1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static struct mutex ext4_li_mtx; 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static int ext4_commit_super(struct super_block *sb, int sync); 69 static void ext4_mark_recovery_complete(struct super_block *sb, 70 struct ext4_super_block *es); 71 static void ext4_clear_journal_err(struct super_block *sb, 72 struct ext4_super_block *es); 73 static int ext4_sync_fs(struct super_block *sb, int wait); 74 static int ext4_remount(struct super_block *sb, int *flags, char *data); 75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 76 static int ext4_unfreeze(struct super_block *sb); 77 static int ext4_freeze(struct super_block *sb); 78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 79 const char *dev_name, void *data); 80 static inline int ext2_feature_set_ok(struct super_block *sb); 81 static inline int ext3_feature_set_ok(struct super_block *sb); 82 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 93 * i_mmap_rwsem (inode->i_mmap_rwsem)! 94 * 95 * page fault path: 96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 97 * page lock -> i_data_sem (rw) 98 * 99 * buffered write path: 100 * sb_start_write -> i_mutex -> mmap_lock 101 * sb_start_write -> i_mutex -> transaction start -> page lock -> 102 * i_data_sem (rw) 103 * 104 * truncate: 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 107 * i_data_sem (rw) 108 * 109 * direct IO: 110 * sb_start_write -> i_mutex -> mmap_lock 111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 112 * 113 * writepages: 114 * transaction start -> page lock(s) -> i_data_sem (rw) 115 */ 116 117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 118 static struct file_system_type ext2_fs_type = { 119 .owner = THIS_MODULE, 120 .name = "ext2", 121 .mount = ext4_mount, 122 .kill_sb = kill_block_super, 123 .fs_flags = FS_REQUIRES_DEV, 124 }; 125 MODULE_ALIAS_FS("ext2"); 126 MODULE_ALIAS("ext2"); 127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 128 #else 129 #define IS_EXT2_SB(sb) (0) 130 #endif 131 132 133 static struct file_system_type ext3_fs_type = { 134 .owner = THIS_MODULE, 135 .name = "ext3", 136 .mount = ext4_mount, 137 .kill_sb = kill_block_super, 138 .fs_flags = FS_REQUIRES_DEV, 139 }; 140 MODULE_ALIAS_FS("ext3"); 141 MODULE_ALIAS("ext3"); 142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 143 144 /* 145 * This works like sb_bread() except it uses ERR_PTR for error 146 * returns. Currently with sb_bread it's impossible to distinguish 147 * between ENOMEM and EIO situations (since both result in a NULL 148 * return. 149 */ 150 struct buffer_head * 151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags) 152 { 153 struct buffer_head *bh = sb_getblk(sb, block); 154 155 if (bh == NULL) 156 return ERR_PTR(-ENOMEM); 157 if (ext4_buffer_uptodate(bh)) 158 return bh; 159 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh); 160 wait_on_buffer(bh); 161 if (buffer_uptodate(bh)) 162 return bh; 163 put_bh(bh); 164 return ERR_PTR(-EIO); 165 } 166 167 static int ext4_verify_csum_type(struct super_block *sb, 168 struct ext4_super_block *es) 169 { 170 if (!ext4_has_feature_metadata_csum(sb)) 171 return 1; 172 173 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 174 } 175 176 static __le32 ext4_superblock_csum(struct super_block *sb, 177 struct ext4_super_block *es) 178 { 179 struct ext4_sb_info *sbi = EXT4_SB(sb); 180 int offset = offsetof(struct ext4_super_block, s_checksum); 181 __u32 csum; 182 183 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 184 185 return cpu_to_le32(csum); 186 } 187 188 static int ext4_superblock_csum_verify(struct super_block *sb, 189 struct ext4_super_block *es) 190 { 191 if (!ext4_has_metadata_csum(sb)) 192 return 1; 193 194 return es->s_checksum == ext4_superblock_csum(sb, es); 195 } 196 197 void ext4_superblock_csum_set(struct super_block *sb) 198 { 199 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 200 201 if (!ext4_has_metadata_csum(sb)) 202 return; 203 204 es->s_checksum = ext4_superblock_csum(sb, es); 205 } 206 207 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 208 struct ext4_group_desc *bg) 209 { 210 return le32_to_cpu(bg->bg_block_bitmap_lo) | 211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 212 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 213 } 214 215 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 216 struct ext4_group_desc *bg) 217 { 218 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 221 } 222 223 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 224 struct ext4_group_desc *bg) 225 { 226 return le32_to_cpu(bg->bg_inode_table_lo) | 227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 228 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 229 } 230 231 __u32 ext4_free_group_clusters(struct super_block *sb, 232 struct ext4_group_desc *bg) 233 { 234 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 236 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 237 } 238 239 __u32 ext4_free_inodes_count(struct super_block *sb, 240 struct ext4_group_desc *bg) 241 { 242 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 244 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 245 } 246 247 __u32 ext4_used_dirs_count(struct super_block *sb, 248 struct ext4_group_desc *bg) 249 { 250 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 252 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 253 } 254 255 __u32 ext4_itable_unused_count(struct super_block *sb, 256 struct ext4_group_desc *bg) 257 { 258 return le16_to_cpu(bg->bg_itable_unused_lo) | 259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 260 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 261 } 262 263 void ext4_block_bitmap_set(struct super_block *sb, 264 struct ext4_group_desc *bg, ext4_fsblk_t blk) 265 { 266 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 268 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 269 } 270 271 void ext4_inode_bitmap_set(struct super_block *sb, 272 struct ext4_group_desc *bg, ext4_fsblk_t blk) 273 { 274 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 276 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 277 } 278 279 void ext4_inode_table_set(struct super_block *sb, 280 struct ext4_group_desc *bg, ext4_fsblk_t blk) 281 { 282 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 284 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 285 } 286 287 void ext4_free_group_clusters_set(struct super_block *sb, 288 struct ext4_group_desc *bg, __u32 count) 289 { 290 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 292 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 293 } 294 295 void ext4_free_inodes_set(struct super_block *sb, 296 struct ext4_group_desc *bg, __u32 count) 297 { 298 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 300 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 301 } 302 303 void ext4_used_dirs_set(struct super_block *sb, 304 struct ext4_group_desc *bg, __u32 count) 305 { 306 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 308 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 309 } 310 311 void ext4_itable_unused_set(struct super_block *sb, 312 struct ext4_group_desc *bg, __u32 count) 313 { 314 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 316 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 317 } 318 319 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 320 { 321 time64_t now = ktime_get_real_seconds(); 322 323 now = clamp_val(now, 0, (1ull << 40) - 1); 324 325 *lo = cpu_to_le32(lower_32_bits(now)); 326 *hi = upper_32_bits(now); 327 } 328 329 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 330 { 331 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 332 } 333 #define ext4_update_tstamp(es, tstamp) \ 334 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 335 #define ext4_get_tstamp(es, tstamp) \ 336 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 337 338 static void __save_error_info(struct super_block *sb, int error, 339 __u32 ino, __u64 block, 340 const char *func, unsigned int line) 341 { 342 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 343 int err; 344 345 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 346 if (bdev_read_only(sb->s_bdev)) 347 return; 348 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 349 ext4_update_tstamp(es, s_last_error_time); 350 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 351 es->s_last_error_line = cpu_to_le32(line); 352 es->s_last_error_ino = cpu_to_le32(ino); 353 es->s_last_error_block = cpu_to_le64(block); 354 switch (error) { 355 case EIO: 356 err = EXT4_ERR_EIO; 357 break; 358 case ENOMEM: 359 err = EXT4_ERR_ENOMEM; 360 break; 361 case EFSBADCRC: 362 err = EXT4_ERR_EFSBADCRC; 363 break; 364 case 0: 365 case EFSCORRUPTED: 366 err = EXT4_ERR_EFSCORRUPTED; 367 break; 368 case ENOSPC: 369 err = EXT4_ERR_ENOSPC; 370 break; 371 case ENOKEY: 372 err = EXT4_ERR_ENOKEY; 373 break; 374 case EROFS: 375 err = EXT4_ERR_EROFS; 376 break; 377 case EFBIG: 378 err = EXT4_ERR_EFBIG; 379 break; 380 case EEXIST: 381 err = EXT4_ERR_EEXIST; 382 break; 383 case ERANGE: 384 err = EXT4_ERR_ERANGE; 385 break; 386 case EOVERFLOW: 387 err = EXT4_ERR_EOVERFLOW; 388 break; 389 case EBUSY: 390 err = EXT4_ERR_EBUSY; 391 break; 392 case ENOTDIR: 393 err = EXT4_ERR_ENOTDIR; 394 break; 395 case ENOTEMPTY: 396 err = EXT4_ERR_ENOTEMPTY; 397 break; 398 case ESHUTDOWN: 399 err = EXT4_ERR_ESHUTDOWN; 400 break; 401 case EFAULT: 402 err = EXT4_ERR_EFAULT; 403 break; 404 default: 405 err = EXT4_ERR_UNKNOWN; 406 } 407 es->s_last_error_errcode = err; 408 if (!es->s_first_error_time) { 409 es->s_first_error_time = es->s_last_error_time; 410 es->s_first_error_time_hi = es->s_last_error_time_hi; 411 strncpy(es->s_first_error_func, func, 412 sizeof(es->s_first_error_func)); 413 es->s_first_error_line = cpu_to_le32(line); 414 es->s_first_error_ino = es->s_last_error_ino; 415 es->s_first_error_block = es->s_last_error_block; 416 es->s_first_error_errcode = es->s_last_error_errcode; 417 } 418 /* 419 * Start the daily error reporting function if it hasn't been 420 * started already 421 */ 422 if (!es->s_error_count) 423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 424 le32_add_cpu(&es->s_error_count, 1); 425 } 426 427 static void save_error_info(struct super_block *sb, int error, 428 __u32 ino, __u64 block, 429 const char *func, unsigned int line) 430 { 431 __save_error_info(sb, error, ino, block, func, line); 432 if (!bdev_read_only(sb->s_bdev)) 433 ext4_commit_super(sb, 1); 434 } 435 436 /* 437 * The del_gendisk() function uninitializes the disk-specific data 438 * structures, including the bdi structure, without telling anyone 439 * else. Once this happens, any attempt to call mark_buffer_dirty() 440 * (for example, by ext4_commit_super), will cause a kernel OOPS. 441 * This is a kludge to prevent these oops until we can put in a proper 442 * hook in del_gendisk() to inform the VFS and file system layers. 443 */ 444 static int block_device_ejected(struct super_block *sb) 445 { 446 struct inode *bd_inode = sb->s_bdev->bd_inode; 447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 448 449 return bdi->dev == NULL; 450 } 451 452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 453 { 454 struct super_block *sb = journal->j_private; 455 struct ext4_sb_info *sbi = EXT4_SB(sb); 456 int error = is_journal_aborted(journal); 457 struct ext4_journal_cb_entry *jce; 458 459 BUG_ON(txn->t_state == T_FINISHED); 460 461 ext4_process_freed_data(sb, txn->t_tid); 462 463 spin_lock(&sbi->s_md_lock); 464 while (!list_empty(&txn->t_private_list)) { 465 jce = list_entry(txn->t_private_list.next, 466 struct ext4_journal_cb_entry, jce_list); 467 list_del_init(&jce->jce_list); 468 spin_unlock(&sbi->s_md_lock); 469 jce->jce_func(sb, jce, error); 470 spin_lock(&sbi->s_md_lock); 471 } 472 spin_unlock(&sbi->s_md_lock); 473 } 474 475 static bool system_going_down(void) 476 { 477 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 478 || system_state == SYSTEM_RESTART; 479 } 480 481 /* Deal with the reporting of failure conditions on a filesystem such as 482 * inconsistencies detected or read IO failures. 483 * 484 * On ext2, we can store the error state of the filesystem in the 485 * superblock. That is not possible on ext4, because we may have other 486 * write ordering constraints on the superblock which prevent us from 487 * writing it out straight away; and given that the journal is about to 488 * be aborted, we can't rely on the current, or future, transactions to 489 * write out the superblock safely. 490 * 491 * We'll just use the jbd2_journal_abort() error code to record an error in 492 * the journal instead. On recovery, the journal will complain about 493 * that error until we've noted it down and cleared it. 494 */ 495 496 static void ext4_handle_error(struct super_block *sb) 497 { 498 if (test_opt(sb, WARN_ON_ERROR)) 499 WARN_ON_ONCE(1); 500 501 if (sb_rdonly(sb)) 502 return; 503 504 if (!test_opt(sb, ERRORS_CONT)) { 505 journal_t *journal = EXT4_SB(sb)->s_journal; 506 507 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 508 if (journal) 509 jbd2_journal_abort(journal, -EIO); 510 } 511 /* 512 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 513 * could panic during 'reboot -f' as the underlying device got already 514 * disabled. 515 */ 516 if (test_opt(sb, ERRORS_RO) || system_going_down()) { 517 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 518 /* 519 * Make sure updated value of ->s_mount_flags will be visible 520 * before ->s_flags update 521 */ 522 smp_wmb(); 523 sb->s_flags |= SB_RDONLY; 524 } else if (test_opt(sb, ERRORS_PANIC)) { 525 panic("EXT4-fs (device %s): panic forced after error\n", 526 sb->s_id); 527 } 528 } 529 530 #define ext4_error_ratelimit(sb) \ 531 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 532 "EXT4-fs error") 533 534 void __ext4_error(struct super_block *sb, const char *function, 535 unsigned int line, int error, __u64 block, 536 const char *fmt, ...) 537 { 538 struct va_format vaf; 539 va_list args; 540 541 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 542 return; 543 544 trace_ext4_error(sb, function, line); 545 if (ext4_error_ratelimit(sb)) { 546 va_start(args, fmt); 547 vaf.fmt = fmt; 548 vaf.va = &args; 549 printk(KERN_CRIT 550 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 551 sb->s_id, function, line, current->comm, &vaf); 552 va_end(args); 553 } 554 save_error_info(sb, error, 0, block, function, line); 555 ext4_handle_error(sb); 556 } 557 558 void __ext4_error_inode(struct inode *inode, const char *function, 559 unsigned int line, ext4_fsblk_t block, int error, 560 const char *fmt, ...) 561 { 562 va_list args; 563 struct va_format vaf; 564 565 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 566 return; 567 568 trace_ext4_error(inode->i_sb, function, line); 569 if (ext4_error_ratelimit(inode->i_sb)) { 570 va_start(args, fmt); 571 vaf.fmt = fmt; 572 vaf.va = &args; 573 if (block) 574 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 575 "inode #%lu: block %llu: comm %s: %pV\n", 576 inode->i_sb->s_id, function, line, inode->i_ino, 577 block, current->comm, &vaf); 578 else 579 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 580 "inode #%lu: comm %s: %pV\n", 581 inode->i_sb->s_id, function, line, inode->i_ino, 582 current->comm, &vaf); 583 va_end(args); 584 } 585 save_error_info(inode->i_sb, error, inode->i_ino, block, 586 function, line); 587 ext4_handle_error(inode->i_sb); 588 } 589 590 void __ext4_error_file(struct file *file, const char *function, 591 unsigned int line, ext4_fsblk_t block, 592 const char *fmt, ...) 593 { 594 va_list args; 595 struct va_format vaf; 596 struct inode *inode = file_inode(file); 597 char pathname[80], *path; 598 599 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 600 return; 601 602 trace_ext4_error(inode->i_sb, function, line); 603 if (ext4_error_ratelimit(inode->i_sb)) { 604 path = file_path(file, pathname, sizeof(pathname)); 605 if (IS_ERR(path)) 606 path = "(unknown)"; 607 va_start(args, fmt); 608 vaf.fmt = fmt; 609 vaf.va = &args; 610 if (block) 611 printk(KERN_CRIT 612 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 613 "block %llu: comm %s: path %s: %pV\n", 614 inode->i_sb->s_id, function, line, inode->i_ino, 615 block, current->comm, path, &vaf); 616 else 617 printk(KERN_CRIT 618 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 619 "comm %s: path %s: %pV\n", 620 inode->i_sb->s_id, function, line, inode->i_ino, 621 current->comm, path, &vaf); 622 va_end(args); 623 } 624 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block, 625 function, line); 626 ext4_handle_error(inode->i_sb); 627 } 628 629 const char *ext4_decode_error(struct super_block *sb, int errno, 630 char nbuf[16]) 631 { 632 char *errstr = NULL; 633 634 switch (errno) { 635 case -EFSCORRUPTED: 636 errstr = "Corrupt filesystem"; 637 break; 638 case -EFSBADCRC: 639 errstr = "Filesystem failed CRC"; 640 break; 641 case -EIO: 642 errstr = "IO failure"; 643 break; 644 case -ENOMEM: 645 errstr = "Out of memory"; 646 break; 647 case -EROFS: 648 if (!sb || (EXT4_SB(sb)->s_journal && 649 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 650 errstr = "Journal has aborted"; 651 else 652 errstr = "Readonly filesystem"; 653 break; 654 default: 655 /* If the caller passed in an extra buffer for unknown 656 * errors, textualise them now. Else we just return 657 * NULL. */ 658 if (nbuf) { 659 /* Check for truncated error codes... */ 660 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 661 errstr = nbuf; 662 } 663 break; 664 } 665 666 return errstr; 667 } 668 669 /* __ext4_std_error decodes expected errors from journaling functions 670 * automatically and invokes the appropriate error response. */ 671 672 void __ext4_std_error(struct super_block *sb, const char *function, 673 unsigned int line, int errno) 674 { 675 char nbuf[16]; 676 const char *errstr; 677 678 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 679 return; 680 681 /* Special case: if the error is EROFS, and we're not already 682 * inside a transaction, then there's really no point in logging 683 * an error. */ 684 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 685 return; 686 687 if (ext4_error_ratelimit(sb)) { 688 errstr = ext4_decode_error(sb, errno, nbuf); 689 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 690 sb->s_id, function, line, errstr); 691 } 692 693 save_error_info(sb, -errno, 0, 0, function, line); 694 ext4_handle_error(sb); 695 } 696 697 /* 698 * ext4_abort is a much stronger failure handler than ext4_error. The 699 * abort function may be used to deal with unrecoverable failures such 700 * as journal IO errors or ENOMEM at a critical moment in log management. 701 * 702 * We unconditionally force the filesystem into an ABORT|READONLY state, 703 * unless the error response on the fs has been set to panic in which 704 * case we take the easy way out and panic immediately. 705 */ 706 707 void __ext4_abort(struct super_block *sb, const char *function, 708 unsigned int line, int error, const char *fmt, ...) 709 { 710 struct va_format vaf; 711 va_list args; 712 713 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 714 return; 715 716 save_error_info(sb, error, 0, 0, function, line); 717 va_start(args, fmt); 718 vaf.fmt = fmt; 719 vaf.va = &args; 720 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 721 sb->s_id, function, line, &vaf); 722 va_end(args); 723 724 if (sb_rdonly(sb) == 0) { 725 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 726 if (EXT4_SB(sb)->s_journal) 727 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 728 729 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 730 /* 731 * Make sure updated value of ->s_mount_flags will be visible 732 * before ->s_flags update 733 */ 734 smp_wmb(); 735 sb->s_flags |= SB_RDONLY; 736 } 737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) 738 panic("EXT4-fs panic from previous error\n"); 739 } 740 741 void __ext4_msg(struct super_block *sb, 742 const char *prefix, const char *fmt, ...) 743 { 744 struct va_format vaf; 745 va_list args; 746 747 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 748 return; 749 750 va_start(args, fmt); 751 vaf.fmt = fmt; 752 vaf.va = &args; 753 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 754 va_end(args); 755 } 756 757 #define ext4_warning_ratelimit(sb) \ 758 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 759 "EXT4-fs warning") 760 761 void __ext4_warning(struct super_block *sb, const char *function, 762 unsigned int line, const char *fmt, ...) 763 { 764 struct va_format vaf; 765 va_list args; 766 767 if (!ext4_warning_ratelimit(sb)) 768 return; 769 770 va_start(args, fmt); 771 vaf.fmt = fmt; 772 vaf.va = &args; 773 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 774 sb->s_id, function, line, &vaf); 775 va_end(args); 776 } 777 778 void __ext4_warning_inode(const struct inode *inode, const char *function, 779 unsigned int line, const char *fmt, ...) 780 { 781 struct va_format vaf; 782 va_list args; 783 784 if (!ext4_warning_ratelimit(inode->i_sb)) 785 return; 786 787 va_start(args, fmt); 788 vaf.fmt = fmt; 789 vaf.va = &args; 790 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 791 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 792 function, line, inode->i_ino, current->comm, &vaf); 793 va_end(args); 794 } 795 796 void __ext4_grp_locked_error(const char *function, unsigned int line, 797 struct super_block *sb, ext4_group_t grp, 798 unsigned long ino, ext4_fsblk_t block, 799 const char *fmt, ...) 800 __releases(bitlock) 801 __acquires(bitlock) 802 { 803 struct va_format vaf; 804 va_list args; 805 806 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 807 return; 808 809 trace_ext4_error(sb, function, line); 810 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line); 811 812 if (ext4_error_ratelimit(sb)) { 813 va_start(args, fmt); 814 vaf.fmt = fmt; 815 vaf.va = &args; 816 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 817 sb->s_id, function, line, grp); 818 if (ino) 819 printk(KERN_CONT "inode %lu: ", ino); 820 if (block) 821 printk(KERN_CONT "block %llu:", 822 (unsigned long long) block); 823 printk(KERN_CONT "%pV\n", &vaf); 824 va_end(args); 825 } 826 827 if (test_opt(sb, WARN_ON_ERROR)) 828 WARN_ON_ONCE(1); 829 830 if (test_opt(sb, ERRORS_CONT)) { 831 ext4_commit_super(sb, 0); 832 return; 833 } 834 835 ext4_unlock_group(sb, grp); 836 ext4_commit_super(sb, 1); 837 ext4_handle_error(sb); 838 /* 839 * We only get here in the ERRORS_RO case; relocking the group 840 * may be dangerous, but nothing bad will happen since the 841 * filesystem will have already been marked read/only and the 842 * journal has been aborted. We return 1 as a hint to callers 843 * who might what to use the return value from 844 * ext4_grp_locked_error() to distinguish between the 845 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 846 * aggressively from the ext4 function in question, with a 847 * more appropriate error code. 848 */ 849 ext4_lock_group(sb, grp); 850 return; 851 } 852 853 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 854 ext4_group_t group, 855 unsigned int flags) 856 { 857 struct ext4_sb_info *sbi = EXT4_SB(sb); 858 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 859 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 860 int ret; 861 862 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 863 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 864 &grp->bb_state); 865 if (!ret) 866 percpu_counter_sub(&sbi->s_freeclusters_counter, 867 grp->bb_free); 868 } 869 870 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 871 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 872 &grp->bb_state); 873 if (!ret && gdp) { 874 int count; 875 876 count = ext4_free_inodes_count(sb, gdp); 877 percpu_counter_sub(&sbi->s_freeinodes_counter, 878 count); 879 } 880 } 881 } 882 883 void ext4_update_dynamic_rev(struct super_block *sb) 884 { 885 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 886 887 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 888 return; 889 890 ext4_warning(sb, 891 "updating to rev %d because of new feature flag, " 892 "running e2fsck is recommended", 893 EXT4_DYNAMIC_REV); 894 895 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 896 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 897 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 898 /* leave es->s_feature_*compat flags alone */ 899 /* es->s_uuid will be set by e2fsck if empty */ 900 901 /* 902 * The rest of the superblock fields should be zero, and if not it 903 * means they are likely already in use, so leave them alone. We 904 * can leave it up to e2fsck to clean up any inconsistencies there. 905 */ 906 } 907 908 /* 909 * Open the external journal device 910 */ 911 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 912 { 913 struct block_device *bdev; 914 915 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 916 if (IS_ERR(bdev)) 917 goto fail; 918 return bdev; 919 920 fail: 921 ext4_msg(sb, KERN_ERR, 922 "failed to open journal device unknown-block(%u,%u) %ld", 923 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 924 return NULL; 925 } 926 927 /* 928 * Release the journal device 929 */ 930 static void ext4_blkdev_put(struct block_device *bdev) 931 { 932 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 933 } 934 935 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 936 { 937 struct block_device *bdev; 938 bdev = sbi->journal_bdev; 939 if (bdev) { 940 ext4_blkdev_put(bdev); 941 sbi->journal_bdev = NULL; 942 } 943 } 944 945 static inline struct inode *orphan_list_entry(struct list_head *l) 946 { 947 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 948 } 949 950 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 951 { 952 struct list_head *l; 953 954 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 955 le32_to_cpu(sbi->s_es->s_last_orphan)); 956 957 printk(KERN_ERR "sb_info orphan list:\n"); 958 list_for_each(l, &sbi->s_orphan) { 959 struct inode *inode = orphan_list_entry(l); 960 printk(KERN_ERR " " 961 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 962 inode->i_sb->s_id, inode->i_ino, inode, 963 inode->i_mode, inode->i_nlink, 964 NEXT_ORPHAN(inode)); 965 } 966 } 967 968 #ifdef CONFIG_QUOTA 969 static int ext4_quota_off(struct super_block *sb, int type); 970 971 static inline void ext4_quota_off_umount(struct super_block *sb) 972 { 973 int type; 974 975 /* Use our quota_off function to clear inode flags etc. */ 976 for (type = 0; type < EXT4_MAXQUOTAS; type++) 977 ext4_quota_off(sb, type); 978 } 979 980 /* 981 * This is a helper function which is used in the mount/remount 982 * codepaths (which holds s_umount) to fetch the quota file name. 983 */ 984 static inline char *get_qf_name(struct super_block *sb, 985 struct ext4_sb_info *sbi, 986 int type) 987 { 988 return rcu_dereference_protected(sbi->s_qf_names[type], 989 lockdep_is_held(&sb->s_umount)); 990 } 991 #else 992 static inline void ext4_quota_off_umount(struct super_block *sb) 993 { 994 } 995 #endif 996 997 static void ext4_put_super(struct super_block *sb) 998 { 999 struct ext4_sb_info *sbi = EXT4_SB(sb); 1000 struct ext4_super_block *es = sbi->s_es; 1001 struct buffer_head **group_desc; 1002 struct flex_groups **flex_groups; 1003 int aborted = 0; 1004 int i, err; 1005 1006 ext4_unregister_li_request(sb); 1007 ext4_quota_off_umount(sb); 1008 1009 destroy_workqueue(sbi->rsv_conversion_wq); 1010 1011 /* 1012 * Unregister sysfs before destroying jbd2 journal. 1013 * Since we could still access attr_journal_task attribute via sysfs 1014 * path which could have sbi->s_journal->j_task as NULL 1015 */ 1016 ext4_unregister_sysfs(sb); 1017 1018 if (sbi->s_journal) { 1019 aborted = is_journal_aborted(sbi->s_journal); 1020 err = jbd2_journal_destroy(sbi->s_journal); 1021 sbi->s_journal = NULL; 1022 if ((err < 0) && !aborted) { 1023 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1024 } 1025 } 1026 1027 ext4_es_unregister_shrinker(sbi); 1028 del_timer_sync(&sbi->s_err_report); 1029 ext4_release_system_zone(sb); 1030 ext4_mb_release(sb); 1031 ext4_ext_release(sb); 1032 1033 if (!sb_rdonly(sb) && !aborted) { 1034 ext4_clear_feature_journal_needs_recovery(sb); 1035 es->s_state = cpu_to_le16(sbi->s_mount_state); 1036 } 1037 if (!sb_rdonly(sb)) 1038 ext4_commit_super(sb, 1); 1039 1040 rcu_read_lock(); 1041 group_desc = rcu_dereference(sbi->s_group_desc); 1042 for (i = 0; i < sbi->s_gdb_count; i++) 1043 brelse(group_desc[i]); 1044 kvfree(group_desc); 1045 flex_groups = rcu_dereference(sbi->s_flex_groups); 1046 if (flex_groups) { 1047 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1048 kvfree(flex_groups[i]); 1049 kvfree(flex_groups); 1050 } 1051 rcu_read_unlock(); 1052 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1053 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1054 percpu_counter_destroy(&sbi->s_dirs_counter); 1055 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1056 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1057 #ifdef CONFIG_QUOTA 1058 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1059 kfree(get_qf_name(sb, sbi, i)); 1060 #endif 1061 1062 /* Debugging code just in case the in-memory inode orphan list 1063 * isn't empty. The on-disk one can be non-empty if we've 1064 * detected an error and taken the fs readonly, but the 1065 * in-memory list had better be clean by this point. */ 1066 if (!list_empty(&sbi->s_orphan)) 1067 dump_orphan_list(sb, sbi); 1068 J_ASSERT(list_empty(&sbi->s_orphan)); 1069 1070 sync_blockdev(sb->s_bdev); 1071 invalidate_bdev(sb->s_bdev); 1072 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 1073 /* 1074 * Invalidate the journal device's buffers. We don't want them 1075 * floating about in memory - the physical journal device may 1076 * hotswapped, and it breaks the `ro-after' testing code. 1077 */ 1078 sync_blockdev(sbi->journal_bdev); 1079 invalidate_bdev(sbi->journal_bdev); 1080 ext4_blkdev_remove(sbi); 1081 } 1082 1083 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1084 sbi->s_ea_inode_cache = NULL; 1085 1086 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1087 sbi->s_ea_block_cache = NULL; 1088 1089 if (sbi->s_mmp_tsk) 1090 kthread_stop(sbi->s_mmp_tsk); 1091 brelse(sbi->s_sbh); 1092 sb->s_fs_info = NULL; 1093 /* 1094 * Now that we are completely done shutting down the 1095 * superblock, we need to actually destroy the kobject. 1096 */ 1097 kobject_put(&sbi->s_kobj); 1098 wait_for_completion(&sbi->s_kobj_unregister); 1099 if (sbi->s_chksum_driver) 1100 crypto_free_shash(sbi->s_chksum_driver); 1101 kfree(sbi->s_blockgroup_lock); 1102 fs_put_dax(sbi->s_daxdev); 1103 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx); 1104 #ifdef CONFIG_UNICODE 1105 utf8_unload(sbi->s_encoding); 1106 #endif 1107 kfree(sbi); 1108 } 1109 1110 static struct kmem_cache *ext4_inode_cachep; 1111 1112 /* 1113 * Called inside transaction, so use GFP_NOFS 1114 */ 1115 static struct inode *ext4_alloc_inode(struct super_block *sb) 1116 { 1117 struct ext4_inode_info *ei; 1118 1119 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1120 if (!ei) 1121 return NULL; 1122 1123 inode_set_iversion(&ei->vfs_inode, 1); 1124 spin_lock_init(&ei->i_raw_lock); 1125 INIT_LIST_HEAD(&ei->i_prealloc_list); 1126 spin_lock_init(&ei->i_prealloc_lock); 1127 ext4_es_init_tree(&ei->i_es_tree); 1128 rwlock_init(&ei->i_es_lock); 1129 INIT_LIST_HEAD(&ei->i_es_list); 1130 ei->i_es_all_nr = 0; 1131 ei->i_es_shk_nr = 0; 1132 ei->i_es_shrink_lblk = 0; 1133 ei->i_reserved_data_blocks = 0; 1134 spin_lock_init(&(ei->i_block_reservation_lock)); 1135 ext4_init_pending_tree(&ei->i_pending_tree); 1136 #ifdef CONFIG_QUOTA 1137 ei->i_reserved_quota = 0; 1138 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1139 #endif 1140 ei->jinode = NULL; 1141 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1142 spin_lock_init(&ei->i_completed_io_lock); 1143 ei->i_sync_tid = 0; 1144 ei->i_datasync_tid = 0; 1145 atomic_set(&ei->i_unwritten, 0); 1146 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1147 return &ei->vfs_inode; 1148 } 1149 1150 static int ext4_drop_inode(struct inode *inode) 1151 { 1152 int drop = generic_drop_inode(inode); 1153 1154 if (!drop) 1155 drop = fscrypt_drop_inode(inode); 1156 1157 trace_ext4_drop_inode(inode, drop); 1158 return drop; 1159 } 1160 1161 static void ext4_free_in_core_inode(struct inode *inode) 1162 { 1163 fscrypt_free_inode(inode); 1164 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1165 } 1166 1167 static void ext4_destroy_inode(struct inode *inode) 1168 { 1169 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1170 ext4_msg(inode->i_sb, KERN_ERR, 1171 "Inode %lu (%p): orphan list check failed!", 1172 inode->i_ino, EXT4_I(inode)); 1173 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1174 EXT4_I(inode), sizeof(struct ext4_inode_info), 1175 true); 1176 dump_stack(); 1177 } 1178 } 1179 1180 static void init_once(void *foo) 1181 { 1182 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1183 1184 INIT_LIST_HEAD(&ei->i_orphan); 1185 init_rwsem(&ei->xattr_sem); 1186 init_rwsem(&ei->i_data_sem); 1187 init_rwsem(&ei->i_mmap_sem); 1188 inode_init_once(&ei->vfs_inode); 1189 } 1190 1191 static int __init init_inodecache(void) 1192 { 1193 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1194 sizeof(struct ext4_inode_info), 0, 1195 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1196 SLAB_ACCOUNT), 1197 offsetof(struct ext4_inode_info, i_data), 1198 sizeof_field(struct ext4_inode_info, i_data), 1199 init_once); 1200 if (ext4_inode_cachep == NULL) 1201 return -ENOMEM; 1202 return 0; 1203 } 1204 1205 static void destroy_inodecache(void) 1206 { 1207 /* 1208 * Make sure all delayed rcu free inodes are flushed before we 1209 * destroy cache. 1210 */ 1211 rcu_barrier(); 1212 kmem_cache_destroy(ext4_inode_cachep); 1213 } 1214 1215 void ext4_clear_inode(struct inode *inode) 1216 { 1217 invalidate_inode_buffers(inode); 1218 clear_inode(inode); 1219 ext4_discard_preallocations(inode); 1220 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1221 dquot_drop(inode); 1222 if (EXT4_I(inode)->jinode) { 1223 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1224 EXT4_I(inode)->jinode); 1225 jbd2_free_inode(EXT4_I(inode)->jinode); 1226 EXT4_I(inode)->jinode = NULL; 1227 } 1228 fscrypt_put_encryption_info(inode); 1229 fsverity_cleanup_inode(inode); 1230 } 1231 1232 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1233 u64 ino, u32 generation) 1234 { 1235 struct inode *inode; 1236 1237 /* 1238 * Currently we don't know the generation for parent directory, so 1239 * a generation of 0 means "accept any" 1240 */ 1241 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1242 if (IS_ERR(inode)) 1243 return ERR_CAST(inode); 1244 if (generation && inode->i_generation != generation) { 1245 iput(inode); 1246 return ERR_PTR(-ESTALE); 1247 } 1248 1249 return inode; 1250 } 1251 1252 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1253 int fh_len, int fh_type) 1254 { 1255 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1256 ext4_nfs_get_inode); 1257 } 1258 1259 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1260 int fh_len, int fh_type) 1261 { 1262 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1263 ext4_nfs_get_inode); 1264 } 1265 1266 static int ext4_nfs_commit_metadata(struct inode *inode) 1267 { 1268 struct writeback_control wbc = { 1269 .sync_mode = WB_SYNC_ALL 1270 }; 1271 1272 trace_ext4_nfs_commit_metadata(inode); 1273 return ext4_write_inode(inode, &wbc); 1274 } 1275 1276 /* 1277 * Try to release metadata pages (indirect blocks, directories) which are 1278 * mapped via the block device. Since these pages could have journal heads 1279 * which would prevent try_to_free_buffers() from freeing them, we must use 1280 * jbd2 layer's try_to_free_buffers() function to release them. 1281 */ 1282 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1283 gfp_t wait) 1284 { 1285 journal_t *journal = EXT4_SB(sb)->s_journal; 1286 1287 WARN_ON(PageChecked(page)); 1288 if (!page_has_buffers(page)) 1289 return 0; 1290 if (journal) 1291 return jbd2_journal_try_to_free_buffers(journal, page, 1292 wait & ~__GFP_DIRECT_RECLAIM); 1293 return try_to_free_buffers(page); 1294 } 1295 1296 #ifdef CONFIG_FS_ENCRYPTION 1297 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1298 { 1299 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1300 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1301 } 1302 1303 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1304 void *fs_data) 1305 { 1306 handle_t *handle = fs_data; 1307 int res, res2, credits, retries = 0; 1308 1309 /* 1310 * Encrypting the root directory is not allowed because e2fsck expects 1311 * lost+found to exist and be unencrypted, and encrypting the root 1312 * directory would imply encrypting the lost+found directory as well as 1313 * the filename "lost+found" itself. 1314 */ 1315 if (inode->i_ino == EXT4_ROOT_INO) 1316 return -EPERM; 1317 1318 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1319 return -EINVAL; 1320 1321 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1322 return -EOPNOTSUPP; 1323 1324 res = ext4_convert_inline_data(inode); 1325 if (res) 1326 return res; 1327 1328 /* 1329 * If a journal handle was specified, then the encryption context is 1330 * being set on a new inode via inheritance and is part of a larger 1331 * transaction to create the inode. Otherwise the encryption context is 1332 * being set on an existing inode in its own transaction. Only in the 1333 * latter case should the "retry on ENOSPC" logic be used. 1334 */ 1335 1336 if (handle) { 1337 res = ext4_xattr_set_handle(handle, inode, 1338 EXT4_XATTR_INDEX_ENCRYPTION, 1339 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1340 ctx, len, 0); 1341 if (!res) { 1342 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1343 ext4_clear_inode_state(inode, 1344 EXT4_STATE_MAY_INLINE_DATA); 1345 /* 1346 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1347 * S_DAX may be disabled 1348 */ 1349 ext4_set_inode_flags(inode, false); 1350 } 1351 return res; 1352 } 1353 1354 res = dquot_initialize(inode); 1355 if (res) 1356 return res; 1357 retry: 1358 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1359 &credits); 1360 if (res) 1361 return res; 1362 1363 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1364 if (IS_ERR(handle)) 1365 return PTR_ERR(handle); 1366 1367 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1368 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1369 ctx, len, 0); 1370 if (!res) { 1371 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1372 /* 1373 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1374 * S_DAX may be disabled 1375 */ 1376 ext4_set_inode_flags(inode, false); 1377 res = ext4_mark_inode_dirty(handle, inode); 1378 if (res) 1379 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1380 } 1381 res2 = ext4_journal_stop(handle); 1382 1383 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1384 goto retry; 1385 if (!res) 1386 res = res2; 1387 return res; 1388 } 1389 1390 static const union fscrypt_context * 1391 ext4_get_dummy_context(struct super_block *sb) 1392 { 1393 return EXT4_SB(sb)->s_dummy_enc_ctx.ctx; 1394 } 1395 1396 static bool ext4_has_stable_inodes(struct super_block *sb) 1397 { 1398 return ext4_has_feature_stable_inodes(sb); 1399 } 1400 1401 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1402 int *ino_bits_ret, int *lblk_bits_ret) 1403 { 1404 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1405 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1406 } 1407 1408 static const struct fscrypt_operations ext4_cryptops = { 1409 .key_prefix = "ext4:", 1410 .get_context = ext4_get_context, 1411 .set_context = ext4_set_context, 1412 .get_dummy_context = ext4_get_dummy_context, 1413 .empty_dir = ext4_empty_dir, 1414 .max_namelen = EXT4_NAME_LEN, 1415 .has_stable_inodes = ext4_has_stable_inodes, 1416 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1417 }; 1418 #endif 1419 1420 #ifdef CONFIG_QUOTA 1421 static const char * const quotatypes[] = INITQFNAMES; 1422 #define QTYPE2NAME(t) (quotatypes[t]) 1423 1424 static int ext4_write_dquot(struct dquot *dquot); 1425 static int ext4_acquire_dquot(struct dquot *dquot); 1426 static int ext4_release_dquot(struct dquot *dquot); 1427 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1428 static int ext4_write_info(struct super_block *sb, int type); 1429 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1430 const struct path *path); 1431 static int ext4_quota_on_mount(struct super_block *sb, int type); 1432 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1433 size_t len, loff_t off); 1434 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1435 const char *data, size_t len, loff_t off); 1436 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1437 unsigned int flags); 1438 static int ext4_enable_quotas(struct super_block *sb); 1439 1440 static struct dquot **ext4_get_dquots(struct inode *inode) 1441 { 1442 return EXT4_I(inode)->i_dquot; 1443 } 1444 1445 static const struct dquot_operations ext4_quota_operations = { 1446 .get_reserved_space = ext4_get_reserved_space, 1447 .write_dquot = ext4_write_dquot, 1448 .acquire_dquot = ext4_acquire_dquot, 1449 .release_dquot = ext4_release_dquot, 1450 .mark_dirty = ext4_mark_dquot_dirty, 1451 .write_info = ext4_write_info, 1452 .alloc_dquot = dquot_alloc, 1453 .destroy_dquot = dquot_destroy, 1454 .get_projid = ext4_get_projid, 1455 .get_inode_usage = ext4_get_inode_usage, 1456 .get_next_id = dquot_get_next_id, 1457 }; 1458 1459 static const struct quotactl_ops ext4_qctl_operations = { 1460 .quota_on = ext4_quota_on, 1461 .quota_off = ext4_quota_off, 1462 .quota_sync = dquot_quota_sync, 1463 .get_state = dquot_get_state, 1464 .set_info = dquot_set_dqinfo, 1465 .get_dqblk = dquot_get_dqblk, 1466 .set_dqblk = dquot_set_dqblk, 1467 .get_nextdqblk = dquot_get_next_dqblk, 1468 }; 1469 #endif 1470 1471 static const struct super_operations ext4_sops = { 1472 .alloc_inode = ext4_alloc_inode, 1473 .free_inode = ext4_free_in_core_inode, 1474 .destroy_inode = ext4_destroy_inode, 1475 .write_inode = ext4_write_inode, 1476 .dirty_inode = ext4_dirty_inode, 1477 .drop_inode = ext4_drop_inode, 1478 .evict_inode = ext4_evict_inode, 1479 .put_super = ext4_put_super, 1480 .sync_fs = ext4_sync_fs, 1481 .freeze_fs = ext4_freeze, 1482 .unfreeze_fs = ext4_unfreeze, 1483 .statfs = ext4_statfs, 1484 .remount_fs = ext4_remount, 1485 .show_options = ext4_show_options, 1486 #ifdef CONFIG_QUOTA 1487 .quota_read = ext4_quota_read, 1488 .quota_write = ext4_quota_write, 1489 .get_dquots = ext4_get_dquots, 1490 #endif 1491 .bdev_try_to_free_page = bdev_try_to_free_page, 1492 }; 1493 1494 static const struct export_operations ext4_export_ops = { 1495 .fh_to_dentry = ext4_fh_to_dentry, 1496 .fh_to_parent = ext4_fh_to_parent, 1497 .get_parent = ext4_get_parent, 1498 .commit_metadata = ext4_nfs_commit_metadata, 1499 }; 1500 1501 enum { 1502 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1503 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1504 Opt_nouid32, Opt_debug, Opt_removed, 1505 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1506 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1507 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1508 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1509 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1510 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1511 Opt_inlinecrypt, 1512 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1513 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1514 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1515 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1516 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1517 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1518 Opt_nowarn_on_error, Opt_mblk_io_submit, 1519 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1520 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1521 Opt_inode_readahead_blks, Opt_journal_ioprio, 1522 Opt_dioread_nolock, Opt_dioread_lock, 1523 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1524 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1525 }; 1526 1527 static const match_table_t tokens = { 1528 {Opt_bsd_df, "bsddf"}, 1529 {Opt_minix_df, "minixdf"}, 1530 {Opt_grpid, "grpid"}, 1531 {Opt_grpid, "bsdgroups"}, 1532 {Opt_nogrpid, "nogrpid"}, 1533 {Opt_nogrpid, "sysvgroups"}, 1534 {Opt_resgid, "resgid=%u"}, 1535 {Opt_resuid, "resuid=%u"}, 1536 {Opt_sb, "sb=%u"}, 1537 {Opt_err_cont, "errors=continue"}, 1538 {Opt_err_panic, "errors=panic"}, 1539 {Opt_err_ro, "errors=remount-ro"}, 1540 {Opt_nouid32, "nouid32"}, 1541 {Opt_debug, "debug"}, 1542 {Opt_removed, "oldalloc"}, 1543 {Opt_removed, "orlov"}, 1544 {Opt_user_xattr, "user_xattr"}, 1545 {Opt_nouser_xattr, "nouser_xattr"}, 1546 {Opt_acl, "acl"}, 1547 {Opt_noacl, "noacl"}, 1548 {Opt_noload, "norecovery"}, 1549 {Opt_noload, "noload"}, 1550 {Opt_removed, "nobh"}, 1551 {Opt_removed, "bh"}, 1552 {Opt_commit, "commit=%u"}, 1553 {Opt_min_batch_time, "min_batch_time=%u"}, 1554 {Opt_max_batch_time, "max_batch_time=%u"}, 1555 {Opt_journal_dev, "journal_dev=%u"}, 1556 {Opt_journal_path, "journal_path=%s"}, 1557 {Opt_journal_checksum, "journal_checksum"}, 1558 {Opt_nojournal_checksum, "nojournal_checksum"}, 1559 {Opt_journal_async_commit, "journal_async_commit"}, 1560 {Opt_abort, "abort"}, 1561 {Opt_data_journal, "data=journal"}, 1562 {Opt_data_ordered, "data=ordered"}, 1563 {Opt_data_writeback, "data=writeback"}, 1564 {Opt_data_err_abort, "data_err=abort"}, 1565 {Opt_data_err_ignore, "data_err=ignore"}, 1566 {Opt_offusrjquota, "usrjquota="}, 1567 {Opt_usrjquota, "usrjquota=%s"}, 1568 {Opt_offgrpjquota, "grpjquota="}, 1569 {Opt_grpjquota, "grpjquota=%s"}, 1570 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1571 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1572 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1573 {Opt_grpquota, "grpquota"}, 1574 {Opt_noquota, "noquota"}, 1575 {Opt_quota, "quota"}, 1576 {Opt_usrquota, "usrquota"}, 1577 {Opt_prjquota, "prjquota"}, 1578 {Opt_barrier, "barrier=%u"}, 1579 {Opt_barrier, "barrier"}, 1580 {Opt_nobarrier, "nobarrier"}, 1581 {Opt_i_version, "i_version"}, 1582 {Opt_dax, "dax"}, 1583 {Opt_dax_always, "dax=always"}, 1584 {Opt_dax_inode, "dax=inode"}, 1585 {Opt_dax_never, "dax=never"}, 1586 {Opt_stripe, "stripe=%u"}, 1587 {Opt_delalloc, "delalloc"}, 1588 {Opt_warn_on_error, "warn_on_error"}, 1589 {Opt_nowarn_on_error, "nowarn_on_error"}, 1590 {Opt_lazytime, "lazytime"}, 1591 {Opt_nolazytime, "nolazytime"}, 1592 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1593 {Opt_nodelalloc, "nodelalloc"}, 1594 {Opt_removed, "mblk_io_submit"}, 1595 {Opt_removed, "nomblk_io_submit"}, 1596 {Opt_block_validity, "block_validity"}, 1597 {Opt_noblock_validity, "noblock_validity"}, 1598 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1599 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1600 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1601 {Opt_auto_da_alloc, "auto_da_alloc"}, 1602 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1603 {Opt_dioread_nolock, "dioread_nolock"}, 1604 {Opt_dioread_lock, "nodioread_nolock"}, 1605 {Opt_dioread_lock, "dioread_lock"}, 1606 {Opt_discard, "discard"}, 1607 {Opt_nodiscard, "nodiscard"}, 1608 {Opt_init_itable, "init_itable=%u"}, 1609 {Opt_init_itable, "init_itable"}, 1610 {Opt_noinit_itable, "noinit_itable"}, 1611 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1612 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1613 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1614 {Opt_inlinecrypt, "inlinecrypt"}, 1615 {Opt_nombcache, "nombcache"}, 1616 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1617 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1618 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1619 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1620 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1621 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1622 {Opt_err, NULL}, 1623 }; 1624 1625 static ext4_fsblk_t get_sb_block(void **data) 1626 { 1627 ext4_fsblk_t sb_block; 1628 char *options = (char *) *data; 1629 1630 if (!options || strncmp(options, "sb=", 3) != 0) 1631 return 1; /* Default location */ 1632 1633 options += 3; 1634 /* TODO: use simple_strtoll with >32bit ext4 */ 1635 sb_block = simple_strtoul(options, &options, 0); 1636 if (*options && *options != ',') { 1637 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1638 (char *) *data); 1639 return 1; 1640 } 1641 if (*options == ',') 1642 options++; 1643 *data = (void *) options; 1644 1645 return sb_block; 1646 } 1647 1648 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1649 static const char deprecated_msg[] = 1650 "Mount option \"%s\" will be removed by %s\n" 1651 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1652 1653 #ifdef CONFIG_QUOTA 1654 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1655 { 1656 struct ext4_sb_info *sbi = EXT4_SB(sb); 1657 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1658 int ret = -1; 1659 1660 if (sb_any_quota_loaded(sb) && !old_qname) { 1661 ext4_msg(sb, KERN_ERR, 1662 "Cannot change journaled " 1663 "quota options when quota turned on"); 1664 return -1; 1665 } 1666 if (ext4_has_feature_quota(sb)) { 1667 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1668 "ignored when QUOTA feature is enabled"); 1669 return 1; 1670 } 1671 qname = match_strdup(args); 1672 if (!qname) { 1673 ext4_msg(sb, KERN_ERR, 1674 "Not enough memory for storing quotafile name"); 1675 return -1; 1676 } 1677 if (old_qname) { 1678 if (strcmp(old_qname, qname) == 0) 1679 ret = 1; 1680 else 1681 ext4_msg(sb, KERN_ERR, 1682 "%s quota file already specified", 1683 QTYPE2NAME(qtype)); 1684 goto errout; 1685 } 1686 if (strchr(qname, '/')) { 1687 ext4_msg(sb, KERN_ERR, 1688 "quotafile must be on filesystem root"); 1689 goto errout; 1690 } 1691 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1692 set_opt(sb, QUOTA); 1693 return 1; 1694 errout: 1695 kfree(qname); 1696 return ret; 1697 } 1698 1699 static int clear_qf_name(struct super_block *sb, int qtype) 1700 { 1701 1702 struct ext4_sb_info *sbi = EXT4_SB(sb); 1703 char *old_qname = get_qf_name(sb, sbi, qtype); 1704 1705 if (sb_any_quota_loaded(sb) && old_qname) { 1706 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1707 " when quota turned on"); 1708 return -1; 1709 } 1710 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1711 synchronize_rcu(); 1712 kfree(old_qname); 1713 return 1; 1714 } 1715 #endif 1716 1717 #define MOPT_SET 0x0001 1718 #define MOPT_CLEAR 0x0002 1719 #define MOPT_NOSUPPORT 0x0004 1720 #define MOPT_EXPLICIT 0x0008 1721 #define MOPT_CLEAR_ERR 0x0010 1722 #define MOPT_GTE0 0x0020 1723 #ifdef CONFIG_QUOTA 1724 #define MOPT_Q 0 1725 #define MOPT_QFMT 0x0040 1726 #else 1727 #define MOPT_Q MOPT_NOSUPPORT 1728 #define MOPT_QFMT MOPT_NOSUPPORT 1729 #endif 1730 #define MOPT_DATAJ 0x0080 1731 #define MOPT_NO_EXT2 0x0100 1732 #define MOPT_NO_EXT3 0x0200 1733 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1734 #define MOPT_STRING 0x0400 1735 #define MOPT_SKIP 0x0800 1736 1737 static const struct mount_opts { 1738 int token; 1739 int mount_opt; 1740 int flags; 1741 } ext4_mount_opts[] = { 1742 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1743 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1744 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1745 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1746 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1747 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1748 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1749 MOPT_EXT4_ONLY | MOPT_SET}, 1750 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1751 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1752 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1753 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1754 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1755 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1756 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1757 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1758 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1759 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1760 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1761 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1762 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1763 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1764 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1765 EXT4_MOUNT_JOURNAL_CHECKSUM), 1766 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1767 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1768 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1769 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1770 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1771 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1772 MOPT_NO_EXT2}, 1773 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1774 MOPT_NO_EXT2}, 1775 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1776 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1777 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1778 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1779 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1780 {Opt_commit, 0, MOPT_GTE0}, 1781 {Opt_max_batch_time, 0, MOPT_GTE0}, 1782 {Opt_min_batch_time, 0, MOPT_GTE0}, 1783 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1784 {Opt_init_itable, 0, MOPT_GTE0}, 1785 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1786 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1787 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1788 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1789 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1790 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1791 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1792 {Opt_stripe, 0, MOPT_GTE0}, 1793 {Opt_resuid, 0, MOPT_GTE0}, 1794 {Opt_resgid, 0, MOPT_GTE0}, 1795 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1796 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1797 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1798 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1799 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1800 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1801 MOPT_NO_EXT2 | MOPT_DATAJ}, 1802 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1803 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1804 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1805 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1806 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1807 #else 1808 {Opt_acl, 0, MOPT_NOSUPPORT}, 1809 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1810 #endif 1811 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1812 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1813 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1814 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1815 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1816 MOPT_SET | MOPT_Q}, 1817 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1818 MOPT_SET | MOPT_Q}, 1819 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1820 MOPT_SET | MOPT_Q}, 1821 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1822 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1823 MOPT_CLEAR | MOPT_Q}, 1824 {Opt_usrjquota, 0, MOPT_Q}, 1825 {Opt_grpjquota, 0, MOPT_Q}, 1826 {Opt_offusrjquota, 0, MOPT_Q}, 1827 {Opt_offgrpjquota, 0, MOPT_Q}, 1828 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1829 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1830 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1831 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1832 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 1833 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1834 {Opt_err, 0, 0} 1835 }; 1836 1837 #ifdef CONFIG_UNICODE 1838 static const struct ext4_sb_encodings { 1839 __u16 magic; 1840 char *name; 1841 char *version; 1842 } ext4_sb_encoding_map[] = { 1843 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 1844 }; 1845 1846 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 1847 const struct ext4_sb_encodings **encoding, 1848 __u16 *flags) 1849 { 1850 __u16 magic = le16_to_cpu(es->s_encoding); 1851 int i; 1852 1853 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 1854 if (magic == ext4_sb_encoding_map[i].magic) 1855 break; 1856 1857 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 1858 return -EINVAL; 1859 1860 *encoding = &ext4_sb_encoding_map[i]; 1861 *flags = le16_to_cpu(es->s_encoding_flags); 1862 1863 return 0; 1864 } 1865 #endif 1866 1867 static int ext4_set_test_dummy_encryption(struct super_block *sb, 1868 const char *opt, 1869 const substring_t *arg, 1870 bool is_remount) 1871 { 1872 #ifdef CONFIG_FS_ENCRYPTION 1873 struct ext4_sb_info *sbi = EXT4_SB(sb); 1874 int err; 1875 1876 /* 1877 * This mount option is just for testing, and it's not worthwhile to 1878 * implement the extra complexity (e.g. RCU protection) that would be 1879 * needed to allow it to be set or changed during remount. We do allow 1880 * it to be specified during remount, but only if there is no change. 1881 */ 1882 if (is_remount && !sbi->s_dummy_enc_ctx.ctx) { 1883 ext4_msg(sb, KERN_WARNING, 1884 "Can't set test_dummy_encryption on remount"); 1885 return -1; 1886 } 1887 err = fscrypt_set_test_dummy_encryption(sb, arg, &sbi->s_dummy_enc_ctx); 1888 if (err) { 1889 if (err == -EEXIST) 1890 ext4_msg(sb, KERN_WARNING, 1891 "Can't change test_dummy_encryption on remount"); 1892 else if (err == -EINVAL) 1893 ext4_msg(sb, KERN_WARNING, 1894 "Value of option \"%s\" is unrecognized", opt); 1895 else 1896 ext4_msg(sb, KERN_WARNING, 1897 "Error processing option \"%s\" [%d]", 1898 opt, err); 1899 return -1; 1900 } 1901 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 1902 #else 1903 ext4_msg(sb, KERN_WARNING, 1904 "Test dummy encryption mount option ignored"); 1905 #endif 1906 return 1; 1907 } 1908 1909 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1910 substring_t *args, unsigned long *journal_devnum, 1911 unsigned int *journal_ioprio, int is_remount) 1912 { 1913 struct ext4_sb_info *sbi = EXT4_SB(sb); 1914 const struct mount_opts *m; 1915 kuid_t uid; 1916 kgid_t gid; 1917 int arg = 0; 1918 1919 #ifdef CONFIG_QUOTA 1920 if (token == Opt_usrjquota) 1921 return set_qf_name(sb, USRQUOTA, &args[0]); 1922 else if (token == Opt_grpjquota) 1923 return set_qf_name(sb, GRPQUOTA, &args[0]); 1924 else if (token == Opt_offusrjquota) 1925 return clear_qf_name(sb, USRQUOTA); 1926 else if (token == Opt_offgrpjquota) 1927 return clear_qf_name(sb, GRPQUOTA); 1928 #endif 1929 switch (token) { 1930 case Opt_noacl: 1931 case Opt_nouser_xattr: 1932 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1933 break; 1934 case Opt_sb: 1935 return 1; /* handled by get_sb_block() */ 1936 case Opt_removed: 1937 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1938 return 1; 1939 case Opt_abort: 1940 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1941 return 1; 1942 case Opt_i_version: 1943 sb->s_flags |= SB_I_VERSION; 1944 return 1; 1945 case Opt_lazytime: 1946 sb->s_flags |= SB_LAZYTIME; 1947 return 1; 1948 case Opt_nolazytime: 1949 sb->s_flags &= ~SB_LAZYTIME; 1950 return 1; 1951 case Opt_inlinecrypt: 1952 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1953 sb->s_flags |= SB_INLINECRYPT; 1954 #else 1955 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 1956 #endif 1957 return 1; 1958 } 1959 1960 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1961 if (token == m->token) 1962 break; 1963 1964 if (m->token == Opt_err) { 1965 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1966 "or missing value", opt); 1967 return -1; 1968 } 1969 1970 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1971 ext4_msg(sb, KERN_ERR, 1972 "Mount option \"%s\" incompatible with ext2", opt); 1973 return -1; 1974 } 1975 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1976 ext4_msg(sb, KERN_ERR, 1977 "Mount option \"%s\" incompatible with ext3", opt); 1978 return -1; 1979 } 1980 1981 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1982 return -1; 1983 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1984 return -1; 1985 if (m->flags & MOPT_EXPLICIT) { 1986 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1987 set_opt2(sb, EXPLICIT_DELALLOC); 1988 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1989 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1990 } else 1991 return -1; 1992 } 1993 if (m->flags & MOPT_CLEAR_ERR) 1994 clear_opt(sb, ERRORS_MASK); 1995 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1996 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1997 "options when quota turned on"); 1998 return -1; 1999 } 2000 2001 if (m->flags & MOPT_NOSUPPORT) { 2002 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2003 } else if (token == Opt_commit) { 2004 if (arg == 0) 2005 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2006 else if (arg > INT_MAX / HZ) { 2007 ext4_msg(sb, KERN_ERR, 2008 "Invalid commit interval %d, " 2009 "must be smaller than %d", 2010 arg, INT_MAX / HZ); 2011 return -1; 2012 } 2013 sbi->s_commit_interval = HZ * arg; 2014 } else if (token == Opt_debug_want_extra_isize) { 2015 if ((arg & 1) || 2016 (arg < 4) || 2017 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2018 ext4_msg(sb, KERN_ERR, 2019 "Invalid want_extra_isize %d", arg); 2020 return -1; 2021 } 2022 sbi->s_want_extra_isize = arg; 2023 } else if (token == Opt_max_batch_time) { 2024 sbi->s_max_batch_time = arg; 2025 } else if (token == Opt_min_batch_time) { 2026 sbi->s_min_batch_time = arg; 2027 } else if (token == Opt_inode_readahead_blks) { 2028 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2029 ext4_msg(sb, KERN_ERR, 2030 "EXT4-fs: inode_readahead_blks must be " 2031 "0 or a power of 2 smaller than 2^31"); 2032 return -1; 2033 } 2034 sbi->s_inode_readahead_blks = arg; 2035 } else if (token == Opt_init_itable) { 2036 set_opt(sb, INIT_INODE_TABLE); 2037 if (!args->from) 2038 arg = EXT4_DEF_LI_WAIT_MULT; 2039 sbi->s_li_wait_mult = arg; 2040 } else if (token == Opt_max_dir_size_kb) { 2041 sbi->s_max_dir_size_kb = arg; 2042 } else if (token == Opt_stripe) { 2043 sbi->s_stripe = arg; 2044 } else if (token == Opt_resuid) { 2045 uid = make_kuid(current_user_ns(), arg); 2046 if (!uid_valid(uid)) { 2047 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2048 return -1; 2049 } 2050 sbi->s_resuid = uid; 2051 } else if (token == Opt_resgid) { 2052 gid = make_kgid(current_user_ns(), arg); 2053 if (!gid_valid(gid)) { 2054 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2055 return -1; 2056 } 2057 sbi->s_resgid = gid; 2058 } else if (token == Opt_journal_dev) { 2059 if (is_remount) { 2060 ext4_msg(sb, KERN_ERR, 2061 "Cannot specify journal on remount"); 2062 return -1; 2063 } 2064 *journal_devnum = arg; 2065 } else if (token == Opt_journal_path) { 2066 char *journal_path; 2067 struct inode *journal_inode; 2068 struct path path; 2069 int error; 2070 2071 if (is_remount) { 2072 ext4_msg(sb, KERN_ERR, 2073 "Cannot specify journal on remount"); 2074 return -1; 2075 } 2076 journal_path = match_strdup(&args[0]); 2077 if (!journal_path) { 2078 ext4_msg(sb, KERN_ERR, "error: could not dup " 2079 "journal device string"); 2080 return -1; 2081 } 2082 2083 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2084 if (error) { 2085 ext4_msg(sb, KERN_ERR, "error: could not find " 2086 "journal device path: error %d", error); 2087 kfree(journal_path); 2088 return -1; 2089 } 2090 2091 journal_inode = d_inode(path.dentry); 2092 if (!S_ISBLK(journal_inode->i_mode)) { 2093 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2094 "is not a block device", journal_path); 2095 path_put(&path); 2096 kfree(journal_path); 2097 return -1; 2098 } 2099 2100 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 2101 path_put(&path); 2102 kfree(journal_path); 2103 } else if (token == Opt_journal_ioprio) { 2104 if (arg > 7) { 2105 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2106 " (must be 0-7)"); 2107 return -1; 2108 } 2109 *journal_ioprio = 2110 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2111 } else if (token == Opt_test_dummy_encryption) { 2112 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2113 is_remount); 2114 } else if (m->flags & MOPT_DATAJ) { 2115 if (is_remount) { 2116 if (!sbi->s_journal) 2117 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2118 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2119 ext4_msg(sb, KERN_ERR, 2120 "Cannot change data mode on remount"); 2121 return -1; 2122 } 2123 } else { 2124 clear_opt(sb, DATA_FLAGS); 2125 sbi->s_mount_opt |= m->mount_opt; 2126 } 2127 #ifdef CONFIG_QUOTA 2128 } else if (m->flags & MOPT_QFMT) { 2129 if (sb_any_quota_loaded(sb) && 2130 sbi->s_jquota_fmt != m->mount_opt) { 2131 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2132 "quota options when quota turned on"); 2133 return -1; 2134 } 2135 if (ext4_has_feature_quota(sb)) { 2136 ext4_msg(sb, KERN_INFO, 2137 "Quota format mount options ignored " 2138 "when QUOTA feature is enabled"); 2139 return 1; 2140 } 2141 sbi->s_jquota_fmt = m->mount_opt; 2142 #endif 2143 } else if (token == Opt_dax || token == Opt_dax_always || 2144 token == Opt_dax_inode || token == Opt_dax_never) { 2145 #ifdef CONFIG_FS_DAX 2146 switch (token) { 2147 case Opt_dax: 2148 case Opt_dax_always: 2149 if (is_remount && 2150 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2151 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2152 fail_dax_change_remount: 2153 ext4_msg(sb, KERN_ERR, "can't change " 2154 "dax mount option while remounting"); 2155 return -1; 2156 } 2157 if (is_remount && 2158 (test_opt(sb, DATA_FLAGS) == 2159 EXT4_MOUNT_JOURNAL_DATA)) { 2160 ext4_msg(sb, KERN_ERR, "can't mount with " 2161 "both data=journal and dax"); 2162 return -1; 2163 } 2164 ext4_msg(sb, KERN_WARNING, 2165 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2166 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2167 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2168 break; 2169 case Opt_dax_never: 2170 if (is_remount && 2171 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2172 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2173 goto fail_dax_change_remount; 2174 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2175 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2176 break; 2177 case Opt_dax_inode: 2178 if (is_remount && 2179 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2180 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2181 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2182 goto fail_dax_change_remount; 2183 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2184 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2185 /* Strictly for printing options */ 2186 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2187 break; 2188 } 2189 #else 2190 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2191 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2192 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2193 return -1; 2194 #endif 2195 } else if (token == Opt_data_err_abort) { 2196 sbi->s_mount_opt |= m->mount_opt; 2197 } else if (token == Opt_data_err_ignore) { 2198 sbi->s_mount_opt &= ~m->mount_opt; 2199 } else { 2200 if (!args->from) 2201 arg = 1; 2202 if (m->flags & MOPT_CLEAR) 2203 arg = !arg; 2204 else if (unlikely(!(m->flags & MOPT_SET))) { 2205 ext4_msg(sb, KERN_WARNING, 2206 "buggy handling of option %s", opt); 2207 WARN_ON(1); 2208 return -1; 2209 } 2210 if (arg != 0) 2211 sbi->s_mount_opt |= m->mount_opt; 2212 else 2213 sbi->s_mount_opt &= ~m->mount_opt; 2214 } 2215 return 1; 2216 } 2217 2218 static int parse_options(char *options, struct super_block *sb, 2219 unsigned long *journal_devnum, 2220 unsigned int *journal_ioprio, 2221 int is_remount) 2222 { 2223 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2224 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2225 substring_t args[MAX_OPT_ARGS]; 2226 int token; 2227 2228 if (!options) 2229 return 1; 2230 2231 while ((p = strsep(&options, ",")) != NULL) { 2232 if (!*p) 2233 continue; 2234 /* 2235 * Initialize args struct so we know whether arg was 2236 * found; some options take optional arguments. 2237 */ 2238 args[0].to = args[0].from = NULL; 2239 token = match_token(p, tokens, args); 2240 if (handle_mount_opt(sb, p, token, args, journal_devnum, 2241 journal_ioprio, is_remount) < 0) 2242 return 0; 2243 } 2244 #ifdef CONFIG_QUOTA 2245 /* 2246 * We do the test below only for project quotas. 'usrquota' and 2247 * 'grpquota' mount options are allowed even without quota feature 2248 * to support legacy quotas in quota files. 2249 */ 2250 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2251 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2252 "Cannot enable project quota enforcement."); 2253 return 0; 2254 } 2255 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2256 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2257 if (usr_qf_name || grp_qf_name) { 2258 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2259 clear_opt(sb, USRQUOTA); 2260 2261 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2262 clear_opt(sb, GRPQUOTA); 2263 2264 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2265 ext4_msg(sb, KERN_ERR, "old and new quota " 2266 "format mixing"); 2267 return 0; 2268 } 2269 2270 if (!sbi->s_jquota_fmt) { 2271 ext4_msg(sb, KERN_ERR, "journaled quota format " 2272 "not specified"); 2273 return 0; 2274 } 2275 } 2276 #endif 2277 if (test_opt(sb, DIOREAD_NOLOCK)) { 2278 int blocksize = 2279 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2280 if (blocksize < PAGE_SIZE) 2281 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2282 "experimental mount option 'dioread_nolock' " 2283 "for blocksize < PAGE_SIZE"); 2284 } 2285 return 1; 2286 } 2287 2288 static inline void ext4_show_quota_options(struct seq_file *seq, 2289 struct super_block *sb) 2290 { 2291 #if defined(CONFIG_QUOTA) 2292 struct ext4_sb_info *sbi = EXT4_SB(sb); 2293 char *usr_qf_name, *grp_qf_name; 2294 2295 if (sbi->s_jquota_fmt) { 2296 char *fmtname = ""; 2297 2298 switch (sbi->s_jquota_fmt) { 2299 case QFMT_VFS_OLD: 2300 fmtname = "vfsold"; 2301 break; 2302 case QFMT_VFS_V0: 2303 fmtname = "vfsv0"; 2304 break; 2305 case QFMT_VFS_V1: 2306 fmtname = "vfsv1"; 2307 break; 2308 } 2309 seq_printf(seq, ",jqfmt=%s", fmtname); 2310 } 2311 2312 rcu_read_lock(); 2313 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2314 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2315 if (usr_qf_name) 2316 seq_show_option(seq, "usrjquota", usr_qf_name); 2317 if (grp_qf_name) 2318 seq_show_option(seq, "grpjquota", grp_qf_name); 2319 rcu_read_unlock(); 2320 #endif 2321 } 2322 2323 static const char *token2str(int token) 2324 { 2325 const struct match_token *t; 2326 2327 for (t = tokens; t->token != Opt_err; t++) 2328 if (t->token == token && !strchr(t->pattern, '=')) 2329 break; 2330 return t->pattern; 2331 } 2332 2333 /* 2334 * Show an option if 2335 * - it's set to a non-default value OR 2336 * - if the per-sb default is different from the global default 2337 */ 2338 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2339 int nodefs) 2340 { 2341 struct ext4_sb_info *sbi = EXT4_SB(sb); 2342 struct ext4_super_block *es = sbi->s_es; 2343 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2344 const struct mount_opts *m; 2345 char sep = nodefs ? '\n' : ','; 2346 2347 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2348 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2349 2350 if (sbi->s_sb_block != 1) 2351 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2352 2353 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2354 int want_set = m->flags & MOPT_SET; 2355 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2356 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2357 continue; 2358 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2359 continue; /* skip if same as the default */ 2360 if ((want_set && 2361 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2362 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2363 continue; /* select Opt_noFoo vs Opt_Foo */ 2364 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2365 } 2366 2367 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2368 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2369 SEQ_OPTS_PRINT("resuid=%u", 2370 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2371 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2372 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2373 SEQ_OPTS_PRINT("resgid=%u", 2374 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2375 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2376 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2377 SEQ_OPTS_PUTS("errors=remount-ro"); 2378 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2379 SEQ_OPTS_PUTS("errors=continue"); 2380 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2381 SEQ_OPTS_PUTS("errors=panic"); 2382 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2383 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2384 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2385 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2386 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2387 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2388 if (sb->s_flags & SB_I_VERSION) 2389 SEQ_OPTS_PUTS("i_version"); 2390 if (nodefs || sbi->s_stripe) 2391 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2392 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2393 (sbi->s_mount_opt ^ def_mount_opt)) { 2394 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2395 SEQ_OPTS_PUTS("data=journal"); 2396 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2397 SEQ_OPTS_PUTS("data=ordered"); 2398 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2399 SEQ_OPTS_PUTS("data=writeback"); 2400 } 2401 if (nodefs || 2402 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2403 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2404 sbi->s_inode_readahead_blks); 2405 2406 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2407 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2408 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2409 if (nodefs || sbi->s_max_dir_size_kb) 2410 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2411 if (test_opt(sb, DATA_ERR_ABORT)) 2412 SEQ_OPTS_PUTS("data_err=abort"); 2413 2414 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2415 2416 if (sb->s_flags & SB_INLINECRYPT) 2417 SEQ_OPTS_PUTS("inlinecrypt"); 2418 2419 if (test_opt(sb, DAX_ALWAYS)) { 2420 if (IS_EXT2_SB(sb)) 2421 SEQ_OPTS_PUTS("dax"); 2422 else 2423 SEQ_OPTS_PUTS("dax=always"); 2424 } else if (test_opt2(sb, DAX_NEVER)) { 2425 SEQ_OPTS_PUTS("dax=never"); 2426 } else if (test_opt2(sb, DAX_INODE)) { 2427 SEQ_OPTS_PUTS("dax=inode"); 2428 } 2429 2430 ext4_show_quota_options(seq, sb); 2431 return 0; 2432 } 2433 2434 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2435 { 2436 return _ext4_show_options(seq, root->d_sb, 0); 2437 } 2438 2439 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2440 { 2441 struct super_block *sb = seq->private; 2442 int rc; 2443 2444 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2445 rc = _ext4_show_options(seq, sb, 1); 2446 seq_puts(seq, "\n"); 2447 return rc; 2448 } 2449 2450 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2451 int read_only) 2452 { 2453 struct ext4_sb_info *sbi = EXT4_SB(sb); 2454 int err = 0; 2455 2456 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2457 ext4_msg(sb, KERN_ERR, "revision level too high, " 2458 "forcing read-only mode"); 2459 err = -EROFS; 2460 goto done; 2461 } 2462 if (read_only) 2463 goto done; 2464 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2465 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2466 "running e2fsck is recommended"); 2467 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2468 ext4_msg(sb, KERN_WARNING, 2469 "warning: mounting fs with errors, " 2470 "running e2fsck is recommended"); 2471 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2472 le16_to_cpu(es->s_mnt_count) >= 2473 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2474 ext4_msg(sb, KERN_WARNING, 2475 "warning: maximal mount count reached, " 2476 "running e2fsck is recommended"); 2477 else if (le32_to_cpu(es->s_checkinterval) && 2478 (ext4_get_tstamp(es, s_lastcheck) + 2479 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2480 ext4_msg(sb, KERN_WARNING, 2481 "warning: checktime reached, " 2482 "running e2fsck is recommended"); 2483 if (!sbi->s_journal) 2484 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2485 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2486 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2487 le16_add_cpu(&es->s_mnt_count, 1); 2488 ext4_update_tstamp(es, s_mtime); 2489 if (sbi->s_journal) 2490 ext4_set_feature_journal_needs_recovery(sb); 2491 2492 err = ext4_commit_super(sb, 1); 2493 done: 2494 if (test_opt(sb, DEBUG)) 2495 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2496 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2497 sb->s_blocksize, 2498 sbi->s_groups_count, 2499 EXT4_BLOCKS_PER_GROUP(sb), 2500 EXT4_INODES_PER_GROUP(sb), 2501 sbi->s_mount_opt, sbi->s_mount_opt2); 2502 2503 cleancache_init_fs(sb); 2504 return err; 2505 } 2506 2507 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2508 { 2509 struct ext4_sb_info *sbi = EXT4_SB(sb); 2510 struct flex_groups **old_groups, **new_groups; 2511 int size, i, j; 2512 2513 if (!sbi->s_log_groups_per_flex) 2514 return 0; 2515 2516 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2517 if (size <= sbi->s_flex_groups_allocated) 2518 return 0; 2519 2520 new_groups = kvzalloc(roundup_pow_of_two(size * 2521 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2522 if (!new_groups) { 2523 ext4_msg(sb, KERN_ERR, 2524 "not enough memory for %d flex group pointers", size); 2525 return -ENOMEM; 2526 } 2527 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2528 new_groups[i] = kvzalloc(roundup_pow_of_two( 2529 sizeof(struct flex_groups)), 2530 GFP_KERNEL); 2531 if (!new_groups[i]) { 2532 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2533 kvfree(new_groups[j]); 2534 kvfree(new_groups); 2535 ext4_msg(sb, KERN_ERR, 2536 "not enough memory for %d flex groups", size); 2537 return -ENOMEM; 2538 } 2539 } 2540 rcu_read_lock(); 2541 old_groups = rcu_dereference(sbi->s_flex_groups); 2542 if (old_groups) 2543 memcpy(new_groups, old_groups, 2544 (sbi->s_flex_groups_allocated * 2545 sizeof(struct flex_groups *))); 2546 rcu_read_unlock(); 2547 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2548 sbi->s_flex_groups_allocated = size; 2549 if (old_groups) 2550 ext4_kvfree_array_rcu(old_groups); 2551 return 0; 2552 } 2553 2554 static int ext4_fill_flex_info(struct super_block *sb) 2555 { 2556 struct ext4_sb_info *sbi = EXT4_SB(sb); 2557 struct ext4_group_desc *gdp = NULL; 2558 struct flex_groups *fg; 2559 ext4_group_t flex_group; 2560 int i, err; 2561 2562 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2563 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2564 sbi->s_log_groups_per_flex = 0; 2565 return 1; 2566 } 2567 2568 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2569 if (err) 2570 goto failed; 2571 2572 for (i = 0; i < sbi->s_groups_count; i++) { 2573 gdp = ext4_get_group_desc(sb, i, NULL); 2574 2575 flex_group = ext4_flex_group(sbi, i); 2576 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2577 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2578 atomic64_add(ext4_free_group_clusters(sb, gdp), 2579 &fg->free_clusters); 2580 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2581 } 2582 2583 return 1; 2584 failed: 2585 return 0; 2586 } 2587 2588 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2589 struct ext4_group_desc *gdp) 2590 { 2591 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2592 __u16 crc = 0; 2593 __le32 le_group = cpu_to_le32(block_group); 2594 struct ext4_sb_info *sbi = EXT4_SB(sb); 2595 2596 if (ext4_has_metadata_csum(sbi->s_sb)) { 2597 /* Use new metadata_csum algorithm */ 2598 __u32 csum32; 2599 __u16 dummy_csum = 0; 2600 2601 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2602 sizeof(le_group)); 2603 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2604 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2605 sizeof(dummy_csum)); 2606 offset += sizeof(dummy_csum); 2607 if (offset < sbi->s_desc_size) 2608 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2609 sbi->s_desc_size - offset); 2610 2611 crc = csum32 & 0xFFFF; 2612 goto out; 2613 } 2614 2615 /* old crc16 code */ 2616 if (!ext4_has_feature_gdt_csum(sb)) 2617 return 0; 2618 2619 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2620 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2621 crc = crc16(crc, (__u8 *)gdp, offset); 2622 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2623 /* for checksum of struct ext4_group_desc do the rest...*/ 2624 if (ext4_has_feature_64bit(sb) && 2625 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2626 crc = crc16(crc, (__u8 *)gdp + offset, 2627 le16_to_cpu(sbi->s_es->s_desc_size) - 2628 offset); 2629 2630 out: 2631 return cpu_to_le16(crc); 2632 } 2633 2634 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2635 struct ext4_group_desc *gdp) 2636 { 2637 if (ext4_has_group_desc_csum(sb) && 2638 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2639 return 0; 2640 2641 return 1; 2642 } 2643 2644 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2645 struct ext4_group_desc *gdp) 2646 { 2647 if (!ext4_has_group_desc_csum(sb)) 2648 return; 2649 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2650 } 2651 2652 /* Called at mount-time, super-block is locked */ 2653 static int ext4_check_descriptors(struct super_block *sb, 2654 ext4_fsblk_t sb_block, 2655 ext4_group_t *first_not_zeroed) 2656 { 2657 struct ext4_sb_info *sbi = EXT4_SB(sb); 2658 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2659 ext4_fsblk_t last_block; 2660 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2661 ext4_fsblk_t block_bitmap; 2662 ext4_fsblk_t inode_bitmap; 2663 ext4_fsblk_t inode_table; 2664 int flexbg_flag = 0; 2665 ext4_group_t i, grp = sbi->s_groups_count; 2666 2667 if (ext4_has_feature_flex_bg(sb)) 2668 flexbg_flag = 1; 2669 2670 ext4_debug("Checking group descriptors"); 2671 2672 for (i = 0; i < sbi->s_groups_count; i++) { 2673 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2674 2675 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2676 last_block = ext4_blocks_count(sbi->s_es) - 1; 2677 else 2678 last_block = first_block + 2679 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2680 2681 if ((grp == sbi->s_groups_count) && 2682 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2683 grp = i; 2684 2685 block_bitmap = ext4_block_bitmap(sb, gdp); 2686 if (block_bitmap == sb_block) { 2687 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2688 "Block bitmap for group %u overlaps " 2689 "superblock", i); 2690 if (!sb_rdonly(sb)) 2691 return 0; 2692 } 2693 if (block_bitmap >= sb_block + 1 && 2694 block_bitmap <= last_bg_block) { 2695 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2696 "Block bitmap for group %u overlaps " 2697 "block group descriptors", i); 2698 if (!sb_rdonly(sb)) 2699 return 0; 2700 } 2701 if (block_bitmap < first_block || block_bitmap > last_block) { 2702 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2703 "Block bitmap for group %u not in group " 2704 "(block %llu)!", i, block_bitmap); 2705 return 0; 2706 } 2707 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2708 if (inode_bitmap == sb_block) { 2709 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2710 "Inode bitmap for group %u overlaps " 2711 "superblock", i); 2712 if (!sb_rdonly(sb)) 2713 return 0; 2714 } 2715 if (inode_bitmap >= sb_block + 1 && 2716 inode_bitmap <= last_bg_block) { 2717 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2718 "Inode bitmap for group %u overlaps " 2719 "block group descriptors", i); 2720 if (!sb_rdonly(sb)) 2721 return 0; 2722 } 2723 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2724 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2725 "Inode bitmap for group %u not in group " 2726 "(block %llu)!", i, inode_bitmap); 2727 return 0; 2728 } 2729 inode_table = ext4_inode_table(sb, gdp); 2730 if (inode_table == sb_block) { 2731 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2732 "Inode table for group %u overlaps " 2733 "superblock", i); 2734 if (!sb_rdonly(sb)) 2735 return 0; 2736 } 2737 if (inode_table >= sb_block + 1 && 2738 inode_table <= last_bg_block) { 2739 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2740 "Inode table for group %u overlaps " 2741 "block group descriptors", i); 2742 if (!sb_rdonly(sb)) 2743 return 0; 2744 } 2745 if (inode_table < first_block || 2746 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2747 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2748 "Inode table for group %u not in group " 2749 "(block %llu)!", i, inode_table); 2750 return 0; 2751 } 2752 ext4_lock_group(sb, i); 2753 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2754 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2755 "Checksum for group %u failed (%u!=%u)", 2756 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2757 gdp)), le16_to_cpu(gdp->bg_checksum)); 2758 if (!sb_rdonly(sb)) { 2759 ext4_unlock_group(sb, i); 2760 return 0; 2761 } 2762 } 2763 ext4_unlock_group(sb, i); 2764 if (!flexbg_flag) 2765 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2766 } 2767 if (NULL != first_not_zeroed) 2768 *first_not_zeroed = grp; 2769 return 1; 2770 } 2771 2772 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2773 * the superblock) which were deleted from all directories, but held open by 2774 * a process at the time of a crash. We walk the list and try to delete these 2775 * inodes at recovery time (only with a read-write filesystem). 2776 * 2777 * In order to keep the orphan inode chain consistent during traversal (in 2778 * case of crash during recovery), we link each inode into the superblock 2779 * orphan list_head and handle it the same way as an inode deletion during 2780 * normal operation (which journals the operations for us). 2781 * 2782 * We only do an iget() and an iput() on each inode, which is very safe if we 2783 * accidentally point at an in-use or already deleted inode. The worst that 2784 * can happen in this case is that we get a "bit already cleared" message from 2785 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2786 * e2fsck was run on this filesystem, and it must have already done the orphan 2787 * inode cleanup for us, so we can safely abort without any further action. 2788 */ 2789 static void ext4_orphan_cleanup(struct super_block *sb, 2790 struct ext4_super_block *es) 2791 { 2792 unsigned int s_flags = sb->s_flags; 2793 int ret, nr_orphans = 0, nr_truncates = 0; 2794 #ifdef CONFIG_QUOTA 2795 int quota_update = 0; 2796 int i; 2797 #endif 2798 if (!es->s_last_orphan) { 2799 jbd_debug(4, "no orphan inodes to clean up\n"); 2800 return; 2801 } 2802 2803 if (bdev_read_only(sb->s_bdev)) { 2804 ext4_msg(sb, KERN_ERR, "write access " 2805 "unavailable, skipping orphan cleanup"); 2806 return; 2807 } 2808 2809 /* Check if feature set would not allow a r/w mount */ 2810 if (!ext4_feature_set_ok(sb, 0)) { 2811 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2812 "unknown ROCOMPAT features"); 2813 return; 2814 } 2815 2816 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2817 /* don't clear list on RO mount w/ errors */ 2818 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2819 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2820 "clearing orphan list.\n"); 2821 es->s_last_orphan = 0; 2822 } 2823 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2824 return; 2825 } 2826 2827 if (s_flags & SB_RDONLY) { 2828 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2829 sb->s_flags &= ~SB_RDONLY; 2830 } 2831 #ifdef CONFIG_QUOTA 2832 /* Needed for iput() to work correctly and not trash data */ 2833 sb->s_flags |= SB_ACTIVE; 2834 2835 /* 2836 * Turn on quotas which were not enabled for read-only mounts if 2837 * filesystem has quota feature, so that they are updated correctly. 2838 */ 2839 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2840 int ret = ext4_enable_quotas(sb); 2841 2842 if (!ret) 2843 quota_update = 1; 2844 else 2845 ext4_msg(sb, KERN_ERR, 2846 "Cannot turn on quotas: error %d", ret); 2847 } 2848 2849 /* Turn on journaled quotas used for old sytle */ 2850 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2851 if (EXT4_SB(sb)->s_qf_names[i]) { 2852 int ret = ext4_quota_on_mount(sb, i); 2853 2854 if (!ret) 2855 quota_update = 1; 2856 else 2857 ext4_msg(sb, KERN_ERR, 2858 "Cannot turn on journaled " 2859 "quota: type %d: error %d", i, ret); 2860 } 2861 } 2862 #endif 2863 2864 while (es->s_last_orphan) { 2865 struct inode *inode; 2866 2867 /* 2868 * We may have encountered an error during cleanup; if 2869 * so, skip the rest. 2870 */ 2871 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2872 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2873 es->s_last_orphan = 0; 2874 break; 2875 } 2876 2877 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2878 if (IS_ERR(inode)) { 2879 es->s_last_orphan = 0; 2880 break; 2881 } 2882 2883 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2884 dquot_initialize(inode); 2885 if (inode->i_nlink) { 2886 if (test_opt(sb, DEBUG)) 2887 ext4_msg(sb, KERN_DEBUG, 2888 "%s: truncating inode %lu to %lld bytes", 2889 __func__, inode->i_ino, inode->i_size); 2890 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2891 inode->i_ino, inode->i_size); 2892 inode_lock(inode); 2893 truncate_inode_pages(inode->i_mapping, inode->i_size); 2894 ret = ext4_truncate(inode); 2895 if (ret) 2896 ext4_std_error(inode->i_sb, ret); 2897 inode_unlock(inode); 2898 nr_truncates++; 2899 } else { 2900 if (test_opt(sb, DEBUG)) 2901 ext4_msg(sb, KERN_DEBUG, 2902 "%s: deleting unreferenced inode %lu", 2903 __func__, inode->i_ino); 2904 jbd_debug(2, "deleting unreferenced inode %lu\n", 2905 inode->i_ino); 2906 nr_orphans++; 2907 } 2908 iput(inode); /* The delete magic happens here! */ 2909 } 2910 2911 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2912 2913 if (nr_orphans) 2914 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2915 PLURAL(nr_orphans)); 2916 if (nr_truncates) 2917 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2918 PLURAL(nr_truncates)); 2919 #ifdef CONFIG_QUOTA 2920 /* Turn off quotas if they were enabled for orphan cleanup */ 2921 if (quota_update) { 2922 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2923 if (sb_dqopt(sb)->files[i]) 2924 dquot_quota_off(sb, i); 2925 } 2926 } 2927 #endif 2928 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2929 } 2930 2931 /* 2932 * Maximal extent format file size. 2933 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2934 * extent format containers, within a sector_t, and within i_blocks 2935 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2936 * so that won't be a limiting factor. 2937 * 2938 * However there is other limiting factor. We do store extents in the form 2939 * of starting block and length, hence the resulting length of the extent 2940 * covering maximum file size must fit into on-disk format containers as 2941 * well. Given that length is always by 1 unit bigger than max unit (because 2942 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2943 * 2944 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2945 */ 2946 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2947 { 2948 loff_t res; 2949 loff_t upper_limit = MAX_LFS_FILESIZE; 2950 2951 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2952 2953 if (!has_huge_files) { 2954 upper_limit = (1LL << 32) - 1; 2955 2956 /* total blocks in file system block size */ 2957 upper_limit >>= (blkbits - 9); 2958 upper_limit <<= blkbits; 2959 } 2960 2961 /* 2962 * 32-bit extent-start container, ee_block. We lower the maxbytes 2963 * by one fs block, so ee_len can cover the extent of maximum file 2964 * size 2965 */ 2966 res = (1LL << 32) - 1; 2967 res <<= blkbits; 2968 2969 /* Sanity check against vm- & vfs- imposed limits */ 2970 if (res > upper_limit) 2971 res = upper_limit; 2972 2973 return res; 2974 } 2975 2976 /* 2977 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2978 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2979 * We need to be 1 filesystem block less than the 2^48 sector limit. 2980 */ 2981 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2982 { 2983 loff_t res = EXT4_NDIR_BLOCKS; 2984 int meta_blocks; 2985 loff_t upper_limit; 2986 /* This is calculated to be the largest file size for a dense, block 2987 * mapped file such that the file's total number of 512-byte sectors, 2988 * including data and all indirect blocks, does not exceed (2^48 - 1). 2989 * 2990 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2991 * number of 512-byte sectors of the file. 2992 */ 2993 2994 if (!has_huge_files) { 2995 /* 2996 * !has_huge_files or implies that the inode i_block field 2997 * represents total file blocks in 2^32 512-byte sectors == 2998 * size of vfs inode i_blocks * 8 2999 */ 3000 upper_limit = (1LL << 32) - 1; 3001 3002 /* total blocks in file system block size */ 3003 upper_limit >>= (bits - 9); 3004 3005 } else { 3006 /* 3007 * We use 48 bit ext4_inode i_blocks 3008 * With EXT4_HUGE_FILE_FL set the i_blocks 3009 * represent total number of blocks in 3010 * file system block size 3011 */ 3012 upper_limit = (1LL << 48) - 1; 3013 3014 } 3015 3016 /* indirect blocks */ 3017 meta_blocks = 1; 3018 /* double indirect blocks */ 3019 meta_blocks += 1 + (1LL << (bits-2)); 3020 /* tripple indirect blocks */ 3021 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3022 3023 upper_limit -= meta_blocks; 3024 upper_limit <<= bits; 3025 3026 res += 1LL << (bits-2); 3027 res += 1LL << (2*(bits-2)); 3028 res += 1LL << (3*(bits-2)); 3029 res <<= bits; 3030 if (res > upper_limit) 3031 res = upper_limit; 3032 3033 if (res > MAX_LFS_FILESIZE) 3034 res = MAX_LFS_FILESIZE; 3035 3036 return res; 3037 } 3038 3039 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3040 ext4_fsblk_t logical_sb_block, int nr) 3041 { 3042 struct ext4_sb_info *sbi = EXT4_SB(sb); 3043 ext4_group_t bg, first_meta_bg; 3044 int has_super = 0; 3045 3046 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3047 3048 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3049 return logical_sb_block + nr + 1; 3050 bg = sbi->s_desc_per_block * nr; 3051 if (ext4_bg_has_super(sb, bg)) 3052 has_super = 1; 3053 3054 /* 3055 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3056 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3057 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3058 * compensate. 3059 */ 3060 if (sb->s_blocksize == 1024 && nr == 0 && 3061 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3062 has_super++; 3063 3064 return (has_super + ext4_group_first_block_no(sb, bg)); 3065 } 3066 3067 /** 3068 * ext4_get_stripe_size: Get the stripe size. 3069 * @sbi: In memory super block info 3070 * 3071 * If we have specified it via mount option, then 3072 * use the mount option value. If the value specified at mount time is 3073 * greater than the blocks per group use the super block value. 3074 * If the super block value is greater than blocks per group return 0. 3075 * Allocator needs it be less than blocks per group. 3076 * 3077 */ 3078 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3079 { 3080 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3081 unsigned long stripe_width = 3082 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3083 int ret; 3084 3085 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3086 ret = sbi->s_stripe; 3087 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3088 ret = stripe_width; 3089 else if (stride && stride <= sbi->s_blocks_per_group) 3090 ret = stride; 3091 else 3092 ret = 0; 3093 3094 /* 3095 * If the stripe width is 1, this makes no sense and 3096 * we set it to 0 to turn off stripe handling code. 3097 */ 3098 if (ret <= 1) 3099 ret = 0; 3100 3101 return ret; 3102 } 3103 3104 /* 3105 * Check whether this filesystem can be mounted based on 3106 * the features present and the RDONLY/RDWR mount requested. 3107 * Returns 1 if this filesystem can be mounted as requested, 3108 * 0 if it cannot be. 3109 */ 3110 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 3111 { 3112 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3113 ext4_msg(sb, KERN_ERR, 3114 "Couldn't mount because of " 3115 "unsupported optional features (%x)", 3116 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3117 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3118 return 0; 3119 } 3120 3121 #ifndef CONFIG_UNICODE 3122 if (ext4_has_feature_casefold(sb)) { 3123 ext4_msg(sb, KERN_ERR, 3124 "Filesystem with casefold feature cannot be " 3125 "mounted without CONFIG_UNICODE"); 3126 return 0; 3127 } 3128 #endif 3129 3130 if (readonly) 3131 return 1; 3132 3133 if (ext4_has_feature_readonly(sb)) { 3134 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3135 sb->s_flags |= SB_RDONLY; 3136 return 1; 3137 } 3138 3139 /* Check that feature set is OK for a read-write mount */ 3140 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3141 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3142 "unsupported optional features (%x)", 3143 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3144 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3145 return 0; 3146 } 3147 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3148 ext4_msg(sb, KERN_ERR, 3149 "Can't support bigalloc feature without " 3150 "extents feature\n"); 3151 return 0; 3152 } 3153 3154 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3155 if (!readonly && (ext4_has_feature_quota(sb) || 3156 ext4_has_feature_project(sb))) { 3157 ext4_msg(sb, KERN_ERR, 3158 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3159 return 0; 3160 } 3161 #endif /* CONFIG_QUOTA */ 3162 return 1; 3163 } 3164 3165 /* 3166 * This function is called once a day if we have errors logged 3167 * on the file system 3168 */ 3169 static void print_daily_error_info(struct timer_list *t) 3170 { 3171 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3172 struct super_block *sb = sbi->s_sb; 3173 struct ext4_super_block *es = sbi->s_es; 3174 3175 if (es->s_error_count) 3176 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3177 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3178 le32_to_cpu(es->s_error_count)); 3179 if (es->s_first_error_time) { 3180 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3181 sb->s_id, 3182 ext4_get_tstamp(es, s_first_error_time), 3183 (int) sizeof(es->s_first_error_func), 3184 es->s_first_error_func, 3185 le32_to_cpu(es->s_first_error_line)); 3186 if (es->s_first_error_ino) 3187 printk(KERN_CONT ": inode %u", 3188 le32_to_cpu(es->s_first_error_ino)); 3189 if (es->s_first_error_block) 3190 printk(KERN_CONT ": block %llu", (unsigned long long) 3191 le64_to_cpu(es->s_first_error_block)); 3192 printk(KERN_CONT "\n"); 3193 } 3194 if (es->s_last_error_time) { 3195 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3196 sb->s_id, 3197 ext4_get_tstamp(es, s_last_error_time), 3198 (int) sizeof(es->s_last_error_func), 3199 es->s_last_error_func, 3200 le32_to_cpu(es->s_last_error_line)); 3201 if (es->s_last_error_ino) 3202 printk(KERN_CONT ": inode %u", 3203 le32_to_cpu(es->s_last_error_ino)); 3204 if (es->s_last_error_block) 3205 printk(KERN_CONT ": block %llu", (unsigned long long) 3206 le64_to_cpu(es->s_last_error_block)); 3207 printk(KERN_CONT "\n"); 3208 } 3209 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3210 } 3211 3212 /* Find next suitable group and run ext4_init_inode_table */ 3213 static int ext4_run_li_request(struct ext4_li_request *elr) 3214 { 3215 struct ext4_group_desc *gdp = NULL; 3216 ext4_group_t group, ngroups; 3217 struct super_block *sb; 3218 unsigned long timeout = 0; 3219 int ret = 0; 3220 3221 sb = elr->lr_super; 3222 ngroups = EXT4_SB(sb)->s_groups_count; 3223 3224 for (group = elr->lr_next_group; group < ngroups; group++) { 3225 gdp = ext4_get_group_desc(sb, group, NULL); 3226 if (!gdp) { 3227 ret = 1; 3228 break; 3229 } 3230 3231 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3232 break; 3233 } 3234 3235 if (group >= ngroups) 3236 ret = 1; 3237 3238 if (!ret) { 3239 timeout = jiffies; 3240 ret = ext4_init_inode_table(sb, group, 3241 elr->lr_timeout ? 0 : 1); 3242 if (elr->lr_timeout == 0) { 3243 timeout = (jiffies - timeout) * 3244 elr->lr_sbi->s_li_wait_mult; 3245 elr->lr_timeout = timeout; 3246 } 3247 elr->lr_next_sched = jiffies + elr->lr_timeout; 3248 elr->lr_next_group = group + 1; 3249 } 3250 return ret; 3251 } 3252 3253 /* 3254 * Remove lr_request from the list_request and free the 3255 * request structure. Should be called with li_list_mtx held 3256 */ 3257 static void ext4_remove_li_request(struct ext4_li_request *elr) 3258 { 3259 struct ext4_sb_info *sbi; 3260 3261 if (!elr) 3262 return; 3263 3264 sbi = elr->lr_sbi; 3265 3266 list_del(&elr->lr_request); 3267 sbi->s_li_request = NULL; 3268 kfree(elr); 3269 } 3270 3271 static void ext4_unregister_li_request(struct super_block *sb) 3272 { 3273 mutex_lock(&ext4_li_mtx); 3274 if (!ext4_li_info) { 3275 mutex_unlock(&ext4_li_mtx); 3276 return; 3277 } 3278 3279 mutex_lock(&ext4_li_info->li_list_mtx); 3280 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3281 mutex_unlock(&ext4_li_info->li_list_mtx); 3282 mutex_unlock(&ext4_li_mtx); 3283 } 3284 3285 static struct task_struct *ext4_lazyinit_task; 3286 3287 /* 3288 * This is the function where ext4lazyinit thread lives. It walks 3289 * through the request list searching for next scheduled filesystem. 3290 * When such a fs is found, run the lazy initialization request 3291 * (ext4_rn_li_request) and keep track of the time spend in this 3292 * function. Based on that time we compute next schedule time of 3293 * the request. When walking through the list is complete, compute 3294 * next waking time and put itself into sleep. 3295 */ 3296 static int ext4_lazyinit_thread(void *arg) 3297 { 3298 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3299 struct list_head *pos, *n; 3300 struct ext4_li_request *elr; 3301 unsigned long next_wakeup, cur; 3302 3303 BUG_ON(NULL == eli); 3304 3305 cont_thread: 3306 while (true) { 3307 next_wakeup = MAX_JIFFY_OFFSET; 3308 3309 mutex_lock(&eli->li_list_mtx); 3310 if (list_empty(&eli->li_request_list)) { 3311 mutex_unlock(&eli->li_list_mtx); 3312 goto exit_thread; 3313 } 3314 list_for_each_safe(pos, n, &eli->li_request_list) { 3315 int err = 0; 3316 int progress = 0; 3317 elr = list_entry(pos, struct ext4_li_request, 3318 lr_request); 3319 3320 if (time_before(jiffies, elr->lr_next_sched)) { 3321 if (time_before(elr->lr_next_sched, next_wakeup)) 3322 next_wakeup = elr->lr_next_sched; 3323 continue; 3324 } 3325 if (down_read_trylock(&elr->lr_super->s_umount)) { 3326 if (sb_start_write_trylock(elr->lr_super)) { 3327 progress = 1; 3328 /* 3329 * We hold sb->s_umount, sb can not 3330 * be removed from the list, it is 3331 * now safe to drop li_list_mtx 3332 */ 3333 mutex_unlock(&eli->li_list_mtx); 3334 err = ext4_run_li_request(elr); 3335 sb_end_write(elr->lr_super); 3336 mutex_lock(&eli->li_list_mtx); 3337 n = pos->next; 3338 } 3339 up_read((&elr->lr_super->s_umount)); 3340 } 3341 /* error, remove the lazy_init job */ 3342 if (err) { 3343 ext4_remove_li_request(elr); 3344 continue; 3345 } 3346 if (!progress) { 3347 elr->lr_next_sched = jiffies + 3348 (prandom_u32() 3349 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3350 } 3351 if (time_before(elr->lr_next_sched, next_wakeup)) 3352 next_wakeup = elr->lr_next_sched; 3353 } 3354 mutex_unlock(&eli->li_list_mtx); 3355 3356 try_to_freeze(); 3357 3358 cur = jiffies; 3359 if ((time_after_eq(cur, next_wakeup)) || 3360 (MAX_JIFFY_OFFSET == next_wakeup)) { 3361 cond_resched(); 3362 continue; 3363 } 3364 3365 schedule_timeout_interruptible(next_wakeup - cur); 3366 3367 if (kthread_should_stop()) { 3368 ext4_clear_request_list(); 3369 goto exit_thread; 3370 } 3371 } 3372 3373 exit_thread: 3374 /* 3375 * It looks like the request list is empty, but we need 3376 * to check it under the li_list_mtx lock, to prevent any 3377 * additions into it, and of course we should lock ext4_li_mtx 3378 * to atomically free the list and ext4_li_info, because at 3379 * this point another ext4 filesystem could be registering 3380 * new one. 3381 */ 3382 mutex_lock(&ext4_li_mtx); 3383 mutex_lock(&eli->li_list_mtx); 3384 if (!list_empty(&eli->li_request_list)) { 3385 mutex_unlock(&eli->li_list_mtx); 3386 mutex_unlock(&ext4_li_mtx); 3387 goto cont_thread; 3388 } 3389 mutex_unlock(&eli->li_list_mtx); 3390 kfree(ext4_li_info); 3391 ext4_li_info = NULL; 3392 mutex_unlock(&ext4_li_mtx); 3393 3394 return 0; 3395 } 3396 3397 static void ext4_clear_request_list(void) 3398 { 3399 struct list_head *pos, *n; 3400 struct ext4_li_request *elr; 3401 3402 mutex_lock(&ext4_li_info->li_list_mtx); 3403 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3404 elr = list_entry(pos, struct ext4_li_request, 3405 lr_request); 3406 ext4_remove_li_request(elr); 3407 } 3408 mutex_unlock(&ext4_li_info->li_list_mtx); 3409 } 3410 3411 static int ext4_run_lazyinit_thread(void) 3412 { 3413 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3414 ext4_li_info, "ext4lazyinit"); 3415 if (IS_ERR(ext4_lazyinit_task)) { 3416 int err = PTR_ERR(ext4_lazyinit_task); 3417 ext4_clear_request_list(); 3418 kfree(ext4_li_info); 3419 ext4_li_info = NULL; 3420 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3421 "initialization thread\n", 3422 err); 3423 return err; 3424 } 3425 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3426 return 0; 3427 } 3428 3429 /* 3430 * Check whether it make sense to run itable init. thread or not. 3431 * If there is at least one uninitialized inode table, return 3432 * corresponding group number, else the loop goes through all 3433 * groups and return total number of groups. 3434 */ 3435 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3436 { 3437 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3438 struct ext4_group_desc *gdp = NULL; 3439 3440 if (!ext4_has_group_desc_csum(sb)) 3441 return ngroups; 3442 3443 for (group = 0; group < ngroups; group++) { 3444 gdp = ext4_get_group_desc(sb, group, NULL); 3445 if (!gdp) 3446 continue; 3447 3448 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3449 break; 3450 } 3451 3452 return group; 3453 } 3454 3455 static int ext4_li_info_new(void) 3456 { 3457 struct ext4_lazy_init *eli = NULL; 3458 3459 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3460 if (!eli) 3461 return -ENOMEM; 3462 3463 INIT_LIST_HEAD(&eli->li_request_list); 3464 mutex_init(&eli->li_list_mtx); 3465 3466 eli->li_state |= EXT4_LAZYINIT_QUIT; 3467 3468 ext4_li_info = eli; 3469 3470 return 0; 3471 } 3472 3473 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3474 ext4_group_t start) 3475 { 3476 struct ext4_sb_info *sbi = EXT4_SB(sb); 3477 struct ext4_li_request *elr; 3478 3479 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3480 if (!elr) 3481 return NULL; 3482 3483 elr->lr_super = sb; 3484 elr->lr_sbi = sbi; 3485 elr->lr_next_group = start; 3486 3487 /* 3488 * Randomize first schedule time of the request to 3489 * spread the inode table initialization requests 3490 * better. 3491 */ 3492 elr->lr_next_sched = jiffies + (prandom_u32() % 3493 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3494 return elr; 3495 } 3496 3497 int ext4_register_li_request(struct super_block *sb, 3498 ext4_group_t first_not_zeroed) 3499 { 3500 struct ext4_sb_info *sbi = EXT4_SB(sb); 3501 struct ext4_li_request *elr = NULL; 3502 ext4_group_t ngroups = sbi->s_groups_count; 3503 int ret = 0; 3504 3505 mutex_lock(&ext4_li_mtx); 3506 if (sbi->s_li_request != NULL) { 3507 /* 3508 * Reset timeout so it can be computed again, because 3509 * s_li_wait_mult might have changed. 3510 */ 3511 sbi->s_li_request->lr_timeout = 0; 3512 goto out; 3513 } 3514 3515 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3516 !test_opt(sb, INIT_INODE_TABLE)) 3517 goto out; 3518 3519 elr = ext4_li_request_new(sb, first_not_zeroed); 3520 if (!elr) { 3521 ret = -ENOMEM; 3522 goto out; 3523 } 3524 3525 if (NULL == ext4_li_info) { 3526 ret = ext4_li_info_new(); 3527 if (ret) 3528 goto out; 3529 } 3530 3531 mutex_lock(&ext4_li_info->li_list_mtx); 3532 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3533 mutex_unlock(&ext4_li_info->li_list_mtx); 3534 3535 sbi->s_li_request = elr; 3536 /* 3537 * set elr to NULL here since it has been inserted to 3538 * the request_list and the removal and free of it is 3539 * handled by ext4_clear_request_list from now on. 3540 */ 3541 elr = NULL; 3542 3543 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3544 ret = ext4_run_lazyinit_thread(); 3545 if (ret) 3546 goto out; 3547 } 3548 out: 3549 mutex_unlock(&ext4_li_mtx); 3550 if (ret) 3551 kfree(elr); 3552 return ret; 3553 } 3554 3555 /* 3556 * We do not need to lock anything since this is called on 3557 * module unload. 3558 */ 3559 static void ext4_destroy_lazyinit_thread(void) 3560 { 3561 /* 3562 * If thread exited earlier 3563 * there's nothing to be done. 3564 */ 3565 if (!ext4_li_info || !ext4_lazyinit_task) 3566 return; 3567 3568 kthread_stop(ext4_lazyinit_task); 3569 } 3570 3571 static int set_journal_csum_feature_set(struct super_block *sb) 3572 { 3573 int ret = 1; 3574 int compat, incompat; 3575 struct ext4_sb_info *sbi = EXT4_SB(sb); 3576 3577 if (ext4_has_metadata_csum(sb)) { 3578 /* journal checksum v3 */ 3579 compat = 0; 3580 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3581 } else { 3582 /* journal checksum v1 */ 3583 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3584 incompat = 0; 3585 } 3586 3587 jbd2_journal_clear_features(sbi->s_journal, 3588 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3589 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3590 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3591 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3592 ret = jbd2_journal_set_features(sbi->s_journal, 3593 compat, 0, 3594 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3595 incompat); 3596 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3597 ret = jbd2_journal_set_features(sbi->s_journal, 3598 compat, 0, 3599 incompat); 3600 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3601 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3602 } else { 3603 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3604 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3605 } 3606 3607 return ret; 3608 } 3609 3610 /* 3611 * Note: calculating the overhead so we can be compatible with 3612 * historical BSD practice is quite difficult in the face of 3613 * clusters/bigalloc. This is because multiple metadata blocks from 3614 * different block group can end up in the same allocation cluster. 3615 * Calculating the exact overhead in the face of clustered allocation 3616 * requires either O(all block bitmaps) in memory or O(number of block 3617 * groups**2) in time. We will still calculate the superblock for 3618 * older file systems --- and if we come across with a bigalloc file 3619 * system with zero in s_overhead_clusters the estimate will be close to 3620 * correct especially for very large cluster sizes --- but for newer 3621 * file systems, it's better to calculate this figure once at mkfs 3622 * time, and store it in the superblock. If the superblock value is 3623 * present (even for non-bigalloc file systems), we will use it. 3624 */ 3625 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3626 char *buf) 3627 { 3628 struct ext4_sb_info *sbi = EXT4_SB(sb); 3629 struct ext4_group_desc *gdp; 3630 ext4_fsblk_t first_block, last_block, b; 3631 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3632 int s, j, count = 0; 3633 3634 if (!ext4_has_feature_bigalloc(sb)) 3635 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3636 sbi->s_itb_per_group + 2); 3637 3638 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3639 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3640 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3641 for (i = 0; i < ngroups; i++) { 3642 gdp = ext4_get_group_desc(sb, i, NULL); 3643 b = ext4_block_bitmap(sb, gdp); 3644 if (b >= first_block && b <= last_block) { 3645 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3646 count++; 3647 } 3648 b = ext4_inode_bitmap(sb, gdp); 3649 if (b >= first_block && b <= last_block) { 3650 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3651 count++; 3652 } 3653 b = ext4_inode_table(sb, gdp); 3654 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3655 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3656 int c = EXT4_B2C(sbi, b - first_block); 3657 ext4_set_bit(c, buf); 3658 count++; 3659 } 3660 if (i != grp) 3661 continue; 3662 s = 0; 3663 if (ext4_bg_has_super(sb, grp)) { 3664 ext4_set_bit(s++, buf); 3665 count++; 3666 } 3667 j = ext4_bg_num_gdb(sb, grp); 3668 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3669 ext4_error(sb, "Invalid number of block group " 3670 "descriptor blocks: %d", j); 3671 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3672 } 3673 count += j; 3674 for (; j > 0; j--) 3675 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3676 } 3677 if (!count) 3678 return 0; 3679 return EXT4_CLUSTERS_PER_GROUP(sb) - 3680 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3681 } 3682 3683 /* 3684 * Compute the overhead and stash it in sbi->s_overhead 3685 */ 3686 int ext4_calculate_overhead(struct super_block *sb) 3687 { 3688 struct ext4_sb_info *sbi = EXT4_SB(sb); 3689 struct ext4_super_block *es = sbi->s_es; 3690 struct inode *j_inode; 3691 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3692 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3693 ext4_fsblk_t overhead = 0; 3694 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3695 3696 if (!buf) 3697 return -ENOMEM; 3698 3699 /* 3700 * Compute the overhead (FS structures). This is constant 3701 * for a given filesystem unless the number of block groups 3702 * changes so we cache the previous value until it does. 3703 */ 3704 3705 /* 3706 * All of the blocks before first_data_block are overhead 3707 */ 3708 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3709 3710 /* 3711 * Add the overhead found in each block group 3712 */ 3713 for (i = 0; i < ngroups; i++) { 3714 int blks; 3715 3716 blks = count_overhead(sb, i, buf); 3717 overhead += blks; 3718 if (blks) 3719 memset(buf, 0, PAGE_SIZE); 3720 cond_resched(); 3721 } 3722 3723 /* 3724 * Add the internal journal blocks whether the journal has been 3725 * loaded or not 3726 */ 3727 if (sbi->s_journal && !sbi->journal_bdev) 3728 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3729 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3730 /* j_inum for internal journal is non-zero */ 3731 j_inode = ext4_get_journal_inode(sb, j_inum); 3732 if (j_inode) { 3733 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3734 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3735 iput(j_inode); 3736 } else { 3737 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3738 } 3739 } 3740 sbi->s_overhead = overhead; 3741 smp_wmb(); 3742 free_page((unsigned long) buf); 3743 return 0; 3744 } 3745 3746 static void ext4_set_resv_clusters(struct super_block *sb) 3747 { 3748 ext4_fsblk_t resv_clusters; 3749 struct ext4_sb_info *sbi = EXT4_SB(sb); 3750 3751 /* 3752 * There's no need to reserve anything when we aren't using extents. 3753 * The space estimates are exact, there are no unwritten extents, 3754 * hole punching doesn't need new metadata... This is needed especially 3755 * to keep ext2/3 backward compatibility. 3756 */ 3757 if (!ext4_has_feature_extents(sb)) 3758 return; 3759 /* 3760 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3761 * This should cover the situations where we can not afford to run 3762 * out of space like for example punch hole, or converting 3763 * unwritten extents in delalloc path. In most cases such 3764 * allocation would require 1, or 2 blocks, higher numbers are 3765 * very rare. 3766 */ 3767 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3768 sbi->s_cluster_bits); 3769 3770 do_div(resv_clusters, 50); 3771 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3772 3773 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3774 } 3775 3776 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3777 { 3778 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3779 char *orig_data = kstrdup(data, GFP_KERNEL); 3780 struct buffer_head *bh, **group_desc; 3781 struct ext4_super_block *es = NULL; 3782 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3783 struct flex_groups **flex_groups; 3784 ext4_fsblk_t block; 3785 ext4_fsblk_t sb_block = get_sb_block(&data); 3786 ext4_fsblk_t logical_sb_block; 3787 unsigned long offset = 0; 3788 unsigned long journal_devnum = 0; 3789 unsigned long def_mount_opts; 3790 struct inode *root; 3791 const char *descr; 3792 int ret = -ENOMEM; 3793 int blocksize, clustersize; 3794 unsigned int db_count; 3795 unsigned int i; 3796 int needs_recovery, has_huge_files; 3797 __u64 blocks_count; 3798 int err = 0; 3799 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3800 ext4_group_t first_not_zeroed; 3801 3802 if ((data && !orig_data) || !sbi) 3803 goto out_free_base; 3804 3805 sbi->s_daxdev = dax_dev; 3806 sbi->s_blockgroup_lock = 3807 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3808 if (!sbi->s_blockgroup_lock) 3809 goto out_free_base; 3810 3811 sb->s_fs_info = sbi; 3812 sbi->s_sb = sb; 3813 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3814 sbi->s_sb_block = sb_block; 3815 if (sb->s_bdev->bd_part) 3816 sbi->s_sectors_written_start = 3817 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3818 3819 /* Cleanup superblock name */ 3820 strreplace(sb->s_id, '/', '!'); 3821 3822 /* -EINVAL is default */ 3823 ret = -EINVAL; 3824 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3825 if (!blocksize) { 3826 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3827 goto out_fail; 3828 } 3829 3830 /* 3831 * The ext4 superblock will not be buffer aligned for other than 1kB 3832 * block sizes. We need to calculate the offset from buffer start. 3833 */ 3834 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3835 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3836 offset = do_div(logical_sb_block, blocksize); 3837 } else { 3838 logical_sb_block = sb_block; 3839 } 3840 3841 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3842 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3843 goto out_fail; 3844 } 3845 /* 3846 * Note: s_es must be initialized as soon as possible because 3847 * some ext4 macro-instructions depend on its value 3848 */ 3849 es = (struct ext4_super_block *) (bh->b_data + offset); 3850 sbi->s_es = es; 3851 sb->s_magic = le16_to_cpu(es->s_magic); 3852 if (sb->s_magic != EXT4_SUPER_MAGIC) 3853 goto cantfind_ext4; 3854 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3855 3856 /* Warn if metadata_csum and gdt_csum are both set. */ 3857 if (ext4_has_feature_metadata_csum(sb) && 3858 ext4_has_feature_gdt_csum(sb)) 3859 ext4_warning(sb, "metadata_csum and uninit_bg are " 3860 "redundant flags; please run fsck."); 3861 3862 /* Check for a known checksum algorithm */ 3863 if (!ext4_verify_csum_type(sb, es)) { 3864 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3865 "unknown checksum algorithm."); 3866 silent = 1; 3867 goto cantfind_ext4; 3868 } 3869 3870 /* Load the checksum driver */ 3871 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3872 if (IS_ERR(sbi->s_chksum_driver)) { 3873 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3874 ret = PTR_ERR(sbi->s_chksum_driver); 3875 sbi->s_chksum_driver = NULL; 3876 goto failed_mount; 3877 } 3878 3879 /* Check superblock checksum */ 3880 if (!ext4_superblock_csum_verify(sb, es)) { 3881 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3882 "invalid superblock checksum. Run e2fsck?"); 3883 silent = 1; 3884 ret = -EFSBADCRC; 3885 goto cantfind_ext4; 3886 } 3887 3888 /* Precompute checksum seed for all metadata */ 3889 if (ext4_has_feature_csum_seed(sb)) 3890 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3891 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3892 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3893 sizeof(es->s_uuid)); 3894 3895 /* Set defaults before we parse the mount options */ 3896 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3897 set_opt(sb, INIT_INODE_TABLE); 3898 if (def_mount_opts & EXT4_DEFM_DEBUG) 3899 set_opt(sb, DEBUG); 3900 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3901 set_opt(sb, GRPID); 3902 if (def_mount_opts & EXT4_DEFM_UID16) 3903 set_opt(sb, NO_UID32); 3904 /* xattr user namespace & acls are now defaulted on */ 3905 set_opt(sb, XATTR_USER); 3906 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3907 set_opt(sb, POSIX_ACL); 3908 #endif 3909 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3910 if (ext4_has_metadata_csum(sb)) 3911 set_opt(sb, JOURNAL_CHECKSUM); 3912 3913 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3914 set_opt(sb, JOURNAL_DATA); 3915 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3916 set_opt(sb, ORDERED_DATA); 3917 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3918 set_opt(sb, WRITEBACK_DATA); 3919 3920 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3921 set_opt(sb, ERRORS_PANIC); 3922 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3923 set_opt(sb, ERRORS_CONT); 3924 else 3925 set_opt(sb, ERRORS_RO); 3926 /* block_validity enabled by default; disable with noblock_validity */ 3927 set_opt(sb, BLOCK_VALIDITY); 3928 if (def_mount_opts & EXT4_DEFM_DISCARD) 3929 set_opt(sb, DISCARD); 3930 3931 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3932 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3933 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3934 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3935 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3936 3937 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3938 set_opt(sb, BARRIER); 3939 3940 /* 3941 * enable delayed allocation by default 3942 * Use -o nodelalloc to turn it off 3943 */ 3944 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3945 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3946 set_opt(sb, DELALLOC); 3947 3948 /* 3949 * set default s_li_wait_mult for lazyinit, for the case there is 3950 * no mount option specified. 3951 */ 3952 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3953 3954 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3955 3956 if (blocksize == PAGE_SIZE) 3957 set_opt(sb, DIOREAD_NOLOCK); 3958 3959 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3960 blocksize > EXT4_MAX_BLOCK_SIZE) { 3961 ext4_msg(sb, KERN_ERR, 3962 "Unsupported filesystem blocksize %d (%d log_block_size)", 3963 blocksize, le32_to_cpu(es->s_log_block_size)); 3964 goto failed_mount; 3965 } 3966 3967 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3968 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3969 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3970 } else { 3971 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3972 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3973 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3974 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3975 sbi->s_first_ino); 3976 goto failed_mount; 3977 } 3978 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3979 (!is_power_of_2(sbi->s_inode_size)) || 3980 (sbi->s_inode_size > blocksize)) { 3981 ext4_msg(sb, KERN_ERR, 3982 "unsupported inode size: %d", 3983 sbi->s_inode_size); 3984 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 3985 goto failed_mount; 3986 } 3987 /* 3988 * i_atime_extra is the last extra field available for 3989 * [acm]times in struct ext4_inode. Checking for that 3990 * field should suffice to ensure we have extra space 3991 * for all three. 3992 */ 3993 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 3994 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 3995 sb->s_time_gran = 1; 3996 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 3997 } else { 3998 sb->s_time_gran = NSEC_PER_SEC; 3999 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4000 } 4001 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4002 } 4003 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4004 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4005 EXT4_GOOD_OLD_INODE_SIZE; 4006 if (ext4_has_feature_extra_isize(sb)) { 4007 unsigned v, max = (sbi->s_inode_size - 4008 EXT4_GOOD_OLD_INODE_SIZE); 4009 4010 v = le16_to_cpu(es->s_want_extra_isize); 4011 if (v > max) { 4012 ext4_msg(sb, KERN_ERR, 4013 "bad s_want_extra_isize: %d", v); 4014 goto failed_mount; 4015 } 4016 if (sbi->s_want_extra_isize < v) 4017 sbi->s_want_extra_isize = v; 4018 4019 v = le16_to_cpu(es->s_min_extra_isize); 4020 if (v > max) { 4021 ext4_msg(sb, KERN_ERR, 4022 "bad s_min_extra_isize: %d", v); 4023 goto failed_mount; 4024 } 4025 if (sbi->s_want_extra_isize < v) 4026 sbi->s_want_extra_isize = v; 4027 } 4028 } 4029 4030 if (sbi->s_es->s_mount_opts[0]) { 4031 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4032 sizeof(sbi->s_es->s_mount_opts), 4033 GFP_KERNEL); 4034 if (!s_mount_opts) 4035 goto failed_mount; 4036 if (!parse_options(s_mount_opts, sb, &journal_devnum, 4037 &journal_ioprio, 0)) { 4038 ext4_msg(sb, KERN_WARNING, 4039 "failed to parse options in superblock: %s", 4040 s_mount_opts); 4041 } 4042 kfree(s_mount_opts); 4043 } 4044 sbi->s_def_mount_opt = sbi->s_mount_opt; 4045 if (!parse_options((char *) data, sb, &journal_devnum, 4046 &journal_ioprio, 0)) 4047 goto failed_mount; 4048 4049 #ifdef CONFIG_UNICODE 4050 if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) { 4051 const struct ext4_sb_encodings *encoding_info; 4052 struct unicode_map *encoding; 4053 __u16 encoding_flags; 4054 4055 if (ext4_has_feature_encrypt(sb)) { 4056 ext4_msg(sb, KERN_ERR, 4057 "Can't mount with encoding and encryption"); 4058 goto failed_mount; 4059 } 4060 4061 if (ext4_sb_read_encoding(es, &encoding_info, 4062 &encoding_flags)) { 4063 ext4_msg(sb, KERN_ERR, 4064 "Encoding requested by superblock is unknown"); 4065 goto failed_mount; 4066 } 4067 4068 encoding = utf8_load(encoding_info->version); 4069 if (IS_ERR(encoding)) { 4070 ext4_msg(sb, KERN_ERR, 4071 "can't mount with superblock charset: %s-%s " 4072 "not supported by the kernel. flags: 0x%x.", 4073 encoding_info->name, encoding_info->version, 4074 encoding_flags); 4075 goto failed_mount; 4076 } 4077 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4078 "%s-%s with flags 0x%hx", encoding_info->name, 4079 encoding_info->version?:"\b", encoding_flags); 4080 4081 sbi->s_encoding = encoding; 4082 sbi->s_encoding_flags = encoding_flags; 4083 } 4084 #endif 4085 4086 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4087 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, and O_DIRECT support!\n"); 4088 /* can't mount with both data=journal and dioread_nolock. */ 4089 clear_opt(sb, DIOREAD_NOLOCK); 4090 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4091 ext4_msg(sb, KERN_ERR, "can't mount with " 4092 "both data=journal and delalloc"); 4093 goto failed_mount; 4094 } 4095 if (test_opt(sb, DAX_ALWAYS)) { 4096 ext4_msg(sb, KERN_ERR, "can't mount with " 4097 "both data=journal and dax"); 4098 goto failed_mount; 4099 } 4100 if (ext4_has_feature_encrypt(sb)) { 4101 ext4_msg(sb, KERN_WARNING, 4102 "encrypted files will use data=ordered " 4103 "instead of data journaling mode"); 4104 } 4105 if (test_opt(sb, DELALLOC)) 4106 clear_opt(sb, DELALLOC); 4107 } else { 4108 sb->s_iflags |= SB_I_CGROUPWB; 4109 } 4110 4111 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4112 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4113 4114 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4115 (ext4_has_compat_features(sb) || 4116 ext4_has_ro_compat_features(sb) || 4117 ext4_has_incompat_features(sb))) 4118 ext4_msg(sb, KERN_WARNING, 4119 "feature flags set on rev 0 fs, " 4120 "running e2fsck is recommended"); 4121 4122 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4123 set_opt2(sb, HURD_COMPAT); 4124 if (ext4_has_feature_64bit(sb)) { 4125 ext4_msg(sb, KERN_ERR, 4126 "The Hurd can't support 64-bit file systems"); 4127 goto failed_mount; 4128 } 4129 4130 /* 4131 * ea_inode feature uses l_i_version field which is not 4132 * available in HURD_COMPAT mode. 4133 */ 4134 if (ext4_has_feature_ea_inode(sb)) { 4135 ext4_msg(sb, KERN_ERR, 4136 "ea_inode feature is not supported for Hurd"); 4137 goto failed_mount; 4138 } 4139 } 4140 4141 if (IS_EXT2_SB(sb)) { 4142 if (ext2_feature_set_ok(sb)) 4143 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4144 "using the ext4 subsystem"); 4145 else { 4146 /* 4147 * If we're probing be silent, if this looks like 4148 * it's actually an ext[34] filesystem. 4149 */ 4150 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4151 goto failed_mount; 4152 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4153 "to feature incompatibilities"); 4154 goto failed_mount; 4155 } 4156 } 4157 4158 if (IS_EXT3_SB(sb)) { 4159 if (ext3_feature_set_ok(sb)) 4160 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4161 "using the ext4 subsystem"); 4162 else { 4163 /* 4164 * If we're probing be silent, if this looks like 4165 * it's actually an ext4 filesystem. 4166 */ 4167 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4168 goto failed_mount; 4169 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4170 "to feature incompatibilities"); 4171 goto failed_mount; 4172 } 4173 } 4174 4175 /* 4176 * Check feature flags regardless of the revision level, since we 4177 * previously didn't change the revision level when setting the flags, 4178 * so there is a chance incompat flags are set on a rev 0 filesystem. 4179 */ 4180 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4181 goto failed_mount; 4182 4183 if (le32_to_cpu(es->s_log_block_size) > 4184 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4185 ext4_msg(sb, KERN_ERR, 4186 "Invalid log block size: %u", 4187 le32_to_cpu(es->s_log_block_size)); 4188 goto failed_mount; 4189 } 4190 if (le32_to_cpu(es->s_log_cluster_size) > 4191 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4192 ext4_msg(sb, KERN_ERR, 4193 "Invalid log cluster size: %u", 4194 le32_to_cpu(es->s_log_cluster_size)); 4195 goto failed_mount; 4196 } 4197 4198 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4199 ext4_msg(sb, KERN_ERR, 4200 "Number of reserved GDT blocks insanely large: %d", 4201 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4202 goto failed_mount; 4203 } 4204 4205 if (bdev_dax_supported(sb->s_bdev, blocksize)) 4206 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4207 4208 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4209 if (ext4_has_feature_inline_data(sb)) { 4210 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4211 " that may contain inline data"); 4212 goto failed_mount; 4213 } 4214 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4215 ext4_msg(sb, KERN_ERR, 4216 "DAX unsupported by block device."); 4217 goto failed_mount; 4218 } 4219 } 4220 4221 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4222 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4223 es->s_encryption_level); 4224 goto failed_mount; 4225 } 4226 4227 if (sb->s_blocksize != blocksize) { 4228 /* Validate the filesystem blocksize */ 4229 if (!sb_set_blocksize(sb, blocksize)) { 4230 ext4_msg(sb, KERN_ERR, "bad block size %d", 4231 blocksize); 4232 goto failed_mount; 4233 } 4234 4235 brelse(bh); 4236 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4237 offset = do_div(logical_sb_block, blocksize); 4238 bh = sb_bread_unmovable(sb, logical_sb_block); 4239 if (!bh) { 4240 ext4_msg(sb, KERN_ERR, 4241 "Can't read superblock on 2nd try"); 4242 goto failed_mount; 4243 } 4244 es = (struct ext4_super_block *)(bh->b_data + offset); 4245 sbi->s_es = es; 4246 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4247 ext4_msg(sb, KERN_ERR, 4248 "Magic mismatch, very weird!"); 4249 goto failed_mount; 4250 } 4251 } 4252 4253 has_huge_files = ext4_has_feature_huge_file(sb); 4254 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4255 has_huge_files); 4256 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4257 4258 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4259 if (ext4_has_feature_64bit(sb)) { 4260 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4261 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4262 !is_power_of_2(sbi->s_desc_size)) { 4263 ext4_msg(sb, KERN_ERR, 4264 "unsupported descriptor size %lu", 4265 sbi->s_desc_size); 4266 goto failed_mount; 4267 } 4268 } else 4269 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4270 4271 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4272 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4273 4274 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4275 if (sbi->s_inodes_per_block == 0) 4276 goto cantfind_ext4; 4277 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4278 sbi->s_inodes_per_group > blocksize * 8) { 4279 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4280 sbi->s_inodes_per_group); 4281 goto failed_mount; 4282 } 4283 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4284 sbi->s_inodes_per_block; 4285 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4286 sbi->s_sbh = bh; 4287 sbi->s_mount_state = le16_to_cpu(es->s_state); 4288 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4289 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4290 4291 for (i = 0; i < 4; i++) 4292 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4293 sbi->s_def_hash_version = es->s_def_hash_version; 4294 if (ext4_has_feature_dir_index(sb)) { 4295 i = le32_to_cpu(es->s_flags); 4296 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4297 sbi->s_hash_unsigned = 3; 4298 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4299 #ifdef __CHAR_UNSIGNED__ 4300 if (!sb_rdonly(sb)) 4301 es->s_flags |= 4302 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4303 sbi->s_hash_unsigned = 3; 4304 #else 4305 if (!sb_rdonly(sb)) 4306 es->s_flags |= 4307 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4308 #endif 4309 } 4310 } 4311 4312 /* Handle clustersize */ 4313 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4314 if (ext4_has_feature_bigalloc(sb)) { 4315 if (clustersize < blocksize) { 4316 ext4_msg(sb, KERN_ERR, 4317 "cluster size (%d) smaller than " 4318 "block size (%d)", clustersize, blocksize); 4319 goto failed_mount; 4320 } 4321 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4322 le32_to_cpu(es->s_log_block_size); 4323 sbi->s_clusters_per_group = 4324 le32_to_cpu(es->s_clusters_per_group); 4325 if (sbi->s_clusters_per_group > blocksize * 8) { 4326 ext4_msg(sb, KERN_ERR, 4327 "#clusters per group too big: %lu", 4328 sbi->s_clusters_per_group); 4329 goto failed_mount; 4330 } 4331 if (sbi->s_blocks_per_group != 4332 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4333 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4334 "clusters per group (%lu) inconsistent", 4335 sbi->s_blocks_per_group, 4336 sbi->s_clusters_per_group); 4337 goto failed_mount; 4338 } 4339 } else { 4340 if (clustersize != blocksize) { 4341 ext4_msg(sb, KERN_ERR, 4342 "fragment/cluster size (%d) != " 4343 "block size (%d)", clustersize, blocksize); 4344 goto failed_mount; 4345 } 4346 if (sbi->s_blocks_per_group > blocksize * 8) { 4347 ext4_msg(sb, KERN_ERR, 4348 "#blocks per group too big: %lu", 4349 sbi->s_blocks_per_group); 4350 goto failed_mount; 4351 } 4352 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4353 sbi->s_cluster_bits = 0; 4354 } 4355 sbi->s_cluster_ratio = clustersize / blocksize; 4356 4357 /* Do we have standard group size of clustersize * 8 blocks ? */ 4358 if (sbi->s_blocks_per_group == clustersize << 3) 4359 set_opt2(sb, STD_GROUP_SIZE); 4360 4361 /* 4362 * Test whether we have more sectors than will fit in sector_t, 4363 * and whether the max offset is addressable by the page cache. 4364 */ 4365 err = generic_check_addressable(sb->s_blocksize_bits, 4366 ext4_blocks_count(es)); 4367 if (err) { 4368 ext4_msg(sb, KERN_ERR, "filesystem" 4369 " too large to mount safely on this system"); 4370 goto failed_mount; 4371 } 4372 4373 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4374 goto cantfind_ext4; 4375 4376 /* check blocks count against device size */ 4377 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4378 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4379 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4380 "exceeds size of device (%llu blocks)", 4381 ext4_blocks_count(es), blocks_count); 4382 goto failed_mount; 4383 } 4384 4385 /* 4386 * It makes no sense for the first data block to be beyond the end 4387 * of the filesystem. 4388 */ 4389 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4390 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4391 "block %u is beyond end of filesystem (%llu)", 4392 le32_to_cpu(es->s_first_data_block), 4393 ext4_blocks_count(es)); 4394 goto failed_mount; 4395 } 4396 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4397 (sbi->s_cluster_ratio == 1)) { 4398 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4399 "block is 0 with a 1k block and cluster size"); 4400 goto failed_mount; 4401 } 4402 4403 blocks_count = (ext4_blocks_count(es) - 4404 le32_to_cpu(es->s_first_data_block) + 4405 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4406 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4407 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4408 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4409 "(block count %llu, first data block %u, " 4410 "blocks per group %lu)", blocks_count, 4411 ext4_blocks_count(es), 4412 le32_to_cpu(es->s_first_data_block), 4413 EXT4_BLOCKS_PER_GROUP(sb)); 4414 goto failed_mount; 4415 } 4416 sbi->s_groups_count = blocks_count; 4417 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4418 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4419 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4420 le32_to_cpu(es->s_inodes_count)) { 4421 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4422 le32_to_cpu(es->s_inodes_count), 4423 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4424 ret = -EINVAL; 4425 goto failed_mount; 4426 } 4427 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4428 EXT4_DESC_PER_BLOCK(sb); 4429 if (ext4_has_feature_meta_bg(sb)) { 4430 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4431 ext4_msg(sb, KERN_WARNING, 4432 "first meta block group too large: %u " 4433 "(group descriptor block count %u)", 4434 le32_to_cpu(es->s_first_meta_bg), db_count); 4435 goto failed_mount; 4436 } 4437 } 4438 rcu_assign_pointer(sbi->s_group_desc, 4439 kvmalloc_array(db_count, 4440 sizeof(struct buffer_head *), 4441 GFP_KERNEL)); 4442 if (sbi->s_group_desc == NULL) { 4443 ext4_msg(sb, KERN_ERR, "not enough memory"); 4444 ret = -ENOMEM; 4445 goto failed_mount; 4446 } 4447 4448 bgl_lock_init(sbi->s_blockgroup_lock); 4449 4450 /* Pre-read the descriptors into the buffer cache */ 4451 for (i = 0; i < db_count; i++) { 4452 block = descriptor_loc(sb, logical_sb_block, i); 4453 sb_breadahead_unmovable(sb, block); 4454 } 4455 4456 for (i = 0; i < db_count; i++) { 4457 struct buffer_head *bh; 4458 4459 block = descriptor_loc(sb, logical_sb_block, i); 4460 bh = sb_bread_unmovable(sb, block); 4461 if (!bh) { 4462 ext4_msg(sb, KERN_ERR, 4463 "can't read group descriptor %d", i); 4464 db_count = i; 4465 goto failed_mount2; 4466 } 4467 rcu_read_lock(); 4468 rcu_dereference(sbi->s_group_desc)[i] = bh; 4469 rcu_read_unlock(); 4470 } 4471 sbi->s_gdb_count = db_count; 4472 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4473 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4474 ret = -EFSCORRUPTED; 4475 goto failed_mount2; 4476 } 4477 4478 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4479 4480 /* Register extent status tree shrinker */ 4481 if (ext4_es_register_shrinker(sbi)) 4482 goto failed_mount3; 4483 4484 sbi->s_stripe = ext4_get_stripe_size(sbi); 4485 sbi->s_extent_max_zeroout_kb = 32; 4486 4487 /* 4488 * set up enough so that it can read an inode 4489 */ 4490 sb->s_op = &ext4_sops; 4491 sb->s_export_op = &ext4_export_ops; 4492 sb->s_xattr = ext4_xattr_handlers; 4493 #ifdef CONFIG_FS_ENCRYPTION 4494 sb->s_cop = &ext4_cryptops; 4495 #endif 4496 #ifdef CONFIG_FS_VERITY 4497 sb->s_vop = &ext4_verityops; 4498 #endif 4499 #ifdef CONFIG_QUOTA 4500 sb->dq_op = &ext4_quota_operations; 4501 if (ext4_has_feature_quota(sb)) 4502 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4503 else 4504 sb->s_qcop = &ext4_qctl_operations; 4505 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4506 #endif 4507 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4508 4509 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4510 mutex_init(&sbi->s_orphan_lock); 4511 4512 sb->s_root = NULL; 4513 4514 needs_recovery = (es->s_last_orphan != 0 || 4515 ext4_has_feature_journal_needs_recovery(sb)); 4516 4517 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4518 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4519 goto failed_mount3a; 4520 4521 /* 4522 * The first inode we look at is the journal inode. Don't try 4523 * root first: it may be modified in the journal! 4524 */ 4525 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4526 err = ext4_load_journal(sb, es, journal_devnum); 4527 if (err) 4528 goto failed_mount3a; 4529 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4530 ext4_has_feature_journal_needs_recovery(sb)) { 4531 ext4_msg(sb, KERN_ERR, "required journal recovery " 4532 "suppressed and not mounted read-only"); 4533 goto failed_mount_wq; 4534 } else { 4535 /* Nojournal mode, all journal mount options are illegal */ 4536 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4537 ext4_msg(sb, KERN_ERR, "can't mount with " 4538 "journal_checksum, fs mounted w/o journal"); 4539 goto failed_mount_wq; 4540 } 4541 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4542 ext4_msg(sb, KERN_ERR, "can't mount with " 4543 "journal_async_commit, fs mounted w/o journal"); 4544 goto failed_mount_wq; 4545 } 4546 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4547 ext4_msg(sb, KERN_ERR, "can't mount with " 4548 "commit=%lu, fs mounted w/o journal", 4549 sbi->s_commit_interval / HZ); 4550 goto failed_mount_wq; 4551 } 4552 if (EXT4_MOUNT_DATA_FLAGS & 4553 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4554 ext4_msg(sb, KERN_ERR, "can't mount with " 4555 "data=, fs mounted w/o journal"); 4556 goto failed_mount_wq; 4557 } 4558 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4559 clear_opt(sb, JOURNAL_CHECKSUM); 4560 clear_opt(sb, DATA_FLAGS); 4561 sbi->s_journal = NULL; 4562 needs_recovery = 0; 4563 goto no_journal; 4564 } 4565 4566 if (ext4_has_feature_64bit(sb) && 4567 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4568 JBD2_FEATURE_INCOMPAT_64BIT)) { 4569 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4570 goto failed_mount_wq; 4571 } 4572 4573 if (!set_journal_csum_feature_set(sb)) { 4574 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4575 "feature set"); 4576 goto failed_mount_wq; 4577 } 4578 4579 /* We have now updated the journal if required, so we can 4580 * validate the data journaling mode. */ 4581 switch (test_opt(sb, DATA_FLAGS)) { 4582 case 0: 4583 /* No mode set, assume a default based on the journal 4584 * capabilities: ORDERED_DATA if the journal can 4585 * cope, else JOURNAL_DATA 4586 */ 4587 if (jbd2_journal_check_available_features 4588 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4589 set_opt(sb, ORDERED_DATA); 4590 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4591 } else { 4592 set_opt(sb, JOURNAL_DATA); 4593 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4594 } 4595 break; 4596 4597 case EXT4_MOUNT_ORDERED_DATA: 4598 case EXT4_MOUNT_WRITEBACK_DATA: 4599 if (!jbd2_journal_check_available_features 4600 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4601 ext4_msg(sb, KERN_ERR, "Journal does not support " 4602 "requested data journaling mode"); 4603 goto failed_mount_wq; 4604 } 4605 default: 4606 break; 4607 } 4608 4609 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4610 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4611 ext4_msg(sb, KERN_ERR, "can't mount with " 4612 "journal_async_commit in data=ordered mode"); 4613 goto failed_mount_wq; 4614 } 4615 4616 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4617 4618 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4619 4620 no_journal: 4621 if (!test_opt(sb, NO_MBCACHE)) { 4622 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4623 if (!sbi->s_ea_block_cache) { 4624 ext4_msg(sb, KERN_ERR, 4625 "Failed to create ea_block_cache"); 4626 goto failed_mount_wq; 4627 } 4628 4629 if (ext4_has_feature_ea_inode(sb)) { 4630 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4631 if (!sbi->s_ea_inode_cache) { 4632 ext4_msg(sb, KERN_ERR, 4633 "Failed to create ea_inode_cache"); 4634 goto failed_mount_wq; 4635 } 4636 } 4637 } 4638 4639 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4640 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4641 goto failed_mount_wq; 4642 } 4643 4644 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4645 !ext4_has_feature_encrypt(sb)) { 4646 ext4_set_feature_encrypt(sb); 4647 ext4_commit_super(sb, 1); 4648 } 4649 4650 /* 4651 * Get the # of file system overhead blocks from the 4652 * superblock if present. 4653 */ 4654 if (es->s_overhead_clusters) 4655 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4656 else { 4657 err = ext4_calculate_overhead(sb); 4658 if (err) 4659 goto failed_mount_wq; 4660 } 4661 4662 /* 4663 * The maximum number of concurrent works can be high and 4664 * concurrency isn't really necessary. Limit it to 1. 4665 */ 4666 EXT4_SB(sb)->rsv_conversion_wq = 4667 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4668 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4669 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4670 ret = -ENOMEM; 4671 goto failed_mount4; 4672 } 4673 4674 /* 4675 * The jbd2_journal_load will have done any necessary log recovery, 4676 * so we can safely mount the rest of the filesystem now. 4677 */ 4678 4679 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4680 if (IS_ERR(root)) { 4681 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4682 ret = PTR_ERR(root); 4683 root = NULL; 4684 goto failed_mount4; 4685 } 4686 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4687 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4688 iput(root); 4689 goto failed_mount4; 4690 } 4691 4692 #ifdef CONFIG_UNICODE 4693 if (sbi->s_encoding) 4694 sb->s_d_op = &ext4_dentry_ops; 4695 #endif 4696 4697 sb->s_root = d_make_root(root); 4698 if (!sb->s_root) { 4699 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4700 ret = -ENOMEM; 4701 goto failed_mount4; 4702 } 4703 4704 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4705 if (ret == -EROFS) { 4706 sb->s_flags |= SB_RDONLY; 4707 ret = 0; 4708 } else if (ret) 4709 goto failed_mount4a; 4710 4711 ext4_set_resv_clusters(sb); 4712 4713 err = ext4_setup_system_zone(sb); 4714 if (err) { 4715 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4716 "zone (%d)", err); 4717 goto failed_mount4a; 4718 } 4719 4720 ext4_ext_init(sb); 4721 err = ext4_mb_init(sb); 4722 if (err) { 4723 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4724 err); 4725 goto failed_mount5; 4726 } 4727 4728 block = ext4_count_free_clusters(sb); 4729 ext4_free_blocks_count_set(sbi->s_es, 4730 EXT4_C2B(sbi, block)); 4731 ext4_superblock_csum_set(sb); 4732 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4733 GFP_KERNEL); 4734 if (!err) { 4735 unsigned long freei = ext4_count_free_inodes(sb); 4736 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4737 ext4_superblock_csum_set(sb); 4738 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4739 GFP_KERNEL); 4740 } 4741 if (!err) 4742 err = percpu_counter_init(&sbi->s_dirs_counter, 4743 ext4_count_dirs(sb), GFP_KERNEL); 4744 if (!err) 4745 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4746 GFP_KERNEL); 4747 if (!err) 4748 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4749 4750 if (err) { 4751 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4752 goto failed_mount6; 4753 } 4754 4755 if (ext4_has_feature_flex_bg(sb)) 4756 if (!ext4_fill_flex_info(sb)) { 4757 ext4_msg(sb, KERN_ERR, 4758 "unable to initialize " 4759 "flex_bg meta info!"); 4760 goto failed_mount6; 4761 } 4762 4763 err = ext4_register_li_request(sb, first_not_zeroed); 4764 if (err) 4765 goto failed_mount6; 4766 4767 err = ext4_register_sysfs(sb); 4768 if (err) 4769 goto failed_mount7; 4770 4771 #ifdef CONFIG_QUOTA 4772 /* Enable quota usage during mount. */ 4773 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4774 err = ext4_enable_quotas(sb); 4775 if (err) 4776 goto failed_mount8; 4777 } 4778 #endif /* CONFIG_QUOTA */ 4779 4780 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4781 ext4_orphan_cleanup(sb, es); 4782 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4783 if (needs_recovery) { 4784 ext4_msg(sb, KERN_INFO, "recovery complete"); 4785 ext4_mark_recovery_complete(sb, es); 4786 } 4787 if (EXT4_SB(sb)->s_journal) { 4788 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4789 descr = " journalled data mode"; 4790 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4791 descr = " ordered data mode"; 4792 else 4793 descr = " writeback data mode"; 4794 } else 4795 descr = "out journal"; 4796 4797 if (test_opt(sb, DISCARD)) { 4798 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4799 if (!blk_queue_discard(q)) 4800 ext4_msg(sb, KERN_WARNING, 4801 "mounting with \"discard\" option, but " 4802 "the device does not support discard"); 4803 } 4804 4805 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4806 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4807 "Opts: %.*s%s%s", descr, 4808 (int) sizeof(sbi->s_es->s_mount_opts), 4809 sbi->s_es->s_mount_opts, 4810 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4811 4812 if (es->s_error_count) 4813 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4814 4815 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4816 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4817 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4818 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4819 4820 kfree(orig_data); 4821 return 0; 4822 4823 cantfind_ext4: 4824 if (!silent) 4825 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4826 goto failed_mount; 4827 4828 #ifdef CONFIG_QUOTA 4829 failed_mount8: 4830 ext4_unregister_sysfs(sb); 4831 #endif 4832 failed_mount7: 4833 ext4_unregister_li_request(sb); 4834 failed_mount6: 4835 ext4_mb_release(sb); 4836 rcu_read_lock(); 4837 flex_groups = rcu_dereference(sbi->s_flex_groups); 4838 if (flex_groups) { 4839 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 4840 kvfree(flex_groups[i]); 4841 kvfree(flex_groups); 4842 } 4843 rcu_read_unlock(); 4844 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4845 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4846 percpu_counter_destroy(&sbi->s_dirs_counter); 4847 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4848 percpu_free_rwsem(&sbi->s_writepages_rwsem); 4849 failed_mount5: 4850 ext4_ext_release(sb); 4851 ext4_release_system_zone(sb); 4852 failed_mount4a: 4853 dput(sb->s_root); 4854 sb->s_root = NULL; 4855 failed_mount4: 4856 ext4_msg(sb, KERN_ERR, "mount failed"); 4857 if (EXT4_SB(sb)->rsv_conversion_wq) 4858 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4859 failed_mount_wq: 4860 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4861 sbi->s_ea_inode_cache = NULL; 4862 4863 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4864 sbi->s_ea_block_cache = NULL; 4865 4866 if (sbi->s_journal) { 4867 jbd2_journal_destroy(sbi->s_journal); 4868 sbi->s_journal = NULL; 4869 } 4870 failed_mount3a: 4871 ext4_es_unregister_shrinker(sbi); 4872 failed_mount3: 4873 del_timer_sync(&sbi->s_err_report); 4874 if (sbi->s_mmp_tsk) 4875 kthread_stop(sbi->s_mmp_tsk); 4876 failed_mount2: 4877 rcu_read_lock(); 4878 group_desc = rcu_dereference(sbi->s_group_desc); 4879 for (i = 0; i < db_count; i++) 4880 brelse(group_desc[i]); 4881 kvfree(group_desc); 4882 rcu_read_unlock(); 4883 failed_mount: 4884 if (sbi->s_chksum_driver) 4885 crypto_free_shash(sbi->s_chksum_driver); 4886 4887 #ifdef CONFIG_UNICODE 4888 utf8_unload(sbi->s_encoding); 4889 #endif 4890 4891 #ifdef CONFIG_QUOTA 4892 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4893 kfree(get_qf_name(sb, sbi, i)); 4894 #endif 4895 fscrypt_free_dummy_context(&sbi->s_dummy_enc_ctx); 4896 ext4_blkdev_remove(sbi); 4897 brelse(bh); 4898 out_fail: 4899 sb->s_fs_info = NULL; 4900 kfree(sbi->s_blockgroup_lock); 4901 out_free_base: 4902 kfree(sbi); 4903 kfree(orig_data); 4904 fs_put_dax(dax_dev); 4905 return err ? err : ret; 4906 } 4907 4908 /* 4909 * Setup any per-fs journal parameters now. We'll do this both on 4910 * initial mount, once the journal has been initialised but before we've 4911 * done any recovery; and again on any subsequent remount. 4912 */ 4913 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4914 { 4915 struct ext4_sb_info *sbi = EXT4_SB(sb); 4916 4917 journal->j_commit_interval = sbi->s_commit_interval; 4918 journal->j_min_batch_time = sbi->s_min_batch_time; 4919 journal->j_max_batch_time = sbi->s_max_batch_time; 4920 4921 write_lock(&journal->j_state_lock); 4922 if (test_opt(sb, BARRIER)) 4923 journal->j_flags |= JBD2_BARRIER; 4924 else 4925 journal->j_flags &= ~JBD2_BARRIER; 4926 if (test_opt(sb, DATA_ERR_ABORT)) 4927 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4928 else 4929 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4930 write_unlock(&journal->j_state_lock); 4931 } 4932 4933 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4934 unsigned int journal_inum) 4935 { 4936 struct inode *journal_inode; 4937 4938 /* 4939 * Test for the existence of a valid inode on disk. Bad things 4940 * happen if we iget() an unused inode, as the subsequent iput() 4941 * will try to delete it. 4942 */ 4943 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 4944 if (IS_ERR(journal_inode)) { 4945 ext4_msg(sb, KERN_ERR, "no journal found"); 4946 return NULL; 4947 } 4948 if (!journal_inode->i_nlink) { 4949 make_bad_inode(journal_inode); 4950 iput(journal_inode); 4951 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4952 return NULL; 4953 } 4954 4955 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4956 journal_inode, journal_inode->i_size); 4957 if (!S_ISREG(journal_inode->i_mode)) { 4958 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4959 iput(journal_inode); 4960 return NULL; 4961 } 4962 return journal_inode; 4963 } 4964 4965 static journal_t *ext4_get_journal(struct super_block *sb, 4966 unsigned int journal_inum) 4967 { 4968 struct inode *journal_inode; 4969 journal_t *journal; 4970 4971 BUG_ON(!ext4_has_feature_journal(sb)); 4972 4973 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4974 if (!journal_inode) 4975 return NULL; 4976 4977 journal = jbd2_journal_init_inode(journal_inode); 4978 if (!journal) { 4979 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4980 iput(journal_inode); 4981 return NULL; 4982 } 4983 journal->j_private = sb; 4984 ext4_init_journal_params(sb, journal); 4985 return journal; 4986 } 4987 4988 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4989 dev_t j_dev) 4990 { 4991 struct buffer_head *bh; 4992 journal_t *journal; 4993 ext4_fsblk_t start; 4994 ext4_fsblk_t len; 4995 int hblock, blocksize; 4996 ext4_fsblk_t sb_block; 4997 unsigned long offset; 4998 struct ext4_super_block *es; 4999 struct block_device *bdev; 5000 5001 BUG_ON(!ext4_has_feature_journal(sb)); 5002 5003 bdev = ext4_blkdev_get(j_dev, sb); 5004 if (bdev == NULL) 5005 return NULL; 5006 5007 blocksize = sb->s_blocksize; 5008 hblock = bdev_logical_block_size(bdev); 5009 if (blocksize < hblock) { 5010 ext4_msg(sb, KERN_ERR, 5011 "blocksize too small for journal device"); 5012 goto out_bdev; 5013 } 5014 5015 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5016 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5017 set_blocksize(bdev, blocksize); 5018 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5019 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5020 "external journal"); 5021 goto out_bdev; 5022 } 5023 5024 es = (struct ext4_super_block *) (bh->b_data + offset); 5025 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5026 !(le32_to_cpu(es->s_feature_incompat) & 5027 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5028 ext4_msg(sb, KERN_ERR, "external journal has " 5029 "bad superblock"); 5030 brelse(bh); 5031 goto out_bdev; 5032 } 5033 5034 if ((le32_to_cpu(es->s_feature_ro_compat) & 5035 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5036 es->s_checksum != ext4_superblock_csum(sb, es)) { 5037 ext4_msg(sb, KERN_ERR, "external journal has " 5038 "corrupt superblock"); 5039 brelse(bh); 5040 goto out_bdev; 5041 } 5042 5043 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5044 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5045 brelse(bh); 5046 goto out_bdev; 5047 } 5048 5049 len = ext4_blocks_count(es); 5050 start = sb_block + 1; 5051 brelse(bh); /* we're done with the superblock */ 5052 5053 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5054 start, len, blocksize); 5055 if (!journal) { 5056 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5057 goto out_bdev; 5058 } 5059 journal->j_private = sb; 5060 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 5061 wait_on_buffer(journal->j_sb_buffer); 5062 if (!buffer_uptodate(journal->j_sb_buffer)) { 5063 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5064 goto out_journal; 5065 } 5066 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5067 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5068 "user (unsupported) - %d", 5069 be32_to_cpu(journal->j_superblock->s_nr_users)); 5070 goto out_journal; 5071 } 5072 EXT4_SB(sb)->journal_bdev = bdev; 5073 ext4_init_journal_params(sb, journal); 5074 return journal; 5075 5076 out_journal: 5077 jbd2_journal_destroy(journal); 5078 out_bdev: 5079 ext4_blkdev_put(bdev); 5080 return NULL; 5081 } 5082 5083 static int ext4_load_journal(struct super_block *sb, 5084 struct ext4_super_block *es, 5085 unsigned long journal_devnum) 5086 { 5087 journal_t *journal; 5088 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5089 dev_t journal_dev; 5090 int err = 0; 5091 int really_read_only; 5092 5093 BUG_ON(!ext4_has_feature_journal(sb)); 5094 5095 if (journal_devnum && 5096 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5097 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5098 "numbers have changed"); 5099 journal_dev = new_decode_dev(journal_devnum); 5100 } else 5101 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5102 5103 really_read_only = bdev_read_only(sb->s_bdev); 5104 5105 /* 5106 * Are we loading a blank journal or performing recovery after a 5107 * crash? For recovery, we need to check in advance whether we 5108 * can get read-write access to the device. 5109 */ 5110 if (ext4_has_feature_journal_needs_recovery(sb)) { 5111 if (sb_rdonly(sb)) { 5112 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5113 "required on readonly filesystem"); 5114 if (really_read_only) { 5115 ext4_msg(sb, KERN_ERR, "write access " 5116 "unavailable, cannot proceed " 5117 "(try mounting with noload)"); 5118 return -EROFS; 5119 } 5120 ext4_msg(sb, KERN_INFO, "write access will " 5121 "be enabled during recovery"); 5122 } 5123 } 5124 5125 if (journal_inum && journal_dev) { 5126 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 5127 "and inode journals!"); 5128 return -EINVAL; 5129 } 5130 5131 if (journal_inum) { 5132 if (!(journal = ext4_get_journal(sb, journal_inum))) 5133 return -EINVAL; 5134 } else { 5135 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 5136 return -EINVAL; 5137 } 5138 5139 if (!(journal->j_flags & JBD2_BARRIER)) 5140 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5141 5142 if (!ext4_has_feature_journal_needs_recovery(sb)) 5143 err = jbd2_journal_wipe(journal, !really_read_only); 5144 if (!err) { 5145 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5146 if (save) 5147 memcpy(save, ((char *) es) + 5148 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5149 err = jbd2_journal_load(journal); 5150 if (save) 5151 memcpy(((char *) es) + EXT4_S_ERR_START, 5152 save, EXT4_S_ERR_LEN); 5153 kfree(save); 5154 } 5155 5156 if (err) { 5157 ext4_msg(sb, KERN_ERR, "error loading journal"); 5158 jbd2_journal_destroy(journal); 5159 return err; 5160 } 5161 5162 EXT4_SB(sb)->s_journal = journal; 5163 ext4_clear_journal_err(sb, es); 5164 5165 if (!really_read_only && journal_devnum && 5166 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5167 es->s_journal_dev = cpu_to_le32(journal_devnum); 5168 5169 /* Make sure we flush the recovery flag to disk. */ 5170 ext4_commit_super(sb, 1); 5171 } 5172 5173 return 0; 5174 } 5175 5176 static int ext4_commit_super(struct super_block *sb, int sync) 5177 { 5178 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5179 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5180 int error = 0; 5181 5182 if (!sbh || block_device_ejected(sb)) 5183 return error; 5184 5185 /* 5186 * The superblock bh should be mapped, but it might not be if the 5187 * device was hot-removed. Not much we can do but fail the I/O. 5188 */ 5189 if (!buffer_mapped(sbh)) 5190 return error; 5191 5192 /* 5193 * If the file system is mounted read-only, don't update the 5194 * superblock write time. This avoids updating the superblock 5195 * write time when we are mounting the root file system 5196 * read/only but we need to replay the journal; at that point, 5197 * for people who are east of GMT and who make their clock 5198 * tick in localtime for Windows bug-for-bug compatibility, 5199 * the clock is set in the future, and this will cause e2fsck 5200 * to complain and force a full file system check. 5201 */ 5202 if (!(sb->s_flags & SB_RDONLY)) 5203 ext4_update_tstamp(es, s_wtime); 5204 if (sb->s_bdev->bd_part) 5205 es->s_kbytes_written = 5206 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 5207 ((part_stat_read(sb->s_bdev->bd_part, 5208 sectors[STAT_WRITE]) - 5209 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 5210 else 5211 es->s_kbytes_written = 5212 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 5213 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 5214 ext4_free_blocks_count_set(es, 5215 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 5216 &EXT4_SB(sb)->s_freeclusters_counter))); 5217 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 5218 es->s_free_inodes_count = 5219 cpu_to_le32(percpu_counter_sum_positive( 5220 &EXT4_SB(sb)->s_freeinodes_counter)); 5221 BUFFER_TRACE(sbh, "marking dirty"); 5222 ext4_superblock_csum_set(sb); 5223 if (sync) 5224 lock_buffer(sbh); 5225 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5226 /* 5227 * Oh, dear. A previous attempt to write the 5228 * superblock failed. This could happen because the 5229 * USB device was yanked out. Or it could happen to 5230 * be a transient write error and maybe the block will 5231 * be remapped. Nothing we can do but to retry the 5232 * write and hope for the best. 5233 */ 5234 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5235 "superblock detected"); 5236 clear_buffer_write_io_error(sbh); 5237 set_buffer_uptodate(sbh); 5238 } 5239 mark_buffer_dirty(sbh); 5240 if (sync) { 5241 unlock_buffer(sbh); 5242 error = __sync_dirty_buffer(sbh, 5243 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5244 if (buffer_write_io_error(sbh)) { 5245 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5246 "superblock"); 5247 clear_buffer_write_io_error(sbh); 5248 set_buffer_uptodate(sbh); 5249 } 5250 } 5251 return error; 5252 } 5253 5254 /* 5255 * Have we just finished recovery? If so, and if we are mounting (or 5256 * remounting) the filesystem readonly, then we will end up with a 5257 * consistent fs on disk. Record that fact. 5258 */ 5259 static void ext4_mark_recovery_complete(struct super_block *sb, 5260 struct ext4_super_block *es) 5261 { 5262 journal_t *journal = EXT4_SB(sb)->s_journal; 5263 5264 if (!ext4_has_feature_journal(sb)) { 5265 BUG_ON(journal != NULL); 5266 return; 5267 } 5268 jbd2_journal_lock_updates(journal); 5269 if (jbd2_journal_flush(journal) < 0) 5270 goto out; 5271 5272 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 5273 ext4_clear_feature_journal_needs_recovery(sb); 5274 ext4_commit_super(sb, 1); 5275 } 5276 5277 out: 5278 jbd2_journal_unlock_updates(journal); 5279 } 5280 5281 /* 5282 * If we are mounting (or read-write remounting) a filesystem whose journal 5283 * has recorded an error from a previous lifetime, move that error to the 5284 * main filesystem now. 5285 */ 5286 static void ext4_clear_journal_err(struct super_block *sb, 5287 struct ext4_super_block *es) 5288 { 5289 journal_t *journal; 5290 int j_errno; 5291 const char *errstr; 5292 5293 BUG_ON(!ext4_has_feature_journal(sb)); 5294 5295 journal = EXT4_SB(sb)->s_journal; 5296 5297 /* 5298 * Now check for any error status which may have been recorded in the 5299 * journal by a prior ext4_error() or ext4_abort() 5300 */ 5301 5302 j_errno = jbd2_journal_errno(journal); 5303 if (j_errno) { 5304 char nbuf[16]; 5305 5306 errstr = ext4_decode_error(sb, j_errno, nbuf); 5307 ext4_warning(sb, "Filesystem error recorded " 5308 "from previous mount: %s", errstr); 5309 ext4_warning(sb, "Marking fs in need of filesystem check."); 5310 5311 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5312 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5313 ext4_commit_super(sb, 1); 5314 5315 jbd2_journal_clear_err(journal); 5316 jbd2_journal_update_sb_errno(journal); 5317 } 5318 } 5319 5320 /* 5321 * Force the running and committing transactions to commit, 5322 * and wait on the commit. 5323 */ 5324 int ext4_force_commit(struct super_block *sb) 5325 { 5326 journal_t *journal; 5327 5328 if (sb_rdonly(sb)) 5329 return 0; 5330 5331 journal = EXT4_SB(sb)->s_journal; 5332 return ext4_journal_force_commit(journal); 5333 } 5334 5335 static int ext4_sync_fs(struct super_block *sb, int wait) 5336 { 5337 int ret = 0; 5338 tid_t target; 5339 bool needs_barrier = false; 5340 struct ext4_sb_info *sbi = EXT4_SB(sb); 5341 5342 if (unlikely(ext4_forced_shutdown(sbi))) 5343 return 0; 5344 5345 trace_ext4_sync_fs(sb, wait); 5346 flush_workqueue(sbi->rsv_conversion_wq); 5347 /* 5348 * Writeback quota in non-journalled quota case - journalled quota has 5349 * no dirty dquots 5350 */ 5351 dquot_writeback_dquots(sb, -1); 5352 /* 5353 * Data writeback is possible w/o journal transaction, so barrier must 5354 * being sent at the end of the function. But we can skip it if 5355 * transaction_commit will do it for us. 5356 */ 5357 if (sbi->s_journal) { 5358 target = jbd2_get_latest_transaction(sbi->s_journal); 5359 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5360 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5361 needs_barrier = true; 5362 5363 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5364 if (wait) 5365 ret = jbd2_log_wait_commit(sbi->s_journal, 5366 target); 5367 } 5368 } else if (wait && test_opt(sb, BARRIER)) 5369 needs_barrier = true; 5370 if (needs_barrier) { 5371 int err; 5372 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL); 5373 if (!ret) 5374 ret = err; 5375 } 5376 5377 return ret; 5378 } 5379 5380 /* 5381 * LVM calls this function before a (read-only) snapshot is created. This 5382 * gives us a chance to flush the journal completely and mark the fs clean. 5383 * 5384 * Note that only this function cannot bring a filesystem to be in a clean 5385 * state independently. It relies on upper layer to stop all data & metadata 5386 * modifications. 5387 */ 5388 static int ext4_freeze(struct super_block *sb) 5389 { 5390 int error = 0; 5391 journal_t *journal; 5392 5393 if (sb_rdonly(sb)) 5394 return 0; 5395 5396 journal = EXT4_SB(sb)->s_journal; 5397 5398 if (journal) { 5399 /* Now we set up the journal barrier. */ 5400 jbd2_journal_lock_updates(journal); 5401 5402 /* 5403 * Don't clear the needs_recovery flag if we failed to 5404 * flush the journal. 5405 */ 5406 error = jbd2_journal_flush(journal); 5407 if (error < 0) 5408 goto out; 5409 5410 /* Journal blocked and flushed, clear needs_recovery flag. */ 5411 ext4_clear_feature_journal_needs_recovery(sb); 5412 } 5413 5414 error = ext4_commit_super(sb, 1); 5415 out: 5416 if (journal) 5417 /* we rely on upper layer to stop further updates */ 5418 jbd2_journal_unlock_updates(journal); 5419 return error; 5420 } 5421 5422 /* 5423 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5424 * flag here, even though the filesystem is not technically dirty yet. 5425 */ 5426 static int ext4_unfreeze(struct super_block *sb) 5427 { 5428 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5429 return 0; 5430 5431 if (EXT4_SB(sb)->s_journal) { 5432 /* Reset the needs_recovery flag before the fs is unlocked. */ 5433 ext4_set_feature_journal_needs_recovery(sb); 5434 } 5435 5436 ext4_commit_super(sb, 1); 5437 return 0; 5438 } 5439 5440 /* 5441 * Structure to save mount options for ext4_remount's benefit 5442 */ 5443 struct ext4_mount_options { 5444 unsigned long s_mount_opt; 5445 unsigned long s_mount_opt2; 5446 kuid_t s_resuid; 5447 kgid_t s_resgid; 5448 unsigned long s_commit_interval; 5449 u32 s_min_batch_time, s_max_batch_time; 5450 #ifdef CONFIG_QUOTA 5451 int s_jquota_fmt; 5452 char *s_qf_names[EXT4_MAXQUOTAS]; 5453 #endif 5454 }; 5455 5456 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5457 { 5458 struct ext4_super_block *es; 5459 struct ext4_sb_info *sbi = EXT4_SB(sb); 5460 unsigned long old_sb_flags; 5461 struct ext4_mount_options old_opts; 5462 int enable_quota = 0; 5463 ext4_group_t g; 5464 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5465 int err = 0; 5466 #ifdef CONFIG_QUOTA 5467 int i, j; 5468 char *to_free[EXT4_MAXQUOTAS]; 5469 #endif 5470 char *orig_data = kstrdup(data, GFP_KERNEL); 5471 5472 if (data && !orig_data) 5473 return -ENOMEM; 5474 5475 /* Store the original options */ 5476 old_sb_flags = sb->s_flags; 5477 old_opts.s_mount_opt = sbi->s_mount_opt; 5478 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5479 old_opts.s_resuid = sbi->s_resuid; 5480 old_opts.s_resgid = sbi->s_resgid; 5481 old_opts.s_commit_interval = sbi->s_commit_interval; 5482 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5483 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5484 #ifdef CONFIG_QUOTA 5485 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5486 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5487 if (sbi->s_qf_names[i]) { 5488 char *qf_name = get_qf_name(sb, sbi, i); 5489 5490 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5491 if (!old_opts.s_qf_names[i]) { 5492 for (j = 0; j < i; j++) 5493 kfree(old_opts.s_qf_names[j]); 5494 kfree(orig_data); 5495 return -ENOMEM; 5496 } 5497 } else 5498 old_opts.s_qf_names[i] = NULL; 5499 #endif 5500 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5501 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5502 5503 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5504 err = -EINVAL; 5505 goto restore_opts; 5506 } 5507 5508 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5509 test_opt(sb, JOURNAL_CHECKSUM)) { 5510 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5511 "during remount not supported; ignoring"); 5512 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5513 } 5514 5515 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5516 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5517 ext4_msg(sb, KERN_ERR, "can't mount with " 5518 "both data=journal and delalloc"); 5519 err = -EINVAL; 5520 goto restore_opts; 5521 } 5522 if (test_opt(sb, DIOREAD_NOLOCK)) { 5523 ext4_msg(sb, KERN_ERR, "can't mount with " 5524 "both data=journal and dioread_nolock"); 5525 err = -EINVAL; 5526 goto restore_opts; 5527 } 5528 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5529 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5530 ext4_msg(sb, KERN_ERR, "can't mount with " 5531 "journal_async_commit in data=ordered mode"); 5532 err = -EINVAL; 5533 goto restore_opts; 5534 } 5535 } 5536 5537 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5538 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5539 err = -EINVAL; 5540 goto restore_opts; 5541 } 5542 5543 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5544 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5545 5546 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5547 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5548 5549 es = sbi->s_es; 5550 5551 if (sbi->s_journal) { 5552 ext4_init_journal_params(sb, sbi->s_journal); 5553 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5554 } 5555 5556 if (*flags & SB_LAZYTIME) 5557 sb->s_flags |= SB_LAZYTIME; 5558 5559 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5560 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5561 err = -EROFS; 5562 goto restore_opts; 5563 } 5564 5565 if (*flags & SB_RDONLY) { 5566 err = sync_filesystem(sb); 5567 if (err < 0) 5568 goto restore_opts; 5569 err = dquot_suspend(sb, -1); 5570 if (err < 0) 5571 goto restore_opts; 5572 5573 /* 5574 * First of all, the unconditional stuff we have to do 5575 * to disable replay of the journal when we next remount 5576 */ 5577 sb->s_flags |= SB_RDONLY; 5578 5579 /* 5580 * OK, test if we are remounting a valid rw partition 5581 * readonly, and if so set the rdonly flag and then 5582 * mark the partition as valid again. 5583 */ 5584 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5585 (sbi->s_mount_state & EXT4_VALID_FS)) 5586 es->s_state = cpu_to_le16(sbi->s_mount_state); 5587 5588 if (sbi->s_journal) 5589 ext4_mark_recovery_complete(sb, es); 5590 if (sbi->s_mmp_tsk) 5591 kthread_stop(sbi->s_mmp_tsk); 5592 } else { 5593 /* Make sure we can mount this feature set readwrite */ 5594 if (ext4_has_feature_readonly(sb) || 5595 !ext4_feature_set_ok(sb, 0)) { 5596 err = -EROFS; 5597 goto restore_opts; 5598 } 5599 /* 5600 * Make sure the group descriptor checksums 5601 * are sane. If they aren't, refuse to remount r/w. 5602 */ 5603 for (g = 0; g < sbi->s_groups_count; g++) { 5604 struct ext4_group_desc *gdp = 5605 ext4_get_group_desc(sb, g, NULL); 5606 5607 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5608 ext4_msg(sb, KERN_ERR, 5609 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5610 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5611 le16_to_cpu(gdp->bg_checksum)); 5612 err = -EFSBADCRC; 5613 goto restore_opts; 5614 } 5615 } 5616 5617 /* 5618 * If we have an unprocessed orphan list hanging 5619 * around from a previously readonly bdev mount, 5620 * require a full umount/remount for now. 5621 */ 5622 if (es->s_last_orphan) { 5623 ext4_msg(sb, KERN_WARNING, "Couldn't " 5624 "remount RDWR because of unprocessed " 5625 "orphan inode list. Please " 5626 "umount/remount instead"); 5627 err = -EINVAL; 5628 goto restore_opts; 5629 } 5630 5631 /* 5632 * Mounting a RDONLY partition read-write, so reread 5633 * and store the current valid flag. (It may have 5634 * been changed by e2fsck since we originally mounted 5635 * the partition.) 5636 */ 5637 if (sbi->s_journal) 5638 ext4_clear_journal_err(sb, es); 5639 sbi->s_mount_state = le16_to_cpu(es->s_state); 5640 5641 err = ext4_setup_super(sb, es, 0); 5642 if (err) 5643 goto restore_opts; 5644 5645 sb->s_flags &= ~SB_RDONLY; 5646 if (ext4_has_feature_mmp(sb)) 5647 if (ext4_multi_mount_protect(sb, 5648 le64_to_cpu(es->s_mmp_block))) { 5649 err = -EROFS; 5650 goto restore_opts; 5651 } 5652 enable_quota = 1; 5653 } 5654 } 5655 5656 /* 5657 * Reinitialize lazy itable initialization thread based on 5658 * current settings 5659 */ 5660 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5661 ext4_unregister_li_request(sb); 5662 else { 5663 ext4_group_t first_not_zeroed; 5664 first_not_zeroed = ext4_has_uninit_itable(sb); 5665 ext4_register_li_request(sb, first_not_zeroed); 5666 } 5667 5668 ext4_setup_system_zone(sb); 5669 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5670 err = ext4_commit_super(sb, 1); 5671 if (err) 5672 goto restore_opts; 5673 } 5674 5675 #ifdef CONFIG_QUOTA 5676 /* Release old quota file names */ 5677 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5678 kfree(old_opts.s_qf_names[i]); 5679 if (enable_quota) { 5680 if (sb_any_quota_suspended(sb)) 5681 dquot_resume(sb, -1); 5682 else if (ext4_has_feature_quota(sb)) { 5683 err = ext4_enable_quotas(sb); 5684 if (err) 5685 goto restore_opts; 5686 } 5687 } 5688 #endif 5689 5690 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5691 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5692 kfree(orig_data); 5693 return 0; 5694 5695 restore_opts: 5696 sb->s_flags = old_sb_flags; 5697 sbi->s_mount_opt = old_opts.s_mount_opt; 5698 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5699 sbi->s_resuid = old_opts.s_resuid; 5700 sbi->s_resgid = old_opts.s_resgid; 5701 sbi->s_commit_interval = old_opts.s_commit_interval; 5702 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5703 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5704 #ifdef CONFIG_QUOTA 5705 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5706 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5707 to_free[i] = get_qf_name(sb, sbi, i); 5708 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5709 } 5710 synchronize_rcu(); 5711 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5712 kfree(to_free[i]); 5713 #endif 5714 kfree(orig_data); 5715 return err; 5716 } 5717 5718 #ifdef CONFIG_QUOTA 5719 static int ext4_statfs_project(struct super_block *sb, 5720 kprojid_t projid, struct kstatfs *buf) 5721 { 5722 struct kqid qid; 5723 struct dquot *dquot; 5724 u64 limit; 5725 u64 curblock; 5726 5727 qid = make_kqid_projid(projid); 5728 dquot = dqget(sb, qid); 5729 if (IS_ERR(dquot)) 5730 return PTR_ERR(dquot); 5731 spin_lock(&dquot->dq_dqb_lock); 5732 5733 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 5734 dquot->dq_dqb.dqb_bhardlimit); 5735 limit >>= sb->s_blocksize_bits; 5736 5737 if (limit && buf->f_blocks > limit) { 5738 curblock = (dquot->dq_dqb.dqb_curspace + 5739 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5740 buf->f_blocks = limit; 5741 buf->f_bfree = buf->f_bavail = 5742 (buf->f_blocks > curblock) ? 5743 (buf->f_blocks - curblock) : 0; 5744 } 5745 5746 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 5747 dquot->dq_dqb.dqb_ihardlimit); 5748 if (limit && buf->f_files > limit) { 5749 buf->f_files = limit; 5750 buf->f_ffree = 5751 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5752 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5753 } 5754 5755 spin_unlock(&dquot->dq_dqb_lock); 5756 dqput(dquot); 5757 return 0; 5758 } 5759 #endif 5760 5761 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5762 { 5763 struct super_block *sb = dentry->d_sb; 5764 struct ext4_sb_info *sbi = EXT4_SB(sb); 5765 struct ext4_super_block *es = sbi->s_es; 5766 ext4_fsblk_t overhead = 0, resv_blocks; 5767 u64 fsid; 5768 s64 bfree; 5769 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5770 5771 if (!test_opt(sb, MINIX_DF)) 5772 overhead = sbi->s_overhead; 5773 5774 buf->f_type = EXT4_SUPER_MAGIC; 5775 buf->f_bsize = sb->s_blocksize; 5776 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5777 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5778 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5779 /* prevent underflow in case that few free space is available */ 5780 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5781 buf->f_bavail = buf->f_bfree - 5782 (ext4_r_blocks_count(es) + resv_blocks); 5783 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5784 buf->f_bavail = 0; 5785 buf->f_files = le32_to_cpu(es->s_inodes_count); 5786 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5787 buf->f_namelen = EXT4_NAME_LEN; 5788 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5789 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5790 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5791 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5792 5793 #ifdef CONFIG_QUOTA 5794 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5795 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5796 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5797 #endif 5798 return 0; 5799 } 5800 5801 5802 #ifdef CONFIG_QUOTA 5803 5804 /* 5805 * Helper functions so that transaction is started before we acquire dqio_sem 5806 * to keep correct lock ordering of transaction > dqio_sem 5807 */ 5808 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5809 { 5810 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5811 } 5812 5813 static int ext4_write_dquot(struct dquot *dquot) 5814 { 5815 int ret, err; 5816 handle_t *handle; 5817 struct inode *inode; 5818 5819 inode = dquot_to_inode(dquot); 5820 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5821 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5822 if (IS_ERR(handle)) 5823 return PTR_ERR(handle); 5824 ret = dquot_commit(dquot); 5825 err = ext4_journal_stop(handle); 5826 if (!ret) 5827 ret = err; 5828 return ret; 5829 } 5830 5831 static int ext4_acquire_dquot(struct dquot *dquot) 5832 { 5833 int ret, err; 5834 handle_t *handle; 5835 5836 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5837 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5838 if (IS_ERR(handle)) 5839 return PTR_ERR(handle); 5840 ret = dquot_acquire(dquot); 5841 err = ext4_journal_stop(handle); 5842 if (!ret) 5843 ret = err; 5844 return ret; 5845 } 5846 5847 static int ext4_release_dquot(struct dquot *dquot) 5848 { 5849 int ret, err; 5850 handle_t *handle; 5851 5852 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5853 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5854 if (IS_ERR(handle)) { 5855 /* Release dquot anyway to avoid endless cycle in dqput() */ 5856 dquot_release(dquot); 5857 return PTR_ERR(handle); 5858 } 5859 ret = dquot_release(dquot); 5860 err = ext4_journal_stop(handle); 5861 if (!ret) 5862 ret = err; 5863 return ret; 5864 } 5865 5866 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5867 { 5868 struct super_block *sb = dquot->dq_sb; 5869 struct ext4_sb_info *sbi = EXT4_SB(sb); 5870 5871 /* Are we journaling quotas? */ 5872 if (ext4_has_feature_quota(sb) || 5873 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5874 dquot_mark_dquot_dirty(dquot); 5875 return ext4_write_dquot(dquot); 5876 } else { 5877 return dquot_mark_dquot_dirty(dquot); 5878 } 5879 } 5880 5881 static int ext4_write_info(struct super_block *sb, int type) 5882 { 5883 int ret, err; 5884 handle_t *handle; 5885 5886 /* Data block + inode block */ 5887 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5888 if (IS_ERR(handle)) 5889 return PTR_ERR(handle); 5890 ret = dquot_commit_info(sb, type); 5891 err = ext4_journal_stop(handle); 5892 if (!ret) 5893 ret = err; 5894 return ret; 5895 } 5896 5897 /* 5898 * Turn on quotas during mount time - we need to find 5899 * the quota file and such... 5900 */ 5901 static int ext4_quota_on_mount(struct super_block *sb, int type) 5902 { 5903 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5904 EXT4_SB(sb)->s_jquota_fmt, type); 5905 } 5906 5907 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5908 { 5909 struct ext4_inode_info *ei = EXT4_I(inode); 5910 5911 /* The first argument of lockdep_set_subclass has to be 5912 * *exactly* the same as the argument to init_rwsem() --- in 5913 * this case, in init_once() --- or lockdep gets unhappy 5914 * because the name of the lock is set using the 5915 * stringification of the argument to init_rwsem(). 5916 */ 5917 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5918 lockdep_set_subclass(&ei->i_data_sem, subclass); 5919 } 5920 5921 /* 5922 * Standard function to be called on quota_on 5923 */ 5924 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5925 const struct path *path) 5926 { 5927 int err; 5928 5929 if (!test_opt(sb, QUOTA)) 5930 return -EINVAL; 5931 5932 /* Quotafile not on the same filesystem? */ 5933 if (path->dentry->d_sb != sb) 5934 return -EXDEV; 5935 /* Journaling quota? */ 5936 if (EXT4_SB(sb)->s_qf_names[type]) { 5937 /* Quotafile not in fs root? */ 5938 if (path->dentry->d_parent != sb->s_root) 5939 ext4_msg(sb, KERN_WARNING, 5940 "Quota file not on filesystem root. " 5941 "Journaled quota will not work"); 5942 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5943 } else { 5944 /* 5945 * Clear the flag just in case mount options changed since 5946 * last time. 5947 */ 5948 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5949 } 5950 5951 /* 5952 * When we journal data on quota file, we have to flush journal to see 5953 * all updates to the file when we bypass pagecache... 5954 */ 5955 if (EXT4_SB(sb)->s_journal && 5956 ext4_should_journal_data(d_inode(path->dentry))) { 5957 /* 5958 * We don't need to lock updates but journal_flush() could 5959 * otherwise be livelocked... 5960 */ 5961 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5962 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5963 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5964 if (err) 5965 return err; 5966 } 5967 5968 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5969 err = dquot_quota_on(sb, type, format_id, path); 5970 if (err) { 5971 lockdep_set_quota_inode(path->dentry->d_inode, 5972 I_DATA_SEM_NORMAL); 5973 } else { 5974 struct inode *inode = d_inode(path->dentry); 5975 handle_t *handle; 5976 5977 /* 5978 * Set inode flags to prevent userspace from messing with quota 5979 * files. If this fails, we return success anyway since quotas 5980 * are already enabled and this is not a hard failure. 5981 */ 5982 inode_lock(inode); 5983 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5984 if (IS_ERR(handle)) 5985 goto unlock_inode; 5986 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5987 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5988 S_NOATIME | S_IMMUTABLE); 5989 err = ext4_mark_inode_dirty(handle, inode); 5990 ext4_journal_stop(handle); 5991 unlock_inode: 5992 inode_unlock(inode); 5993 } 5994 return err; 5995 } 5996 5997 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5998 unsigned int flags) 5999 { 6000 int err; 6001 struct inode *qf_inode; 6002 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6003 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6004 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6005 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6006 }; 6007 6008 BUG_ON(!ext4_has_feature_quota(sb)); 6009 6010 if (!qf_inums[type]) 6011 return -EPERM; 6012 6013 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6014 if (IS_ERR(qf_inode)) { 6015 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6016 return PTR_ERR(qf_inode); 6017 } 6018 6019 /* Don't account quota for quota files to avoid recursion */ 6020 qf_inode->i_flags |= S_NOQUOTA; 6021 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6022 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6023 if (err) 6024 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6025 iput(qf_inode); 6026 6027 return err; 6028 } 6029 6030 /* Enable usage tracking for all quota types. */ 6031 static int ext4_enable_quotas(struct super_block *sb) 6032 { 6033 int type, err = 0; 6034 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6035 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6036 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6037 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6038 }; 6039 bool quota_mopt[EXT4_MAXQUOTAS] = { 6040 test_opt(sb, USRQUOTA), 6041 test_opt(sb, GRPQUOTA), 6042 test_opt(sb, PRJQUOTA), 6043 }; 6044 6045 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6046 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6047 if (qf_inums[type]) { 6048 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6049 DQUOT_USAGE_ENABLED | 6050 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6051 if (err) { 6052 ext4_warning(sb, 6053 "Failed to enable quota tracking " 6054 "(type=%d, err=%d). Please run " 6055 "e2fsck to fix.", type, err); 6056 for (type--; type >= 0; type--) 6057 dquot_quota_off(sb, type); 6058 6059 return err; 6060 } 6061 } 6062 } 6063 return 0; 6064 } 6065 6066 static int ext4_quota_off(struct super_block *sb, int type) 6067 { 6068 struct inode *inode = sb_dqopt(sb)->files[type]; 6069 handle_t *handle; 6070 int err; 6071 6072 /* Force all delayed allocation blocks to be allocated. 6073 * Caller already holds s_umount sem */ 6074 if (test_opt(sb, DELALLOC)) 6075 sync_filesystem(sb); 6076 6077 if (!inode || !igrab(inode)) 6078 goto out; 6079 6080 err = dquot_quota_off(sb, type); 6081 if (err || ext4_has_feature_quota(sb)) 6082 goto out_put; 6083 6084 inode_lock(inode); 6085 /* 6086 * Update modification times of quota files when userspace can 6087 * start looking at them. If we fail, we return success anyway since 6088 * this is not a hard failure and quotas are already disabled. 6089 */ 6090 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6091 if (IS_ERR(handle)) { 6092 err = PTR_ERR(handle); 6093 goto out_unlock; 6094 } 6095 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6096 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6097 inode->i_mtime = inode->i_ctime = current_time(inode); 6098 err = ext4_mark_inode_dirty(handle, inode); 6099 ext4_journal_stop(handle); 6100 out_unlock: 6101 inode_unlock(inode); 6102 out_put: 6103 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6104 iput(inode); 6105 return err; 6106 out: 6107 return dquot_quota_off(sb, type); 6108 } 6109 6110 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6111 * acquiring the locks... As quota files are never truncated and quota code 6112 * itself serializes the operations (and no one else should touch the files) 6113 * we don't have to be afraid of races */ 6114 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6115 size_t len, loff_t off) 6116 { 6117 struct inode *inode = sb_dqopt(sb)->files[type]; 6118 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6119 int offset = off & (sb->s_blocksize - 1); 6120 int tocopy; 6121 size_t toread; 6122 struct buffer_head *bh; 6123 loff_t i_size = i_size_read(inode); 6124 6125 if (off > i_size) 6126 return 0; 6127 if (off+len > i_size) 6128 len = i_size-off; 6129 toread = len; 6130 while (toread > 0) { 6131 tocopy = sb->s_blocksize - offset < toread ? 6132 sb->s_blocksize - offset : toread; 6133 bh = ext4_bread(NULL, inode, blk, 0); 6134 if (IS_ERR(bh)) 6135 return PTR_ERR(bh); 6136 if (!bh) /* A hole? */ 6137 memset(data, 0, tocopy); 6138 else 6139 memcpy(data, bh->b_data+offset, tocopy); 6140 brelse(bh); 6141 offset = 0; 6142 toread -= tocopy; 6143 data += tocopy; 6144 blk++; 6145 } 6146 return len; 6147 } 6148 6149 /* Write to quotafile (we know the transaction is already started and has 6150 * enough credits) */ 6151 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6152 const char *data, size_t len, loff_t off) 6153 { 6154 struct inode *inode = sb_dqopt(sb)->files[type]; 6155 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6156 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6157 int retries = 0; 6158 struct buffer_head *bh; 6159 handle_t *handle = journal_current_handle(); 6160 6161 if (EXT4_SB(sb)->s_journal && !handle) { 6162 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6163 " cancelled because transaction is not started", 6164 (unsigned long long)off, (unsigned long long)len); 6165 return -EIO; 6166 } 6167 /* 6168 * Since we account only one data block in transaction credits, 6169 * then it is impossible to cross a block boundary. 6170 */ 6171 if (sb->s_blocksize - offset < len) { 6172 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6173 " cancelled because not block aligned", 6174 (unsigned long long)off, (unsigned long long)len); 6175 return -EIO; 6176 } 6177 6178 do { 6179 bh = ext4_bread(handle, inode, blk, 6180 EXT4_GET_BLOCKS_CREATE | 6181 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6182 } while (PTR_ERR(bh) == -ENOSPC && 6183 ext4_should_retry_alloc(inode->i_sb, &retries)); 6184 if (IS_ERR(bh)) 6185 return PTR_ERR(bh); 6186 if (!bh) 6187 goto out; 6188 BUFFER_TRACE(bh, "get write access"); 6189 err = ext4_journal_get_write_access(handle, bh); 6190 if (err) { 6191 brelse(bh); 6192 return err; 6193 } 6194 lock_buffer(bh); 6195 memcpy(bh->b_data+offset, data, len); 6196 flush_dcache_page(bh->b_page); 6197 unlock_buffer(bh); 6198 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6199 brelse(bh); 6200 out: 6201 if (inode->i_size < off + len) { 6202 i_size_write(inode, off + len); 6203 EXT4_I(inode)->i_disksize = inode->i_size; 6204 err2 = ext4_mark_inode_dirty(handle, inode); 6205 if (unlikely(err2 && !err)) 6206 err = err2; 6207 } 6208 return err ? err : len; 6209 } 6210 #endif 6211 6212 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6213 const char *dev_name, void *data) 6214 { 6215 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6216 } 6217 6218 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6219 static inline void register_as_ext2(void) 6220 { 6221 int err = register_filesystem(&ext2_fs_type); 6222 if (err) 6223 printk(KERN_WARNING 6224 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6225 } 6226 6227 static inline void unregister_as_ext2(void) 6228 { 6229 unregister_filesystem(&ext2_fs_type); 6230 } 6231 6232 static inline int ext2_feature_set_ok(struct super_block *sb) 6233 { 6234 if (ext4_has_unknown_ext2_incompat_features(sb)) 6235 return 0; 6236 if (sb_rdonly(sb)) 6237 return 1; 6238 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6239 return 0; 6240 return 1; 6241 } 6242 #else 6243 static inline void register_as_ext2(void) { } 6244 static inline void unregister_as_ext2(void) { } 6245 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6246 #endif 6247 6248 static inline void register_as_ext3(void) 6249 { 6250 int err = register_filesystem(&ext3_fs_type); 6251 if (err) 6252 printk(KERN_WARNING 6253 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6254 } 6255 6256 static inline void unregister_as_ext3(void) 6257 { 6258 unregister_filesystem(&ext3_fs_type); 6259 } 6260 6261 static inline int ext3_feature_set_ok(struct super_block *sb) 6262 { 6263 if (ext4_has_unknown_ext3_incompat_features(sb)) 6264 return 0; 6265 if (!ext4_has_feature_journal(sb)) 6266 return 0; 6267 if (sb_rdonly(sb)) 6268 return 1; 6269 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6270 return 0; 6271 return 1; 6272 } 6273 6274 static struct file_system_type ext4_fs_type = { 6275 .owner = THIS_MODULE, 6276 .name = "ext4", 6277 .mount = ext4_mount, 6278 .kill_sb = kill_block_super, 6279 .fs_flags = FS_REQUIRES_DEV, 6280 }; 6281 MODULE_ALIAS_FS("ext4"); 6282 6283 /* Shared across all ext4 file systems */ 6284 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6285 6286 static int __init ext4_init_fs(void) 6287 { 6288 int i, err; 6289 6290 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6291 ext4_li_info = NULL; 6292 mutex_init(&ext4_li_mtx); 6293 6294 /* Build-time check for flags consistency */ 6295 ext4_check_flag_values(); 6296 6297 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6298 init_waitqueue_head(&ext4__ioend_wq[i]); 6299 6300 err = ext4_init_es(); 6301 if (err) 6302 return err; 6303 6304 err = ext4_init_pending(); 6305 if (err) 6306 goto out7; 6307 6308 err = ext4_init_post_read_processing(); 6309 if (err) 6310 goto out6; 6311 6312 err = ext4_init_pageio(); 6313 if (err) 6314 goto out5; 6315 6316 err = ext4_init_system_zone(); 6317 if (err) 6318 goto out4; 6319 6320 err = ext4_init_sysfs(); 6321 if (err) 6322 goto out3; 6323 6324 err = ext4_init_mballoc(); 6325 if (err) 6326 goto out2; 6327 err = init_inodecache(); 6328 if (err) 6329 goto out1; 6330 register_as_ext3(); 6331 register_as_ext2(); 6332 err = register_filesystem(&ext4_fs_type); 6333 if (err) 6334 goto out; 6335 6336 return 0; 6337 out: 6338 unregister_as_ext2(); 6339 unregister_as_ext3(); 6340 destroy_inodecache(); 6341 out1: 6342 ext4_exit_mballoc(); 6343 out2: 6344 ext4_exit_sysfs(); 6345 out3: 6346 ext4_exit_system_zone(); 6347 out4: 6348 ext4_exit_pageio(); 6349 out5: 6350 ext4_exit_post_read_processing(); 6351 out6: 6352 ext4_exit_pending(); 6353 out7: 6354 ext4_exit_es(); 6355 6356 return err; 6357 } 6358 6359 static void __exit ext4_exit_fs(void) 6360 { 6361 ext4_destroy_lazyinit_thread(); 6362 unregister_as_ext2(); 6363 unregister_as_ext3(); 6364 unregister_filesystem(&ext4_fs_type); 6365 destroy_inodecache(); 6366 ext4_exit_mballoc(); 6367 ext4_exit_sysfs(); 6368 ext4_exit_system_zone(); 6369 ext4_exit_pageio(); 6370 ext4_exit_post_read_processing(); 6371 ext4_exit_es(); 6372 ext4_exit_pending(); 6373 } 6374 6375 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6376 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6377 MODULE_LICENSE("GPL"); 6378 MODULE_SOFTDEP("pre: crc32c"); 6379 module_init(ext4_init_fs) 6380 module_exit(ext4_exit_fs) 6381