal_t *journal; 4859 4860 BUG_ON(!ext4_has_feature_journal(sb)); 4861 4862 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4863 if (!journal_inode) 4864 return NULL; 4865 4866 journal = jbd2_journal_init_inode(journal_inode); 4867 if (!journal) { 4868 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4869 iput(journal_inode); 4870 return NULL; 4871 } 4872 journal->j_private = sb; 4873 ext4_init_journal_params(sb, journal); 4874 return journal; 4875 } 4876 4877 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4878 dev_t j_dev) 4879 { 4880 struct buffer_head *bh; 4881 journal_t *journal; 4882 ext4_fsblk_t start; 4883 ext4_fsblk_t len; 4884 int hblock, blocksize; 4885 ext4_fsblk_t sb_block; 4886 unsigned long offset; 4887 struct ext4_super_block *es; 4888 struct block_device *bdev; 4889 4890 BUG_ON(!ext4_has_feature_journal(sb)); 4891 4892 bdev = ext4_blkdev_get(j_dev, sb); 4893 if (bdev == NULL) 4894 return NULL; 4895 4896 blocksize = sb->s_blocksize; 4897 hblock = bdev_logical_block_size(bdev); 4898 if (blocksize < hblock) { 4899 ext4_msg(sb, KERN_ERR, 4900 "blocksize too small for journal device"); 4901 goto out_bdev; 4902 } 4903 4904 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4905 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4906 set_blocksize(bdev, blocksize); 4907 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4908 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4909 "external journal"); 4910 goto out_bdev; 4911 } 4912 4913 es = (struct ext4_super_block *) (bh->b_data + offset); 4914 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4915 !(le32_to_cpu(es->s_feature_incompat) & 4916 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4917 ext4_msg(sb, KERN_ERR, "external journal has " 4918 "bad superblock"); 4919 brelse(bh); 4920 goto out_bdev; 4921 } 4922 4923 if ((le32_to_cpu(es->s_feature_ro_compat) & 4924 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4925 es->s_checksum != ext4_superblock_csum(sb, es)) { 4926 ext4_msg(sb, KERN_ERR, "external journal has " 4927 "corrupt superblock"); 4928 brelse(bh); 4929 goto out_bdev; 4930 } 4931 4932 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4933 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4934 brelse(bh); 4935 goto out_bdev; 4936 } 4937 4938 len = ext4_blocks_count(es); 4939 start = sb_block + 1; 4940 brelse(bh); /* we're done with the superblock */ 4941 4942 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4943 start, len, blocksize); 4944 if (!journal) { 4945 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4946 goto out_bdev; 4947 } 4948 journal->j_private = sb; 4949 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4950 wait_on_buffer(journal->j_sb_buffer); 4951 if (!buffer_uptodate(journal->j_sb_buffer)) { 4952 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4953 goto out_journal; 4954 } 4955 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4956 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4957 "user (unsupported) - %d", 4958 be32_to_cpu(journal->j_superblock->s_nr_users)); 4959 goto out_journal; 4960 } 4961 EXT4_SB(sb)->journal_bdev = bdev; 4962 ext4_init_journal_params(sb, journal); 4963 return journal; 4964 4965 out_journal: 4966 jbd2_journal_destroy(journal); 4967 out_bdev: 4968 ext4_blkdev_put(bdev); 4969 return NULL; 4970 } 4971 4972 static int ext4_load_journal(struct super_block *sb, 4973 struct ext4_super_block *es, 4974 unsigned long journal_devnum) 4975 { 4976 journal_t *journal; 4977 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4978 dev_t journal_dev; 4979 int err = 0; 4980 int really_read_only; 4981 4982 BUG_ON(!ext4_has_feature_journal(sb)); 4983 4984 if (journal_devnum && 4985 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4986 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4987 "numbers have changed"); 4988 journal_dev = new_decode_dev(journal_devnum); 4989 } else 4990 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4991 4992 really_read_only = bdev_read_only(sb->s_bdev); 4993 4994 /* 4995 * Are we loading a blank journal or performing recovery after a 4996 * crash? For recovery, we need to check in advance whether we 4997 * can get read-write access to the device. 4998 */ 4999 if (ext4_has_feature_journal_needs_recovery(sb)) { 5000 if (sb_rdonly(sb)) { 5001 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5002 "required on readonly filesystem"); 5003 if (really_read_only) { 5004 ext4_msg(sb, KERN_ERR, "write access " 5005 "unavailable, cannot proceed " 5006 "(try mounting with noload)"); 5007 return -EROFS; 5008 } 5009 ext4_msg(sb, KERN_INFO, "write access will " 5010 "be enabled during recovery"); 5011 } 5012 } 5013 5014 if (journal_inum && journal_dev) { 5015 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 5016 "and inode journals!"); 5017 return -EINVAL; 5018 } 5019 5020 if (journal_inum) { 5021 if (!(journal = ext4_get_journal(sb, journal_inum))) 5022 return -EINVAL; 5023 } else { 5024 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 5025 return -EINVAL; 5026 } 5027 5028 if (!(journal->j_flags & JBD2_BARRIER)) 5029 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5030 5031 if (!ext4_has_feature_journal_needs_recovery(sb)) 5032 err = jbd2_journal_wipe(journal, !really_read_only); 5033 if (!err) { 5034 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5035 if (save) 5036 memcpy(save, ((char *) es) + 5037 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5038 err = jbd2_journal_load(journal); 5039 if (save) 5040 memcpy(((char *) es) + EXT4_S_ERR_START, 5041 save, EXT4_S_ERR_LEN); 5042 kfree(save); 5043 } 5044 5045 if (err) { 5046 ext4_msg(sb, KERN_ERR, "error loading journal"); 5047 jbd2_journal_destroy(journal); 5048 return err; 5049 } 5050 5051 EXT4_SB(sb)->s_journal = journal; 5052 ext4_clear_journal_err(sb, es); 5053 5054 if (!really_read_only && journal_devnum && 5055 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5056 es->s_journal_dev = cpu_to_le32(journal_devnum); 5057 5058 /* Make sure we flush the recovery flag to disk. */ 5059 ext4_commit_super(sb, 1); 5060 } 5061 5062 return 0; 5063 } 5064 5065 static int ext4_commit_super(struct super_block *sb, int sync) 5066 { 5067 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5068 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5069 int error = 0; 5070 5071 if (!sbh || block_device_ejected(sb)) 5072 return error; 5073 5074 /* 5075 * The superblock bh should be mapped, but it might not be if the 5076 * device was hot-removed. Not much we can do but fail the I/O. 5077 */ 5078 if (!buffer_mapped(sbh)) 5079 return error; 5080 5081 /* 5082 * If the file system is mounted read-only, don't update the 5083 * superblock write time. This avoids updating the superblock 5084 * write time when we are mounting the root file system 5085 * read/only but we need to replay the journal; at that point, 5086 * for people who are east of GMT and who make their clock 5087 * tick in localtime for Windows bug-for-bug compatibility, 5088 * the clock is set in the future, and this will cause e2fsck 5089 * to complain and force a full file system check. 5090 */ 5091 if (!(sb->s_flags & SB_RDONLY)) 5092 ext4_update_tstamp(es, s_wtime); 5093 if (sb->s_bdev->bd_part) 5094 es->s_kbytes_written = 5095 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5096 ((part_stat_read(sb->s_bdev->bd_part, 5097 sectors[STAT_WRITE]) - 5098 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5099 else 5100 es->s_kbytes_written = 5101 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5102 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5103 ext4_free_blocks_count_set(es, 5104 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5105 &EXT4_SB(sb)->s_freeclusters_counter))); 5106 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5107 es->s_free_inodes_count = 5108 cpu_to_le32(percpu_counter_sum_positive( 5109 &EXT4_SB(sb)->s_freeinodes_counter)); 5110 BUFFER_TRACE(sbh, "marking dirty"); 5111 ext4_superblock_csum_set(sb); 5112 if (sync) 5113 lock_buffer(sbh); 5114 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5115 /* 5116 * Oh, dear. A previous attempt to write the 5117 * superblock failed. This could happen because the 5118 * USB device was yanked out. Or it could happen to 5119 * be a transient write error and maybe the block will 5120 * be remapped. Nothing we can do but to retry the 5121 * write and hope for the best. 5122 */ 5123 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5124 "superblock detected"); 5125 clear_buffer_write_io_error(sbh); 5126 set_buffer_uptodate(sbh); 5127 } 5128 mark_buffer_dirty(sbh); 5129 if (sync) { 5130 unlock_buffer(sbh); 5131 error = __sync_dirty_buffer(sbh, 5132 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5133 if (buffer_write_io_error(sbh)) { 5134 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5135 "superblock"); 5136 clear_buffer_write_io_error(sbh); 5137 set_buffer_uptodate(sbh); 5138 } 5139 } 5140 return error; 5141 } 5142 5143 /* 5144 * Have we just finished recovery? If so, and if we are mounting (or 5145 * remounting) the filesystem readonly, then we will end up with a 5146 * consistent fs on disk. Record that fact. 5147 */ 5148 static void ext4_mark_recovery_complete(struct super_block *sb, 5149 struct ext4_super_block *es) 5150 { 5151 journal_t *journal = EXT4_SB(sb)->s_journal; 5152 5153 if (!ext4_has_feature_journal(sb)) { 5154 BUG_ON(journal != NULL); 5155 return; 5156 } 5157 jbd2_journal_lock_updates(journal); 5158 if (jbd2_journal_flush(journal) < 0) 5159 goto out; 5160 5161 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5162 ext4_clear_feature_journal_needs_recovery(sb); 5163 ext4_commit_super(sb, 1); 5164 } 5165 5166 out: 5167 jbd2_journal_unlock_updates(journal); 5168 } 5169 5170 /* 5171 * If we are mounting (or read-write remounting) a filesystem whose journal 5172 * has recorded an error from a previous lifetime, move that error to the 5173 * main filesystem now. 5174 */ 5175 static void ext4_clear_journal_err(struct super_block *sb, 5176 struct ext4_super_block *es) 5177 { 5178 journal_t *journal; 5179 int j_errno; 5180 const char *errstr; 5181 5182 BUG_ON(!ext4_has_feature_journal(sb)); 5183 5184 journal = EXT4_SB(sb)->s_journal; 5185 5186 /* 5187 * Now check for any error status which may have been recorded in the 5188 * journal by a prior ext4_error() or ext4_abort() 5189 */ 5190 5191 j_errno = jbd2_journal_errno(journal); 5192 if (j_errno) { 5193 char nbuf[16]; 5194 5195 errstr = ext4_decode_error(sb, j_errno, nbuf); 5196 ext4_warning(sb, "Filesystem error recorded " 5197 "from previous mount: %s", errstr); 5198 ext4_warning(sb, "Marking fs in need of filesystem check."); 5199 5200 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5201 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5202 ext4_commit_super(sb, 1); 5203 5204 jbd2_journal_clear_err(journal); 5205 jbd2_journal_update_sb_errno(journal); 5206 } 5207 } 5208 5209 /* 5210 * Force the running and committing transactions to commit, 5211 * and wait on the commit. 5212 */ 5213 int ext4_force_commit(struct super_block *sb) 5214 { 5215 journal_t *journal; 5216 5217 if (sb_rdonly(sb)) 5218 return 0; 5219 5220 journal = EXT4_SB(sb)->s_journal; 5221 return ext4_journal_force_commit(journal); 5222 } 5223 5224 static int ext4_sync_fs(struct super_block *sb, int wait) 5225 { 5226 int ret = 0; 5227 tid_t target; 5228 bool needs_barrier = false; 5229 struct ext4_sb_info *sbi = EXT4_SB(sb); 5230 5231 if (unlikely(ext4_forced_shutdown(sbi))) 5232 return 0; 5233 5234 trace_ext4_sync_fs(sb, wait); 5235 flush_workqueue(sbi->rsv_conversion_wq); 5236 /* 5237 * Writeback quota in non-journalled quota case - journalled quota has 5238 * no dirty dquots 5239 */ 5240 dquot_writeback_dquots(sb, -1); 5241 /* 5242 * Data writeback is possible w/o journal transaction, so barrier must 5243 * being sent at the end of the function. But we can skip it if 5244 * transaction_commit will do it for us. 5245 */ 5246 if (sbi->s_journal) { 5247 target = jbd2_get_latest_transaction(sbi->s_journal); 5248 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5249 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5250 needs_barrier = true; 5251 5252 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5253 if (wait) 5254 ret = jbd2_log_wait_commit(sbi->s_journal, 5255 target); 5256 } 5257 } else if (wait && test_opt(sb, BARRIER)) 5258 needs_barrier = true; 5259 if (needs_barrier) { 5260 int err; 5261 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5262 if (!ret) 5263 ret = err; 5264 } 5265 5266 return ret; 5267 } 5268 5269 /* 5270 * LVM calls this function before a (read-only) snapshot is created. This 5271 * gives us a chance to flush the journal completely and mark the fs clean. 5272 * 5273 * Note that only this function cannot bring a filesystem to be in a clean 5274 * state independently. It relies on upper layer to stop all data & metadata 5275 * modifications. 5276 */ 5277 static int ext4_freeze(struct super_block *sb) 5278 { 5279 int error = 0; 5280 journal_t *journal; 5281 5282 if (sb_rdonly(sb)) 5283 return 0; 5284 5285 journal = EXT4_SB(sb)->s_journal; 5286 5287 if (journal) { 5288 /* Now we set up the journal barrier. */ 5289 jbd2_journal_lock_updates(journal); 5290 5291 /* 5292 * Don't clear the needs_recovery flag if we failed to 5293 * flush the journal. 5294 */ 5295 error = jbd2_journal_flush(journal); 5296 if (error < 0) 5297 goto out; 5298 5299 /* Journal blocked and flushed, clear needs_recovery flag. */ 5300 ext4_clear_feature_journal_needs_recovery(sb); 5301 } 5302 5303 error = ext4_commit_super(sb, 1); 5304 out: 5305 if (journal) 5306 /* we rely on upper layer to stop further updates */ 5307 jbd2_journal_unlock_updates(journal); 5308 return error; 5309 } 5310 5311 /* 5312 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5313 * flag here, even though the filesystem is not technically dirty yet. 5314 */ 5315 static int ext4_unfreeze(struct super_block *sb) 5316 { 5317 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5318 return 0; 5319 5320 if (EXT4_SB(sb)->s_journal) { 5321 /* Reset the needs_recovery flag before the fs is unlocked. */ 5322 ext4_set_feature_journal_needs_recovery(sb); 5323 } 5324 5325 ext4_commit_super(sb, 1); 5326 return 0; 5327 } 5328 5329 /* 5330 * Structure to save mount options for ext4_remount's benefit 5331 */ 5332 struct ext4_mount_options { 5333 unsigned long s_mount_opt; 5334 unsigned long s_mount_opt2; 5335 kuid_t s_resuid; 5336 kgid_t s_resgid; 5337 unsigned long s_commit_interval; 5338 u32 s_min_batch_time, s_max_batch_time; 5339 #ifdef CONFIG_QUOTA 5340 int s_jquota_fmt; 5341 char *s_qf_names[EXT4_MAXQUOTAS]; 5342 #endif 5343 }; 5344 5345 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5346 { 5347 struct ext4_super_block *es; 5348 struct ext4_sb_info *sbi = EXT4_SB(sb); 5349 unsigned long old_sb_flags; 5350 struct ext4_mount_options old_opts; 5351 int enable_quota = 0; 5352 ext4_group_t g; 5353 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5354 int err = 0; 5355 #ifdef CONFIG_QUOTA 5356 int i, j; 5357 char *to_free[EXT4_MAXQUOTAS]; 5358 #endif 5359 char *orig_data = kstrdup(data, GFP_KERNEL); 5360 5361 if (data && !orig_data) 5362 return -ENOMEM; 5363 5364 /* Store the original options */ 5365 old_sb_flags = sb->s_flags; 5366 old_opts.s_mount_opt = sbi->s_mount_opt; 5367 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5368 old_opts.s_resuid = sbi->s_resuid; 5369 old_opts.s_resgid = sbi->s_resgid; 5370 old_opts.s_commit_interval = sbi->s_commit_interval; 5371 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5372 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5373 #ifdef CONFIG_QUOTA 5374 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5375 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5376 if (sbi->s_qf_names[i]) { 5377 char *qf_name = get_qf_name(sb, sbi, i); 5378 5379 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5380 if (!old_opts.s_qf_names[i]) { 5381 for (j = 0; j < i; j++) 5382 kfree(old_opts.s_qf_names[j]); 5383 kfree(orig_data); 5384 return -ENOMEM; 5385 } 5386 } else 5387 old_opts.s_qf_names[i] = NULL; 5388 #endif 5389 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5390 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5391 5392 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5393 err = -EINVAL; 5394 goto restore_opts; 5395 } 5396 5397 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5398 test_opt(sb, JOURNAL_CHECKSUM)) { 5399 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5400 "during remount not supported; ignoring"); 5401 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5402 } 5403 5404 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5405 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5406 ext4_msg(sb, KERN_ERR, "can't mount with " 5407 "both data=journal and delalloc"); 5408 err = -EINVAL; 5409 goto restore_opts; 5410 } 5411 if (test_opt(sb, DIOREAD_NOLOCK)) { 5412 ext4_msg(sb, KERN_ERR, "can't mount with " 5413 "both data=journal and dioread_nolock"); 5414 err = -EINVAL; 5415 goto restore_opts; 5416 } 5417 if (test_opt(sb, DAX)) { 5418 ext4_msg(sb, KERN_ERR, "can't mount with " 5419 "both data=journal and dax"); 5420 err = -EINVAL; 5421 goto restore_opts; 5422 } 5423 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5424 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5425 ext4_msg(sb, KERN_ERR, "can't mount with " 5426 "journal_async_commit in data=ordered mode"); 5427 err = -EINVAL; 5428 goto restore_opts; 5429 } 5430 } 5431 5432 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5433 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5434 err = -EINVAL; 5435 goto restore_opts; 5436 } 5437 5438 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5439 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5440 "dax flag with busy inodes while remounting"); 5441 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5442 } 5443 5444 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5445 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5446 5447 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5448 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5449 5450 es = sbi->s_es; 5451 5452 if (sbi->s_journal) { 5453 ext4_init_journal_params(sb, sbi->s_journal); 5454 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5455 } 5456 5457 if (*flags & SB_LAZYTIME) 5458 sb->s_flags |= SB_LAZYTIME; 5459 5460 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5461 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5462 err = -EROFS; 5463 goto restore_opts; 5464 } 5465 5466 if (*flags & SB_RDONLY) { 5467 err = sync_filesystem(sb); 5468 if (err < 0) 5469 goto restore_opts; 5470 err = dquot_suspend(sb, -1); 5471 if (err < 0) 5472 goto restore_opts; 5473 5474 /* 5475 * First of all, the unconditional stuff we have to do 5476 * to disable replay of the journal when we next remount 5477 */ 5478 sb->s_flags |= SB_RDONLY; 5479 5480 /* 5481 * OK, test if we are remounting a valid rw partition 5482 * readonly, and if so set the rdonly flag and then 5483 * mark the partition as valid again. 5484 */ 5485 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5486 (sbi->s_mount_state & EXT4_VALID_FS)) 5487 es->s_state = cpu_to_le16(sbi->s_mount_state); 5488 5489 if (sbi->s_journal) 5490 ext4_mark_recovery_complete(sb, es); 5491 if (sbi->s_mmp_tsk) 5492 kthread_stop(sbi->s_mmp_tsk); 5493 } else { 5494 /* Make sure we can mount this feature set readwrite */ 5495 if (ext4_has_feature_readonly(sb) || 5496 !ext4_feature_set_ok(sb, 0)) { 5497 err = -EROFS; 5498 goto restore_opts; 5499 } 5500 /* 5501 * Make sure the group descriptor checksums 5502 * are sane. If they aren't, refuse to remount r/w. 5503 */ 5504 for (g = 0; g < sbi->s_groups_count; g++) { 5505 struct ext4_group_desc *gdp = 5506 ext4_get_group_desc(sb, g, NULL); 5507 5508 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5509 ext4_msg(sb, KERN_ERR, 5510 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5511 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5512 le16_to_cpu(gdp->bg_checksum)); 5513 err = -EFSBADCRC; 5514 goto restore_opts; 5515 } 5516 } 5517 5518 /* 5519 * If we have an unprocessed orphan list hanging 5520 * around from a previously readonly bdev mount, 5521 * require a full umount/remount for now. 5522 */ 5523 if (es->s_last_orphan) { 5524 ext4_msg(sb, KERN_WARNING, "Couldn't " 5525 "remount RDWR because of unprocessed " 5526 "orphan inode list. Please " 5527 "umount/remount instead"); 5528 err = -EINVAL; 5529 goto restore_opts; 5530 } 5531 5532 /* 5533 * Mounting a RDONLY partition read-write, so reread 5534 * and store the current valid flag. (It may have 5535 * been changed by e2fsck since we originally mounted 5536 * the partition.) 5537 */ 5538 if (sbi->s_journal) 5539 ext4_clear_journal_err(sb, es); 5540 sbi->s_mount_state = le16_to_cpu(es->s_state); 5541 5542 err = ext4_setup_super(sb, es, 0); 5543 if (err) 5544 goto restore_opts; 5545 5546 sb->s_flags &= ~SB_RDONLY; 5547 if (ext4_has_feature_mmp(sb)) 5548 if (ext4_multi_mount_protect(sb, 5549 le64_to_cpu(es->s_mmp_block))) { 5550 err = -EROFS; 5551 goto restore_opts; 5552 } 5553 enable_quota = 1; 5554 } 5555 } 5556 5557 /* 5558 * Reinitialize lazy itable initialization thread based on 5559 * current settings 5560 */ 5561 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5562 ext4_unregister_li_request(sb); 5563 else { 5564 ext4_group_t first_not_zeroed; 5565 first_not_zeroed = ext4_has_uninit_itable(sb); 5566 ext4_register_li_request(sb, first_not_zeroed); 5567 } 5568 5569 ext4_setup_system_zone(sb); 5570 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5571 err = ext4_commit_super(sb, 1); 5572 if (err) 5573 goto restore_opts; 5574 } 5575 5576 #ifdef CONFIG_QUOTA 5577 /* Release old quota file names */ 5578 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5579 kfree(old_opts.s_qf_names[i]); 5580 if (enable_quota) { 5581 if (sb_any_quota_suspended(sb)) 5582 dquot_resume(sb, -1); 5583 else if (ext4_has_feature_quota(sb)) { 5584 err = ext4_enable_quotas(sb); 5585 if (err) 5586 goto restore_opts; 5587 } 5588 } 5589 #endif 5590 5591 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5592 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5593 kfree(orig_data); 5594 return 0; 5595 5596 restore_opts: 5597 sb->s_flags = old_sb_flags; 5598 sbi->s_mount_opt = old_opts.s_mount_opt; 5599 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5600 sbi->s_resuid = old_opts.s_resuid; 5601 sbi->s_resgid = old_opts.s_resgid; 5602 sbi->s_commit_interval = old_opts.s_commit_interval; 5603 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5604 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5605 #ifdef CONFIG_QUOTA 5606 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5607 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5608 to_free[i] = get_qf_name(sb, sbi, i); 5609 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5610 } 5611 synchronize_rcu(); 5612 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5613 kfree(to_free[i]); 5614 #endif 5615 kfree(orig_data); 5616 return err; 5617 } 5618 5619 #ifdef CONFIG_QUOTA 5620 static int ext4_statfs_project(struct super_block *sb, 5621 kprojid_t projid, struct kstatfs *buf) 5622 { 5623 struct kqid qid; 5624 struct dquot *dquot; 5625 u64 limit; 5626 u64 curblock; 5627 5628 qid = make_kqid_projid(projid); 5629 dquot = dqget(sb, qid); 5630 if (IS_ERR(dquot)) 5631 return PTR_ERR(dquot); 5632 spin_lock(&dquot->dq_dqb_lock); 5633 5634 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 5635 dquot->dq_dqb.dqb_bhardlimit); 5636 limit >>= sb->s_blocksize_bits; 5637 5638 if (limit && buf->f_blocks > limit) { 5639 curblock = (dquot->dq_dqb.dqb_curspace + 5640 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5641 buf->f_blocks = limit; 5642 buf->f_bfree = buf->f_bavail = 5643 (buf->f_blocks > curblock) ? 5644 (buf->f_blocks - curblock) : 0; 5645 } 5646 5647 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 5648 dquot->dq_dqb.dqb_ihardlimit); 5649 if (limit && buf->f_files > limit) { 5650 buf->f_files = limit; 5651 buf->f_ffree = 5652 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5653 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5654 } 5655 5656 spin_unlock(&dquot->dq_dqb_lock); 5657 dqput(dquot); 5658 return 0; 5659 } 5660 #endif 5661 5662 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5663 { 5664 struct super_block *sb = dentry->d_sb; 5665 struct ext4_sb_info *sbi = EXT4_SB(sb); 5666 struct ext4_super_block *es = sbi->s_es; 5667 ext4_fsblk_t overhead = 0, resv_blocks; 5668 u64 fsid; 5669 s64 bfree; 5670 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5671 5672 if (!test_opt(sb, MINIX_DF)) 5673 overhead = sbi->s_overhead; 5674 5675 buf->f_type = EXT4_SUPER_MAGIC; 5676 buf->f_bsize = sb->s_blocksize; 5677 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5678 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5679 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5680 /* prevent underflow in case that few free space is available */ 5681 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5682 buf->f_bavail = buf->f_bfree - 5683 (ext4_r_blocks_count(es) + resv_blocks); 5684 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5685 buf->f_bavail = 0; 5686 buf->f_files = le32_to_cpu(es->s_inodes_count); 5687 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5688 buf->f_namelen = EXT4_NAME_LEN; 5689 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5690 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5691 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5692 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5693 5694 #ifdef CONFIG_QUOTA 5695 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5696 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5697 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5698 #endif 5699 return 0; 5700 } 5701 5702 5703 #ifdef CONFIG_QUOTA 5704 5705 /* 5706 * Helper functions so that transaction is started before we acquire dqio_sem 5707 * to keep correct lock ordering of transaction > dqio_sem 5708 */ 5709 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5710 { 5711 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5712 } 5713 5714 static int ext4_write_dquot(struct dquot *dquot) 5715 { 5716 int ret, err; 5717 handle_t *handle; 5718 struct inode *inode; 5719 5720 inode = dquot_to_inode(dquot); 5721 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5722 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5723 if (IS_ERR(handle)) 5724 return PTR_ERR(handle); 5725 ret = dquot_commit(dquot); 5726 err = ext4_journal_stop(handle); 5727 if (!ret) 5728 ret = err; 5729 return ret; 5730 } 5731 5732 static int ext4_acquire_dquot(struct dquot *dquot) 5733 { 5734 int ret, err; 5735 handle_t *handle; 5736 5737 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5738 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5739 if (IS_ERR(handle)) 5740 return PTR_ERR(handle); 5741 ret = dquot_acquire(dquot); 5742 err = ext4_journal_stop(handle); 5743 if (!ret) 5744 ret = err; 5745 return ret; 5746 } 5747 5748 static int ext4_release_dquot(struct dquot *dquot) 5749 { 5750 int ret, err; 5751 handle_t *handle; 5752 5753 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5754 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5755 if (IS_ERR(handle)) { 5756 /* Release dquot anyway to avoid endless cycle in dqput() */ 5757 dquot_release(dquot); 5758 return PTR_ERR(handle); 5759 } 5760 ret = dquot_release(dquot); 5761 err = ext4_journal_stop(handle); 5762 if (!ret) 5763 ret = err; 5764 return ret; 5765 } 5766 5767 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5768 { 5769 struct super_block *sb = dquot->dq_sb; 5770 struct ext4_sb_info *sbi = EXT4_SB(sb); 5771 5772 /* Are we journaling quotas? */ 5773 if (ext4_has_feature_quota(sb) || 5774 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5775 dquot_mark_dquot_dirty(dquot); 5776 return ext4_write_dquot(dquot); 5777 } else { 5778 return dquot_mark_dquot_dirty(dquot); 5779 } 5780 } 5781 5782 static int ext4_write_info(struct super_block *sb, int type) 5783 { 5784 int ret, err; 5785 handle_t *handle; 5786 5787 /* Data block + inode block */ 5788 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5789 if (IS_ERR(handle)) 5790 return PTR_ERR(handle); 5791 ret = dquot_commit_info(sb, type); 5792 err = ext4_journal_stop(handle); 5793 if (!ret) 5794 ret = err; 5795 return ret; 5796 } 5797 5798 /* 5799 * Turn on quotas during mount time - we need to find 5800 * the quota file and such... 5801 */ 5802 static int ext4_quota_on_mount(struct super_block *sb, int type) 5803 { 5804 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5805 EXT4_SB(sb)->s_jquota_fmt, type); 5806 } 5807 5808 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5809 { 5810 struct ext4_inode_info *ei = EXT4_I(inode); 5811 5812 /* The first argument of lockdep_set_subclass has to be 5813 * *exactly* the same as the argument to init_rwsem() --- in 5814 * this case, in init_once() --- or lockdep gets unhappy 5815 * because the name of the lock is set using the 5816 * stringification of the argument to init_rwsem(). 5817 */ 5818 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5819 lockdep_set_subclass(&ei->i_data_sem, subclass); 5820 } 5821 5822 /* 5823 * Standard function to be called on quota_on 5824 */ 5825 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5826 const struct path *path) 5827 { 5828 int err; 5829 5830 if (!test_opt(sb, QUOTA)) 5831 return -EINVAL; 5832 5833 /* Quotafile not on the same filesystem? */ 5834 if (path->dentry->d_sb != sb) 5835 return -EXDEV; 5836 /* Journaling quota? */ 5837 if (EXT4_SB(sb)->s_qf_names[type]) { 5838 /* Quotafile not in fs root? */ 5839 if (path->dentry->d_parent != sb->s_root) 5840 ext4_msg(sb, KERN_WARNING, 5841 "Quota file not on filesystem root. " 5842 "Journaled quota will not work"); 5843 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5844 } else { 5845 /* 5846 * Clear the flag just in case mount options changed since 5847 * last time. 5848 */ 5849 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5850 } 5851 5852 /* 5853 * When we journal data on quota file, we have to flush journal to see 5854 * all updates to the file when we bypass pagecache... 5855 */ 5856 if (EXT4_SB(sb)->s_journal && 5857 ext4_should_journal_data(d_inode(path->dentry))) { 5858 /* 5859 * We don't need to lock updates but journal_flush() could 5860 * otherwise be livelocked... 5861 */ 5862 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5863 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5864 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5865 if (err) 5866 return err; 5867 } 5868 5869 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5870 err = dquot_quota_on(sb, type, format_id, path); 5871 if (err) { 5872 lockdep_set_quota_inode(path->dentry->d_inode, 5873 I_DATA_SEM_NORMAL); 5874 } else { 5875 struct inode *inode = d_inode(path->dentry); 5876 handle_t *handle; 5877 5878 /* 5879 * Set inode flags to prevent userspace from messing with quota 5880 * files. If this fails, we return success anyway since quotas 5881 * are already enabled and this is not a hard failure. 5882 */ 5883 inode_lock(inode); 5884 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5885 if (IS_ERR(handle)) 5886 goto unlock_inode; 5887 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5888 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5889 S_NOATIME | S_IMMUTABLE); 5890 ext4_mark_inode_dirty(handle, inode); 5891 ext4_journal_stop(handle); 5892 unlock_inode: 5893 inode_unlock(inode); 5894 } 5895 return err; 5896 } 5897 5898 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5899 unsigned int flags) 5900 { 5901 int err; 5902 struct inode *qf_inode; 5903 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5904 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5905 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5906 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5907 }; 5908 5909 BUG_ON(!ext4_has_feature_quota(sb)); 5910 5911 if (!qf_inums[type]) 5912 return -EPERM; 5913 5914 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 5915 if (IS_ERR(qf_inode)) { 5916 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5917 return PTR_ERR(qf_inode); 5918 } 5919 5920 /* Don't account quota for quota files to avoid recursion */ 5921 qf_inode->i_flags |= S_NOQUOTA; 5922 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5923 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 5924 if (err) 5925 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5926 iput(qf_inode); 5927 5928 return err; 5929 } 5930 5931 /* Enable usage tracking for all quota types. */ 5932 static int ext4_enable_quotas(struct super_block *sb) 5933 { 5934 int type, err = 0; 5935 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5936 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5937 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5938 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5939 }; 5940 bool quota_mopt[EXT4_MAXQUOTAS] = { 5941 test_opt(sb, USRQUOTA), 5942 test_opt(sb, GRPQUOTA), 5943 test_opt(sb, PRJQUOTA), 5944 }; 5945 5946 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5947 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5948 if (qf_inums[type]) { 5949 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5950 DQUOT_USAGE_ENABLED | 5951 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5952 if (err) { 5953 ext4_warning(sb, 5954 "Failed to enable quota tracking " 5955 "(type=%d, err=%d). Please run " 5956 "e2fsck to fix.", type, err); 5957 for (type--; type >= 0; type--) 5958 dquot_quota_off(sb, type); 5959 5960 return err; 5961 } 5962 } 5963 } 5964 return 0; 5965 } 5966 5967 static int ext4_quota_off(struct super_block *sb, int type) 5968 { 5969 struct inode *inode = sb_dqopt(sb)->files[type]; 5970 handle_t *handle; 5971 int err; 5972 5973 /* Force all delayed allocation blocks to be allocated. 5974 * Caller already holds s_umount sem */ 5975 if (test_opt(sb, DELALLOC)) 5976 sync_filesystem(sb); 5977 5978 if (!inode || !igrab(inode)) 5979 goto out; 5980 5981 err = dquot_quota_off(sb, type); 5982 if (err || ext4_has_feature_quota(sb)) 5983 goto out_put; 5984 5985 inode_lock(inode); 5986 /* 5987 * Update modification times of quota files when userspace can 5988 * start looking at them. If we fail, we return success anyway since 5989 * this is not a hard failure and quotas are already disabled. 5990 */ 5991 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5992 if (IS_ERR(handle)) 5993 goto out_unlock; 5994 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5995 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5996 inode->i_mtime = inode->i_ctime = current_time(inode); 5997 ext4_mark_inode_dirty(handle, inode); 5998 ext4_journal_stop(handle); 5999 out_unlock: 6000 inode_unlock(inode); 6001 out_put: 6002 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6003 iput(inode); 6004 return err; 6005 out: 6006 return dquot_quota_off(sb, type); 6007 } 6008 6009 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6010 * acquiring the locks... As quota files are never truncated and quota code 6011 * itself serializes the operations (and no one else should touch the files) 6012 * we don't have to be afraid of races */ 6013 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6014 size_t len, loff_t off) 6015 { 6016 struct inode *inode = sb_dqopt(sb)->files[type]; 6017 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6018 int offset = off & (sb->s_blocksize - 1); 6019 int tocopy; 6020 size_t toread; 6021 struct buffer_head *bh; 6022 loff_t i_size = i_size_read(inode); 6023 6024 if (off > i_size) 6025 return 0; 6026 if (off+len > i_size) 6027 len = i_size-off; 6028 toread = len; 6029 while (toread > 0) { 6030 tocopy = sb->s_blocksize - offset < toread ? 6031 sb->s_blocksize - offset : toread; 6032 bh = ext4_bread(NULL, inode, blk, 0); 6033 if (IS_ERR(bh)) 6034 return PTR_ERR(bh); 6035 if (!bh) /* A hole? */ 6036 memset(data, 0, tocopy); 6037 else 6038 memcpy(data, bh->b_data+offset, tocopy); 6039 brelse(bh); 6040 offset = 0; 6041 toread -= tocopy; 6042 data += tocopy; 6043 blk++; 6044 } 6045 return len; 6046 } 6047 6048 /* Write to quotafile (we know the transaction is already started and has 6049 * enough credits) */ 6050 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6051 const char *data, size_t len, loff_t off) 6052 { 6053 struct inode *inode = sb_dqopt(sb)->files[type]; 6054 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6055 int err, offset = off & (sb->s_blocksize - 1); 6056 int retries = 0; 6057 struct buffer_head *bh; 6058 handle_t *handle = journal_current_handle(); 6059 6060 if (EXT4_SB(sb)->s_journal && !handle) { 6061 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6062 " cancelled because transaction is not started", 6063 (unsigned long long)off, (unsigned long long)len); 6064 return -EIO; 6065 } 6066 /* 6067 * Since we account only one data block in transaction credits, 6068 * then it is impossible to cross a block boundary. 6069 */ 6070 if (sb->s_blocksize - offset < len) { 6071 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6072 " cancelled because not block aligned", 6073 (unsigned long long)off, (unsigned long long)len); 6074 return -EIO; 6075 } 6076 6077 do { 6078 bh = ext4_bread(handle, inode, blk, 6079 EXT4_GET_BLOCKS_CREATE | 6080 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6081 } while (PTR_ERR(bh) == -ENOSPC && 6082 ext4_should_retry_alloc(inode->i_sb, &retries)); 6083 if (IS_ERR(bh)) 6084 return PTR_ERR(bh); 6085 if (!bh) 6086 goto out; 6087 BUFFER_TRACE(bh, "get write access"); 6088 err = ext4_journal_get_write_access(handle, bh); 6089 if (err) { 6090 brelse(bh); 6091 return err; 6092 } 6093 lock_buffer(bh); 6094 memcpy(bh->b_data+offset, data, len); 6095 flush_dcache_page(bh->b_page); 6096 unlock_buffer(bh); 6097 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6098 brelse(bh); 6099 out: 6100 if (inode->i_size < off + len) { 6101 i_size_write(inode, off + len); 6102 EXT4_I(inode)->i_disksize = inode->i_size; 6103 ext4_mark_inode_dirty(handle, inode); 6104 } 6105 return len; 6106 } 6107 #endif 6108 6109 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6110 const char *dev_name, void *data) 6111 { 6112 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6113 } 6114 6115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6116 static inline void register_as_ext2(void) 6117 { 6118 int err = register_filesystem(&ext2_fs_type); 6119 if (err) 6120 printk(KERN_WARNING 6121 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6122 } 6123 6124 static inline void unregister_as_ext2(void) 6125 { 6126 unregister_filesystem(&ext2_fs_type); 6127 } 6128 6129 static inline int ext2_feature_set_ok(struct super_block *sb) 6130 { 6131 if (ext4_has_unknown_ext2_incompat_features(sb)) 6132 return 0; 6133 if (sb_rdonly(sb)) 6134 return 1; 6135 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6136 return 0; 6137 return 1; 6138 } 6139 #else 6140 static inline void register_as_ext2(void) { } 6141 static inline void unregister_as_ext2(void) { } 6142 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6143 #endif 6144 6145 static inline void register_as_ext3(void) 6146 { 6147 int err = register_filesystem(&ext3_fs_type); 6148 if (err) 6149 printk(KERN_WARNING 6150 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6151 } 6152 6153 static inline void unregister_as_ext3(void) 6154 { 6155 unregister_filesystem(&ext3_fs_type); 6156 } 6157 6158 static inline int ext3_feature_set_ok(struct super_block *sb) 6159 { 6160 if (ext4_has_unknown_ext3_incompat_features(sb)) 6161 return 0; 6162 if (!ext4_has_feature_journal(sb)) 6163 return 0; 6164 if (sb_rdonly(sb)) 6165 return 1; 6166 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6167 return 0; 6168 return 1; 6169 } 6170 6171 static struct file_system_type ext4_fs_type = { 6172 .owner = THIS_MODULE, 6173 .name = "ext4", 6174 .mount = ext4_mount, 6175 .kill_sb = kill_block_super, 6176 .fs_flags = FS_REQUIRES_DEV, 6177 }; 6178 MODULE_ALIAS_FS("ext4"); 6179 6180 /* Shared across all ext4 file systems */ 6181 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6182 6183 static int __init ext4_init_fs(void) 6184 { 6185 int i, err; 6186 6187 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6188 ext4_li_info = NULL; 6189 mutex_init(&ext4_li_mtx); 6190 6191 /* Build-time check for flags consistency */ 6192 ext4_check_flag_values(); 6193 6194 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6195 init_waitqueue_head(&ext4__ioend_wq[i]); 6196 6197 err = ext4_init_es(); 6198 if (err) 6199 return err; 6200 6201 err = ext4_init_pending(); 6202 if (err) 6203 goto out7; 6204 6205 err = ext4_init_post_read_processing(); 6206 if (err) 6207 goto out6; 6208 6209 err = ext4_init_pageio(); 6210 if (err) 6211 goto out5; 6212 6213 err = ext4_init_system_zone(); 6214 if (err) 6215 goto out4; 6216 6217 err = ext4_init_sysfs(); 6218 if (err) 6219 goto out3; 6220 6221 err = ext4_init_mballoc(); 6222 if (err) 6223 goto out2; 6224 err = init_inodecache(); 6225 if (err) 6226 goto out1; 6227 register_as_ext3(); 6228 register_as_ext2(); 6229 err = register_filesystem(&ext4_fs_type); 6230 if (err) 6231 goto out; 6232 6233 return 0; 6234 out: 6235 unregister_as_ext2(); 6236 unregister_as_ext3(); 6237 destroy_inodecache(); 6238 out1: 6239 ext4_exit_mballoc(); 6240 out2: 6241 ext4_exit_sysfs(); 6242 out3: 6243 ext4_exit_system_zone(); 6244 out4: 6245 ext4_exit_pageio(); 6246 out5: 6247 ext4_exit_post_read_processing(); 6248 out6: 6249 ext4_exit_pending(); 6250 out7: 6251 ext4_exit_es(); 6252 6253 return err; 6254 } 6255 6256 static void __exit ext4_exit_fs(void) 6257 { 6258 ext4_destroy_lazyinit_thread(); 6259 unregister_as_ext2(); 6260 unregister_as_ext3(); 6261 unregister_filesystem(&ext4_fs_type); 6262 destroy_inodecache(); 6263 ext4_exit_mballoc(); 6264 ext4_exit_sysfs(); 6265 ext4_exit_system_zone(); 6266 ext4_exit_pageio(); 6267 ext4_exit_post_read_processing(); 6268 ext4_exit_es(); 6269 ext4_exit_pending(); 6270 } 6271 6272 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6273 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6274 MODULE_LICENSE("GPL"); 6275 MODULE_SOFTDEP("pre: crc32c"); 6276 module_init(ext4_init_fs) 6277 module_exit(ext4_exit_fs) 6278