1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static int ext4_mballoc_ready; 59 static struct ratelimit_state ext4_mount_msg_ratelimit; 60 61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 62 unsigned long journal_devnum); 63 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 64 static int ext4_commit_super(struct super_block *sb, int sync); 65 static void ext4_mark_recovery_complete(struct super_block *sb, 66 struct ext4_super_block *es); 67 static void ext4_clear_journal_err(struct super_block *sb, 68 struct ext4_super_block *es); 69 static int ext4_sync_fs(struct super_block *sb, int wait); 70 static int ext4_remount(struct super_block *sb, int *flags, char *data); 71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 72 static int ext4_unfreeze(struct super_block *sb); 73 static int ext4_freeze(struct super_block *sb); 74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 75 const char *dev_name, void *data); 76 static inline int ext2_feature_set_ok(struct super_block *sb); 77 static inline int ext3_feature_set_ok(struct super_block *sb); 78 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 79 static void ext4_destroy_lazyinit_thread(void); 80 static void ext4_unregister_li_request(struct super_block *sb); 81 static void ext4_clear_request_list(void); 82 83 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 84 static struct file_system_type ext2_fs_type = { 85 .owner = THIS_MODULE, 86 .name = "ext2", 87 .mount = ext4_mount, 88 .kill_sb = kill_block_super, 89 .fs_flags = FS_REQUIRES_DEV, 90 }; 91 MODULE_ALIAS_FS("ext2"); 92 MODULE_ALIAS("ext2"); 93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 94 #else 95 #define IS_EXT2_SB(sb) (0) 96 #endif 97 98 99 static struct file_system_type ext3_fs_type = { 100 .owner = THIS_MODULE, 101 .name = "ext3", 102 .mount = ext4_mount, 103 .kill_sb = kill_block_super, 104 .fs_flags = FS_REQUIRES_DEV, 105 }; 106 MODULE_ALIAS_FS("ext3"); 107 MODULE_ALIAS("ext3"); 108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 109 110 static int ext4_verify_csum_type(struct super_block *sb, 111 struct ext4_super_block *es) 112 { 113 if (!ext4_has_feature_metadata_csum(sb)) 114 return 1; 115 116 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 117 } 118 119 static __le32 ext4_superblock_csum(struct super_block *sb, 120 struct ext4_super_block *es) 121 { 122 struct ext4_sb_info *sbi = EXT4_SB(sb); 123 int offset = offsetof(struct ext4_super_block, s_checksum); 124 __u32 csum; 125 126 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 127 128 return cpu_to_le32(csum); 129 } 130 131 static int ext4_superblock_csum_verify(struct super_block *sb, 132 struct ext4_super_block *es) 133 { 134 if (!ext4_has_metadata_csum(sb)) 135 return 1; 136 137 return es->s_checksum == ext4_superblock_csum(sb, es); 138 } 139 140 void ext4_superblock_csum_set(struct super_block *sb) 141 { 142 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 143 144 if (!ext4_has_metadata_csum(sb)) 145 return; 146 147 es->s_checksum = ext4_superblock_csum(sb, es); 148 } 149 150 void *ext4_kvmalloc(size_t size, gfp_t flags) 151 { 152 void *ret; 153 154 ret = kmalloc(size, flags | __GFP_NOWARN); 155 if (!ret) 156 ret = __vmalloc(size, flags, PAGE_KERNEL); 157 return ret; 158 } 159 160 void *ext4_kvzalloc(size_t size, gfp_t flags) 161 { 162 void *ret; 163 164 ret = kzalloc(size, flags | __GFP_NOWARN); 165 if (!ret) 166 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 167 return ret; 168 } 169 170 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 171 struct ext4_group_desc *bg) 172 { 173 return le32_to_cpu(bg->bg_block_bitmap_lo) | 174 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 175 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 176 } 177 178 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 179 struct ext4_group_desc *bg) 180 { 181 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 183 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 184 } 185 186 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 187 struct ext4_group_desc *bg) 188 { 189 return le32_to_cpu(bg->bg_inode_table_lo) | 190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 192 } 193 194 __u32 ext4_free_group_clusters(struct super_block *sb, 195 struct ext4_group_desc *bg) 196 { 197 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 199 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 200 } 201 202 __u32 ext4_free_inodes_count(struct super_block *sb, 203 struct ext4_group_desc *bg) 204 { 205 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 208 } 209 210 __u32 ext4_used_dirs_count(struct super_block *sb, 211 struct ext4_group_desc *bg) 212 { 213 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 216 } 217 218 __u32 ext4_itable_unused_count(struct super_block *sb, 219 struct ext4_group_desc *bg) 220 { 221 return le16_to_cpu(bg->bg_itable_unused_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 224 } 225 226 void ext4_block_bitmap_set(struct super_block *sb, 227 struct ext4_group_desc *bg, ext4_fsblk_t blk) 228 { 229 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 230 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 231 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 232 } 233 234 void ext4_inode_bitmap_set(struct super_block *sb, 235 struct ext4_group_desc *bg, ext4_fsblk_t blk) 236 { 237 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 239 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 240 } 241 242 void ext4_inode_table_set(struct super_block *sb, 243 struct ext4_group_desc *bg, ext4_fsblk_t blk) 244 { 245 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 247 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 248 } 249 250 void ext4_free_group_clusters_set(struct super_block *sb, 251 struct ext4_group_desc *bg, __u32 count) 252 { 253 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 255 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 256 } 257 258 void ext4_free_inodes_set(struct super_block *sb, 259 struct ext4_group_desc *bg, __u32 count) 260 { 261 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 264 } 265 266 void ext4_used_dirs_set(struct super_block *sb, 267 struct ext4_group_desc *bg, __u32 count) 268 { 269 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 272 } 273 274 void ext4_itable_unused_set(struct super_block *sb, 275 struct ext4_group_desc *bg, __u32 count) 276 { 277 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 280 } 281 282 283 static void __save_error_info(struct super_block *sb, const char *func, 284 unsigned int line) 285 { 286 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 287 288 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 289 if (bdev_read_only(sb->s_bdev)) 290 return; 291 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 292 es->s_last_error_time = cpu_to_le32(get_seconds()); 293 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 294 es->s_last_error_line = cpu_to_le32(line); 295 if (!es->s_first_error_time) { 296 es->s_first_error_time = es->s_last_error_time; 297 strncpy(es->s_first_error_func, func, 298 sizeof(es->s_first_error_func)); 299 es->s_first_error_line = cpu_to_le32(line); 300 es->s_first_error_ino = es->s_last_error_ino; 301 es->s_first_error_block = es->s_last_error_block; 302 } 303 /* 304 * Start the daily error reporting function if it hasn't been 305 * started already 306 */ 307 if (!es->s_error_count) 308 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 309 le32_add_cpu(&es->s_error_count, 1); 310 } 311 312 static void save_error_info(struct super_block *sb, const char *func, 313 unsigned int line) 314 { 315 __save_error_info(sb, func, line); 316 ext4_commit_super(sb, 1); 317 } 318 319 /* 320 * The del_gendisk() function uninitializes the disk-specific data 321 * structures, including the bdi structure, without telling anyone 322 * else. Once this happens, any attempt to call mark_buffer_dirty() 323 * (for example, by ext4_commit_super), will cause a kernel OOPS. 324 * This is a kludge to prevent these oops until we can put in a proper 325 * hook in del_gendisk() to inform the VFS and file system layers. 326 */ 327 static int block_device_ejected(struct super_block *sb) 328 { 329 struct inode *bd_inode = sb->s_bdev->bd_inode; 330 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 331 332 return bdi->dev == NULL; 333 } 334 335 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 336 { 337 struct super_block *sb = journal->j_private; 338 struct ext4_sb_info *sbi = EXT4_SB(sb); 339 int error = is_journal_aborted(journal); 340 struct ext4_journal_cb_entry *jce; 341 342 BUG_ON(txn->t_state == T_FINISHED); 343 spin_lock(&sbi->s_md_lock); 344 while (!list_empty(&txn->t_private_list)) { 345 jce = list_entry(txn->t_private_list.next, 346 struct ext4_journal_cb_entry, jce_list); 347 list_del_init(&jce->jce_list); 348 spin_unlock(&sbi->s_md_lock); 349 jce->jce_func(sb, jce, error); 350 spin_lock(&sbi->s_md_lock); 351 } 352 spin_unlock(&sbi->s_md_lock); 353 } 354 355 /* Deal with the reporting of failure conditions on a filesystem such as 356 * inconsistencies detected or read IO failures. 357 * 358 * On ext2, we can store the error state of the filesystem in the 359 * superblock. That is not possible on ext4, because we may have other 360 * write ordering constraints on the superblock which prevent us from 361 * writing it out straight away; and given that the journal is about to 362 * be aborted, we can't rely on the current, or future, transactions to 363 * write out the superblock safely. 364 * 365 * We'll just use the jbd2_journal_abort() error code to record an error in 366 * the journal instead. On recovery, the journal will complain about 367 * that error until we've noted it down and cleared it. 368 */ 369 370 static void ext4_handle_error(struct super_block *sb) 371 { 372 if (sb->s_flags & MS_RDONLY) 373 return; 374 375 if (!test_opt(sb, ERRORS_CONT)) { 376 journal_t *journal = EXT4_SB(sb)->s_journal; 377 378 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 379 if (journal) 380 jbd2_journal_abort(journal, -EIO); 381 } 382 if (test_opt(sb, ERRORS_RO)) { 383 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 384 /* 385 * Make sure updated value of ->s_mount_flags will be visible 386 * before ->s_flags update 387 */ 388 smp_wmb(); 389 sb->s_flags |= MS_RDONLY; 390 } 391 if (test_opt(sb, ERRORS_PANIC)) { 392 if (EXT4_SB(sb)->s_journal && 393 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 394 return; 395 panic("EXT4-fs (device %s): panic forced after error\n", 396 sb->s_id); 397 } 398 } 399 400 #define ext4_error_ratelimit(sb) \ 401 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 402 "EXT4-fs error") 403 404 void __ext4_error(struct super_block *sb, const char *function, 405 unsigned int line, const char *fmt, ...) 406 { 407 struct va_format vaf; 408 va_list args; 409 410 if (ext4_error_ratelimit(sb)) { 411 va_start(args, fmt); 412 vaf.fmt = fmt; 413 vaf.va = &args; 414 printk(KERN_CRIT 415 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 416 sb->s_id, function, line, current->comm, &vaf); 417 va_end(args); 418 } 419 save_error_info(sb, function, line); 420 ext4_handle_error(sb); 421 } 422 423 void __ext4_error_inode(struct inode *inode, const char *function, 424 unsigned int line, ext4_fsblk_t block, 425 const char *fmt, ...) 426 { 427 va_list args; 428 struct va_format vaf; 429 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 430 431 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 432 es->s_last_error_block = cpu_to_le64(block); 433 if (ext4_error_ratelimit(inode->i_sb)) { 434 va_start(args, fmt); 435 vaf.fmt = fmt; 436 vaf.va = &args; 437 if (block) 438 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 439 "inode #%lu: block %llu: comm %s: %pV\n", 440 inode->i_sb->s_id, function, line, inode->i_ino, 441 block, current->comm, &vaf); 442 else 443 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 444 "inode #%lu: comm %s: %pV\n", 445 inode->i_sb->s_id, function, line, inode->i_ino, 446 current->comm, &vaf); 447 va_end(args); 448 } 449 save_error_info(inode->i_sb, function, line); 450 ext4_handle_error(inode->i_sb); 451 } 452 453 void __ext4_error_file(struct file *file, const char *function, 454 unsigned int line, ext4_fsblk_t block, 455 const char *fmt, ...) 456 { 457 va_list args; 458 struct va_format vaf; 459 struct ext4_super_block *es; 460 struct inode *inode = file_inode(file); 461 char pathname[80], *path; 462 463 es = EXT4_SB(inode->i_sb)->s_es; 464 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 465 if (ext4_error_ratelimit(inode->i_sb)) { 466 path = file_path(file, pathname, sizeof(pathname)); 467 if (IS_ERR(path)) 468 path = "(unknown)"; 469 va_start(args, fmt); 470 vaf.fmt = fmt; 471 vaf.va = &args; 472 if (block) 473 printk(KERN_CRIT 474 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 475 "block %llu: comm %s: path %s: %pV\n", 476 inode->i_sb->s_id, function, line, inode->i_ino, 477 block, current->comm, path, &vaf); 478 else 479 printk(KERN_CRIT 480 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 481 "comm %s: path %s: %pV\n", 482 inode->i_sb->s_id, function, line, inode->i_ino, 483 current->comm, path, &vaf); 484 va_end(args); 485 } 486 save_error_info(inode->i_sb, function, line); 487 ext4_handle_error(inode->i_sb); 488 } 489 490 const char *ext4_decode_error(struct super_block *sb, int errno, 491 char nbuf[16]) 492 { 493 char *errstr = NULL; 494 495 switch (errno) { 496 case -EFSCORRUPTED: 497 errstr = "Corrupt filesystem"; 498 break; 499 case -EFSBADCRC: 500 errstr = "Filesystem failed CRC"; 501 break; 502 case -EIO: 503 errstr = "IO failure"; 504 break; 505 case -ENOMEM: 506 errstr = "Out of memory"; 507 break; 508 case -EROFS: 509 if (!sb || (EXT4_SB(sb)->s_journal && 510 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 511 errstr = "Journal has aborted"; 512 else 513 errstr = "Readonly filesystem"; 514 break; 515 default: 516 /* If the caller passed in an extra buffer for unknown 517 * errors, textualise them now. Else we just return 518 * NULL. */ 519 if (nbuf) { 520 /* Check for truncated error codes... */ 521 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 522 errstr = nbuf; 523 } 524 break; 525 } 526 527 return errstr; 528 } 529 530 /* __ext4_std_error decodes expected errors from journaling functions 531 * automatically and invokes the appropriate error response. */ 532 533 void __ext4_std_error(struct super_block *sb, const char *function, 534 unsigned int line, int errno) 535 { 536 char nbuf[16]; 537 const char *errstr; 538 539 /* Special case: if the error is EROFS, and we're not already 540 * inside a transaction, then there's really no point in logging 541 * an error. */ 542 if (errno == -EROFS && journal_current_handle() == NULL && 543 (sb->s_flags & MS_RDONLY)) 544 return; 545 546 if (ext4_error_ratelimit(sb)) { 547 errstr = ext4_decode_error(sb, errno, nbuf); 548 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 549 sb->s_id, function, line, errstr); 550 } 551 552 save_error_info(sb, function, line); 553 ext4_handle_error(sb); 554 } 555 556 /* 557 * ext4_abort is a much stronger failure handler than ext4_error. The 558 * abort function may be used to deal with unrecoverable failures such 559 * as journal IO errors or ENOMEM at a critical moment in log management. 560 * 561 * We unconditionally force the filesystem into an ABORT|READONLY state, 562 * unless the error response on the fs has been set to panic in which 563 * case we take the easy way out and panic immediately. 564 */ 565 566 void __ext4_abort(struct super_block *sb, const char *function, 567 unsigned int line, const char *fmt, ...) 568 { 569 va_list args; 570 571 save_error_info(sb, function, line); 572 va_start(args, fmt); 573 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 574 function, line); 575 vprintk(fmt, args); 576 printk("\n"); 577 va_end(args); 578 579 if ((sb->s_flags & MS_RDONLY) == 0) { 580 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 581 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 582 /* 583 * Make sure updated value of ->s_mount_flags will be visible 584 * before ->s_flags update 585 */ 586 smp_wmb(); 587 sb->s_flags |= MS_RDONLY; 588 if (EXT4_SB(sb)->s_journal) 589 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 590 save_error_info(sb, function, line); 591 } 592 if (test_opt(sb, ERRORS_PANIC)) { 593 if (EXT4_SB(sb)->s_journal && 594 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 595 return; 596 panic("EXT4-fs panic from previous error\n"); 597 } 598 } 599 600 void __ext4_msg(struct super_block *sb, 601 const char *prefix, const char *fmt, ...) 602 { 603 struct va_format vaf; 604 va_list args; 605 606 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 607 return; 608 609 va_start(args, fmt); 610 vaf.fmt = fmt; 611 vaf.va = &args; 612 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 613 va_end(args); 614 } 615 616 #define ext4_warning_ratelimit(sb) \ 617 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 618 "EXT4-fs warning") 619 620 void __ext4_warning(struct super_block *sb, const char *function, 621 unsigned int line, const char *fmt, ...) 622 { 623 struct va_format vaf; 624 va_list args; 625 626 if (!ext4_warning_ratelimit(sb)) 627 return; 628 629 va_start(args, fmt); 630 vaf.fmt = fmt; 631 vaf.va = &args; 632 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 633 sb->s_id, function, line, &vaf); 634 va_end(args); 635 } 636 637 void __ext4_warning_inode(const struct inode *inode, const char *function, 638 unsigned int line, const char *fmt, ...) 639 { 640 struct va_format vaf; 641 va_list args; 642 643 if (!ext4_warning_ratelimit(inode->i_sb)) 644 return; 645 646 va_start(args, fmt); 647 vaf.fmt = fmt; 648 vaf.va = &args; 649 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 650 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 651 function, line, inode->i_ino, current->comm, &vaf); 652 va_end(args); 653 } 654 655 void __ext4_grp_locked_error(const char *function, unsigned int line, 656 struct super_block *sb, ext4_group_t grp, 657 unsigned long ino, ext4_fsblk_t block, 658 const char *fmt, ...) 659 __releases(bitlock) 660 __acquires(bitlock) 661 { 662 struct va_format vaf; 663 va_list args; 664 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 665 666 es->s_last_error_ino = cpu_to_le32(ino); 667 es->s_last_error_block = cpu_to_le64(block); 668 __save_error_info(sb, function, line); 669 670 if (ext4_error_ratelimit(sb)) { 671 va_start(args, fmt); 672 vaf.fmt = fmt; 673 vaf.va = &args; 674 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 675 sb->s_id, function, line, grp); 676 if (ino) 677 printk(KERN_CONT "inode %lu: ", ino); 678 if (block) 679 printk(KERN_CONT "block %llu:", 680 (unsigned long long) block); 681 printk(KERN_CONT "%pV\n", &vaf); 682 va_end(args); 683 } 684 685 if (test_opt(sb, ERRORS_CONT)) { 686 ext4_commit_super(sb, 0); 687 return; 688 } 689 690 ext4_unlock_group(sb, grp); 691 ext4_handle_error(sb); 692 /* 693 * We only get here in the ERRORS_RO case; relocking the group 694 * may be dangerous, but nothing bad will happen since the 695 * filesystem will have already been marked read/only and the 696 * journal has been aborted. We return 1 as a hint to callers 697 * who might what to use the return value from 698 * ext4_grp_locked_error() to distinguish between the 699 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 700 * aggressively from the ext4 function in question, with a 701 * more appropriate error code. 702 */ 703 ext4_lock_group(sb, grp); 704 return; 705 } 706 707 void ext4_update_dynamic_rev(struct super_block *sb) 708 { 709 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 710 711 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 712 return; 713 714 ext4_warning(sb, 715 "updating to rev %d because of new feature flag, " 716 "running e2fsck is recommended", 717 EXT4_DYNAMIC_REV); 718 719 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 720 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 721 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 722 /* leave es->s_feature_*compat flags alone */ 723 /* es->s_uuid will be set by e2fsck if empty */ 724 725 /* 726 * The rest of the superblock fields should be zero, and if not it 727 * means they are likely already in use, so leave them alone. We 728 * can leave it up to e2fsck to clean up any inconsistencies there. 729 */ 730 } 731 732 /* 733 * Open the external journal device 734 */ 735 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 736 { 737 struct block_device *bdev; 738 char b[BDEVNAME_SIZE]; 739 740 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 741 if (IS_ERR(bdev)) 742 goto fail; 743 return bdev; 744 745 fail: 746 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 747 __bdevname(dev, b), PTR_ERR(bdev)); 748 return NULL; 749 } 750 751 /* 752 * Release the journal device 753 */ 754 static void ext4_blkdev_put(struct block_device *bdev) 755 { 756 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 757 } 758 759 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 760 { 761 struct block_device *bdev; 762 bdev = sbi->journal_bdev; 763 if (bdev) { 764 ext4_blkdev_put(bdev); 765 sbi->journal_bdev = NULL; 766 } 767 } 768 769 static inline struct inode *orphan_list_entry(struct list_head *l) 770 { 771 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 772 } 773 774 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 775 { 776 struct list_head *l; 777 778 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 779 le32_to_cpu(sbi->s_es->s_last_orphan)); 780 781 printk(KERN_ERR "sb_info orphan list:\n"); 782 list_for_each(l, &sbi->s_orphan) { 783 struct inode *inode = orphan_list_entry(l); 784 printk(KERN_ERR " " 785 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 786 inode->i_sb->s_id, inode->i_ino, inode, 787 inode->i_mode, inode->i_nlink, 788 NEXT_ORPHAN(inode)); 789 } 790 } 791 792 static void ext4_put_super(struct super_block *sb) 793 { 794 struct ext4_sb_info *sbi = EXT4_SB(sb); 795 struct ext4_super_block *es = sbi->s_es; 796 int i, err; 797 798 ext4_unregister_li_request(sb); 799 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 800 801 flush_workqueue(sbi->rsv_conversion_wq); 802 destroy_workqueue(sbi->rsv_conversion_wq); 803 804 if (sbi->s_journal) { 805 err = jbd2_journal_destroy(sbi->s_journal); 806 sbi->s_journal = NULL; 807 if (err < 0) 808 ext4_abort(sb, "Couldn't clean up the journal"); 809 } 810 811 ext4_unregister_sysfs(sb); 812 ext4_es_unregister_shrinker(sbi); 813 del_timer_sync(&sbi->s_err_report); 814 ext4_release_system_zone(sb); 815 ext4_mb_release(sb); 816 ext4_ext_release(sb); 817 ext4_xattr_put_super(sb); 818 819 if (!(sb->s_flags & MS_RDONLY)) { 820 ext4_clear_feature_journal_needs_recovery(sb); 821 es->s_state = cpu_to_le16(sbi->s_mount_state); 822 } 823 if (!(sb->s_flags & MS_RDONLY)) 824 ext4_commit_super(sb, 1); 825 826 for (i = 0; i < sbi->s_gdb_count; i++) 827 brelse(sbi->s_group_desc[i]); 828 kvfree(sbi->s_group_desc); 829 kvfree(sbi->s_flex_groups); 830 percpu_counter_destroy(&sbi->s_freeclusters_counter); 831 percpu_counter_destroy(&sbi->s_freeinodes_counter); 832 percpu_counter_destroy(&sbi->s_dirs_counter); 833 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 834 brelse(sbi->s_sbh); 835 #ifdef CONFIG_QUOTA 836 for (i = 0; i < EXT4_MAXQUOTAS; i++) 837 kfree(sbi->s_qf_names[i]); 838 #endif 839 840 /* Debugging code just in case the in-memory inode orphan list 841 * isn't empty. The on-disk one can be non-empty if we've 842 * detected an error and taken the fs readonly, but the 843 * in-memory list had better be clean by this point. */ 844 if (!list_empty(&sbi->s_orphan)) 845 dump_orphan_list(sb, sbi); 846 J_ASSERT(list_empty(&sbi->s_orphan)); 847 848 sync_blockdev(sb->s_bdev); 849 invalidate_bdev(sb->s_bdev); 850 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 851 /* 852 * Invalidate the journal device's buffers. We don't want them 853 * floating about in memory - the physical journal device may 854 * hotswapped, and it breaks the `ro-after' testing code. 855 */ 856 sync_blockdev(sbi->journal_bdev); 857 invalidate_bdev(sbi->journal_bdev); 858 ext4_blkdev_remove(sbi); 859 } 860 if (sbi->s_mb_cache) { 861 ext4_xattr_destroy_cache(sbi->s_mb_cache); 862 sbi->s_mb_cache = NULL; 863 } 864 if (sbi->s_mmp_tsk) 865 kthread_stop(sbi->s_mmp_tsk); 866 sb->s_fs_info = NULL; 867 /* 868 * Now that we are completely done shutting down the 869 * superblock, we need to actually destroy the kobject. 870 */ 871 kobject_put(&sbi->s_kobj); 872 wait_for_completion(&sbi->s_kobj_unregister); 873 if (sbi->s_chksum_driver) 874 crypto_free_shash(sbi->s_chksum_driver); 875 kfree(sbi->s_blockgroup_lock); 876 kfree(sbi); 877 } 878 879 static struct kmem_cache *ext4_inode_cachep; 880 881 /* 882 * Called inside transaction, so use GFP_NOFS 883 */ 884 static struct inode *ext4_alloc_inode(struct super_block *sb) 885 { 886 struct ext4_inode_info *ei; 887 888 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 889 if (!ei) 890 return NULL; 891 892 ei->vfs_inode.i_version = 1; 893 spin_lock_init(&ei->i_raw_lock); 894 INIT_LIST_HEAD(&ei->i_prealloc_list); 895 spin_lock_init(&ei->i_prealloc_lock); 896 ext4_es_init_tree(&ei->i_es_tree); 897 rwlock_init(&ei->i_es_lock); 898 INIT_LIST_HEAD(&ei->i_es_list); 899 ei->i_es_all_nr = 0; 900 ei->i_es_shk_nr = 0; 901 ei->i_es_shrink_lblk = 0; 902 ei->i_reserved_data_blocks = 0; 903 ei->i_reserved_meta_blocks = 0; 904 ei->i_allocated_meta_blocks = 0; 905 ei->i_da_metadata_calc_len = 0; 906 ei->i_da_metadata_calc_last_lblock = 0; 907 spin_lock_init(&(ei->i_block_reservation_lock)); 908 #ifdef CONFIG_QUOTA 909 ei->i_reserved_quota = 0; 910 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 911 #endif 912 ei->jinode = NULL; 913 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 914 spin_lock_init(&ei->i_completed_io_lock); 915 ei->i_sync_tid = 0; 916 ei->i_datasync_tid = 0; 917 atomic_set(&ei->i_ioend_count, 0); 918 atomic_set(&ei->i_unwritten, 0); 919 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 920 #ifdef CONFIG_EXT4_FS_ENCRYPTION 921 ei->i_crypt_info = NULL; 922 #endif 923 return &ei->vfs_inode; 924 } 925 926 static int ext4_drop_inode(struct inode *inode) 927 { 928 int drop = generic_drop_inode(inode); 929 930 trace_ext4_drop_inode(inode, drop); 931 return drop; 932 } 933 934 static void ext4_i_callback(struct rcu_head *head) 935 { 936 struct inode *inode = container_of(head, struct inode, i_rcu); 937 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 938 } 939 940 static void ext4_destroy_inode(struct inode *inode) 941 { 942 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 943 ext4_msg(inode->i_sb, KERN_ERR, 944 "Inode %lu (%p): orphan list check failed!", 945 inode->i_ino, EXT4_I(inode)); 946 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 947 EXT4_I(inode), sizeof(struct ext4_inode_info), 948 true); 949 dump_stack(); 950 } 951 call_rcu(&inode->i_rcu, ext4_i_callback); 952 } 953 954 static void init_once(void *foo) 955 { 956 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 957 958 INIT_LIST_HEAD(&ei->i_orphan); 959 init_rwsem(&ei->xattr_sem); 960 init_rwsem(&ei->i_data_sem); 961 inode_init_once(&ei->vfs_inode); 962 } 963 964 static int __init init_inodecache(void) 965 { 966 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 967 sizeof(struct ext4_inode_info), 968 0, (SLAB_RECLAIM_ACCOUNT| 969 SLAB_MEM_SPREAD), 970 init_once); 971 if (ext4_inode_cachep == NULL) 972 return -ENOMEM; 973 return 0; 974 } 975 976 static void destroy_inodecache(void) 977 { 978 /* 979 * Make sure all delayed rcu free inodes are flushed before we 980 * destroy cache. 981 */ 982 rcu_barrier(); 983 kmem_cache_destroy(ext4_inode_cachep); 984 } 985 986 void ext4_clear_inode(struct inode *inode) 987 { 988 invalidate_inode_buffers(inode); 989 clear_inode(inode); 990 dquot_drop(inode); 991 ext4_discard_preallocations(inode); 992 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 993 if (EXT4_I(inode)->jinode) { 994 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 995 EXT4_I(inode)->jinode); 996 jbd2_free_inode(EXT4_I(inode)->jinode); 997 EXT4_I(inode)->jinode = NULL; 998 } 999 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1000 if (EXT4_I(inode)->i_crypt_info) 1001 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info); 1002 #endif 1003 } 1004 1005 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1006 u64 ino, u32 generation) 1007 { 1008 struct inode *inode; 1009 1010 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1011 return ERR_PTR(-ESTALE); 1012 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1013 return ERR_PTR(-ESTALE); 1014 1015 /* iget isn't really right if the inode is currently unallocated!! 1016 * 1017 * ext4_read_inode will return a bad_inode if the inode had been 1018 * deleted, so we should be safe. 1019 * 1020 * Currently we don't know the generation for parent directory, so 1021 * a generation of 0 means "accept any" 1022 */ 1023 inode = ext4_iget_normal(sb, ino); 1024 if (IS_ERR(inode)) 1025 return ERR_CAST(inode); 1026 if (generation && inode->i_generation != generation) { 1027 iput(inode); 1028 return ERR_PTR(-ESTALE); 1029 } 1030 1031 return inode; 1032 } 1033 1034 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1035 int fh_len, int fh_type) 1036 { 1037 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1038 ext4_nfs_get_inode); 1039 } 1040 1041 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1042 int fh_len, int fh_type) 1043 { 1044 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1045 ext4_nfs_get_inode); 1046 } 1047 1048 /* 1049 * Try to release metadata pages (indirect blocks, directories) which are 1050 * mapped via the block device. Since these pages could have journal heads 1051 * which would prevent try_to_free_buffers() from freeing them, we must use 1052 * jbd2 layer's try_to_free_buffers() function to release them. 1053 */ 1054 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1055 gfp_t wait) 1056 { 1057 journal_t *journal = EXT4_SB(sb)->s_journal; 1058 1059 WARN_ON(PageChecked(page)); 1060 if (!page_has_buffers(page)) 1061 return 0; 1062 if (journal) 1063 return jbd2_journal_try_to_free_buffers(journal, page, 1064 wait & ~__GFP_DIRECT_RECLAIM); 1065 return try_to_free_buffers(page); 1066 } 1067 1068 #ifdef CONFIG_QUOTA 1069 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1070 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1071 1072 static int ext4_write_dquot(struct dquot *dquot); 1073 static int ext4_acquire_dquot(struct dquot *dquot); 1074 static int ext4_release_dquot(struct dquot *dquot); 1075 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1076 static int ext4_write_info(struct super_block *sb, int type); 1077 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1078 struct path *path); 1079 static int ext4_quota_off(struct super_block *sb, int type); 1080 static int ext4_quota_on_mount(struct super_block *sb, int type); 1081 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1082 size_t len, loff_t off); 1083 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1084 const char *data, size_t len, loff_t off); 1085 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1086 unsigned int flags); 1087 static int ext4_enable_quotas(struct super_block *sb); 1088 1089 static struct dquot **ext4_get_dquots(struct inode *inode) 1090 { 1091 return EXT4_I(inode)->i_dquot; 1092 } 1093 1094 static const struct dquot_operations ext4_quota_operations = { 1095 .get_reserved_space = ext4_get_reserved_space, 1096 .write_dquot = ext4_write_dquot, 1097 .acquire_dquot = ext4_acquire_dquot, 1098 .release_dquot = ext4_release_dquot, 1099 .mark_dirty = ext4_mark_dquot_dirty, 1100 .write_info = ext4_write_info, 1101 .alloc_dquot = dquot_alloc, 1102 .destroy_dquot = dquot_destroy, 1103 }; 1104 1105 static const struct quotactl_ops ext4_qctl_operations = { 1106 .quota_on = ext4_quota_on, 1107 .quota_off = ext4_quota_off, 1108 .quota_sync = dquot_quota_sync, 1109 .get_state = dquot_get_state, 1110 .set_info = dquot_set_dqinfo, 1111 .get_dqblk = dquot_get_dqblk, 1112 .set_dqblk = dquot_set_dqblk 1113 }; 1114 #endif 1115 1116 static const struct super_operations ext4_sops = { 1117 .alloc_inode = ext4_alloc_inode, 1118 .destroy_inode = ext4_destroy_inode, 1119 .write_inode = ext4_write_inode, 1120 .dirty_inode = ext4_dirty_inode, 1121 .drop_inode = ext4_drop_inode, 1122 .evict_inode = ext4_evict_inode, 1123 .put_super = ext4_put_super, 1124 .sync_fs = ext4_sync_fs, 1125 .freeze_fs = ext4_freeze, 1126 .unfreeze_fs = ext4_unfreeze, 1127 .statfs = ext4_statfs, 1128 .remount_fs = ext4_remount, 1129 .show_options = ext4_show_options, 1130 #ifdef CONFIG_QUOTA 1131 .quota_read = ext4_quota_read, 1132 .quota_write = ext4_quota_write, 1133 .get_dquots = ext4_get_dquots, 1134 #endif 1135 .bdev_try_to_free_page = bdev_try_to_free_page, 1136 }; 1137 1138 static const struct export_operations ext4_export_ops = { 1139 .fh_to_dentry = ext4_fh_to_dentry, 1140 .fh_to_parent = ext4_fh_to_parent, 1141 .get_parent = ext4_get_parent, 1142 }; 1143 1144 enum { 1145 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1146 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1147 Opt_nouid32, Opt_debug, Opt_removed, 1148 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1149 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1150 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1151 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1152 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1153 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1154 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1155 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1156 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1157 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1158 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1159 Opt_lazytime, Opt_nolazytime, 1160 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1161 Opt_inode_readahead_blks, Opt_journal_ioprio, 1162 Opt_dioread_nolock, Opt_dioread_lock, 1163 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1164 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1165 }; 1166 1167 static const match_table_t tokens = { 1168 {Opt_bsd_df, "bsddf"}, 1169 {Opt_minix_df, "minixdf"}, 1170 {Opt_grpid, "grpid"}, 1171 {Opt_grpid, "bsdgroups"}, 1172 {Opt_nogrpid, "nogrpid"}, 1173 {Opt_nogrpid, "sysvgroups"}, 1174 {Opt_resgid, "resgid=%u"}, 1175 {Opt_resuid, "resuid=%u"}, 1176 {Opt_sb, "sb=%u"}, 1177 {Opt_err_cont, "errors=continue"}, 1178 {Opt_err_panic, "errors=panic"}, 1179 {Opt_err_ro, "errors=remount-ro"}, 1180 {Opt_nouid32, "nouid32"}, 1181 {Opt_debug, "debug"}, 1182 {Opt_removed, "oldalloc"}, 1183 {Opt_removed, "orlov"}, 1184 {Opt_user_xattr, "user_xattr"}, 1185 {Opt_nouser_xattr, "nouser_xattr"}, 1186 {Opt_acl, "acl"}, 1187 {Opt_noacl, "noacl"}, 1188 {Opt_noload, "norecovery"}, 1189 {Opt_noload, "noload"}, 1190 {Opt_removed, "nobh"}, 1191 {Opt_removed, "bh"}, 1192 {Opt_commit, "commit=%u"}, 1193 {Opt_min_batch_time, "min_batch_time=%u"}, 1194 {Opt_max_batch_time, "max_batch_time=%u"}, 1195 {Opt_journal_dev, "journal_dev=%u"}, 1196 {Opt_journal_path, "journal_path=%s"}, 1197 {Opt_journal_checksum, "journal_checksum"}, 1198 {Opt_nojournal_checksum, "nojournal_checksum"}, 1199 {Opt_journal_async_commit, "journal_async_commit"}, 1200 {Opt_abort, "abort"}, 1201 {Opt_data_journal, "data=journal"}, 1202 {Opt_data_ordered, "data=ordered"}, 1203 {Opt_data_writeback, "data=writeback"}, 1204 {Opt_data_err_abort, "data_err=abort"}, 1205 {Opt_data_err_ignore, "data_err=ignore"}, 1206 {Opt_offusrjquota, "usrjquota="}, 1207 {Opt_usrjquota, "usrjquota=%s"}, 1208 {Opt_offgrpjquota, "grpjquota="}, 1209 {Opt_grpjquota, "grpjquota=%s"}, 1210 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1211 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1212 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1213 {Opt_grpquota, "grpquota"}, 1214 {Opt_noquota, "noquota"}, 1215 {Opt_quota, "quota"}, 1216 {Opt_usrquota, "usrquota"}, 1217 {Opt_barrier, "barrier=%u"}, 1218 {Opt_barrier, "barrier"}, 1219 {Opt_nobarrier, "nobarrier"}, 1220 {Opt_i_version, "i_version"}, 1221 {Opt_dax, "dax"}, 1222 {Opt_stripe, "stripe=%u"}, 1223 {Opt_delalloc, "delalloc"}, 1224 {Opt_lazytime, "lazytime"}, 1225 {Opt_nolazytime, "nolazytime"}, 1226 {Opt_nodelalloc, "nodelalloc"}, 1227 {Opt_removed, "mblk_io_submit"}, 1228 {Opt_removed, "nomblk_io_submit"}, 1229 {Opt_block_validity, "block_validity"}, 1230 {Opt_noblock_validity, "noblock_validity"}, 1231 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1232 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1233 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1234 {Opt_auto_da_alloc, "auto_da_alloc"}, 1235 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1236 {Opt_dioread_nolock, "dioread_nolock"}, 1237 {Opt_dioread_lock, "dioread_lock"}, 1238 {Opt_discard, "discard"}, 1239 {Opt_nodiscard, "nodiscard"}, 1240 {Opt_init_itable, "init_itable=%u"}, 1241 {Opt_init_itable, "init_itable"}, 1242 {Opt_noinit_itable, "noinit_itable"}, 1243 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1244 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1245 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1246 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1247 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1248 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1249 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1250 {Opt_err, NULL}, 1251 }; 1252 1253 static ext4_fsblk_t get_sb_block(void **data) 1254 { 1255 ext4_fsblk_t sb_block; 1256 char *options = (char *) *data; 1257 1258 if (!options || strncmp(options, "sb=", 3) != 0) 1259 return 1; /* Default location */ 1260 1261 options += 3; 1262 /* TODO: use simple_strtoll with >32bit ext4 */ 1263 sb_block = simple_strtoul(options, &options, 0); 1264 if (*options && *options != ',') { 1265 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1266 (char *) *data); 1267 return 1; 1268 } 1269 if (*options == ',') 1270 options++; 1271 *data = (void *) options; 1272 1273 return sb_block; 1274 } 1275 1276 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1277 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1278 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1279 1280 #ifdef CONFIG_QUOTA 1281 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1282 { 1283 struct ext4_sb_info *sbi = EXT4_SB(sb); 1284 char *qname; 1285 int ret = -1; 1286 1287 if (sb_any_quota_loaded(sb) && 1288 !sbi->s_qf_names[qtype]) { 1289 ext4_msg(sb, KERN_ERR, 1290 "Cannot change journaled " 1291 "quota options when quota turned on"); 1292 return -1; 1293 } 1294 if (ext4_has_feature_quota(sb)) { 1295 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1296 "when QUOTA feature is enabled"); 1297 return -1; 1298 } 1299 qname = match_strdup(args); 1300 if (!qname) { 1301 ext4_msg(sb, KERN_ERR, 1302 "Not enough memory for storing quotafile name"); 1303 return -1; 1304 } 1305 if (sbi->s_qf_names[qtype]) { 1306 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1307 ret = 1; 1308 else 1309 ext4_msg(sb, KERN_ERR, 1310 "%s quota file already specified", 1311 QTYPE2NAME(qtype)); 1312 goto errout; 1313 } 1314 if (strchr(qname, '/')) { 1315 ext4_msg(sb, KERN_ERR, 1316 "quotafile must be on filesystem root"); 1317 goto errout; 1318 } 1319 sbi->s_qf_names[qtype] = qname; 1320 set_opt(sb, QUOTA); 1321 return 1; 1322 errout: 1323 kfree(qname); 1324 return ret; 1325 } 1326 1327 static int clear_qf_name(struct super_block *sb, int qtype) 1328 { 1329 1330 struct ext4_sb_info *sbi = EXT4_SB(sb); 1331 1332 if (sb_any_quota_loaded(sb) && 1333 sbi->s_qf_names[qtype]) { 1334 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1335 " when quota turned on"); 1336 return -1; 1337 } 1338 kfree(sbi->s_qf_names[qtype]); 1339 sbi->s_qf_names[qtype] = NULL; 1340 return 1; 1341 } 1342 #endif 1343 1344 #define MOPT_SET 0x0001 1345 #define MOPT_CLEAR 0x0002 1346 #define MOPT_NOSUPPORT 0x0004 1347 #define MOPT_EXPLICIT 0x0008 1348 #define MOPT_CLEAR_ERR 0x0010 1349 #define MOPT_GTE0 0x0020 1350 #ifdef CONFIG_QUOTA 1351 #define MOPT_Q 0 1352 #define MOPT_QFMT 0x0040 1353 #else 1354 #define MOPT_Q MOPT_NOSUPPORT 1355 #define MOPT_QFMT MOPT_NOSUPPORT 1356 #endif 1357 #define MOPT_DATAJ 0x0080 1358 #define MOPT_NO_EXT2 0x0100 1359 #define MOPT_NO_EXT3 0x0200 1360 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1361 #define MOPT_STRING 0x0400 1362 1363 static const struct mount_opts { 1364 int token; 1365 int mount_opt; 1366 int flags; 1367 } ext4_mount_opts[] = { 1368 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1369 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1370 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1371 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1372 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1373 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1374 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1375 MOPT_EXT4_ONLY | MOPT_SET}, 1376 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1377 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1378 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1379 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1380 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1381 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1382 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1383 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1384 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1385 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1386 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1387 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1388 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1389 EXT4_MOUNT_JOURNAL_CHECKSUM), 1390 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1391 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1392 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1393 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1394 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1395 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1396 MOPT_NO_EXT2 | MOPT_SET}, 1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1398 MOPT_NO_EXT2 | MOPT_CLEAR}, 1399 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1400 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1401 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1402 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1403 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1404 {Opt_commit, 0, MOPT_GTE0}, 1405 {Opt_max_batch_time, 0, MOPT_GTE0}, 1406 {Opt_min_batch_time, 0, MOPT_GTE0}, 1407 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1408 {Opt_init_itable, 0, MOPT_GTE0}, 1409 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1410 {Opt_stripe, 0, MOPT_GTE0}, 1411 {Opt_resuid, 0, MOPT_GTE0}, 1412 {Opt_resgid, 0, MOPT_GTE0}, 1413 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1414 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1415 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1416 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1417 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1418 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1419 MOPT_NO_EXT2 | MOPT_DATAJ}, 1420 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1421 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1422 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1423 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1424 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1425 #else 1426 {Opt_acl, 0, MOPT_NOSUPPORT}, 1427 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1428 #endif 1429 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1430 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1431 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1432 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1433 MOPT_SET | MOPT_Q}, 1434 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1435 MOPT_SET | MOPT_Q}, 1436 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1437 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1438 {Opt_usrjquota, 0, MOPT_Q}, 1439 {Opt_grpjquota, 0, MOPT_Q}, 1440 {Opt_offusrjquota, 0, MOPT_Q}, 1441 {Opt_offgrpjquota, 0, MOPT_Q}, 1442 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1443 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1444 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1445 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1446 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1447 {Opt_err, 0, 0} 1448 }; 1449 1450 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1451 substring_t *args, unsigned long *journal_devnum, 1452 unsigned int *journal_ioprio, int is_remount) 1453 { 1454 struct ext4_sb_info *sbi = EXT4_SB(sb); 1455 const struct mount_opts *m; 1456 kuid_t uid; 1457 kgid_t gid; 1458 int arg = 0; 1459 1460 #ifdef CONFIG_QUOTA 1461 if (token == Opt_usrjquota) 1462 return set_qf_name(sb, USRQUOTA, &args[0]); 1463 else if (token == Opt_grpjquota) 1464 return set_qf_name(sb, GRPQUOTA, &args[0]); 1465 else if (token == Opt_offusrjquota) 1466 return clear_qf_name(sb, USRQUOTA); 1467 else if (token == Opt_offgrpjquota) 1468 return clear_qf_name(sb, GRPQUOTA); 1469 #endif 1470 switch (token) { 1471 case Opt_noacl: 1472 case Opt_nouser_xattr: 1473 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1474 break; 1475 case Opt_sb: 1476 return 1; /* handled by get_sb_block() */ 1477 case Opt_removed: 1478 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1479 return 1; 1480 case Opt_abort: 1481 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1482 return 1; 1483 case Opt_i_version: 1484 sb->s_flags |= MS_I_VERSION; 1485 return 1; 1486 case Opt_lazytime: 1487 sb->s_flags |= MS_LAZYTIME; 1488 return 1; 1489 case Opt_nolazytime: 1490 sb->s_flags &= ~MS_LAZYTIME; 1491 return 1; 1492 } 1493 1494 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1495 if (token == m->token) 1496 break; 1497 1498 if (m->token == Opt_err) { 1499 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1500 "or missing value", opt); 1501 return -1; 1502 } 1503 1504 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1505 ext4_msg(sb, KERN_ERR, 1506 "Mount option \"%s\" incompatible with ext2", opt); 1507 return -1; 1508 } 1509 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1510 ext4_msg(sb, KERN_ERR, 1511 "Mount option \"%s\" incompatible with ext3", opt); 1512 return -1; 1513 } 1514 1515 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1516 return -1; 1517 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1518 return -1; 1519 if (m->flags & MOPT_EXPLICIT) { 1520 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1521 set_opt2(sb, EXPLICIT_DELALLOC); 1522 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1523 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1524 } else 1525 return -1; 1526 } 1527 if (m->flags & MOPT_CLEAR_ERR) 1528 clear_opt(sb, ERRORS_MASK); 1529 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1530 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1531 "options when quota turned on"); 1532 return -1; 1533 } 1534 1535 if (m->flags & MOPT_NOSUPPORT) { 1536 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1537 } else if (token == Opt_commit) { 1538 if (arg == 0) 1539 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1540 sbi->s_commit_interval = HZ * arg; 1541 } else if (token == Opt_max_batch_time) { 1542 sbi->s_max_batch_time = arg; 1543 } else if (token == Opt_min_batch_time) { 1544 sbi->s_min_batch_time = arg; 1545 } else if (token == Opt_inode_readahead_blks) { 1546 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1547 ext4_msg(sb, KERN_ERR, 1548 "EXT4-fs: inode_readahead_blks must be " 1549 "0 or a power of 2 smaller than 2^31"); 1550 return -1; 1551 } 1552 sbi->s_inode_readahead_blks = arg; 1553 } else if (token == Opt_init_itable) { 1554 set_opt(sb, INIT_INODE_TABLE); 1555 if (!args->from) 1556 arg = EXT4_DEF_LI_WAIT_MULT; 1557 sbi->s_li_wait_mult = arg; 1558 } else if (token == Opt_max_dir_size_kb) { 1559 sbi->s_max_dir_size_kb = arg; 1560 } else if (token == Opt_stripe) { 1561 sbi->s_stripe = arg; 1562 } else if (token == Opt_resuid) { 1563 uid = make_kuid(current_user_ns(), arg); 1564 if (!uid_valid(uid)) { 1565 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1566 return -1; 1567 } 1568 sbi->s_resuid = uid; 1569 } else if (token == Opt_resgid) { 1570 gid = make_kgid(current_user_ns(), arg); 1571 if (!gid_valid(gid)) { 1572 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1573 return -1; 1574 } 1575 sbi->s_resgid = gid; 1576 } else if (token == Opt_journal_dev) { 1577 if (is_remount) { 1578 ext4_msg(sb, KERN_ERR, 1579 "Cannot specify journal on remount"); 1580 return -1; 1581 } 1582 *journal_devnum = arg; 1583 } else if (token == Opt_journal_path) { 1584 char *journal_path; 1585 struct inode *journal_inode; 1586 struct path path; 1587 int error; 1588 1589 if (is_remount) { 1590 ext4_msg(sb, KERN_ERR, 1591 "Cannot specify journal on remount"); 1592 return -1; 1593 } 1594 journal_path = match_strdup(&args[0]); 1595 if (!journal_path) { 1596 ext4_msg(sb, KERN_ERR, "error: could not dup " 1597 "journal device string"); 1598 return -1; 1599 } 1600 1601 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1602 if (error) { 1603 ext4_msg(sb, KERN_ERR, "error: could not find " 1604 "journal device path: error %d", error); 1605 kfree(journal_path); 1606 return -1; 1607 } 1608 1609 journal_inode = d_inode(path.dentry); 1610 if (!S_ISBLK(journal_inode->i_mode)) { 1611 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1612 "is not a block device", journal_path); 1613 path_put(&path); 1614 kfree(journal_path); 1615 return -1; 1616 } 1617 1618 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1619 path_put(&path); 1620 kfree(journal_path); 1621 } else if (token == Opt_journal_ioprio) { 1622 if (arg > 7) { 1623 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1624 " (must be 0-7)"); 1625 return -1; 1626 } 1627 *journal_ioprio = 1628 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1629 } else if (token == Opt_test_dummy_encryption) { 1630 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1631 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1632 ext4_msg(sb, KERN_WARNING, 1633 "Test dummy encryption mode enabled"); 1634 #else 1635 ext4_msg(sb, KERN_WARNING, 1636 "Test dummy encryption mount option ignored"); 1637 #endif 1638 } else if (m->flags & MOPT_DATAJ) { 1639 if (is_remount) { 1640 if (!sbi->s_journal) 1641 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1642 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1643 ext4_msg(sb, KERN_ERR, 1644 "Cannot change data mode on remount"); 1645 return -1; 1646 } 1647 } else { 1648 clear_opt(sb, DATA_FLAGS); 1649 sbi->s_mount_opt |= m->mount_opt; 1650 } 1651 #ifdef CONFIG_QUOTA 1652 } else if (m->flags & MOPT_QFMT) { 1653 if (sb_any_quota_loaded(sb) && 1654 sbi->s_jquota_fmt != m->mount_opt) { 1655 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1656 "quota options when quota turned on"); 1657 return -1; 1658 } 1659 if (ext4_has_feature_quota(sb)) { 1660 ext4_msg(sb, KERN_ERR, 1661 "Cannot set journaled quota options " 1662 "when QUOTA feature is enabled"); 1663 return -1; 1664 } 1665 sbi->s_jquota_fmt = m->mount_opt; 1666 #endif 1667 } else if (token == Opt_dax) { 1668 #ifdef CONFIG_FS_DAX 1669 ext4_msg(sb, KERN_WARNING, 1670 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1671 sbi->s_mount_opt |= m->mount_opt; 1672 #else 1673 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1674 return -1; 1675 #endif 1676 } else { 1677 if (!args->from) 1678 arg = 1; 1679 if (m->flags & MOPT_CLEAR) 1680 arg = !arg; 1681 else if (unlikely(!(m->flags & MOPT_SET))) { 1682 ext4_msg(sb, KERN_WARNING, 1683 "buggy handling of option %s", opt); 1684 WARN_ON(1); 1685 return -1; 1686 } 1687 if (arg != 0) 1688 sbi->s_mount_opt |= m->mount_opt; 1689 else 1690 sbi->s_mount_opt &= ~m->mount_opt; 1691 } 1692 return 1; 1693 } 1694 1695 static int parse_options(char *options, struct super_block *sb, 1696 unsigned long *journal_devnum, 1697 unsigned int *journal_ioprio, 1698 int is_remount) 1699 { 1700 struct ext4_sb_info *sbi = EXT4_SB(sb); 1701 char *p; 1702 substring_t args[MAX_OPT_ARGS]; 1703 int token; 1704 1705 if (!options) 1706 return 1; 1707 1708 while ((p = strsep(&options, ",")) != NULL) { 1709 if (!*p) 1710 continue; 1711 /* 1712 * Initialize args struct so we know whether arg was 1713 * found; some options take optional arguments. 1714 */ 1715 args[0].to = args[0].from = NULL; 1716 token = match_token(p, tokens, args); 1717 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1718 journal_ioprio, is_remount) < 0) 1719 return 0; 1720 } 1721 #ifdef CONFIG_QUOTA 1722 if (ext4_has_feature_quota(sb) && 1723 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1724 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1725 "feature is enabled"); 1726 return 0; 1727 } 1728 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1729 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1730 clear_opt(sb, USRQUOTA); 1731 1732 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1733 clear_opt(sb, GRPQUOTA); 1734 1735 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1736 ext4_msg(sb, KERN_ERR, "old and new quota " 1737 "format mixing"); 1738 return 0; 1739 } 1740 1741 if (!sbi->s_jquota_fmt) { 1742 ext4_msg(sb, KERN_ERR, "journaled quota format " 1743 "not specified"); 1744 return 0; 1745 } 1746 } 1747 #endif 1748 if (test_opt(sb, DIOREAD_NOLOCK)) { 1749 int blocksize = 1750 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1751 1752 if (blocksize < PAGE_CACHE_SIZE) { 1753 ext4_msg(sb, KERN_ERR, "can't mount with " 1754 "dioread_nolock if block size != PAGE_SIZE"); 1755 return 0; 1756 } 1757 } 1758 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1759 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1760 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1761 "in data=ordered mode"); 1762 return 0; 1763 } 1764 return 1; 1765 } 1766 1767 static inline void ext4_show_quota_options(struct seq_file *seq, 1768 struct super_block *sb) 1769 { 1770 #if defined(CONFIG_QUOTA) 1771 struct ext4_sb_info *sbi = EXT4_SB(sb); 1772 1773 if (sbi->s_jquota_fmt) { 1774 char *fmtname = ""; 1775 1776 switch (sbi->s_jquota_fmt) { 1777 case QFMT_VFS_OLD: 1778 fmtname = "vfsold"; 1779 break; 1780 case QFMT_VFS_V0: 1781 fmtname = "vfsv0"; 1782 break; 1783 case QFMT_VFS_V1: 1784 fmtname = "vfsv1"; 1785 break; 1786 } 1787 seq_printf(seq, ",jqfmt=%s", fmtname); 1788 } 1789 1790 if (sbi->s_qf_names[USRQUOTA]) 1791 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1792 1793 if (sbi->s_qf_names[GRPQUOTA]) 1794 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1795 #endif 1796 } 1797 1798 static const char *token2str(int token) 1799 { 1800 const struct match_token *t; 1801 1802 for (t = tokens; t->token != Opt_err; t++) 1803 if (t->token == token && !strchr(t->pattern, '=')) 1804 break; 1805 return t->pattern; 1806 } 1807 1808 /* 1809 * Show an option if 1810 * - it's set to a non-default value OR 1811 * - if the per-sb default is different from the global default 1812 */ 1813 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1814 int nodefs) 1815 { 1816 struct ext4_sb_info *sbi = EXT4_SB(sb); 1817 struct ext4_super_block *es = sbi->s_es; 1818 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1819 const struct mount_opts *m; 1820 char sep = nodefs ? '\n' : ','; 1821 1822 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1823 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1824 1825 if (sbi->s_sb_block != 1) 1826 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1827 1828 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1829 int want_set = m->flags & MOPT_SET; 1830 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1831 (m->flags & MOPT_CLEAR_ERR)) 1832 continue; 1833 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1834 continue; /* skip if same as the default */ 1835 if ((want_set && 1836 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1837 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1838 continue; /* select Opt_noFoo vs Opt_Foo */ 1839 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1840 } 1841 1842 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1843 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1844 SEQ_OPTS_PRINT("resuid=%u", 1845 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1846 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1847 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1848 SEQ_OPTS_PRINT("resgid=%u", 1849 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1850 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1851 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1852 SEQ_OPTS_PUTS("errors=remount-ro"); 1853 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1854 SEQ_OPTS_PUTS("errors=continue"); 1855 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1856 SEQ_OPTS_PUTS("errors=panic"); 1857 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1858 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1859 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1860 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1861 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1862 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1863 if (sb->s_flags & MS_I_VERSION) 1864 SEQ_OPTS_PUTS("i_version"); 1865 if (nodefs || sbi->s_stripe) 1866 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1867 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1868 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1869 SEQ_OPTS_PUTS("data=journal"); 1870 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1871 SEQ_OPTS_PUTS("data=ordered"); 1872 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1873 SEQ_OPTS_PUTS("data=writeback"); 1874 } 1875 if (nodefs || 1876 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1877 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1878 sbi->s_inode_readahead_blks); 1879 1880 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1881 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1882 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1883 if (nodefs || sbi->s_max_dir_size_kb) 1884 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1885 1886 ext4_show_quota_options(seq, sb); 1887 return 0; 1888 } 1889 1890 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1891 { 1892 return _ext4_show_options(seq, root->d_sb, 0); 1893 } 1894 1895 int ext4_seq_options_show(struct seq_file *seq, void *offset) 1896 { 1897 struct super_block *sb = seq->private; 1898 int rc; 1899 1900 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1901 rc = _ext4_show_options(seq, sb, 1); 1902 seq_puts(seq, "\n"); 1903 return rc; 1904 } 1905 1906 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1907 int read_only) 1908 { 1909 struct ext4_sb_info *sbi = EXT4_SB(sb); 1910 int res = 0; 1911 1912 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1913 ext4_msg(sb, KERN_ERR, "revision level too high, " 1914 "forcing read-only mode"); 1915 res = MS_RDONLY; 1916 } 1917 if (read_only) 1918 goto done; 1919 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1920 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1921 "running e2fsck is recommended"); 1922 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1923 ext4_msg(sb, KERN_WARNING, 1924 "warning: mounting fs with errors, " 1925 "running e2fsck is recommended"); 1926 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1927 le16_to_cpu(es->s_mnt_count) >= 1928 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1929 ext4_msg(sb, KERN_WARNING, 1930 "warning: maximal mount count reached, " 1931 "running e2fsck is recommended"); 1932 else if (le32_to_cpu(es->s_checkinterval) && 1933 (le32_to_cpu(es->s_lastcheck) + 1934 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1935 ext4_msg(sb, KERN_WARNING, 1936 "warning: checktime reached, " 1937 "running e2fsck is recommended"); 1938 if (!sbi->s_journal) 1939 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1940 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1941 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1942 le16_add_cpu(&es->s_mnt_count, 1); 1943 es->s_mtime = cpu_to_le32(get_seconds()); 1944 ext4_update_dynamic_rev(sb); 1945 if (sbi->s_journal) 1946 ext4_set_feature_journal_needs_recovery(sb); 1947 1948 ext4_commit_super(sb, 1); 1949 done: 1950 if (test_opt(sb, DEBUG)) 1951 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1952 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1953 sb->s_blocksize, 1954 sbi->s_groups_count, 1955 EXT4_BLOCKS_PER_GROUP(sb), 1956 EXT4_INODES_PER_GROUP(sb), 1957 sbi->s_mount_opt, sbi->s_mount_opt2); 1958 1959 cleancache_init_fs(sb); 1960 return res; 1961 } 1962 1963 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1964 { 1965 struct ext4_sb_info *sbi = EXT4_SB(sb); 1966 struct flex_groups *new_groups; 1967 int size; 1968 1969 if (!sbi->s_log_groups_per_flex) 1970 return 0; 1971 1972 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1973 if (size <= sbi->s_flex_groups_allocated) 1974 return 0; 1975 1976 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1977 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1978 if (!new_groups) { 1979 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1980 size / (int) sizeof(struct flex_groups)); 1981 return -ENOMEM; 1982 } 1983 1984 if (sbi->s_flex_groups) { 1985 memcpy(new_groups, sbi->s_flex_groups, 1986 (sbi->s_flex_groups_allocated * 1987 sizeof(struct flex_groups))); 1988 kvfree(sbi->s_flex_groups); 1989 } 1990 sbi->s_flex_groups = new_groups; 1991 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1992 return 0; 1993 } 1994 1995 static int ext4_fill_flex_info(struct super_block *sb) 1996 { 1997 struct ext4_sb_info *sbi = EXT4_SB(sb); 1998 struct ext4_group_desc *gdp = NULL; 1999 ext4_group_t flex_group; 2000 int i, err; 2001 2002 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2003 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2004 sbi->s_log_groups_per_flex = 0; 2005 return 1; 2006 } 2007 2008 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2009 if (err) 2010 goto failed; 2011 2012 for (i = 0; i < sbi->s_groups_count; i++) { 2013 gdp = ext4_get_group_desc(sb, i, NULL); 2014 2015 flex_group = ext4_flex_group(sbi, i); 2016 atomic_add(ext4_free_inodes_count(sb, gdp), 2017 &sbi->s_flex_groups[flex_group].free_inodes); 2018 atomic64_add(ext4_free_group_clusters(sb, gdp), 2019 &sbi->s_flex_groups[flex_group].free_clusters); 2020 atomic_add(ext4_used_dirs_count(sb, gdp), 2021 &sbi->s_flex_groups[flex_group].used_dirs); 2022 } 2023 2024 return 1; 2025 failed: 2026 return 0; 2027 } 2028 2029 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2030 struct ext4_group_desc *gdp) 2031 { 2032 int offset; 2033 __u16 crc = 0; 2034 __le32 le_group = cpu_to_le32(block_group); 2035 struct ext4_sb_info *sbi = EXT4_SB(sb); 2036 2037 if (ext4_has_metadata_csum(sbi->s_sb)) { 2038 /* Use new metadata_csum algorithm */ 2039 __le16 save_csum; 2040 __u32 csum32; 2041 2042 save_csum = gdp->bg_checksum; 2043 gdp->bg_checksum = 0; 2044 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2045 sizeof(le_group)); 2046 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2047 sbi->s_desc_size); 2048 gdp->bg_checksum = save_csum; 2049 2050 crc = csum32 & 0xFFFF; 2051 goto out; 2052 } 2053 2054 /* old crc16 code */ 2055 if (!ext4_has_feature_gdt_csum(sb)) 2056 return 0; 2057 2058 offset = offsetof(struct ext4_group_desc, bg_checksum); 2059 2060 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2061 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2062 crc = crc16(crc, (__u8 *)gdp, offset); 2063 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2064 /* for checksum of struct ext4_group_desc do the rest...*/ 2065 if (ext4_has_feature_64bit(sb) && 2066 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2067 crc = crc16(crc, (__u8 *)gdp + offset, 2068 le16_to_cpu(sbi->s_es->s_desc_size) - 2069 offset); 2070 2071 out: 2072 return cpu_to_le16(crc); 2073 } 2074 2075 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2076 struct ext4_group_desc *gdp) 2077 { 2078 if (ext4_has_group_desc_csum(sb) && 2079 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2080 return 0; 2081 2082 return 1; 2083 } 2084 2085 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2086 struct ext4_group_desc *gdp) 2087 { 2088 if (!ext4_has_group_desc_csum(sb)) 2089 return; 2090 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2091 } 2092 2093 /* Called at mount-time, super-block is locked */ 2094 static int ext4_check_descriptors(struct super_block *sb, 2095 ext4_group_t *first_not_zeroed) 2096 { 2097 struct ext4_sb_info *sbi = EXT4_SB(sb); 2098 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2099 ext4_fsblk_t last_block; 2100 ext4_fsblk_t block_bitmap; 2101 ext4_fsblk_t inode_bitmap; 2102 ext4_fsblk_t inode_table; 2103 int flexbg_flag = 0; 2104 ext4_group_t i, grp = sbi->s_groups_count; 2105 2106 if (ext4_has_feature_flex_bg(sb)) 2107 flexbg_flag = 1; 2108 2109 ext4_debug("Checking group descriptors"); 2110 2111 for (i = 0; i < sbi->s_groups_count; i++) { 2112 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2113 2114 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2115 last_block = ext4_blocks_count(sbi->s_es) - 1; 2116 else 2117 last_block = first_block + 2118 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2119 2120 if ((grp == sbi->s_groups_count) && 2121 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2122 grp = i; 2123 2124 block_bitmap = ext4_block_bitmap(sb, gdp); 2125 if (block_bitmap < first_block || block_bitmap > last_block) { 2126 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2127 "Block bitmap for group %u not in group " 2128 "(block %llu)!", i, block_bitmap); 2129 return 0; 2130 } 2131 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2132 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2133 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2134 "Inode bitmap for group %u not in group " 2135 "(block %llu)!", i, inode_bitmap); 2136 return 0; 2137 } 2138 inode_table = ext4_inode_table(sb, gdp); 2139 if (inode_table < first_block || 2140 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2141 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2142 "Inode table for group %u not in group " 2143 "(block %llu)!", i, inode_table); 2144 return 0; 2145 } 2146 ext4_lock_group(sb, i); 2147 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2148 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2149 "Checksum for group %u failed (%u!=%u)", 2150 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2151 gdp)), le16_to_cpu(gdp->bg_checksum)); 2152 if (!(sb->s_flags & MS_RDONLY)) { 2153 ext4_unlock_group(sb, i); 2154 return 0; 2155 } 2156 } 2157 ext4_unlock_group(sb, i); 2158 if (!flexbg_flag) 2159 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2160 } 2161 if (NULL != first_not_zeroed) 2162 *first_not_zeroed = grp; 2163 return 1; 2164 } 2165 2166 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2167 * the superblock) which were deleted from all directories, but held open by 2168 * a process at the time of a crash. We walk the list and try to delete these 2169 * inodes at recovery time (only with a read-write filesystem). 2170 * 2171 * In order to keep the orphan inode chain consistent during traversal (in 2172 * case of crash during recovery), we link each inode into the superblock 2173 * orphan list_head and handle it the same way as an inode deletion during 2174 * normal operation (which journals the operations for us). 2175 * 2176 * We only do an iget() and an iput() on each inode, which is very safe if we 2177 * accidentally point at an in-use or already deleted inode. The worst that 2178 * can happen in this case is that we get a "bit already cleared" message from 2179 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2180 * e2fsck was run on this filesystem, and it must have already done the orphan 2181 * inode cleanup for us, so we can safely abort without any further action. 2182 */ 2183 static void ext4_orphan_cleanup(struct super_block *sb, 2184 struct ext4_super_block *es) 2185 { 2186 unsigned int s_flags = sb->s_flags; 2187 int nr_orphans = 0, nr_truncates = 0; 2188 #ifdef CONFIG_QUOTA 2189 int i; 2190 #endif 2191 if (!es->s_last_orphan) { 2192 jbd_debug(4, "no orphan inodes to clean up\n"); 2193 return; 2194 } 2195 2196 if (bdev_read_only(sb->s_bdev)) { 2197 ext4_msg(sb, KERN_ERR, "write access " 2198 "unavailable, skipping orphan cleanup"); 2199 return; 2200 } 2201 2202 /* Check if feature set would not allow a r/w mount */ 2203 if (!ext4_feature_set_ok(sb, 0)) { 2204 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2205 "unknown ROCOMPAT features"); 2206 return; 2207 } 2208 2209 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2210 /* don't clear list on RO mount w/ errors */ 2211 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2212 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2213 "clearing orphan list.\n"); 2214 es->s_last_orphan = 0; 2215 } 2216 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2217 return; 2218 } 2219 2220 if (s_flags & MS_RDONLY) { 2221 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2222 sb->s_flags &= ~MS_RDONLY; 2223 } 2224 #ifdef CONFIG_QUOTA 2225 /* Needed for iput() to work correctly and not trash data */ 2226 sb->s_flags |= MS_ACTIVE; 2227 /* Turn on quotas so that they are updated correctly */ 2228 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2229 if (EXT4_SB(sb)->s_qf_names[i]) { 2230 int ret = ext4_quota_on_mount(sb, i); 2231 if (ret < 0) 2232 ext4_msg(sb, KERN_ERR, 2233 "Cannot turn on journaled " 2234 "quota: error %d", ret); 2235 } 2236 } 2237 #endif 2238 2239 while (es->s_last_orphan) { 2240 struct inode *inode; 2241 2242 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2243 if (IS_ERR(inode)) { 2244 es->s_last_orphan = 0; 2245 break; 2246 } 2247 2248 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2249 dquot_initialize(inode); 2250 if (inode->i_nlink) { 2251 if (test_opt(sb, DEBUG)) 2252 ext4_msg(sb, KERN_DEBUG, 2253 "%s: truncating inode %lu to %lld bytes", 2254 __func__, inode->i_ino, inode->i_size); 2255 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2256 inode->i_ino, inode->i_size); 2257 mutex_lock(&inode->i_mutex); 2258 truncate_inode_pages(inode->i_mapping, inode->i_size); 2259 ext4_truncate(inode); 2260 mutex_unlock(&inode->i_mutex); 2261 nr_truncates++; 2262 } else { 2263 if (test_opt(sb, DEBUG)) 2264 ext4_msg(sb, KERN_DEBUG, 2265 "%s: deleting unreferenced inode %lu", 2266 __func__, inode->i_ino); 2267 jbd_debug(2, "deleting unreferenced inode %lu\n", 2268 inode->i_ino); 2269 nr_orphans++; 2270 } 2271 iput(inode); /* The delete magic happens here! */ 2272 } 2273 2274 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2275 2276 if (nr_orphans) 2277 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2278 PLURAL(nr_orphans)); 2279 if (nr_truncates) 2280 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2281 PLURAL(nr_truncates)); 2282 #ifdef CONFIG_QUOTA 2283 /* Turn quotas off */ 2284 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2285 if (sb_dqopt(sb)->files[i]) 2286 dquot_quota_off(sb, i); 2287 } 2288 #endif 2289 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2290 } 2291 2292 /* 2293 * Maximal extent format file size. 2294 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2295 * extent format containers, within a sector_t, and within i_blocks 2296 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2297 * so that won't be a limiting factor. 2298 * 2299 * However there is other limiting factor. We do store extents in the form 2300 * of starting block and length, hence the resulting length of the extent 2301 * covering maximum file size must fit into on-disk format containers as 2302 * well. Given that length is always by 1 unit bigger than max unit (because 2303 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2304 * 2305 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2306 */ 2307 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2308 { 2309 loff_t res; 2310 loff_t upper_limit = MAX_LFS_FILESIZE; 2311 2312 /* small i_blocks in vfs inode? */ 2313 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2314 /* 2315 * CONFIG_LBDAF is not enabled implies the inode 2316 * i_block represent total blocks in 512 bytes 2317 * 32 == size of vfs inode i_blocks * 8 2318 */ 2319 upper_limit = (1LL << 32) - 1; 2320 2321 /* total blocks in file system block size */ 2322 upper_limit >>= (blkbits - 9); 2323 upper_limit <<= blkbits; 2324 } 2325 2326 /* 2327 * 32-bit extent-start container, ee_block. We lower the maxbytes 2328 * by one fs block, so ee_len can cover the extent of maximum file 2329 * size 2330 */ 2331 res = (1LL << 32) - 1; 2332 res <<= blkbits; 2333 2334 /* Sanity check against vm- & vfs- imposed limits */ 2335 if (res > upper_limit) 2336 res = upper_limit; 2337 2338 return res; 2339 } 2340 2341 /* 2342 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2343 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2344 * We need to be 1 filesystem block less than the 2^48 sector limit. 2345 */ 2346 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2347 { 2348 loff_t res = EXT4_NDIR_BLOCKS; 2349 int meta_blocks; 2350 loff_t upper_limit; 2351 /* This is calculated to be the largest file size for a dense, block 2352 * mapped file such that the file's total number of 512-byte sectors, 2353 * including data and all indirect blocks, does not exceed (2^48 - 1). 2354 * 2355 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2356 * number of 512-byte sectors of the file. 2357 */ 2358 2359 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2360 /* 2361 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2362 * the inode i_block field represents total file blocks in 2363 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2364 */ 2365 upper_limit = (1LL << 32) - 1; 2366 2367 /* total blocks in file system block size */ 2368 upper_limit >>= (bits - 9); 2369 2370 } else { 2371 /* 2372 * We use 48 bit ext4_inode i_blocks 2373 * With EXT4_HUGE_FILE_FL set the i_blocks 2374 * represent total number of blocks in 2375 * file system block size 2376 */ 2377 upper_limit = (1LL << 48) - 1; 2378 2379 } 2380 2381 /* indirect blocks */ 2382 meta_blocks = 1; 2383 /* double indirect blocks */ 2384 meta_blocks += 1 + (1LL << (bits-2)); 2385 /* tripple indirect blocks */ 2386 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2387 2388 upper_limit -= meta_blocks; 2389 upper_limit <<= bits; 2390 2391 res += 1LL << (bits-2); 2392 res += 1LL << (2*(bits-2)); 2393 res += 1LL << (3*(bits-2)); 2394 res <<= bits; 2395 if (res > upper_limit) 2396 res = upper_limit; 2397 2398 if (res > MAX_LFS_FILESIZE) 2399 res = MAX_LFS_FILESIZE; 2400 2401 return res; 2402 } 2403 2404 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2405 ext4_fsblk_t logical_sb_block, int nr) 2406 { 2407 struct ext4_sb_info *sbi = EXT4_SB(sb); 2408 ext4_group_t bg, first_meta_bg; 2409 int has_super = 0; 2410 2411 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2412 2413 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2414 return logical_sb_block + nr + 1; 2415 bg = sbi->s_desc_per_block * nr; 2416 if (ext4_bg_has_super(sb, bg)) 2417 has_super = 1; 2418 2419 /* 2420 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2421 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2422 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2423 * compensate. 2424 */ 2425 if (sb->s_blocksize == 1024 && nr == 0 && 2426 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2427 has_super++; 2428 2429 return (has_super + ext4_group_first_block_no(sb, bg)); 2430 } 2431 2432 /** 2433 * ext4_get_stripe_size: Get the stripe size. 2434 * @sbi: In memory super block info 2435 * 2436 * If we have specified it via mount option, then 2437 * use the mount option value. If the value specified at mount time is 2438 * greater than the blocks per group use the super block value. 2439 * If the super block value is greater than blocks per group return 0. 2440 * Allocator needs it be less than blocks per group. 2441 * 2442 */ 2443 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2444 { 2445 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2446 unsigned long stripe_width = 2447 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2448 int ret; 2449 2450 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2451 ret = sbi->s_stripe; 2452 else if (stripe_width <= sbi->s_blocks_per_group) 2453 ret = stripe_width; 2454 else if (stride <= sbi->s_blocks_per_group) 2455 ret = stride; 2456 else 2457 ret = 0; 2458 2459 /* 2460 * If the stripe width is 1, this makes no sense and 2461 * we set it to 0 to turn off stripe handling code. 2462 */ 2463 if (ret <= 1) 2464 ret = 0; 2465 2466 return ret; 2467 } 2468 2469 /* 2470 * Check whether this filesystem can be mounted based on 2471 * the features present and the RDONLY/RDWR mount requested. 2472 * Returns 1 if this filesystem can be mounted as requested, 2473 * 0 if it cannot be. 2474 */ 2475 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2476 { 2477 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2478 ext4_msg(sb, KERN_ERR, 2479 "Couldn't mount because of " 2480 "unsupported optional features (%x)", 2481 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2482 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2483 return 0; 2484 } 2485 2486 if (readonly) 2487 return 1; 2488 2489 if (ext4_has_feature_readonly(sb)) { 2490 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2491 sb->s_flags |= MS_RDONLY; 2492 return 1; 2493 } 2494 2495 /* Check that feature set is OK for a read-write mount */ 2496 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2497 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2498 "unsupported optional features (%x)", 2499 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2500 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2501 return 0; 2502 } 2503 /* 2504 * Large file size enabled file system can only be mounted 2505 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2506 */ 2507 if (ext4_has_feature_huge_file(sb)) { 2508 if (sizeof(blkcnt_t) < sizeof(u64)) { 2509 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2510 "cannot be mounted RDWR without " 2511 "CONFIG_LBDAF"); 2512 return 0; 2513 } 2514 } 2515 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2516 ext4_msg(sb, KERN_ERR, 2517 "Can't support bigalloc feature without " 2518 "extents feature\n"); 2519 return 0; 2520 } 2521 2522 #ifndef CONFIG_QUOTA 2523 if (ext4_has_feature_quota(sb) && !readonly) { 2524 ext4_msg(sb, KERN_ERR, 2525 "Filesystem with quota feature cannot be mounted RDWR " 2526 "without CONFIG_QUOTA"); 2527 return 0; 2528 } 2529 #endif /* CONFIG_QUOTA */ 2530 return 1; 2531 } 2532 2533 /* 2534 * This function is called once a day if we have errors logged 2535 * on the file system 2536 */ 2537 static void print_daily_error_info(unsigned long arg) 2538 { 2539 struct super_block *sb = (struct super_block *) arg; 2540 struct ext4_sb_info *sbi; 2541 struct ext4_super_block *es; 2542 2543 sbi = EXT4_SB(sb); 2544 es = sbi->s_es; 2545 2546 if (es->s_error_count) 2547 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2548 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2549 le32_to_cpu(es->s_error_count)); 2550 if (es->s_first_error_time) { 2551 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2552 sb->s_id, le32_to_cpu(es->s_first_error_time), 2553 (int) sizeof(es->s_first_error_func), 2554 es->s_first_error_func, 2555 le32_to_cpu(es->s_first_error_line)); 2556 if (es->s_first_error_ino) 2557 printk(": inode %u", 2558 le32_to_cpu(es->s_first_error_ino)); 2559 if (es->s_first_error_block) 2560 printk(": block %llu", (unsigned long long) 2561 le64_to_cpu(es->s_first_error_block)); 2562 printk("\n"); 2563 } 2564 if (es->s_last_error_time) { 2565 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2566 sb->s_id, le32_to_cpu(es->s_last_error_time), 2567 (int) sizeof(es->s_last_error_func), 2568 es->s_last_error_func, 2569 le32_to_cpu(es->s_last_error_line)); 2570 if (es->s_last_error_ino) 2571 printk(": inode %u", 2572 le32_to_cpu(es->s_last_error_ino)); 2573 if (es->s_last_error_block) 2574 printk(": block %llu", (unsigned long long) 2575 le64_to_cpu(es->s_last_error_block)); 2576 printk("\n"); 2577 } 2578 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2579 } 2580 2581 /* Find next suitable group and run ext4_init_inode_table */ 2582 static int ext4_run_li_request(struct ext4_li_request *elr) 2583 { 2584 struct ext4_group_desc *gdp = NULL; 2585 ext4_group_t group, ngroups; 2586 struct super_block *sb; 2587 unsigned long timeout = 0; 2588 int ret = 0; 2589 2590 sb = elr->lr_super; 2591 ngroups = EXT4_SB(sb)->s_groups_count; 2592 2593 sb_start_write(sb); 2594 for (group = elr->lr_next_group; group < ngroups; group++) { 2595 gdp = ext4_get_group_desc(sb, group, NULL); 2596 if (!gdp) { 2597 ret = 1; 2598 break; 2599 } 2600 2601 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2602 break; 2603 } 2604 2605 if (group >= ngroups) 2606 ret = 1; 2607 2608 if (!ret) { 2609 timeout = jiffies; 2610 ret = ext4_init_inode_table(sb, group, 2611 elr->lr_timeout ? 0 : 1); 2612 if (elr->lr_timeout == 0) { 2613 timeout = (jiffies - timeout) * 2614 elr->lr_sbi->s_li_wait_mult; 2615 elr->lr_timeout = timeout; 2616 } 2617 elr->lr_next_sched = jiffies + elr->lr_timeout; 2618 elr->lr_next_group = group + 1; 2619 } 2620 sb_end_write(sb); 2621 2622 return ret; 2623 } 2624 2625 /* 2626 * Remove lr_request from the list_request and free the 2627 * request structure. Should be called with li_list_mtx held 2628 */ 2629 static void ext4_remove_li_request(struct ext4_li_request *elr) 2630 { 2631 struct ext4_sb_info *sbi; 2632 2633 if (!elr) 2634 return; 2635 2636 sbi = elr->lr_sbi; 2637 2638 list_del(&elr->lr_request); 2639 sbi->s_li_request = NULL; 2640 kfree(elr); 2641 } 2642 2643 static void ext4_unregister_li_request(struct super_block *sb) 2644 { 2645 mutex_lock(&ext4_li_mtx); 2646 if (!ext4_li_info) { 2647 mutex_unlock(&ext4_li_mtx); 2648 return; 2649 } 2650 2651 mutex_lock(&ext4_li_info->li_list_mtx); 2652 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2653 mutex_unlock(&ext4_li_info->li_list_mtx); 2654 mutex_unlock(&ext4_li_mtx); 2655 } 2656 2657 static struct task_struct *ext4_lazyinit_task; 2658 2659 /* 2660 * This is the function where ext4lazyinit thread lives. It walks 2661 * through the request list searching for next scheduled filesystem. 2662 * When such a fs is found, run the lazy initialization request 2663 * (ext4_rn_li_request) and keep track of the time spend in this 2664 * function. Based on that time we compute next schedule time of 2665 * the request. When walking through the list is complete, compute 2666 * next waking time and put itself into sleep. 2667 */ 2668 static int ext4_lazyinit_thread(void *arg) 2669 { 2670 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2671 struct list_head *pos, *n; 2672 struct ext4_li_request *elr; 2673 unsigned long next_wakeup, cur; 2674 2675 BUG_ON(NULL == eli); 2676 2677 cont_thread: 2678 while (true) { 2679 next_wakeup = MAX_JIFFY_OFFSET; 2680 2681 mutex_lock(&eli->li_list_mtx); 2682 if (list_empty(&eli->li_request_list)) { 2683 mutex_unlock(&eli->li_list_mtx); 2684 goto exit_thread; 2685 } 2686 2687 list_for_each_safe(pos, n, &eli->li_request_list) { 2688 elr = list_entry(pos, struct ext4_li_request, 2689 lr_request); 2690 2691 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2692 if (ext4_run_li_request(elr) != 0) { 2693 /* error, remove the lazy_init job */ 2694 ext4_remove_li_request(elr); 2695 continue; 2696 } 2697 } 2698 2699 if (time_before(elr->lr_next_sched, next_wakeup)) 2700 next_wakeup = elr->lr_next_sched; 2701 } 2702 mutex_unlock(&eli->li_list_mtx); 2703 2704 try_to_freeze(); 2705 2706 cur = jiffies; 2707 if ((time_after_eq(cur, next_wakeup)) || 2708 (MAX_JIFFY_OFFSET == next_wakeup)) { 2709 cond_resched(); 2710 continue; 2711 } 2712 2713 schedule_timeout_interruptible(next_wakeup - cur); 2714 2715 if (kthread_should_stop()) { 2716 ext4_clear_request_list(); 2717 goto exit_thread; 2718 } 2719 } 2720 2721 exit_thread: 2722 /* 2723 * It looks like the request list is empty, but we need 2724 * to check it under the li_list_mtx lock, to prevent any 2725 * additions into it, and of course we should lock ext4_li_mtx 2726 * to atomically free the list and ext4_li_info, because at 2727 * this point another ext4 filesystem could be registering 2728 * new one. 2729 */ 2730 mutex_lock(&ext4_li_mtx); 2731 mutex_lock(&eli->li_list_mtx); 2732 if (!list_empty(&eli->li_request_list)) { 2733 mutex_unlock(&eli->li_list_mtx); 2734 mutex_unlock(&ext4_li_mtx); 2735 goto cont_thread; 2736 } 2737 mutex_unlock(&eli->li_list_mtx); 2738 kfree(ext4_li_info); 2739 ext4_li_info = NULL; 2740 mutex_unlock(&ext4_li_mtx); 2741 2742 return 0; 2743 } 2744 2745 static void ext4_clear_request_list(void) 2746 { 2747 struct list_head *pos, *n; 2748 struct ext4_li_request *elr; 2749 2750 mutex_lock(&ext4_li_info->li_list_mtx); 2751 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2752 elr = list_entry(pos, struct ext4_li_request, 2753 lr_request); 2754 ext4_remove_li_request(elr); 2755 } 2756 mutex_unlock(&ext4_li_info->li_list_mtx); 2757 } 2758 2759 static int ext4_run_lazyinit_thread(void) 2760 { 2761 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2762 ext4_li_info, "ext4lazyinit"); 2763 if (IS_ERR(ext4_lazyinit_task)) { 2764 int err = PTR_ERR(ext4_lazyinit_task); 2765 ext4_clear_request_list(); 2766 kfree(ext4_li_info); 2767 ext4_li_info = NULL; 2768 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2769 "initialization thread\n", 2770 err); 2771 return err; 2772 } 2773 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2774 return 0; 2775 } 2776 2777 /* 2778 * Check whether it make sense to run itable init. thread or not. 2779 * If there is at least one uninitialized inode table, return 2780 * corresponding group number, else the loop goes through all 2781 * groups and return total number of groups. 2782 */ 2783 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2784 { 2785 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2786 struct ext4_group_desc *gdp = NULL; 2787 2788 for (group = 0; group < ngroups; group++) { 2789 gdp = ext4_get_group_desc(sb, group, NULL); 2790 if (!gdp) 2791 continue; 2792 2793 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2794 break; 2795 } 2796 2797 return group; 2798 } 2799 2800 static int ext4_li_info_new(void) 2801 { 2802 struct ext4_lazy_init *eli = NULL; 2803 2804 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2805 if (!eli) 2806 return -ENOMEM; 2807 2808 INIT_LIST_HEAD(&eli->li_request_list); 2809 mutex_init(&eli->li_list_mtx); 2810 2811 eli->li_state |= EXT4_LAZYINIT_QUIT; 2812 2813 ext4_li_info = eli; 2814 2815 return 0; 2816 } 2817 2818 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2819 ext4_group_t start) 2820 { 2821 struct ext4_sb_info *sbi = EXT4_SB(sb); 2822 struct ext4_li_request *elr; 2823 2824 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2825 if (!elr) 2826 return NULL; 2827 2828 elr->lr_super = sb; 2829 elr->lr_sbi = sbi; 2830 elr->lr_next_group = start; 2831 2832 /* 2833 * Randomize first schedule time of the request to 2834 * spread the inode table initialization requests 2835 * better. 2836 */ 2837 elr->lr_next_sched = jiffies + (prandom_u32() % 2838 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2839 return elr; 2840 } 2841 2842 int ext4_register_li_request(struct super_block *sb, 2843 ext4_group_t first_not_zeroed) 2844 { 2845 struct ext4_sb_info *sbi = EXT4_SB(sb); 2846 struct ext4_li_request *elr = NULL; 2847 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2848 int ret = 0; 2849 2850 mutex_lock(&ext4_li_mtx); 2851 if (sbi->s_li_request != NULL) { 2852 /* 2853 * Reset timeout so it can be computed again, because 2854 * s_li_wait_mult might have changed. 2855 */ 2856 sbi->s_li_request->lr_timeout = 0; 2857 goto out; 2858 } 2859 2860 if (first_not_zeroed == ngroups || 2861 (sb->s_flags & MS_RDONLY) || 2862 !test_opt(sb, INIT_INODE_TABLE)) 2863 goto out; 2864 2865 elr = ext4_li_request_new(sb, first_not_zeroed); 2866 if (!elr) { 2867 ret = -ENOMEM; 2868 goto out; 2869 } 2870 2871 if (NULL == ext4_li_info) { 2872 ret = ext4_li_info_new(); 2873 if (ret) 2874 goto out; 2875 } 2876 2877 mutex_lock(&ext4_li_info->li_list_mtx); 2878 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2879 mutex_unlock(&ext4_li_info->li_list_mtx); 2880 2881 sbi->s_li_request = elr; 2882 /* 2883 * set elr to NULL here since it has been inserted to 2884 * the request_list and the removal and free of it is 2885 * handled by ext4_clear_request_list from now on. 2886 */ 2887 elr = NULL; 2888 2889 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2890 ret = ext4_run_lazyinit_thread(); 2891 if (ret) 2892 goto out; 2893 } 2894 out: 2895 mutex_unlock(&ext4_li_mtx); 2896 if (ret) 2897 kfree(elr); 2898 return ret; 2899 } 2900 2901 /* 2902 * We do not need to lock anything since this is called on 2903 * module unload. 2904 */ 2905 static void ext4_destroy_lazyinit_thread(void) 2906 { 2907 /* 2908 * If thread exited earlier 2909 * there's nothing to be done. 2910 */ 2911 if (!ext4_li_info || !ext4_lazyinit_task) 2912 return; 2913 2914 kthread_stop(ext4_lazyinit_task); 2915 } 2916 2917 static int set_journal_csum_feature_set(struct super_block *sb) 2918 { 2919 int ret = 1; 2920 int compat, incompat; 2921 struct ext4_sb_info *sbi = EXT4_SB(sb); 2922 2923 if (ext4_has_metadata_csum(sb)) { 2924 /* journal checksum v3 */ 2925 compat = 0; 2926 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 2927 } else { 2928 /* journal checksum v1 */ 2929 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 2930 incompat = 0; 2931 } 2932 2933 jbd2_journal_clear_features(sbi->s_journal, 2934 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2935 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 2936 JBD2_FEATURE_INCOMPAT_CSUM_V2); 2937 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2938 ret = jbd2_journal_set_features(sbi->s_journal, 2939 compat, 0, 2940 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 2941 incompat); 2942 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2943 ret = jbd2_journal_set_features(sbi->s_journal, 2944 compat, 0, 2945 incompat); 2946 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2947 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2948 } else { 2949 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2950 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2951 } 2952 2953 return ret; 2954 } 2955 2956 /* 2957 * Note: calculating the overhead so we can be compatible with 2958 * historical BSD practice is quite difficult in the face of 2959 * clusters/bigalloc. This is because multiple metadata blocks from 2960 * different block group can end up in the same allocation cluster. 2961 * Calculating the exact overhead in the face of clustered allocation 2962 * requires either O(all block bitmaps) in memory or O(number of block 2963 * groups**2) in time. We will still calculate the superblock for 2964 * older file systems --- and if we come across with a bigalloc file 2965 * system with zero in s_overhead_clusters the estimate will be close to 2966 * correct especially for very large cluster sizes --- but for newer 2967 * file systems, it's better to calculate this figure once at mkfs 2968 * time, and store it in the superblock. If the superblock value is 2969 * present (even for non-bigalloc file systems), we will use it. 2970 */ 2971 static int count_overhead(struct super_block *sb, ext4_group_t grp, 2972 char *buf) 2973 { 2974 struct ext4_sb_info *sbi = EXT4_SB(sb); 2975 struct ext4_group_desc *gdp; 2976 ext4_fsblk_t first_block, last_block, b; 2977 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 2978 int s, j, count = 0; 2979 2980 if (!ext4_has_feature_bigalloc(sb)) 2981 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 2982 sbi->s_itb_per_group + 2); 2983 2984 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 2985 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 2986 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 2987 for (i = 0; i < ngroups; i++) { 2988 gdp = ext4_get_group_desc(sb, i, NULL); 2989 b = ext4_block_bitmap(sb, gdp); 2990 if (b >= first_block && b <= last_block) { 2991 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 2992 count++; 2993 } 2994 b = ext4_inode_bitmap(sb, gdp); 2995 if (b >= first_block && b <= last_block) { 2996 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 2997 count++; 2998 } 2999 b = ext4_inode_table(sb, gdp); 3000 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3001 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3002 int c = EXT4_B2C(sbi, b - first_block); 3003 ext4_set_bit(c, buf); 3004 count++; 3005 } 3006 if (i != grp) 3007 continue; 3008 s = 0; 3009 if (ext4_bg_has_super(sb, grp)) { 3010 ext4_set_bit(s++, buf); 3011 count++; 3012 } 3013 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3014 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3015 count++; 3016 } 3017 } 3018 if (!count) 3019 return 0; 3020 return EXT4_CLUSTERS_PER_GROUP(sb) - 3021 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3022 } 3023 3024 /* 3025 * Compute the overhead and stash it in sbi->s_overhead 3026 */ 3027 int ext4_calculate_overhead(struct super_block *sb) 3028 { 3029 struct ext4_sb_info *sbi = EXT4_SB(sb); 3030 struct ext4_super_block *es = sbi->s_es; 3031 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3032 ext4_fsblk_t overhead = 0; 3033 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3034 3035 if (!buf) 3036 return -ENOMEM; 3037 3038 /* 3039 * Compute the overhead (FS structures). This is constant 3040 * for a given filesystem unless the number of block groups 3041 * changes so we cache the previous value until it does. 3042 */ 3043 3044 /* 3045 * All of the blocks before first_data_block are overhead 3046 */ 3047 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3048 3049 /* 3050 * Add the overhead found in each block group 3051 */ 3052 for (i = 0; i < ngroups; i++) { 3053 int blks; 3054 3055 blks = count_overhead(sb, i, buf); 3056 overhead += blks; 3057 if (blks) 3058 memset(buf, 0, PAGE_SIZE); 3059 cond_resched(); 3060 } 3061 /* Add the internal journal blocks as well */ 3062 if (sbi->s_journal && !sbi->journal_bdev) 3063 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3064 3065 sbi->s_overhead = overhead; 3066 smp_wmb(); 3067 free_page((unsigned long) buf); 3068 return 0; 3069 } 3070 3071 static void ext4_set_resv_clusters(struct super_block *sb) 3072 { 3073 ext4_fsblk_t resv_clusters; 3074 struct ext4_sb_info *sbi = EXT4_SB(sb); 3075 3076 /* 3077 * There's no need to reserve anything when we aren't using extents. 3078 * The space estimates are exact, there are no unwritten extents, 3079 * hole punching doesn't need new metadata... This is needed especially 3080 * to keep ext2/3 backward compatibility. 3081 */ 3082 if (!ext4_has_feature_extents(sb)) 3083 return; 3084 /* 3085 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3086 * This should cover the situations where we can not afford to run 3087 * out of space like for example punch hole, or converting 3088 * unwritten extents in delalloc path. In most cases such 3089 * allocation would require 1, or 2 blocks, higher numbers are 3090 * very rare. 3091 */ 3092 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3093 sbi->s_cluster_bits); 3094 3095 do_div(resv_clusters, 50); 3096 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3097 3098 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3099 } 3100 3101 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3102 { 3103 char *orig_data = kstrdup(data, GFP_KERNEL); 3104 struct buffer_head *bh; 3105 struct ext4_super_block *es = NULL; 3106 struct ext4_sb_info *sbi; 3107 ext4_fsblk_t block; 3108 ext4_fsblk_t sb_block = get_sb_block(&data); 3109 ext4_fsblk_t logical_sb_block; 3110 unsigned long offset = 0; 3111 unsigned long journal_devnum = 0; 3112 unsigned long def_mount_opts; 3113 struct inode *root; 3114 const char *descr; 3115 int ret = -ENOMEM; 3116 int blocksize, clustersize; 3117 unsigned int db_count; 3118 unsigned int i; 3119 int needs_recovery, has_huge_files, has_bigalloc; 3120 __u64 blocks_count; 3121 int err = 0; 3122 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3123 ext4_group_t first_not_zeroed; 3124 3125 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3126 if (!sbi) 3127 goto out_free_orig; 3128 3129 sbi->s_blockgroup_lock = 3130 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3131 if (!sbi->s_blockgroup_lock) { 3132 kfree(sbi); 3133 goto out_free_orig; 3134 } 3135 sb->s_fs_info = sbi; 3136 sbi->s_sb = sb; 3137 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3138 sbi->s_sb_block = sb_block; 3139 if (sb->s_bdev->bd_part) 3140 sbi->s_sectors_written_start = 3141 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3142 3143 /* Cleanup superblock name */ 3144 strreplace(sb->s_id, '/', '!'); 3145 3146 /* -EINVAL is default */ 3147 ret = -EINVAL; 3148 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3149 if (!blocksize) { 3150 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3151 goto out_fail; 3152 } 3153 3154 /* 3155 * The ext4 superblock will not be buffer aligned for other than 1kB 3156 * block sizes. We need to calculate the offset from buffer start. 3157 */ 3158 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3159 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3160 offset = do_div(logical_sb_block, blocksize); 3161 } else { 3162 logical_sb_block = sb_block; 3163 } 3164 3165 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3166 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3167 goto out_fail; 3168 } 3169 /* 3170 * Note: s_es must be initialized as soon as possible because 3171 * some ext4 macro-instructions depend on its value 3172 */ 3173 es = (struct ext4_super_block *) (bh->b_data + offset); 3174 sbi->s_es = es; 3175 sb->s_magic = le16_to_cpu(es->s_magic); 3176 if (sb->s_magic != EXT4_SUPER_MAGIC) 3177 goto cantfind_ext4; 3178 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3179 3180 /* Warn if metadata_csum and gdt_csum are both set. */ 3181 if (ext4_has_feature_metadata_csum(sb) && 3182 ext4_has_feature_gdt_csum(sb)) 3183 ext4_warning(sb, "metadata_csum and uninit_bg are " 3184 "redundant flags; please run fsck."); 3185 3186 /* Check for a known checksum algorithm */ 3187 if (!ext4_verify_csum_type(sb, es)) { 3188 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3189 "unknown checksum algorithm."); 3190 silent = 1; 3191 goto cantfind_ext4; 3192 } 3193 3194 /* Load the checksum driver */ 3195 if (ext4_has_feature_metadata_csum(sb)) { 3196 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3197 if (IS_ERR(sbi->s_chksum_driver)) { 3198 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3199 ret = PTR_ERR(sbi->s_chksum_driver); 3200 sbi->s_chksum_driver = NULL; 3201 goto failed_mount; 3202 } 3203 } 3204 3205 /* Check superblock checksum */ 3206 if (!ext4_superblock_csum_verify(sb, es)) { 3207 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3208 "invalid superblock checksum. Run e2fsck?"); 3209 silent = 1; 3210 ret = -EFSBADCRC; 3211 goto cantfind_ext4; 3212 } 3213 3214 /* Precompute checksum seed for all metadata */ 3215 if (ext4_has_feature_csum_seed(sb)) 3216 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3217 else if (ext4_has_metadata_csum(sb)) 3218 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3219 sizeof(es->s_uuid)); 3220 3221 /* Set defaults before we parse the mount options */ 3222 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3223 set_opt(sb, INIT_INODE_TABLE); 3224 if (def_mount_opts & EXT4_DEFM_DEBUG) 3225 set_opt(sb, DEBUG); 3226 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3227 set_opt(sb, GRPID); 3228 if (def_mount_opts & EXT4_DEFM_UID16) 3229 set_opt(sb, NO_UID32); 3230 /* xattr user namespace & acls are now defaulted on */ 3231 set_opt(sb, XATTR_USER); 3232 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3233 set_opt(sb, POSIX_ACL); 3234 #endif 3235 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3236 if (ext4_has_metadata_csum(sb)) 3237 set_opt(sb, JOURNAL_CHECKSUM); 3238 3239 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3240 set_opt(sb, JOURNAL_DATA); 3241 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3242 set_opt(sb, ORDERED_DATA); 3243 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3244 set_opt(sb, WRITEBACK_DATA); 3245 3246 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3247 set_opt(sb, ERRORS_PANIC); 3248 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3249 set_opt(sb, ERRORS_CONT); 3250 else 3251 set_opt(sb, ERRORS_RO); 3252 /* block_validity enabled by default; disable with noblock_validity */ 3253 set_opt(sb, BLOCK_VALIDITY); 3254 if (def_mount_opts & EXT4_DEFM_DISCARD) 3255 set_opt(sb, DISCARD); 3256 3257 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3258 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3259 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3260 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3261 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3262 3263 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3264 set_opt(sb, BARRIER); 3265 3266 /* 3267 * enable delayed allocation by default 3268 * Use -o nodelalloc to turn it off 3269 */ 3270 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3271 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3272 set_opt(sb, DELALLOC); 3273 3274 /* 3275 * set default s_li_wait_mult for lazyinit, for the case there is 3276 * no mount option specified. 3277 */ 3278 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3279 3280 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3281 &journal_devnum, &journal_ioprio, 0)) { 3282 ext4_msg(sb, KERN_WARNING, 3283 "failed to parse options in superblock: %s", 3284 sbi->s_es->s_mount_opts); 3285 } 3286 sbi->s_def_mount_opt = sbi->s_mount_opt; 3287 if (!parse_options((char *) data, sb, &journal_devnum, 3288 &journal_ioprio, 0)) 3289 goto failed_mount; 3290 3291 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3292 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3293 "with data=journal disables delayed " 3294 "allocation and O_DIRECT support!\n"); 3295 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3296 ext4_msg(sb, KERN_ERR, "can't mount with " 3297 "both data=journal and delalloc"); 3298 goto failed_mount; 3299 } 3300 if (test_opt(sb, DIOREAD_NOLOCK)) { 3301 ext4_msg(sb, KERN_ERR, "can't mount with " 3302 "both data=journal and dioread_nolock"); 3303 goto failed_mount; 3304 } 3305 if (test_opt(sb, DAX)) { 3306 ext4_msg(sb, KERN_ERR, "can't mount with " 3307 "both data=journal and dax"); 3308 goto failed_mount; 3309 } 3310 if (test_opt(sb, DELALLOC)) 3311 clear_opt(sb, DELALLOC); 3312 } else { 3313 sb->s_iflags |= SB_I_CGROUPWB; 3314 } 3315 3316 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3317 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3318 3319 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3320 (ext4_has_compat_features(sb) || 3321 ext4_has_ro_compat_features(sb) || 3322 ext4_has_incompat_features(sb))) 3323 ext4_msg(sb, KERN_WARNING, 3324 "feature flags set on rev 0 fs, " 3325 "running e2fsck is recommended"); 3326 3327 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3328 set_opt2(sb, HURD_COMPAT); 3329 if (ext4_has_feature_64bit(sb)) { 3330 ext4_msg(sb, KERN_ERR, 3331 "The Hurd can't support 64-bit file systems"); 3332 goto failed_mount; 3333 } 3334 } 3335 3336 if (IS_EXT2_SB(sb)) { 3337 if (ext2_feature_set_ok(sb)) 3338 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3339 "using the ext4 subsystem"); 3340 else { 3341 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3342 "to feature incompatibilities"); 3343 goto failed_mount; 3344 } 3345 } 3346 3347 if (IS_EXT3_SB(sb)) { 3348 if (ext3_feature_set_ok(sb)) 3349 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3350 "using the ext4 subsystem"); 3351 else { 3352 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3353 "to feature incompatibilities"); 3354 goto failed_mount; 3355 } 3356 } 3357 3358 /* 3359 * Check feature flags regardless of the revision level, since we 3360 * previously didn't change the revision level when setting the flags, 3361 * so there is a chance incompat flags are set on a rev 0 filesystem. 3362 */ 3363 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3364 goto failed_mount; 3365 3366 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3367 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3368 blocksize > EXT4_MAX_BLOCK_SIZE) { 3369 ext4_msg(sb, KERN_ERR, 3370 "Unsupported filesystem blocksize %d", blocksize); 3371 goto failed_mount; 3372 } 3373 3374 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3375 if (blocksize != PAGE_SIZE) { 3376 ext4_msg(sb, KERN_ERR, 3377 "error: unsupported blocksize for dax"); 3378 goto failed_mount; 3379 } 3380 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3381 ext4_msg(sb, KERN_ERR, 3382 "error: device does not support dax"); 3383 goto failed_mount; 3384 } 3385 } 3386 3387 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3388 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3389 es->s_encryption_level); 3390 goto failed_mount; 3391 } 3392 3393 if (sb->s_blocksize != blocksize) { 3394 /* Validate the filesystem blocksize */ 3395 if (!sb_set_blocksize(sb, blocksize)) { 3396 ext4_msg(sb, KERN_ERR, "bad block size %d", 3397 blocksize); 3398 goto failed_mount; 3399 } 3400 3401 brelse(bh); 3402 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3403 offset = do_div(logical_sb_block, blocksize); 3404 bh = sb_bread_unmovable(sb, logical_sb_block); 3405 if (!bh) { 3406 ext4_msg(sb, KERN_ERR, 3407 "Can't read superblock on 2nd try"); 3408 goto failed_mount; 3409 } 3410 es = (struct ext4_super_block *)(bh->b_data + offset); 3411 sbi->s_es = es; 3412 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3413 ext4_msg(sb, KERN_ERR, 3414 "Magic mismatch, very weird!"); 3415 goto failed_mount; 3416 } 3417 } 3418 3419 has_huge_files = ext4_has_feature_huge_file(sb); 3420 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3421 has_huge_files); 3422 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3423 3424 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3425 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3426 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3427 } else { 3428 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3429 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3430 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3431 (!is_power_of_2(sbi->s_inode_size)) || 3432 (sbi->s_inode_size > blocksize)) { 3433 ext4_msg(sb, KERN_ERR, 3434 "unsupported inode size: %d", 3435 sbi->s_inode_size); 3436 goto failed_mount; 3437 } 3438 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3439 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3440 } 3441 3442 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3443 if (ext4_has_feature_64bit(sb)) { 3444 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3445 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3446 !is_power_of_2(sbi->s_desc_size)) { 3447 ext4_msg(sb, KERN_ERR, 3448 "unsupported descriptor size %lu", 3449 sbi->s_desc_size); 3450 goto failed_mount; 3451 } 3452 } else 3453 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3454 3455 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3456 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3457 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3458 goto cantfind_ext4; 3459 3460 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3461 if (sbi->s_inodes_per_block == 0) 3462 goto cantfind_ext4; 3463 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3464 sbi->s_inodes_per_block; 3465 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3466 sbi->s_sbh = bh; 3467 sbi->s_mount_state = le16_to_cpu(es->s_state); 3468 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3469 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3470 3471 for (i = 0; i < 4; i++) 3472 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3473 sbi->s_def_hash_version = es->s_def_hash_version; 3474 if (ext4_has_feature_dir_index(sb)) { 3475 i = le32_to_cpu(es->s_flags); 3476 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3477 sbi->s_hash_unsigned = 3; 3478 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3479 #ifdef __CHAR_UNSIGNED__ 3480 if (!(sb->s_flags & MS_RDONLY)) 3481 es->s_flags |= 3482 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3483 sbi->s_hash_unsigned = 3; 3484 #else 3485 if (!(sb->s_flags & MS_RDONLY)) 3486 es->s_flags |= 3487 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3488 #endif 3489 } 3490 } 3491 3492 /* Handle clustersize */ 3493 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3494 has_bigalloc = ext4_has_feature_bigalloc(sb); 3495 if (has_bigalloc) { 3496 if (clustersize < blocksize) { 3497 ext4_msg(sb, KERN_ERR, 3498 "cluster size (%d) smaller than " 3499 "block size (%d)", clustersize, blocksize); 3500 goto failed_mount; 3501 } 3502 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3503 le32_to_cpu(es->s_log_block_size); 3504 sbi->s_clusters_per_group = 3505 le32_to_cpu(es->s_clusters_per_group); 3506 if (sbi->s_clusters_per_group > blocksize * 8) { 3507 ext4_msg(sb, KERN_ERR, 3508 "#clusters per group too big: %lu", 3509 sbi->s_clusters_per_group); 3510 goto failed_mount; 3511 } 3512 if (sbi->s_blocks_per_group != 3513 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3514 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3515 "clusters per group (%lu) inconsistent", 3516 sbi->s_blocks_per_group, 3517 sbi->s_clusters_per_group); 3518 goto failed_mount; 3519 } 3520 } else { 3521 if (clustersize != blocksize) { 3522 ext4_warning(sb, "fragment/cluster size (%d) != " 3523 "block size (%d)", clustersize, 3524 blocksize); 3525 clustersize = blocksize; 3526 } 3527 if (sbi->s_blocks_per_group > blocksize * 8) { 3528 ext4_msg(sb, KERN_ERR, 3529 "#blocks per group too big: %lu", 3530 sbi->s_blocks_per_group); 3531 goto failed_mount; 3532 } 3533 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3534 sbi->s_cluster_bits = 0; 3535 } 3536 sbi->s_cluster_ratio = clustersize / blocksize; 3537 3538 if (sbi->s_inodes_per_group > blocksize * 8) { 3539 ext4_msg(sb, KERN_ERR, 3540 "#inodes per group too big: %lu", 3541 sbi->s_inodes_per_group); 3542 goto failed_mount; 3543 } 3544 3545 /* Do we have standard group size of clustersize * 8 blocks ? */ 3546 if (sbi->s_blocks_per_group == clustersize << 3) 3547 set_opt2(sb, STD_GROUP_SIZE); 3548 3549 /* 3550 * Test whether we have more sectors than will fit in sector_t, 3551 * and whether the max offset is addressable by the page cache. 3552 */ 3553 err = generic_check_addressable(sb->s_blocksize_bits, 3554 ext4_blocks_count(es)); 3555 if (err) { 3556 ext4_msg(sb, KERN_ERR, "filesystem" 3557 " too large to mount safely on this system"); 3558 if (sizeof(sector_t) < 8) 3559 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3560 goto failed_mount; 3561 } 3562 3563 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3564 goto cantfind_ext4; 3565 3566 /* check blocks count against device size */ 3567 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3568 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3569 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3570 "exceeds size of device (%llu blocks)", 3571 ext4_blocks_count(es), blocks_count); 3572 goto failed_mount; 3573 } 3574 3575 /* 3576 * It makes no sense for the first data block to be beyond the end 3577 * of the filesystem. 3578 */ 3579 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3580 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3581 "block %u is beyond end of filesystem (%llu)", 3582 le32_to_cpu(es->s_first_data_block), 3583 ext4_blocks_count(es)); 3584 goto failed_mount; 3585 } 3586 blocks_count = (ext4_blocks_count(es) - 3587 le32_to_cpu(es->s_first_data_block) + 3588 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3589 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3590 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3591 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3592 "(block count %llu, first data block %u, " 3593 "blocks per group %lu)", sbi->s_groups_count, 3594 ext4_blocks_count(es), 3595 le32_to_cpu(es->s_first_data_block), 3596 EXT4_BLOCKS_PER_GROUP(sb)); 3597 goto failed_mount; 3598 } 3599 sbi->s_groups_count = blocks_count; 3600 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3601 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3602 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3603 EXT4_DESC_PER_BLOCK(sb); 3604 sbi->s_group_desc = ext4_kvmalloc(db_count * 3605 sizeof(struct buffer_head *), 3606 GFP_KERNEL); 3607 if (sbi->s_group_desc == NULL) { 3608 ext4_msg(sb, KERN_ERR, "not enough memory"); 3609 ret = -ENOMEM; 3610 goto failed_mount; 3611 } 3612 3613 bgl_lock_init(sbi->s_blockgroup_lock); 3614 3615 for (i = 0; i < db_count; i++) { 3616 block = descriptor_loc(sb, logical_sb_block, i); 3617 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3618 if (!sbi->s_group_desc[i]) { 3619 ext4_msg(sb, KERN_ERR, 3620 "can't read group descriptor %d", i); 3621 db_count = i; 3622 goto failed_mount2; 3623 } 3624 } 3625 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3626 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3627 ret = -EFSCORRUPTED; 3628 goto failed_mount2; 3629 } 3630 3631 sbi->s_gdb_count = db_count; 3632 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3633 spin_lock_init(&sbi->s_next_gen_lock); 3634 3635 setup_timer(&sbi->s_err_report, print_daily_error_info, 3636 (unsigned long) sb); 3637 3638 /* Register extent status tree shrinker */ 3639 if (ext4_es_register_shrinker(sbi)) 3640 goto failed_mount3; 3641 3642 sbi->s_stripe = ext4_get_stripe_size(sbi); 3643 sbi->s_extent_max_zeroout_kb = 32; 3644 3645 /* 3646 * set up enough so that it can read an inode 3647 */ 3648 sb->s_op = &ext4_sops; 3649 sb->s_export_op = &ext4_export_ops; 3650 sb->s_xattr = ext4_xattr_handlers; 3651 #ifdef CONFIG_QUOTA 3652 sb->dq_op = &ext4_quota_operations; 3653 if (ext4_has_feature_quota(sb)) 3654 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3655 else 3656 sb->s_qcop = &ext4_qctl_operations; 3657 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 3658 #endif 3659 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3660 3661 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3662 mutex_init(&sbi->s_orphan_lock); 3663 3664 sb->s_root = NULL; 3665 3666 needs_recovery = (es->s_last_orphan != 0 || 3667 ext4_has_feature_journal_needs_recovery(sb)); 3668 3669 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3670 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3671 goto failed_mount3a; 3672 3673 /* 3674 * The first inode we look at is the journal inode. Don't try 3675 * root first: it may be modified in the journal! 3676 */ 3677 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3678 if (ext4_load_journal(sb, es, journal_devnum)) 3679 goto failed_mount3a; 3680 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3681 ext4_has_feature_journal_needs_recovery(sb)) { 3682 ext4_msg(sb, KERN_ERR, "required journal recovery " 3683 "suppressed and not mounted read-only"); 3684 goto failed_mount_wq; 3685 } else { 3686 /* Nojournal mode, all journal mount options are illegal */ 3687 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3688 ext4_msg(sb, KERN_ERR, "can't mount with " 3689 "journal_checksum, fs mounted w/o journal"); 3690 goto failed_mount_wq; 3691 } 3692 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3693 ext4_msg(sb, KERN_ERR, "can't mount with " 3694 "journal_async_commit, fs mounted w/o journal"); 3695 goto failed_mount_wq; 3696 } 3697 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3698 ext4_msg(sb, KERN_ERR, "can't mount with " 3699 "commit=%lu, fs mounted w/o journal", 3700 sbi->s_commit_interval / HZ); 3701 goto failed_mount_wq; 3702 } 3703 if (EXT4_MOUNT_DATA_FLAGS & 3704 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3705 ext4_msg(sb, KERN_ERR, "can't mount with " 3706 "data=, fs mounted w/o journal"); 3707 goto failed_mount_wq; 3708 } 3709 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3710 clear_opt(sb, JOURNAL_CHECKSUM); 3711 clear_opt(sb, DATA_FLAGS); 3712 sbi->s_journal = NULL; 3713 needs_recovery = 0; 3714 goto no_journal; 3715 } 3716 3717 if (ext4_has_feature_64bit(sb) && 3718 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3719 JBD2_FEATURE_INCOMPAT_64BIT)) { 3720 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3721 goto failed_mount_wq; 3722 } 3723 3724 if (!set_journal_csum_feature_set(sb)) { 3725 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3726 "feature set"); 3727 goto failed_mount_wq; 3728 } 3729 3730 /* We have now updated the journal if required, so we can 3731 * validate the data journaling mode. */ 3732 switch (test_opt(sb, DATA_FLAGS)) { 3733 case 0: 3734 /* No mode set, assume a default based on the journal 3735 * capabilities: ORDERED_DATA if the journal can 3736 * cope, else JOURNAL_DATA 3737 */ 3738 if (jbd2_journal_check_available_features 3739 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3740 set_opt(sb, ORDERED_DATA); 3741 else 3742 set_opt(sb, JOURNAL_DATA); 3743 break; 3744 3745 case EXT4_MOUNT_ORDERED_DATA: 3746 case EXT4_MOUNT_WRITEBACK_DATA: 3747 if (!jbd2_journal_check_available_features 3748 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3749 ext4_msg(sb, KERN_ERR, "Journal does not support " 3750 "requested data journaling mode"); 3751 goto failed_mount_wq; 3752 } 3753 default: 3754 break; 3755 } 3756 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3757 3758 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3759 3760 no_journal: 3761 if (ext4_mballoc_ready) { 3762 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 3763 if (!sbi->s_mb_cache) { 3764 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 3765 goto failed_mount_wq; 3766 } 3767 } 3768 3769 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 3770 (blocksize != PAGE_CACHE_SIZE)) { 3771 ext4_msg(sb, KERN_ERR, 3772 "Unsupported blocksize for fs encryption"); 3773 goto failed_mount_wq; 3774 } 3775 3776 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 3777 !ext4_has_feature_encrypt(sb)) { 3778 ext4_set_feature_encrypt(sb); 3779 ext4_commit_super(sb, 1); 3780 } 3781 3782 /* 3783 * Get the # of file system overhead blocks from the 3784 * superblock if present. 3785 */ 3786 if (es->s_overhead_clusters) 3787 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3788 else { 3789 err = ext4_calculate_overhead(sb); 3790 if (err) 3791 goto failed_mount_wq; 3792 } 3793 3794 /* 3795 * The maximum number of concurrent works can be high and 3796 * concurrency isn't really necessary. Limit it to 1. 3797 */ 3798 EXT4_SB(sb)->rsv_conversion_wq = 3799 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3800 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3801 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3802 ret = -ENOMEM; 3803 goto failed_mount4; 3804 } 3805 3806 /* 3807 * The jbd2_journal_load will have done any necessary log recovery, 3808 * so we can safely mount the rest of the filesystem now. 3809 */ 3810 3811 root = ext4_iget(sb, EXT4_ROOT_INO); 3812 if (IS_ERR(root)) { 3813 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3814 ret = PTR_ERR(root); 3815 root = NULL; 3816 goto failed_mount4; 3817 } 3818 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3819 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3820 iput(root); 3821 goto failed_mount4; 3822 } 3823 sb->s_root = d_make_root(root); 3824 if (!sb->s_root) { 3825 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3826 ret = -ENOMEM; 3827 goto failed_mount4; 3828 } 3829 3830 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3831 sb->s_flags |= MS_RDONLY; 3832 3833 /* determine the minimum size of new large inodes, if present */ 3834 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3835 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3836 EXT4_GOOD_OLD_INODE_SIZE; 3837 if (ext4_has_feature_extra_isize(sb)) { 3838 if (sbi->s_want_extra_isize < 3839 le16_to_cpu(es->s_want_extra_isize)) 3840 sbi->s_want_extra_isize = 3841 le16_to_cpu(es->s_want_extra_isize); 3842 if (sbi->s_want_extra_isize < 3843 le16_to_cpu(es->s_min_extra_isize)) 3844 sbi->s_want_extra_isize = 3845 le16_to_cpu(es->s_min_extra_isize); 3846 } 3847 } 3848 /* Check if enough inode space is available */ 3849 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3850 sbi->s_inode_size) { 3851 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3852 EXT4_GOOD_OLD_INODE_SIZE; 3853 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3854 "available"); 3855 } 3856 3857 ext4_set_resv_clusters(sb); 3858 3859 err = ext4_setup_system_zone(sb); 3860 if (err) { 3861 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3862 "zone (%d)", err); 3863 goto failed_mount4a; 3864 } 3865 3866 ext4_ext_init(sb); 3867 err = ext4_mb_init(sb); 3868 if (err) { 3869 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3870 err); 3871 goto failed_mount5; 3872 } 3873 3874 block = ext4_count_free_clusters(sb); 3875 ext4_free_blocks_count_set(sbi->s_es, 3876 EXT4_C2B(sbi, block)); 3877 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 3878 GFP_KERNEL); 3879 if (!err) { 3880 unsigned long freei = ext4_count_free_inodes(sb); 3881 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 3882 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 3883 GFP_KERNEL); 3884 } 3885 if (!err) 3886 err = percpu_counter_init(&sbi->s_dirs_counter, 3887 ext4_count_dirs(sb), GFP_KERNEL); 3888 if (!err) 3889 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 3890 GFP_KERNEL); 3891 if (err) { 3892 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3893 goto failed_mount6; 3894 } 3895 3896 if (ext4_has_feature_flex_bg(sb)) 3897 if (!ext4_fill_flex_info(sb)) { 3898 ext4_msg(sb, KERN_ERR, 3899 "unable to initialize " 3900 "flex_bg meta info!"); 3901 goto failed_mount6; 3902 } 3903 3904 err = ext4_register_li_request(sb, first_not_zeroed); 3905 if (err) 3906 goto failed_mount6; 3907 3908 err = ext4_register_sysfs(sb); 3909 if (err) 3910 goto failed_mount7; 3911 3912 #ifdef CONFIG_QUOTA 3913 /* Enable quota usage during mount. */ 3914 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 3915 err = ext4_enable_quotas(sb); 3916 if (err) 3917 goto failed_mount8; 3918 } 3919 #endif /* CONFIG_QUOTA */ 3920 3921 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3922 ext4_orphan_cleanup(sb, es); 3923 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3924 if (needs_recovery) { 3925 ext4_msg(sb, KERN_INFO, "recovery complete"); 3926 ext4_mark_recovery_complete(sb, es); 3927 } 3928 if (EXT4_SB(sb)->s_journal) { 3929 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3930 descr = " journalled data mode"; 3931 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3932 descr = " ordered data mode"; 3933 else 3934 descr = " writeback data mode"; 3935 } else 3936 descr = "out journal"; 3937 3938 if (test_opt(sb, DISCARD)) { 3939 struct request_queue *q = bdev_get_queue(sb->s_bdev); 3940 if (!blk_queue_discard(q)) 3941 ext4_msg(sb, KERN_WARNING, 3942 "mounting with \"discard\" option, but " 3943 "the device does not support discard"); 3944 } 3945 3946 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 3947 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3948 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3949 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3950 3951 if (es->s_error_count) 3952 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3953 3954 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 3955 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 3956 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 3957 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 3958 3959 kfree(orig_data); 3960 return 0; 3961 3962 cantfind_ext4: 3963 if (!silent) 3964 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3965 goto failed_mount; 3966 3967 #ifdef CONFIG_QUOTA 3968 failed_mount8: 3969 ext4_unregister_sysfs(sb); 3970 #endif 3971 failed_mount7: 3972 ext4_unregister_li_request(sb); 3973 failed_mount6: 3974 ext4_mb_release(sb); 3975 if (sbi->s_flex_groups) 3976 kvfree(sbi->s_flex_groups); 3977 percpu_counter_destroy(&sbi->s_freeclusters_counter); 3978 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3979 percpu_counter_destroy(&sbi->s_dirs_counter); 3980 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 3981 failed_mount5: 3982 ext4_ext_release(sb); 3983 ext4_release_system_zone(sb); 3984 failed_mount4a: 3985 dput(sb->s_root); 3986 sb->s_root = NULL; 3987 failed_mount4: 3988 ext4_msg(sb, KERN_ERR, "mount failed"); 3989 if (EXT4_SB(sb)->rsv_conversion_wq) 3990 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 3991 failed_mount_wq: 3992 if (sbi->s_journal) { 3993 jbd2_journal_destroy(sbi->s_journal); 3994 sbi->s_journal = NULL; 3995 } 3996 failed_mount3a: 3997 ext4_es_unregister_shrinker(sbi); 3998 failed_mount3: 3999 del_timer_sync(&sbi->s_err_report); 4000 if (sbi->s_mmp_tsk) 4001 kthread_stop(sbi->s_mmp_tsk); 4002 failed_mount2: 4003 for (i = 0; i < db_count; i++) 4004 brelse(sbi->s_group_desc[i]); 4005 kvfree(sbi->s_group_desc); 4006 failed_mount: 4007 if (sbi->s_chksum_driver) 4008 crypto_free_shash(sbi->s_chksum_driver); 4009 #ifdef CONFIG_QUOTA 4010 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4011 kfree(sbi->s_qf_names[i]); 4012 #endif 4013 ext4_blkdev_remove(sbi); 4014 brelse(bh); 4015 out_fail: 4016 sb->s_fs_info = NULL; 4017 kfree(sbi->s_blockgroup_lock); 4018 kfree(sbi); 4019 out_free_orig: 4020 kfree(orig_data); 4021 return err ? err : ret; 4022 } 4023 4024 /* 4025 * Setup any per-fs journal parameters now. We'll do this both on 4026 * initial mount, once the journal has been initialised but before we've 4027 * done any recovery; and again on any subsequent remount. 4028 */ 4029 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4030 { 4031 struct ext4_sb_info *sbi = EXT4_SB(sb); 4032 4033 journal->j_commit_interval = sbi->s_commit_interval; 4034 journal->j_min_batch_time = sbi->s_min_batch_time; 4035 journal->j_max_batch_time = sbi->s_max_batch_time; 4036 4037 write_lock(&journal->j_state_lock); 4038 if (test_opt(sb, BARRIER)) 4039 journal->j_flags |= JBD2_BARRIER; 4040 else 4041 journal->j_flags &= ~JBD2_BARRIER; 4042 if (test_opt(sb, DATA_ERR_ABORT)) 4043 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4044 else 4045 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4046 write_unlock(&journal->j_state_lock); 4047 } 4048 4049 static journal_t *ext4_get_journal(struct super_block *sb, 4050 unsigned int journal_inum) 4051 { 4052 struct inode *journal_inode; 4053 journal_t *journal; 4054 4055 BUG_ON(!ext4_has_feature_journal(sb)); 4056 4057 /* First, test for the existence of a valid inode on disk. Bad 4058 * things happen if we iget() an unused inode, as the subsequent 4059 * iput() will try to delete it. */ 4060 4061 journal_inode = ext4_iget(sb, journal_inum); 4062 if (IS_ERR(journal_inode)) { 4063 ext4_msg(sb, KERN_ERR, "no journal found"); 4064 return NULL; 4065 } 4066 if (!journal_inode->i_nlink) { 4067 make_bad_inode(journal_inode); 4068 iput(journal_inode); 4069 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4070 return NULL; 4071 } 4072 4073 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4074 journal_inode, journal_inode->i_size); 4075 if (!S_ISREG(journal_inode->i_mode)) { 4076 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4077 iput(journal_inode); 4078 return NULL; 4079 } 4080 4081 journal = jbd2_journal_init_inode(journal_inode); 4082 if (!journal) { 4083 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4084 iput(journal_inode); 4085 return NULL; 4086 } 4087 journal->j_private = sb; 4088 ext4_init_journal_params(sb, journal); 4089 return journal; 4090 } 4091 4092 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4093 dev_t j_dev) 4094 { 4095 struct buffer_head *bh; 4096 journal_t *journal; 4097 ext4_fsblk_t start; 4098 ext4_fsblk_t len; 4099 int hblock, blocksize; 4100 ext4_fsblk_t sb_block; 4101 unsigned long offset; 4102 struct ext4_super_block *es; 4103 struct block_device *bdev; 4104 4105 BUG_ON(!ext4_has_feature_journal(sb)); 4106 4107 bdev = ext4_blkdev_get(j_dev, sb); 4108 if (bdev == NULL) 4109 return NULL; 4110 4111 blocksize = sb->s_blocksize; 4112 hblock = bdev_logical_block_size(bdev); 4113 if (blocksize < hblock) { 4114 ext4_msg(sb, KERN_ERR, 4115 "blocksize too small for journal device"); 4116 goto out_bdev; 4117 } 4118 4119 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4120 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4121 set_blocksize(bdev, blocksize); 4122 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4123 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4124 "external journal"); 4125 goto out_bdev; 4126 } 4127 4128 es = (struct ext4_super_block *) (bh->b_data + offset); 4129 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4130 !(le32_to_cpu(es->s_feature_incompat) & 4131 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4132 ext4_msg(sb, KERN_ERR, "external journal has " 4133 "bad superblock"); 4134 brelse(bh); 4135 goto out_bdev; 4136 } 4137 4138 if ((le32_to_cpu(es->s_feature_ro_compat) & 4139 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4140 es->s_checksum != ext4_superblock_csum(sb, es)) { 4141 ext4_msg(sb, KERN_ERR, "external journal has " 4142 "corrupt superblock"); 4143 brelse(bh); 4144 goto out_bdev; 4145 } 4146 4147 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4148 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4149 brelse(bh); 4150 goto out_bdev; 4151 } 4152 4153 len = ext4_blocks_count(es); 4154 start = sb_block + 1; 4155 brelse(bh); /* we're done with the superblock */ 4156 4157 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4158 start, len, blocksize); 4159 if (!journal) { 4160 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4161 goto out_bdev; 4162 } 4163 journal->j_private = sb; 4164 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4165 wait_on_buffer(journal->j_sb_buffer); 4166 if (!buffer_uptodate(journal->j_sb_buffer)) { 4167 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4168 goto out_journal; 4169 } 4170 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4171 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4172 "user (unsupported) - %d", 4173 be32_to_cpu(journal->j_superblock->s_nr_users)); 4174 goto out_journal; 4175 } 4176 EXT4_SB(sb)->journal_bdev = bdev; 4177 ext4_init_journal_params(sb, journal); 4178 return journal; 4179 4180 out_journal: 4181 jbd2_journal_destroy(journal); 4182 out_bdev: 4183 ext4_blkdev_put(bdev); 4184 return NULL; 4185 } 4186 4187 static int ext4_load_journal(struct super_block *sb, 4188 struct ext4_super_block *es, 4189 unsigned long journal_devnum) 4190 { 4191 journal_t *journal; 4192 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4193 dev_t journal_dev; 4194 int err = 0; 4195 int really_read_only; 4196 4197 BUG_ON(!ext4_has_feature_journal(sb)); 4198 4199 if (journal_devnum && 4200 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4201 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4202 "numbers have changed"); 4203 journal_dev = new_decode_dev(journal_devnum); 4204 } else 4205 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4206 4207 really_read_only = bdev_read_only(sb->s_bdev); 4208 4209 /* 4210 * Are we loading a blank journal or performing recovery after a 4211 * crash? For recovery, we need to check in advance whether we 4212 * can get read-write access to the device. 4213 */ 4214 if (ext4_has_feature_journal_needs_recovery(sb)) { 4215 if (sb->s_flags & MS_RDONLY) { 4216 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4217 "required on readonly filesystem"); 4218 if (really_read_only) { 4219 ext4_msg(sb, KERN_ERR, "write access " 4220 "unavailable, cannot proceed"); 4221 return -EROFS; 4222 } 4223 ext4_msg(sb, KERN_INFO, "write access will " 4224 "be enabled during recovery"); 4225 } 4226 } 4227 4228 if (journal_inum && journal_dev) { 4229 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4230 "and inode journals!"); 4231 return -EINVAL; 4232 } 4233 4234 if (journal_inum) { 4235 if (!(journal = ext4_get_journal(sb, journal_inum))) 4236 return -EINVAL; 4237 } else { 4238 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4239 return -EINVAL; 4240 } 4241 4242 if (!(journal->j_flags & JBD2_BARRIER)) 4243 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4244 4245 if (!ext4_has_feature_journal_needs_recovery(sb)) 4246 err = jbd2_journal_wipe(journal, !really_read_only); 4247 if (!err) { 4248 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4249 if (save) 4250 memcpy(save, ((char *) es) + 4251 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4252 err = jbd2_journal_load(journal); 4253 if (save) 4254 memcpy(((char *) es) + EXT4_S_ERR_START, 4255 save, EXT4_S_ERR_LEN); 4256 kfree(save); 4257 } 4258 4259 if (err) { 4260 ext4_msg(sb, KERN_ERR, "error loading journal"); 4261 jbd2_journal_destroy(journal); 4262 return err; 4263 } 4264 4265 EXT4_SB(sb)->s_journal = journal; 4266 ext4_clear_journal_err(sb, es); 4267 4268 if (!really_read_only && journal_devnum && 4269 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4270 es->s_journal_dev = cpu_to_le32(journal_devnum); 4271 4272 /* Make sure we flush the recovery flag to disk. */ 4273 ext4_commit_super(sb, 1); 4274 } 4275 4276 return 0; 4277 } 4278 4279 static int ext4_commit_super(struct super_block *sb, int sync) 4280 { 4281 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4282 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4283 int error = 0; 4284 4285 if (!sbh || block_device_ejected(sb)) 4286 return error; 4287 if (buffer_write_io_error(sbh)) { 4288 /* 4289 * Oh, dear. A previous attempt to write the 4290 * superblock failed. This could happen because the 4291 * USB device was yanked out. Or it could happen to 4292 * be a transient write error and maybe the block will 4293 * be remapped. Nothing we can do but to retry the 4294 * write and hope for the best. 4295 */ 4296 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4297 "superblock detected"); 4298 clear_buffer_write_io_error(sbh); 4299 set_buffer_uptodate(sbh); 4300 } 4301 /* 4302 * If the file system is mounted read-only, don't update the 4303 * superblock write time. This avoids updating the superblock 4304 * write time when we are mounting the root file system 4305 * read/only but we need to replay the journal; at that point, 4306 * for people who are east of GMT and who make their clock 4307 * tick in localtime for Windows bug-for-bug compatibility, 4308 * the clock is set in the future, and this will cause e2fsck 4309 * to complain and force a full file system check. 4310 */ 4311 if (!(sb->s_flags & MS_RDONLY)) 4312 es->s_wtime = cpu_to_le32(get_seconds()); 4313 if (sb->s_bdev->bd_part) 4314 es->s_kbytes_written = 4315 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4316 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4317 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4318 else 4319 es->s_kbytes_written = 4320 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4321 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4322 ext4_free_blocks_count_set(es, 4323 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4324 &EXT4_SB(sb)->s_freeclusters_counter))); 4325 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4326 es->s_free_inodes_count = 4327 cpu_to_le32(percpu_counter_sum_positive( 4328 &EXT4_SB(sb)->s_freeinodes_counter)); 4329 BUFFER_TRACE(sbh, "marking dirty"); 4330 ext4_superblock_csum_set(sb); 4331 mark_buffer_dirty(sbh); 4332 if (sync) { 4333 error = __sync_dirty_buffer(sbh, 4334 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4335 if (error) 4336 return error; 4337 4338 error = buffer_write_io_error(sbh); 4339 if (error) { 4340 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4341 "superblock"); 4342 clear_buffer_write_io_error(sbh); 4343 set_buffer_uptodate(sbh); 4344 } 4345 } 4346 return error; 4347 } 4348 4349 /* 4350 * Have we just finished recovery? If so, and if we are mounting (or 4351 * remounting) the filesystem readonly, then we will end up with a 4352 * consistent fs on disk. Record that fact. 4353 */ 4354 static void ext4_mark_recovery_complete(struct super_block *sb, 4355 struct ext4_super_block *es) 4356 { 4357 journal_t *journal = EXT4_SB(sb)->s_journal; 4358 4359 if (!ext4_has_feature_journal(sb)) { 4360 BUG_ON(journal != NULL); 4361 return; 4362 } 4363 jbd2_journal_lock_updates(journal); 4364 if (jbd2_journal_flush(journal) < 0) 4365 goto out; 4366 4367 if (ext4_has_feature_journal_needs_recovery(sb) && 4368 sb->s_flags & MS_RDONLY) { 4369 ext4_clear_feature_journal_needs_recovery(sb); 4370 ext4_commit_super(sb, 1); 4371 } 4372 4373 out: 4374 jbd2_journal_unlock_updates(journal); 4375 } 4376 4377 /* 4378 * If we are mounting (or read-write remounting) a filesystem whose journal 4379 * has recorded an error from a previous lifetime, move that error to the 4380 * main filesystem now. 4381 */ 4382 static void ext4_clear_journal_err(struct super_block *sb, 4383 struct ext4_super_block *es) 4384 { 4385 journal_t *journal; 4386 int j_errno; 4387 const char *errstr; 4388 4389 BUG_ON(!ext4_has_feature_journal(sb)); 4390 4391 journal = EXT4_SB(sb)->s_journal; 4392 4393 /* 4394 * Now check for any error status which may have been recorded in the 4395 * journal by a prior ext4_error() or ext4_abort() 4396 */ 4397 4398 j_errno = jbd2_journal_errno(journal); 4399 if (j_errno) { 4400 char nbuf[16]; 4401 4402 errstr = ext4_decode_error(sb, j_errno, nbuf); 4403 ext4_warning(sb, "Filesystem error recorded " 4404 "from previous mount: %s", errstr); 4405 ext4_warning(sb, "Marking fs in need of filesystem check."); 4406 4407 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4408 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4409 ext4_commit_super(sb, 1); 4410 4411 jbd2_journal_clear_err(journal); 4412 jbd2_journal_update_sb_errno(journal); 4413 } 4414 } 4415 4416 /* 4417 * Force the running and committing transactions to commit, 4418 * and wait on the commit. 4419 */ 4420 int ext4_force_commit(struct super_block *sb) 4421 { 4422 journal_t *journal; 4423 4424 if (sb->s_flags & MS_RDONLY) 4425 return 0; 4426 4427 journal = EXT4_SB(sb)->s_journal; 4428 return ext4_journal_force_commit(journal); 4429 } 4430 4431 static int ext4_sync_fs(struct super_block *sb, int wait) 4432 { 4433 int ret = 0; 4434 tid_t target; 4435 bool needs_barrier = false; 4436 struct ext4_sb_info *sbi = EXT4_SB(sb); 4437 4438 trace_ext4_sync_fs(sb, wait); 4439 flush_workqueue(sbi->rsv_conversion_wq); 4440 /* 4441 * Writeback quota in non-journalled quota case - journalled quota has 4442 * no dirty dquots 4443 */ 4444 dquot_writeback_dquots(sb, -1); 4445 /* 4446 * Data writeback is possible w/o journal transaction, so barrier must 4447 * being sent at the end of the function. But we can skip it if 4448 * transaction_commit will do it for us. 4449 */ 4450 if (sbi->s_journal) { 4451 target = jbd2_get_latest_transaction(sbi->s_journal); 4452 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4453 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4454 needs_barrier = true; 4455 4456 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4457 if (wait) 4458 ret = jbd2_log_wait_commit(sbi->s_journal, 4459 target); 4460 } 4461 } else if (wait && test_opt(sb, BARRIER)) 4462 needs_barrier = true; 4463 if (needs_barrier) { 4464 int err; 4465 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4466 if (!ret) 4467 ret = err; 4468 } 4469 4470 return ret; 4471 } 4472 4473 /* 4474 * LVM calls this function before a (read-only) snapshot is created. This 4475 * gives us a chance to flush the journal completely and mark the fs clean. 4476 * 4477 * Note that only this function cannot bring a filesystem to be in a clean 4478 * state independently. It relies on upper layer to stop all data & metadata 4479 * modifications. 4480 */ 4481 static int ext4_freeze(struct super_block *sb) 4482 { 4483 int error = 0; 4484 journal_t *journal; 4485 4486 if (sb->s_flags & MS_RDONLY) 4487 return 0; 4488 4489 journal = EXT4_SB(sb)->s_journal; 4490 4491 if (journal) { 4492 /* Now we set up the journal barrier. */ 4493 jbd2_journal_lock_updates(journal); 4494 4495 /* 4496 * Don't clear the needs_recovery flag if we failed to 4497 * flush the journal. 4498 */ 4499 error = jbd2_journal_flush(journal); 4500 if (error < 0) 4501 goto out; 4502 4503 /* Journal blocked and flushed, clear needs_recovery flag. */ 4504 ext4_clear_feature_journal_needs_recovery(sb); 4505 } 4506 4507 error = ext4_commit_super(sb, 1); 4508 out: 4509 if (journal) 4510 /* we rely on upper layer to stop further updates */ 4511 jbd2_journal_unlock_updates(journal); 4512 return error; 4513 } 4514 4515 /* 4516 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4517 * flag here, even though the filesystem is not technically dirty yet. 4518 */ 4519 static int ext4_unfreeze(struct super_block *sb) 4520 { 4521 if (sb->s_flags & MS_RDONLY) 4522 return 0; 4523 4524 if (EXT4_SB(sb)->s_journal) { 4525 /* Reset the needs_recovery flag before the fs is unlocked. */ 4526 ext4_set_feature_journal_needs_recovery(sb); 4527 } 4528 4529 ext4_commit_super(sb, 1); 4530 return 0; 4531 } 4532 4533 /* 4534 * Structure to save mount options for ext4_remount's benefit 4535 */ 4536 struct ext4_mount_options { 4537 unsigned long s_mount_opt; 4538 unsigned long s_mount_opt2; 4539 kuid_t s_resuid; 4540 kgid_t s_resgid; 4541 unsigned long s_commit_interval; 4542 u32 s_min_batch_time, s_max_batch_time; 4543 #ifdef CONFIG_QUOTA 4544 int s_jquota_fmt; 4545 char *s_qf_names[EXT4_MAXQUOTAS]; 4546 #endif 4547 }; 4548 4549 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4550 { 4551 struct ext4_super_block *es; 4552 struct ext4_sb_info *sbi = EXT4_SB(sb); 4553 unsigned long old_sb_flags; 4554 struct ext4_mount_options old_opts; 4555 int enable_quota = 0; 4556 ext4_group_t g; 4557 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4558 int err = 0; 4559 #ifdef CONFIG_QUOTA 4560 int i, j; 4561 #endif 4562 char *orig_data = kstrdup(data, GFP_KERNEL); 4563 4564 /* Store the original options */ 4565 old_sb_flags = sb->s_flags; 4566 old_opts.s_mount_opt = sbi->s_mount_opt; 4567 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4568 old_opts.s_resuid = sbi->s_resuid; 4569 old_opts.s_resgid = sbi->s_resgid; 4570 old_opts.s_commit_interval = sbi->s_commit_interval; 4571 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4572 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4573 #ifdef CONFIG_QUOTA 4574 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4575 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4576 if (sbi->s_qf_names[i]) { 4577 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4578 GFP_KERNEL); 4579 if (!old_opts.s_qf_names[i]) { 4580 for (j = 0; j < i; j++) 4581 kfree(old_opts.s_qf_names[j]); 4582 kfree(orig_data); 4583 return -ENOMEM; 4584 } 4585 } else 4586 old_opts.s_qf_names[i] = NULL; 4587 #endif 4588 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4589 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4590 4591 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4592 err = -EINVAL; 4593 goto restore_opts; 4594 } 4595 4596 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4597 test_opt(sb, JOURNAL_CHECKSUM)) { 4598 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4599 "during remount not supported; ignoring"); 4600 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4601 } 4602 4603 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4604 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4605 ext4_msg(sb, KERN_ERR, "can't mount with " 4606 "both data=journal and delalloc"); 4607 err = -EINVAL; 4608 goto restore_opts; 4609 } 4610 if (test_opt(sb, DIOREAD_NOLOCK)) { 4611 ext4_msg(sb, KERN_ERR, "can't mount with " 4612 "both data=journal and dioread_nolock"); 4613 err = -EINVAL; 4614 goto restore_opts; 4615 } 4616 if (test_opt(sb, DAX)) { 4617 ext4_msg(sb, KERN_ERR, "can't mount with " 4618 "both data=journal and dax"); 4619 err = -EINVAL; 4620 goto restore_opts; 4621 } 4622 } 4623 4624 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4625 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4626 "dax flag with busy inodes while remounting"); 4627 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4628 } 4629 4630 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4631 ext4_abort(sb, "Abort forced by user"); 4632 4633 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4634 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4635 4636 es = sbi->s_es; 4637 4638 if (sbi->s_journal) { 4639 ext4_init_journal_params(sb, sbi->s_journal); 4640 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4641 } 4642 4643 if (*flags & MS_LAZYTIME) 4644 sb->s_flags |= MS_LAZYTIME; 4645 4646 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4647 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4648 err = -EROFS; 4649 goto restore_opts; 4650 } 4651 4652 if (*flags & MS_RDONLY) { 4653 err = sync_filesystem(sb); 4654 if (err < 0) 4655 goto restore_opts; 4656 err = dquot_suspend(sb, -1); 4657 if (err < 0) 4658 goto restore_opts; 4659 4660 /* 4661 * First of all, the unconditional stuff we have to do 4662 * to disable replay of the journal when we next remount 4663 */ 4664 sb->s_flags |= MS_RDONLY; 4665 4666 /* 4667 * OK, test if we are remounting a valid rw partition 4668 * readonly, and if so set the rdonly flag and then 4669 * mark the partition as valid again. 4670 */ 4671 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4672 (sbi->s_mount_state & EXT4_VALID_FS)) 4673 es->s_state = cpu_to_le16(sbi->s_mount_state); 4674 4675 if (sbi->s_journal) 4676 ext4_mark_recovery_complete(sb, es); 4677 } else { 4678 /* Make sure we can mount this feature set readwrite */ 4679 if (ext4_has_feature_readonly(sb) || 4680 !ext4_feature_set_ok(sb, 0)) { 4681 err = -EROFS; 4682 goto restore_opts; 4683 } 4684 /* 4685 * Make sure the group descriptor checksums 4686 * are sane. If they aren't, refuse to remount r/w. 4687 */ 4688 for (g = 0; g < sbi->s_groups_count; g++) { 4689 struct ext4_group_desc *gdp = 4690 ext4_get_group_desc(sb, g, NULL); 4691 4692 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4693 ext4_msg(sb, KERN_ERR, 4694 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4695 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4696 le16_to_cpu(gdp->bg_checksum)); 4697 err = -EFSBADCRC; 4698 goto restore_opts; 4699 } 4700 } 4701 4702 /* 4703 * If we have an unprocessed orphan list hanging 4704 * around from a previously readonly bdev mount, 4705 * require a full umount/remount for now. 4706 */ 4707 if (es->s_last_orphan) { 4708 ext4_msg(sb, KERN_WARNING, "Couldn't " 4709 "remount RDWR because of unprocessed " 4710 "orphan inode list. Please " 4711 "umount/remount instead"); 4712 err = -EINVAL; 4713 goto restore_opts; 4714 } 4715 4716 /* 4717 * Mounting a RDONLY partition read-write, so reread 4718 * and store the current valid flag. (It may have 4719 * been changed by e2fsck since we originally mounted 4720 * the partition.) 4721 */ 4722 if (sbi->s_journal) 4723 ext4_clear_journal_err(sb, es); 4724 sbi->s_mount_state = le16_to_cpu(es->s_state); 4725 if (!ext4_setup_super(sb, es, 0)) 4726 sb->s_flags &= ~MS_RDONLY; 4727 if (ext4_has_feature_mmp(sb)) 4728 if (ext4_multi_mount_protect(sb, 4729 le64_to_cpu(es->s_mmp_block))) { 4730 err = -EROFS; 4731 goto restore_opts; 4732 } 4733 enable_quota = 1; 4734 } 4735 } 4736 4737 /* 4738 * Reinitialize lazy itable initialization thread based on 4739 * current settings 4740 */ 4741 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4742 ext4_unregister_li_request(sb); 4743 else { 4744 ext4_group_t first_not_zeroed; 4745 first_not_zeroed = ext4_has_uninit_itable(sb); 4746 ext4_register_li_request(sb, first_not_zeroed); 4747 } 4748 4749 ext4_setup_system_zone(sb); 4750 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4751 ext4_commit_super(sb, 1); 4752 4753 #ifdef CONFIG_QUOTA 4754 /* Release old quota file names */ 4755 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4756 kfree(old_opts.s_qf_names[i]); 4757 if (enable_quota) { 4758 if (sb_any_quota_suspended(sb)) 4759 dquot_resume(sb, -1); 4760 else if (ext4_has_feature_quota(sb)) { 4761 err = ext4_enable_quotas(sb); 4762 if (err) 4763 goto restore_opts; 4764 } 4765 } 4766 #endif 4767 4768 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 4769 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4770 kfree(orig_data); 4771 return 0; 4772 4773 restore_opts: 4774 sb->s_flags = old_sb_flags; 4775 sbi->s_mount_opt = old_opts.s_mount_opt; 4776 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4777 sbi->s_resuid = old_opts.s_resuid; 4778 sbi->s_resgid = old_opts.s_resgid; 4779 sbi->s_commit_interval = old_opts.s_commit_interval; 4780 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4781 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4782 #ifdef CONFIG_QUOTA 4783 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4784 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 4785 kfree(sbi->s_qf_names[i]); 4786 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4787 } 4788 #endif 4789 kfree(orig_data); 4790 return err; 4791 } 4792 4793 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4794 { 4795 struct super_block *sb = dentry->d_sb; 4796 struct ext4_sb_info *sbi = EXT4_SB(sb); 4797 struct ext4_super_block *es = sbi->s_es; 4798 ext4_fsblk_t overhead = 0, resv_blocks; 4799 u64 fsid; 4800 s64 bfree; 4801 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4802 4803 if (!test_opt(sb, MINIX_DF)) 4804 overhead = sbi->s_overhead; 4805 4806 buf->f_type = EXT4_SUPER_MAGIC; 4807 buf->f_bsize = sb->s_blocksize; 4808 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4809 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4810 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4811 /* prevent underflow in case that few free space is available */ 4812 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4813 buf->f_bavail = buf->f_bfree - 4814 (ext4_r_blocks_count(es) + resv_blocks); 4815 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4816 buf->f_bavail = 0; 4817 buf->f_files = le32_to_cpu(es->s_inodes_count); 4818 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4819 buf->f_namelen = EXT4_NAME_LEN; 4820 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4821 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4822 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4823 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4824 4825 return 0; 4826 } 4827 4828 /* Helper function for writing quotas on sync - we need to start transaction 4829 * before quota file is locked for write. Otherwise the are possible deadlocks: 4830 * Process 1 Process 2 4831 * ext4_create() quota_sync() 4832 * jbd2_journal_start() write_dquot() 4833 * dquot_initialize() down(dqio_mutex) 4834 * down(dqio_mutex) jbd2_journal_start() 4835 * 4836 */ 4837 4838 #ifdef CONFIG_QUOTA 4839 4840 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4841 { 4842 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4843 } 4844 4845 static int ext4_write_dquot(struct dquot *dquot) 4846 { 4847 int ret, err; 4848 handle_t *handle; 4849 struct inode *inode; 4850 4851 inode = dquot_to_inode(dquot); 4852 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4853 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4854 if (IS_ERR(handle)) 4855 return PTR_ERR(handle); 4856 ret = dquot_commit(dquot); 4857 err = ext4_journal_stop(handle); 4858 if (!ret) 4859 ret = err; 4860 return ret; 4861 } 4862 4863 static int ext4_acquire_dquot(struct dquot *dquot) 4864 { 4865 int ret, err; 4866 handle_t *handle; 4867 4868 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4869 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4870 if (IS_ERR(handle)) 4871 return PTR_ERR(handle); 4872 ret = dquot_acquire(dquot); 4873 err = ext4_journal_stop(handle); 4874 if (!ret) 4875 ret = err; 4876 return ret; 4877 } 4878 4879 static int ext4_release_dquot(struct dquot *dquot) 4880 { 4881 int ret, err; 4882 handle_t *handle; 4883 4884 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4885 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4886 if (IS_ERR(handle)) { 4887 /* Release dquot anyway to avoid endless cycle in dqput() */ 4888 dquot_release(dquot); 4889 return PTR_ERR(handle); 4890 } 4891 ret = dquot_release(dquot); 4892 err = ext4_journal_stop(handle); 4893 if (!ret) 4894 ret = err; 4895 return ret; 4896 } 4897 4898 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4899 { 4900 struct super_block *sb = dquot->dq_sb; 4901 struct ext4_sb_info *sbi = EXT4_SB(sb); 4902 4903 /* Are we journaling quotas? */ 4904 if (ext4_has_feature_quota(sb) || 4905 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4906 dquot_mark_dquot_dirty(dquot); 4907 return ext4_write_dquot(dquot); 4908 } else { 4909 return dquot_mark_dquot_dirty(dquot); 4910 } 4911 } 4912 4913 static int ext4_write_info(struct super_block *sb, int type) 4914 { 4915 int ret, err; 4916 handle_t *handle; 4917 4918 /* Data block + inode block */ 4919 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 4920 if (IS_ERR(handle)) 4921 return PTR_ERR(handle); 4922 ret = dquot_commit_info(sb, type); 4923 err = ext4_journal_stop(handle); 4924 if (!ret) 4925 ret = err; 4926 return ret; 4927 } 4928 4929 /* 4930 * Turn on quotas during mount time - we need to find 4931 * the quota file and such... 4932 */ 4933 static int ext4_quota_on_mount(struct super_block *sb, int type) 4934 { 4935 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4936 EXT4_SB(sb)->s_jquota_fmt, type); 4937 } 4938 4939 /* 4940 * Standard function to be called on quota_on 4941 */ 4942 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4943 struct path *path) 4944 { 4945 int err; 4946 4947 if (!test_opt(sb, QUOTA)) 4948 return -EINVAL; 4949 4950 /* Quotafile not on the same filesystem? */ 4951 if (path->dentry->d_sb != sb) 4952 return -EXDEV; 4953 /* Journaling quota? */ 4954 if (EXT4_SB(sb)->s_qf_names[type]) { 4955 /* Quotafile not in fs root? */ 4956 if (path->dentry->d_parent != sb->s_root) 4957 ext4_msg(sb, KERN_WARNING, 4958 "Quota file not on filesystem root. " 4959 "Journaled quota will not work"); 4960 } 4961 4962 /* 4963 * When we journal data on quota file, we have to flush journal to see 4964 * all updates to the file when we bypass pagecache... 4965 */ 4966 if (EXT4_SB(sb)->s_journal && 4967 ext4_should_journal_data(d_inode(path->dentry))) { 4968 /* 4969 * We don't need to lock updates but journal_flush() could 4970 * otherwise be livelocked... 4971 */ 4972 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4973 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4974 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4975 if (err) 4976 return err; 4977 } 4978 4979 return dquot_quota_on(sb, type, format_id, path); 4980 } 4981 4982 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4983 unsigned int flags) 4984 { 4985 int err; 4986 struct inode *qf_inode; 4987 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 4988 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4989 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4990 }; 4991 4992 BUG_ON(!ext4_has_feature_quota(sb)); 4993 4994 if (!qf_inums[type]) 4995 return -EPERM; 4996 4997 qf_inode = ext4_iget(sb, qf_inums[type]); 4998 if (IS_ERR(qf_inode)) { 4999 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5000 return PTR_ERR(qf_inode); 5001 } 5002 5003 /* Don't account quota for quota files to avoid recursion */ 5004 qf_inode->i_flags |= S_NOQUOTA; 5005 err = dquot_enable(qf_inode, type, format_id, flags); 5006 iput(qf_inode); 5007 5008 return err; 5009 } 5010 5011 /* Enable usage tracking for all quota types. */ 5012 static int ext4_enable_quotas(struct super_block *sb) 5013 { 5014 int type, err = 0; 5015 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5016 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5017 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5018 }; 5019 5020 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5021 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5022 if (qf_inums[type]) { 5023 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5024 DQUOT_USAGE_ENABLED); 5025 if (err) { 5026 ext4_warning(sb, 5027 "Failed to enable quota tracking " 5028 "(type=%d, err=%d). Please run " 5029 "e2fsck to fix.", type, err); 5030 return err; 5031 } 5032 } 5033 } 5034 return 0; 5035 } 5036 5037 static int ext4_quota_off(struct super_block *sb, int type) 5038 { 5039 struct inode *inode = sb_dqopt(sb)->files[type]; 5040 handle_t *handle; 5041 5042 /* Force all delayed allocation blocks to be allocated. 5043 * Caller already holds s_umount sem */ 5044 if (test_opt(sb, DELALLOC)) 5045 sync_filesystem(sb); 5046 5047 if (!inode) 5048 goto out; 5049 5050 /* Update modification times of quota files when userspace can 5051 * start looking at them */ 5052 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5053 if (IS_ERR(handle)) 5054 goto out; 5055 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5056 ext4_mark_inode_dirty(handle, inode); 5057 ext4_journal_stop(handle); 5058 5059 out: 5060 return dquot_quota_off(sb, type); 5061 } 5062 5063 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5064 * acquiring the locks... As quota files are never truncated and quota code 5065 * itself serializes the operations (and no one else should touch the files) 5066 * we don't have to be afraid of races */ 5067 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5068 size_t len, loff_t off) 5069 { 5070 struct inode *inode = sb_dqopt(sb)->files[type]; 5071 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5072 int offset = off & (sb->s_blocksize - 1); 5073 int tocopy; 5074 size_t toread; 5075 struct buffer_head *bh; 5076 loff_t i_size = i_size_read(inode); 5077 5078 if (off > i_size) 5079 return 0; 5080 if (off+len > i_size) 5081 len = i_size-off; 5082 toread = len; 5083 while (toread > 0) { 5084 tocopy = sb->s_blocksize - offset < toread ? 5085 sb->s_blocksize - offset : toread; 5086 bh = ext4_bread(NULL, inode, blk, 0); 5087 if (IS_ERR(bh)) 5088 return PTR_ERR(bh); 5089 if (!bh) /* A hole? */ 5090 memset(data, 0, tocopy); 5091 else 5092 memcpy(data, bh->b_data+offset, tocopy); 5093 brelse(bh); 5094 offset = 0; 5095 toread -= tocopy; 5096 data += tocopy; 5097 blk++; 5098 } 5099 return len; 5100 } 5101 5102 /* Write to quotafile (we know the transaction is already started and has 5103 * enough credits) */ 5104 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5105 const char *data, size_t len, loff_t off) 5106 { 5107 struct inode *inode = sb_dqopt(sb)->files[type]; 5108 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5109 int err, offset = off & (sb->s_blocksize - 1); 5110 int retries = 0; 5111 struct buffer_head *bh; 5112 handle_t *handle = journal_current_handle(); 5113 5114 if (EXT4_SB(sb)->s_journal && !handle) { 5115 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5116 " cancelled because transaction is not started", 5117 (unsigned long long)off, (unsigned long long)len); 5118 return -EIO; 5119 } 5120 /* 5121 * Since we account only one data block in transaction credits, 5122 * then it is impossible to cross a block boundary. 5123 */ 5124 if (sb->s_blocksize - offset < len) { 5125 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5126 " cancelled because not block aligned", 5127 (unsigned long long)off, (unsigned long long)len); 5128 return -EIO; 5129 } 5130 5131 do { 5132 bh = ext4_bread(handle, inode, blk, 5133 EXT4_GET_BLOCKS_CREATE | 5134 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5135 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5136 ext4_should_retry_alloc(inode->i_sb, &retries)); 5137 if (IS_ERR(bh)) 5138 return PTR_ERR(bh); 5139 if (!bh) 5140 goto out; 5141 BUFFER_TRACE(bh, "get write access"); 5142 err = ext4_journal_get_write_access(handle, bh); 5143 if (err) { 5144 brelse(bh); 5145 return err; 5146 } 5147 lock_buffer(bh); 5148 memcpy(bh->b_data+offset, data, len); 5149 flush_dcache_page(bh->b_page); 5150 unlock_buffer(bh); 5151 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5152 brelse(bh); 5153 out: 5154 if (inode->i_size < off + len) { 5155 i_size_write(inode, off + len); 5156 EXT4_I(inode)->i_disksize = inode->i_size; 5157 ext4_mark_inode_dirty(handle, inode); 5158 } 5159 return len; 5160 } 5161 5162 #endif 5163 5164 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5165 const char *dev_name, void *data) 5166 { 5167 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5168 } 5169 5170 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5171 static inline void register_as_ext2(void) 5172 { 5173 int err = register_filesystem(&ext2_fs_type); 5174 if (err) 5175 printk(KERN_WARNING 5176 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5177 } 5178 5179 static inline void unregister_as_ext2(void) 5180 { 5181 unregister_filesystem(&ext2_fs_type); 5182 } 5183 5184 static inline int ext2_feature_set_ok(struct super_block *sb) 5185 { 5186 if (ext4_has_unknown_ext2_incompat_features(sb)) 5187 return 0; 5188 if (sb->s_flags & MS_RDONLY) 5189 return 1; 5190 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5191 return 0; 5192 return 1; 5193 } 5194 #else 5195 static inline void register_as_ext2(void) { } 5196 static inline void unregister_as_ext2(void) { } 5197 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5198 #endif 5199 5200 static inline void register_as_ext3(void) 5201 { 5202 int err = register_filesystem(&ext3_fs_type); 5203 if (err) 5204 printk(KERN_WARNING 5205 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5206 } 5207 5208 static inline void unregister_as_ext3(void) 5209 { 5210 unregister_filesystem(&ext3_fs_type); 5211 } 5212 5213 static inline int ext3_feature_set_ok(struct super_block *sb) 5214 { 5215 if (ext4_has_unknown_ext3_incompat_features(sb)) 5216 return 0; 5217 if (!ext4_has_feature_journal(sb)) 5218 return 0; 5219 if (sb->s_flags & MS_RDONLY) 5220 return 1; 5221 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5222 return 0; 5223 return 1; 5224 } 5225 5226 static struct file_system_type ext4_fs_type = { 5227 .owner = THIS_MODULE, 5228 .name = "ext4", 5229 .mount = ext4_mount, 5230 .kill_sb = kill_block_super, 5231 .fs_flags = FS_REQUIRES_DEV, 5232 }; 5233 MODULE_ALIAS_FS("ext4"); 5234 5235 /* Shared across all ext4 file systems */ 5236 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5237 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5238 5239 static int __init ext4_init_fs(void) 5240 { 5241 int i, err; 5242 5243 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5244 ext4_li_info = NULL; 5245 mutex_init(&ext4_li_mtx); 5246 5247 /* Build-time check for flags consistency */ 5248 ext4_check_flag_values(); 5249 5250 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5251 mutex_init(&ext4__aio_mutex[i]); 5252 init_waitqueue_head(&ext4__ioend_wq[i]); 5253 } 5254 5255 err = ext4_init_es(); 5256 if (err) 5257 return err; 5258 5259 err = ext4_init_pageio(); 5260 if (err) 5261 goto out5; 5262 5263 err = ext4_init_system_zone(); 5264 if (err) 5265 goto out4; 5266 5267 err = ext4_init_sysfs(); 5268 if (err) 5269 goto out3; 5270 5271 err = ext4_init_mballoc(); 5272 if (err) 5273 goto out2; 5274 else 5275 ext4_mballoc_ready = 1; 5276 err = init_inodecache(); 5277 if (err) 5278 goto out1; 5279 register_as_ext3(); 5280 register_as_ext2(); 5281 err = register_filesystem(&ext4_fs_type); 5282 if (err) 5283 goto out; 5284 5285 return 0; 5286 out: 5287 unregister_as_ext2(); 5288 unregister_as_ext3(); 5289 destroy_inodecache(); 5290 out1: 5291 ext4_mballoc_ready = 0; 5292 ext4_exit_mballoc(); 5293 out2: 5294 ext4_exit_sysfs(); 5295 out3: 5296 ext4_exit_system_zone(); 5297 out4: 5298 ext4_exit_pageio(); 5299 out5: 5300 ext4_exit_es(); 5301 5302 return err; 5303 } 5304 5305 static void __exit ext4_exit_fs(void) 5306 { 5307 ext4_exit_crypto(); 5308 ext4_destroy_lazyinit_thread(); 5309 unregister_as_ext2(); 5310 unregister_as_ext3(); 5311 unregister_filesystem(&ext4_fs_type); 5312 destroy_inodecache(); 5313 ext4_exit_mballoc(); 5314 ext4_exit_sysfs(); 5315 ext4_exit_system_zone(); 5316 ext4_exit_pageio(); 5317 ext4_exit_es(); 5318 } 5319 5320 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5321 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5322 MODULE_LICENSE("GPL"); 5323 module_init(ext4_init_fs) 5324 module_exit(ext4_exit_fs) 5325