1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 #include <linux/unicode.h> 46 #include <linux/part_stat.h> 47 #include <linux/kthread.h> 48 #include <linux/freezer.h> 49 50 #include "ext4.h" 51 #include "ext4_extents.h" /* Needed for trace points definition */ 52 #include "ext4_jbd2.h" 53 #include "xattr.h" 54 #include "acl.h" 55 #include "mballoc.h" 56 #include "fsmap.h" 57 58 #define CREATE_TRACE_POINTS 59 #include <trace/events/ext4.h> 60 61 static struct ext4_lazy_init *ext4_li_info; 62 static DEFINE_MUTEX(ext4_li_mtx); 63 static struct ratelimit_state ext4_mount_msg_ratelimit; 64 65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 66 unsigned long journal_devnum); 67 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 68 static void ext4_update_super(struct super_block *sb); 69 static int ext4_commit_super(struct super_block *sb); 70 static int ext4_mark_recovery_complete(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_clear_journal_err(struct super_block *sb, 73 struct ext4_super_block *es); 74 static int ext4_sync_fs(struct super_block *sb, int wait); 75 static int ext4_remount(struct super_block *sb, int *flags, char *data); 76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 77 static int ext4_unfreeze(struct super_block *sb); 78 static int ext4_freeze(struct super_block *sb); 79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 80 const char *dev_name, void *data); 81 static inline int ext2_feature_set_ok(struct super_block *sb); 82 static inline int ext3_feature_set_ok(struct super_block *sb); 83 static void ext4_destroy_lazyinit_thread(void); 84 static void ext4_unregister_li_request(struct super_block *sb); 85 static void ext4_clear_request_list(void); 86 static struct inode *ext4_get_journal_inode(struct super_block *sb, 87 unsigned int journal_inum); 88 89 /* 90 * Lock ordering 91 * 92 * page fault path: 93 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start 94 * -> page lock -> i_data_sem (rw) 95 * 96 * buffered write path: 97 * sb_start_write -> i_mutex -> mmap_lock 98 * sb_start_write -> i_mutex -> transaction start -> page lock -> 99 * i_data_sem (rw) 100 * 101 * truncate: 102 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) -> 103 * page lock 104 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start -> 105 * i_data_sem (rw) 106 * 107 * direct IO: 108 * sb_start_write -> i_mutex -> mmap_lock 109 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 110 * 111 * writepages: 112 * transaction start -> page lock(s) -> i_data_sem (rw) 113 */ 114 115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 116 static struct file_system_type ext2_fs_type = { 117 .owner = THIS_MODULE, 118 .name = "ext2", 119 .mount = ext4_mount, 120 .kill_sb = kill_block_super, 121 .fs_flags = FS_REQUIRES_DEV, 122 }; 123 MODULE_ALIAS_FS("ext2"); 124 MODULE_ALIAS("ext2"); 125 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 126 #else 127 #define IS_EXT2_SB(sb) (0) 128 #endif 129 130 131 static struct file_system_type ext3_fs_type = { 132 .owner = THIS_MODULE, 133 .name = "ext3", 134 .mount = ext4_mount, 135 .kill_sb = kill_block_super, 136 .fs_flags = FS_REQUIRES_DEV, 137 }; 138 MODULE_ALIAS_FS("ext3"); 139 MODULE_ALIAS("ext3"); 140 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 141 142 143 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, 144 bh_end_io_t *end_io) 145 { 146 /* 147 * buffer's verified bit is no longer valid after reading from 148 * disk again due to write out error, clear it to make sure we 149 * recheck the buffer contents. 150 */ 151 clear_buffer_verified(bh); 152 153 bh->b_end_io = end_io ? end_io : end_buffer_read_sync; 154 get_bh(bh); 155 submit_bh(REQ_OP_READ, op_flags, bh); 156 } 157 158 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags, 159 bh_end_io_t *end_io) 160 { 161 BUG_ON(!buffer_locked(bh)); 162 163 if (ext4_buffer_uptodate(bh)) { 164 unlock_buffer(bh); 165 return; 166 } 167 __ext4_read_bh(bh, op_flags, end_io); 168 } 169 170 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io) 171 { 172 BUG_ON(!buffer_locked(bh)); 173 174 if (ext4_buffer_uptodate(bh)) { 175 unlock_buffer(bh); 176 return 0; 177 } 178 179 __ext4_read_bh(bh, op_flags, end_io); 180 181 wait_on_buffer(bh); 182 if (buffer_uptodate(bh)) 183 return 0; 184 return -EIO; 185 } 186 187 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait) 188 { 189 if (trylock_buffer(bh)) { 190 if (wait) 191 return ext4_read_bh(bh, op_flags, NULL); 192 ext4_read_bh_nowait(bh, op_flags, NULL); 193 return 0; 194 } 195 if (wait) { 196 wait_on_buffer(bh); 197 if (buffer_uptodate(bh)) 198 return 0; 199 return -EIO; 200 } 201 return 0; 202 } 203 204 /* 205 * This works like __bread_gfp() except it uses ERR_PTR for error 206 * returns. Currently with sb_bread it's impossible to distinguish 207 * between ENOMEM and EIO situations (since both result in a NULL 208 * return. 209 */ 210 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb, 211 sector_t block, int op_flags, 212 gfp_t gfp) 213 { 214 struct buffer_head *bh; 215 int ret; 216 217 bh = sb_getblk_gfp(sb, block, gfp); 218 if (bh == NULL) 219 return ERR_PTR(-ENOMEM); 220 if (ext4_buffer_uptodate(bh)) 221 return bh; 222 223 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true); 224 if (ret) { 225 put_bh(bh); 226 return ERR_PTR(ret); 227 } 228 return bh; 229 } 230 231 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block, 232 int op_flags) 233 { 234 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE); 235 } 236 237 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb, 238 sector_t block) 239 { 240 return __ext4_sb_bread_gfp(sb, block, 0, 0); 241 } 242 243 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block) 244 { 245 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0); 246 247 if (likely(bh)) { 248 ext4_read_bh_lock(bh, REQ_RAHEAD, false); 249 brelse(bh); 250 } 251 } 252 253 static int ext4_verify_csum_type(struct super_block *sb, 254 struct ext4_super_block *es) 255 { 256 if (!ext4_has_feature_metadata_csum(sb)) 257 return 1; 258 259 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 260 } 261 262 static __le32 ext4_superblock_csum(struct super_block *sb, 263 struct ext4_super_block *es) 264 { 265 struct ext4_sb_info *sbi = EXT4_SB(sb); 266 int offset = offsetof(struct ext4_super_block, s_checksum); 267 __u32 csum; 268 269 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 270 271 return cpu_to_le32(csum); 272 } 273 274 static int ext4_superblock_csum_verify(struct super_block *sb, 275 struct ext4_super_block *es) 276 { 277 if (!ext4_has_metadata_csum(sb)) 278 return 1; 279 280 return es->s_checksum == ext4_superblock_csum(sb, es); 281 } 282 283 void ext4_superblock_csum_set(struct super_block *sb) 284 { 285 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 286 287 if (!ext4_has_metadata_csum(sb)) 288 return; 289 290 es->s_checksum = ext4_superblock_csum(sb, es); 291 } 292 293 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 294 struct ext4_group_desc *bg) 295 { 296 return le32_to_cpu(bg->bg_block_bitmap_lo) | 297 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 298 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 299 } 300 301 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 302 struct ext4_group_desc *bg) 303 { 304 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 305 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 306 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 307 } 308 309 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 310 struct ext4_group_desc *bg) 311 { 312 return le32_to_cpu(bg->bg_inode_table_lo) | 313 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 314 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 315 } 316 317 __u32 ext4_free_group_clusters(struct super_block *sb, 318 struct ext4_group_desc *bg) 319 { 320 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 321 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 322 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 323 } 324 325 __u32 ext4_free_inodes_count(struct super_block *sb, 326 struct ext4_group_desc *bg) 327 { 328 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 329 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 330 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 331 } 332 333 __u32 ext4_used_dirs_count(struct super_block *sb, 334 struct ext4_group_desc *bg) 335 { 336 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 337 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 338 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 339 } 340 341 __u32 ext4_itable_unused_count(struct super_block *sb, 342 struct ext4_group_desc *bg) 343 { 344 return le16_to_cpu(bg->bg_itable_unused_lo) | 345 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 346 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 347 } 348 349 void ext4_block_bitmap_set(struct super_block *sb, 350 struct ext4_group_desc *bg, ext4_fsblk_t blk) 351 { 352 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 353 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 354 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 355 } 356 357 void ext4_inode_bitmap_set(struct super_block *sb, 358 struct ext4_group_desc *bg, ext4_fsblk_t blk) 359 { 360 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 361 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 362 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 363 } 364 365 void ext4_inode_table_set(struct super_block *sb, 366 struct ext4_group_desc *bg, ext4_fsblk_t blk) 367 { 368 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 369 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 370 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 371 } 372 373 void ext4_free_group_clusters_set(struct super_block *sb, 374 struct ext4_group_desc *bg, __u32 count) 375 { 376 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 377 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 378 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 379 } 380 381 void ext4_free_inodes_set(struct super_block *sb, 382 struct ext4_group_desc *bg, __u32 count) 383 { 384 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 385 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 386 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 387 } 388 389 void ext4_used_dirs_set(struct super_block *sb, 390 struct ext4_group_desc *bg, __u32 count) 391 { 392 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 393 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 394 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 395 } 396 397 void ext4_itable_unused_set(struct super_block *sb, 398 struct ext4_group_desc *bg, __u32 count) 399 { 400 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 401 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 402 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 403 } 404 405 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now) 406 { 407 now = clamp_val(now, 0, (1ull << 40) - 1); 408 409 *lo = cpu_to_le32(lower_32_bits(now)); 410 *hi = upper_32_bits(now); 411 } 412 413 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 414 { 415 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 416 } 417 #define ext4_update_tstamp(es, tstamp) \ 418 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \ 419 ktime_get_real_seconds()) 420 #define ext4_get_tstamp(es, tstamp) \ 421 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 422 423 /* 424 * The del_gendisk() function uninitializes the disk-specific data 425 * structures, including the bdi structure, without telling anyone 426 * else. Once this happens, any attempt to call mark_buffer_dirty() 427 * (for example, by ext4_commit_super), will cause a kernel OOPS. 428 * This is a kludge to prevent these oops until we can put in a proper 429 * hook in del_gendisk() to inform the VFS and file system layers. 430 */ 431 static int block_device_ejected(struct super_block *sb) 432 { 433 struct inode *bd_inode = sb->s_bdev->bd_inode; 434 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 435 436 return bdi->dev == NULL; 437 } 438 439 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 440 { 441 struct super_block *sb = journal->j_private; 442 struct ext4_sb_info *sbi = EXT4_SB(sb); 443 int error = is_journal_aborted(journal); 444 struct ext4_journal_cb_entry *jce; 445 446 BUG_ON(txn->t_state == T_FINISHED); 447 448 ext4_process_freed_data(sb, txn->t_tid); 449 450 spin_lock(&sbi->s_md_lock); 451 while (!list_empty(&txn->t_private_list)) { 452 jce = list_entry(txn->t_private_list.next, 453 struct ext4_journal_cb_entry, jce_list); 454 list_del_init(&jce->jce_list); 455 spin_unlock(&sbi->s_md_lock); 456 jce->jce_func(sb, jce, error); 457 spin_lock(&sbi->s_md_lock); 458 } 459 spin_unlock(&sbi->s_md_lock); 460 } 461 462 /* 463 * This writepage callback for write_cache_pages() 464 * takes care of a few cases after page cleaning. 465 * 466 * write_cache_pages() already checks for dirty pages 467 * and calls clear_page_dirty_for_io(), which we want, 468 * to write protect the pages. 469 * 470 * However, we may have to redirty a page (see below.) 471 */ 472 static int ext4_journalled_writepage_callback(struct page *page, 473 struct writeback_control *wbc, 474 void *data) 475 { 476 transaction_t *transaction = (transaction_t *) data; 477 struct buffer_head *bh, *head; 478 struct journal_head *jh; 479 480 bh = head = page_buffers(page); 481 do { 482 /* 483 * We have to redirty a page in these cases: 484 * 1) If buffer is dirty, it means the page was dirty because it 485 * contains a buffer that needs checkpointing. So the dirty bit 486 * needs to be preserved so that checkpointing writes the buffer 487 * properly. 488 * 2) If buffer is not part of the committing transaction 489 * (we may have just accidentally come across this buffer because 490 * inode range tracking is not exact) or if the currently running 491 * transaction already contains this buffer as well, dirty bit 492 * needs to be preserved so that the buffer gets writeprotected 493 * properly on running transaction's commit. 494 */ 495 jh = bh2jh(bh); 496 if (buffer_dirty(bh) || 497 (jh && (jh->b_transaction != transaction || 498 jh->b_next_transaction))) { 499 redirty_page_for_writepage(wbc, page); 500 goto out; 501 } 502 } while ((bh = bh->b_this_page) != head); 503 504 out: 505 return AOP_WRITEPAGE_ACTIVATE; 506 } 507 508 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode) 509 { 510 struct address_space *mapping = jinode->i_vfs_inode->i_mapping; 511 struct writeback_control wbc = { 512 .sync_mode = WB_SYNC_ALL, 513 .nr_to_write = LONG_MAX, 514 .range_start = jinode->i_dirty_start, 515 .range_end = jinode->i_dirty_end, 516 }; 517 518 return write_cache_pages(mapping, &wbc, 519 ext4_journalled_writepage_callback, 520 jinode->i_transaction); 521 } 522 523 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode) 524 { 525 int ret; 526 527 if (ext4_should_journal_data(jinode->i_vfs_inode)) 528 ret = ext4_journalled_submit_inode_data_buffers(jinode); 529 else 530 ret = jbd2_journal_submit_inode_data_buffers(jinode); 531 532 return ret; 533 } 534 535 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode) 536 { 537 int ret = 0; 538 539 if (!ext4_should_journal_data(jinode->i_vfs_inode)) 540 ret = jbd2_journal_finish_inode_data_buffers(jinode); 541 542 return ret; 543 } 544 545 static bool system_going_down(void) 546 { 547 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 548 || system_state == SYSTEM_RESTART; 549 } 550 551 struct ext4_err_translation { 552 int code; 553 int errno; 554 }; 555 556 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err } 557 558 static struct ext4_err_translation err_translation[] = { 559 EXT4_ERR_TRANSLATE(EIO), 560 EXT4_ERR_TRANSLATE(ENOMEM), 561 EXT4_ERR_TRANSLATE(EFSBADCRC), 562 EXT4_ERR_TRANSLATE(EFSCORRUPTED), 563 EXT4_ERR_TRANSLATE(ENOSPC), 564 EXT4_ERR_TRANSLATE(ENOKEY), 565 EXT4_ERR_TRANSLATE(EROFS), 566 EXT4_ERR_TRANSLATE(EFBIG), 567 EXT4_ERR_TRANSLATE(EEXIST), 568 EXT4_ERR_TRANSLATE(ERANGE), 569 EXT4_ERR_TRANSLATE(EOVERFLOW), 570 EXT4_ERR_TRANSLATE(EBUSY), 571 EXT4_ERR_TRANSLATE(ENOTDIR), 572 EXT4_ERR_TRANSLATE(ENOTEMPTY), 573 EXT4_ERR_TRANSLATE(ESHUTDOWN), 574 EXT4_ERR_TRANSLATE(EFAULT), 575 }; 576 577 static int ext4_errno_to_code(int errno) 578 { 579 int i; 580 581 for (i = 0; i < ARRAY_SIZE(err_translation); i++) 582 if (err_translation[i].errno == errno) 583 return err_translation[i].code; 584 return EXT4_ERR_UNKNOWN; 585 } 586 587 static void save_error_info(struct super_block *sb, int error, 588 __u32 ino, __u64 block, 589 const char *func, unsigned int line) 590 { 591 struct ext4_sb_info *sbi = EXT4_SB(sb); 592 593 /* We default to EFSCORRUPTED error... */ 594 if (error == 0) 595 error = EFSCORRUPTED; 596 597 spin_lock(&sbi->s_error_lock); 598 sbi->s_add_error_count++; 599 sbi->s_last_error_code = error; 600 sbi->s_last_error_line = line; 601 sbi->s_last_error_ino = ino; 602 sbi->s_last_error_block = block; 603 sbi->s_last_error_func = func; 604 sbi->s_last_error_time = ktime_get_real_seconds(); 605 if (!sbi->s_first_error_time) { 606 sbi->s_first_error_code = error; 607 sbi->s_first_error_line = line; 608 sbi->s_first_error_ino = ino; 609 sbi->s_first_error_block = block; 610 sbi->s_first_error_func = func; 611 sbi->s_first_error_time = sbi->s_last_error_time; 612 } 613 spin_unlock(&sbi->s_error_lock); 614 } 615 616 /* Deal with the reporting of failure conditions on a filesystem such as 617 * inconsistencies detected or read IO failures. 618 * 619 * On ext2, we can store the error state of the filesystem in the 620 * superblock. That is not possible on ext4, because we may have other 621 * write ordering constraints on the superblock which prevent us from 622 * writing it out straight away; and given that the journal is about to 623 * be aborted, we can't rely on the current, or future, transactions to 624 * write out the superblock safely. 625 * 626 * We'll just use the jbd2_journal_abort() error code to record an error in 627 * the journal instead. On recovery, the journal will complain about 628 * that error until we've noted it down and cleared it. 629 * 630 * If force_ro is set, we unconditionally force the filesystem into an 631 * ABORT|READONLY state, unless the error response on the fs has been set to 632 * panic in which case we take the easy way out and panic immediately. This is 633 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM 634 * at a critical moment in log management. 635 */ 636 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error, 637 __u32 ino, __u64 block, 638 const char *func, unsigned int line) 639 { 640 journal_t *journal = EXT4_SB(sb)->s_journal; 641 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT); 642 643 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 644 if (test_opt(sb, WARN_ON_ERROR)) 645 WARN_ON_ONCE(1); 646 647 if (!continue_fs && !sb_rdonly(sb)) { 648 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 649 if (journal) 650 jbd2_journal_abort(journal, -EIO); 651 } 652 653 if (!bdev_read_only(sb->s_bdev)) { 654 save_error_info(sb, error, ino, block, func, line); 655 /* 656 * In case the fs should keep running, we need to writeout 657 * superblock through the journal. Due to lock ordering 658 * constraints, it may not be safe to do it right here so we 659 * defer superblock flushing to a workqueue. 660 */ 661 if (continue_fs) 662 schedule_work(&EXT4_SB(sb)->s_error_work); 663 else 664 ext4_commit_super(sb); 665 } 666 667 /* 668 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 669 * could panic during 'reboot -f' as the underlying device got already 670 * disabled. 671 */ 672 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) { 673 panic("EXT4-fs (device %s): panic forced after error\n", 674 sb->s_id); 675 } 676 677 if (sb_rdonly(sb) || continue_fs) 678 return; 679 680 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 681 /* 682 * Make sure updated value of ->s_mount_flags will be visible before 683 * ->s_flags update 684 */ 685 smp_wmb(); 686 sb->s_flags |= SB_RDONLY; 687 } 688 689 static void flush_stashed_error_work(struct work_struct *work) 690 { 691 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info, 692 s_error_work); 693 journal_t *journal = sbi->s_journal; 694 handle_t *handle; 695 696 /* 697 * If the journal is still running, we have to write out superblock 698 * through the journal to avoid collisions of other journalled sb 699 * updates. 700 * 701 * We use directly jbd2 functions here to avoid recursing back into 702 * ext4 error handling code during handling of previous errors. 703 */ 704 if (!sb_rdonly(sbi->s_sb) && journal) { 705 struct buffer_head *sbh = sbi->s_sbh; 706 handle = jbd2_journal_start(journal, 1); 707 if (IS_ERR(handle)) 708 goto write_directly; 709 if (jbd2_journal_get_write_access(handle, sbh)) { 710 jbd2_journal_stop(handle); 711 goto write_directly; 712 } 713 ext4_update_super(sbi->s_sb); 714 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 715 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to " 716 "superblock detected"); 717 clear_buffer_write_io_error(sbh); 718 set_buffer_uptodate(sbh); 719 } 720 721 if (jbd2_journal_dirty_metadata(handle, sbh)) { 722 jbd2_journal_stop(handle); 723 goto write_directly; 724 } 725 jbd2_journal_stop(handle); 726 ext4_notify_error_sysfs(sbi); 727 return; 728 } 729 write_directly: 730 /* 731 * Write through journal failed. Write sb directly to get error info 732 * out and hope for the best. 733 */ 734 ext4_commit_super(sbi->s_sb); 735 ext4_notify_error_sysfs(sbi); 736 } 737 738 #define ext4_error_ratelimit(sb) \ 739 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 740 "EXT4-fs error") 741 742 void __ext4_error(struct super_block *sb, const char *function, 743 unsigned int line, bool force_ro, int error, __u64 block, 744 const char *fmt, ...) 745 { 746 struct va_format vaf; 747 va_list args; 748 749 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 750 return; 751 752 trace_ext4_error(sb, function, line); 753 if (ext4_error_ratelimit(sb)) { 754 va_start(args, fmt); 755 vaf.fmt = fmt; 756 vaf.va = &args; 757 printk(KERN_CRIT 758 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 759 sb->s_id, function, line, current->comm, &vaf); 760 va_end(args); 761 } 762 ext4_handle_error(sb, force_ro, error, 0, block, function, line); 763 } 764 765 void __ext4_error_inode(struct inode *inode, const char *function, 766 unsigned int line, ext4_fsblk_t block, int error, 767 const char *fmt, ...) 768 { 769 va_list args; 770 struct va_format vaf; 771 772 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 773 return; 774 775 trace_ext4_error(inode->i_sb, function, line); 776 if (ext4_error_ratelimit(inode->i_sb)) { 777 va_start(args, fmt); 778 vaf.fmt = fmt; 779 vaf.va = &args; 780 if (block) 781 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 782 "inode #%lu: block %llu: comm %s: %pV\n", 783 inode->i_sb->s_id, function, line, inode->i_ino, 784 block, current->comm, &vaf); 785 else 786 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 787 "inode #%lu: comm %s: %pV\n", 788 inode->i_sb->s_id, function, line, inode->i_ino, 789 current->comm, &vaf); 790 va_end(args); 791 } 792 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block, 793 function, line); 794 } 795 796 void __ext4_error_file(struct file *file, const char *function, 797 unsigned int line, ext4_fsblk_t block, 798 const char *fmt, ...) 799 { 800 va_list args; 801 struct va_format vaf; 802 struct inode *inode = file_inode(file); 803 char pathname[80], *path; 804 805 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 806 return; 807 808 trace_ext4_error(inode->i_sb, function, line); 809 if (ext4_error_ratelimit(inode->i_sb)) { 810 path = file_path(file, pathname, sizeof(pathname)); 811 if (IS_ERR(path)) 812 path = "(unknown)"; 813 va_start(args, fmt); 814 vaf.fmt = fmt; 815 vaf.va = &args; 816 if (block) 817 printk(KERN_CRIT 818 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 819 "block %llu: comm %s: path %s: %pV\n", 820 inode->i_sb->s_id, function, line, inode->i_ino, 821 block, current->comm, path, &vaf); 822 else 823 printk(KERN_CRIT 824 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 825 "comm %s: path %s: %pV\n", 826 inode->i_sb->s_id, function, line, inode->i_ino, 827 current->comm, path, &vaf); 828 va_end(args); 829 } 830 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block, 831 function, line); 832 } 833 834 const char *ext4_decode_error(struct super_block *sb, int errno, 835 char nbuf[16]) 836 { 837 char *errstr = NULL; 838 839 switch (errno) { 840 case -EFSCORRUPTED: 841 errstr = "Corrupt filesystem"; 842 break; 843 case -EFSBADCRC: 844 errstr = "Filesystem failed CRC"; 845 break; 846 case -EIO: 847 errstr = "IO failure"; 848 break; 849 case -ENOMEM: 850 errstr = "Out of memory"; 851 break; 852 case -EROFS: 853 if (!sb || (EXT4_SB(sb)->s_journal && 854 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 855 errstr = "Journal has aborted"; 856 else 857 errstr = "Readonly filesystem"; 858 break; 859 default: 860 /* If the caller passed in an extra buffer for unknown 861 * errors, textualise them now. Else we just return 862 * NULL. */ 863 if (nbuf) { 864 /* Check for truncated error codes... */ 865 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 866 errstr = nbuf; 867 } 868 break; 869 } 870 871 return errstr; 872 } 873 874 /* __ext4_std_error decodes expected errors from journaling functions 875 * automatically and invokes the appropriate error response. */ 876 877 void __ext4_std_error(struct super_block *sb, const char *function, 878 unsigned int line, int errno) 879 { 880 char nbuf[16]; 881 const char *errstr; 882 883 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 884 return; 885 886 /* Special case: if the error is EROFS, and we're not already 887 * inside a transaction, then there's really no point in logging 888 * an error. */ 889 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 890 return; 891 892 if (ext4_error_ratelimit(sb)) { 893 errstr = ext4_decode_error(sb, errno, nbuf); 894 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 895 sb->s_id, function, line, errstr); 896 } 897 898 ext4_handle_error(sb, false, -errno, 0, 0, function, line); 899 } 900 901 void __ext4_msg(struct super_block *sb, 902 const char *prefix, const char *fmt, ...) 903 { 904 struct va_format vaf; 905 va_list args; 906 907 atomic_inc(&EXT4_SB(sb)->s_msg_count); 908 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 909 return; 910 911 va_start(args, fmt); 912 vaf.fmt = fmt; 913 vaf.va = &args; 914 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 915 va_end(args); 916 } 917 918 static int ext4_warning_ratelimit(struct super_block *sb) 919 { 920 atomic_inc(&EXT4_SB(sb)->s_warning_count); 921 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), 922 "EXT4-fs warning"); 923 } 924 925 void __ext4_warning(struct super_block *sb, const char *function, 926 unsigned int line, const char *fmt, ...) 927 { 928 struct va_format vaf; 929 va_list args; 930 931 if (!ext4_warning_ratelimit(sb)) 932 return; 933 934 va_start(args, fmt); 935 vaf.fmt = fmt; 936 vaf.va = &args; 937 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 938 sb->s_id, function, line, &vaf); 939 va_end(args); 940 } 941 942 void __ext4_warning_inode(const struct inode *inode, const char *function, 943 unsigned int line, const char *fmt, ...) 944 { 945 struct va_format vaf; 946 va_list args; 947 948 if (!ext4_warning_ratelimit(inode->i_sb)) 949 return; 950 951 va_start(args, fmt); 952 vaf.fmt = fmt; 953 vaf.va = &args; 954 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 955 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 956 function, line, inode->i_ino, current->comm, &vaf); 957 va_end(args); 958 } 959 960 void __ext4_grp_locked_error(const char *function, unsigned int line, 961 struct super_block *sb, ext4_group_t grp, 962 unsigned long ino, ext4_fsblk_t block, 963 const char *fmt, ...) 964 __releases(bitlock) 965 __acquires(bitlock) 966 { 967 struct va_format vaf; 968 va_list args; 969 970 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 971 return; 972 973 trace_ext4_error(sb, function, line); 974 if (ext4_error_ratelimit(sb)) { 975 va_start(args, fmt); 976 vaf.fmt = fmt; 977 vaf.va = &args; 978 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 979 sb->s_id, function, line, grp); 980 if (ino) 981 printk(KERN_CONT "inode %lu: ", ino); 982 if (block) 983 printk(KERN_CONT "block %llu:", 984 (unsigned long long) block); 985 printk(KERN_CONT "%pV\n", &vaf); 986 va_end(args); 987 } 988 989 if (test_opt(sb, ERRORS_CONT)) { 990 if (test_opt(sb, WARN_ON_ERROR)) 991 WARN_ON_ONCE(1); 992 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 993 if (!bdev_read_only(sb->s_bdev)) { 994 save_error_info(sb, EFSCORRUPTED, ino, block, function, 995 line); 996 schedule_work(&EXT4_SB(sb)->s_error_work); 997 } 998 return; 999 } 1000 ext4_unlock_group(sb, grp); 1001 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line); 1002 /* 1003 * We only get here in the ERRORS_RO case; relocking the group 1004 * may be dangerous, but nothing bad will happen since the 1005 * filesystem will have already been marked read/only and the 1006 * journal has been aborted. We return 1 as a hint to callers 1007 * who might what to use the return value from 1008 * ext4_grp_locked_error() to distinguish between the 1009 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 1010 * aggressively from the ext4 function in question, with a 1011 * more appropriate error code. 1012 */ 1013 ext4_lock_group(sb, grp); 1014 return; 1015 } 1016 1017 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 1018 ext4_group_t group, 1019 unsigned int flags) 1020 { 1021 struct ext4_sb_info *sbi = EXT4_SB(sb); 1022 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1023 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 1024 int ret; 1025 1026 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 1027 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1028 &grp->bb_state); 1029 if (!ret) 1030 percpu_counter_sub(&sbi->s_freeclusters_counter, 1031 grp->bb_free); 1032 } 1033 1034 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 1035 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 1036 &grp->bb_state); 1037 if (!ret && gdp) { 1038 int count; 1039 1040 count = ext4_free_inodes_count(sb, gdp); 1041 percpu_counter_sub(&sbi->s_freeinodes_counter, 1042 count); 1043 } 1044 } 1045 } 1046 1047 void ext4_update_dynamic_rev(struct super_block *sb) 1048 { 1049 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 1050 1051 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 1052 return; 1053 1054 ext4_warning(sb, 1055 "updating to rev %d because of new feature flag, " 1056 "running e2fsck is recommended", 1057 EXT4_DYNAMIC_REV); 1058 1059 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 1060 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 1061 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 1062 /* leave es->s_feature_*compat flags alone */ 1063 /* es->s_uuid will be set by e2fsck if empty */ 1064 1065 /* 1066 * The rest of the superblock fields should be zero, and if not it 1067 * means they are likely already in use, so leave them alone. We 1068 * can leave it up to e2fsck to clean up any inconsistencies there. 1069 */ 1070 } 1071 1072 /* 1073 * Open the external journal device 1074 */ 1075 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 1076 { 1077 struct block_device *bdev; 1078 1079 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 1080 if (IS_ERR(bdev)) 1081 goto fail; 1082 return bdev; 1083 1084 fail: 1085 ext4_msg(sb, KERN_ERR, 1086 "failed to open journal device unknown-block(%u,%u) %ld", 1087 MAJOR(dev), MINOR(dev), PTR_ERR(bdev)); 1088 return NULL; 1089 } 1090 1091 /* 1092 * Release the journal device 1093 */ 1094 static void ext4_blkdev_put(struct block_device *bdev) 1095 { 1096 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1097 } 1098 1099 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 1100 { 1101 struct block_device *bdev; 1102 bdev = sbi->s_journal_bdev; 1103 if (bdev) { 1104 ext4_blkdev_put(bdev); 1105 sbi->s_journal_bdev = NULL; 1106 } 1107 } 1108 1109 static inline struct inode *orphan_list_entry(struct list_head *l) 1110 { 1111 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 1112 } 1113 1114 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 1115 { 1116 struct list_head *l; 1117 1118 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 1119 le32_to_cpu(sbi->s_es->s_last_orphan)); 1120 1121 printk(KERN_ERR "sb_info orphan list:\n"); 1122 list_for_each(l, &sbi->s_orphan) { 1123 struct inode *inode = orphan_list_entry(l); 1124 printk(KERN_ERR " " 1125 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 1126 inode->i_sb->s_id, inode->i_ino, inode, 1127 inode->i_mode, inode->i_nlink, 1128 NEXT_ORPHAN(inode)); 1129 } 1130 } 1131 1132 #ifdef CONFIG_QUOTA 1133 static int ext4_quota_off(struct super_block *sb, int type); 1134 1135 static inline void ext4_quota_off_umount(struct super_block *sb) 1136 { 1137 int type; 1138 1139 /* Use our quota_off function to clear inode flags etc. */ 1140 for (type = 0; type < EXT4_MAXQUOTAS; type++) 1141 ext4_quota_off(sb, type); 1142 } 1143 1144 /* 1145 * This is a helper function which is used in the mount/remount 1146 * codepaths (which holds s_umount) to fetch the quota file name. 1147 */ 1148 static inline char *get_qf_name(struct super_block *sb, 1149 struct ext4_sb_info *sbi, 1150 int type) 1151 { 1152 return rcu_dereference_protected(sbi->s_qf_names[type], 1153 lockdep_is_held(&sb->s_umount)); 1154 } 1155 #else 1156 static inline void ext4_quota_off_umount(struct super_block *sb) 1157 { 1158 } 1159 #endif 1160 1161 static void ext4_put_super(struct super_block *sb) 1162 { 1163 struct ext4_sb_info *sbi = EXT4_SB(sb); 1164 struct ext4_super_block *es = sbi->s_es; 1165 struct buffer_head **group_desc; 1166 struct flex_groups **flex_groups; 1167 int aborted = 0; 1168 int i, err; 1169 1170 ext4_unregister_li_request(sb); 1171 ext4_quota_off_umount(sb); 1172 1173 flush_work(&sbi->s_error_work); 1174 destroy_workqueue(sbi->rsv_conversion_wq); 1175 ext4_release_orphan_info(sb); 1176 1177 /* 1178 * Unregister sysfs before destroying jbd2 journal. 1179 * Since we could still access attr_journal_task attribute via sysfs 1180 * path which could have sbi->s_journal->j_task as NULL 1181 */ 1182 ext4_unregister_sysfs(sb); 1183 1184 if (sbi->s_journal) { 1185 aborted = is_journal_aborted(sbi->s_journal); 1186 err = jbd2_journal_destroy(sbi->s_journal); 1187 sbi->s_journal = NULL; 1188 if ((err < 0) && !aborted) { 1189 ext4_abort(sb, -err, "Couldn't clean up the journal"); 1190 } 1191 } 1192 1193 ext4_es_unregister_shrinker(sbi); 1194 del_timer_sync(&sbi->s_err_report); 1195 ext4_release_system_zone(sb); 1196 ext4_mb_release(sb); 1197 ext4_ext_release(sb); 1198 1199 if (!sb_rdonly(sb) && !aborted) { 1200 ext4_clear_feature_journal_needs_recovery(sb); 1201 ext4_clear_feature_orphan_present(sb); 1202 es->s_state = cpu_to_le16(sbi->s_mount_state); 1203 } 1204 if (!sb_rdonly(sb)) 1205 ext4_commit_super(sb); 1206 1207 rcu_read_lock(); 1208 group_desc = rcu_dereference(sbi->s_group_desc); 1209 for (i = 0; i < sbi->s_gdb_count; i++) 1210 brelse(group_desc[i]); 1211 kvfree(group_desc); 1212 flex_groups = rcu_dereference(sbi->s_flex_groups); 1213 if (flex_groups) { 1214 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 1215 kvfree(flex_groups[i]); 1216 kvfree(flex_groups); 1217 } 1218 rcu_read_unlock(); 1219 percpu_counter_destroy(&sbi->s_freeclusters_counter); 1220 percpu_counter_destroy(&sbi->s_freeinodes_counter); 1221 percpu_counter_destroy(&sbi->s_dirs_counter); 1222 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 1223 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 1224 percpu_free_rwsem(&sbi->s_writepages_rwsem); 1225 #ifdef CONFIG_QUOTA 1226 for (i = 0; i < EXT4_MAXQUOTAS; i++) 1227 kfree(get_qf_name(sb, sbi, i)); 1228 #endif 1229 1230 /* Debugging code just in case the in-memory inode orphan list 1231 * isn't empty. The on-disk one can be non-empty if we've 1232 * detected an error and taken the fs readonly, but the 1233 * in-memory list had better be clean by this point. */ 1234 if (!list_empty(&sbi->s_orphan)) 1235 dump_orphan_list(sb, sbi); 1236 ASSERT(list_empty(&sbi->s_orphan)); 1237 1238 sync_blockdev(sb->s_bdev); 1239 invalidate_bdev(sb->s_bdev); 1240 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) { 1241 /* 1242 * Invalidate the journal device's buffers. We don't want them 1243 * floating about in memory - the physical journal device may 1244 * hotswapped, and it breaks the `ro-after' testing code. 1245 */ 1246 sync_blockdev(sbi->s_journal_bdev); 1247 invalidate_bdev(sbi->s_journal_bdev); 1248 ext4_blkdev_remove(sbi); 1249 } 1250 1251 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1252 sbi->s_ea_inode_cache = NULL; 1253 1254 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1255 sbi->s_ea_block_cache = NULL; 1256 1257 ext4_stop_mmpd(sbi); 1258 1259 brelse(sbi->s_sbh); 1260 sb->s_fs_info = NULL; 1261 /* 1262 * Now that we are completely done shutting down the 1263 * superblock, we need to actually destroy the kobject. 1264 */ 1265 kobject_put(&sbi->s_kobj); 1266 wait_for_completion(&sbi->s_kobj_unregister); 1267 if (sbi->s_chksum_driver) 1268 crypto_free_shash(sbi->s_chksum_driver); 1269 kfree(sbi->s_blockgroup_lock); 1270 fs_put_dax(sbi->s_daxdev); 1271 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 1272 #ifdef CONFIG_UNICODE 1273 utf8_unload(sb->s_encoding); 1274 #endif 1275 kfree(sbi); 1276 } 1277 1278 static struct kmem_cache *ext4_inode_cachep; 1279 1280 /* 1281 * Called inside transaction, so use GFP_NOFS 1282 */ 1283 static struct inode *ext4_alloc_inode(struct super_block *sb) 1284 { 1285 struct ext4_inode_info *ei; 1286 1287 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1288 if (!ei) 1289 return NULL; 1290 1291 inode_set_iversion(&ei->vfs_inode, 1); 1292 spin_lock_init(&ei->i_raw_lock); 1293 INIT_LIST_HEAD(&ei->i_prealloc_list); 1294 atomic_set(&ei->i_prealloc_active, 0); 1295 spin_lock_init(&ei->i_prealloc_lock); 1296 ext4_es_init_tree(&ei->i_es_tree); 1297 rwlock_init(&ei->i_es_lock); 1298 INIT_LIST_HEAD(&ei->i_es_list); 1299 ei->i_es_all_nr = 0; 1300 ei->i_es_shk_nr = 0; 1301 ei->i_es_shrink_lblk = 0; 1302 ei->i_reserved_data_blocks = 0; 1303 spin_lock_init(&(ei->i_block_reservation_lock)); 1304 ext4_init_pending_tree(&ei->i_pending_tree); 1305 #ifdef CONFIG_QUOTA 1306 ei->i_reserved_quota = 0; 1307 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1308 #endif 1309 ei->jinode = NULL; 1310 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1311 spin_lock_init(&ei->i_completed_io_lock); 1312 ei->i_sync_tid = 0; 1313 ei->i_datasync_tid = 0; 1314 atomic_set(&ei->i_unwritten, 0); 1315 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1316 ext4_fc_init_inode(&ei->vfs_inode); 1317 mutex_init(&ei->i_fc_lock); 1318 return &ei->vfs_inode; 1319 } 1320 1321 static int ext4_drop_inode(struct inode *inode) 1322 { 1323 int drop = generic_drop_inode(inode); 1324 1325 if (!drop) 1326 drop = fscrypt_drop_inode(inode); 1327 1328 trace_ext4_drop_inode(inode, drop); 1329 return drop; 1330 } 1331 1332 static void ext4_free_in_core_inode(struct inode *inode) 1333 { 1334 fscrypt_free_inode(inode); 1335 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) { 1336 pr_warn("%s: inode %ld still in fc list", 1337 __func__, inode->i_ino); 1338 } 1339 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1340 } 1341 1342 static void ext4_destroy_inode(struct inode *inode) 1343 { 1344 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1345 ext4_msg(inode->i_sb, KERN_ERR, 1346 "Inode %lu (%p): orphan list check failed!", 1347 inode->i_ino, EXT4_I(inode)); 1348 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1349 EXT4_I(inode), sizeof(struct ext4_inode_info), 1350 true); 1351 dump_stack(); 1352 } 1353 } 1354 1355 static void init_once(void *foo) 1356 { 1357 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1358 1359 INIT_LIST_HEAD(&ei->i_orphan); 1360 init_rwsem(&ei->xattr_sem); 1361 init_rwsem(&ei->i_data_sem); 1362 inode_init_once(&ei->vfs_inode); 1363 ext4_fc_init_inode(&ei->vfs_inode); 1364 } 1365 1366 static int __init init_inodecache(void) 1367 { 1368 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1369 sizeof(struct ext4_inode_info), 0, 1370 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1371 SLAB_ACCOUNT), 1372 offsetof(struct ext4_inode_info, i_data), 1373 sizeof_field(struct ext4_inode_info, i_data), 1374 init_once); 1375 if (ext4_inode_cachep == NULL) 1376 return -ENOMEM; 1377 return 0; 1378 } 1379 1380 static void destroy_inodecache(void) 1381 { 1382 /* 1383 * Make sure all delayed rcu free inodes are flushed before we 1384 * destroy cache. 1385 */ 1386 rcu_barrier(); 1387 kmem_cache_destroy(ext4_inode_cachep); 1388 } 1389 1390 void ext4_clear_inode(struct inode *inode) 1391 { 1392 ext4_fc_del(inode); 1393 invalidate_inode_buffers(inode); 1394 clear_inode(inode); 1395 ext4_discard_preallocations(inode, 0); 1396 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1397 dquot_drop(inode); 1398 if (EXT4_I(inode)->jinode) { 1399 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1400 EXT4_I(inode)->jinode); 1401 jbd2_free_inode(EXT4_I(inode)->jinode); 1402 EXT4_I(inode)->jinode = NULL; 1403 } 1404 fscrypt_put_encryption_info(inode); 1405 fsverity_cleanup_inode(inode); 1406 } 1407 1408 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1409 u64 ino, u32 generation) 1410 { 1411 struct inode *inode; 1412 1413 /* 1414 * Currently we don't know the generation for parent directory, so 1415 * a generation of 0 means "accept any" 1416 */ 1417 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE); 1418 if (IS_ERR(inode)) 1419 return ERR_CAST(inode); 1420 if (generation && inode->i_generation != generation) { 1421 iput(inode); 1422 return ERR_PTR(-ESTALE); 1423 } 1424 1425 return inode; 1426 } 1427 1428 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1429 int fh_len, int fh_type) 1430 { 1431 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1432 ext4_nfs_get_inode); 1433 } 1434 1435 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1436 int fh_len, int fh_type) 1437 { 1438 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1439 ext4_nfs_get_inode); 1440 } 1441 1442 static int ext4_nfs_commit_metadata(struct inode *inode) 1443 { 1444 struct writeback_control wbc = { 1445 .sync_mode = WB_SYNC_ALL 1446 }; 1447 1448 trace_ext4_nfs_commit_metadata(inode); 1449 return ext4_write_inode(inode, &wbc); 1450 } 1451 1452 #ifdef CONFIG_FS_ENCRYPTION 1453 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1454 { 1455 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1456 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1457 } 1458 1459 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1460 void *fs_data) 1461 { 1462 handle_t *handle = fs_data; 1463 int res, res2, credits, retries = 0; 1464 1465 /* 1466 * Encrypting the root directory is not allowed because e2fsck expects 1467 * lost+found to exist and be unencrypted, and encrypting the root 1468 * directory would imply encrypting the lost+found directory as well as 1469 * the filename "lost+found" itself. 1470 */ 1471 if (inode->i_ino == EXT4_ROOT_INO) 1472 return -EPERM; 1473 1474 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1475 return -EINVAL; 1476 1477 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX)) 1478 return -EOPNOTSUPP; 1479 1480 res = ext4_convert_inline_data(inode); 1481 if (res) 1482 return res; 1483 1484 /* 1485 * If a journal handle was specified, then the encryption context is 1486 * being set on a new inode via inheritance and is part of a larger 1487 * transaction to create the inode. Otherwise the encryption context is 1488 * being set on an existing inode in its own transaction. Only in the 1489 * latter case should the "retry on ENOSPC" logic be used. 1490 */ 1491 1492 if (handle) { 1493 res = ext4_xattr_set_handle(handle, inode, 1494 EXT4_XATTR_INDEX_ENCRYPTION, 1495 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1496 ctx, len, 0); 1497 if (!res) { 1498 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1499 ext4_clear_inode_state(inode, 1500 EXT4_STATE_MAY_INLINE_DATA); 1501 /* 1502 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1503 * S_DAX may be disabled 1504 */ 1505 ext4_set_inode_flags(inode, false); 1506 } 1507 return res; 1508 } 1509 1510 res = dquot_initialize(inode); 1511 if (res) 1512 return res; 1513 retry: 1514 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1515 &credits); 1516 if (res) 1517 return res; 1518 1519 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1520 if (IS_ERR(handle)) 1521 return PTR_ERR(handle); 1522 1523 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1524 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1525 ctx, len, 0); 1526 if (!res) { 1527 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1528 /* 1529 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1530 * S_DAX may be disabled 1531 */ 1532 ext4_set_inode_flags(inode, false); 1533 res = ext4_mark_inode_dirty(handle, inode); 1534 if (res) 1535 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1536 } 1537 res2 = ext4_journal_stop(handle); 1538 1539 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1540 goto retry; 1541 if (!res) 1542 res = res2; 1543 return res; 1544 } 1545 1546 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb) 1547 { 1548 return EXT4_SB(sb)->s_dummy_enc_policy.policy; 1549 } 1550 1551 static bool ext4_has_stable_inodes(struct super_block *sb) 1552 { 1553 return ext4_has_feature_stable_inodes(sb); 1554 } 1555 1556 static void ext4_get_ino_and_lblk_bits(struct super_block *sb, 1557 int *ino_bits_ret, int *lblk_bits_ret) 1558 { 1559 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count); 1560 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t); 1561 } 1562 1563 static const struct fscrypt_operations ext4_cryptops = { 1564 .key_prefix = "ext4:", 1565 .get_context = ext4_get_context, 1566 .set_context = ext4_set_context, 1567 .get_dummy_policy = ext4_get_dummy_policy, 1568 .empty_dir = ext4_empty_dir, 1569 .max_namelen = EXT4_NAME_LEN, 1570 .has_stable_inodes = ext4_has_stable_inodes, 1571 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits, 1572 }; 1573 #endif 1574 1575 #ifdef CONFIG_QUOTA 1576 static const char * const quotatypes[] = INITQFNAMES; 1577 #define QTYPE2NAME(t) (quotatypes[t]) 1578 1579 static int ext4_write_dquot(struct dquot *dquot); 1580 static int ext4_acquire_dquot(struct dquot *dquot); 1581 static int ext4_release_dquot(struct dquot *dquot); 1582 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1583 static int ext4_write_info(struct super_block *sb, int type); 1584 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1585 const struct path *path); 1586 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1587 size_t len, loff_t off); 1588 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1589 const char *data, size_t len, loff_t off); 1590 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1591 unsigned int flags); 1592 1593 static struct dquot **ext4_get_dquots(struct inode *inode) 1594 { 1595 return EXT4_I(inode)->i_dquot; 1596 } 1597 1598 static const struct dquot_operations ext4_quota_operations = { 1599 .get_reserved_space = ext4_get_reserved_space, 1600 .write_dquot = ext4_write_dquot, 1601 .acquire_dquot = ext4_acquire_dquot, 1602 .release_dquot = ext4_release_dquot, 1603 .mark_dirty = ext4_mark_dquot_dirty, 1604 .write_info = ext4_write_info, 1605 .alloc_dquot = dquot_alloc, 1606 .destroy_dquot = dquot_destroy, 1607 .get_projid = ext4_get_projid, 1608 .get_inode_usage = ext4_get_inode_usage, 1609 .get_next_id = dquot_get_next_id, 1610 }; 1611 1612 static const struct quotactl_ops ext4_qctl_operations = { 1613 .quota_on = ext4_quota_on, 1614 .quota_off = ext4_quota_off, 1615 .quota_sync = dquot_quota_sync, 1616 .get_state = dquot_get_state, 1617 .set_info = dquot_set_dqinfo, 1618 .get_dqblk = dquot_get_dqblk, 1619 .set_dqblk = dquot_set_dqblk, 1620 .get_nextdqblk = dquot_get_next_dqblk, 1621 }; 1622 #endif 1623 1624 static const struct super_operations ext4_sops = { 1625 .alloc_inode = ext4_alloc_inode, 1626 .free_inode = ext4_free_in_core_inode, 1627 .destroy_inode = ext4_destroy_inode, 1628 .write_inode = ext4_write_inode, 1629 .dirty_inode = ext4_dirty_inode, 1630 .drop_inode = ext4_drop_inode, 1631 .evict_inode = ext4_evict_inode, 1632 .put_super = ext4_put_super, 1633 .sync_fs = ext4_sync_fs, 1634 .freeze_fs = ext4_freeze, 1635 .unfreeze_fs = ext4_unfreeze, 1636 .statfs = ext4_statfs, 1637 .remount_fs = ext4_remount, 1638 .show_options = ext4_show_options, 1639 #ifdef CONFIG_QUOTA 1640 .quota_read = ext4_quota_read, 1641 .quota_write = ext4_quota_write, 1642 .get_dquots = ext4_get_dquots, 1643 #endif 1644 }; 1645 1646 static const struct export_operations ext4_export_ops = { 1647 .fh_to_dentry = ext4_fh_to_dentry, 1648 .fh_to_parent = ext4_fh_to_parent, 1649 .get_parent = ext4_get_parent, 1650 .commit_metadata = ext4_nfs_commit_metadata, 1651 }; 1652 1653 enum { 1654 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1655 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1656 Opt_nouid32, Opt_debug, Opt_removed, 1657 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1658 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1659 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1660 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1661 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1662 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1663 Opt_inlinecrypt, 1664 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1665 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1666 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1667 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, 1668 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never, 1669 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1670 Opt_nowarn_on_error, Opt_mblk_io_submit, 1671 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1672 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1673 Opt_inode_readahead_blks, Opt_journal_ioprio, 1674 Opt_dioread_nolock, Opt_dioread_lock, 1675 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1676 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1677 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan, 1678 #ifdef CONFIG_EXT4_DEBUG 1679 Opt_fc_debug_max_replay, Opt_fc_debug_force 1680 #endif 1681 }; 1682 1683 static const match_table_t tokens = { 1684 {Opt_bsd_df, "bsddf"}, 1685 {Opt_minix_df, "minixdf"}, 1686 {Opt_grpid, "grpid"}, 1687 {Opt_grpid, "bsdgroups"}, 1688 {Opt_nogrpid, "nogrpid"}, 1689 {Opt_nogrpid, "sysvgroups"}, 1690 {Opt_resgid, "resgid=%u"}, 1691 {Opt_resuid, "resuid=%u"}, 1692 {Opt_sb, "sb=%u"}, 1693 {Opt_err_cont, "errors=continue"}, 1694 {Opt_err_panic, "errors=panic"}, 1695 {Opt_err_ro, "errors=remount-ro"}, 1696 {Opt_nouid32, "nouid32"}, 1697 {Opt_debug, "debug"}, 1698 {Opt_removed, "oldalloc"}, 1699 {Opt_removed, "orlov"}, 1700 {Opt_user_xattr, "user_xattr"}, 1701 {Opt_nouser_xattr, "nouser_xattr"}, 1702 {Opt_acl, "acl"}, 1703 {Opt_noacl, "noacl"}, 1704 {Opt_noload, "norecovery"}, 1705 {Opt_noload, "noload"}, 1706 {Opt_removed, "nobh"}, 1707 {Opt_removed, "bh"}, 1708 {Opt_commit, "commit=%u"}, 1709 {Opt_min_batch_time, "min_batch_time=%u"}, 1710 {Opt_max_batch_time, "max_batch_time=%u"}, 1711 {Opt_journal_dev, "journal_dev=%u"}, 1712 {Opt_journal_path, "journal_path=%s"}, 1713 {Opt_journal_checksum, "journal_checksum"}, 1714 {Opt_nojournal_checksum, "nojournal_checksum"}, 1715 {Opt_journal_async_commit, "journal_async_commit"}, 1716 {Opt_abort, "abort"}, 1717 {Opt_data_journal, "data=journal"}, 1718 {Opt_data_ordered, "data=ordered"}, 1719 {Opt_data_writeback, "data=writeback"}, 1720 {Opt_data_err_abort, "data_err=abort"}, 1721 {Opt_data_err_ignore, "data_err=ignore"}, 1722 {Opt_offusrjquota, "usrjquota="}, 1723 {Opt_usrjquota, "usrjquota=%s"}, 1724 {Opt_offgrpjquota, "grpjquota="}, 1725 {Opt_grpjquota, "grpjquota=%s"}, 1726 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1727 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1728 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1729 {Opt_grpquota, "grpquota"}, 1730 {Opt_noquota, "noquota"}, 1731 {Opt_quota, "quota"}, 1732 {Opt_usrquota, "usrquota"}, 1733 {Opt_prjquota, "prjquota"}, 1734 {Opt_barrier, "barrier=%u"}, 1735 {Opt_barrier, "barrier"}, 1736 {Opt_nobarrier, "nobarrier"}, 1737 {Opt_i_version, "i_version"}, 1738 {Opt_dax, "dax"}, 1739 {Opt_dax_always, "dax=always"}, 1740 {Opt_dax_inode, "dax=inode"}, 1741 {Opt_dax_never, "dax=never"}, 1742 {Opt_stripe, "stripe=%u"}, 1743 {Opt_delalloc, "delalloc"}, 1744 {Opt_warn_on_error, "warn_on_error"}, 1745 {Opt_nowarn_on_error, "nowarn_on_error"}, 1746 {Opt_lazytime, "lazytime"}, 1747 {Opt_nolazytime, "nolazytime"}, 1748 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1749 {Opt_nodelalloc, "nodelalloc"}, 1750 {Opt_removed, "mblk_io_submit"}, 1751 {Opt_removed, "nomblk_io_submit"}, 1752 {Opt_block_validity, "block_validity"}, 1753 {Opt_noblock_validity, "noblock_validity"}, 1754 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1755 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1756 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1757 {Opt_auto_da_alloc, "auto_da_alloc"}, 1758 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1759 {Opt_dioread_nolock, "dioread_nolock"}, 1760 {Opt_dioread_lock, "nodioread_nolock"}, 1761 {Opt_dioread_lock, "dioread_lock"}, 1762 {Opt_discard, "discard"}, 1763 {Opt_nodiscard, "nodiscard"}, 1764 {Opt_init_itable, "init_itable=%u"}, 1765 {Opt_init_itable, "init_itable"}, 1766 {Opt_noinit_itable, "noinit_itable"}, 1767 #ifdef CONFIG_EXT4_DEBUG 1768 {Opt_fc_debug_force, "fc_debug_force"}, 1769 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"}, 1770 #endif 1771 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1772 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 1773 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1774 {Opt_inlinecrypt, "inlinecrypt"}, 1775 {Opt_nombcache, "nombcache"}, 1776 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1777 {Opt_removed, "prefetch_block_bitmaps"}, 1778 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"}, 1779 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"}, 1780 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1781 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1782 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1783 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1784 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1785 {Opt_err, NULL}, 1786 }; 1787 1788 static ext4_fsblk_t get_sb_block(void **data) 1789 { 1790 ext4_fsblk_t sb_block; 1791 char *options = (char *) *data; 1792 1793 if (!options || strncmp(options, "sb=", 3) != 0) 1794 return 1; /* Default location */ 1795 1796 options += 3; 1797 /* TODO: use simple_strtoll with >32bit ext4 */ 1798 sb_block = simple_strtoul(options, &options, 0); 1799 if (*options && *options != ',') { 1800 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1801 (char *) *data); 1802 return 1; 1803 } 1804 if (*options == ',') 1805 options++; 1806 *data = (void *) options; 1807 1808 return sb_block; 1809 } 1810 1811 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1812 #define DEFAULT_MB_OPTIMIZE_SCAN (-1) 1813 1814 static const char deprecated_msg[] = 1815 "Mount option \"%s\" will be removed by %s\n" 1816 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1817 1818 #ifdef CONFIG_QUOTA 1819 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1820 { 1821 struct ext4_sb_info *sbi = EXT4_SB(sb); 1822 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1823 int ret = -1; 1824 1825 if (sb_any_quota_loaded(sb) && !old_qname) { 1826 ext4_msg(sb, KERN_ERR, 1827 "Cannot change journaled " 1828 "quota options when quota turned on"); 1829 return -1; 1830 } 1831 if (ext4_has_feature_quota(sb)) { 1832 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1833 "ignored when QUOTA feature is enabled"); 1834 return 1; 1835 } 1836 qname = match_strdup(args); 1837 if (!qname) { 1838 ext4_msg(sb, KERN_ERR, 1839 "Not enough memory for storing quotafile name"); 1840 return -1; 1841 } 1842 if (old_qname) { 1843 if (strcmp(old_qname, qname) == 0) 1844 ret = 1; 1845 else 1846 ext4_msg(sb, KERN_ERR, 1847 "%s quota file already specified", 1848 QTYPE2NAME(qtype)); 1849 goto errout; 1850 } 1851 if (strchr(qname, '/')) { 1852 ext4_msg(sb, KERN_ERR, 1853 "quotafile must be on filesystem root"); 1854 goto errout; 1855 } 1856 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1857 set_opt(sb, QUOTA); 1858 return 1; 1859 errout: 1860 kfree(qname); 1861 return ret; 1862 } 1863 1864 static int clear_qf_name(struct super_block *sb, int qtype) 1865 { 1866 1867 struct ext4_sb_info *sbi = EXT4_SB(sb); 1868 char *old_qname = get_qf_name(sb, sbi, qtype); 1869 1870 if (sb_any_quota_loaded(sb) && old_qname) { 1871 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1872 " when quota turned on"); 1873 return -1; 1874 } 1875 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1876 synchronize_rcu(); 1877 kfree(old_qname); 1878 return 1; 1879 } 1880 #endif 1881 1882 #define MOPT_SET 0x0001 1883 #define MOPT_CLEAR 0x0002 1884 #define MOPT_NOSUPPORT 0x0004 1885 #define MOPT_EXPLICIT 0x0008 1886 #define MOPT_CLEAR_ERR 0x0010 1887 #define MOPT_GTE0 0x0020 1888 #ifdef CONFIG_QUOTA 1889 #define MOPT_Q 0 1890 #define MOPT_QFMT 0x0040 1891 #else 1892 #define MOPT_Q MOPT_NOSUPPORT 1893 #define MOPT_QFMT MOPT_NOSUPPORT 1894 #endif 1895 #define MOPT_DATAJ 0x0080 1896 #define MOPT_NO_EXT2 0x0100 1897 #define MOPT_NO_EXT3 0x0200 1898 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1899 #define MOPT_STRING 0x0400 1900 #define MOPT_SKIP 0x0800 1901 #define MOPT_2 0x1000 1902 1903 static const struct mount_opts { 1904 int token; 1905 int mount_opt; 1906 int flags; 1907 } ext4_mount_opts[] = { 1908 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1909 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1910 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1911 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1912 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1913 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1914 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1915 MOPT_EXT4_ONLY | MOPT_SET}, 1916 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1917 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1918 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1919 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1920 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1921 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1922 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1923 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1924 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1925 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1926 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1927 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1928 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1929 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1930 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1931 EXT4_MOUNT_JOURNAL_CHECKSUM), 1932 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1933 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1934 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1935 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1936 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1937 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1938 MOPT_NO_EXT2}, 1939 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1940 MOPT_NO_EXT2}, 1941 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1942 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1943 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1944 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1945 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1946 {Opt_commit, 0, MOPT_GTE0}, 1947 {Opt_max_batch_time, 0, MOPT_GTE0}, 1948 {Opt_min_batch_time, 0, MOPT_GTE0}, 1949 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1950 {Opt_init_itable, 0, MOPT_GTE0}, 1951 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP}, 1952 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS, 1953 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1954 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE, 1955 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1956 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER, 1957 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP}, 1958 {Opt_stripe, 0, MOPT_GTE0}, 1959 {Opt_resuid, 0, MOPT_GTE0}, 1960 {Opt_resgid, 0, MOPT_GTE0}, 1961 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1962 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1963 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1964 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1965 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1966 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1967 MOPT_NO_EXT2 | MOPT_DATAJ}, 1968 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1969 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1970 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1971 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1972 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1973 #else 1974 {Opt_acl, 0, MOPT_NOSUPPORT}, 1975 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1976 #endif 1977 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1978 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1979 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1980 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1981 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1982 MOPT_SET | MOPT_Q}, 1983 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1984 MOPT_SET | MOPT_Q}, 1985 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1986 MOPT_SET | MOPT_Q}, 1987 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1988 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1989 MOPT_CLEAR | MOPT_Q}, 1990 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING}, 1991 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING}, 1992 {Opt_offusrjquota, 0, MOPT_Q}, 1993 {Opt_offgrpjquota, 0, MOPT_Q}, 1994 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1995 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1996 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1997 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1998 {Opt_test_dummy_encryption, 0, MOPT_STRING}, 1999 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 2000 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS, 2001 MOPT_SET}, 2002 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0}, 2003 #ifdef CONFIG_EXT4_DEBUG 2004 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, 2005 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, 2006 {Opt_fc_debug_max_replay, 0, MOPT_GTE0}, 2007 #endif 2008 {Opt_err, 0, 0} 2009 }; 2010 2011 #ifdef CONFIG_UNICODE 2012 static const struct ext4_sb_encodings { 2013 __u16 magic; 2014 char *name; 2015 char *version; 2016 } ext4_sb_encoding_map[] = { 2017 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"}, 2018 }; 2019 2020 static int ext4_sb_read_encoding(const struct ext4_super_block *es, 2021 const struct ext4_sb_encodings **encoding, 2022 __u16 *flags) 2023 { 2024 __u16 magic = le16_to_cpu(es->s_encoding); 2025 int i; 2026 2027 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++) 2028 if (magic == ext4_sb_encoding_map[i].magic) 2029 break; 2030 2031 if (i >= ARRAY_SIZE(ext4_sb_encoding_map)) 2032 return -EINVAL; 2033 2034 *encoding = &ext4_sb_encoding_map[i]; 2035 *flags = le16_to_cpu(es->s_encoding_flags); 2036 2037 return 0; 2038 } 2039 #endif 2040 2041 static int ext4_set_test_dummy_encryption(struct super_block *sb, 2042 const char *opt, 2043 const substring_t *arg, 2044 bool is_remount) 2045 { 2046 #ifdef CONFIG_FS_ENCRYPTION 2047 struct ext4_sb_info *sbi = EXT4_SB(sb); 2048 int err; 2049 2050 /* 2051 * This mount option is just for testing, and it's not worthwhile to 2052 * implement the extra complexity (e.g. RCU protection) that would be 2053 * needed to allow it to be set or changed during remount. We do allow 2054 * it to be specified during remount, but only if there is no change. 2055 */ 2056 if (is_remount && !sbi->s_dummy_enc_policy.policy) { 2057 ext4_msg(sb, KERN_WARNING, 2058 "Can't set test_dummy_encryption on remount"); 2059 return -1; 2060 } 2061 err = fscrypt_set_test_dummy_encryption(sb, arg->from, 2062 &sbi->s_dummy_enc_policy); 2063 if (err) { 2064 if (err == -EEXIST) 2065 ext4_msg(sb, KERN_WARNING, 2066 "Can't change test_dummy_encryption on remount"); 2067 else if (err == -EINVAL) 2068 ext4_msg(sb, KERN_WARNING, 2069 "Value of option \"%s\" is unrecognized", opt); 2070 else 2071 ext4_msg(sb, KERN_WARNING, 2072 "Error processing option \"%s\" [%d]", 2073 opt, err); 2074 return -1; 2075 } 2076 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled"); 2077 #else 2078 ext4_msg(sb, KERN_WARNING, 2079 "Test dummy encryption mount option ignored"); 2080 #endif 2081 return 1; 2082 } 2083 2084 struct ext4_parsed_options { 2085 unsigned long journal_devnum; 2086 unsigned int journal_ioprio; 2087 int mb_optimize_scan; 2088 }; 2089 2090 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 2091 substring_t *args, struct ext4_parsed_options *parsed_opts, 2092 int is_remount) 2093 { 2094 struct ext4_sb_info *sbi = EXT4_SB(sb); 2095 const struct mount_opts *m; 2096 kuid_t uid; 2097 kgid_t gid; 2098 int arg = 0; 2099 2100 #ifdef CONFIG_QUOTA 2101 if (token == Opt_usrjquota) 2102 return set_qf_name(sb, USRQUOTA, &args[0]); 2103 else if (token == Opt_grpjquota) 2104 return set_qf_name(sb, GRPQUOTA, &args[0]); 2105 else if (token == Opt_offusrjquota) 2106 return clear_qf_name(sb, USRQUOTA); 2107 else if (token == Opt_offgrpjquota) 2108 return clear_qf_name(sb, GRPQUOTA); 2109 #endif 2110 switch (token) { 2111 case Opt_noacl: 2112 case Opt_nouser_xattr: 2113 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 2114 break; 2115 case Opt_sb: 2116 return 1; /* handled by get_sb_block() */ 2117 case Opt_removed: 2118 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 2119 return 1; 2120 case Opt_abort: 2121 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED); 2122 return 1; 2123 case Opt_i_version: 2124 sb->s_flags |= SB_I_VERSION; 2125 return 1; 2126 case Opt_lazytime: 2127 sb->s_flags |= SB_LAZYTIME; 2128 return 1; 2129 case Opt_nolazytime: 2130 sb->s_flags &= ~SB_LAZYTIME; 2131 return 1; 2132 case Opt_inlinecrypt: 2133 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 2134 sb->s_flags |= SB_INLINECRYPT; 2135 #else 2136 ext4_msg(sb, KERN_ERR, "inline encryption not supported"); 2137 #endif 2138 return 1; 2139 } 2140 2141 for (m = ext4_mount_opts; m->token != Opt_err; m++) 2142 if (token == m->token) 2143 break; 2144 2145 if (m->token == Opt_err) { 2146 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 2147 "or missing value", opt); 2148 return -1; 2149 } 2150 2151 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 2152 ext4_msg(sb, KERN_ERR, 2153 "Mount option \"%s\" incompatible with ext2", opt); 2154 return -1; 2155 } 2156 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 2157 ext4_msg(sb, KERN_ERR, 2158 "Mount option \"%s\" incompatible with ext3", opt); 2159 return -1; 2160 } 2161 2162 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 2163 return -1; 2164 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 2165 return -1; 2166 if (m->flags & MOPT_EXPLICIT) { 2167 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 2168 set_opt2(sb, EXPLICIT_DELALLOC); 2169 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 2170 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 2171 } else 2172 return -1; 2173 } 2174 if (m->flags & MOPT_CLEAR_ERR) 2175 clear_opt(sb, ERRORS_MASK); 2176 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 2177 ext4_msg(sb, KERN_ERR, "Cannot change quota " 2178 "options when quota turned on"); 2179 return -1; 2180 } 2181 2182 if (m->flags & MOPT_NOSUPPORT) { 2183 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 2184 } else if (token == Opt_commit) { 2185 if (arg == 0) 2186 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 2187 else if (arg > INT_MAX / HZ) { 2188 ext4_msg(sb, KERN_ERR, 2189 "Invalid commit interval %d, " 2190 "must be smaller than %d", 2191 arg, INT_MAX / HZ); 2192 return -1; 2193 } 2194 sbi->s_commit_interval = HZ * arg; 2195 } else if (token == Opt_debug_want_extra_isize) { 2196 if ((arg & 1) || 2197 (arg < 4) || 2198 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) { 2199 ext4_msg(sb, KERN_ERR, 2200 "Invalid want_extra_isize %d", arg); 2201 return -1; 2202 } 2203 sbi->s_want_extra_isize = arg; 2204 } else if (token == Opt_max_batch_time) { 2205 sbi->s_max_batch_time = arg; 2206 } else if (token == Opt_min_batch_time) { 2207 sbi->s_min_batch_time = arg; 2208 } else if (token == Opt_inode_readahead_blks) { 2209 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 2210 ext4_msg(sb, KERN_ERR, 2211 "EXT4-fs: inode_readahead_blks must be " 2212 "0 or a power of 2 smaller than 2^31"); 2213 return -1; 2214 } 2215 sbi->s_inode_readahead_blks = arg; 2216 } else if (token == Opt_init_itable) { 2217 set_opt(sb, INIT_INODE_TABLE); 2218 if (!args->from) 2219 arg = EXT4_DEF_LI_WAIT_MULT; 2220 sbi->s_li_wait_mult = arg; 2221 } else if (token == Opt_max_dir_size_kb) { 2222 sbi->s_max_dir_size_kb = arg; 2223 #ifdef CONFIG_EXT4_DEBUG 2224 } else if (token == Opt_fc_debug_max_replay) { 2225 sbi->s_fc_debug_max_replay = arg; 2226 #endif 2227 } else if (token == Opt_stripe) { 2228 sbi->s_stripe = arg; 2229 } else if (token == Opt_resuid) { 2230 uid = make_kuid(current_user_ns(), arg); 2231 if (!uid_valid(uid)) { 2232 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 2233 return -1; 2234 } 2235 sbi->s_resuid = uid; 2236 } else if (token == Opt_resgid) { 2237 gid = make_kgid(current_user_ns(), arg); 2238 if (!gid_valid(gid)) { 2239 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 2240 return -1; 2241 } 2242 sbi->s_resgid = gid; 2243 } else if (token == Opt_journal_dev) { 2244 if (is_remount) { 2245 ext4_msg(sb, KERN_ERR, 2246 "Cannot specify journal on remount"); 2247 return -1; 2248 } 2249 parsed_opts->journal_devnum = arg; 2250 } else if (token == Opt_journal_path) { 2251 char *journal_path; 2252 struct inode *journal_inode; 2253 struct path path; 2254 int error; 2255 2256 if (is_remount) { 2257 ext4_msg(sb, KERN_ERR, 2258 "Cannot specify journal on remount"); 2259 return -1; 2260 } 2261 journal_path = match_strdup(&args[0]); 2262 if (!journal_path) { 2263 ext4_msg(sb, KERN_ERR, "error: could not dup " 2264 "journal device string"); 2265 return -1; 2266 } 2267 2268 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 2269 if (error) { 2270 ext4_msg(sb, KERN_ERR, "error: could not find " 2271 "journal device path: error %d", error); 2272 kfree(journal_path); 2273 return -1; 2274 } 2275 2276 journal_inode = d_inode(path.dentry); 2277 if (!S_ISBLK(journal_inode->i_mode)) { 2278 ext4_msg(sb, KERN_ERR, "error: journal path %s " 2279 "is not a block device", journal_path); 2280 path_put(&path); 2281 kfree(journal_path); 2282 return -1; 2283 } 2284 2285 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev); 2286 path_put(&path); 2287 kfree(journal_path); 2288 } else if (token == Opt_journal_ioprio) { 2289 if (arg > 7) { 2290 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 2291 " (must be 0-7)"); 2292 return -1; 2293 } 2294 parsed_opts->journal_ioprio = 2295 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 2296 } else if (token == Opt_test_dummy_encryption) { 2297 return ext4_set_test_dummy_encryption(sb, opt, &args[0], 2298 is_remount); 2299 } else if (m->flags & MOPT_DATAJ) { 2300 if (is_remount) { 2301 if (!sbi->s_journal) 2302 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 2303 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 2304 ext4_msg(sb, KERN_ERR, 2305 "Cannot change data mode on remount"); 2306 return -1; 2307 } 2308 } else { 2309 clear_opt(sb, DATA_FLAGS); 2310 sbi->s_mount_opt |= m->mount_opt; 2311 } 2312 #ifdef CONFIG_QUOTA 2313 } else if (m->flags & MOPT_QFMT) { 2314 if (sb_any_quota_loaded(sb) && 2315 sbi->s_jquota_fmt != m->mount_opt) { 2316 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 2317 "quota options when quota turned on"); 2318 return -1; 2319 } 2320 if (ext4_has_feature_quota(sb)) { 2321 ext4_msg(sb, KERN_INFO, 2322 "Quota format mount options ignored " 2323 "when QUOTA feature is enabled"); 2324 return 1; 2325 } 2326 sbi->s_jquota_fmt = m->mount_opt; 2327 #endif 2328 } else if (token == Opt_dax || token == Opt_dax_always || 2329 token == Opt_dax_inode || token == Opt_dax_never) { 2330 #ifdef CONFIG_FS_DAX 2331 switch (token) { 2332 case Opt_dax: 2333 case Opt_dax_always: 2334 if (is_remount && 2335 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2336 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) { 2337 fail_dax_change_remount: 2338 ext4_msg(sb, KERN_ERR, "can't change " 2339 "dax mount option while remounting"); 2340 return -1; 2341 } 2342 if (is_remount && 2343 (test_opt(sb, DATA_FLAGS) == 2344 EXT4_MOUNT_JOURNAL_DATA)) { 2345 ext4_msg(sb, KERN_ERR, "can't mount with " 2346 "both data=journal and dax"); 2347 return -1; 2348 } 2349 ext4_msg(sb, KERN_WARNING, 2350 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 2351 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS; 2352 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2353 break; 2354 case Opt_dax_never: 2355 if (is_remount && 2356 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2357 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) 2358 goto fail_dax_change_remount; 2359 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2360 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2361 break; 2362 case Opt_dax_inode: 2363 if (is_remount && 2364 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) || 2365 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) || 2366 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) 2367 goto fail_dax_change_remount; 2368 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2369 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER; 2370 /* Strictly for printing options */ 2371 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE; 2372 break; 2373 } 2374 #else 2375 ext4_msg(sb, KERN_INFO, "dax option not supported"); 2376 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER; 2377 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS; 2378 return -1; 2379 #endif 2380 } else if (token == Opt_data_err_abort) { 2381 sbi->s_mount_opt |= m->mount_opt; 2382 } else if (token == Opt_data_err_ignore) { 2383 sbi->s_mount_opt &= ~m->mount_opt; 2384 } else if (token == Opt_mb_optimize_scan) { 2385 if (arg != 0 && arg != 1) { 2386 ext4_msg(sb, KERN_WARNING, 2387 "mb_optimize_scan should be set to 0 or 1."); 2388 return -1; 2389 } 2390 parsed_opts->mb_optimize_scan = arg; 2391 } else { 2392 if (!args->from) 2393 arg = 1; 2394 if (m->flags & MOPT_CLEAR) 2395 arg = !arg; 2396 else if (unlikely(!(m->flags & MOPT_SET))) { 2397 ext4_msg(sb, KERN_WARNING, 2398 "buggy handling of option %s", opt); 2399 WARN_ON(1); 2400 return -1; 2401 } 2402 if (m->flags & MOPT_2) { 2403 if (arg != 0) 2404 sbi->s_mount_opt2 |= m->mount_opt; 2405 else 2406 sbi->s_mount_opt2 &= ~m->mount_opt; 2407 } else { 2408 if (arg != 0) 2409 sbi->s_mount_opt |= m->mount_opt; 2410 else 2411 sbi->s_mount_opt &= ~m->mount_opt; 2412 } 2413 } 2414 return 1; 2415 } 2416 2417 static int parse_options(char *options, struct super_block *sb, 2418 struct ext4_parsed_options *ret_opts, 2419 int is_remount) 2420 { 2421 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb); 2422 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 2423 substring_t args[MAX_OPT_ARGS]; 2424 int token; 2425 2426 if (!options) 2427 return 1; 2428 2429 while ((p = strsep(&options, ",")) != NULL) { 2430 if (!*p) 2431 continue; 2432 /* 2433 * Initialize args struct so we know whether arg was 2434 * found; some options take optional arguments. 2435 */ 2436 args[0].to = args[0].from = NULL; 2437 token = match_token(p, tokens, args); 2438 if (handle_mount_opt(sb, p, token, args, ret_opts, 2439 is_remount) < 0) 2440 return 0; 2441 } 2442 #ifdef CONFIG_QUOTA 2443 /* 2444 * We do the test below only for project quotas. 'usrquota' and 2445 * 'grpquota' mount options are allowed even without quota feature 2446 * to support legacy quotas in quota files. 2447 */ 2448 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2449 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2450 "Cannot enable project quota enforcement."); 2451 return 0; 2452 } 2453 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2454 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2455 if (usr_qf_name || grp_qf_name) { 2456 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2457 clear_opt(sb, USRQUOTA); 2458 2459 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2460 clear_opt(sb, GRPQUOTA); 2461 2462 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2463 ext4_msg(sb, KERN_ERR, "old and new quota " 2464 "format mixing"); 2465 return 0; 2466 } 2467 2468 if (!sbi->s_jquota_fmt) { 2469 ext4_msg(sb, KERN_ERR, "journaled quota format " 2470 "not specified"); 2471 return 0; 2472 } 2473 } 2474 #endif 2475 if (test_opt(sb, DIOREAD_NOLOCK)) { 2476 int blocksize = 2477 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2478 if (blocksize < PAGE_SIZE) 2479 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an " 2480 "experimental mount option 'dioread_nolock' " 2481 "for blocksize < PAGE_SIZE"); 2482 } 2483 return 1; 2484 } 2485 2486 static inline void ext4_show_quota_options(struct seq_file *seq, 2487 struct super_block *sb) 2488 { 2489 #if defined(CONFIG_QUOTA) 2490 struct ext4_sb_info *sbi = EXT4_SB(sb); 2491 char *usr_qf_name, *grp_qf_name; 2492 2493 if (sbi->s_jquota_fmt) { 2494 char *fmtname = ""; 2495 2496 switch (sbi->s_jquota_fmt) { 2497 case QFMT_VFS_OLD: 2498 fmtname = "vfsold"; 2499 break; 2500 case QFMT_VFS_V0: 2501 fmtname = "vfsv0"; 2502 break; 2503 case QFMT_VFS_V1: 2504 fmtname = "vfsv1"; 2505 break; 2506 } 2507 seq_printf(seq, ",jqfmt=%s", fmtname); 2508 } 2509 2510 rcu_read_lock(); 2511 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2512 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2513 if (usr_qf_name) 2514 seq_show_option(seq, "usrjquota", usr_qf_name); 2515 if (grp_qf_name) 2516 seq_show_option(seq, "grpjquota", grp_qf_name); 2517 rcu_read_unlock(); 2518 #endif 2519 } 2520 2521 static const char *token2str(int token) 2522 { 2523 const struct match_token *t; 2524 2525 for (t = tokens; t->token != Opt_err; t++) 2526 if (t->token == token && !strchr(t->pattern, '=')) 2527 break; 2528 return t->pattern; 2529 } 2530 2531 /* 2532 * Show an option if 2533 * - it's set to a non-default value OR 2534 * - if the per-sb default is different from the global default 2535 */ 2536 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2537 int nodefs) 2538 { 2539 struct ext4_sb_info *sbi = EXT4_SB(sb); 2540 struct ext4_super_block *es = sbi->s_es; 2541 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2542 const struct mount_opts *m; 2543 char sep = nodefs ? '\n' : ','; 2544 2545 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2546 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2547 2548 if (sbi->s_sb_block != 1) 2549 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2550 2551 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2552 int want_set = m->flags & MOPT_SET; 2553 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2554 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP) 2555 continue; 2556 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2557 continue; /* skip if same as the default */ 2558 if ((want_set && 2559 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2560 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2561 continue; /* select Opt_noFoo vs Opt_Foo */ 2562 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2563 } 2564 2565 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2566 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2567 SEQ_OPTS_PRINT("resuid=%u", 2568 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2569 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2570 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2571 SEQ_OPTS_PRINT("resgid=%u", 2572 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2573 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2574 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2575 SEQ_OPTS_PUTS("errors=remount-ro"); 2576 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2577 SEQ_OPTS_PUTS("errors=continue"); 2578 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2579 SEQ_OPTS_PUTS("errors=panic"); 2580 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2581 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2582 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2583 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2584 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2585 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2586 if (sb->s_flags & SB_I_VERSION) 2587 SEQ_OPTS_PUTS("i_version"); 2588 if (nodefs || sbi->s_stripe) 2589 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2590 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2591 (sbi->s_mount_opt ^ def_mount_opt)) { 2592 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2593 SEQ_OPTS_PUTS("data=journal"); 2594 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2595 SEQ_OPTS_PUTS("data=ordered"); 2596 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2597 SEQ_OPTS_PUTS("data=writeback"); 2598 } 2599 if (nodefs || 2600 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2601 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2602 sbi->s_inode_readahead_blks); 2603 2604 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2605 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2606 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2607 if (nodefs || sbi->s_max_dir_size_kb) 2608 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2609 if (test_opt(sb, DATA_ERR_ABORT)) 2610 SEQ_OPTS_PUTS("data_err=abort"); 2611 2612 fscrypt_show_test_dummy_encryption(seq, sep, sb); 2613 2614 if (sb->s_flags & SB_INLINECRYPT) 2615 SEQ_OPTS_PUTS("inlinecrypt"); 2616 2617 if (test_opt(sb, DAX_ALWAYS)) { 2618 if (IS_EXT2_SB(sb)) 2619 SEQ_OPTS_PUTS("dax"); 2620 else 2621 SEQ_OPTS_PUTS("dax=always"); 2622 } else if (test_opt2(sb, DAX_NEVER)) { 2623 SEQ_OPTS_PUTS("dax=never"); 2624 } else if (test_opt2(sb, DAX_INODE)) { 2625 SEQ_OPTS_PUTS("dax=inode"); 2626 } 2627 ext4_show_quota_options(seq, sb); 2628 return 0; 2629 } 2630 2631 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2632 { 2633 return _ext4_show_options(seq, root->d_sb, 0); 2634 } 2635 2636 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2637 { 2638 struct super_block *sb = seq->private; 2639 int rc; 2640 2641 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2642 rc = _ext4_show_options(seq, sb, 1); 2643 seq_puts(seq, "\n"); 2644 return rc; 2645 } 2646 2647 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2648 int read_only) 2649 { 2650 struct ext4_sb_info *sbi = EXT4_SB(sb); 2651 int err = 0; 2652 2653 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2654 ext4_msg(sb, KERN_ERR, "revision level too high, " 2655 "forcing read-only mode"); 2656 err = -EROFS; 2657 goto done; 2658 } 2659 if (read_only) 2660 goto done; 2661 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2662 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2663 "running e2fsck is recommended"); 2664 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2665 ext4_msg(sb, KERN_WARNING, 2666 "warning: mounting fs with errors, " 2667 "running e2fsck is recommended"); 2668 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2669 le16_to_cpu(es->s_mnt_count) >= 2670 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2671 ext4_msg(sb, KERN_WARNING, 2672 "warning: maximal mount count reached, " 2673 "running e2fsck is recommended"); 2674 else if (le32_to_cpu(es->s_checkinterval) && 2675 (ext4_get_tstamp(es, s_lastcheck) + 2676 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2677 ext4_msg(sb, KERN_WARNING, 2678 "warning: checktime reached, " 2679 "running e2fsck is recommended"); 2680 if (!sbi->s_journal) 2681 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2682 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2683 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2684 le16_add_cpu(&es->s_mnt_count, 1); 2685 ext4_update_tstamp(es, s_mtime); 2686 if (sbi->s_journal) { 2687 ext4_set_feature_journal_needs_recovery(sb); 2688 if (ext4_has_feature_orphan_file(sb)) 2689 ext4_set_feature_orphan_present(sb); 2690 } 2691 2692 err = ext4_commit_super(sb); 2693 done: 2694 if (test_opt(sb, DEBUG)) 2695 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2696 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2697 sb->s_blocksize, 2698 sbi->s_groups_count, 2699 EXT4_BLOCKS_PER_GROUP(sb), 2700 EXT4_INODES_PER_GROUP(sb), 2701 sbi->s_mount_opt, sbi->s_mount_opt2); 2702 2703 cleancache_init_fs(sb); 2704 return err; 2705 } 2706 2707 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2708 { 2709 struct ext4_sb_info *sbi = EXT4_SB(sb); 2710 struct flex_groups **old_groups, **new_groups; 2711 int size, i, j; 2712 2713 if (!sbi->s_log_groups_per_flex) 2714 return 0; 2715 2716 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2717 if (size <= sbi->s_flex_groups_allocated) 2718 return 0; 2719 2720 new_groups = kvzalloc(roundup_pow_of_two(size * 2721 sizeof(*sbi->s_flex_groups)), GFP_KERNEL); 2722 if (!new_groups) { 2723 ext4_msg(sb, KERN_ERR, 2724 "not enough memory for %d flex group pointers", size); 2725 return -ENOMEM; 2726 } 2727 for (i = sbi->s_flex_groups_allocated; i < size; i++) { 2728 new_groups[i] = kvzalloc(roundup_pow_of_two( 2729 sizeof(struct flex_groups)), 2730 GFP_KERNEL); 2731 if (!new_groups[i]) { 2732 for (j = sbi->s_flex_groups_allocated; j < i; j++) 2733 kvfree(new_groups[j]); 2734 kvfree(new_groups); 2735 ext4_msg(sb, KERN_ERR, 2736 "not enough memory for %d flex groups", size); 2737 return -ENOMEM; 2738 } 2739 } 2740 rcu_read_lock(); 2741 old_groups = rcu_dereference(sbi->s_flex_groups); 2742 if (old_groups) 2743 memcpy(new_groups, old_groups, 2744 (sbi->s_flex_groups_allocated * 2745 sizeof(struct flex_groups *))); 2746 rcu_read_unlock(); 2747 rcu_assign_pointer(sbi->s_flex_groups, new_groups); 2748 sbi->s_flex_groups_allocated = size; 2749 if (old_groups) 2750 ext4_kvfree_array_rcu(old_groups); 2751 return 0; 2752 } 2753 2754 static int ext4_fill_flex_info(struct super_block *sb) 2755 { 2756 struct ext4_sb_info *sbi = EXT4_SB(sb); 2757 struct ext4_group_desc *gdp = NULL; 2758 struct flex_groups *fg; 2759 ext4_group_t flex_group; 2760 int i, err; 2761 2762 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2763 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2764 sbi->s_log_groups_per_flex = 0; 2765 return 1; 2766 } 2767 2768 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2769 if (err) 2770 goto failed; 2771 2772 for (i = 0; i < sbi->s_groups_count; i++) { 2773 gdp = ext4_get_group_desc(sb, i, NULL); 2774 2775 flex_group = ext4_flex_group(sbi, i); 2776 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group); 2777 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes); 2778 atomic64_add(ext4_free_group_clusters(sb, gdp), 2779 &fg->free_clusters); 2780 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs); 2781 } 2782 2783 return 1; 2784 failed: 2785 return 0; 2786 } 2787 2788 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2789 struct ext4_group_desc *gdp) 2790 { 2791 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2792 __u16 crc = 0; 2793 __le32 le_group = cpu_to_le32(block_group); 2794 struct ext4_sb_info *sbi = EXT4_SB(sb); 2795 2796 if (ext4_has_metadata_csum(sbi->s_sb)) { 2797 /* Use new metadata_csum algorithm */ 2798 __u32 csum32; 2799 __u16 dummy_csum = 0; 2800 2801 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2802 sizeof(le_group)); 2803 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2804 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2805 sizeof(dummy_csum)); 2806 offset += sizeof(dummy_csum); 2807 if (offset < sbi->s_desc_size) 2808 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2809 sbi->s_desc_size - offset); 2810 2811 crc = csum32 & 0xFFFF; 2812 goto out; 2813 } 2814 2815 /* old crc16 code */ 2816 if (!ext4_has_feature_gdt_csum(sb)) 2817 return 0; 2818 2819 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2820 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2821 crc = crc16(crc, (__u8 *)gdp, offset); 2822 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2823 /* for checksum of struct ext4_group_desc do the rest...*/ 2824 if (ext4_has_feature_64bit(sb) && 2825 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2826 crc = crc16(crc, (__u8 *)gdp + offset, 2827 le16_to_cpu(sbi->s_es->s_desc_size) - 2828 offset); 2829 2830 out: 2831 return cpu_to_le16(crc); 2832 } 2833 2834 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2835 struct ext4_group_desc *gdp) 2836 { 2837 if (ext4_has_group_desc_csum(sb) && 2838 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2839 return 0; 2840 2841 return 1; 2842 } 2843 2844 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2845 struct ext4_group_desc *gdp) 2846 { 2847 if (!ext4_has_group_desc_csum(sb)) 2848 return; 2849 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2850 } 2851 2852 /* Called at mount-time, super-block is locked */ 2853 static int ext4_check_descriptors(struct super_block *sb, 2854 ext4_fsblk_t sb_block, 2855 ext4_group_t *first_not_zeroed) 2856 { 2857 struct ext4_sb_info *sbi = EXT4_SB(sb); 2858 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2859 ext4_fsblk_t last_block; 2860 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2861 ext4_fsblk_t block_bitmap; 2862 ext4_fsblk_t inode_bitmap; 2863 ext4_fsblk_t inode_table; 2864 int flexbg_flag = 0; 2865 ext4_group_t i, grp = sbi->s_groups_count; 2866 2867 if (ext4_has_feature_flex_bg(sb)) 2868 flexbg_flag = 1; 2869 2870 ext4_debug("Checking group descriptors"); 2871 2872 for (i = 0; i < sbi->s_groups_count; i++) { 2873 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2874 2875 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2876 last_block = ext4_blocks_count(sbi->s_es) - 1; 2877 else 2878 last_block = first_block + 2879 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2880 2881 if ((grp == sbi->s_groups_count) && 2882 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2883 grp = i; 2884 2885 block_bitmap = ext4_block_bitmap(sb, gdp); 2886 if (block_bitmap == sb_block) { 2887 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2888 "Block bitmap for group %u overlaps " 2889 "superblock", i); 2890 if (!sb_rdonly(sb)) 2891 return 0; 2892 } 2893 if (block_bitmap >= sb_block + 1 && 2894 block_bitmap <= last_bg_block) { 2895 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2896 "Block bitmap for group %u overlaps " 2897 "block group descriptors", i); 2898 if (!sb_rdonly(sb)) 2899 return 0; 2900 } 2901 if (block_bitmap < first_block || block_bitmap > last_block) { 2902 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2903 "Block bitmap for group %u not in group " 2904 "(block %llu)!", i, block_bitmap); 2905 return 0; 2906 } 2907 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2908 if (inode_bitmap == sb_block) { 2909 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2910 "Inode bitmap for group %u overlaps " 2911 "superblock", i); 2912 if (!sb_rdonly(sb)) 2913 return 0; 2914 } 2915 if (inode_bitmap >= sb_block + 1 && 2916 inode_bitmap <= last_bg_block) { 2917 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2918 "Inode bitmap for group %u overlaps " 2919 "block group descriptors", i); 2920 if (!sb_rdonly(sb)) 2921 return 0; 2922 } 2923 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2924 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2925 "Inode bitmap for group %u not in group " 2926 "(block %llu)!", i, inode_bitmap); 2927 return 0; 2928 } 2929 inode_table = ext4_inode_table(sb, gdp); 2930 if (inode_table == sb_block) { 2931 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2932 "Inode table for group %u overlaps " 2933 "superblock", i); 2934 if (!sb_rdonly(sb)) 2935 return 0; 2936 } 2937 if (inode_table >= sb_block + 1 && 2938 inode_table <= last_bg_block) { 2939 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2940 "Inode table for group %u overlaps " 2941 "block group descriptors", i); 2942 if (!sb_rdonly(sb)) 2943 return 0; 2944 } 2945 if (inode_table < first_block || 2946 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2947 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2948 "Inode table for group %u not in group " 2949 "(block %llu)!", i, inode_table); 2950 return 0; 2951 } 2952 ext4_lock_group(sb, i); 2953 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2954 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2955 "Checksum for group %u failed (%u!=%u)", 2956 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2957 gdp)), le16_to_cpu(gdp->bg_checksum)); 2958 if (!sb_rdonly(sb)) { 2959 ext4_unlock_group(sb, i); 2960 return 0; 2961 } 2962 } 2963 ext4_unlock_group(sb, i); 2964 if (!flexbg_flag) 2965 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2966 } 2967 if (NULL != first_not_zeroed) 2968 *first_not_zeroed = grp; 2969 return 1; 2970 } 2971 2972 /* 2973 * Maximal extent format file size. 2974 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2975 * extent format containers, within a sector_t, and within i_blocks 2976 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2977 * so that won't be a limiting factor. 2978 * 2979 * However there is other limiting factor. We do store extents in the form 2980 * of starting block and length, hence the resulting length of the extent 2981 * covering maximum file size must fit into on-disk format containers as 2982 * well. Given that length is always by 1 unit bigger than max unit (because 2983 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2984 * 2985 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2986 */ 2987 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2988 { 2989 loff_t res; 2990 loff_t upper_limit = MAX_LFS_FILESIZE; 2991 2992 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64)); 2993 2994 if (!has_huge_files) { 2995 upper_limit = (1LL << 32) - 1; 2996 2997 /* total blocks in file system block size */ 2998 upper_limit >>= (blkbits - 9); 2999 upper_limit <<= blkbits; 3000 } 3001 3002 /* 3003 * 32-bit extent-start container, ee_block. We lower the maxbytes 3004 * by one fs block, so ee_len can cover the extent of maximum file 3005 * size 3006 */ 3007 res = (1LL << 32) - 1; 3008 res <<= blkbits; 3009 3010 /* Sanity check against vm- & vfs- imposed limits */ 3011 if (res > upper_limit) 3012 res = upper_limit; 3013 3014 return res; 3015 } 3016 3017 /* 3018 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 3019 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 3020 * We need to be 1 filesystem block less than the 2^48 sector limit. 3021 */ 3022 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 3023 { 3024 loff_t res = EXT4_NDIR_BLOCKS; 3025 int meta_blocks; 3026 loff_t upper_limit; 3027 /* This is calculated to be the largest file size for a dense, block 3028 * mapped file such that the file's total number of 512-byte sectors, 3029 * including data and all indirect blocks, does not exceed (2^48 - 1). 3030 * 3031 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 3032 * number of 512-byte sectors of the file. 3033 */ 3034 3035 if (!has_huge_files) { 3036 /* 3037 * !has_huge_files or implies that the inode i_block field 3038 * represents total file blocks in 2^32 512-byte sectors == 3039 * size of vfs inode i_blocks * 8 3040 */ 3041 upper_limit = (1LL << 32) - 1; 3042 3043 /* total blocks in file system block size */ 3044 upper_limit >>= (bits - 9); 3045 3046 } else { 3047 /* 3048 * We use 48 bit ext4_inode i_blocks 3049 * With EXT4_HUGE_FILE_FL set the i_blocks 3050 * represent total number of blocks in 3051 * file system block size 3052 */ 3053 upper_limit = (1LL << 48) - 1; 3054 3055 } 3056 3057 /* indirect blocks */ 3058 meta_blocks = 1; 3059 /* double indirect blocks */ 3060 meta_blocks += 1 + (1LL << (bits-2)); 3061 /* tripple indirect blocks */ 3062 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 3063 3064 upper_limit -= meta_blocks; 3065 upper_limit <<= bits; 3066 3067 res += 1LL << (bits-2); 3068 res += 1LL << (2*(bits-2)); 3069 res += 1LL << (3*(bits-2)); 3070 res <<= bits; 3071 if (res > upper_limit) 3072 res = upper_limit; 3073 3074 if (res > MAX_LFS_FILESIZE) 3075 res = MAX_LFS_FILESIZE; 3076 3077 return res; 3078 } 3079 3080 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 3081 ext4_fsblk_t logical_sb_block, int nr) 3082 { 3083 struct ext4_sb_info *sbi = EXT4_SB(sb); 3084 ext4_group_t bg, first_meta_bg; 3085 int has_super = 0; 3086 3087 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 3088 3089 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 3090 return logical_sb_block + nr + 1; 3091 bg = sbi->s_desc_per_block * nr; 3092 if (ext4_bg_has_super(sb, bg)) 3093 has_super = 1; 3094 3095 /* 3096 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 3097 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 3098 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 3099 * compensate. 3100 */ 3101 if (sb->s_blocksize == 1024 && nr == 0 && 3102 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 3103 has_super++; 3104 3105 return (has_super + ext4_group_first_block_no(sb, bg)); 3106 } 3107 3108 /** 3109 * ext4_get_stripe_size: Get the stripe size. 3110 * @sbi: In memory super block info 3111 * 3112 * If we have specified it via mount option, then 3113 * use the mount option value. If the value specified at mount time is 3114 * greater than the blocks per group use the super block value. 3115 * If the super block value is greater than blocks per group return 0. 3116 * Allocator needs it be less than blocks per group. 3117 * 3118 */ 3119 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 3120 { 3121 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 3122 unsigned long stripe_width = 3123 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 3124 int ret; 3125 3126 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 3127 ret = sbi->s_stripe; 3128 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 3129 ret = stripe_width; 3130 else if (stride && stride <= sbi->s_blocks_per_group) 3131 ret = stride; 3132 else 3133 ret = 0; 3134 3135 /* 3136 * If the stripe width is 1, this makes no sense and 3137 * we set it to 0 to turn off stripe handling code. 3138 */ 3139 if (ret <= 1) 3140 ret = 0; 3141 3142 return ret; 3143 } 3144 3145 /* 3146 * Check whether this filesystem can be mounted based on 3147 * the features present and the RDONLY/RDWR mount requested. 3148 * Returns 1 if this filesystem can be mounted as requested, 3149 * 0 if it cannot be. 3150 */ 3151 int ext4_feature_set_ok(struct super_block *sb, int readonly) 3152 { 3153 if (ext4_has_unknown_ext4_incompat_features(sb)) { 3154 ext4_msg(sb, KERN_ERR, 3155 "Couldn't mount because of " 3156 "unsupported optional features (%x)", 3157 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 3158 ~EXT4_FEATURE_INCOMPAT_SUPP)); 3159 return 0; 3160 } 3161 3162 #ifndef CONFIG_UNICODE 3163 if (ext4_has_feature_casefold(sb)) { 3164 ext4_msg(sb, KERN_ERR, 3165 "Filesystem with casefold feature cannot be " 3166 "mounted without CONFIG_UNICODE"); 3167 return 0; 3168 } 3169 #endif 3170 3171 if (readonly) 3172 return 1; 3173 3174 if (ext4_has_feature_readonly(sb)) { 3175 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 3176 sb->s_flags |= SB_RDONLY; 3177 return 1; 3178 } 3179 3180 /* Check that feature set is OK for a read-write mount */ 3181 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 3182 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 3183 "unsupported optional features (%x)", 3184 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 3185 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 3186 return 0; 3187 } 3188 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 3189 ext4_msg(sb, KERN_ERR, 3190 "Can't support bigalloc feature without " 3191 "extents feature\n"); 3192 return 0; 3193 } 3194 3195 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2) 3196 if (!readonly && (ext4_has_feature_quota(sb) || 3197 ext4_has_feature_project(sb))) { 3198 ext4_msg(sb, KERN_ERR, 3199 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2"); 3200 return 0; 3201 } 3202 #endif /* CONFIG_QUOTA */ 3203 return 1; 3204 } 3205 3206 /* 3207 * This function is called once a day if we have errors logged 3208 * on the file system 3209 */ 3210 static void print_daily_error_info(struct timer_list *t) 3211 { 3212 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 3213 struct super_block *sb = sbi->s_sb; 3214 struct ext4_super_block *es = sbi->s_es; 3215 3216 if (es->s_error_count) 3217 /* fsck newer than v1.41.13 is needed to clean this condition. */ 3218 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 3219 le32_to_cpu(es->s_error_count)); 3220 if (es->s_first_error_time) { 3221 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 3222 sb->s_id, 3223 ext4_get_tstamp(es, s_first_error_time), 3224 (int) sizeof(es->s_first_error_func), 3225 es->s_first_error_func, 3226 le32_to_cpu(es->s_first_error_line)); 3227 if (es->s_first_error_ino) 3228 printk(KERN_CONT ": inode %u", 3229 le32_to_cpu(es->s_first_error_ino)); 3230 if (es->s_first_error_block) 3231 printk(KERN_CONT ": block %llu", (unsigned long long) 3232 le64_to_cpu(es->s_first_error_block)); 3233 printk(KERN_CONT "\n"); 3234 } 3235 if (es->s_last_error_time) { 3236 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 3237 sb->s_id, 3238 ext4_get_tstamp(es, s_last_error_time), 3239 (int) sizeof(es->s_last_error_func), 3240 es->s_last_error_func, 3241 le32_to_cpu(es->s_last_error_line)); 3242 if (es->s_last_error_ino) 3243 printk(KERN_CONT ": inode %u", 3244 le32_to_cpu(es->s_last_error_ino)); 3245 if (es->s_last_error_block) 3246 printk(KERN_CONT ": block %llu", (unsigned long long) 3247 le64_to_cpu(es->s_last_error_block)); 3248 printk(KERN_CONT "\n"); 3249 } 3250 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 3251 } 3252 3253 /* Find next suitable group and run ext4_init_inode_table */ 3254 static int ext4_run_li_request(struct ext4_li_request *elr) 3255 { 3256 struct ext4_group_desc *gdp = NULL; 3257 struct super_block *sb = elr->lr_super; 3258 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 3259 ext4_group_t group = elr->lr_next_group; 3260 unsigned long timeout = 0; 3261 unsigned int prefetch_ios = 0; 3262 int ret = 0; 3263 3264 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) { 3265 elr->lr_next_group = ext4_mb_prefetch(sb, group, 3266 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios); 3267 if (prefetch_ios) 3268 ext4_mb_prefetch_fini(sb, elr->lr_next_group, 3269 prefetch_ios); 3270 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, 3271 prefetch_ios); 3272 if (group >= elr->lr_next_group) { 3273 ret = 1; 3274 if (elr->lr_first_not_zeroed != ngroups && 3275 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) { 3276 elr->lr_next_group = elr->lr_first_not_zeroed; 3277 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3278 ret = 0; 3279 } 3280 } 3281 return ret; 3282 } 3283 3284 for (; group < ngroups; group++) { 3285 gdp = ext4_get_group_desc(sb, group, NULL); 3286 if (!gdp) { 3287 ret = 1; 3288 break; 3289 } 3290 3291 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3292 break; 3293 } 3294 3295 if (group >= ngroups) 3296 ret = 1; 3297 3298 if (!ret) { 3299 timeout = jiffies; 3300 ret = ext4_init_inode_table(sb, group, 3301 elr->lr_timeout ? 0 : 1); 3302 trace_ext4_lazy_itable_init(sb, group); 3303 if (elr->lr_timeout == 0) { 3304 timeout = (jiffies - timeout) * 3305 EXT4_SB(elr->lr_super)->s_li_wait_mult; 3306 elr->lr_timeout = timeout; 3307 } 3308 elr->lr_next_sched = jiffies + elr->lr_timeout; 3309 elr->lr_next_group = group + 1; 3310 } 3311 return ret; 3312 } 3313 3314 /* 3315 * Remove lr_request from the list_request and free the 3316 * request structure. Should be called with li_list_mtx held 3317 */ 3318 static void ext4_remove_li_request(struct ext4_li_request *elr) 3319 { 3320 if (!elr) 3321 return; 3322 3323 list_del(&elr->lr_request); 3324 EXT4_SB(elr->lr_super)->s_li_request = NULL; 3325 kfree(elr); 3326 } 3327 3328 static void ext4_unregister_li_request(struct super_block *sb) 3329 { 3330 mutex_lock(&ext4_li_mtx); 3331 if (!ext4_li_info) { 3332 mutex_unlock(&ext4_li_mtx); 3333 return; 3334 } 3335 3336 mutex_lock(&ext4_li_info->li_list_mtx); 3337 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3338 mutex_unlock(&ext4_li_info->li_list_mtx); 3339 mutex_unlock(&ext4_li_mtx); 3340 } 3341 3342 static struct task_struct *ext4_lazyinit_task; 3343 3344 /* 3345 * This is the function where ext4lazyinit thread lives. It walks 3346 * through the request list searching for next scheduled filesystem. 3347 * When such a fs is found, run the lazy initialization request 3348 * (ext4_rn_li_request) and keep track of the time spend in this 3349 * function. Based on that time we compute next schedule time of 3350 * the request. When walking through the list is complete, compute 3351 * next waking time and put itself into sleep. 3352 */ 3353 static int ext4_lazyinit_thread(void *arg) 3354 { 3355 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3356 struct list_head *pos, *n; 3357 struct ext4_li_request *elr; 3358 unsigned long next_wakeup, cur; 3359 3360 BUG_ON(NULL == eli); 3361 3362 cont_thread: 3363 while (true) { 3364 next_wakeup = MAX_JIFFY_OFFSET; 3365 3366 mutex_lock(&eli->li_list_mtx); 3367 if (list_empty(&eli->li_request_list)) { 3368 mutex_unlock(&eli->li_list_mtx); 3369 goto exit_thread; 3370 } 3371 list_for_each_safe(pos, n, &eli->li_request_list) { 3372 int err = 0; 3373 int progress = 0; 3374 elr = list_entry(pos, struct ext4_li_request, 3375 lr_request); 3376 3377 if (time_before(jiffies, elr->lr_next_sched)) { 3378 if (time_before(elr->lr_next_sched, next_wakeup)) 3379 next_wakeup = elr->lr_next_sched; 3380 continue; 3381 } 3382 if (down_read_trylock(&elr->lr_super->s_umount)) { 3383 if (sb_start_write_trylock(elr->lr_super)) { 3384 progress = 1; 3385 /* 3386 * We hold sb->s_umount, sb can not 3387 * be removed from the list, it is 3388 * now safe to drop li_list_mtx 3389 */ 3390 mutex_unlock(&eli->li_list_mtx); 3391 err = ext4_run_li_request(elr); 3392 sb_end_write(elr->lr_super); 3393 mutex_lock(&eli->li_list_mtx); 3394 n = pos->next; 3395 } 3396 up_read((&elr->lr_super->s_umount)); 3397 } 3398 /* error, remove the lazy_init job */ 3399 if (err) { 3400 ext4_remove_li_request(elr); 3401 continue; 3402 } 3403 if (!progress) { 3404 elr->lr_next_sched = jiffies + 3405 (prandom_u32() 3406 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3407 } 3408 if (time_before(elr->lr_next_sched, next_wakeup)) 3409 next_wakeup = elr->lr_next_sched; 3410 } 3411 mutex_unlock(&eli->li_list_mtx); 3412 3413 try_to_freeze(); 3414 3415 cur = jiffies; 3416 if ((time_after_eq(cur, next_wakeup)) || 3417 (MAX_JIFFY_OFFSET == next_wakeup)) { 3418 cond_resched(); 3419 continue; 3420 } 3421 3422 schedule_timeout_interruptible(next_wakeup - cur); 3423 3424 if (kthread_should_stop()) { 3425 ext4_clear_request_list(); 3426 goto exit_thread; 3427 } 3428 } 3429 3430 exit_thread: 3431 /* 3432 * It looks like the request list is empty, but we need 3433 * to check it under the li_list_mtx lock, to prevent any 3434 * additions into it, and of course we should lock ext4_li_mtx 3435 * to atomically free the list and ext4_li_info, because at 3436 * this point another ext4 filesystem could be registering 3437 * new one. 3438 */ 3439 mutex_lock(&ext4_li_mtx); 3440 mutex_lock(&eli->li_list_mtx); 3441 if (!list_empty(&eli->li_request_list)) { 3442 mutex_unlock(&eli->li_list_mtx); 3443 mutex_unlock(&ext4_li_mtx); 3444 goto cont_thread; 3445 } 3446 mutex_unlock(&eli->li_list_mtx); 3447 kfree(ext4_li_info); 3448 ext4_li_info = NULL; 3449 mutex_unlock(&ext4_li_mtx); 3450 3451 return 0; 3452 } 3453 3454 static void ext4_clear_request_list(void) 3455 { 3456 struct list_head *pos, *n; 3457 struct ext4_li_request *elr; 3458 3459 mutex_lock(&ext4_li_info->li_list_mtx); 3460 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3461 elr = list_entry(pos, struct ext4_li_request, 3462 lr_request); 3463 ext4_remove_li_request(elr); 3464 } 3465 mutex_unlock(&ext4_li_info->li_list_mtx); 3466 } 3467 3468 static int ext4_run_lazyinit_thread(void) 3469 { 3470 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3471 ext4_li_info, "ext4lazyinit"); 3472 if (IS_ERR(ext4_lazyinit_task)) { 3473 int err = PTR_ERR(ext4_lazyinit_task); 3474 ext4_clear_request_list(); 3475 kfree(ext4_li_info); 3476 ext4_li_info = NULL; 3477 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3478 "initialization thread\n", 3479 err); 3480 return err; 3481 } 3482 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3483 return 0; 3484 } 3485 3486 /* 3487 * Check whether it make sense to run itable init. thread or not. 3488 * If there is at least one uninitialized inode table, return 3489 * corresponding group number, else the loop goes through all 3490 * groups and return total number of groups. 3491 */ 3492 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3493 { 3494 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3495 struct ext4_group_desc *gdp = NULL; 3496 3497 if (!ext4_has_group_desc_csum(sb)) 3498 return ngroups; 3499 3500 for (group = 0; group < ngroups; group++) { 3501 gdp = ext4_get_group_desc(sb, group, NULL); 3502 if (!gdp) 3503 continue; 3504 3505 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3506 break; 3507 } 3508 3509 return group; 3510 } 3511 3512 static int ext4_li_info_new(void) 3513 { 3514 struct ext4_lazy_init *eli = NULL; 3515 3516 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3517 if (!eli) 3518 return -ENOMEM; 3519 3520 INIT_LIST_HEAD(&eli->li_request_list); 3521 mutex_init(&eli->li_list_mtx); 3522 3523 eli->li_state |= EXT4_LAZYINIT_QUIT; 3524 3525 ext4_li_info = eli; 3526 3527 return 0; 3528 } 3529 3530 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3531 ext4_group_t start) 3532 { 3533 struct ext4_li_request *elr; 3534 3535 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3536 if (!elr) 3537 return NULL; 3538 3539 elr->lr_super = sb; 3540 elr->lr_first_not_zeroed = start; 3541 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) { 3542 elr->lr_mode = EXT4_LI_MODE_ITABLE; 3543 elr->lr_next_group = start; 3544 } else { 3545 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP; 3546 } 3547 3548 /* 3549 * Randomize first schedule time of the request to 3550 * spread the inode table initialization requests 3551 * better. 3552 */ 3553 elr->lr_next_sched = jiffies + (prandom_u32() % 3554 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3555 return elr; 3556 } 3557 3558 int ext4_register_li_request(struct super_block *sb, 3559 ext4_group_t first_not_zeroed) 3560 { 3561 struct ext4_sb_info *sbi = EXT4_SB(sb); 3562 struct ext4_li_request *elr = NULL; 3563 ext4_group_t ngroups = sbi->s_groups_count; 3564 int ret = 0; 3565 3566 mutex_lock(&ext4_li_mtx); 3567 if (sbi->s_li_request != NULL) { 3568 /* 3569 * Reset timeout so it can be computed again, because 3570 * s_li_wait_mult might have changed. 3571 */ 3572 sbi->s_li_request->lr_timeout = 0; 3573 goto out; 3574 } 3575 3576 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) && 3577 (first_not_zeroed == ngroups || sb_rdonly(sb) || 3578 !test_opt(sb, INIT_INODE_TABLE))) 3579 goto out; 3580 3581 elr = ext4_li_request_new(sb, first_not_zeroed); 3582 if (!elr) { 3583 ret = -ENOMEM; 3584 goto out; 3585 } 3586 3587 if (NULL == ext4_li_info) { 3588 ret = ext4_li_info_new(); 3589 if (ret) 3590 goto out; 3591 } 3592 3593 mutex_lock(&ext4_li_info->li_list_mtx); 3594 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3595 mutex_unlock(&ext4_li_info->li_list_mtx); 3596 3597 sbi->s_li_request = elr; 3598 /* 3599 * set elr to NULL here since it has been inserted to 3600 * the request_list and the removal and free of it is 3601 * handled by ext4_clear_request_list from now on. 3602 */ 3603 elr = NULL; 3604 3605 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3606 ret = ext4_run_lazyinit_thread(); 3607 if (ret) 3608 goto out; 3609 } 3610 out: 3611 mutex_unlock(&ext4_li_mtx); 3612 if (ret) 3613 kfree(elr); 3614 return ret; 3615 } 3616 3617 /* 3618 * We do not need to lock anything since this is called on 3619 * module unload. 3620 */ 3621 static void ext4_destroy_lazyinit_thread(void) 3622 { 3623 /* 3624 * If thread exited earlier 3625 * there's nothing to be done. 3626 */ 3627 if (!ext4_li_info || !ext4_lazyinit_task) 3628 return; 3629 3630 kthread_stop(ext4_lazyinit_task); 3631 } 3632 3633 static int set_journal_csum_feature_set(struct super_block *sb) 3634 { 3635 int ret = 1; 3636 int compat, incompat; 3637 struct ext4_sb_info *sbi = EXT4_SB(sb); 3638 3639 if (ext4_has_metadata_csum(sb)) { 3640 /* journal checksum v3 */ 3641 compat = 0; 3642 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3643 } else { 3644 /* journal checksum v1 */ 3645 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3646 incompat = 0; 3647 } 3648 3649 jbd2_journal_clear_features(sbi->s_journal, 3650 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3651 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3652 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3653 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3654 ret = jbd2_journal_set_features(sbi->s_journal, 3655 compat, 0, 3656 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3657 incompat); 3658 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3659 ret = jbd2_journal_set_features(sbi->s_journal, 3660 compat, 0, 3661 incompat); 3662 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3663 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3664 } else { 3665 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3666 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3667 } 3668 3669 return ret; 3670 } 3671 3672 /* 3673 * Note: calculating the overhead so we can be compatible with 3674 * historical BSD practice is quite difficult in the face of 3675 * clusters/bigalloc. This is because multiple metadata blocks from 3676 * different block group can end up in the same allocation cluster. 3677 * Calculating the exact overhead in the face of clustered allocation 3678 * requires either O(all block bitmaps) in memory or O(number of block 3679 * groups**2) in time. We will still calculate the superblock for 3680 * older file systems --- and if we come across with a bigalloc file 3681 * system with zero in s_overhead_clusters the estimate will be close to 3682 * correct especially for very large cluster sizes --- but for newer 3683 * file systems, it's better to calculate this figure once at mkfs 3684 * time, and store it in the superblock. If the superblock value is 3685 * present (even for non-bigalloc file systems), we will use it. 3686 */ 3687 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3688 char *buf) 3689 { 3690 struct ext4_sb_info *sbi = EXT4_SB(sb); 3691 struct ext4_group_desc *gdp; 3692 ext4_fsblk_t first_block, last_block, b; 3693 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3694 int s, j, count = 0; 3695 3696 if (!ext4_has_feature_bigalloc(sb)) 3697 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3698 sbi->s_itb_per_group + 2); 3699 3700 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3701 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3702 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3703 for (i = 0; i < ngroups; i++) { 3704 gdp = ext4_get_group_desc(sb, i, NULL); 3705 b = ext4_block_bitmap(sb, gdp); 3706 if (b >= first_block && b <= last_block) { 3707 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3708 count++; 3709 } 3710 b = ext4_inode_bitmap(sb, gdp); 3711 if (b >= first_block && b <= last_block) { 3712 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3713 count++; 3714 } 3715 b = ext4_inode_table(sb, gdp); 3716 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3717 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3718 int c = EXT4_B2C(sbi, b - first_block); 3719 ext4_set_bit(c, buf); 3720 count++; 3721 } 3722 if (i != grp) 3723 continue; 3724 s = 0; 3725 if (ext4_bg_has_super(sb, grp)) { 3726 ext4_set_bit(s++, buf); 3727 count++; 3728 } 3729 j = ext4_bg_num_gdb(sb, grp); 3730 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3731 ext4_error(sb, "Invalid number of block group " 3732 "descriptor blocks: %d", j); 3733 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3734 } 3735 count += j; 3736 for (; j > 0; j--) 3737 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3738 } 3739 if (!count) 3740 return 0; 3741 return EXT4_CLUSTERS_PER_GROUP(sb) - 3742 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3743 } 3744 3745 /* 3746 * Compute the overhead and stash it in sbi->s_overhead 3747 */ 3748 int ext4_calculate_overhead(struct super_block *sb) 3749 { 3750 struct ext4_sb_info *sbi = EXT4_SB(sb); 3751 struct ext4_super_block *es = sbi->s_es; 3752 struct inode *j_inode; 3753 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3754 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3755 ext4_fsblk_t overhead = 0; 3756 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3757 3758 if (!buf) 3759 return -ENOMEM; 3760 3761 /* 3762 * Compute the overhead (FS structures). This is constant 3763 * for a given filesystem unless the number of block groups 3764 * changes so we cache the previous value until it does. 3765 */ 3766 3767 /* 3768 * All of the blocks before first_data_block are overhead 3769 */ 3770 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3771 3772 /* 3773 * Add the overhead found in each block group 3774 */ 3775 for (i = 0; i < ngroups; i++) { 3776 int blks; 3777 3778 blks = count_overhead(sb, i, buf); 3779 overhead += blks; 3780 if (blks) 3781 memset(buf, 0, PAGE_SIZE); 3782 cond_resched(); 3783 } 3784 3785 /* 3786 * Add the internal journal blocks whether the journal has been 3787 * loaded or not 3788 */ 3789 if (sbi->s_journal && !sbi->s_journal_bdev) 3790 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len); 3791 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) { 3792 /* j_inum for internal journal is non-zero */ 3793 j_inode = ext4_get_journal_inode(sb, j_inum); 3794 if (j_inode) { 3795 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3796 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3797 iput(j_inode); 3798 } else { 3799 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3800 } 3801 } 3802 sbi->s_overhead = overhead; 3803 smp_wmb(); 3804 free_page((unsigned long) buf); 3805 return 0; 3806 } 3807 3808 static void ext4_set_resv_clusters(struct super_block *sb) 3809 { 3810 ext4_fsblk_t resv_clusters; 3811 struct ext4_sb_info *sbi = EXT4_SB(sb); 3812 3813 /* 3814 * There's no need to reserve anything when we aren't using extents. 3815 * The space estimates are exact, there are no unwritten extents, 3816 * hole punching doesn't need new metadata... This is needed especially 3817 * to keep ext2/3 backward compatibility. 3818 */ 3819 if (!ext4_has_feature_extents(sb)) 3820 return; 3821 /* 3822 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3823 * This should cover the situations where we can not afford to run 3824 * out of space like for example punch hole, or converting 3825 * unwritten extents in delalloc path. In most cases such 3826 * allocation would require 1, or 2 blocks, higher numbers are 3827 * very rare. 3828 */ 3829 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3830 sbi->s_cluster_bits); 3831 3832 do_div(resv_clusters, 50); 3833 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3834 3835 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3836 } 3837 3838 static const char *ext4_quota_mode(struct super_block *sb) 3839 { 3840 #ifdef CONFIG_QUOTA 3841 if (!ext4_quota_capable(sb)) 3842 return "none"; 3843 3844 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb)) 3845 return "journalled"; 3846 else 3847 return "writeback"; 3848 #else 3849 return "disabled"; 3850 #endif 3851 } 3852 3853 static void ext4_setup_csum_trigger(struct super_block *sb, 3854 enum ext4_journal_trigger_type type, 3855 void (*trigger)( 3856 struct jbd2_buffer_trigger_type *type, 3857 struct buffer_head *bh, 3858 void *mapped_data, 3859 size_t size)) 3860 { 3861 struct ext4_sb_info *sbi = EXT4_SB(sb); 3862 3863 sbi->s_journal_triggers[type].sb = sb; 3864 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger; 3865 } 3866 3867 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3868 { 3869 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3870 char *orig_data = kstrdup(data, GFP_KERNEL); 3871 struct buffer_head *bh, **group_desc; 3872 struct ext4_super_block *es = NULL; 3873 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3874 struct flex_groups **flex_groups; 3875 ext4_fsblk_t block; 3876 ext4_fsblk_t sb_block = get_sb_block(&data); 3877 ext4_fsblk_t logical_sb_block; 3878 unsigned long offset = 0; 3879 unsigned long def_mount_opts; 3880 struct inode *root; 3881 const char *descr; 3882 int ret = -ENOMEM; 3883 int blocksize, clustersize; 3884 unsigned int db_count; 3885 unsigned int i; 3886 int needs_recovery, has_huge_files; 3887 __u64 blocks_count; 3888 int err = 0; 3889 ext4_group_t first_not_zeroed; 3890 struct ext4_parsed_options parsed_opts; 3891 3892 /* Set defaults for the variables that will be set during parsing */ 3893 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3894 parsed_opts.journal_devnum = 0; 3895 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN; 3896 3897 if ((data && !orig_data) || !sbi) 3898 goto out_free_base; 3899 3900 sbi->s_daxdev = dax_dev; 3901 sbi->s_blockgroup_lock = 3902 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3903 if (!sbi->s_blockgroup_lock) 3904 goto out_free_base; 3905 3906 sb->s_fs_info = sbi; 3907 sbi->s_sb = sb; 3908 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3909 sbi->s_sb_block = sb_block; 3910 sbi->s_sectors_written_start = 3911 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]); 3912 3913 /* Cleanup superblock name */ 3914 strreplace(sb->s_id, '/', '!'); 3915 3916 /* -EINVAL is default */ 3917 ret = -EINVAL; 3918 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3919 if (!blocksize) { 3920 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3921 goto out_fail; 3922 } 3923 3924 /* 3925 * The ext4 superblock will not be buffer aligned for other than 1kB 3926 * block sizes. We need to calculate the offset from buffer start. 3927 */ 3928 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3929 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3930 offset = do_div(logical_sb_block, blocksize); 3931 } else { 3932 logical_sb_block = sb_block; 3933 } 3934 3935 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 3936 if (IS_ERR(bh)) { 3937 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3938 ret = PTR_ERR(bh); 3939 goto out_fail; 3940 } 3941 /* 3942 * Note: s_es must be initialized as soon as possible because 3943 * some ext4 macro-instructions depend on its value 3944 */ 3945 es = (struct ext4_super_block *) (bh->b_data + offset); 3946 sbi->s_es = es; 3947 sb->s_magic = le16_to_cpu(es->s_magic); 3948 if (sb->s_magic != EXT4_SUPER_MAGIC) 3949 goto cantfind_ext4; 3950 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3951 3952 /* Warn if metadata_csum and gdt_csum are both set. */ 3953 if (ext4_has_feature_metadata_csum(sb) && 3954 ext4_has_feature_gdt_csum(sb)) 3955 ext4_warning(sb, "metadata_csum and uninit_bg are " 3956 "redundant flags; please run fsck."); 3957 3958 /* Check for a known checksum algorithm */ 3959 if (!ext4_verify_csum_type(sb, es)) { 3960 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3961 "unknown checksum algorithm."); 3962 silent = 1; 3963 goto cantfind_ext4; 3964 } 3965 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE, 3966 ext4_orphan_file_block_trigger); 3967 3968 /* Load the checksum driver */ 3969 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3970 if (IS_ERR(sbi->s_chksum_driver)) { 3971 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3972 ret = PTR_ERR(sbi->s_chksum_driver); 3973 sbi->s_chksum_driver = NULL; 3974 goto failed_mount; 3975 } 3976 3977 /* Check superblock checksum */ 3978 if (!ext4_superblock_csum_verify(sb, es)) { 3979 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3980 "invalid superblock checksum. Run e2fsck?"); 3981 silent = 1; 3982 ret = -EFSBADCRC; 3983 goto cantfind_ext4; 3984 } 3985 3986 /* Precompute checksum seed for all metadata */ 3987 if (ext4_has_feature_csum_seed(sb)) 3988 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3989 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3990 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3991 sizeof(es->s_uuid)); 3992 3993 /* Set defaults before we parse the mount options */ 3994 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3995 set_opt(sb, INIT_INODE_TABLE); 3996 if (def_mount_opts & EXT4_DEFM_DEBUG) 3997 set_opt(sb, DEBUG); 3998 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3999 set_opt(sb, GRPID); 4000 if (def_mount_opts & EXT4_DEFM_UID16) 4001 set_opt(sb, NO_UID32); 4002 /* xattr user namespace & acls are now defaulted on */ 4003 set_opt(sb, XATTR_USER); 4004 #ifdef CONFIG_EXT4_FS_POSIX_ACL 4005 set_opt(sb, POSIX_ACL); 4006 #endif 4007 if (ext4_has_feature_fast_commit(sb)) 4008 set_opt2(sb, JOURNAL_FAST_COMMIT); 4009 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 4010 if (ext4_has_metadata_csum(sb)) 4011 set_opt(sb, JOURNAL_CHECKSUM); 4012 4013 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 4014 set_opt(sb, JOURNAL_DATA); 4015 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 4016 set_opt(sb, ORDERED_DATA); 4017 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 4018 set_opt(sb, WRITEBACK_DATA); 4019 4020 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 4021 set_opt(sb, ERRORS_PANIC); 4022 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 4023 set_opt(sb, ERRORS_CONT); 4024 else 4025 set_opt(sb, ERRORS_RO); 4026 /* block_validity enabled by default; disable with noblock_validity */ 4027 set_opt(sb, BLOCK_VALIDITY); 4028 if (def_mount_opts & EXT4_DEFM_DISCARD) 4029 set_opt(sb, DISCARD); 4030 4031 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 4032 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 4033 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 4034 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 4035 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 4036 4037 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 4038 set_opt(sb, BARRIER); 4039 4040 /* 4041 * enable delayed allocation by default 4042 * Use -o nodelalloc to turn it off 4043 */ 4044 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 4045 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 4046 set_opt(sb, DELALLOC); 4047 4048 /* 4049 * set default s_li_wait_mult for lazyinit, for the case there is 4050 * no mount option specified. 4051 */ 4052 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 4053 4054 if (le32_to_cpu(es->s_log_block_size) > 4055 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4056 ext4_msg(sb, KERN_ERR, 4057 "Invalid log block size: %u", 4058 le32_to_cpu(es->s_log_block_size)); 4059 goto failed_mount; 4060 } 4061 if (le32_to_cpu(es->s_log_cluster_size) > 4062 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 4063 ext4_msg(sb, KERN_ERR, 4064 "Invalid log cluster size: %u", 4065 le32_to_cpu(es->s_log_cluster_size)); 4066 goto failed_mount; 4067 } 4068 4069 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 4070 4071 if (blocksize == PAGE_SIZE) 4072 set_opt(sb, DIOREAD_NOLOCK); 4073 4074 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 4075 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 4076 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 4077 } else { 4078 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 4079 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 4080 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 4081 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 4082 sbi->s_first_ino); 4083 goto failed_mount; 4084 } 4085 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 4086 (!is_power_of_2(sbi->s_inode_size)) || 4087 (sbi->s_inode_size > blocksize)) { 4088 ext4_msg(sb, KERN_ERR, 4089 "unsupported inode size: %d", 4090 sbi->s_inode_size); 4091 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize); 4092 goto failed_mount; 4093 } 4094 /* 4095 * i_atime_extra is the last extra field available for 4096 * [acm]times in struct ext4_inode. Checking for that 4097 * field should suffice to ensure we have extra space 4098 * for all three. 4099 */ 4100 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) + 4101 sizeof(((struct ext4_inode *)0)->i_atime_extra)) { 4102 sb->s_time_gran = 1; 4103 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX; 4104 } else { 4105 sb->s_time_gran = NSEC_PER_SEC; 4106 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX; 4107 } 4108 sb->s_time_min = EXT4_TIMESTAMP_MIN; 4109 } 4110 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 4111 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4112 EXT4_GOOD_OLD_INODE_SIZE; 4113 if (ext4_has_feature_extra_isize(sb)) { 4114 unsigned v, max = (sbi->s_inode_size - 4115 EXT4_GOOD_OLD_INODE_SIZE); 4116 4117 v = le16_to_cpu(es->s_want_extra_isize); 4118 if (v > max) { 4119 ext4_msg(sb, KERN_ERR, 4120 "bad s_want_extra_isize: %d", v); 4121 goto failed_mount; 4122 } 4123 if (sbi->s_want_extra_isize < v) 4124 sbi->s_want_extra_isize = v; 4125 4126 v = le16_to_cpu(es->s_min_extra_isize); 4127 if (v > max) { 4128 ext4_msg(sb, KERN_ERR, 4129 "bad s_min_extra_isize: %d", v); 4130 goto failed_mount; 4131 } 4132 if (sbi->s_want_extra_isize < v) 4133 sbi->s_want_extra_isize = v; 4134 } 4135 } 4136 4137 if (sbi->s_es->s_mount_opts[0]) { 4138 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 4139 sizeof(sbi->s_es->s_mount_opts), 4140 GFP_KERNEL); 4141 if (!s_mount_opts) 4142 goto failed_mount; 4143 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) { 4144 ext4_msg(sb, KERN_WARNING, 4145 "failed to parse options in superblock: %s", 4146 s_mount_opts); 4147 } 4148 kfree(s_mount_opts); 4149 } 4150 sbi->s_def_mount_opt = sbi->s_mount_opt; 4151 if (!parse_options((char *) data, sb, &parsed_opts, 0)) 4152 goto failed_mount; 4153 4154 #ifdef CONFIG_UNICODE 4155 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) { 4156 const struct ext4_sb_encodings *encoding_info; 4157 struct unicode_map *encoding; 4158 __u16 encoding_flags; 4159 4160 if (ext4_sb_read_encoding(es, &encoding_info, 4161 &encoding_flags)) { 4162 ext4_msg(sb, KERN_ERR, 4163 "Encoding requested by superblock is unknown"); 4164 goto failed_mount; 4165 } 4166 4167 encoding = utf8_load(encoding_info->version); 4168 if (IS_ERR(encoding)) { 4169 ext4_msg(sb, KERN_ERR, 4170 "can't mount with superblock charset: %s-%s " 4171 "not supported by the kernel. flags: 0x%x.", 4172 encoding_info->name, encoding_info->version, 4173 encoding_flags); 4174 goto failed_mount; 4175 } 4176 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: " 4177 "%s-%s with flags 0x%hx", encoding_info->name, 4178 encoding_info->version?:"\b", encoding_flags); 4179 4180 sb->s_encoding = encoding; 4181 sb->s_encoding_flags = encoding_flags; 4182 } 4183 #endif 4184 4185 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4186 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n"); 4187 /* can't mount with both data=journal and dioread_nolock. */ 4188 clear_opt(sb, DIOREAD_NOLOCK); 4189 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4190 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4191 ext4_msg(sb, KERN_ERR, "can't mount with " 4192 "both data=journal and delalloc"); 4193 goto failed_mount; 4194 } 4195 if (test_opt(sb, DAX_ALWAYS)) { 4196 ext4_msg(sb, KERN_ERR, "can't mount with " 4197 "both data=journal and dax"); 4198 goto failed_mount; 4199 } 4200 if (ext4_has_feature_encrypt(sb)) { 4201 ext4_msg(sb, KERN_WARNING, 4202 "encrypted files will use data=ordered " 4203 "instead of data journaling mode"); 4204 } 4205 if (test_opt(sb, DELALLOC)) 4206 clear_opt(sb, DELALLOC); 4207 } else { 4208 sb->s_iflags |= SB_I_CGROUPWB; 4209 } 4210 4211 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4212 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 4213 4214 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 4215 (ext4_has_compat_features(sb) || 4216 ext4_has_ro_compat_features(sb) || 4217 ext4_has_incompat_features(sb))) 4218 ext4_msg(sb, KERN_WARNING, 4219 "feature flags set on rev 0 fs, " 4220 "running e2fsck is recommended"); 4221 4222 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 4223 set_opt2(sb, HURD_COMPAT); 4224 if (ext4_has_feature_64bit(sb)) { 4225 ext4_msg(sb, KERN_ERR, 4226 "The Hurd can't support 64-bit file systems"); 4227 goto failed_mount; 4228 } 4229 4230 /* 4231 * ea_inode feature uses l_i_version field which is not 4232 * available in HURD_COMPAT mode. 4233 */ 4234 if (ext4_has_feature_ea_inode(sb)) { 4235 ext4_msg(sb, KERN_ERR, 4236 "ea_inode feature is not supported for Hurd"); 4237 goto failed_mount; 4238 } 4239 } 4240 4241 if (IS_EXT2_SB(sb)) { 4242 if (ext2_feature_set_ok(sb)) 4243 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 4244 "using the ext4 subsystem"); 4245 else { 4246 /* 4247 * If we're probing be silent, if this looks like 4248 * it's actually an ext[34] filesystem. 4249 */ 4250 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4251 goto failed_mount; 4252 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 4253 "to feature incompatibilities"); 4254 goto failed_mount; 4255 } 4256 } 4257 4258 if (IS_EXT3_SB(sb)) { 4259 if (ext3_feature_set_ok(sb)) 4260 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 4261 "using the ext4 subsystem"); 4262 else { 4263 /* 4264 * If we're probing be silent, if this looks like 4265 * it's actually an ext4 filesystem. 4266 */ 4267 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 4268 goto failed_mount; 4269 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 4270 "to feature incompatibilities"); 4271 goto failed_mount; 4272 } 4273 } 4274 4275 /* 4276 * Check feature flags regardless of the revision level, since we 4277 * previously didn't change the revision level when setting the flags, 4278 * so there is a chance incompat flags are set on a rev 0 filesystem. 4279 */ 4280 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 4281 goto failed_mount; 4282 4283 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 4284 ext4_msg(sb, KERN_ERR, 4285 "Number of reserved GDT blocks insanely large: %d", 4286 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 4287 goto failed_mount; 4288 } 4289 4290 if (dax_supported(dax_dev, sb->s_bdev, blocksize, 0, 4291 bdev_nr_sectors(sb->s_bdev))) 4292 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags); 4293 4294 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) { 4295 if (ext4_has_feature_inline_data(sb)) { 4296 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 4297 " that may contain inline data"); 4298 goto failed_mount; 4299 } 4300 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) { 4301 ext4_msg(sb, KERN_ERR, 4302 "DAX unsupported by block device."); 4303 goto failed_mount; 4304 } 4305 } 4306 4307 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 4308 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 4309 es->s_encryption_level); 4310 goto failed_mount; 4311 } 4312 4313 if (sb->s_blocksize != blocksize) { 4314 /* 4315 * bh must be released before kill_bdev(), otherwise 4316 * it won't be freed and its page also. kill_bdev() 4317 * is called by sb_set_blocksize(). 4318 */ 4319 brelse(bh); 4320 /* Validate the filesystem blocksize */ 4321 if (!sb_set_blocksize(sb, blocksize)) { 4322 ext4_msg(sb, KERN_ERR, "bad block size %d", 4323 blocksize); 4324 bh = NULL; 4325 goto failed_mount; 4326 } 4327 4328 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 4329 offset = do_div(logical_sb_block, blocksize); 4330 bh = ext4_sb_bread_unmovable(sb, logical_sb_block); 4331 if (IS_ERR(bh)) { 4332 ext4_msg(sb, KERN_ERR, 4333 "Can't read superblock on 2nd try"); 4334 ret = PTR_ERR(bh); 4335 bh = NULL; 4336 goto failed_mount; 4337 } 4338 es = (struct ext4_super_block *)(bh->b_data + offset); 4339 sbi->s_es = es; 4340 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 4341 ext4_msg(sb, KERN_ERR, 4342 "Magic mismatch, very weird!"); 4343 goto failed_mount; 4344 } 4345 } 4346 4347 has_huge_files = ext4_has_feature_huge_file(sb); 4348 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 4349 has_huge_files); 4350 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 4351 4352 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 4353 if (ext4_has_feature_64bit(sb)) { 4354 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 4355 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 4356 !is_power_of_2(sbi->s_desc_size)) { 4357 ext4_msg(sb, KERN_ERR, 4358 "unsupported descriptor size %lu", 4359 sbi->s_desc_size); 4360 goto failed_mount; 4361 } 4362 } else 4363 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 4364 4365 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 4366 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 4367 4368 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 4369 if (sbi->s_inodes_per_block == 0) 4370 goto cantfind_ext4; 4371 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 4372 sbi->s_inodes_per_group > blocksize * 8) { 4373 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 4374 sbi->s_inodes_per_group); 4375 goto failed_mount; 4376 } 4377 sbi->s_itb_per_group = sbi->s_inodes_per_group / 4378 sbi->s_inodes_per_block; 4379 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 4380 sbi->s_sbh = bh; 4381 sbi->s_mount_state = le16_to_cpu(es->s_state); 4382 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 4383 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 4384 4385 for (i = 0; i < 4; i++) 4386 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 4387 sbi->s_def_hash_version = es->s_def_hash_version; 4388 if (ext4_has_feature_dir_index(sb)) { 4389 i = le32_to_cpu(es->s_flags); 4390 if (i & EXT2_FLAGS_UNSIGNED_HASH) 4391 sbi->s_hash_unsigned = 3; 4392 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 4393 #ifdef __CHAR_UNSIGNED__ 4394 if (!sb_rdonly(sb)) 4395 es->s_flags |= 4396 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 4397 sbi->s_hash_unsigned = 3; 4398 #else 4399 if (!sb_rdonly(sb)) 4400 es->s_flags |= 4401 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 4402 #endif 4403 } 4404 } 4405 4406 /* Handle clustersize */ 4407 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 4408 if (ext4_has_feature_bigalloc(sb)) { 4409 if (clustersize < blocksize) { 4410 ext4_msg(sb, KERN_ERR, 4411 "cluster size (%d) smaller than " 4412 "block size (%d)", clustersize, blocksize); 4413 goto failed_mount; 4414 } 4415 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 4416 le32_to_cpu(es->s_log_block_size); 4417 sbi->s_clusters_per_group = 4418 le32_to_cpu(es->s_clusters_per_group); 4419 if (sbi->s_clusters_per_group > blocksize * 8) { 4420 ext4_msg(sb, KERN_ERR, 4421 "#clusters per group too big: %lu", 4422 sbi->s_clusters_per_group); 4423 goto failed_mount; 4424 } 4425 if (sbi->s_blocks_per_group != 4426 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 4427 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 4428 "clusters per group (%lu) inconsistent", 4429 sbi->s_blocks_per_group, 4430 sbi->s_clusters_per_group); 4431 goto failed_mount; 4432 } 4433 } else { 4434 if (clustersize != blocksize) { 4435 ext4_msg(sb, KERN_ERR, 4436 "fragment/cluster size (%d) != " 4437 "block size (%d)", clustersize, blocksize); 4438 goto failed_mount; 4439 } 4440 if (sbi->s_blocks_per_group > blocksize * 8) { 4441 ext4_msg(sb, KERN_ERR, 4442 "#blocks per group too big: %lu", 4443 sbi->s_blocks_per_group); 4444 goto failed_mount; 4445 } 4446 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4447 sbi->s_cluster_bits = 0; 4448 } 4449 sbi->s_cluster_ratio = clustersize / blocksize; 4450 4451 /* Do we have standard group size of clustersize * 8 blocks ? */ 4452 if (sbi->s_blocks_per_group == clustersize << 3) 4453 set_opt2(sb, STD_GROUP_SIZE); 4454 4455 /* 4456 * Test whether we have more sectors than will fit in sector_t, 4457 * and whether the max offset is addressable by the page cache. 4458 */ 4459 err = generic_check_addressable(sb->s_blocksize_bits, 4460 ext4_blocks_count(es)); 4461 if (err) { 4462 ext4_msg(sb, KERN_ERR, "filesystem" 4463 " too large to mount safely on this system"); 4464 goto failed_mount; 4465 } 4466 4467 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4468 goto cantfind_ext4; 4469 4470 /* check blocks count against device size */ 4471 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4472 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4473 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4474 "exceeds size of device (%llu blocks)", 4475 ext4_blocks_count(es), blocks_count); 4476 goto failed_mount; 4477 } 4478 4479 /* 4480 * It makes no sense for the first data block to be beyond the end 4481 * of the filesystem. 4482 */ 4483 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4484 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4485 "block %u is beyond end of filesystem (%llu)", 4486 le32_to_cpu(es->s_first_data_block), 4487 ext4_blocks_count(es)); 4488 goto failed_mount; 4489 } 4490 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4491 (sbi->s_cluster_ratio == 1)) { 4492 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4493 "block is 0 with a 1k block and cluster size"); 4494 goto failed_mount; 4495 } 4496 4497 blocks_count = (ext4_blocks_count(es) - 4498 le32_to_cpu(es->s_first_data_block) + 4499 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4500 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4501 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4502 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu " 4503 "(block count %llu, first data block %u, " 4504 "blocks per group %lu)", blocks_count, 4505 ext4_blocks_count(es), 4506 le32_to_cpu(es->s_first_data_block), 4507 EXT4_BLOCKS_PER_GROUP(sb)); 4508 goto failed_mount; 4509 } 4510 sbi->s_groups_count = blocks_count; 4511 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4512 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4513 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4514 le32_to_cpu(es->s_inodes_count)) { 4515 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4516 le32_to_cpu(es->s_inodes_count), 4517 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4518 ret = -EINVAL; 4519 goto failed_mount; 4520 } 4521 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4522 EXT4_DESC_PER_BLOCK(sb); 4523 if (ext4_has_feature_meta_bg(sb)) { 4524 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4525 ext4_msg(sb, KERN_WARNING, 4526 "first meta block group too large: %u " 4527 "(group descriptor block count %u)", 4528 le32_to_cpu(es->s_first_meta_bg), db_count); 4529 goto failed_mount; 4530 } 4531 } 4532 rcu_assign_pointer(sbi->s_group_desc, 4533 kvmalloc_array(db_count, 4534 sizeof(struct buffer_head *), 4535 GFP_KERNEL)); 4536 if (sbi->s_group_desc == NULL) { 4537 ext4_msg(sb, KERN_ERR, "not enough memory"); 4538 ret = -ENOMEM; 4539 goto failed_mount; 4540 } 4541 4542 bgl_lock_init(sbi->s_blockgroup_lock); 4543 4544 /* Pre-read the descriptors into the buffer cache */ 4545 for (i = 0; i < db_count; i++) { 4546 block = descriptor_loc(sb, logical_sb_block, i); 4547 ext4_sb_breadahead_unmovable(sb, block); 4548 } 4549 4550 for (i = 0; i < db_count; i++) { 4551 struct buffer_head *bh; 4552 4553 block = descriptor_loc(sb, logical_sb_block, i); 4554 bh = ext4_sb_bread_unmovable(sb, block); 4555 if (IS_ERR(bh)) { 4556 ext4_msg(sb, KERN_ERR, 4557 "can't read group descriptor %d", i); 4558 db_count = i; 4559 ret = PTR_ERR(bh); 4560 goto failed_mount2; 4561 } 4562 rcu_read_lock(); 4563 rcu_dereference(sbi->s_group_desc)[i] = bh; 4564 rcu_read_unlock(); 4565 } 4566 sbi->s_gdb_count = db_count; 4567 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4568 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4569 ret = -EFSCORRUPTED; 4570 goto failed_mount2; 4571 } 4572 4573 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4574 spin_lock_init(&sbi->s_error_lock); 4575 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work); 4576 4577 /* Register extent status tree shrinker */ 4578 if (ext4_es_register_shrinker(sbi)) 4579 goto failed_mount3; 4580 4581 sbi->s_stripe = ext4_get_stripe_size(sbi); 4582 sbi->s_extent_max_zeroout_kb = 32; 4583 4584 /* 4585 * set up enough so that it can read an inode 4586 */ 4587 sb->s_op = &ext4_sops; 4588 sb->s_export_op = &ext4_export_ops; 4589 sb->s_xattr = ext4_xattr_handlers; 4590 #ifdef CONFIG_FS_ENCRYPTION 4591 sb->s_cop = &ext4_cryptops; 4592 #endif 4593 #ifdef CONFIG_FS_VERITY 4594 sb->s_vop = &ext4_verityops; 4595 #endif 4596 #ifdef CONFIG_QUOTA 4597 sb->dq_op = &ext4_quota_operations; 4598 if (ext4_has_feature_quota(sb)) 4599 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4600 else 4601 sb->s_qcop = &ext4_qctl_operations; 4602 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4603 #endif 4604 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4605 4606 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4607 mutex_init(&sbi->s_orphan_lock); 4608 4609 /* Initialize fast commit stuff */ 4610 atomic_set(&sbi->s_fc_subtid, 0); 4611 atomic_set(&sbi->s_fc_ineligible_updates, 0); 4612 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]); 4613 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]); 4614 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]); 4615 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]); 4616 sbi->s_fc_bytes = 0; 4617 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE); 4618 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING); 4619 spin_lock_init(&sbi->s_fc_lock); 4620 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats)); 4621 sbi->s_fc_replay_state.fc_regions = NULL; 4622 sbi->s_fc_replay_state.fc_regions_size = 0; 4623 sbi->s_fc_replay_state.fc_regions_used = 0; 4624 sbi->s_fc_replay_state.fc_regions_valid = 0; 4625 sbi->s_fc_replay_state.fc_modified_inodes = NULL; 4626 sbi->s_fc_replay_state.fc_modified_inodes_size = 0; 4627 sbi->s_fc_replay_state.fc_modified_inodes_used = 0; 4628 4629 sb->s_root = NULL; 4630 4631 needs_recovery = (es->s_last_orphan != 0 || 4632 ext4_has_feature_orphan_present(sb) || 4633 ext4_has_feature_journal_needs_recovery(sb)); 4634 4635 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4636 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4637 goto failed_mount3a; 4638 4639 /* 4640 * The first inode we look at is the journal inode. Don't try 4641 * root first: it may be modified in the journal! 4642 */ 4643 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4644 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum); 4645 if (err) 4646 goto failed_mount3a; 4647 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4648 ext4_has_feature_journal_needs_recovery(sb)) { 4649 ext4_msg(sb, KERN_ERR, "required journal recovery " 4650 "suppressed and not mounted read-only"); 4651 goto failed_mount_wq; 4652 } else { 4653 /* Nojournal mode, all journal mount options are illegal */ 4654 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4655 ext4_msg(sb, KERN_ERR, "can't mount with " 4656 "journal_checksum, fs mounted w/o journal"); 4657 goto failed_mount_wq; 4658 } 4659 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4660 ext4_msg(sb, KERN_ERR, "can't mount with " 4661 "journal_async_commit, fs mounted w/o journal"); 4662 goto failed_mount_wq; 4663 } 4664 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4665 ext4_msg(sb, KERN_ERR, "can't mount with " 4666 "commit=%lu, fs mounted w/o journal", 4667 sbi->s_commit_interval / HZ); 4668 goto failed_mount_wq; 4669 } 4670 if (EXT4_MOUNT_DATA_FLAGS & 4671 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4672 ext4_msg(sb, KERN_ERR, "can't mount with " 4673 "data=, fs mounted w/o journal"); 4674 goto failed_mount_wq; 4675 } 4676 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM; 4677 clear_opt(sb, JOURNAL_CHECKSUM); 4678 clear_opt(sb, DATA_FLAGS); 4679 clear_opt2(sb, JOURNAL_FAST_COMMIT); 4680 sbi->s_journal = NULL; 4681 needs_recovery = 0; 4682 goto no_journal; 4683 } 4684 4685 if (ext4_has_feature_64bit(sb) && 4686 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4687 JBD2_FEATURE_INCOMPAT_64BIT)) { 4688 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4689 goto failed_mount_wq; 4690 } 4691 4692 if (!set_journal_csum_feature_set(sb)) { 4693 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4694 "feature set"); 4695 goto failed_mount_wq; 4696 } 4697 4698 if (test_opt2(sb, JOURNAL_FAST_COMMIT) && 4699 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4700 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) { 4701 ext4_msg(sb, KERN_ERR, 4702 "Failed to set fast commit journal feature"); 4703 goto failed_mount_wq; 4704 } 4705 4706 /* We have now updated the journal if required, so we can 4707 * validate the data journaling mode. */ 4708 switch (test_opt(sb, DATA_FLAGS)) { 4709 case 0: 4710 /* No mode set, assume a default based on the journal 4711 * capabilities: ORDERED_DATA if the journal can 4712 * cope, else JOURNAL_DATA 4713 */ 4714 if (jbd2_journal_check_available_features 4715 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4716 set_opt(sb, ORDERED_DATA); 4717 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4718 } else { 4719 set_opt(sb, JOURNAL_DATA); 4720 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4721 } 4722 break; 4723 4724 case EXT4_MOUNT_ORDERED_DATA: 4725 case EXT4_MOUNT_WRITEBACK_DATA: 4726 if (!jbd2_journal_check_available_features 4727 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4728 ext4_msg(sb, KERN_ERR, "Journal does not support " 4729 "requested data journaling mode"); 4730 goto failed_mount_wq; 4731 } 4732 break; 4733 default: 4734 break; 4735 } 4736 4737 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4738 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4739 ext4_msg(sb, KERN_ERR, "can't mount with " 4740 "journal_async_commit in data=ordered mode"); 4741 goto failed_mount_wq; 4742 } 4743 4744 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 4745 4746 sbi->s_journal->j_submit_inode_data_buffers = 4747 ext4_journal_submit_inode_data_buffers; 4748 sbi->s_journal->j_finish_inode_data_buffers = 4749 ext4_journal_finish_inode_data_buffers; 4750 4751 no_journal: 4752 if (!test_opt(sb, NO_MBCACHE)) { 4753 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4754 if (!sbi->s_ea_block_cache) { 4755 ext4_msg(sb, KERN_ERR, 4756 "Failed to create ea_block_cache"); 4757 goto failed_mount_wq; 4758 } 4759 4760 if (ext4_has_feature_ea_inode(sb)) { 4761 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4762 if (!sbi->s_ea_inode_cache) { 4763 ext4_msg(sb, KERN_ERR, 4764 "Failed to create ea_inode_cache"); 4765 goto failed_mount_wq; 4766 } 4767 } 4768 } 4769 4770 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) { 4771 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity"); 4772 goto failed_mount_wq; 4773 } 4774 4775 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4776 !ext4_has_feature_encrypt(sb)) { 4777 ext4_set_feature_encrypt(sb); 4778 ext4_commit_super(sb); 4779 } 4780 4781 /* 4782 * Get the # of file system overhead blocks from the 4783 * superblock if present. 4784 */ 4785 if (es->s_overhead_clusters) 4786 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4787 else { 4788 err = ext4_calculate_overhead(sb); 4789 if (err) 4790 goto failed_mount_wq; 4791 } 4792 4793 /* 4794 * The maximum number of concurrent works can be high and 4795 * concurrency isn't really necessary. Limit it to 1. 4796 */ 4797 EXT4_SB(sb)->rsv_conversion_wq = 4798 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4799 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4800 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4801 ret = -ENOMEM; 4802 goto failed_mount4; 4803 } 4804 4805 /* 4806 * The jbd2_journal_load will have done any necessary log recovery, 4807 * so we can safely mount the rest of the filesystem now. 4808 */ 4809 4810 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL); 4811 if (IS_ERR(root)) { 4812 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4813 ret = PTR_ERR(root); 4814 root = NULL; 4815 goto failed_mount4; 4816 } 4817 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4818 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4819 iput(root); 4820 goto failed_mount4; 4821 } 4822 4823 sb->s_root = d_make_root(root); 4824 if (!sb->s_root) { 4825 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4826 ret = -ENOMEM; 4827 goto failed_mount4; 4828 } 4829 4830 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4831 if (ret == -EROFS) { 4832 sb->s_flags |= SB_RDONLY; 4833 ret = 0; 4834 } else if (ret) 4835 goto failed_mount4a; 4836 4837 ext4_set_resv_clusters(sb); 4838 4839 if (test_opt(sb, BLOCK_VALIDITY)) { 4840 err = ext4_setup_system_zone(sb); 4841 if (err) { 4842 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4843 "zone (%d)", err); 4844 goto failed_mount4a; 4845 } 4846 } 4847 ext4_fc_replay_cleanup(sb); 4848 4849 ext4_ext_init(sb); 4850 4851 /* 4852 * Enable optimize_scan if number of groups is > threshold. This can be 4853 * turned off by passing "mb_optimize_scan=0". This can also be 4854 * turned on forcefully by passing "mb_optimize_scan=1". 4855 */ 4856 if (parsed_opts.mb_optimize_scan == 1) 4857 set_opt2(sb, MB_OPTIMIZE_SCAN); 4858 else if (parsed_opts.mb_optimize_scan == 0) 4859 clear_opt2(sb, MB_OPTIMIZE_SCAN); 4860 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD) 4861 set_opt2(sb, MB_OPTIMIZE_SCAN); 4862 4863 err = ext4_mb_init(sb); 4864 if (err) { 4865 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4866 err); 4867 goto failed_mount5; 4868 } 4869 4870 /* 4871 * We can only set up the journal commit callback once 4872 * mballoc is initialized 4873 */ 4874 if (sbi->s_journal) 4875 sbi->s_journal->j_commit_callback = 4876 ext4_journal_commit_callback; 4877 4878 block = ext4_count_free_clusters(sb); 4879 ext4_free_blocks_count_set(sbi->s_es, 4880 EXT4_C2B(sbi, block)); 4881 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4882 GFP_KERNEL); 4883 if (!err) { 4884 unsigned long freei = ext4_count_free_inodes(sb); 4885 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4886 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4887 GFP_KERNEL); 4888 } 4889 /* 4890 * Update the checksum after updating free space/inode 4891 * counters. Otherwise the superblock can have an incorrect 4892 * checksum in the buffer cache until it is written out and 4893 * e2fsprogs programs trying to open a file system immediately 4894 * after it is mounted can fail. 4895 */ 4896 ext4_superblock_csum_set(sb); 4897 if (!err) 4898 err = percpu_counter_init(&sbi->s_dirs_counter, 4899 ext4_count_dirs(sb), GFP_KERNEL); 4900 if (!err) 4901 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4902 GFP_KERNEL); 4903 if (!err) 4904 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0, 4905 GFP_KERNEL); 4906 if (!err) 4907 err = percpu_init_rwsem(&sbi->s_writepages_rwsem); 4908 4909 if (err) { 4910 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4911 goto failed_mount6; 4912 } 4913 4914 if (ext4_has_feature_flex_bg(sb)) 4915 if (!ext4_fill_flex_info(sb)) { 4916 ext4_msg(sb, KERN_ERR, 4917 "unable to initialize " 4918 "flex_bg meta info!"); 4919 ret = -ENOMEM; 4920 goto failed_mount6; 4921 } 4922 4923 err = ext4_register_li_request(sb, first_not_zeroed); 4924 if (err) 4925 goto failed_mount6; 4926 4927 err = ext4_register_sysfs(sb); 4928 if (err) 4929 goto failed_mount7; 4930 4931 err = ext4_init_orphan_info(sb); 4932 if (err) 4933 goto failed_mount8; 4934 #ifdef CONFIG_QUOTA 4935 /* Enable quota usage during mount. */ 4936 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4937 err = ext4_enable_quotas(sb); 4938 if (err) 4939 goto failed_mount9; 4940 } 4941 #endif /* CONFIG_QUOTA */ 4942 4943 /* 4944 * Save the original bdev mapping's wb_err value which could be 4945 * used to detect the metadata async write error. 4946 */ 4947 spin_lock_init(&sbi->s_bdev_wb_lock); 4948 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err, 4949 &sbi->s_bdev_wb_err); 4950 sb->s_bdev->bd_super = sb; 4951 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4952 ext4_orphan_cleanup(sb, es); 4953 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4954 if (needs_recovery) { 4955 ext4_msg(sb, KERN_INFO, "recovery complete"); 4956 err = ext4_mark_recovery_complete(sb, es); 4957 if (err) 4958 goto failed_mount9; 4959 } 4960 if (EXT4_SB(sb)->s_journal) { 4961 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4962 descr = " journalled data mode"; 4963 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4964 descr = " ordered data mode"; 4965 else 4966 descr = " writeback data mode"; 4967 } else 4968 descr = "out journal"; 4969 4970 if (test_opt(sb, DISCARD)) { 4971 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4972 if (!blk_queue_discard(q)) 4973 ext4_msg(sb, KERN_WARNING, 4974 "mounting with \"discard\" option, but " 4975 "the device does not support discard"); 4976 } 4977 4978 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4979 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4980 "Opts: %.*s%s%s. Quota mode: %s.", descr, 4981 (int) sizeof(sbi->s_es->s_mount_opts), 4982 sbi->s_es->s_mount_opts, 4983 *sbi->s_es->s_mount_opts ? "; " : "", orig_data, 4984 ext4_quota_mode(sb)); 4985 4986 if (es->s_error_count) 4987 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4988 4989 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4990 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4991 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4992 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4993 atomic_set(&sbi->s_warning_count, 0); 4994 atomic_set(&sbi->s_msg_count, 0); 4995 4996 kfree(orig_data); 4997 return 0; 4998 4999 cantfind_ext4: 5000 if (!silent) 5001 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 5002 goto failed_mount; 5003 5004 failed_mount9: 5005 ext4_release_orphan_info(sb); 5006 failed_mount8: 5007 ext4_unregister_sysfs(sb); 5008 kobject_put(&sbi->s_kobj); 5009 failed_mount7: 5010 ext4_unregister_li_request(sb); 5011 failed_mount6: 5012 ext4_mb_release(sb); 5013 rcu_read_lock(); 5014 flex_groups = rcu_dereference(sbi->s_flex_groups); 5015 if (flex_groups) { 5016 for (i = 0; i < sbi->s_flex_groups_allocated; i++) 5017 kvfree(flex_groups[i]); 5018 kvfree(flex_groups); 5019 } 5020 rcu_read_unlock(); 5021 percpu_counter_destroy(&sbi->s_freeclusters_counter); 5022 percpu_counter_destroy(&sbi->s_freeinodes_counter); 5023 percpu_counter_destroy(&sbi->s_dirs_counter); 5024 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 5025 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit); 5026 percpu_free_rwsem(&sbi->s_writepages_rwsem); 5027 failed_mount5: 5028 ext4_ext_release(sb); 5029 ext4_release_system_zone(sb); 5030 failed_mount4a: 5031 dput(sb->s_root); 5032 sb->s_root = NULL; 5033 failed_mount4: 5034 ext4_msg(sb, KERN_ERR, "mount failed"); 5035 if (EXT4_SB(sb)->rsv_conversion_wq) 5036 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 5037 failed_mount_wq: 5038 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 5039 sbi->s_ea_inode_cache = NULL; 5040 5041 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 5042 sbi->s_ea_block_cache = NULL; 5043 5044 if (sbi->s_journal) { 5045 jbd2_journal_destroy(sbi->s_journal); 5046 sbi->s_journal = NULL; 5047 } 5048 failed_mount3a: 5049 ext4_es_unregister_shrinker(sbi); 5050 failed_mount3: 5051 flush_work(&sbi->s_error_work); 5052 del_timer_sync(&sbi->s_err_report); 5053 ext4_stop_mmpd(sbi); 5054 failed_mount2: 5055 rcu_read_lock(); 5056 group_desc = rcu_dereference(sbi->s_group_desc); 5057 for (i = 0; i < db_count; i++) 5058 brelse(group_desc[i]); 5059 kvfree(group_desc); 5060 rcu_read_unlock(); 5061 failed_mount: 5062 if (sbi->s_chksum_driver) 5063 crypto_free_shash(sbi->s_chksum_driver); 5064 5065 #ifdef CONFIG_UNICODE 5066 utf8_unload(sb->s_encoding); 5067 #endif 5068 5069 #ifdef CONFIG_QUOTA 5070 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5071 kfree(get_qf_name(sb, sbi, i)); 5072 #endif 5073 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy); 5074 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */ 5075 brelse(bh); 5076 ext4_blkdev_remove(sbi); 5077 out_fail: 5078 sb->s_fs_info = NULL; 5079 kfree(sbi->s_blockgroup_lock); 5080 out_free_base: 5081 kfree(sbi); 5082 kfree(orig_data); 5083 fs_put_dax(dax_dev); 5084 return err ? err : ret; 5085 } 5086 5087 /* 5088 * Setup any per-fs journal parameters now. We'll do this both on 5089 * initial mount, once the journal has been initialised but before we've 5090 * done any recovery; and again on any subsequent remount. 5091 */ 5092 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 5093 { 5094 struct ext4_sb_info *sbi = EXT4_SB(sb); 5095 5096 journal->j_commit_interval = sbi->s_commit_interval; 5097 journal->j_min_batch_time = sbi->s_min_batch_time; 5098 journal->j_max_batch_time = sbi->s_max_batch_time; 5099 ext4_fc_init(sb, journal); 5100 5101 write_lock(&journal->j_state_lock); 5102 if (test_opt(sb, BARRIER)) 5103 journal->j_flags |= JBD2_BARRIER; 5104 else 5105 journal->j_flags &= ~JBD2_BARRIER; 5106 if (test_opt(sb, DATA_ERR_ABORT)) 5107 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 5108 else 5109 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 5110 write_unlock(&journal->j_state_lock); 5111 } 5112 5113 static struct inode *ext4_get_journal_inode(struct super_block *sb, 5114 unsigned int journal_inum) 5115 { 5116 struct inode *journal_inode; 5117 5118 /* 5119 * Test for the existence of a valid inode on disk. Bad things 5120 * happen if we iget() an unused inode, as the subsequent iput() 5121 * will try to delete it. 5122 */ 5123 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL); 5124 if (IS_ERR(journal_inode)) { 5125 ext4_msg(sb, KERN_ERR, "no journal found"); 5126 return NULL; 5127 } 5128 if (!journal_inode->i_nlink) { 5129 make_bad_inode(journal_inode); 5130 iput(journal_inode); 5131 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 5132 return NULL; 5133 } 5134 5135 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 5136 journal_inode, journal_inode->i_size); 5137 if (!S_ISREG(journal_inode->i_mode)) { 5138 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 5139 iput(journal_inode); 5140 return NULL; 5141 } 5142 return journal_inode; 5143 } 5144 5145 static journal_t *ext4_get_journal(struct super_block *sb, 5146 unsigned int journal_inum) 5147 { 5148 struct inode *journal_inode; 5149 journal_t *journal; 5150 5151 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5152 return NULL; 5153 5154 journal_inode = ext4_get_journal_inode(sb, journal_inum); 5155 if (!journal_inode) 5156 return NULL; 5157 5158 journal = jbd2_journal_init_inode(journal_inode); 5159 if (!journal) { 5160 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 5161 iput(journal_inode); 5162 return NULL; 5163 } 5164 journal->j_private = sb; 5165 ext4_init_journal_params(sb, journal); 5166 return journal; 5167 } 5168 5169 static journal_t *ext4_get_dev_journal(struct super_block *sb, 5170 dev_t j_dev) 5171 { 5172 struct buffer_head *bh; 5173 journal_t *journal; 5174 ext4_fsblk_t start; 5175 ext4_fsblk_t len; 5176 int hblock, blocksize; 5177 ext4_fsblk_t sb_block; 5178 unsigned long offset; 5179 struct ext4_super_block *es; 5180 struct block_device *bdev; 5181 5182 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5183 return NULL; 5184 5185 bdev = ext4_blkdev_get(j_dev, sb); 5186 if (bdev == NULL) 5187 return NULL; 5188 5189 blocksize = sb->s_blocksize; 5190 hblock = bdev_logical_block_size(bdev); 5191 if (blocksize < hblock) { 5192 ext4_msg(sb, KERN_ERR, 5193 "blocksize too small for journal device"); 5194 goto out_bdev; 5195 } 5196 5197 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 5198 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 5199 set_blocksize(bdev, blocksize); 5200 if (!(bh = __bread(bdev, sb_block, blocksize))) { 5201 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 5202 "external journal"); 5203 goto out_bdev; 5204 } 5205 5206 es = (struct ext4_super_block *) (bh->b_data + offset); 5207 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 5208 !(le32_to_cpu(es->s_feature_incompat) & 5209 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 5210 ext4_msg(sb, KERN_ERR, "external journal has " 5211 "bad superblock"); 5212 brelse(bh); 5213 goto out_bdev; 5214 } 5215 5216 if ((le32_to_cpu(es->s_feature_ro_compat) & 5217 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 5218 es->s_checksum != ext4_superblock_csum(sb, es)) { 5219 ext4_msg(sb, KERN_ERR, "external journal has " 5220 "corrupt superblock"); 5221 brelse(bh); 5222 goto out_bdev; 5223 } 5224 5225 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 5226 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 5227 brelse(bh); 5228 goto out_bdev; 5229 } 5230 5231 len = ext4_blocks_count(es); 5232 start = sb_block + 1; 5233 brelse(bh); /* we're done with the superblock */ 5234 5235 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 5236 start, len, blocksize); 5237 if (!journal) { 5238 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 5239 goto out_bdev; 5240 } 5241 journal->j_private = sb; 5242 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) { 5243 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 5244 goto out_journal; 5245 } 5246 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 5247 ext4_msg(sb, KERN_ERR, "External journal has more than one " 5248 "user (unsupported) - %d", 5249 be32_to_cpu(journal->j_superblock->s_nr_users)); 5250 goto out_journal; 5251 } 5252 EXT4_SB(sb)->s_journal_bdev = bdev; 5253 ext4_init_journal_params(sb, journal); 5254 return journal; 5255 5256 out_journal: 5257 jbd2_journal_destroy(journal); 5258 out_bdev: 5259 ext4_blkdev_put(bdev); 5260 return NULL; 5261 } 5262 5263 static int ext4_load_journal(struct super_block *sb, 5264 struct ext4_super_block *es, 5265 unsigned long journal_devnum) 5266 { 5267 journal_t *journal; 5268 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 5269 dev_t journal_dev; 5270 int err = 0; 5271 int really_read_only; 5272 int journal_dev_ro; 5273 5274 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb))) 5275 return -EFSCORRUPTED; 5276 5277 if (journal_devnum && 5278 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5279 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 5280 "numbers have changed"); 5281 journal_dev = new_decode_dev(journal_devnum); 5282 } else 5283 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 5284 5285 if (journal_inum && journal_dev) { 5286 ext4_msg(sb, KERN_ERR, 5287 "filesystem has both journal inode and journal device!"); 5288 return -EINVAL; 5289 } 5290 5291 if (journal_inum) { 5292 journal = ext4_get_journal(sb, journal_inum); 5293 if (!journal) 5294 return -EINVAL; 5295 } else { 5296 journal = ext4_get_dev_journal(sb, journal_dev); 5297 if (!journal) 5298 return -EINVAL; 5299 } 5300 5301 journal_dev_ro = bdev_read_only(journal->j_dev); 5302 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro; 5303 5304 if (journal_dev_ro && !sb_rdonly(sb)) { 5305 ext4_msg(sb, KERN_ERR, 5306 "journal device read-only, try mounting with '-o ro'"); 5307 err = -EROFS; 5308 goto err_out; 5309 } 5310 5311 /* 5312 * Are we loading a blank journal or performing recovery after a 5313 * crash? For recovery, we need to check in advance whether we 5314 * can get read-write access to the device. 5315 */ 5316 if (ext4_has_feature_journal_needs_recovery(sb)) { 5317 if (sb_rdonly(sb)) { 5318 ext4_msg(sb, KERN_INFO, "INFO: recovery " 5319 "required on readonly filesystem"); 5320 if (really_read_only) { 5321 ext4_msg(sb, KERN_ERR, "write access " 5322 "unavailable, cannot proceed " 5323 "(try mounting with noload)"); 5324 err = -EROFS; 5325 goto err_out; 5326 } 5327 ext4_msg(sb, KERN_INFO, "write access will " 5328 "be enabled during recovery"); 5329 } 5330 } 5331 5332 if (!(journal->j_flags & JBD2_BARRIER)) 5333 ext4_msg(sb, KERN_INFO, "barriers disabled"); 5334 5335 if (!ext4_has_feature_journal_needs_recovery(sb)) 5336 err = jbd2_journal_wipe(journal, !really_read_only); 5337 if (!err) { 5338 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 5339 if (save) 5340 memcpy(save, ((char *) es) + 5341 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 5342 err = jbd2_journal_load(journal); 5343 if (save) 5344 memcpy(((char *) es) + EXT4_S_ERR_START, 5345 save, EXT4_S_ERR_LEN); 5346 kfree(save); 5347 } 5348 5349 if (err) { 5350 ext4_msg(sb, KERN_ERR, "error loading journal"); 5351 goto err_out; 5352 } 5353 5354 EXT4_SB(sb)->s_journal = journal; 5355 err = ext4_clear_journal_err(sb, es); 5356 if (err) { 5357 EXT4_SB(sb)->s_journal = NULL; 5358 jbd2_journal_destroy(journal); 5359 return err; 5360 } 5361 5362 if (!really_read_only && journal_devnum && 5363 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 5364 es->s_journal_dev = cpu_to_le32(journal_devnum); 5365 5366 /* Make sure we flush the recovery flag to disk. */ 5367 ext4_commit_super(sb); 5368 } 5369 5370 return 0; 5371 5372 err_out: 5373 jbd2_journal_destroy(journal); 5374 return err; 5375 } 5376 5377 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */ 5378 static void ext4_update_super(struct super_block *sb) 5379 { 5380 struct ext4_sb_info *sbi = EXT4_SB(sb); 5381 struct ext4_super_block *es = sbi->s_es; 5382 struct buffer_head *sbh = sbi->s_sbh; 5383 5384 lock_buffer(sbh); 5385 /* 5386 * If the file system is mounted read-only, don't update the 5387 * superblock write time. This avoids updating the superblock 5388 * write time when we are mounting the root file system 5389 * read/only but we need to replay the journal; at that point, 5390 * for people who are east of GMT and who make their clock 5391 * tick in localtime for Windows bug-for-bug compatibility, 5392 * the clock is set in the future, and this will cause e2fsck 5393 * to complain and force a full file system check. 5394 */ 5395 if (!(sb->s_flags & SB_RDONLY)) 5396 ext4_update_tstamp(es, s_wtime); 5397 es->s_kbytes_written = 5398 cpu_to_le64(sbi->s_kbytes_written + 5399 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) - 5400 sbi->s_sectors_written_start) >> 1)); 5401 if (percpu_counter_initialized(&sbi->s_freeclusters_counter)) 5402 ext4_free_blocks_count_set(es, 5403 EXT4_C2B(sbi, percpu_counter_sum_positive( 5404 &sbi->s_freeclusters_counter))); 5405 if (percpu_counter_initialized(&sbi->s_freeinodes_counter)) 5406 es->s_free_inodes_count = 5407 cpu_to_le32(percpu_counter_sum_positive( 5408 &sbi->s_freeinodes_counter)); 5409 /* Copy error information to the on-disk superblock */ 5410 spin_lock(&sbi->s_error_lock); 5411 if (sbi->s_add_error_count > 0) { 5412 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5413 if (!es->s_first_error_time && !es->s_first_error_time_hi) { 5414 __ext4_update_tstamp(&es->s_first_error_time, 5415 &es->s_first_error_time_hi, 5416 sbi->s_first_error_time); 5417 strncpy(es->s_first_error_func, sbi->s_first_error_func, 5418 sizeof(es->s_first_error_func)); 5419 es->s_first_error_line = 5420 cpu_to_le32(sbi->s_first_error_line); 5421 es->s_first_error_ino = 5422 cpu_to_le32(sbi->s_first_error_ino); 5423 es->s_first_error_block = 5424 cpu_to_le64(sbi->s_first_error_block); 5425 es->s_first_error_errcode = 5426 ext4_errno_to_code(sbi->s_first_error_code); 5427 } 5428 __ext4_update_tstamp(&es->s_last_error_time, 5429 &es->s_last_error_time_hi, 5430 sbi->s_last_error_time); 5431 strncpy(es->s_last_error_func, sbi->s_last_error_func, 5432 sizeof(es->s_last_error_func)); 5433 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line); 5434 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino); 5435 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block); 5436 es->s_last_error_errcode = 5437 ext4_errno_to_code(sbi->s_last_error_code); 5438 /* 5439 * Start the daily error reporting function if it hasn't been 5440 * started already 5441 */ 5442 if (!es->s_error_count) 5443 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); 5444 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count); 5445 sbi->s_add_error_count = 0; 5446 } 5447 spin_unlock(&sbi->s_error_lock); 5448 5449 ext4_superblock_csum_set(sb); 5450 unlock_buffer(sbh); 5451 } 5452 5453 static int ext4_commit_super(struct super_block *sb) 5454 { 5455 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 5456 int error = 0; 5457 5458 if (!sbh) 5459 return -EINVAL; 5460 if (block_device_ejected(sb)) 5461 return -ENODEV; 5462 5463 ext4_update_super(sb); 5464 5465 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) { 5466 /* 5467 * Oh, dear. A previous attempt to write the 5468 * superblock failed. This could happen because the 5469 * USB device was yanked out. Or it could happen to 5470 * be a transient write error and maybe the block will 5471 * be remapped. Nothing we can do but to retry the 5472 * write and hope for the best. 5473 */ 5474 ext4_msg(sb, KERN_ERR, "previous I/O error to " 5475 "superblock detected"); 5476 clear_buffer_write_io_error(sbh); 5477 set_buffer_uptodate(sbh); 5478 } 5479 BUFFER_TRACE(sbh, "marking dirty"); 5480 mark_buffer_dirty(sbh); 5481 error = __sync_dirty_buffer(sbh, 5482 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 5483 if (buffer_write_io_error(sbh)) { 5484 ext4_msg(sb, KERN_ERR, "I/O error while writing " 5485 "superblock"); 5486 clear_buffer_write_io_error(sbh); 5487 set_buffer_uptodate(sbh); 5488 } 5489 return error; 5490 } 5491 5492 /* 5493 * Have we just finished recovery? If so, and if we are mounting (or 5494 * remounting) the filesystem readonly, then we will end up with a 5495 * consistent fs on disk. Record that fact. 5496 */ 5497 static int ext4_mark_recovery_complete(struct super_block *sb, 5498 struct ext4_super_block *es) 5499 { 5500 int err; 5501 journal_t *journal = EXT4_SB(sb)->s_journal; 5502 5503 if (!ext4_has_feature_journal(sb)) { 5504 if (journal != NULL) { 5505 ext4_error(sb, "Journal got removed while the fs was " 5506 "mounted!"); 5507 return -EFSCORRUPTED; 5508 } 5509 return 0; 5510 } 5511 jbd2_journal_lock_updates(journal); 5512 err = jbd2_journal_flush(journal, 0); 5513 if (err < 0) 5514 goto out; 5515 5516 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) || 5517 ext4_has_feature_orphan_present(sb))) { 5518 if (!ext4_orphan_file_empty(sb)) { 5519 ext4_error(sb, "Orphan file not empty on read-only fs."); 5520 err = -EFSCORRUPTED; 5521 goto out; 5522 } 5523 ext4_clear_feature_journal_needs_recovery(sb); 5524 ext4_clear_feature_orphan_present(sb); 5525 ext4_commit_super(sb); 5526 } 5527 out: 5528 jbd2_journal_unlock_updates(journal); 5529 return err; 5530 } 5531 5532 /* 5533 * If we are mounting (or read-write remounting) a filesystem whose journal 5534 * has recorded an error from a previous lifetime, move that error to the 5535 * main filesystem now. 5536 */ 5537 static int ext4_clear_journal_err(struct super_block *sb, 5538 struct ext4_super_block *es) 5539 { 5540 journal_t *journal; 5541 int j_errno; 5542 const char *errstr; 5543 5544 if (!ext4_has_feature_journal(sb)) { 5545 ext4_error(sb, "Journal got removed while the fs was mounted!"); 5546 return -EFSCORRUPTED; 5547 } 5548 5549 journal = EXT4_SB(sb)->s_journal; 5550 5551 /* 5552 * Now check for any error status which may have been recorded in the 5553 * journal by a prior ext4_error() or ext4_abort() 5554 */ 5555 5556 j_errno = jbd2_journal_errno(journal); 5557 if (j_errno) { 5558 char nbuf[16]; 5559 5560 errstr = ext4_decode_error(sb, j_errno, nbuf); 5561 ext4_warning(sb, "Filesystem error recorded " 5562 "from previous mount: %s", errstr); 5563 ext4_warning(sb, "Marking fs in need of filesystem check."); 5564 5565 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 5566 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 5567 ext4_commit_super(sb); 5568 5569 jbd2_journal_clear_err(journal); 5570 jbd2_journal_update_sb_errno(journal); 5571 } 5572 return 0; 5573 } 5574 5575 /* 5576 * Force the running and committing transactions to commit, 5577 * and wait on the commit. 5578 */ 5579 int ext4_force_commit(struct super_block *sb) 5580 { 5581 journal_t *journal; 5582 5583 if (sb_rdonly(sb)) 5584 return 0; 5585 5586 journal = EXT4_SB(sb)->s_journal; 5587 return ext4_journal_force_commit(journal); 5588 } 5589 5590 static int ext4_sync_fs(struct super_block *sb, int wait) 5591 { 5592 int ret = 0; 5593 tid_t target; 5594 bool needs_barrier = false; 5595 struct ext4_sb_info *sbi = EXT4_SB(sb); 5596 5597 if (unlikely(ext4_forced_shutdown(sbi))) 5598 return 0; 5599 5600 trace_ext4_sync_fs(sb, wait); 5601 flush_workqueue(sbi->rsv_conversion_wq); 5602 /* 5603 * Writeback quota in non-journalled quota case - journalled quota has 5604 * no dirty dquots 5605 */ 5606 dquot_writeback_dquots(sb, -1); 5607 /* 5608 * Data writeback is possible w/o journal transaction, so barrier must 5609 * being sent at the end of the function. But we can skip it if 5610 * transaction_commit will do it for us. 5611 */ 5612 if (sbi->s_journal) { 5613 target = jbd2_get_latest_transaction(sbi->s_journal); 5614 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5615 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5616 needs_barrier = true; 5617 5618 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5619 if (wait) 5620 ret = jbd2_log_wait_commit(sbi->s_journal, 5621 target); 5622 } 5623 } else if (wait && test_opt(sb, BARRIER)) 5624 needs_barrier = true; 5625 if (needs_barrier) { 5626 int err; 5627 err = blkdev_issue_flush(sb->s_bdev); 5628 if (!ret) 5629 ret = err; 5630 } 5631 5632 return ret; 5633 } 5634 5635 /* 5636 * LVM calls this function before a (read-only) snapshot is created. This 5637 * gives us a chance to flush the journal completely and mark the fs clean. 5638 * 5639 * Note that only this function cannot bring a filesystem to be in a clean 5640 * state independently. It relies on upper layer to stop all data & metadata 5641 * modifications. 5642 */ 5643 static int ext4_freeze(struct super_block *sb) 5644 { 5645 int error = 0; 5646 journal_t *journal; 5647 5648 if (sb_rdonly(sb)) 5649 return 0; 5650 5651 journal = EXT4_SB(sb)->s_journal; 5652 5653 if (journal) { 5654 /* Now we set up the journal barrier. */ 5655 jbd2_journal_lock_updates(journal); 5656 5657 /* 5658 * Don't clear the needs_recovery flag if we failed to 5659 * flush the journal. 5660 */ 5661 error = jbd2_journal_flush(journal, 0); 5662 if (error < 0) 5663 goto out; 5664 5665 /* Journal blocked and flushed, clear needs_recovery flag. */ 5666 ext4_clear_feature_journal_needs_recovery(sb); 5667 if (ext4_orphan_file_empty(sb)) 5668 ext4_clear_feature_orphan_present(sb); 5669 } 5670 5671 error = ext4_commit_super(sb); 5672 out: 5673 if (journal) 5674 /* we rely on upper layer to stop further updates */ 5675 jbd2_journal_unlock_updates(journal); 5676 return error; 5677 } 5678 5679 /* 5680 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5681 * flag here, even though the filesystem is not technically dirty yet. 5682 */ 5683 static int ext4_unfreeze(struct super_block *sb) 5684 { 5685 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5686 return 0; 5687 5688 if (EXT4_SB(sb)->s_journal) { 5689 /* Reset the needs_recovery flag before the fs is unlocked. */ 5690 ext4_set_feature_journal_needs_recovery(sb); 5691 if (ext4_has_feature_orphan_file(sb)) 5692 ext4_set_feature_orphan_present(sb); 5693 } 5694 5695 ext4_commit_super(sb); 5696 return 0; 5697 } 5698 5699 /* 5700 * Structure to save mount options for ext4_remount's benefit 5701 */ 5702 struct ext4_mount_options { 5703 unsigned long s_mount_opt; 5704 unsigned long s_mount_opt2; 5705 kuid_t s_resuid; 5706 kgid_t s_resgid; 5707 unsigned long s_commit_interval; 5708 u32 s_min_batch_time, s_max_batch_time; 5709 #ifdef CONFIG_QUOTA 5710 int s_jquota_fmt; 5711 char *s_qf_names[EXT4_MAXQUOTAS]; 5712 #endif 5713 }; 5714 5715 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5716 { 5717 struct ext4_super_block *es; 5718 struct ext4_sb_info *sbi = EXT4_SB(sb); 5719 unsigned long old_sb_flags, vfs_flags; 5720 struct ext4_mount_options old_opts; 5721 int enable_quota = 0; 5722 ext4_group_t g; 5723 int err = 0; 5724 #ifdef CONFIG_QUOTA 5725 int i, j; 5726 char *to_free[EXT4_MAXQUOTAS]; 5727 #endif 5728 char *orig_data = kstrdup(data, GFP_KERNEL); 5729 struct ext4_parsed_options parsed_opts; 5730 5731 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5732 parsed_opts.journal_devnum = 0; 5733 5734 if (data && !orig_data) 5735 return -ENOMEM; 5736 5737 /* Store the original options */ 5738 old_sb_flags = sb->s_flags; 5739 old_opts.s_mount_opt = sbi->s_mount_opt; 5740 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5741 old_opts.s_resuid = sbi->s_resuid; 5742 old_opts.s_resgid = sbi->s_resgid; 5743 old_opts.s_commit_interval = sbi->s_commit_interval; 5744 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5745 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5746 #ifdef CONFIG_QUOTA 5747 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5748 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5749 if (sbi->s_qf_names[i]) { 5750 char *qf_name = get_qf_name(sb, sbi, i); 5751 5752 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5753 if (!old_opts.s_qf_names[i]) { 5754 for (j = 0; j < i; j++) 5755 kfree(old_opts.s_qf_names[j]); 5756 kfree(orig_data); 5757 return -ENOMEM; 5758 } 5759 } else 5760 old_opts.s_qf_names[i] = NULL; 5761 #endif 5762 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5763 parsed_opts.journal_ioprio = 5764 sbi->s_journal->j_task->io_context->ioprio; 5765 5766 /* 5767 * Some options can be enabled by ext4 and/or by VFS mount flag 5768 * either way we need to make sure it matches in both *flags and 5769 * s_flags. Copy those selected flags from *flags to s_flags 5770 */ 5771 vfs_flags = SB_LAZYTIME | SB_I_VERSION; 5772 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags); 5773 5774 if (!parse_options(data, sb, &parsed_opts, 1)) { 5775 err = -EINVAL; 5776 goto restore_opts; 5777 } 5778 5779 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5780 test_opt(sb, JOURNAL_CHECKSUM)) { 5781 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5782 "during remount not supported; ignoring"); 5783 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5784 } 5785 5786 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5787 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5788 ext4_msg(sb, KERN_ERR, "can't mount with " 5789 "both data=journal and delalloc"); 5790 err = -EINVAL; 5791 goto restore_opts; 5792 } 5793 if (test_opt(sb, DIOREAD_NOLOCK)) { 5794 ext4_msg(sb, KERN_ERR, "can't mount with " 5795 "both data=journal and dioread_nolock"); 5796 err = -EINVAL; 5797 goto restore_opts; 5798 } 5799 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5800 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5801 ext4_msg(sb, KERN_ERR, "can't mount with " 5802 "journal_async_commit in data=ordered mode"); 5803 err = -EINVAL; 5804 goto restore_opts; 5805 } 5806 } 5807 5808 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5809 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5810 err = -EINVAL; 5811 goto restore_opts; 5812 } 5813 5814 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5815 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user"); 5816 5817 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5818 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5819 5820 es = sbi->s_es; 5821 5822 if (sbi->s_journal) { 5823 ext4_init_journal_params(sb, sbi->s_journal); 5824 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio); 5825 } 5826 5827 /* Flush outstanding errors before changing fs state */ 5828 flush_work(&sbi->s_error_work); 5829 5830 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5831 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) { 5832 err = -EROFS; 5833 goto restore_opts; 5834 } 5835 5836 if (*flags & SB_RDONLY) { 5837 err = sync_filesystem(sb); 5838 if (err < 0) 5839 goto restore_opts; 5840 err = dquot_suspend(sb, -1); 5841 if (err < 0) 5842 goto restore_opts; 5843 5844 /* 5845 * First of all, the unconditional stuff we have to do 5846 * to disable replay of the journal when we next remount 5847 */ 5848 sb->s_flags |= SB_RDONLY; 5849 5850 /* 5851 * OK, test if we are remounting a valid rw partition 5852 * readonly, and if so set the rdonly flag and then 5853 * mark the partition as valid again. 5854 */ 5855 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5856 (sbi->s_mount_state & EXT4_VALID_FS)) 5857 es->s_state = cpu_to_le16(sbi->s_mount_state); 5858 5859 if (sbi->s_journal) { 5860 /* 5861 * We let remount-ro finish even if marking fs 5862 * as clean failed... 5863 */ 5864 ext4_mark_recovery_complete(sb, es); 5865 } 5866 } else { 5867 /* Make sure we can mount this feature set readwrite */ 5868 if (ext4_has_feature_readonly(sb) || 5869 !ext4_feature_set_ok(sb, 0)) { 5870 err = -EROFS; 5871 goto restore_opts; 5872 } 5873 /* 5874 * Make sure the group descriptor checksums 5875 * are sane. If they aren't, refuse to remount r/w. 5876 */ 5877 for (g = 0; g < sbi->s_groups_count; g++) { 5878 struct ext4_group_desc *gdp = 5879 ext4_get_group_desc(sb, g, NULL); 5880 5881 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5882 ext4_msg(sb, KERN_ERR, 5883 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5884 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5885 le16_to_cpu(gdp->bg_checksum)); 5886 err = -EFSBADCRC; 5887 goto restore_opts; 5888 } 5889 } 5890 5891 /* 5892 * If we have an unprocessed orphan list hanging 5893 * around from a previously readonly bdev mount, 5894 * require a full umount/remount for now. 5895 */ 5896 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) { 5897 ext4_msg(sb, KERN_WARNING, "Couldn't " 5898 "remount RDWR because of unprocessed " 5899 "orphan inode list. Please " 5900 "umount/remount instead"); 5901 err = -EINVAL; 5902 goto restore_opts; 5903 } 5904 5905 /* 5906 * Mounting a RDONLY partition read-write, so reread 5907 * and store the current valid flag. (It may have 5908 * been changed by e2fsck since we originally mounted 5909 * the partition.) 5910 */ 5911 if (sbi->s_journal) { 5912 err = ext4_clear_journal_err(sb, es); 5913 if (err) 5914 goto restore_opts; 5915 } 5916 sbi->s_mount_state = le16_to_cpu(es->s_state); 5917 5918 err = ext4_setup_super(sb, es, 0); 5919 if (err) 5920 goto restore_opts; 5921 5922 sb->s_flags &= ~SB_RDONLY; 5923 if (ext4_has_feature_mmp(sb)) 5924 if (ext4_multi_mount_protect(sb, 5925 le64_to_cpu(es->s_mmp_block))) { 5926 err = -EROFS; 5927 goto restore_opts; 5928 } 5929 enable_quota = 1; 5930 } 5931 } 5932 5933 /* 5934 * Reinitialize lazy itable initialization thread based on 5935 * current settings 5936 */ 5937 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5938 ext4_unregister_li_request(sb); 5939 else { 5940 ext4_group_t first_not_zeroed; 5941 first_not_zeroed = ext4_has_uninit_itable(sb); 5942 ext4_register_li_request(sb, first_not_zeroed); 5943 } 5944 5945 /* 5946 * Handle creation of system zone data early because it can fail. 5947 * Releasing of existing data is done when we are sure remount will 5948 * succeed. 5949 */ 5950 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) { 5951 err = ext4_setup_system_zone(sb); 5952 if (err) 5953 goto restore_opts; 5954 } 5955 5956 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5957 err = ext4_commit_super(sb); 5958 if (err) 5959 goto restore_opts; 5960 } 5961 5962 #ifdef CONFIG_QUOTA 5963 /* Release old quota file names */ 5964 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5965 kfree(old_opts.s_qf_names[i]); 5966 if (enable_quota) { 5967 if (sb_any_quota_suspended(sb)) 5968 dquot_resume(sb, -1); 5969 else if (ext4_has_feature_quota(sb)) { 5970 err = ext4_enable_quotas(sb); 5971 if (err) 5972 goto restore_opts; 5973 } 5974 } 5975 #endif 5976 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 5977 ext4_release_system_zone(sb); 5978 5979 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 5980 ext4_stop_mmpd(sbi); 5981 5982 /* 5983 * Some options can be enabled by ext4 and/or by VFS mount flag 5984 * either way we need to make sure it matches in both *flags and 5985 * s_flags. Copy those selected flags from s_flags to *flags 5986 */ 5987 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags); 5988 5989 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.", 5990 orig_data, ext4_quota_mode(sb)); 5991 kfree(orig_data); 5992 return 0; 5993 5994 restore_opts: 5995 sb->s_flags = old_sb_flags; 5996 sbi->s_mount_opt = old_opts.s_mount_opt; 5997 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5998 sbi->s_resuid = old_opts.s_resuid; 5999 sbi->s_resgid = old_opts.s_resgid; 6000 sbi->s_commit_interval = old_opts.s_commit_interval; 6001 sbi->s_min_batch_time = old_opts.s_min_batch_time; 6002 sbi->s_max_batch_time = old_opts.s_max_batch_time; 6003 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks) 6004 ext4_release_system_zone(sb); 6005 #ifdef CONFIG_QUOTA 6006 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 6007 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 6008 to_free[i] = get_qf_name(sb, sbi, i); 6009 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 6010 } 6011 synchronize_rcu(); 6012 for (i = 0; i < EXT4_MAXQUOTAS; i++) 6013 kfree(to_free[i]); 6014 #endif 6015 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb)) 6016 ext4_stop_mmpd(sbi); 6017 kfree(orig_data); 6018 return err; 6019 } 6020 6021 #ifdef CONFIG_QUOTA 6022 static int ext4_statfs_project(struct super_block *sb, 6023 kprojid_t projid, struct kstatfs *buf) 6024 { 6025 struct kqid qid; 6026 struct dquot *dquot; 6027 u64 limit; 6028 u64 curblock; 6029 6030 qid = make_kqid_projid(projid); 6031 dquot = dqget(sb, qid); 6032 if (IS_ERR(dquot)) 6033 return PTR_ERR(dquot); 6034 spin_lock(&dquot->dq_dqb_lock); 6035 6036 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 6037 dquot->dq_dqb.dqb_bhardlimit); 6038 limit >>= sb->s_blocksize_bits; 6039 6040 if (limit && buf->f_blocks > limit) { 6041 curblock = (dquot->dq_dqb.dqb_curspace + 6042 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 6043 buf->f_blocks = limit; 6044 buf->f_bfree = buf->f_bavail = 6045 (buf->f_blocks > curblock) ? 6046 (buf->f_blocks - curblock) : 0; 6047 } 6048 6049 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 6050 dquot->dq_dqb.dqb_ihardlimit); 6051 if (limit && buf->f_files > limit) { 6052 buf->f_files = limit; 6053 buf->f_ffree = 6054 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 6055 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 6056 } 6057 6058 spin_unlock(&dquot->dq_dqb_lock); 6059 dqput(dquot); 6060 return 0; 6061 } 6062 #endif 6063 6064 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 6065 { 6066 struct super_block *sb = dentry->d_sb; 6067 struct ext4_sb_info *sbi = EXT4_SB(sb); 6068 struct ext4_super_block *es = sbi->s_es; 6069 ext4_fsblk_t overhead = 0, resv_blocks; 6070 s64 bfree; 6071 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 6072 6073 if (!test_opt(sb, MINIX_DF)) 6074 overhead = sbi->s_overhead; 6075 6076 buf->f_type = EXT4_SUPER_MAGIC; 6077 buf->f_bsize = sb->s_blocksize; 6078 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 6079 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 6080 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 6081 /* prevent underflow in case that few free space is available */ 6082 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 6083 buf->f_bavail = buf->f_bfree - 6084 (ext4_r_blocks_count(es) + resv_blocks); 6085 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 6086 buf->f_bavail = 0; 6087 buf->f_files = le32_to_cpu(es->s_inodes_count); 6088 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 6089 buf->f_namelen = EXT4_NAME_LEN; 6090 buf->f_fsid = uuid_to_fsid(es->s_uuid); 6091 6092 #ifdef CONFIG_QUOTA 6093 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 6094 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 6095 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 6096 #endif 6097 return 0; 6098 } 6099 6100 6101 #ifdef CONFIG_QUOTA 6102 6103 /* 6104 * Helper functions so that transaction is started before we acquire dqio_sem 6105 * to keep correct lock ordering of transaction > dqio_sem 6106 */ 6107 static inline struct inode *dquot_to_inode(struct dquot *dquot) 6108 { 6109 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 6110 } 6111 6112 static int ext4_write_dquot(struct dquot *dquot) 6113 { 6114 int ret, err; 6115 handle_t *handle; 6116 struct inode *inode; 6117 6118 inode = dquot_to_inode(dquot); 6119 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 6120 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 6121 if (IS_ERR(handle)) 6122 return PTR_ERR(handle); 6123 ret = dquot_commit(dquot); 6124 err = ext4_journal_stop(handle); 6125 if (!ret) 6126 ret = err; 6127 return ret; 6128 } 6129 6130 static int ext4_acquire_dquot(struct dquot *dquot) 6131 { 6132 int ret, err; 6133 handle_t *handle; 6134 6135 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6136 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 6137 if (IS_ERR(handle)) 6138 return PTR_ERR(handle); 6139 ret = dquot_acquire(dquot); 6140 err = ext4_journal_stop(handle); 6141 if (!ret) 6142 ret = err; 6143 return ret; 6144 } 6145 6146 static int ext4_release_dquot(struct dquot *dquot) 6147 { 6148 int ret, err; 6149 handle_t *handle; 6150 6151 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 6152 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 6153 if (IS_ERR(handle)) { 6154 /* Release dquot anyway to avoid endless cycle in dqput() */ 6155 dquot_release(dquot); 6156 return PTR_ERR(handle); 6157 } 6158 ret = dquot_release(dquot); 6159 err = ext4_journal_stop(handle); 6160 if (!ret) 6161 ret = err; 6162 return ret; 6163 } 6164 6165 static int ext4_mark_dquot_dirty(struct dquot *dquot) 6166 { 6167 struct super_block *sb = dquot->dq_sb; 6168 6169 if (ext4_is_quota_journalled(sb)) { 6170 dquot_mark_dquot_dirty(dquot); 6171 return ext4_write_dquot(dquot); 6172 } else { 6173 return dquot_mark_dquot_dirty(dquot); 6174 } 6175 } 6176 6177 static int ext4_write_info(struct super_block *sb, int type) 6178 { 6179 int ret, err; 6180 handle_t *handle; 6181 6182 /* Data block + inode block */ 6183 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 6184 if (IS_ERR(handle)) 6185 return PTR_ERR(handle); 6186 ret = dquot_commit_info(sb, type); 6187 err = ext4_journal_stop(handle); 6188 if (!ret) 6189 ret = err; 6190 return ret; 6191 } 6192 6193 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 6194 { 6195 struct ext4_inode_info *ei = EXT4_I(inode); 6196 6197 /* The first argument of lockdep_set_subclass has to be 6198 * *exactly* the same as the argument to init_rwsem() --- in 6199 * this case, in init_once() --- or lockdep gets unhappy 6200 * because the name of the lock is set using the 6201 * stringification of the argument to init_rwsem(). 6202 */ 6203 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 6204 lockdep_set_subclass(&ei->i_data_sem, subclass); 6205 } 6206 6207 /* 6208 * Standard function to be called on quota_on 6209 */ 6210 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 6211 const struct path *path) 6212 { 6213 int err; 6214 6215 if (!test_opt(sb, QUOTA)) 6216 return -EINVAL; 6217 6218 /* Quotafile not on the same filesystem? */ 6219 if (path->dentry->d_sb != sb) 6220 return -EXDEV; 6221 6222 /* Quota already enabled for this file? */ 6223 if (IS_NOQUOTA(d_inode(path->dentry))) 6224 return -EBUSY; 6225 6226 /* Journaling quota? */ 6227 if (EXT4_SB(sb)->s_qf_names[type]) { 6228 /* Quotafile not in fs root? */ 6229 if (path->dentry->d_parent != sb->s_root) 6230 ext4_msg(sb, KERN_WARNING, 6231 "Quota file not on filesystem root. " 6232 "Journaled quota will not work"); 6233 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 6234 } else { 6235 /* 6236 * Clear the flag just in case mount options changed since 6237 * last time. 6238 */ 6239 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 6240 } 6241 6242 /* 6243 * When we journal data on quota file, we have to flush journal to see 6244 * all updates to the file when we bypass pagecache... 6245 */ 6246 if (EXT4_SB(sb)->s_journal && 6247 ext4_should_journal_data(d_inode(path->dentry))) { 6248 /* 6249 * We don't need to lock updates but journal_flush() could 6250 * otherwise be livelocked... 6251 */ 6252 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 6253 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0); 6254 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 6255 if (err) 6256 return err; 6257 } 6258 6259 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 6260 err = dquot_quota_on(sb, type, format_id, path); 6261 if (err) { 6262 lockdep_set_quota_inode(path->dentry->d_inode, 6263 I_DATA_SEM_NORMAL); 6264 } else { 6265 struct inode *inode = d_inode(path->dentry); 6266 handle_t *handle; 6267 6268 /* 6269 * Set inode flags to prevent userspace from messing with quota 6270 * files. If this fails, we return success anyway since quotas 6271 * are already enabled and this is not a hard failure. 6272 */ 6273 inode_lock(inode); 6274 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6275 if (IS_ERR(handle)) 6276 goto unlock_inode; 6277 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 6278 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 6279 S_NOATIME | S_IMMUTABLE); 6280 err = ext4_mark_inode_dirty(handle, inode); 6281 ext4_journal_stop(handle); 6282 unlock_inode: 6283 inode_unlock(inode); 6284 } 6285 return err; 6286 } 6287 6288 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 6289 unsigned int flags) 6290 { 6291 int err; 6292 struct inode *qf_inode; 6293 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6294 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6295 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6296 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6297 }; 6298 6299 BUG_ON(!ext4_has_feature_quota(sb)); 6300 6301 if (!qf_inums[type]) 6302 return -EPERM; 6303 6304 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL); 6305 if (IS_ERR(qf_inode)) { 6306 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 6307 return PTR_ERR(qf_inode); 6308 } 6309 6310 /* Don't account quota for quota files to avoid recursion */ 6311 qf_inode->i_flags |= S_NOQUOTA; 6312 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 6313 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 6314 if (err) 6315 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 6316 iput(qf_inode); 6317 6318 return err; 6319 } 6320 6321 /* Enable usage tracking for all quota types. */ 6322 int ext4_enable_quotas(struct super_block *sb) 6323 { 6324 int type, err = 0; 6325 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 6326 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 6327 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 6328 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 6329 }; 6330 bool quota_mopt[EXT4_MAXQUOTAS] = { 6331 test_opt(sb, USRQUOTA), 6332 test_opt(sb, GRPQUOTA), 6333 test_opt(sb, PRJQUOTA), 6334 }; 6335 6336 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 6337 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 6338 if (qf_inums[type]) { 6339 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 6340 DQUOT_USAGE_ENABLED | 6341 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 6342 if (err) { 6343 ext4_warning(sb, 6344 "Failed to enable quota tracking " 6345 "(type=%d, err=%d). Please run " 6346 "e2fsck to fix.", type, err); 6347 for (type--; type >= 0; type--) 6348 dquot_quota_off(sb, type); 6349 6350 return err; 6351 } 6352 } 6353 } 6354 return 0; 6355 } 6356 6357 static int ext4_quota_off(struct super_block *sb, int type) 6358 { 6359 struct inode *inode = sb_dqopt(sb)->files[type]; 6360 handle_t *handle; 6361 int err; 6362 6363 /* Force all delayed allocation blocks to be allocated. 6364 * Caller already holds s_umount sem */ 6365 if (test_opt(sb, DELALLOC)) 6366 sync_filesystem(sb); 6367 6368 if (!inode || !igrab(inode)) 6369 goto out; 6370 6371 err = dquot_quota_off(sb, type); 6372 if (err || ext4_has_feature_quota(sb)) 6373 goto out_put; 6374 6375 inode_lock(inode); 6376 /* 6377 * Update modification times of quota files when userspace can 6378 * start looking at them. If we fail, we return success anyway since 6379 * this is not a hard failure and quotas are already disabled. 6380 */ 6381 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 6382 if (IS_ERR(handle)) { 6383 err = PTR_ERR(handle); 6384 goto out_unlock; 6385 } 6386 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 6387 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 6388 inode->i_mtime = inode->i_ctime = current_time(inode); 6389 err = ext4_mark_inode_dirty(handle, inode); 6390 ext4_journal_stop(handle); 6391 out_unlock: 6392 inode_unlock(inode); 6393 out_put: 6394 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 6395 iput(inode); 6396 return err; 6397 out: 6398 return dquot_quota_off(sb, type); 6399 } 6400 6401 /* Read data from quotafile - avoid pagecache and such because we cannot afford 6402 * acquiring the locks... As quota files are never truncated and quota code 6403 * itself serializes the operations (and no one else should touch the files) 6404 * we don't have to be afraid of races */ 6405 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 6406 size_t len, loff_t off) 6407 { 6408 struct inode *inode = sb_dqopt(sb)->files[type]; 6409 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6410 int offset = off & (sb->s_blocksize - 1); 6411 int tocopy; 6412 size_t toread; 6413 struct buffer_head *bh; 6414 loff_t i_size = i_size_read(inode); 6415 6416 if (off > i_size) 6417 return 0; 6418 if (off+len > i_size) 6419 len = i_size-off; 6420 toread = len; 6421 while (toread > 0) { 6422 tocopy = sb->s_blocksize - offset < toread ? 6423 sb->s_blocksize - offset : toread; 6424 bh = ext4_bread(NULL, inode, blk, 0); 6425 if (IS_ERR(bh)) 6426 return PTR_ERR(bh); 6427 if (!bh) /* A hole? */ 6428 memset(data, 0, tocopy); 6429 else 6430 memcpy(data, bh->b_data+offset, tocopy); 6431 brelse(bh); 6432 offset = 0; 6433 toread -= tocopy; 6434 data += tocopy; 6435 blk++; 6436 } 6437 return len; 6438 } 6439 6440 /* Write to quotafile (we know the transaction is already started and has 6441 * enough credits) */ 6442 static ssize_t ext4_quota_write(struct super_block *sb, int type, 6443 const char *data, size_t len, loff_t off) 6444 { 6445 struct inode *inode = sb_dqopt(sb)->files[type]; 6446 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 6447 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1); 6448 int retries = 0; 6449 struct buffer_head *bh; 6450 handle_t *handle = journal_current_handle(); 6451 6452 if (EXT4_SB(sb)->s_journal && !handle) { 6453 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6454 " cancelled because transaction is not started", 6455 (unsigned long long)off, (unsigned long long)len); 6456 return -EIO; 6457 } 6458 /* 6459 * Since we account only one data block in transaction credits, 6460 * then it is impossible to cross a block boundary. 6461 */ 6462 if (sb->s_blocksize - offset < len) { 6463 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 6464 " cancelled because not block aligned", 6465 (unsigned long long)off, (unsigned long long)len); 6466 return -EIO; 6467 } 6468 6469 do { 6470 bh = ext4_bread(handle, inode, blk, 6471 EXT4_GET_BLOCKS_CREATE | 6472 EXT4_GET_BLOCKS_METADATA_NOFAIL); 6473 } while (PTR_ERR(bh) == -ENOSPC && 6474 ext4_should_retry_alloc(inode->i_sb, &retries)); 6475 if (IS_ERR(bh)) 6476 return PTR_ERR(bh); 6477 if (!bh) 6478 goto out; 6479 BUFFER_TRACE(bh, "get write access"); 6480 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE); 6481 if (err) { 6482 brelse(bh); 6483 return err; 6484 } 6485 lock_buffer(bh); 6486 memcpy(bh->b_data+offset, data, len); 6487 flush_dcache_page(bh->b_page); 6488 unlock_buffer(bh); 6489 err = ext4_handle_dirty_metadata(handle, NULL, bh); 6490 brelse(bh); 6491 out: 6492 if (inode->i_size < off + len) { 6493 i_size_write(inode, off + len); 6494 EXT4_I(inode)->i_disksize = inode->i_size; 6495 err2 = ext4_mark_inode_dirty(handle, inode); 6496 if (unlikely(err2 && !err)) 6497 err = err2; 6498 } 6499 return err ? err : len; 6500 } 6501 #endif 6502 6503 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 6504 const char *dev_name, void *data) 6505 { 6506 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 6507 } 6508 6509 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 6510 static inline void register_as_ext2(void) 6511 { 6512 int err = register_filesystem(&ext2_fs_type); 6513 if (err) 6514 printk(KERN_WARNING 6515 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 6516 } 6517 6518 static inline void unregister_as_ext2(void) 6519 { 6520 unregister_filesystem(&ext2_fs_type); 6521 } 6522 6523 static inline int ext2_feature_set_ok(struct super_block *sb) 6524 { 6525 if (ext4_has_unknown_ext2_incompat_features(sb)) 6526 return 0; 6527 if (sb_rdonly(sb)) 6528 return 1; 6529 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 6530 return 0; 6531 return 1; 6532 } 6533 #else 6534 static inline void register_as_ext2(void) { } 6535 static inline void unregister_as_ext2(void) { } 6536 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 6537 #endif 6538 6539 static inline void register_as_ext3(void) 6540 { 6541 int err = register_filesystem(&ext3_fs_type); 6542 if (err) 6543 printk(KERN_WARNING 6544 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 6545 } 6546 6547 static inline void unregister_as_ext3(void) 6548 { 6549 unregister_filesystem(&ext3_fs_type); 6550 } 6551 6552 static inline int ext3_feature_set_ok(struct super_block *sb) 6553 { 6554 if (ext4_has_unknown_ext3_incompat_features(sb)) 6555 return 0; 6556 if (!ext4_has_feature_journal(sb)) 6557 return 0; 6558 if (sb_rdonly(sb)) 6559 return 1; 6560 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 6561 return 0; 6562 return 1; 6563 } 6564 6565 static struct file_system_type ext4_fs_type = { 6566 .owner = THIS_MODULE, 6567 .name = "ext4", 6568 .mount = ext4_mount, 6569 .kill_sb = kill_block_super, 6570 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 6571 }; 6572 MODULE_ALIAS_FS("ext4"); 6573 6574 /* Shared across all ext4 file systems */ 6575 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 6576 6577 static int __init ext4_init_fs(void) 6578 { 6579 int i, err; 6580 6581 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 6582 ext4_li_info = NULL; 6583 6584 /* Build-time check for flags consistency */ 6585 ext4_check_flag_values(); 6586 6587 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 6588 init_waitqueue_head(&ext4__ioend_wq[i]); 6589 6590 err = ext4_init_es(); 6591 if (err) 6592 return err; 6593 6594 err = ext4_init_pending(); 6595 if (err) 6596 goto out7; 6597 6598 err = ext4_init_post_read_processing(); 6599 if (err) 6600 goto out6; 6601 6602 err = ext4_init_pageio(); 6603 if (err) 6604 goto out5; 6605 6606 err = ext4_init_system_zone(); 6607 if (err) 6608 goto out4; 6609 6610 err = ext4_init_sysfs(); 6611 if (err) 6612 goto out3; 6613 6614 err = ext4_init_mballoc(); 6615 if (err) 6616 goto out2; 6617 err = init_inodecache(); 6618 if (err) 6619 goto out1; 6620 6621 err = ext4_fc_init_dentry_cache(); 6622 if (err) 6623 goto out05; 6624 6625 register_as_ext3(); 6626 register_as_ext2(); 6627 err = register_filesystem(&ext4_fs_type); 6628 if (err) 6629 goto out; 6630 6631 return 0; 6632 out: 6633 unregister_as_ext2(); 6634 unregister_as_ext3(); 6635 out05: 6636 destroy_inodecache(); 6637 out1: 6638 ext4_exit_mballoc(); 6639 out2: 6640 ext4_exit_sysfs(); 6641 out3: 6642 ext4_exit_system_zone(); 6643 out4: 6644 ext4_exit_pageio(); 6645 out5: 6646 ext4_exit_post_read_processing(); 6647 out6: 6648 ext4_exit_pending(); 6649 out7: 6650 ext4_exit_es(); 6651 6652 return err; 6653 } 6654 6655 static void __exit ext4_exit_fs(void) 6656 { 6657 ext4_destroy_lazyinit_thread(); 6658 unregister_as_ext2(); 6659 unregister_as_ext3(); 6660 unregister_filesystem(&ext4_fs_type); 6661 destroy_inodecache(); 6662 ext4_exit_mballoc(); 6663 ext4_exit_sysfs(); 6664 ext4_exit_system_zone(); 6665 ext4_exit_pageio(); 6666 ext4_exit_post_read_processing(); 6667 ext4_exit_es(); 6668 ext4_exit_pending(); 6669 } 6670 6671 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6672 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6673 MODULE_LICENSE("GPL"); 6674 MODULE_SOFTDEP("pre: crc32c"); 6675 module_init(ext4_init_fs) 6676 module_exit(ext4_exit_fs) 6677