1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/super.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 */ 19 20 #include <linux/module.h> 21 #include <linux/string.h> 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/vmalloc.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/parser.h> 30 #include <linux/buffer_head.h> 31 #include <linux/exportfs.h> 32 #include <linux/vfs.h> 33 #include <linux/random.h> 34 #include <linux/mount.h> 35 #include <linux/namei.h> 36 #include <linux/quotaops.h> 37 #include <linux/seq_file.h> 38 #include <linux/ctype.h> 39 #include <linux/log2.h> 40 #include <linux/crc16.h> 41 #include <linux/dax.h> 42 #include <linux/cleancache.h> 43 #include <linux/uaccess.h> 44 #include <linux/iversion.h> 45 46 #include <linux/kthread.h> 47 #include <linux/freezer.h> 48 49 #include "ext4.h" 50 #include "ext4_extents.h" /* Needed for trace points definition */ 51 #include "ext4_jbd2.h" 52 #include "xattr.h" 53 #include "acl.h" 54 #include "mballoc.h" 55 #include "fsmap.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/ext4.h> 59 60 static struct ext4_lazy_init *ext4_li_info; 61 static struct mutex ext4_li_mtx; 62 static struct ratelimit_state ext4_mount_msg_ratelimit; 63 64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 65 unsigned long journal_devnum); 66 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 67 static int ext4_commit_super(struct super_block *sb, int sync); 68 static void ext4_mark_recovery_complete(struct super_block *sb, 69 struct ext4_super_block *es); 70 static void ext4_clear_journal_err(struct super_block *sb, 71 struct ext4_super_block *es); 72 static int ext4_sync_fs(struct super_block *sb, int wait); 73 static int ext4_remount(struct super_block *sb, int *flags, char *data); 74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 75 static int ext4_unfreeze(struct super_block *sb); 76 static int ext4_freeze(struct super_block *sb); 77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 78 const char *dev_name, void *data); 79 static inline int ext2_feature_set_ok(struct super_block *sb); 80 static inline int ext3_feature_set_ok(struct super_block *sb); 81 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 82 static void ext4_destroy_lazyinit_thread(void); 83 static void ext4_unregister_li_request(struct super_block *sb); 84 static void ext4_clear_request_list(void); 85 static struct inode *ext4_get_journal_inode(struct super_block *sb, 86 unsigned int journal_inum); 87 88 /* 89 * Lock ordering 90 * 91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and 92 * i_mmap_rwsem (inode->i_mmap_rwsem)! 93 * 94 * page fault path: 95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start -> 96 * page lock -> i_data_sem (rw) 97 * 98 * buffered write path: 99 * sb_start_write -> i_mutex -> mmap_sem 100 * sb_start_write -> i_mutex -> transaction start -> page lock -> 101 * i_data_sem (rw) 102 * 103 * truncate: 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start -> 106 * i_data_sem (rw) 107 * 108 * direct IO: 109 * sb_start_write -> i_mutex -> mmap_sem 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw) 111 * 112 * writepages: 113 * transaction start -> page lock(s) -> i_data_sem (rw) 114 */ 115 116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 117 static struct file_system_type ext2_fs_type = { 118 .owner = THIS_MODULE, 119 .name = "ext2", 120 .mount = ext4_mount, 121 .kill_sb = kill_block_super, 122 .fs_flags = FS_REQUIRES_DEV, 123 }; 124 MODULE_ALIAS_FS("ext2"); 125 MODULE_ALIAS("ext2"); 126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 127 #else 128 #define IS_EXT2_SB(sb) (0) 129 #endif 130 131 132 static struct file_system_type ext3_fs_type = { 133 .owner = THIS_MODULE, 134 .name = "ext3", 135 .mount = ext4_mount, 136 .kill_sb = kill_block_super, 137 .fs_flags = FS_REQUIRES_DEV, 138 }; 139 MODULE_ALIAS_FS("ext3"); 140 MODULE_ALIAS("ext3"); 141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 142 143 static int ext4_verify_csum_type(struct super_block *sb, 144 struct ext4_super_block *es) 145 { 146 if (!ext4_has_feature_metadata_csum(sb)) 147 return 1; 148 149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 150 } 151 152 static __le32 ext4_superblock_csum(struct super_block *sb, 153 struct ext4_super_block *es) 154 { 155 struct ext4_sb_info *sbi = EXT4_SB(sb); 156 int offset = offsetof(struct ext4_super_block, s_checksum); 157 __u32 csum; 158 159 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 160 161 return cpu_to_le32(csum); 162 } 163 164 static int ext4_superblock_csum_verify(struct super_block *sb, 165 struct ext4_super_block *es) 166 { 167 if (!ext4_has_metadata_csum(sb)) 168 return 1; 169 170 return es->s_checksum == ext4_superblock_csum(sb, es); 171 } 172 173 void ext4_superblock_csum_set(struct super_block *sb) 174 { 175 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 176 177 if (!ext4_has_metadata_csum(sb)) 178 return; 179 180 es->s_checksum = ext4_superblock_csum(sb, es); 181 } 182 183 void *ext4_kvmalloc(size_t size, gfp_t flags) 184 { 185 void *ret; 186 187 ret = kmalloc(size, flags | __GFP_NOWARN); 188 if (!ret) 189 ret = __vmalloc(size, flags, PAGE_KERNEL); 190 return ret; 191 } 192 193 void *ext4_kvzalloc(size_t size, gfp_t flags) 194 { 195 void *ret; 196 197 ret = kzalloc(size, flags | __GFP_NOWARN); 198 if (!ret) 199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 200 return ret; 201 } 202 203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 204 struct ext4_group_desc *bg) 205 { 206 return le32_to_cpu(bg->bg_block_bitmap_lo) | 207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 209 } 210 211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 212 struct ext4_group_desc *bg) 213 { 214 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 217 } 218 219 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 220 struct ext4_group_desc *bg) 221 { 222 return le32_to_cpu(bg->bg_inode_table_lo) | 223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 225 } 226 227 __u32 ext4_free_group_clusters(struct super_block *sb, 228 struct ext4_group_desc *bg) 229 { 230 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 233 } 234 235 __u32 ext4_free_inodes_count(struct super_block *sb, 236 struct ext4_group_desc *bg) 237 { 238 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 241 } 242 243 __u32 ext4_used_dirs_count(struct super_block *sb, 244 struct ext4_group_desc *bg) 245 { 246 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 249 } 250 251 __u32 ext4_itable_unused_count(struct super_block *sb, 252 struct ext4_group_desc *bg) 253 { 254 return le16_to_cpu(bg->bg_itable_unused_lo) | 255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 257 } 258 259 void ext4_block_bitmap_set(struct super_block *sb, 260 struct ext4_group_desc *bg, ext4_fsblk_t blk) 261 { 262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 265 } 266 267 void ext4_inode_bitmap_set(struct super_block *sb, 268 struct ext4_group_desc *bg, ext4_fsblk_t blk) 269 { 270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 273 } 274 275 void ext4_inode_table_set(struct super_block *sb, 276 struct ext4_group_desc *bg, ext4_fsblk_t blk) 277 { 278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 281 } 282 283 void ext4_free_group_clusters_set(struct super_block *sb, 284 struct ext4_group_desc *bg, __u32 count) 285 { 286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 289 } 290 291 void ext4_free_inodes_set(struct super_block *sb, 292 struct ext4_group_desc *bg, __u32 count) 293 { 294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 297 } 298 299 void ext4_used_dirs_set(struct super_block *sb, 300 struct ext4_group_desc *bg, __u32 count) 301 { 302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 305 } 306 307 void ext4_itable_unused_set(struct super_block *sb, 308 struct ext4_group_desc *bg, __u32 count) 309 { 310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 313 } 314 315 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi) 316 { 317 time64_t now = ktime_get_real_seconds(); 318 319 now = clamp_val(now, 0, (1ull << 40) - 1); 320 321 *lo = cpu_to_le32(lower_32_bits(now)); 322 *hi = upper_32_bits(now); 323 } 324 325 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi) 326 { 327 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo); 328 } 329 #define ext4_update_tstamp(es, tstamp) \ 330 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 331 #define ext4_get_tstamp(es, tstamp) \ 332 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi) 333 334 static void __save_error_info(struct super_block *sb, const char *func, 335 unsigned int line) 336 { 337 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 338 339 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 340 if (bdev_read_only(sb->s_bdev)) 341 return; 342 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 343 ext4_update_tstamp(es, s_last_error_time); 344 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 345 es->s_last_error_line = cpu_to_le32(line); 346 if (!es->s_first_error_time) { 347 es->s_first_error_time = es->s_last_error_time; 348 es->s_first_error_time_hi = es->s_last_error_time_hi; 349 strncpy(es->s_first_error_func, func, 350 sizeof(es->s_first_error_func)); 351 es->s_first_error_line = cpu_to_le32(line); 352 es->s_first_error_ino = es->s_last_error_ino; 353 es->s_first_error_block = es->s_last_error_block; 354 } 355 /* 356 * Start the daily error reporting function if it hasn't been 357 * started already 358 */ 359 if (!es->s_error_count) 360 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 361 le32_add_cpu(&es->s_error_count, 1); 362 } 363 364 static void save_error_info(struct super_block *sb, const char *func, 365 unsigned int line) 366 { 367 __save_error_info(sb, func, line); 368 ext4_commit_super(sb, 1); 369 } 370 371 /* 372 * The del_gendisk() function uninitializes the disk-specific data 373 * structures, including the bdi structure, without telling anyone 374 * else. Once this happens, any attempt to call mark_buffer_dirty() 375 * (for example, by ext4_commit_super), will cause a kernel OOPS. 376 * This is a kludge to prevent these oops until we can put in a proper 377 * hook in del_gendisk() to inform the VFS and file system layers. 378 */ 379 static int block_device_ejected(struct super_block *sb) 380 { 381 struct inode *bd_inode = sb->s_bdev->bd_inode; 382 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 383 384 return bdi->dev == NULL; 385 } 386 387 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 388 { 389 struct super_block *sb = journal->j_private; 390 struct ext4_sb_info *sbi = EXT4_SB(sb); 391 int error = is_journal_aborted(journal); 392 struct ext4_journal_cb_entry *jce; 393 394 BUG_ON(txn->t_state == T_FINISHED); 395 396 ext4_process_freed_data(sb, txn->t_tid); 397 398 spin_lock(&sbi->s_md_lock); 399 while (!list_empty(&txn->t_private_list)) { 400 jce = list_entry(txn->t_private_list.next, 401 struct ext4_journal_cb_entry, jce_list); 402 list_del_init(&jce->jce_list); 403 spin_unlock(&sbi->s_md_lock); 404 jce->jce_func(sb, jce, error); 405 spin_lock(&sbi->s_md_lock); 406 } 407 spin_unlock(&sbi->s_md_lock); 408 } 409 410 /* Deal with the reporting of failure conditions on a filesystem such as 411 * inconsistencies detected or read IO failures. 412 * 413 * On ext2, we can store the error state of the filesystem in the 414 * superblock. That is not possible on ext4, because we may have other 415 * write ordering constraints on the superblock which prevent us from 416 * writing it out straight away; and given that the journal is about to 417 * be aborted, we can't rely on the current, or future, transactions to 418 * write out the superblock safely. 419 * 420 * We'll just use the jbd2_journal_abort() error code to record an error in 421 * the journal instead. On recovery, the journal will complain about 422 * that error until we've noted it down and cleared it. 423 */ 424 425 static void ext4_handle_error(struct super_block *sb) 426 { 427 if (test_opt(sb, WARN_ON_ERROR)) 428 WARN_ON_ONCE(1); 429 430 if (sb_rdonly(sb)) 431 return; 432 433 if (!test_opt(sb, ERRORS_CONT)) { 434 journal_t *journal = EXT4_SB(sb)->s_journal; 435 436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 437 if (journal) 438 jbd2_journal_abort(journal, -EIO); 439 } 440 if (test_opt(sb, ERRORS_RO)) { 441 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 442 /* 443 * Make sure updated value of ->s_mount_flags will be visible 444 * before ->s_flags update 445 */ 446 smp_wmb(); 447 sb->s_flags |= SB_RDONLY; 448 } 449 if (test_opt(sb, ERRORS_PANIC)) { 450 if (EXT4_SB(sb)->s_journal && 451 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 452 return; 453 panic("EXT4-fs (device %s): panic forced after error\n", 454 sb->s_id); 455 } 456 } 457 458 #define ext4_error_ratelimit(sb) \ 459 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 460 "EXT4-fs error") 461 462 void __ext4_error(struct super_block *sb, const char *function, 463 unsigned int line, const char *fmt, ...) 464 { 465 struct va_format vaf; 466 va_list args; 467 468 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 469 return; 470 471 trace_ext4_error(sb, function, line); 472 if (ext4_error_ratelimit(sb)) { 473 va_start(args, fmt); 474 vaf.fmt = fmt; 475 vaf.va = &args; 476 printk(KERN_CRIT 477 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 478 sb->s_id, function, line, current->comm, &vaf); 479 va_end(args); 480 } 481 save_error_info(sb, function, line); 482 ext4_handle_error(sb); 483 } 484 485 void __ext4_error_inode(struct inode *inode, const char *function, 486 unsigned int line, ext4_fsblk_t block, 487 const char *fmt, ...) 488 { 489 va_list args; 490 struct va_format vaf; 491 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 492 493 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 494 return; 495 496 trace_ext4_error(inode->i_sb, function, line); 497 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 498 es->s_last_error_block = cpu_to_le64(block); 499 if (ext4_error_ratelimit(inode->i_sb)) { 500 va_start(args, fmt); 501 vaf.fmt = fmt; 502 vaf.va = &args; 503 if (block) 504 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 505 "inode #%lu: block %llu: comm %s: %pV\n", 506 inode->i_sb->s_id, function, line, inode->i_ino, 507 block, current->comm, &vaf); 508 else 509 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 510 "inode #%lu: comm %s: %pV\n", 511 inode->i_sb->s_id, function, line, inode->i_ino, 512 current->comm, &vaf); 513 va_end(args); 514 } 515 save_error_info(inode->i_sb, function, line); 516 ext4_handle_error(inode->i_sb); 517 } 518 519 void __ext4_error_file(struct file *file, const char *function, 520 unsigned int line, ext4_fsblk_t block, 521 const char *fmt, ...) 522 { 523 va_list args; 524 struct va_format vaf; 525 struct ext4_super_block *es; 526 struct inode *inode = file_inode(file); 527 char pathname[80], *path; 528 529 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 530 return; 531 532 trace_ext4_error(inode->i_sb, function, line); 533 es = EXT4_SB(inode->i_sb)->s_es; 534 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 535 if (ext4_error_ratelimit(inode->i_sb)) { 536 path = file_path(file, pathname, sizeof(pathname)); 537 if (IS_ERR(path)) 538 path = "(unknown)"; 539 va_start(args, fmt); 540 vaf.fmt = fmt; 541 vaf.va = &args; 542 if (block) 543 printk(KERN_CRIT 544 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 545 "block %llu: comm %s: path %s: %pV\n", 546 inode->i_sb->s_id, function, line, inode->i_ino, 547 block, current->comm, path, &vaf); 548 else 549 printk(KERN_CRIT 550 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 551 "comm %s: path %s: %pV\n", 552 inode->i_sb->s_id, function, line, inode->i_ino, 553 current->comm, path, &vaf); 554 va_end(args); 555 } 556 save_error_info(inode->i_sb, function, line); 557 ext4_handle_error(inode->i_sb); 558 } 559 560 const char *ext4_decode_error(struct super_block *sb, int errno, 561 char nbuf[16]) 562 { 563 char *errstr = NULL; 564 565 switch (errno) { 566 case -EFSCORRUPTED: 567 errstr = "Corrupt filesystem"; 568 break; 569 case -EFSBADCRC: 570 errstr = "Filesystem failed CRC"; 571 break; 572 case -EIO: 573 errstr = "IO failure"; 574 break; 575 case -ENOMEM: 576 errstr = "Out of memory"; 577 break; 578 case -EROFS: 579 if (!sb || (EXT4_SB(sb)->s_journal && 580 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 581 errstr = "Journal has aborted"; 582 else 583 errstr = "Readonly filesystem"; 584 break; 585 default: 586 /* If the caller passed in an extra buffer for unknown 587 * errors, textualise them now. Else we just return 588 * NULL. */ 589 if (nbuf) { 590 /* Check for truncated error codes... */ 591 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 592 errstr = nbuf; 593 } 594 break; 595 } 596 597 return errstr; 598 } 599 600 /* __ext4_std_error decodes expected errors from journaling functions 601 * automatically and invokes the appropriate error response. */ 602 603 void __ext4_std_error(struct super_block *sb, const char *function, 604 unsigned int line, int errno) 605 { 606 char nbuf[16]; 607 const char *errstr; 608 609 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 610 return; 611 612 /* Special case: if the error is EROFS, and we're not already 613 * inside a transaction, then there's really no point in logging 614 * an error. */ 615 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb)) 616 return; 617 618 if (ext4_error_ratelimit(sb)) { 619 errstr = ext4_decode_error(sb, errno, nbuf); 620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 621 sb->s_id, function, line, errstr); 622 } 623 624 save_error_info(sb, function, line); 625 ext4_handle_error(sb); 626 } 627 628 /* 629 * ext4_abort is a much stronger failure handler than ext4_error. The 630 * abort function may be used to deal with unrecoverable failures such 631 * as journal IO errors or ENOMEM at a critical moment in log management. 632 * 633 * We unconditionally force the filesystem into an ABORT|READONLY state, 634 * unless the error response on the fs has been set to panic in which 635 * case we take the easy way out and panic immediately. 636 */ 637 638 void __ext4_abort(struct super_block *sb, const char *function, 639 unsigned int line, const char *fmt, ...) 640 { 641 struct va_format vaf; 642 va_list args; 643 644 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 645 return; 646 647 save_error_info(sb, function, line); 648 va_start(args, fmt); 649 vaf.fmt = fmt; 650 vaf.va = &args; 651 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n", 652 sb->s_id, function, line, &vaf); 653 va_end(args); 654 655 if (sb_rdonly(sb) == 0) { 656 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 657 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 658 /* 659 * Make sure updated value of ->s_mount_flags will be visible 660 * before ->s_flags update 661 */ 662 smp_wmb(); 663 sb->s_flags |= SB_RDONLY; 664 if (EXT4_SB(sb)->s_journal) 665 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 666 save_error_info(sb, function, line); 667 } 668 if (test_opt(sb, ERRORS_PANIC)) { 669 if (EXT4_SB(sb)->s_journal && 670 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 671 return; 672 panic("EXT4-fs panic from previous error\n"); 673 } 674 } 675 676 void __ext4_msg(struct super_block *sb, 677 const char *prefix, const char *fmt, ...) 678 { 679 struct va_format vaf; 680 va_list args; 681 682 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 683 return; 684 685 va_start(args, fmt); 686 vaf.fmt = fmt; 687 vaf.va = &args; 688 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 689 va_end(args); 690 } 691 692 #define ext4_warning_ratelimit(sb) \ 693 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 694 "EXT4-fs warning") 695 696 void __ext4_warning(struct super_block *sb, const char *function, 697 unsigned int line, const char *fmt, ...) 698 { 699 struct va_format vaf; 700 va_list args; 701 702 if (!ext4_warning_ratelimit(sb)) 703 return; 704 705 va_start(args, fmt); 706 vaf.fmt = fmt; 707 vaf.va = &args; 708 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 709 sb->s_id, function, line, &vaf); 710 va_end(args); 711 } 712 713 void __ext4_warning_inode(const struct inode *inode, const char *function, 714 unsigned int line, const char *fmt, ...) 715 { 716 struct va_format vaf; 717 va_list args; 718 719 if (!ext4_warning_ratelimit(inode->i_sb)) 720 return; 721 722 va_start(args, fmt); 723 vaf.fmt = fmt; 724 vaf.va = &args; 725 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 726 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 727 function, line, inode->i_ino, current->comm, &vaf); 728 va_end(args); 729 } 730 731 void __ext4_grp_locked_error(const char *function, unsigned int line, 732 struct super_block *sb, ext4_group_t grp, 733 unsigned long ino, ext4_fsblk_t block, 734 const char *fmt, ...) 735 __releases(bitlock) 736 __acquires(bitlock) 737 { 738 struct va_format vaf; 739 va_list args; 740 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 741 742 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 743 return; 744 745 trace_ext4_error(sb, function, line); 746 es->s_last_error_ino = cpu_to_le32(ino); 747 es->s_last_error_block = cpu_to_le64(block); 748 __save_error_info(sb, function, line); 749 750 if (ext4_error_ratelimit(sb)) { 751 va_start(args, fmt); 752 vaf.fmt = fmt; 753 vaf.va = &args; 754 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 755 sb->s_id, function, line, grp); 756 if (ino) 757 printk(KERN_CONT "inode %lu: ", ino); 758 if (block) 759 printk(KERN_CONT "block %llu:", 760 (unsigned long long) block); 761 printk(KERN_CONT "%pV\n", &vaf); 762 va_end(args); 763 } 764 765 if (test_opt(sb, WARN_ON_ERROR)) 766 WARN_ON_ONCE(1); 767 768 if (test_opt(sb, ERRORS_CONT)) { 769 ext4_commit_super(sb, 0); 770 return; 771 } 772 773 ext4_unlock_group(sb, grp); 774 ext4_commit_super(sb, 1); 775 ext4_handle_error(sb); 776 /* 777 * We only get here in the ERRORS_RO case; relocking the group 778 * may be dangerous, but nothing bad will happen since the 779 * filesystem will have already been marked read/only and the 780 * journal has been aborted. We return 1 as a hint to callers 781 * who might what to use the return value from 782 * ext4_grp_locked_error() to distinguish between the 783 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 784 * aggressively from the ext4 function in question, with a 785 * more appropriate error code. 786 */ 787 ext4_lock_group(sb, grp); 788 return; 789 } 790 791 void ext4_mark_group_bitmap_corrupted(struct super_block *sb, 792 ext4_group_t group, 793 unsigned int flags) 794 { 795 struct ext4_sb_info *sbi = EXT4_SB(sb); 796 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 797 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL); 798 int ret; 799 800 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) { 801 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 802 &grp->bb_state); 803 if (!ret) 804 percpu_counter_sub(&sbi->s_freeclusters_counter, 805 grp->bb_free); 806 } 807 808 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) { 809 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, 810 &grp->bb_state); 811 if (!ret && gdp) { 812 int count; 813 814 count = ext4_free_inodes_count(sb, gdp); 815 percpu_counter_sub(&sbi->s_freeinodes_counter, 816 count); 817 } 818 } 819 } 820 821 void ext4_update_dynamic_rev(struct super_block *sb) 822 { 823 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 824 825 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 826 return; 827 828 ext4_warning(sb, 829 "updating to rev %d because of new feature flag, " 830 "running e2fsck is recommended", 831 EXT4_DYNAMIC_REV); 832 833 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 834 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 835 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 836 /* leave es->s_feature_*compat flags alone */ 837 /* es->s_uuid will be set by e2fsck if empty */ 838 839 /* 840 * The rest of the superblock fields should be zero, and if not it 841 * means they are likely already in use, so leave them alone. We 842 * can leave it up to e2fsck to clean up any inconsistencies there. 843 */ 844 } 845 846 /* 847 * Open the external journal device 848 */ 849 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 850 { 851 struct block_device *bdev; 852 char b[BDEVNAME_SIZE]; 853 854 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 855 if (IS_ERR(bdev)) 856 goto fail; 857 return bdev; 858 859 fail: 860 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 861 __bdevname(dev, b), PTR_ERR(bdev)); 862 return NULL; 863 } 864 865 /* 866 * Release the journal device 867 */ 868 static void ext4_blkdev_put(struct block_device *bdev) 869 { 870 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 871 } 872 873 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 874 { 875 struct block_device *bdev; 876 bdev = sbi->journal_bdev; 877 if (bdev) { 878 ext4_blkdev_put(bdev); 879 sbi->journal_bdev = NULL; 880 } 881 } 882 883 static inline struct inode *orphan_list_entry(struct list_head *l) 884 { 885 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 886 } 887 888 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 889 { 890 struct list_head *l; 891 892 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 893 le32_to_cpu(sbi->s_es->s_last_orphan)); 894 895 printk(KERN_ERR "sb_info orphan list:\n"); 896 list_for_each(l, &sbi->s_orphan) { 897 struct inode *inode = orphan_list_entry(l); 898 printk(KERN_ERR " " 899 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 900 inode->i_sb->s_id, inode->i_ino, inode, 901 inode->i_mode, inode->i_nlink, 902 NEXT_ORPHAN(inode)); 903 } 904 } 905 906 #ifdef CONFIG_QUOTA 907 static int ext4_quota_off(struct super_block *sb, int type); 908 909 static inline void ext4_quota_off_umount(struct super_block *sb) 910 { 911 int type; 912 913 /* Use our quota_off function to clear inode flags etc. */ 914 for (type = 0; type < EXT4_MAXQUOTAS; type++) 915 ext4_quota_off(sb, type); 916 } 917 918 /* 919 * This is a helper function which is used in the mount/remount 920 * codepaths (which holds s_umount) to fetch the quota file name. 921 */ 922 static inline char *get_qf_name(struct super_block *sb, 923 struct ext4_sb_info *sbi, 924 int type) 925 { 926 return rcu_dereference_protected(sbi->s_qf_names[type], 927 lockdep_is_held(&sb->s_umount)); 928 } 929 #else 930 static inline void ext4_quota_off_umount(struct super_block *sb) 931 { 932 } 933 #endif 934 935 static void ext4_put_super(struct super_block *sb) 936 { 937 struct ext4_sb_info *sbi = EXT4_SB(sb); 938 struct ext4_super_block *es = sbi->s_es; 939 int aborted = 0; 940 int i, err; 941 942 ext4_unregister_li_request(sb); 943 ext4_quota_off_umount(sb); 944 945 destroy_workqueue(sbi->rsv_conversion_wq); 946 947 if (sbi->s_journal) { 948 aborted = is_journal_aborted(sbi->s_journal); 949 err = jbd2_journal_destroy(sbi->s_journal); 950 sbi->s_journal = NULL; 951 if ((err < 0) && !aborted) 952 ext4_abort(sb, "Couldn't clean up the journal"); 953 } 954 955 ext4_unregister_sysfs(sb); 956 ext4_es_unregister_shrinker(sbi); 957 del_timer_sync(&sbi->s_err_report); 958 ext4_release_system_zone(sb); 959 ext4_mb_release(sb); 960 ext4_ext_release(sb); 961 962 if (!sb_rdonly(sb) && !aborted) { 963 ext4_clear_feature_journal_needs_recovery(sb); 964 es->s_state = cpu_to_le16(sbi->s_mount_state); 965 } 966 if (!sb_rdonly(sb)) 967 ext4_commit_super(sb, 1); 968 969 for (i = 0; i < sbi->s_gdb_count; i++) 970 brelse(sbi->s_group_desc[i]); 971 kvfree(sbi->s_group_desc); 972 kvfree(sbi->s_flex_groups); 973 percpu_counter_destroy(&sbi->s_freeclusters_counter); 974 percpu_counter_destroy(&sbi->s_freeinodes_counter); 975 percpu_counter_destroy(&sbi->s_dirs_counter); 976 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 977 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 978 #ifdef CONFIG_QUOTA 979 for (i = 0; i < EXT4_MAXQUOTAS; i++) 980 kfree(get_qf_name(sb, sbi, i)); 981 #endif 982 983 /* Debugging code just in case the in-memory inode orphan list 984 * isn't empty. The on-disk one can be non-empty if we've 985 * detected an error and taken the fs readonly, but the 986 * in-memory list had better be clean by this point. */ 987 if (!list_empty(&sbi->s_orphan)) 988 dump_orphan_list(sb, sbi); 989 J_ASSERT(list_empty(&sbi->s_orphan)); 990 991 sync_blockdev(sb->s_bdev); 992 invalidate_bdev(sb->s_bdev); 993 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 994 /* 995 * Invalidate the journal device's buffers. We don't want them 996 * floating about in memory - the physical journal device may 997 * hotswapped, and it breaks the `ro-after' testing code. 998 */ 999 sync_blockdev(sbi->journal_bdev); 1000 invalidate_bdev(sbi->journal_bdev); 1001 ext4_blkdev_remove(sbi); 1002 } 1003 if (sbi->s_ea_inode_cache) { 1004 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 1005 sbi->s_ea_inode_cache = NULL; 1006 } 1007 if (sbi->s_ea_block_cache) { 1008 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 1009 sbi->s_ea_block_cache = NULL; 1010 } 1011 if (sbi->s_mmp_tsk) 1012 kthread_stop(sbi->s_mmp_tsk); 1013 brelse(sbi->s_sbh); 1014 sb->s_fs_info = NULL; 1015 /* 1016 * Now that we are completely done shutting down the 1017 * superblock, we need to actually destroy the kobject. 1018 */ 1019 kobject_put(&sbi->s_kobj); 1020 wait_for_completion(&sbi->s_kobj_unregister); 1021 if (sbi->s_chksum_driver) 1022 crypto_free_shash(sbi->s_chksum_driver); 1023 kfree(sbi->s_blockgroup_lock); 1024 fs_put_dax(sbi->s_daxdev); 1025 kfree(sbi); 1026 } 1027 1028 static struct kmem_cache *ext4_inode_cachep; 1029 1030 /* 1031 * Called inside transaction, so use GFP_NOFS 1032 */ 1033 static struct inode *ext4_alloc_inode(struct super_block *sb) 1034 { 1035 struct ext4_inode_info *ei; 1036 1037 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 1038 if (!ei) 1039 return NULL; 1040 1041 inode_set_iversion(&ei->vfs_inode, 1); 1042 spin_lock_init(&ei->i_raw_lock); 1043 INIT_LIST_HEAD(&ei->i_prealloc_list); 1044 spin_lock_init(&ei->i_prealloc_lock); 1045 ext4_es_init_tree(&ei->i_es_tree); 1046 rwlock_init(&ei->i_es_lock); 1047 INIT_LIST_HEAD(&ei->i_es_list); 1048 ei->i_es_all_nr = 0; 1049 ei->i_es_shk_nr = 0; 1050 ei->i_es_shrink_lblk = 0; 1051 ei->i_reserved_data_blocks = 0; 1052 ei->i_da_metadata_calc_len = 0; 1053 ei->i_da_metadata_calc_last_lblock = 0; 1054 spin_lock_init(&(ei->i_block_reservation_lock)); 1055 ext4_init_pending_tree(&ei->i_pending_tree); 1056 #ifdef CONFIG_QUOTA 1057 ei->i_reserved_quota = 0; 1058 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 1059 #endif 1060 ei->jinode = NULL; 1061 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 1062 spin_lock_init(&ei->i_completed_io_lock); 1063 ei->i_sync_tid = 0; 1064 ei->i_datasync_tid = 0; 1065 atomic_set(&ei->i_unwritten, 0); 1066 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 1067 return &ei->vfs_inode; 1068 } 1069 1070 static int ext4_drop_inode(struct inode *inode) 1071 { 1072 int drop = generic_drop_inode(inode); 1073 1074 trace_ext4_drop_inode(inode, drop); 1075 return drop; 1076 } 1077 1078 static void ext4_i_callback(struct rcu_head *head) 1079 { 1080 struct inode *inode = container_of(head, struct inode, i_rcu); 1081 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 1082 } 1083 1084 static void ext4_destroy_inode(struct inode *inode) 1085 { 1086 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 1087 ext4_msg(inode->i_sb, KERN_ERR, 1088 "Inode %lu (%p): orphan list check failed!", 1089 inode->i_ino, EXT4_I(inode)); 1090 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 1091 EXT4_I(inode), sizeof(struct ext4_inode_info), 1092 true); 1093 dump_stack(); 1094 } 1095 call_rcu(&inode->i_rcu, ext4_i_callback); 1096 } 1097 1098 static void init_once(void *foo) 1099 { 1100 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 1101 1102 INIT_LIST_HEAD(&ei->i_orphan); 1103 init_rwsem(&ei->xattr_sem); 1104 init_rwsem(&ei->i_data_sem); 1105 init_rwsem(&ei->i_mmap_sem); 1106 inode_init_once(&ei->vfs_inode); 1107 } 1108 1109 static int __init init_inodecache(void) 1110 { 1111 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache", 1112 sizeof(struct ext4_inode_info), 0, 1113 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD| 1114 SLAB_ACCOUNT), 1115 offsetof(struct ext4_inode_info, i_data), 1116 sizeof_field(struct ext4_inode_info, i_data), 1117 init_once); 1118 if (ext4_inode_cachep == NULL) 1119 return -ENOMEM; 1120 return 0; 1121 } 1122 1123 static void destroy_inodecache(void) 1124 { 1125 /* 1126 * Make sure all delayed rcu free inodes are flushed before we 1127 * destroy cache. 1128 */ 1129 rcu_barrier(); 1130 kmem_cache_destroy(ext4_inode_cachep); 1131 } 1132 1133 void ext4_clear_inode(struct inode *inode) 1134 { 1135 invalidate_inode_buffers(inode); 1136 clear_inode(inode); 1137 dquot_drop(inode); 1138 ext4_discard_preallocations(inode); 1139 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 1140 if (EXT4_I(inode)->jinode) { 1141 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 1142 EXT4_I(inode)->jinode); 1143 jbd2_free_inode(EXT4_I(inode)->jinode); 1144 EXT4_I(inode)->jinode = NULL; 1145 } 1146 fscrypt_put_encryption_info(inode); 1147 } 1148 1149 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1150 u64 ino, u32 generation) 1151 { 1152 struct inode *inode; 1153 1154 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1155 return ERR_PTR(-ESTALE); 1156 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1157 return ERR_PTR(-ESTALE); 1158 1159 /* iget isn't really right if the inode is currently unallocated!! 1160 * 1161 * ext4_read_inode will return a bad_inode if the inode had been 1162 * deleted, so we should be safe. 1163 * 1164 * Currently we don't know the generation for parent directory, so 1165 * a generation of 0 means "accept any" 1166 */ 1167 inode = ext4_iget_normal(sb, ino); 1168 if (IS_ERR(inode)) 1169 return ERR_CAST(inode); 1170 if (generation && inode->i_generation != generation) { 1171 iput(inode); 1172 return ERR_PTR(-ESTALE); 1173 } 1174 1175 return inode; 1176 } 1177 1178 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1179 int fh_len, int fh_type) 1180 { 1181 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1182 ext4_nfs_get_inode); 1183 } 1184 1185 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1186 int fh_len, int fh_type) 1187 { 1188 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1189 ext4_nfs_get_inode); 1190 } 1191 1192 /* 1193 * Try to release metadata pages (indirect blocks, directories) which are 1194 * mapped via the block device. Since these pages could have journal heads 1195 * which would prevent try_to_free_buffers() from freeing them, we must use 1196 * jbd2 layer's try_to_free_buffers() function to release them. 1197 */ 1198 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1199 gfp_t wait) 1200 { 1201 journal_t *journal = EXT4_SB(sb)->s_journal; 1202 1203 WARN_ON(PageChecked(page)); 1204 if (!page_has_buffers(page)) 1205 return 0; 1206 if (journal) 1207 return jbd2_journal_try_to_free_buffers(journal, page, 1208 wait & ~__GFP_DIRECT_RECLAIM); 1209 return try_to_free_buffers(page); 1210 } 1211 1212 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1213 static int ext4_get_context(struct inode *inode, void *ctx, size_t len) 1214 { 1215 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION, 1216 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len); 1217 } 1218 1219 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len, 1220 void *fs_data) 1221 { 1222 handle_t *handle = fs_data; 1223 int res, res2, credits, retries = 0; 1224 1225 /* 1226 * Encrypting the root directory is not allowed because e2fsck expects 1227 * lost+found to exist and be unencrypted, and encrypting the root 1228 * directory would imply encrypting the lost+found directory as well as 1229 * the filename "lost+found" itself. 1230 */ 1231 if (inode->i_ino == EXT4_ROOT_INO) 1232 return -EPERM; 1233 1234 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode))) 1235 return -EINVAL; 1236 1237 res = ext4_convert_inline_data(inode); 1238 if (res) 1239 return res; 1240 1241 /* 1242 * If a journal handle was specified, then the encryption context is 1243 * being set on a new inode via inheritance and is part of a larger 1244 * transaction to create the inode. Otherwise the encryption context is 1245 * being set on an existing inode in its own transaction. Only in the 1246 * latter case should the "retry on ENOSPC" logic be used. 1247 */ 1248 1249 if (handle) { 1250 res = ext4_xattr_set_handle(handle, inode, 1251 EXT4_XATTR_INDEX_ENCRYPTION, 1252 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1253 ctx, len, 0); 1254 if (!res) { 1255 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1256 ext4_clear_inode_state(inode, 1257 EXT4_STATE_MAY_INLINE_DATA); 1258 /* 1259 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1260 * S_DAX may be disabled 1261 */ 1262 ext4_set_inode_flags(inode); 1263 } 1264 return res; 1265 } 1266 1267 res = dquot_initialize(inode); 1268 if (res) 1269 return res; 1270 retry: 1271 res = ext4_xattr_set_credits(inode, len, false /* is_create */, 1272 &credits); 1273 if (res) 1274 return res; 1275 1276 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits); 1277 if (IS_ERR(handle)) 1278 return PTR_ERR(handle); 1279 1280 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION, 1281 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, 1282 ctx, len, 0); 1283 if (!res) { 1284 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT); 1285 /* 1286 * Update inode->i_flags - S_ENCRYPTED will be enabled, 1287 * S_DAX may be disabled 1288 */ 1289 ext4_set_inode_flags(inode); 1290 res = ext4_mark_inode_dirty(handle, inode); 1291 if (res) 1292 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty"); 1293 } 1294 res2 = ext4_journal_stop(handle); 1295 1296 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 1297 goto retry; 1298 if (!res) 1299 res = res2; 1300 return res; 1301 } 1302 1303 static bool ext4_dummy_context(struct inode *inode) 1304 { 1305 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb)); 1306 } 1307 1308 static const struct fscrypt_operations ext4_cryptops = { 1309 .key_prefix = "ext4:", 1310 .get_context = ext4_get_context, 1311 .set_context = ext4_set_context, 1312 .dummy_context = ext4_dummy_context, 1313 .empty_dir = ext4_empty_dir, 1314 .max_namelen = EXT4_NAME_LEN, 1315 }; 1316 #endif 1317 1318 #ifdef CONFIG_QUOTA 1319 static const char * const quotatypes[] = INITQFNAMES; 1320 #define QTYPE2NAME(t) (quotatypes[t]) 1321 1322 static int ext4_write_dquot(struct dquot *dquot); 1323 static int ext4_acquire_dquot(struct dquot *dquot); 1324 static int ext4_release_dquot(struct dquot *dquot); 1325 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1326 static int ext4_write_info(struct super_block *sb, int type); 1327 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1328 const struct path *path); 1329 static int ext4_quota_on_mount(struct super_block *sb, int type); 1330 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1331 size_t len, loff_t off); 1332 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1333 const char *data, size_t len, loff_t off); 1334 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1335 unsigned int flags); 1336 static int ext4_enable_quotas(struct super_block *sb); 1337 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid); 1338 1339 static struct dquot **ext4_get_dquots(struct inode *inode) 1340 { 1341 return EXT4_I(inode)->i_dquot; 1342 } 1343 1344 static const struct dquot_operations ext4_quota_operations = { 1345 .get_reserved_space = ext4_get_reserved_space, 1346 .write_dquot = ext4_write_dquot, 1347 .acquire_dquot = ext4_acquire_dquot, 1348 .release_dquot = ext4_release_dquot, 1349 .mark_dirty = ext4_mark_dquot_dirty, 1350 .write_info = ext4_write_info, 1351 .alloc_dquot = dquot_alloc, 1352 .destroy_dquot = dquot_destroy, 1353 .get_projid = ext4_get_projid, 1354 .get_inode_usage = ext4_get_inode_usage, 1355 .get_next_id = ext4_get_next_id, 1356 }; 1357 1358 static const struct quotactl_ops ext4_qctl_operations = { 1359 .quota_on = ext4_quota_on, 1360 .quota_off = ext4_quota_off, 1361 .quota_sync = dquot_quota_sync, 1362 .get_state = dquot_get_state, 1363 .set_info = dquot_set_dqinfo, 1364 .get_dqblk = dquot_get_dqblk, 1365 .set_dqblk = dquot_set_dqblk, 1366 .get_nextdqblk = dquot_get_next_dqblk, 1367 }; 1368 #endif 1369 1370 static const struct super_operations ext4_sops = { 1371 .alloc_inode = ext4_alloc_inode, 1372 .destroy_inode = ext4_destroy_inode, 1373 .write_inode = ext4_write_inode, 1374 .dirty_inode = ext4_dirty_inode, 1375 .drop_inode = ext4_drop_inode, 1376 .evict_inode = ext4_evict_inode, 1377 .put_super = ext4_put_super, 1378 .sync_fs = ext4_sync_fs, 1379 .freeze_fs = ext4_freeze, 1380 .unfreeze_fs = ext4_unfreeze, 1381 .statfs = ext4_statfs, 1382 .remount_fs = ext4_remount, 1383 .show_options = ext4_show_options, 1384 #ifdef CONFIG_QUOTA 1385 .quota_read = ext4_quota_read, 1386 .quota_write = ext4_quota_write, 1387 .get_dquots = ext4_get_dquots, 1388 #endif 1389 .bdev_try_to_free_page = bdev_try_to_free_page, 1390 }; 1391 1392 static const struct export_operations ext4_export_ops = { 1393 .fh_to_dentry = ext4_fh_to_dentry, 1394 .fh_to_parent = ext4_fh_to_parent, 1395 .get_parent = ext4_get_parent, 1396 }; 1397 1398 enum { 1399 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1400 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1401 Opt_nouid32, Opt_debug, Opt_removed, 1402 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1403 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1404 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1405 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1406 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1407 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1408 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1409 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1410 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1411 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax, 1412 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error, 1413 Opt_nowarn_on_error, Opt_mblk_io_submit, 1414 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize, 1415 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1416 Opt_inode_readahead_blks, Opt_journal_ioprio, 1417 Opt_dioread_nolock, Opt_dioread_lock, 1418 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1419 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, 1420 }; 1421 1422 static const match_table_t tokens = { 1423 {Opt_bsd_df, "bsddf"}, 1424 {Opt_minix_df, "minixdf"}, 1425 {Opt_grpid, "grpid"}, 1426 {Opt_grpid, "bsdgroups"}, 1427 {Opt_nogrpid, "nogrpid"}, 1428 {Opt_nogrpid, "sysvgroups"}, 1429 {Opt_resgid, "resgid=%u"}, 1430 {Opt_resuid, "resuid=%u"}, 1431 {Opt_sb, "sb=%u"}, 1432 {Opt_err_cont, "errors=continue"}, 1433 {Opt_err_panic, "errors=panic"}, 1434 {Opt_err_ro, "errors=remount-ro"}, 1435 {Opt_nouid32, "nouid32"}, 1436 {Opt_debug, "debug"}, 1437 {Opt_removed, "oldalloc"}, 1438 {Opt_removed, "orlov"}, 1439 {Opt_user_xattr, "user_xattr"}, 1440 {Opt_nouser_xattr, "nouser_xattr"}, 1441 {Opt_acl, "acl"}, 1442 {Opt_noacl, "noacl"}, 1443 {Opt_noload, "norecovery"}, 1444 {Opt_noload, "noload"}, 1445 {Opt_removed, "nobh"}, 1446 {Opt_removed, "bh"}, 1447 {Opt_commit, "commit=%u"}, 1448 {Opt_min_batch_time, "min_batch_time=%u"}, 1449 {Opt_max_batch_time, "max_batch_time=%u"}, 1450 {Opt_journal_dev, "journal_dev=%u"}, 1451 {Opt_journal_path, "journal_path=%s"}, 1452 {Opt_journal_checksum, "journal_checksum"}, 1453 {Opt_nojournal_checksum, "nojournal_checksum"}, 1454 {Opt_journal_async_commit, "journal_async_commit"}, 1455 {Opt_abort, "abort"}, 1456 {Opt_data_journal, "data=journal"}, 1457 {Opt_data_ordered, "data=ordered"}, 1458 {Opt_data_writeback, "data=writeback"}, 1459 {Opt_data_err_abort, "data_err=abort"}, 1460 {Opt_data_err_ignore, "data_err=ignore"}, 1461 {Opt_offusrjquota, "usrjquota="}, 1462 {Opt_usrjquota, "usrjquota=%s"}, 1463 {Opt_offgrpjquota, "grpjquota="}, 1464 {Opt_grpjquota, "grpjquota=%s"}, 1465 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1466 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1467 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1468 {Opt_grpquota, "grpquota"}, 1469 {Opt_noquota, "noquota"}, 1470 {Opt_quota, "quota"}, 1471 {Opt_usrquota, "usrquota"}, 1472 {Opt_prjquota, "prjquota"}, 1473 {Opt_barrier, "barrier=%u"}, 1474 {Opt_barrier, "barrier"}, 1475 {Opt_nobarrier, "nobarrier"}, 1476 {Opt_i_version, "i_version"}, 1477 {Opt_dax, "dax"}, 1478 {Opt_stripe, "stripe=%u"}, 1479 {Opt_delalloc, "delalloc"}, 1480 {Opt_warn_on_error, "warn_on_error"}, 1481 {Opt_nowarn_on_error, "nowarn_on_error"}, 1482 {Opt_lazytime, "lazytime"}, 1483 {Opt_nolazytime, "nolazytime"}, 1484 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"}, 1485 {Opt_nodelalloc, "nodelalloc"}, 1486 {Opt_removed, "mblk_io_submit"}, 1487 {Opt_removed, "nomblk_io_submit"}, 1488 {Opt_block_validity, "block_validity"}, 1489 {Opt_noblock_validity, "noblock_validity"}, 1490 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1491 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1492 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1493 {Opt_auto_da_alloc, "auto_da_alloc"}, 1494 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1495 {Opt_dioread_nolock, "dioread_nolock"}, 1496 {Opt_dioread_lock, "dioread_lock"}, 1497 {Opt_discard, "discard"}, 1498 {Opt_nodiscard, "nodiscard"}, 1499 {Opt_init_itable, "init_itable=%u"}, 1500 {Opt_init_itable, "init_itable"}, 1501 {Opt_noinit_itable, "noinit_itable"}, 1502 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1503 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1504 {Opt_nombcache, "nombcache"}, 1505 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ 1506 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1507 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1508 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1509 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1510 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1511 {Opt_err, NULL}, 1512 }; 1513 1514 static ext4_fsblk_t get_sb_block(void **data) 1515 { 1516 ext4_fsblk_t sb_block; 1517 char *options = (char *) *data; 1518 1519 if (!options || strncmp(options, "sb=", 3) != 0) 1520 return 1; /* Default location */ 1521 1522 options += 3; 1523 /* TODO: use simple_strtoll with >32bit ext4 */ 1524 sb_block = simple_strtoul(options, &options, 0); 1525 if (*options && *options != ',') { 1526 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1527 (char *) *data); 1528 return 1; 1529 } 1530 if (*options == ',') 1531 options++; 1532 *data = (void *) options; 1533 1534 return sb_block; 1535 } 1536 1537 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1538 static const char deprecated_msg[] = 1539 "Mount option \"%s\" will be removed by %s\n" 1540 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1541 1542 #ifdef CONFIG_QUOTA 1543 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1544 { 1545 struct ext4_sb_info *sbi = EXT4_SB(sb); 1546 char *qname, *old_qname = get_qf_name(sb, sbi, qtype); 1547 int ret = -1; 1548 1549 if (sb_any_quota_loaded(sb) && !old_qname) { 1550 ext4_msg(sb, KERN_ERR, 1551 "Cannot change journaled " 1552 "quota options when quota turned on"); 1553 return -1; 1554 } 1555 if (ext4_has_feature_quota(sb)) { 1556 ext4_msg(sb, KERN_INFO, "Journaled quota options " 1557 "ignored when QUOTA feature is enabled"); 1558 return 1; 1559 } 1560 qname = match_strdup(args); 1561 if (!qname) { 1562 ext4_msg(sb, KERN_ERR, 1563 "Not enough memory for storing quotafile name"); 1564 return -1; 1565 } 1566 if (old_qname) { 1567 if (strcmp(old_qname, qname) == 0) 1568 ret = 1; 1569 else 1570 ext4_msg(sb, KERN_ERR, 1571 "%s quota file already specified", 1572 QTYPE2NAME(qtype)); 1573 goto errout; 1574 } 1575 if (strchr(qname, '/')) { 1576 ext4_msg(sb, KERN_ERR, 1577 "quotafile must be on filesystem root"); 1578 goto errout; 1579 } 1580 rcu_assign_pointer(sbi->s_qf_names[qtype], qname); 1581 set_opt(sb, QUOTA); 1582 return 1; 1583 errout: 1584 kfree(qname); 1585 return ret; 1586 } 1587 1588 static int clear_qf_name(struct super_block *sb, int qtype) 1589 { 1590 1591 struct ext4_sb_info *sbi = EXT4_SB(sb); 1592 char *old_qname = get_qf_name(sb, sbi, qtype); 1593 1594 if (sb_any_quota_loaded(sb) && old_qname) { 1595 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1596 " when quota turned on"); 1597 return -1; 1598 } 1599 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL); 1600 synchronize_rcu(); 1601 kfree(old_qname); 1602 return 1; 1603 } 1604 #endif 1605 1606 #define MOPT_SET 0x0001 1607 #define MOPT_CLEAR 0x0002 1608 #define MOPT_NOSUPPORT 0x0004 1609 #define MOPT_EXPLICIT 0x0008 1610 #define MOPT_CLEAR_ERR 0x0010 1611 #define MOPT_GTE0 0x0020 1612 #ifdef CONFIG_QUOTA 1613 #define MOPT_Q 0 1614 #define MOPT_QFMT 0x0040 1615 #else 1616 #define MOPT_Q MOPT_NOSUPPORT 1617 #define MOPT_QFMT MOPT_NOSUPPORT 1618 #endif 1619 #define MOPT_DATAJ 0x0080 1620 #define MOPT_NO_EXT2 0x0100 1621 #define MOPT_NO_EXT3 0x0200 1622 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1623 #define MOPT_STRING 0x0400 1624 1625 static const struct mount_opts { 1626 int token; 1627 int mount_opt; 1628 int flags; 1629 } ext4_mount_opts[] = { 1630 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1631 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1632 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1633 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1634 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1635 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1636 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1637 MOPT_EXT4_ONLY | MOPT_SET}, 1638 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1639 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1640 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1641 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1642 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1643 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1644 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1645 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1646 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET}, 1647 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR}, 1648 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1649 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1650 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1651 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1652 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1653 EXT4_MOUNT_JOURNAL_CHECKSUM), 1654 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1655 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1656 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1657 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1658 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1659 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1660 MOPT_NO_EXT2}, 1661 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1662 MOPT_NO_EXT2}, 1663 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1664 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1665 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1666 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1667 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1668 {Opt_commit, 0, MOPT_GTE0}, 1669 {Opt_max_batch_time, 0, MOPT_GTE0}, 1670 {Opt_min_batch_time, 0, MOPT_GTE0}, 1671 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1672 {Opt_init_itable, 0, MOPT_GTE0}, 1673 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1674 {Opt_stripe, 0, MOPT_GTE0}, 1675 {Opt_resuid, 0, MOPT_GTE0}, 1676 {Opt_resgid, 0, MOPT_GTE0}, 1677 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1678 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1679 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1680 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1681 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1682 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1683 MOPT_NO_EXT2 | MOPT_DATAJ}, 1684 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1685 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1686 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1687 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1688 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1689 #else 1690 {Opt_acl, 0, MOPT_NOSUPPORT}, 1691 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1692 #endif 1693 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1694 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1695 {Opt_debug_want_extra_isize, 0, MOPT_GTE0}, 1696 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1697 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1698 MOPT_SET | MOPT_Q}, 1699 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1700 MOPT_SET | MOPT_Q}, 1701 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA, 1702 MOPT_SET | MOPT_Q}, 1703 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1704 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA), 1705 MOPT_CLEAR | MOPT_Q}, 1706 {Opt_usrjquota, 0, MOPT_Q}, 1707 {Opt_grpjquota, 0, MOPT_Q}, 1708 {Opt_offusrjquota, 0, MOPT_Q}, 1709 {Opt_offgrpjquota, 0, MOPT_Q}, 1710 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1711 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1712 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1713 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1714 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1715 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, 1716 {Opt_err, 0, 0} 1717 }; 1718 1719 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1720 substring_t *args, unsigned long *journal_devnum, 1721 unsigned int *journal_ioprio, int is_remount) 1722 { 1723 struct ext4_sb_info *sbi = EXT4_SB(sb); 1724 const struct mount_opts *m; 1725 kuid_t uid; 1726 kgid_t gid; 1727 int arg = 0; 1728 1729 #ifdef CONFIG_QUOTA 1730 if (token == Opt_usrjquota) 1731 return set_qf_name(sb, USRQUOTA, &args[0]); 1732 else if (token == Opt_grpjquota) 1733 return set_qf_name(sb, GRPQUOTA, &args[0]); 1734 else if (token == Opt_offusrjquota) 1735 return clear_qf_name(sb, USRQUOTA); 1736 else if (token == Opt_offgrpjquota) 1737 return clear_qf_name(sb, GRPQUOTA); 1738 #endif 1739 switch (token) { 1740 case Opt_noacl: 1741 case Opt_nouser_xattr: 1742 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1743 break; 1744 case Opt_sb: 1745 return 1; /* handled by get_sb_block() */ 1746 case Opt_removed: 1747 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1748 return 1; 1749 case Opt_abort: 1750 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1751 return 1; 1752 case Opt_i_version: 1753 sb->s_flags |= SB_I_VERSION; 1754 return 1; 1755 case Opt_lazytime: 1756 sb->s_flags |= SB_LAZYTIME; 1757 return 1; 1758 case Opt_nolazytime: 1759 sb->s_flags &= ~SB_LAZYTIME; 1760 return 1; 1761 } 1762 1763 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1764 if (token == m->token) 1765 break; 1766 1767 if (m->token == Opt_err) { 1768 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1769 "or missing value", opt); 1770 return -1; 1771 } 1772 1773 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1774 ext4_msg(sb, KERN_ERR, 1775 "Mount option \"%s\" incompatible with ext2", opt); 1776 return -1; 1777 } 1778 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1779 ext4_msg(sb, KERN_ERR, 1780 "Mount option \"%s\" incompatible with ext3", opt); 1781 return -1; 1782 } 1783 1784 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1785 return -1; 1786 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1787 return -1; 1788 if (m->flags & MOPT_EXPLICIT) { 1789 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1790 set_opt2(sb, EXPLICIT_DELALLOC); 1791 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1792 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1793 } else 1794 return -1; 1795 } 1796 if (m->flags & MOPT_CLEAR_ERR) 1797 clear_opt(sb, ERRORS_MASK); 1798 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1799 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1800 "options when quota turned on"); 1801 return -1; 1802 } 1803 1804 if (m->flags & MOPT_NOSUPPORT) { 1805 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1806 } else if (token == Opt_commit) { 1807 if (arg == 0) 1808 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1809 sbi->s_commit_interval = HZ * arg; 1810 } else if (token == Opt_debug_want_extra_isize) { 1811 sbi->s_want_extra_isize = arg; 1812 } else if (token == Opt_max_batch_time) { 1813 sbi->s_max_batch_time = arg; 1814 } else if (token == Opt_min_batch_time) { 1815 sbi->s_min_batch_time = arg; 1816 } else if (token == Opt_inode_readahead_blks) { 1817 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1818 ext4_msg(sb, KERN_ERR, 1819 "EXT4-fs: inode_readahead_blks must be " 1820 "0 or a power of 2 smaller than 2^31"); 1821 return -1; 1822 } 1823 sbi->s_inode_readahead_blks = arg; 1824 } else if (token == Opt_init_itable) { 1825 set_opt(sb, INIT_INODE_TABLE); 1826 if (!args->from) 1827 arg = EXT4_DEF_LI_WAIT_MULT; 1828 sbi->s_li_wait_mult = arg; 1829 } else if (token == Opt_max_dir_size_kb) { 1830 sbi->s_max_dir_size_kb = arg; 1831 } else if (token == Opt_stripe) { 1832 sbi->s_stripe = arg; 1833 } else if (token == Opt_resuid) { 1834 uid = make_kuid(current_user_ns(), arg); 1835 if (!uid_valid(uid)) { 1836 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1837 return -1; 1838 } 1839 sbi->s_resuid = uid; 1840 } else if (token == Opt_resgid) { 1841 gid = make_kgid(current_user_ns(), arg); 1842 if (!gid_valid(gid)) { 1843 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1844 return -1; 1845 } 1846 sbi->s_resgid = gid; 1847 } else if (token == Opt_journal_dev) { 1848 if (is_remount) { 1849 ext4_msg(sb, KERN_ERR, 1850 "Cannot specify journal on remount"); 1851 return -1; 1852 } 1853 *journal_devnum = arg; 1854 } else if (token == Opt_journal_path) { 1855 char *journal_path; 1856 struct inode *journal_inode; 1857 struct path path; 1858 int error; 1859 1860 if (is_remount) { 1861 ext4_msg(sb, KERN_ERR, 1862 "Cannot specify journal on remount"); 1863 return -1; 1864 } 1865 journal_path = match_strdup(&args[0]); 1866 if (!journal_path) { 1867 ext4_msg(sb, KERN_ERR, "error: could not dup " 1868 "journal device string"); 1869 return -1; 1870 } 1871 1872 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1873 if (error) { 1874 ext4_msg(sb, KERN_ERR, "error: could not find " 1875 "journal device path: error %d", error); 1876 kfree(journal_path); 1877 return -1; 1878 } 1879 1880 journal_inode = d_inode(path.dentry); 1881 if (!S_ISBLK(journal_inode->i_mode)) { 1882 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1883 "is not a block device", journal_path); 1884 path_put(&path); 1885 kfree(journal_path); 1886 return -1; 1887 } 1888 1889 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1890 path_put(&path); 1891 kfree(journal_path); 1892 } else if (token == Opt_journal_ioprio) { 1893 if (arg > 7) { 1894 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1895 " (must be 0-7)"); 1896 return -1; 1897 } 1898 *journal_ioprio = 1899 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1900 } else if (token == Opt_test_dummy_encryption) { 1901 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1902 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1903 ext4_msg(sb, KERN_WARNING, 1904 "Test dummy encryption mode enabled"); 1905 #else 1906 ext4_msg(sb, KERN_WARNING, 1907 "Test dummy encryption mount option ignored"); 1908 #endif 1909 } else if (m->flags & MOPT_DATAJ) { 1910 if (is_remount) { 1911 if (!sbi->s_journal) 1912 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1913 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1914 ext4_msg(sb, KERN_ERR, 1915 "Cannot change data mode on remount"); 1916 return -1; 1917 } 1918 } else { 1919 clear_opt(sb, DATA_FLAGS); 1920 sbi->s_mount_opt |= m->mount_opt; 1921 } 1922 #ifdef CONFIG_QUOTA 1923 } else if (m->flags & MOPT_QFMT) { 1924 if (sb_any_quota_loaded(sb) && 1925 sbi->s_jquota_fmt != m->mount_opt) { 1926 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1927 "quota options when quota turned on"); 1928 return -1; 1929 } 1930 if (ext4_has_feature_quota(sb)) { 1931 ext4_msg(sb, KERN_INFO, 1932 "Quota format mount options ignored " 1933 "when QUOTA feature is enabled"); 1934 return 1; 1935 } 1936 sbi->s_jquota_fmt = m->mount_opt; 1937 #endif 1938 } else if (token == Opt_dax) { 1939 #ifdef CONFIG_FS_DAX 1940 ext4_msg(sb, KERN_WARNING, 1941 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); 1942 sbi->s_mount_opt |= m->mount_opt; 1943 #else 1944 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1945 return -1; 1946 #endif 1947 } else if (token == Opt_data_err_abort) { 1948 sbi->s_mount_opt |= m->mount_opt; 1949 } else if (token == Opt_data_err_ignore) { 1950 sbi->s_mount_opt &= ~m->mount_opt; 1951 } else { 1952 if (!args->from) 1953 arg = 1; 1954 if (m->flags & MOPT_CLEAR) 1955 arg = !arg; 1956 else if (unlikely(!(m->flags & MOPT_SET))) { 1957 ext4_msg(sb, KERN_WARNING, 1958 "buggy handling of option %s", opt); 1959 WARN_ON(1); 1960 return -1; 1961 } 1962 if (arg != 0) 1963 sbi->s_mount_opt |= m->mount_opt; 1964 else 1965 sbi->s_mount_opt &= ~m->mount_opt; 1966 } 1967 return 1; 1968 } 1969 1970 static int parse_options(char *options, struct super_block *sb, 1971 unsigned long *journal_devnum, 1972 unsigned int *journal_ioprio, 1973 int is_remount) 1974 { 1975 struct ext4_sb_info *sbi = EXT4_SB(sb); 1976 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name; 1977 substring_t args[MAX_OPT_ARGS]; 1978 int token; 1979 1980 if (!options) 1981 return 1; 1982 1983 while ((p = strsep(&options, ",")) != NULL) { 1984 if (!*p) 1985 continue; 1986 /* 1987 * Initialize args struct so we know whether arg was 1988 * found; some options take optional arguments. 1989 */ 1990 args[0].to = args[0].from = NULL; 1991 token = match_token(p, tokens, args); 1992 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1993 journal_ioprio, is_remount) < 0) 1994 return 0; 1995 } 1996 #ifdef CONFIG_QUOTA 1997 /* 1998 * We do the test below only for project quotas. 'usrquota' and 1999 * 'grpquota' mount options are allowed even without quota feature 2000 * to support legacy quotas in quota files. 2001 */ 2002 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) { 2003 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. " 2004 "Cannot enable project quota enforcement."); 2005 return 0; 2006 } 2007 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA); 2008 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA); 2009 if (usr_qf_name || grp_qf_name) { 2010 if (test_opt(sb, USRQUOTA) && usr_qf_name) 2011 clear_opt(sb, USRQUOTA); 2012 2013 if (test_opt(sb, GRPQUOTA) && grp_qf_name) 2014 clear_opt(sb, GRPQUOTA); 2015 2016 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 2017 ext4_msg(sb, KERN_ERR, "old and new quota " 2018 "format mixing"); 2019 return 0; 2020 } 2021 2022 if (!sbi->s_jquota_fmt) { 2023 ext4_msg(sb, KERN_ERR, "journaled quota format " 2024 "not specified"); 2025 return 0; 2026 } 2027 } 2028 #endif 2029 if (test_opt(sb, DIOREAD_NOLOCK)) { 2030 int blocksize = 2031 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 2032 2033 if (blocksize < PAGE_SIZE) { 2034 ext4_msg(sb, KERN_ERR, "can't mount with " 2035 "dioread_nolock if block size != PAGE_SIZE"); 2036 return 0; 2037 } 2038 } 2039 return 1; 2040 } 2041 2042 static inline void ext4_show_quota_options(struct seq_file *seq, 2043 struct super_block *sb) 2044 { 2045 #if defined(CONFIG_QUOTA) 2046 struct ext4_sb_info *sbi = EXT4_SB(sb); 2047 char *usr_qf_name, *grp_qf_name; 2048 2049 if (sbi->s_jquota_fmt) { 2050 char *fmtname = ""; 2051 2052 switch (sbi->s_jquota_fmt) { 2053 case QFMT_VFS_OLD: 2054 fmtname = "vfsold"; 2055 break; 2056 case QFMT_VFS_V0: 2057 fmtname = "vfsv0"; 2058 break; 2059 case QFMT_VFS_V1: 2060 fmtname = "vfsv1"; 2061 break; 2062 } 2063 seq_printf(seq, ",jqfmt=%s", fmtname); 2064 } 2065 2066 rcu_read_lock(); 2067 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]); 2068 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]); 2069 if (usr_qf_name) 2070 seq_show_option(seq, "usrjquota", usr_qf_name); 2071 if (grp_qf_name) 2072 seq_show_option(seq, "grpjquota", grp_qf_name); 2073 rcu_read_unlock(); 2074 #endif 2075 } 2076 2077 static const char *token2str(int token) 2078 { 2079 const struct match_token *t; 2080 2081 for (t = tokens; t->token != Opt_err; t++) 2082 if (t->token == token && !strchr(t->pattern, '=')) 2083 break; 2084 return t->pattern; 2085 } 2086 2087 /* 2088 * Show an option if 2089 * - it's set to a non-default value OR 2090 * - if the per-sb default is different from the global default 2091 */ 2092 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 2093 int nodefs) 2094 { 2095 struct ext4_sb_info *sbi = EXT4_SB(sb); 2096 struct ext4_super_block *es = sbi->s_es; 2097 int def_errors, def_mount_opt = sbi->s_def_mount_opt; 2098 const struct mount_opts *m; 2099 char sep = nodefs ? '\n' : ','; 2100 2101 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 2102 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 2103 2104 if (sbi->s_sb_block != 1) 2105 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 2106 2107 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 2108 int want_set = m->flags & MOPT_SET; 2109 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 2110 (m->flags & MOPT_CLEAR_ERR)) 2111 continue; 2112 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 2113 continue; /* skip if same as the default */ 2114 if ((want_set && 2115 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 2116 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 2117 continue; /* select Opt_noFoo vs Opt_Foo */ 2118 SEQ_OPTS_PRINT("%s", token2str(m->token)); 2119 } 2120 2121 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 2122 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 2123 SEQ_OPTS_PRINT("resuid=%u", 2124 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 2125 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 2126 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 2127 SEQ_OPTS_PRINT("resgid=%u", 2128 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 2129 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 2130 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 2131 SEQ_OPTS_PUTS("errors=remount-ro"); 2132 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 2133 SEQ_OPTS_PUTS("errors=continue"); 2134 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 2135 SEQ_OPTS_PUTS("errors=panic"); 2136 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 2137 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 2138 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 2139 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 2140 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 2141 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 2142 if (sb->s_flags & SB_I_VERSION) 2143 SEQ_OPTS_PUTS("i_version"); 2144 if (nodefs || sbi->s_stripe) 2145 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 2146 if (nodefs || EXT4_MOUNT_DATA_FLAGS & 2147 (sbi->s_mount_opt ^ def_mount_opt)) { 2148 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 2149 SEQ_OPTS_PUTS("data=journal"); 2150 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 2151 SEQ_OPTS_PUTS("data=ordered"); 2152 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 2153 SEQ_OPTS_PUTS("data=writeback"); 2154 } 2155 if (nodefs || 2156 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 2157 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 2158 sbi->s_inode_readahead_blks); 2159 2160 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs || 2161 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 2162 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 2163 if (nodefs || sbi->s_max_dir_size_kb) 2164 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 2165 if (test_opt(sb, DATA_ERR_ABORT)) 2166 SEQ_OPTS_PUTS("data_err=abort"); 2167 if (DUMMY_ENCRYPTION_ENABLED(sbi)) 2168 SEQ_OPTS_PUTS("test_dummy_encryption"); 2169 2170 ext4_show_quota_options(seq, sb); 2171 return 0; 2172 } 2173 2174 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 2175 { 2176 return _ext4_show_options(seq, root->d_sb, 0); 2177 } 2178 2179 int ext4_seq_options_show(struct seq_file *seq, void *offset) 2180 { 2181 struct super_block *sb = seq->private; 2182 int rc; 2183 2184 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw"); 2185 rc = _ext4_show_options(seq, sb, 1); 2186 seq_puts(seq, "\n"); 2187 return rc; 2188 } 2189 2190 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 2191 int read_only) 2192 { 2193 struct ext4_sb_info *sbi = EXT4_SB(sb); 2194 int err = 0; 2195 2196 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 2197 ext4_msg(sb, KERN_ERR, "revision level too high, " 2198 "forcing read-only mode"); 2199 err = -EROFS; 2200 } 2201 if (read_only) 2202 goto done; 2203 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 2204 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 2205 "running e2fsck is recommended"); 2206 else if (sbi->s_mount_state & EXT4_ERROR_FS) 2207 ext4_msg(sb, KERN_WARNING, 2208 "warning: mounting fs with errors, " 2209 "running e2fsck is recommended"); 2210 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 2211 le16_to_cpu(es->s_mnt_count) >= 2212 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 2213 ext4_msg(sb, KERN_WARNING, 2214 "warning: maximal mount count reached, " 2215 "running e2fsck is recommended"); 2216 else if (le32_to_cpu(es->s_checkinterval) && 2217 (ext4_get_tstamp(es, s_lastcheck) + 2218 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds())) 2219 ext4_msg(sb, KERN_WARNING, 2220 "warning: checktime reached, " 2221 "running e2fsck is recommended"); 2222 if (!sbi->s_journal) 2223 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 2224 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 2225 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 2226 le16_add_cpu(&es->s_mnt_count, 1); 2227 ext4_update_tstamp(es, s_mtime); 2228 ext4_update_dynamic_rev(sb); 2229 if (sbi->s_journal) 2230 ext4_set_feature_journal_needs_recovery(sb); 2231 2232 err = ext4_commit_super(sb, 1); 2233 done: 2234 if (test_opt(sb, DEBUG)) 2235 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 2236 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 2237 sb->s_blocksize, 2238 sbi->s_groups_count, 2239 EXT4_BLOCKS_PER_GROUP(sb), 2240 EXT4_INODES_PER_GROUP(sb), 2241 sbi->s_mount_opt, sbi->s_mount_opt2); 2242 2243 cleancache_init_fs(sb); 2244 return err; 2245 } 2246 2247 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 2248 { 2249 struct ext4_sb_info *sbi = EXT4_SB(sb); 2250 struct flex_groups *new_groups; 2251 int size; 2252 2253 if (!sbi->s_log_groups_per_flex) 2254 return 0; 2255 2256 size = ext4_flex_group(sbi, ngroup - 1) + 1; 2257 if (size <= sbi->s_flex_groups_allocated) 2258 return 0; 2259 2260 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 2261 new_groups = kvzalloc(size, GFP_KERNEL); 2262 if (!new_groups) { 2263 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 2264 size / (int) sizeof(struct flex_groups)); 2265 return -ENOMEM; 2266 } 2267 2268 if (sbi->s_flex_groups) { 2269 memcpy(new_groups, sbi->s_flex_groups, 2270 (sbi->s_flex_groups_allocated * 2271 sizeof(struct flex_groups))); 2272 kvfree(sbi->s_flex_groups); 2273 } 2274 sbi->s_flex_groups = new_groups; 2275 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 2276 return 0; 2277 } 2278 2279 static int ext4_fill_flex_info(struct super_block *sb) 2280 { 2281 struct ext4_sb_info *sbi = EXT4_SB(sb); 2282 struct ext4_group_desc *gdp = NULL; 2283 ext4_group_t flex_group; 2284 int i, err; 2285 2286 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 2287 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2288 sbi->s_log_groups_per_flex = 0; 2289 return 1; 2290 } 2291 2292 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2293 if (err) 2294 goto failed; 2295 2296 for (i = 0; i < sbi->s_groups_count; i++) { 2297 gdp = ext4_get_group_desc(sb, i, NULL); 2298 2299 flex_group = ext4_flex_group(sbi, i); 2300 atomic_add(ext4_free_inodes_count(sb, gdp), 2301 &sbi->s_flex_groups[flex_group].free_inodes); 2302 atomic64_add(ext4_free_group_clusters(sb, gdp), 2303 &sbi->s_flex_groups[flex_group].free_clusters); 2304 atomic_add(ext4_used_dirs_count(sb, gdp), 2305 &sbi->s_flex_groups[flex_group].used_dirs); 2306 } 2307 2308 return 1; 2309 failed: 2310 return 0; 2311 } 2312 2313 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2314 struct ext4_group_desc *gdp) 2315 { 2316 int offset = offsetof(struct ext4_group_desc, bg_checksum); 2317 __u16 crc = 0; 2318 __le32 le_group = cpu_to_le32(block_group); 2319 struct ext4_sb_info *sbi = EXT4_SB(sb); 2320 2321 if (ext4_has_metadata_csum(sbi->s_sb)) { 2322 /* Use new metadata_csum algorithm */ 2323 __u32 csum32; 2324 __u16 dummy_csum = 0; 2325 2326 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2327 sizeof(le_group)); 2328 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset); 2329 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum, 2330 sizeof(dummy_csum)); 2331 offset += sizeof(dummy_csum); 2332 if (offset < sbi->s_desc_size) 2333 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset, 2334 sbi->s_desc_size - offset); 2335 2336 crc = csum32 & 0xFFFF; 2337 goto out; 2338 } 2339 2340 /* old crc16 code */ 2341 if (!ext4_has_feature_gdt_csum(sb)) 2342 return 0; 2343 2344 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2345 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2346 crc = crc16(crc, (__u8 *)gdp, offset); 2347 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2348 /* for checksum of struct ext4_group_desc do the rest...*/ 2349 if (ext4_has_feature_64bit(sb) && 2350 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2351 crc = crc16(crc, (__u8 *)gdp + offset, 2352 le16_to_cpu(sbi->s_es->s_desc_size) - 2353 offset); 2354 2355 out: 2356 return cpu_to_le16(crc); 2357 } 2358 2359 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2360 struct ext4_group_desc *gdp) 2361 { 2362 if (ext4_has_group_desc_csum(sb) && 2363 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2364 return 0; 2365 2366 return 1; 2367 } 2368 2369 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2370 struct ext4_group_desc *gdp) 2371 { 2372 if (!ext4_has_group_desc_csum(sb)) 2373 return; 2374 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2375 } 2376 2377 /* Called at mount-time, super-block is locked */ 2378 static int ext4_check_descriptors(struct super_block *sb, 2379 ext4_fsblk_t sb_block, 2380 ext4_group_t *first_not_zeroed) 2381 { 2382 struct ext4_sb_info *sbi = EXT4_SB(sb); 2383 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2384 ext4_fsblk_t last_block; 2385 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0); 2386 ext4_fsblk_t block_bitmap; 2387 ext4_fsblk_t inode_bitmap; 2388 ext4_fsblk_t inode_table; 2389 int flexbg_flag = 0; 2390 ext4_group_t i, grp = sbi->s_groups_count; 2391 2392 if (ext4_has_feature_flex_bg(sb)) 2393 flexbg_flag = 1; 2394 2395 ext4_debug("Checking group descriptors"); 2396 2397 for (i = 0; i < sbi->s_groups_count; i++) { 2398 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2399 2400 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2401 last_block = ext4_blocks_count(sbi->s_es) - 1; 2402 else 2403 last_block = first_block + 2404 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2405 2406 if ((grp == sbi->s_groups_count) && 2407 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2408 grp = i; 2409 2410 block_bitmap = ext4_block_bitmap(sb, gdp); 2411 if (block_bitmap == sb_block) { 2412 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2413 "Block bitmap for group %u overlaps " 2414 "superblock", i); 2415 if (!sb_rdonly(sb)) 2416 return 0; 2417 } 2418 if (block_bitmap >= sb_block + 1 && 2419 block_bitmap <= last_bg_block) { 2420 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2421 "Block bitmap for group %u overlaps " 2422 "block group descriptors", i); 2423 if (!sb_rdonly(sb)) 2424 return 0; 2425 } 2426 if (block_bitmap < first_block || block_bitmap > last_block) { 2427 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2428 "Block bitmap for group %u not in group " 2429 "(block %llu)!", i, block_bitmap); 2430 return 0; 2431 } 2432 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2433 if (inode_bitmap == sb_block) { 2434 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2435 "Inode bitmap for group %u overlaps " 2436 "superblock", i); 2437 if (!sb_rdonly(sb)) 2438 return 0; 2439 } 2440 if (inode_bitmap >= sb_block + 1 && 2441 inode_bitmap <= last_bg_block) { 2442 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2443 "Inode bitmap for group %u overlaps " 2444 "block group descriptors", i); 2445 if (!sb_rdonly(sb)) 2446 return 0; 2447 } 2448 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2449 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2450 "Inode bitmap for group %u not in group " 2451 "(block %llu)!", i, inode_bitmap); 2452 return 0; 2453 } 2454 inode_table = ext4_inode_table(sb, gdp); 2455 if (inode_table == sb_block) { 2456 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2457 "Inode table for group %u overlaps " 2458 "superblock", i); 2459 if (!sb_rdonly(sb)) 2460 return 0; 2461 } 2462 if (inode_table >= sb_block + 1 && 2463 inode_table <= last_bg_block) { 2464 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2465 "Inode table for group %u overlaps " 2466 "block group descriptors", i); 2467 if (!sb_rdonly(sb)) 2468 return 0; 2469 } 2470 if (inode_table < first_block || 2471 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2472 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2473 "Inode table for group %u not in group " 2474 "(block %llu)!", i, inode_table); 2475 return 0; 2476 } 2477 ext4_lock_group(sb, i); 2478 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2479 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2480 "Checksum for group %u failed (%u!=%u)", 2481 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2482 gdp)), le16_to_cpu(gdp->bg_checksum)); 2483 if (!sb_rdonly(sb)) { 2484 ext4_unlock_group(sb, i); 2485 return 0; 2486 } 2487 } 2488 ext4_unlock_group(sb, i); 2489 if (!flexbg_flag) 2490 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2491 } 2492 if (NULL != first_not_zeroed) 2493 *first_not_zeroed = grp; 2494 return 1; 2495 } 2496 2497 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2498 * the superblock) which were deleted from all directories, but held open by 2499 * a process at the time of a crash. We walk the list and try to delete these 2500 * inodes at recovery time (only with a read-write filesystem). 2501 * 2502 * In order to keep the orphan inode chain consistent during traversal (in 2503 * case of crash during recovery), we link each inode into the superblock 2504 * orphan list_head and handle it the same way as an inode deletion during 2505 * normal operation (which journals the operations for us). 2506 * 2507 * We only do an iget() and an iput() on each inode, which is very safe if we 2508 * accidentally point at an in-use or already deleted inode. The worst that 2509 * can happen in this case is that we get a "bit already cleared" message from 2510 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2511 * e2fsck was run on this filesystem, and it must have already done the orphan 2512 * inode cleanup for us, so we can safely abort without any further action. 2513 */ 2514 static void ext4_orphan_cleanup(struct super_block *sb, 2515 struct ext4_super_block *es) 2516 { 2517 unsigned int s_flags = sb->s_flags; 2518 int ret, nr_orphans = 0, nr_truncates = 0; 2519 #ifdef CONFIG_QUOTA 2520 int quota_update = 0; 2521 int i; 2522 #endif 2523 if (!es->s_last_orphan) { 2524 jbd_debug(4, "no orphan inodes to clean up\n"); 2525 return; 2526 } 2527 2528 if (bdev_read_only(sb->s_bdev)) { 2529 ext4_msg(sb, KERN_ERR, "write access " 2530 "unavailable, skipping orphan cleanup"); 2531 return; 2532 } 2533 2534 /* Check if feature set would not allow a r/w mount */ 2535 if (!ext4_feature_set_ok(sb, 0)) { 2536 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2537 "unknown ROCOMPAT features"); 2538 return; 2539 } 2540 2541 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2542 /* don't clear list on RO mount w/ errors */ 2543 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) { 2544 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2545 "clearing orphan list.\n"); 2546 es->s_last_orphan = 0; 2547 } 2548 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2549 return; 2550 } 2551 2552 if (s_flags & SB_RDONLY) { 2553 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2554 sb->s_flags &= ~SB_RDONLY; 2555 } 2556 #ifdef CONFIG_QUOTA 2557 /* Needed for iput() to work correctly and not trash data */ 2558 sb->s_flags |= SB_ACTIVE; 2559 2560 /* 2561 * Turn on quotas which were not enabled for read-only mounts if 2562 * filesystem has quota feature, so that they are updated correctly. 2563 */ 2564 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) { 2565 int ret = ext4_enable_quotas(sb); 2566 2567 if (!ret) 2568 quota_update = 1; 2569 else 2570 ext4_msg(sb, KERN_ERR, 2571 "Cannot turn on quotas: error %d", ret); 2572 } 2573 2574 /* Turn on journaled quotas used for old sytle */ 2575 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2576 if (EXT4_SB(sb)->s_qf_names[i]) { 2577 int ret = ext4_quota_on_mount(sb, i); 2578 2579 if (!ret) 2580 quota_update = 1; 2581 else 2582 ext4_msg(sb, KERN_ERR, 2583 "Cannot turn on journaled " 2584 "quota: type %d: error %d", i, ret); 2585 } 2586 } 2587 #endif 2588 2589 while (es->s_last_orphan) { 2590 struct inode *inode; 2591 2592 /* 2593 * We may have encountered an error during cleanup; if 2594 * so, skip the rest. 2595 */ 2596 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2597 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2598 es->s_last_orphan = 0; 2599 break; 2600 } 2601 2602 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2603 if (IS_ERR(inode)) { 2604 es->s_last_orphan = 0; 2605 break; 2606 } 2607 2608 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2609 dquot_initialize(inode); 2610 if (inode->i_nlink) { 2611 if (test_opt(sb, DEBUG)) 2612 ext4_msg(sb, KERN_DEBUG, 2613 "%s: truncating inode %lu to %lld bytes", 2614 __func__, inode->i_ino, inode->i_size); 2615 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2616 inode->i_ino, inode->i_size); 2617 inode_lock(inode); 2618 truncate_inode_pages(inode->i_mapping, inode->i_size); 2619 ret = ext4_truncate(inode); 2620 if (ret) 2621 ext4_std_error(inode->i_sb, ret); 2622 inode_unlock(inode); 2623 nr_truncates++; 2624 } else { 2625 if (test_opt(sb, DEBUG)) 2626 ext4_msg(sb, KERN_DEBUG, 2627 "%s: deleting unreferenced inode %lu", 2628 __func__, inode->i_ino); 2629 jbd_debug(2, "deleting unreferenced inode %lu\n", 2630 inode->i_ino); 2631 nr_orphans++; 2632 } 2633 iput(inode); /* The delete magic happens here! */ 2634 } 2635 2636 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2637 2638 if (nr_orphans) 2639 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2640 PLURAL(nr_orphans)); 2641 if (nr_truncates) 2642 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2643 PLURAL(nr_truncates)); 2644 #ifdef CONFIG_QUOTA 2645 /* Turn off quotas if they were enabled for orphan cleanup */ 2646 if (quota_update) { 2647 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2648 if (sb_dqopt(sb)->files[i]) 2649 dquot_quota_off(sb, i); 2650 } 2651 } 2652 #endif 2653 sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2654 } 2655 2656 /* 2657 * Maximal extent format file size. 2658 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2659 * extent format containers, within a sector_t, and within i_blocks 2660 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2661 * so that won't be a limiting factor. 2662 * 2663 * However there is other limiting factor. We do store extents in the form 2664 * of starting block and length, hence the resulting length of the extent 2665 * covering maximum file size must fit into on-disk format containers as 2666 * well. Given that length is always by 1 unit bigger than max unit (because 2667 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2668 * 2669 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2670 */ 2671 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2672 { 2673 loff_t res; 2674 loff_t upper_limit = MAX_LFS_FILESIZE; 2675 2676 /* small i_blocks in vfs inode? */ 2677 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2678 /* 2679 * CONFIG_LBDAF is not enabled implies the inode 2680 * i_block represent total blocks in 512 bytes 2681 * 32 == size of vfs inode i_blocks * 8 2682 */ 2683 upper_limit = (1LL << 32) - 1; 2684 2685 /* total blocks in file system block size */ 2686 upper_limit >>= (blkbits - 9); 2687 upper_limit <<= blkbits; 2688 } 2689 2690 /* 2691 * 32-bit extent-start container, ee_block. We lower the maxbytes 2692 * by one fs block, so ee_len can cover the extent of maximum file 2693 * size 2694 */ 2695 res = (1LL << 32) - 1; 2696 res <<= blkbits; 2697 2698 /* Sanity check against vm- & vfs- imposed limits */ 2699 if (res > upper_limit) 2700 res = upper_limit; 2701 2702 return res; 2703 } 2704 2705 /* 2706 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2707 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2708 * We need to be 1 filesystem block less than the 2^48 sector limit. 2709 */ 2710 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2711 { 2712 loff_t res = EXT4_NDIR_BLOCKS; 2713 int meta_blocks; 2714 loff_t upper_limit; 2715 /* This is calculated to be the largest file size for a dense, block 2716 * mapped file such that the file's total number of 512-byte sectors, 2717 * including data and all indirect blocks, does not exceed (2^48 - 1). 2718 * 2719 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2720 * number of 512-byte sectors of the file. 2721 */ 2722 2723 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2724 /* 2725 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2726 * the inode i_block field represents total file blocks in 2727 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2728 */ 2729 upper_limit = (1LL << 32) - 1; 2730 2731 /* total blocks in file system block size */ 2732 upper_limit >>= (bits - 9); 2733 2734 } else { 2735 /* 2736 * We use 48 bit ext4_inode i_blocks 2737 * With EXT4_HUGE_FILE_FL set the i_blocks 2738 * represent total number of blocks in 2739 * file system block size 2740 */ 2741 upper_limit = (1LL << 48) - 1; 2742 2743 } 2744 2745 /* indirect blocks */ 2746 meta_blocks = 1; 2747 /* double indirect blocks */ 2748 meta_blocks += 1 + (1LL << (bits-2)); 2749 /* tripple indirect blocks */ 2750 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2751 2752 upper_limit -= meta_blocks; 2753 upper_limit <<= bits; 2754 2755 res += 1LL << (bits-2); 2756 res += 1LL << (2*(bits-2)); 2757 res += 1LL << (3*(bits-2)); 2758 res <<= bits; 2759 if (res > upper_limit) 2760 res = upper_limit; 2761 2762 if (res > MAX_LFS_FILESIZE) 2763 res = MAX_LFS_FILESIZE; 2764 2765 return res; 2766 } 2767 2768 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2769 ext4_fsblk_t logical_sb_block, int nr) 2770 { 2771 struct ext4_sb_info *sbi = EXT4_SB(sb); 2772 ext4_group_t bg, first_meta_bg; 2773 int has_super = 0; 2774 2775 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2776 2777 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2778 return logical_sb_block + nr + 1; 2779 bg = sbi->s_desc_per_block * nr; 2780 if (ext4_bg_has_super(sb, bg)) 2781 has_super = 1; 2782 2783 /* 2784 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2785 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2786 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2787 * compensate. 2788 */ 2789 if (sb->s_blocksize == 1024 && nr == 0 && 2790 le32_to_cpu(sbi->s_es->s_first_data_block) == 0) 2791 has_super++; 2792 2793 return (has_super + ext4_group_first_block_no(sb, bg)); 2794 } 2795 2796 /** 2797 * ext4_get_stripe_size: Get the stripe size. 2798 * @sbi: In memory super block info 2799 * 2800 * If we have specified it via mount option, then 2801 * use the mount option value. If the value specified at mount time is 2802 * greater than the blocks per group use the super block value. 2803 * If the super block value is greater than blocks per group return 0. 2804 * Allocator needs it be less than blocks per group. 2805 * 2806 */ 2807 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2808 { 2809 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2810 unsigned long stripe_width = 2811 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2812 int ret; 2813 2814 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2815 ret = sbi->s_stripe; 2816 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group) 2817 ret = stripe_width; 2818 else if (stride && stride <= sbi->s_blocks_per_group) 2819 ret = stride; 2820 else 2821 ret = 0; 2822 2823 /* 2824 * If the stripe width is 1, this makes no sense and 2825 * we set it to 0 to turn off stripe handling code. 2826 */ 2827 if (ret <= 1) 2828 ret = 0; 2829 2830 return ret; 2831 } 2832 2833 /* 2834 * Check whether this filesystem can be mounted based on 2835 * the features present and the RDONLY/RDWR mount requested. 2836 * Returns 1 if this filesystem can be mounted as requested, 2837 * 0 if it cannot be. 2838 */ 2839 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2840 { 2841 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2842 ext4_msg(sb, KERN_ERR, 2843 "Couldn't mount because of " 2844 "unsupported optional features (%x)", 2845 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2846 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2847 return 0; 2848 } 2849 2850 if (readonly) 2851 return 1; 2852 2853 if (ext4_has_feature_readonly(sb)) { 2854 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2855 sb->s_flags |= SB_RDONLY; 2856 return 1; 2857 } 2858 2859 /* Check that feature set is OK for a read-write mount */ 2860 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2861 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2862 "unsupported optional features (%x)", 2863 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2864 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2865 return 0; 2866 } 2867 /* 2868 * Large file size enabled file system can only be mounted 2869 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2870 */ 2871 if (ext4_has_feature_huge_file(sb)) { 2872 if (sizeof(blkcnt_t) < sizeof(u64)) { 2873 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2874 "cannot be mounted RDWR without " 2875 "CONFIG_LBDAF"); 2876 return 0; 2877 } 2878 } 2879 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2880 ext4_msg(sb, KERN_ERR, 2881 "Can't support bigalloc feature without " 2882 "extents feature\n"); 2883 return 0; 2884 } 2885 2886 #ifndef CONFIG_QUOTA 2887 if (ext4_has_feature_quota(sb) && !readonly) { 2888 ext4_msg(sb, KERN_ERR, 2889 "Filesystem with quota feature cannot be mounted RDWR " 2890 "without CONFIG_QUOTA"); 2891 return 0; 2892 } 2893 if (ext4_has_feature_project(sb) && !readonly) { 2894 ext4_msg(sb, KERN_ERR, 2895 "Filesystem with project quota feature cannot be mounted RDWR " 2896 "without CONFIG_QUOTA"); 2897 return 0; 2898 } 2899 #endif /* CONFIG_QUOTA */ 2900 return 1; 2901 } 2902 2903 /* 2904 * This function is called once a day if we have errors logged 2905 * on the file system 2906 */ 2907 static void print_daily_error_info(struct timer_list *t) 2908 { 2909 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report); 2910 struct super_block *sb = sbi->s_sb; 2911 struct ext4_super_block *es = sbi->s_es; 2912 2913 if (es->s_error_count) 2914 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2915 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2916 le32_to_cpu(es->s_error_count)); 2917 if (es->s_first_error_time) { 2918 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d", 2919 sb->s_id, 2920 ext4_get_tstamp(es, s_first_error_time), 2921 (int) sizeof(es->s_first_error_func), 2922 es->s_first_error_func, 2923 le32_to_cpu(es->s_first_error_line)); 2924 if (es->s_first_error_ino) 2925 printk(KERN_CONT ": inode %u", 2926 le32_to_cpu(es->s_first_error_ino)); 2927 if (es->s_first_error_block) 2928 printk(KERN_CONT ": block %llu", (unsigned long long) 2929 le64_to_cpu(es->s_first_error_block)); 2930 printk(KERN_CONT "\n"); 2931 } 2932 if (es->s_last_error_time) { 2933 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d", 2934 sb->s_id, 2935 ext4_get_tstamp(es, s_last_error_time), 2936 (int) sizeof(es->s_last_error_func), 2937 es->s_last_error_func, 2938 le32_to_cpu(es->s_last_error_line)); 2939 if (es->s_last_error_ino) 2940 printk(KERN_CONT ": inode %u", 2941 le32_to_cpu(es->s_last_error_ino)); 2942 if (es->s_last_error_block) 2943 printk(KERN_CONT ": block %llu", (unsigned long long) 2944 le64_to_cpu(es->s_last_error_block)); 2945 printk(KERN_CONT "\n"); 2946 } 2947 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2948 } 2949 2950 /* Find next suitable group and run ext4_init_inode_table */ 2951 static int ext4_run_li_request(struct ext4_li_request *elr) 2952 { 2953 struct ext4_group_desc *gdp = NULL; 2954 ext4_group_t group, ngroups; 2955 struct super_block *sb; 2956 unsigned long timeout = 0; 2957 int ret = 0; 2958 2959 sb = elr->lr_super; 2960 ngroups = EXT4_SB(sb)->s_groups_count; 2961 2962 for (group = elr->lr_next_group; group < ngroups; group++) { 2963 gdp = ext4_get_group_desc(sb, group, NULL); 2964 if (!gdp) { 2965 ret = 1; 2966 break; 2967 } 2968 2969 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2970 break; 2971 } 2972 2973 if (group >= ngroups) 2974 ret = 1; 2975 2976 if (!ret) { 2977 timeout = jiffies; 2978 ret = ext4_init_inode_table(sb, group, 2979 elr->lr_timeout ? 0 : 1); 2980 if (elr->lr_timeout == 0) { 2981 timeout = (jiffies - timeout) * 2982 elr->lr_sbi->s_li_wait_mult; 2983 elr->lr_timeout = timeout; 2984 } 2985 elr->lr_next_sched = jiffies + elr->lr_timeout; 2986 elr->lr_next_group = group + 1; 2987 } 2988 return ret; 2989 } 2990 2991 /* 2992 * Remove lr_request from the list_request and free the 2993 * request structure. Should be called with li_list_mtx held 2994 */ 2995 static void ext4_remove_li_request(struct ext4_li_request *elr) 2996 { 2997 struct ext4_sb_info *sbi; 2998 2999 if (!elr) 3000 return; 3001 3002 sbi = elr->lr_sbi; 3003 3004 list_del(&elr->lr_request); 3005 sbi->s_li_request = NULL; 3006 kfree(elr); 3007 } 3008 3009 static void ext4_unregister_li_request(struct super_block *sb) 3010 { 3011 mutex_lock(&ext4_li_mtx); 3012 if (!ext4_li_info) { 3013 mutex_unlock(&ext4_li_mtx); 3014 return; 3015 } 3016 3017 mutex_lock(&ext4_li_info->li_list_mtx); 3018 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 3019 mutex_unlock(&ext4_li_info->li_list_mtx); 3020 mutex_unlock(&ext4_li_mtx); 3021 } 3022 3023 static struct task_struct *ext4_lazyinit_task; 3024 3025 /* 3026 * This is the function where ext4lazyinit thread lives. It walks 3027 * through the request list searching for next scheduled filesystem. 3028 * When such a fs is found, run the lazy initialization request 3029 * (ext4_rn_li_request) and keep track of the time spend in this 3030 * function. Based on that time we compute next schedule time of 3031 * the request. When walking through the list is complete, compute 3032 * next waking time and put itself into sleep. 3033 */ 3034 static int ext4_lazyinit_thread(void *arg) 3035 { 3036 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 3037 struct list_head *pos, *n; 3038 struct ext4_li_request *elr; 3039 unsigned long next_wakeup, cur; 3040 3041 BUG_ON(NULL == eli); 3042 3043 cont_thread: 3044 while (true) { 3045 next_wakeup = MAX_JIFFY_OFFSET; 3046 3047 mutex_lock(&eli->li_list_mtx); 3048 if (list_empty(&eli->li_request_list)) { 3049 mutex_unlock(&eli->li_list_mtx); 3050 goto exit_thread; 3051 } 3052 list_for_each_safe(pos, n, &eli->li_request_list) { 3053 int err = 0; 3054 int progress = 0; 3055 elr = list_entry(pos, struct ext4_li_request, 3056 lr_request); 3057 3058 if (time_before(jiffies, elr->lr_next_sched)) { 3059 if (time_before(elr->lr_next_sched, next_wakeup)) 3060 next_wakeup = elr->lr_next_sched; 3061 continue; 3062 } 3063 if (down_read_trylock(&elr->lr_super->s_umount)) { 3064 if (sb_start_write_trylock(elr->lr_super)) { 3065 progress = 1; 3066 /* 3067 * We hold sb->s_umount, sb can not 3068 * be removed from the list, it is 3069 * now safe to drop li_list_mtx 3070 */ 3071 mutex_unlock(&eli->li_list_mtx); 3072 err = ext4_run_li_request(elr); 3073 sb_end_write(elr->lr_super); 3074 mutex_lock(&eli->li_list_mtx); 3075 n = pos->next; 3076 } 3077 up_read((&elr->lr_super->s_umount)); 3078 } 3079 /* error, remove the lazy_init job */ 3080 if (err) { 3081 ext4_remove_li_request(elr); 3082 continue; 3083 } 3084 if (!progress) { 3085 elr->lr_next_sched = jiffies + 3086 (prandom_u32() 3087 % (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3088 } 3089 if (time_before(elr->lr_next_sched, next_wakeup)) 3090 next_wakeup = elr->lr_next_sched; 3091 } 3092 mutex_unlock(&eli->li_list_mtx); 3093 3094 try_to_freeze(); 3095 3096 cur = jiffies; 3097 if ((time_after_eq(cur, next_wakeup)) || 3098 (MAX_JIFFY_OFFSET == next_wakeup)) { 3099 cond_resched(); 3100 continue; 3101 } 3102 3103 schedule_timeout_interruptible(next_wakeup - cur); 3104 3105 if (kthread_should_stop()) { 3106 ext4_clear_request_list(); 3107 goto exit_thread; 3108 } 3109 } 3110 3111 exit_thread: 3112 /* 3113 * It looks like the request list is empty, but we need 3114 * to check it under the li_list_mtx lock, to prevent any 3115 * additions into it, and of course we should lock ext4_li_mtx 3116 * to atomically free the list and ext4_li_info, because at 3117 * this point another ext4 filesystem could be registering 3118 * new one. 3119 */ 3120 mutex_lock(&ext4_li_mtx); 3121 mutex_lock(&eli->li_list_mtx); 3122 if (!list_empty(&eli->li_request_list)) { 3123 mutex_unlock(&eli->li_list_mtx); 3124 mutex_unlock(&ext4_li_mtx); 3125 goto cont_thread; 3126 } 3127 mutex_unlock(&eli->li_list_mtx); 3128 kfree(ext4_li_info); 3129 ext4_li_info = NULL; 3130 mutex_unlock(&ext4_li_mtx); 3131 3132 return 0; 3133 } 3134 3135 static void ext4_clear_request_list(void) 3136 { 3137 struct list_head *pos, *n; 3138 struct ext4_li_request *elr; 3139 3140 mutex_lock(&ext4_li_info->li_list_mtx); 3141 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 3142 elr = list_entry(pos, struct ext4_li_request, 3143 lr_request); 3144 ext4_remove_li_request(elr); 3145 } 3146 mutex_unlock(&ext4_li_info->li_list_mtx); 3147 } 3148 3149 static int ext4_run_lazyinit_thread(void) 3150 { 3151 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 3152 ext4_li_info, "ext4lazyinit"); 3153 if (IS_ERR(ext4_lazyinit_task)) { 3154 int err = PTR_ERR(ext4_lazyinit_task); 3155 ext4_clear_request_list(); 3156 kfree(ext4_li_info); 3157 ext4_li_info = NULL; 3158 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 3159 "initialization thread\n", 3160 err); 3161 return err; 3162 } 3163 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 3164 return 0; 3165 } 3166 3167 /* 3168 * Check whether it make sense to run itable init. thread or not. 3169 * If there is at least one uninitialized inode table, return 3170 * corresponding group number, else the loop goes through all 3171 * groups and return total number of groups. 3172 */ 3173 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 3174 { 3175 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 3176 struct ext4_group_desc *gdp = NULL; 3177 3178 if (!ext4_has_group_desc_csum(sb)) 3179 return ngroups; 3180 3181 for (group = 0; group < ngroups; group++) { 3182 gdp = ext4_get_group_desc(sb, group, NULL); 3183 if (!gdp) 3184 continue; 3185 3186 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 3187 break; 3188 } 3189 3190 return group; 3191 } 3192 3193 static int ext4_li_info_new(void) 3194 { 3195 struct ext4_lazy_init *eli = NULL; 3196 3197 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 3198 if (!eli) 3199 return -ENOMEM; 3200 3201 INIT_LIST_HEAD(&eli->li_request_list); 3202 mutex_init(&eli->li_list_mtx); 3203 3204 eli->li_state |= EXT4_LAZYINIT_QUIT; 3205 3206 ext4_li_info = eli; 3207 3208 return 0; 3209 } 3210 3211 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 3212 ext4_group_t start) 3213 { 3214 struct ext4_sb_info *sbi = EXT4_SB(sb); 3215 struct ext4_li_request *elr; 3216 3217 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 3218 if (!elr) 3219 return NULL; 3220 3221 elr->lr_super = sb; 3222 elr->lr_sbi = sbi; 3223 elr->lr_next_group = start; 3224 3225 /* 3226 * Randomize first schedule time of the request to 3227 * spread the inode table initialization requests 3228 * better. 3229 */ 3230 elr->lr_next_sched = jiffies + (prandom_u32() % 3231 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 3232 return elr; 3233 } 3234 3235 int ext4_register_li_request(struct super_block *sb, 3236 ext4_group_t first_not_zeroed) 3237 { 3238 struct ext4_sb_info *sbi = EXT4_SB(sb); 3239 struct ext4_li_request *elr = NULL; 3240 ext4_group_t ngroups = sbi->s_groups_count; 3241 int ret = 0; 3242 3243 mutex_lock(&ext4_li_mtx); 3244 if (sbi->s_li_request != NULL) { 3245 /* 3246 * Reset timeout so it can be computed again, because 3247 * s_li_wait_mult might have changed. 3248 */ 3249 sbi->s_li_request->lr_timeout = 0; 3250 goto out; 3251 } 3252 3253 if (first_not_zeroed == ngroups || sb_rdonly(sb) || 3254 !test_opt(sb, INIT_INODE_TABLE)) 3255 goto out; 3256 3257 elr = ext4_li_request_new(sb, first_not_zeroed); 3258 if (!elr) { 3259 ret = -ENOMEM; 3260 goto out; 3261 } 3262 3263 if (NULL == ext4_li_info) { 3264 ret = ext4_li_info_new(); 3265 if (ret) 3266 goto out; 3267 } 3268 3269 mutex_lock(&ext4_li_info->li_list_mtx); 3270 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3271 mutex_unlock(&ext4_li_info->li_list_mtx); 3272 3273 sbi->s_li_request = elr; 3274 /* 3275 * set elr to NULL here since it has been inserted to 3276 * the request_list and the removal and free of it is 3277 * handled by ext4_clear_request_list from now on. 3278 */ 3279 elr = NULL; 3280 3281 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3282 ret = ext4_run_lazyinit_thread(); 3283 if (ret) 3284 goto out; 3285 } 3286 out: 3287 mutex_unlock(&ext4_li_mtx); 3288 if (ret) 3289 kfree(elr); 3290 return ret; 3291 } 3292 3293 /* 3294 * We do not need to lock anything since this is called on 3295 * module unload. 3296 */ 3297 static void ext4_destroy_lazyinit_thread(void) 3298 { 3299 /* 3300 * If thread exited earlier 3301 * there's nothing to be done. 3302 */ 3303 if (!ext4_li_info || !ext4_lazyinit_task) 3304 return; 3305 3306 kthread_stop(ext4_lazyinit_task); 3307 } 3308 3309 static int set_journal_csum_feature_set(struct super_block *sb) 3310 { 3311 int ret = 1; 3312 int compat, incompat; 3313 struct ext4_sb_info *sbi = EXT4_SB(sb); 3314 3315 if (ext4_has_metadata_csum(sb)) { 3316 /* journal checksum v3 */ 3317 compat = 0; 3318 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 3319 } else { 3320 /* journal checksum v1 */ 3321 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3322 incompat = 0; 3323 } 3324 3325 jbd2_journal_clear_features(sbi->s_journal, 3326 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3327 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 3328 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3329 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3330 ret = jbd2_journal_set_features(sbi->s_journal, 3331 compat, 0, 3332 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3333 incompat); 3334 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3335 ret = jbd2_journal_set_features(sbi->s_journal, 3336 compat, 0, 3337 incompat); 3338 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3339 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3340 } else { 3341 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3342 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3343 } 3344 3345 return ret; 3346 } 3347 3348 /* 3349 * Note: calculating the overhead so we can be compatible with 3350 * historical BSD practice is quite difficult in the face of 3351 * clusters/bigalloc. This is because multiple metadata blocks from 3352 * different block group can end up in the same allocation cluster. 3353 * Calculating the exact overhead in the face of clustered allocation 3354 * requires either O(all block bitmaps) in memory or O(number of block 3355 * groups**2) in time. We will still calculate the superblock for 3356 * older file systems --- and if we come across with a bigalloc file 3357 * system with zero in s_overhead_clusters the estimate will be close to 3358 * correct especially for very large cluster sizes --- but for newer 3359 * file systems, it's better to calculate this figure once at mkfs 3360 * time, and store it in the superblock. If the superblock value is 3361 * present (even for non-bigalloc file systems), we will use it. 3362 */ 3363 static int count_overhead(struct super_block *sb, ext4_group_t grp, 3364 char *buf) 3365 { 3366 struct ext4_sb_info *sbi = EXT4_SB(sb); 3367 struct ext4_group_desc *gdp; 3368 ext4_fsblk_t first_block, last_block, b; 3369 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3370 int s, j, count = 0; 3371 3372 if (!ext4_has_feature_bigalloc(sb)) 3373 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3374 sbi->s_itb_per_group + 2); 3375 3376 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3377 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3378 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3379 for (i = 0; i < ngroups; i++) { 3380 gdp = ext4_get_group_desc(sb, i, NULL); 3381 b = ext4_block_bitmap(sb, gdp); 3382 if (b >= first_block && b <= last_block) { 3383 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3384 count++; 3385 } 3386 b = ext4_inode_bitmap(sb, gdp); 3387 if (b >= first_block && b <= last_block) { 3388 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3389 count++; 3390 } 3391 b = ext4_inode_table(sb, gdp); 3392 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3393 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3394 int c = EXT4_B2C(sbi, b - first_block); 3395 ext4_set_bit(c, buf); 3396 count++; 3397 } 3398 if (i != grp) 3399 continue; 3400 s = 0; 3401 if (ext4_bg_has_super(sb, grp)) { 3402 ext4_set_bit(s++, buf); 3403 count++; 3404 } 3405 j = ext4_bg_num_gdb(sb, grp); 3406 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) { 3407 ext4_error(sb, "Invalid number of block group " 3408 "descriptor blocks: %d", j); 3409 j = EXT4_BLOCKS_PER_GROUP(sb) - s; 3410 } 3411 count += j; 3412 for (; j > 0; j--) 3413 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3414 } 3415 if (!count) 3416 return 0; 3417 return EXT4_CLUSTERS_PER_GROUP(sb) - 3418 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3419 } 3420 3421 /* 3422 * Compute the overhead and stash it in sbi->s_overhead 3423 */ 3424 int ext4_calculate_overhead(struct super_block *sb) 3425 { 3426 struct ext4_sb_info *sbi = EXT4_SB(sb); 3427 struct ext4_super_block *es = sbi->s_es; 3428 struct inode *j_inode; 3429 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum); 3430 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3431 ext4_fsblk_t overhead = 0; 3432 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3433 3434 if (!buf) 3435 return -ENOMEM; 3436 3437 /* 3438 * Compute the overhead (FS structures). This is constant 3439 * for a given filesystem unless the number of block groups 3440 * changes so we cache the previous value until it does. 3441 */ 3442 3443 /* 3444 * All of the blocks before first_data_block are overhead 3445 */ 3446 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3447 3448 /* 3449 * Add the overhead found in each block group 3450 */ 3451 for (i = 0; i < ngroups; i++) { 3452 int blks; 3453 3454 blks = count_overhead(sb, i, buf); 3455 overhead += blks; 3456 if (blks) 3457 memset(buf, 0, PAGE_SIZE); 3458 cond_resched(); 3459 } 3460 3461 /* 3462 * Add the internal journal blocks whether the journal has been 3463 * loaded or not 3464 */ 3465 if (sbi->s_journal && !sbi->journal_bdev) 3466 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3467 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) { 3468 j_inode = ext4_get_journal_inode(sb, j_inum); 3469 if (j_inode) { 3470 j_blocks = j_inode->i_size >> sb->s_blocksize_bits; 3471 overhead += EXT4_NUM_B2C(sbi, j_blocks); 3472 iput(j_inode); 3473 } else { 3474 ext4_msg(sb, KERN_ERR, "can't get journal size"); 3475 } 3476 } 3477 sbi->s_overhead = overhead; 3478 smp_wmb(); 3479 free_page((unsigned long) buf); 3480 return 0; 3481 } 3482 3483 static void ext4_set_resv_clusters(struct super_block *sb) 3484 { 3485 ext4_fsblk_t resv_clusters; 3486 struct ext4_sb_info *sbi = EXT4_SB(sb); 3487 3488 /* 3489 * There's no need to reserve anything when we aren't using extents. 3490 * The space estimates are exact, there are no unwritten extents, 3491 * hole punching doesn't need new metadata... This is needed especially 3492 * to keep ext2/3 backward compatibility. 3493 */ 3494 if (!ext4_has_feature_extents(sb)) 3495 return; 3496 /* 3497 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3498 * This should cover the situations where we can not afford to run 3499 * out of space like for example punch hole, or converting 3500 * unwritten extents in delalloc path. In most cases such 3501 * allocation would require 1, or 2 blocks, higher numbers are 3502 * very rare. 3503 */ 3504 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3505 sbi->s_cluster_bits); 3506 3507 do_div(resv_clusters, 50); 3508 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3509 3510 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3511 } 3512 3513 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3514 { 3515 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev); 3516 char *orig_data = kstrdup(data, GFP_KERNEL); 3517 struct buffer_head *bh; 3518 struct ext4_super_block *es = NULL; 3519 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3520 ext4_fsblk_t block; 3521 ext4_fsblk_t sb_block = get_sb_block(&data); 3522 ext4_fsblk_t logical_sb_block; 3523 unsigned long offset = 0; 3524 unsigned long journal_devnum = 0; 3525 unsigned long def_mount_opts; 3526 struct inode *root; 3527 const char *descr; 3528 int ret = -ENOMEM; 3529 int blocksize, clustersize; 3530 unsigned int db_count; 3531 unsigned int i; 3532 int needs_recovery, has_huge_files, has_bigalloc; 3533 __u64 blocks_count; 3534 int err = 0; 3535 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3536 ext4_group_t first_not_zeroed; 3537 3538 if ((data && !orig_data) || !sbi) 3539 goto out_free_base; 3540 3541 sbi->s_daxdev = dax_dev; 3542 sbi->s_blockgroup_lock = 3543 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3544 if (!sbi->s_blockgroup_lock) 3545 goto out_free_base; 3546 3547 sb->s_fs_info = sbi; 3548 sbi->s_sb = sb; 3549 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3550 sbi->s_sb_block = sb_block; 3551 if (sb->s_bdev->bd_part) 3552 sbi->s_sectors_written_start = 3553 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]); 3554 3555 /* Cleanup superblock name */ 3556 strreplace(sb->s_id, '/', '!'); 3557 3558 /* -EINVAL is default */ 3559 ret = -EINVAL; 3560 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3561 if (!blocksize) { 3562 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3563 goto out_fail; 3564 } 3565 3566 /* 3567 * The ext4 superblock will not be buffer aligned for other than 1kB 3568 * block sizes. We need to calculate the offset from buffer start. 3569 */ 3570 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3571 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3572 offset = do_div(logical_sb_block, blocksize); 3573 } else { 3574 logical_sb_block = sb_block; 3575 } 3576 3577 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3578 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3579 goto out_fail; 3580 } 3581 /* 3582 * Note: s_es must be initialized as soon as possible because 3583 * some ext4 macro-instructions depend on its value 3584 */ 3585 es = (struct ext4_super_block *) (bh->b_data + offset); 3586 sbi->s_es = es; 3587 sb->s_magic = le16_to_cpu(es->s_magic); 3588 if (sb->s_magic != EXT4_SUPER_MAGIC) 3589 goto cantfind_ext4; 3590 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3591 3592 /* Warn if metadata_csum and gdt_csum are both set. */ 3593 if (ext4_has_feature_metadata_csum(sb) && 3594 ext4_has_feature_gdt_csum(sb)) 3595 ext4_warning(sb, "metadata_csum and uninit_bg are " 3596 "redundant flags; please run fsck."); 3597 3598 /* Check for a known checksum algorithm */ 3599 if (!ext4_verify_csum_type(sb, es)) { 3600 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3601 "unknown checksum algorithm."); 3602 silent = 1; 3603 goto cantfind_ext4; 3604 } 3605 3606 /* Load the checksum driver */ 3607 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3608 if (IS_ERR(sbi->s_chksum_driver)) { 3609 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3610 ret = PTR_ERR(sbi->s_chksum_driver); 3611 sbi->s_chksum_driver = NULL; 3612 goto failed_mount; 3613 } 3614 3615 /* Check superblock checksum */ 3616 if (!ext4_superblock_csum_verify(sb, es)) { 3617 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3618 "invalid superblock checksum. Run e2fsck?"); 3619 silent = 1; 3620 ret = -EFSBADCRC; 3621 goto cantfind_ext4; 3622 } 3623 3624 /* Precompute checksum seed for all metadata */ 3625 if (ext4_has_feature_csum_seed(sb)) 3626 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3627 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb)) 3628 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3629 sizeof(es->s_uuid)); 3630 3631 /* Set defaults before we parse the mount options */ 3632 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3633 set_opt(sb, INIT_INODE_TABLE); 3634 if (def_mount_opts & EXT4_DEFM_DEBUG) 3635 set_opt(sb, DEBUG); 3636 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3637 set_opt(sb, GRPID); 3638 if (def_mount_opts & EXT4_DEFM_UID16) 3639 set_opt(sb, NO_UID32); 3640 /* xattr user namespace & acls are now defaulted on */ 3641 set_opt(sb, XATTR_USER); 3642 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3643 set_opt(sb, POSIX_ACL); 3644 #endif 3645 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3646 if (ext4_has_metadata_csum(sb)) 3647 set_opt(sb, JOURNAL_CHECKSUM); 3648 3649 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3650 set_opt(sb, JOURNAL_DATA); 3651 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3652 set_opt(sb, ORDERED_DATA); 3653 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3654 set_opt(sb, WRITEBACK_DATA); 3655 3656 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3657 set_opt(sb, ERRORS_PANIC); 3658 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3659 set_opt(sb, ERRORS_CONT); 3660 else 3661 set_opt(sb, ERRORS_RO); 3662 /* block_validity enabled by default; disable with noblock_validity */ 3663 set_opt(sb, BLOCK_VALIDITY); 3664 if (def_mount_opts & EXT4_DEFM_DISCARD) 3665 set_opt(sb, DISCARD); 3666 3667 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3668 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3669 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3670 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3671 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3672 3673 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3674 set_opt(sb, BARRIER); 3675 3676 /* 3677 * enable delayed allocation by default 3678 * Use -o nodelalloc to turn it off 3679 */ 3680 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3681 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3682 set_opt(sb, DELALLOC); 3683 3684 /* 3685 * set default s_li_wait_mult for lazyinit, for the case there is 3686 * no mount option specified. 3687 */ 3688 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3689 3690 if (sbi->s_es->s_mount_opts[0]) { 3691 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts, 3692 sizeof(sbi->s_es->s_mount_opts), 3693 GFP_KERNEL); 3694 if (!s_mount_opts) 3695 goto failed_mount; 3696 if (!parse_options(s_mount_opts, sb, &journal_devnum, 3697 &journal_ioprio, 0)) { 3698 ext4_msg(sb, KERN_WARNING, 3699 "failed to parse options in superblock: %s", 3700 s_mount_opts); 3701 } 3702 kfree(s_mount_opts); 3703 } 3704 sbi->s_def_mount_opt = sbi->s_mount_opt; 3705 if (!parse_options((char *) data, sb, &journal_devnum, 3706 &journal_ioprio, 0)) 3707 goto failed_mount; 3708 3709 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3710 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3711 "with data=journal disables delayed " 3712 "allocation and O_DIRECT support!\n"); 3713 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3714 ext4_msg(sb, KERN_ERR, "can't mount with " 3715 "both data=journal and delalloc"); 3716 goto failed_mount; 3717 } 3718 if (test_opt(sb, DIOREAD_NOLOCK)) { 3719 ext4_msg(sb, KERN_ERR, "can't mount with " 3720 "both data=journal and dioread_nolock"); 3721 goto failed_mount; 3722 } 3723 if (test_opt(sb, DAX)) { 3724 ext4_msg(sb, KERN_ERR, "can't mount with " 3725 "both data=journal and dax"); 3726 goto failed_mount; 3727 } 3728 if (ext4_has_feature_encrypt(sb)) { 3729 ext4_msg(sb, KERN_WARNING, 3730 "encrypted files will use data=ordered " 3731 "instead of data journaling mode"); 3732 } 3733 if (test_opt(sb, DELALLOC)) 3734 clear_opt(sb, DELALLOC); 3735 } else { 3736 sb->s_iflags |= SB_I_CGROUPWB; 3737 } 3738 3739 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3740 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 3741 3742 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3743 (ext4_has_compat_features(sb) || 3744 ext4_has_ro_compat_features(sb) || 3745 ext4_has_incompat_features(sb))) 3746 ext4_msg(sb, KERN_WARNING, 3747 "feature flags set on rev 0 fs, " 3748 "running e2fsck is recommended"); 3749 3750 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3751 set_opt2(sb, HURD_COMPAT); 3752 if (ext4_has_feature_64bit(sb)) { 3753 ext4_msg(sb, KERN_ERR, 3754 "The Hurd can't support 64-bit file systems"); 3755 goto failed_mount; 3756 } 3757 3758 /* 3759 * ea_inode feature uses l_i_version field which is not 3760 * available in HURD_COMPAT mode. 3761 */ 3762 if (ext4_has_feature_ea_inode(sb)) { 3763 ext4_msg(sb, KERN_ERR, 3764 "ea_inode feature is not supported for Hurd"); 3765 goto failed_mount; 3766 } 3767 } 3768 3769 if (IS_EXT2_SB(sb)) { 3770 if (ext2_feature_set_ok(sb)) 3771 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3772 "using the ext4 subsystem"); 3773 else { 3774 /* 3775 * If we're probing be silent, if this looks like 3776 * it's actually an ext[34] filesystem. 3777 */ 3778 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3779 goto failed_mount; 3780 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3781 "to feature incompatibilities"); 3782 goto failed_mount; 3783 } 3784 } 3785 3786 if (IS_EXT3_SB(sb)) { 3787 if (ext3_feature_set_ok(sb)) 3788 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3789 "using the ext4 subsystem"); 3790 else { 3791 /* 3792 * If we're probing be silent, if this looks like 3793 * it's actually an ext4 filesystem. 3794 */ 3795 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb))) 3796 goto failed_mount; 3797 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3798 "to feature incompatibilities"); 3799 goto failed_mount; 3800 } 3801 } 3802 3803 /* 3804 * Check feature flags regardless of the revision level, since we 3805 * previously didn't change the revision level when setting the flags, 3806 * so there is a chance incompat flags are set on a rev 0 filesystem. 3807 */ 3808 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb)))) 3809 goto failed_mount; 3810 3811 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3812 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3813 blocksize > EXT4_MAX_BLOCK_SIZE) { 3814 ext4_msg(sb, KERN_ERR, 3815 "Unsupported filesystem blocksize %d (%d log_block_size)", 3816 blocksize, le32_to_cpu(es->s_log_block_size)); 3817 goto failed_mount; 3818 } 3819 if (le32_to_cpu(es->s_log_block_size) > 3820 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3821 ext4_msg(sb, KERN_ERR, 3822 "Invalid log block size: %u", 3823 le32_to_cpu(es->s_log_block_size)); 3824 goto failed_mount; 3825 } 3826 if (le32_to_cpu(es->s_log_cluster_size) > 3827 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) { 3828 ext4_msg(sb, KERN_ERR, 3829 "Invalid log cluster size: %u", 3830 le32_to_cpu(es->s_log_cluster_size)); 3831 goto failed_mount; 3832 } 3833 3834 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) { 3835 ext4_msg(sb, KERN_ERR, 3836 "Number of reserved GDT blocks insanely large: %d", 3837 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks)); 3838 goto failed_mount; 3839 } 3840 3841 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3842 if (ext4_has_feature_inline_data(sb)) { 3843 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem" 3844 " that may contain inline data"); 3845 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3846 } 3847 if (!bdev_dax_supported(sb->s_bdev, blocksize)) { 3848 ext4_msg(sb, KERN_ERR, 3849 "DAX unsupported by block device. Turning off DAX."); 3850 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX; 3851 } 3852 } 3853 3854 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3855 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3856 es->s_encryption_level); 3857 goto failed_mount; 3858 } 3859 3860 if (sb->s_blocksize != blocksize) { 3861 /* Validate the filesystem blocksize */ 3862 if (!sb_set_blocksize(sb, blocksize)) { 3863 ext4_msg(sb, KERN_ERR, "bad block size %d", 3864 blocksize); 3865 goto failed_mount; 3866 } 3867 3868 brelse(bh); 3869 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3870 offset = do_div(logical_sb_block, blocksize); 3871 bh = sb_bread_unmovable(sb, logical_sb_block); 3872 if (!bh) { 3873 ext4_msg(sb, KERN_ERR, 3874 "Can't read superblock on 2nd try"); 3875 goto failed_mount; 3876 } 3877 es = (struct ext4_super_block *)(bh->b_data + offset); 3878 sbi->s_es = es; 3879 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3880 ext4_msg(sb, KERN_ERR, 3881 "Magic mismatch, very weird!"); 3882 goto failed_mount; 3883 } 3884 } 3885 3886 has_huge_files = ext4_has_feature_huge_file(sb); 3887 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3888 has_huge_files); 3889 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3890 3891 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3892 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3893 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3894 } else { 3895 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3896 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3897 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) { 3898 ext4_msg(sb, KERN_ERR, "invalid first ino: %u", 3899 sbi->s_first_ino); 3900 goto failed_mount; 3901 } 3902 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3903 (!is_power_of_2(sbi->s_inode_size)) || 3904 (sbi->s_inode_size > blocksize)) { 3905 ext4_msg(sb, KERN_ERR, 3906 "unsupported inode size: %d", 3907 sbi->s_inode_size); 3908 goto failed_mount; 3909 } 3910 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3911 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3912 } 3913 3914 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3915 if (ext4_has_feature_64bit(sb)) { 3916 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3917 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3918 !is_power_of_2(sbi->s_desc_size)) { 3919 ext4_msg(sb, KERN_ERR, 3920 "unsupported descriptor size %lu", 3921 sbi->s_desc_size); 3922 goto failed_mount; 3923 } 3924 } else 3925 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3926 3927 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3928 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3929 3930 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3931 if (sbi->s_inodes_per_block == 0) 3932 goto cantfind_ext4; 3933 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block || 3934 sbi->s_inodes_per_group > blocksize * 8) { 3935 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n", 3936 sbi->s_blocks_per_group); 3937 goto failed_mount; 3938 } 3939 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3940 sbi->s_inodes_per_block; 3941 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3942 sbi->s_sbh = bh; 3943 sbi->s_mount_state = le16_to_cpu(es->s_state); 3944 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3945 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3946 3947 for (i = 0; i < 4; i++) 3948 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3949 sbi->s_def_hash_version = es->s_def_hash_version; 3950 if (ext4_has_feature_dir_index(sb)) { 3951 i = le32_to_cpu(es->s_flags); 3952 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3953 sbi->s_hash_unsigned = 3; 3954 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3955 #ifdef __CHAR_UNSIGNED__ 3956 if (!sb_rdonly(sb)) 3957 es->s_flags |= 3958 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3959 sbi->s_hash_unsigned = 3; 3960 #else 3961 if (!sb_rdonly(sb)) 3962 es->s_flags |= 3963 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3964 #endif 3965 } 3966 } 3967 3968 /* Handle clustersize */ 3969 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3970 has_bigalloc = ext4_has_feature_bigalloc(sb); 3971 if (has_bigalloc) { 3972 if (clustersize < blocksize) { 3973 ext4_msg(sb, KERN_ERR, 3974 "cluster size (%d) smaller than " 3975 "block size (%d)", clustersize, blocksize); 3976 goto failed_mount; 3977 } 3978 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3979 le32_to_cpu(es->s_log_block_size); 3980 sbi->s_clusters_per_group = 3981 le32_to_cpu(es->s_clusters_per_group); 3982 if (sbi->s_clusters_per_group > blocksize * 8) { 3983 ext4_msg(sb, KERN_ERR, 3984 "#clusters per group too big: %lu", 3985 sbi->s_clusters_per_group); 3986 goto failed_mount; 3987 } 3988 if (sbi->s_blocks_per_group != 3989 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3990 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3991 "clusters per group (%lu) inconsistent", 3992 sbi->s_blocks_per_group, 3993 sbi->s_clusters_per_group); 3994 goto failed_mount; 3995 } 3996 } else { 3997 if (clustersize != blocksize) { 3998 ext4_msg(sb, KERN_ERR, 3999 "fragment/cluster size (%d) != " 4000 "block size (%d)", clustersize, blocksize); 4001 goto failed_mount; 4002 } 4003 if (sbi->s_blocks_per_group > blocksize * 8) { 4004 ext4_msg(sb, KERN_ERR, 4005 "#blocks per group too big: %lu", 4006 sbi->s_blocks_per_group); 4007 goto failed_mount; 4008 } 4009 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 4010 sbi->s_cluster_bits = 0; 4011 } 4012 sbi->s_cluster_ratio = clustersize / blocksize; 4013 4014 /* Do we have standard group size of clustersize * 8 blocks ? */ 4015 if (sbi->s_blocks_per_group == clustersize << 3) 4016 set_opt2(sb, STD_GROUP_SIZE); 4017 4018 /* 4019 * Test whether we have more sectors than will fit in sector_t, 4020 * and whether the max offset is addressable by the page cache. 4021 */ 4022 err = generic_check_addressable(sb->s_blocksize_bits, 4023 ext4_blocks_count(es)); 4024 if (err) { 4025 ext4_msg(sb, KERN_ERR, "filesystem" 4026 " too large to mount safely on this system"); 4027 if (sizeof(sector_t) < 8) 4028 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 4029 goto failed_mount; 4030 } 4031 4032 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 4033 goto cantfind_ext4; 4034 4035 /* check blocks count against device size */ 4036 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 4037 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 4038 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 4039 "exceeds size of device (%llu blocks)", 4040 ext4_blocks_count(es), blocks_count); 4041 goto failed_mount; 4042 } 4043 4044 /* 4045 * It makes no sense for the first data block to be beyond the end 4046 * of the filesystem. 4047 */ 4048 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 4049 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4050 "block %u is beyond end of filesystem (%llu)", 4051 le32_to_cpu(es->s_first_data_block), 4052 ext4_blocks_count(es)); 4053 goto failed_mount; 4054 } 4055 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) && 4056 (sbi->s_cluster_ratio == 1)) { 4057 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 4058 "block is 0 with a 1k block and cluster size"); 4059 goto failed_mount; 4060 } 4061 4062 blocks_count = (ext4_blocks_count(es) - 4063 le32_to_cpu(es->s_first_data_block) + 4064 EXT4_BLOCKS_PER_GROUP(sb) - 1); 4065 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 4066 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 4067 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 4068 "(block count %llu, first data block %u, " 4069 "blocks per group %lu)", sbi->s_groups_count, 4070 ext4_blocks_count(es), 4071 le32_to_cpu(es->s_first_data_block), 4072 EXT4_BLOCKS_PER_GROUP(sb)); 4073 goto failed_mount; 4074 } 4075 sbi->s_groups_count = blocks_count; 4076 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 4077 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 4078 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) != 4079 le32_to_cpu(es->s_inodes_count)) { 4080 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu", 4081 le32_to_cpu(es->s_inodes_count), 4082 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group)); 4083 ret = -EINVAL; 4084 goto failed_mount; 4085 } 4086 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 4087 EXT4_DESC_PER_BLOCK(sb); 4088 if (ext4_has_feature_meta_bg(sb)) { 4089 if (le32_to_cpu(es->s_first_meta_bg) > db_count) { 4090 ext4_msg(sb, KERN_WARNING, 4091 "first meta block group too large: %u " 4092 "(group descriptor block count %u)", 4093 le32_to_cpu(es->s_first_meta_bg), db_count); 4094 goto failed_mount; 4095 } 4096 } 4097 sbi->s_group_desc = kvmalloc_array(db_count, 4098 sizeof(struct buffer_head *), 4099 GFP_KERNEL); 4100 if (sbi->s_group_desc == NULL) { 4101 ext4_msg(sb, KERN_ERR, "not enough memory"); 4102 ret = -ENOMEM; 4103 goto failed_mount; 4104 } 4105 4106 bgl_lock_init(sbi->s_blockgroup_lock); 4107 4108 /* Pre-read the descriptors into the buffer cache */ 4109 for (i = 0; i < db_count; i++) { 4110 block = descriptor_loc(sb, logical_sb_block, i); 4111 sb_breadahead(sb, block); 4112 } 4113 4114 for (i = 0; i < db_count; i++) { 4115 block = descriptor_loc(sb, logical_sb_block, i); 4116 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 4117 if (!sbi->s_group_desc[i]) { 4118 ext4_msg(sb, KERN_ERR, 4119 "can't read group descriptor %d", i); 4120 db_count = i; 4121 goto failed_mount2; 4122 } 4123 } 4124 sbi->s_gdb_count = db_count; 4125 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) { 4126 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 4127 ret = -EFSCORRUPTED; 4128 goto failed_mount2; 4129 } 4130 4131 timer_setup(&sbi->s_err_report, print_daily_error_info, 0); 4132 4133 /* Register extent status tree shrinker */ 4134 if (ext4_es_register_shrinker(sbi)) 4135 goto failed_mount3; 4136 4137 sbi->s_stripe = ext4_get_stripe_size(sbi); 4138 sbi->s_extent_max_zeroout_kb = 32; 4139 4140 /* 4141 * set up enough so that it can read an inode 4142 */ 4143 sb->s_op = &ext4_sops; 4144 sb->s_export_op = &ext4_export_ops; 4145 sb->s_xattr = ext4_xattr_handlers; 4146 #ifdef CONFIG_EXT4_FS_ENCRYPTION 4147 sb->s_cop = &ext4_cryptops; 4148 #endif 4149 #ifdef CONFIG_QUOTA 4150 sb->dq_op = &ext4_quota_operations; 4151 if (ext4_has_feature_quota(sb)) 4152 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4153 else 4154 sb->s_qcop = &ext4_qctl_operations; 4155 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4156 #endif 4157 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 4158 4159 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 4160 mutex_init(&sbi->s_orphan_lock); 4161 4162 sb->s_root = NULL; 4163 4164 needs_recovery = (es->s_last_orphan != 0 || 4165 ext4_has_feature_journal_needs_recovery(sb)); 4166 4167 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) 4168 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 4169 goto failed_mount3a; 4170 4171 /* 4172 * The first inode we look at is the journal inode. Don't try 4173 * root first: it may be modified in the journal! 4174 */ 4175 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 4176 err = ext4_load_journal(sb, es, journal_devnum); 4177 if (err) 4178 goto failed_mount3a; 4179 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) && 4180 ext4_has_feature_journal_needs_recovery(sb)) { 4181 ext4_msg(sb, KERN_ERR, "required journal recovery " 4182 "suppressed and not mounted read-only"); 4183 goto failed_mount_wq; 4184 } else { 4185 /* Nojournal mode, all journal mount options are illegal */ 4186 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 4187 ext4_msg(sb, KERN_ERR, "can't mount with " 4188 "journal_checksum, fs mounted w/o journal"); 4189 goto failed_mount_wq; 4190 } 4191 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4192 ext4_msg(sb, KERN_ERR, "can't mount with " 4193 "journal_async_commit, fs mounted w/o journal"); 4194 goto failed_mount_wq; 4195 } 4196 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 4197 ext4_msg(sb, KERN_ERR, "can't mount with " 4198 "commit=%lu, fs mounted w/o journal", 4199 sbi->s_commit_interval / HZ); 4200 goto failed_mount_wq; 4201 } 4202 if (EXT4_MOUNT_DATA_FLAGS & 4203 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 4204 ext4_msg(sb, KERN_ERR, "can't mount with " 4205 "data=, fs mounted w/o journal"); 4206 goto failed_mount_wq; 4207 } 4208 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 4209 clear_opt(sb, JOURNAL_CHECKSUM); 4210 clear_opt(sb, DATA_FLAGS); 4211 sbi->s_journal = NULL; 4212 needs_recovery = 0; 4213 goto no_journal; 4214 } 4215 4216 if (ext4_has_feature_64bit(sb) && 4217 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 4218 JBD2_FEATURE_INCOMPAT_64BIT)) { 4219 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 4220 goto failed_mount_wq; 4221 } 4222 4223 if (!set_journal_csum_feature_set(sb)) { 4224 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 4225 "feature set"); 4226 goto failed_mount_wq; 4227 } 4228 4229 /* We have now updated the journal if required, so we can 4230 * validate the data journaling mode. */ 4231 switch (test_opt(sb, DATA_FLAGS)) { 4232 case 0: 4233 /* No mode set, assume a default based on the journal 4234 * capabilities: ORDERED_DATA if the journal can 4235 * cope, else JOURNAL_DATA 4236 */ 4237 if (jbd2_journal_check_available_features 4238 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4239 set_opt(sb, ORDERED_DATA); 4240 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA; 4241 } else { 4242 set_opt(sb, JOURNAL_DATA); 4243 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA; 4244 } 4245 break; 4246 4247 case EXT4_MOUNT_ORDERED_DATA: 4248 case EXT4_MOUNT_WRITEBACK_DATA: 4249 if (!jbd2_journal_check_available_features 4250 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 4251 ext4_msg(sb, KERN_ERR, "Journal does not support " 4252 "requested data journaling mode"); 4253 goto failed_mount_wq; 4254 } 4255 default: 4256 break; 4257 } 4258 4259 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 4260 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 4261 ext4_msg(sb, KERN_ERR, "can't mount with " 4262 "journal_async_commit in data=ordered mode"); 4263 goto failed_mount_wq; 4264 } 4265 4266 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4267 4268 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 4269 4270 no_journal: 4271 if (!test_opt(sb, NO_MBCACHE)) { 4272 sbi->s_ea_block_cache = ext4_xattr_create_cache(); 4273 if (!sbi->s_ea_block_cache) { 4274 ext4_msg(sb, KERN_ERR, 4275 "Failed to create ea_block_cache"); 4276 goto failed_mount_wq; 4277 } 4278 4279 if (ext4_has_feature_ea_inode(sb)) { 4280 sbi->s_ea_inode_cache = ext4_xattr_create_cache(); 4281 if (!sbi->s_ea_inode_cache) { 4282 ext4_msg(sb, KERN_ERR, 4283 "Failed to create ea_inode_cache"); 4284 goto failed_mount_wq; 4285 } 4286 } 4287 } 4288 4289 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 4290 (blocksize != PAGE_SIZE)) { 4291 ext4_msg(sb, KERN_ERR, 4292 "Unsupported blocksize for fs encryption"); 4293 goto failed_mount_wq; 4294 } 4295 4296 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) && 4297 !ext4_has_feature_encrypt(sb)) { 4298 ext4_set_feature_encrypt(sb); 4299 ext4_commit_super(sb, 1); 4300 } 4301 4302 /* 4303 * Get the # of file system overhead blocks from the 4304 * superblock if present. 4305 */ 4306 if (es->s_overhead_clusters) 4307 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 4308 else { 4309 err = ext4_calculate_overhead(sb); 4310 if (err) 4311 goto failed_mount_wq; 4312 } 4313 4314 /* 4315 * The maximum number of concurrent works can be high and 4316 * concurrency isn't really necessary. Limit it to 1. 4317 */ 4318 EXT4_SB(sb)->rsv_conversion_wq = 4319 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 4320 if (!EXT4_SB(sb)->rsv_conversion_wq) { 4321 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 4322 ret = -ENOMEM; 4323 goto failed_mount4; 4324 } 4325 4326 /* 4327 * The jbd2_journal_load will have done any necessary log recovery, 4328 * so we can safely mount the rest of the filesystem now. 4329 */ 4330 4331 root = ext4_iget(sb, EXT4_ROOT_INO); 4332 if (IS_ERR(root)) { 4333 ext4_msg(sb, KERN_ERR, "get root inode failed"); 4334 ret = PTR_ERR(root); 4335 root = NULL; 4336 goto failed_mount4; 4337 } 4338 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 4339 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 4340 iput(root); 4341 goto failed_mount4; 4342 } 4343 sb->s_root = d_make_root(root); 4344 if (!sb->s_root) { 4345 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 4346 ret = -ENOMEM; 4347 goto failed_mount4; 4348 } 4349 4350 ret = ext4_setup_super(sb, es, sb_rdonly(sb)); 4351 if (ret == -EROFS) { 4352 sb->s_flags |= SB_RDONLY; 4353 ret = 0; 4354 } else if (ret) 4355 goto failed_mount4a; 4356 4357 /* determine the minimum size of new large inodes, if present */ 4358 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE && 4359 sbi->s_want_extra_isize == 0) { 4360 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4361 EXT4_GOOD_OLD_INODE_SIZE; 4362 if (ext4_has_feature_extra_isize(sb)) { 4363 if (sbi->s_want_extra_isize < 4364 le16_to_cpu(es->s_want_extra_isize)) 4365 sbi->s_want_extra_isize = 4366 le16_to_cpu(es->s_want_extra_isize); 4367 if (sbi->s_want_extra_isize < 4368 le16_to_cpu(es->s_min_extra_isize)) 4369 sbi->s_want_extra_isize = 4370 le16_to_cpu(es->s_min_extra_isize); 4371 } 4372 } 4373 /* Check if enough inode space is available */ 4374 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 4375 sbi->s_inode_size) { 4376 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 4377 EXT4_GOOD_OLD_INODE_SIZE; 4378 ext4_msg(sb, KERN_INFO, "required extra inode space not" 4379 "available"); 4380 } 4381 4382 ext4_set_resv_clusters(sb); 4383 4384 err = ext4_setup_system_zone(sb); 4385 if (err) { 4386 ext4_msg(sb, KERN_ERR, "failed to initialize system " 4387 "zone (%d)", err); 4388 goto failed_mount4a; 4389 } 4390 4391 ext4_ext_init(sb); 4392 err = ext4_mb_init(sb); 4393 if (err) { 4394 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 4395 err); 4396 goto failed_mount5; 4397 } 4398 4399 block = ext4_count_free_clusters(sb); 4400 ext4_free_blocks_count_set(sbi->s_es, 4401 EXT4_C2B(sbi, block)); 4402 ext4_superblock_csum_set(sb); 4403 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 4404 GFP_KERNEL); 4405 if (!err) { 4406 unsigned long freei = ext4_count_free_inodes(sb); 4407 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 4408 ext4_superblock_csum_set(sb); 4409 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 4410 GFP_KERNEL); 4411 } 4412 if (!err) 4413 err = percpu_counter_init(&sbi->s_dirs_counter, 4414 ext4_count_dirs(sb), GFP_KERNEL); 4415 if (!err) 4416 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 4417 GFP_KERNEL); 4418 if (!err) 4419 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem); 4420 4421 if (err) { 4422 ext4_msg(sb, KERN_ERR, "insufficient memory"); 4423 goto failed_mount6; 4424 } 4425 4426 if (ext4_has_feature_flex_bg(sb)) 4427 if (!ext4_fill_flex_info(sb)) { 4428 ext4_msg(sb, KERN_ERR, 4429 "unable to initialize " 4430 "flex_bg meta info!"); 4431 goto failed_mount6; 4432 } 4433 4434 err = ext4_register_li_request(sb, first_not_zeroed); 4435 if (err) 4436 goto failed_mount6; 4437 4438 err = ext4_register_sysfs(sb); 4439 if (err) 4440 goto failed_mount7; 4441 4442 #ifdef CONFIG_QUOTA 4443 /* Enable quota usage during mount. */ 4444 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) { 4445 err = ext4_enable_quotas(sb); 4446 if (err) 4447 goto failed_mount8; 4448 } 4449 #endif /* CONFIG_QUOTA */ 4450 4451 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 4452 ext4_orphan_cleanup(sb, es); 4453 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 4454 if (needs_recovery) { 4455 ext4_msg(sb, KERN_INFO, "recovery complete"); 4456 ext4_mark_recovery_complete(sb, es); 4457 } 4458 if (EXT4_SB(sb)->s_journal) { 4459 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 4460 descr = " journalled data mode"; 4461 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 4462 descr = " ordered data mode"; 4463 else 4464 descr = " writeback data mode"; 4465 } else 4466 descr = "out journal"; 4467 4468 if (test_opt(sb, DISCARD)) { 4469 struct request_queue *q = bdev_get_queue(sb->s_bdev); 4470 if (!blk_queue_discard(q)) 4471 ext4_msg(sb, KERN_WARNING, 4472 "mounting with \"discard\" option, but " 4473 "the device does not support discard"); 4474 } 4475 4476 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 4477 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 4478 "Opts: %.*s%s%s", descr, 4479 (int) sizeof(sbi->s_es->s_mount_opts), 4480 sbi->s_es->s_mount_opts, 4481 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 4482 4483 if (es->s_error_count) 4484 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 4485 4486 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 4487 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 4488 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 4489 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 4490 4491 kfree(orig_data); 4492 return 0; 4493 4494 cantfind_ext4: 4495 if (!silent) 4496 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 4497 goto failed_mount; 4498 4499 #ifdef CONFIG_QUOTA 4500 failed_mount8: 4501 ext4_unregister_sysfs(sb); 4502 #endif 4503 failed_mount7: 4504 ext4_unregister_li_request(sb); 4505 failed_mount6: 4506 ext4_mb_release(sb); 4507 if (sbi->s_flex_groups) 4508 kvfree(sbi->s_flex_groups); 4509 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4510 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4511 percpu_counter_destroy(&sbi->s_dirs_counter); 4512 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4513 percpu_free_rwsem(&sbi->s_journal_flag_rwsem); 4514 failed_mount5: 4515 ext4_ext_release(sb); 4516 ext4_release_system_zone(sb); 4517 failed_mount4a: 4518 dput(sb->s_root); 4519 sb->s_root = NULL; 4520 failed_mount4: 4521 ext4_msg(sb, KERN_ERR, "mount failed"); 4522 if (EXT4_SB(sb)->rsv_conversion_wq) 4523 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 4524 failed_mount_wq: 4525 if (sbi->s_ea_inode_cache) { 4526 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache); 4527 sbi->s_ea_inode_cache = NULL; 4528 } 4529 if (sbi->s_ea_block_cache) { 4530 ext4_xattr_destroy_cache(sbi->s_ea_block_cache); 4531 sbi->s_ea_block_cache = NULL; 4532 } 4533 if (sbi->s_journal) { 4534 jbd2_journal_destroy(sbi->s_journal); 4535 sbi->s_journal = NULL; 4536 } 4537 failed_mount3a: 4538 ext4_es_unregister_shrinker(sbi); 4539 failed_mount3: 4540 del_timer_sync(&sbi->s_err_report); 4541 if (sbi->s_mmp_tsk) 4542 kthread_stop(sbi->s_mmp_tsk); 4543 failed_mount2: 4544 for (i = 0; i < db_count; i++) 4545 brelse(sbi->s_group_desc[i]); 4546 kvfree(sbi->s_group_desc); 4547 failed_mount: 4548 if (sbi->s_chksum_driver) 4549 crypto_free_shash(sbi->s_chksum_driver); 4550 #ifdef CONFIG_QUOTA 4551 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4552 kfree(sbi->s_qf_names[i]); 4553 #endif 4554 ext4_blkdev_remove(sbi); 4555 brelse(bh); 4556 out_fail: 4557 sb->s_fs_info = NULL; 4558 kfree(sbi->s_blockgroup_lock); 4559 out_free_base: 4560 kfree(sbi); 4561 kfree(orig_data); 4562 fs_put_dax(dax_dev); 4563 return err ? err : ret; 4564 } 4565 4566 /* 4567 * Setup any per-fs journal parameters now. We'll do this both on 4568 * initial mount, once the journal has been initialised but before we've 4569 * done any recovery; and again on any subsequent remount. 4570 */ 4571 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4572 { 4573 struct ext4_sb_info *sbi = EXT4_SB(sb); 4574 4575 journal->j_commit_interval = sbi->s_commit_interval; 4576 journal->j_min_batch_time = sbi->s_min_batch_time; 4577 journal->j_max_batch_time = sbi->s_max_batch_time; 4578 4579 write_lock(&journal->j_state_lock); 4580 if (test_opt(sb, BARRIER)) 4581 journal->j_flags |= JBD2_BARRIER; 4582 else 4583 journal->j_flags &= ~JBD2_BARRIER; 4584 if (test_opt(sb, DATA_ERR_ABORT)) 4585 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4586 else 4587 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4588 write_unlock(&journal->j_state_lock); 4589 } 4590 4591 static struct inode *ext4_get_journal_inode(struct super_block *sb, 4592 unsigned int journal_inum) 4593 { 4594 struct inode *journal_inode; 4595 4596 /* 4597 * Test for the existence of a valid inode on disk. Bad things 4598 * happen if we iget() an unused inode, as the subsequent iput() 4599 * will try to delete it. 4600 */ 4601 journal_inode = ext4_iget(sb, journal_inum); 4602 if (IS_ERR(journal_inode)) { 4603 ext4_msg(sb, KERN_ERR, "no journal found"); 4604 return NULL; 4605 } 4606 if (!journal_inode->i_nlink) { 4607 make_bad_inode(journal_inode); 4608 iput(journal_inode); 4609 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4610 return NULL; 4611 } 4612 4613 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4614 journal_inode, journal_inode->i_size); 4615 if (!S_ISREG(journal_inode->i_mode)) { 4616 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4617 iput(journal_inode); 4618 return NULL; 4619 } 4620 return journal_inode; 4621 } 4622 4623 static journal_t *ext4_get_journal(struct super_block *sb, 4624 unsigned int journal_inum) 4625 { 4626 struct inode *journal_inode; 4627 journal_t *journal; 4628 4629 BUG_ON(!ext4_has_feature_journal(sb)); 4630 4631 journal_inode = ext4_get_journal_inode(sb, journal_inum); 4632 if (!journal_inode) 4633 return NULL; 4634 4635 journal = jbd2_journal_init_inode(journal_inode); 4636 if (!journal) { 4637 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4638 iput(journal_inode); 4639 return NULL; 4640 } 4641 journal->j_private = sb; 4642 ext4_init_journal_params(sb, journal); 4643 return journal; 4644 } 4645 4646 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4647 dev_t j_dev) 4648 { 4649 struct buffer_head *bh; 4650 journal_t *journal; 4651 ext4_fsblk_t start; 4652 ext4_fsblk_t len; 4653 int hblock, blocksize; 4654 ext4_fsblk_t sb_block; 4655 unsigned long offset; 4656 struct ext4_super_block *es; 4657 struct block_device *bdev; 4658 4659 BUG_ON(!ext4_has_feature_journal(sb)); 4660 4661 bdev = ext4_blkdev_get(j_dev, sb); 4662 if (bdev == NULL) 4663 return NULL; 4664 4665 blocksize = sb->s_blocksize; 4666 hblock = bdev_logical_block_size(bdev); 4667 if (blocksize < hblock) { 4668 ext4_msg(sb, KERN_ERR, 4669 "blocksize too small for journal device"); 4670 goto out_bdev; 4671 } 4672 4673 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4674 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4675 set_blocksize(bdev, blocksize); 4676 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4677 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4678 "external journal"); 4679 goto out_bdev; 4680 } 4681 4682 es = (struct ext4_super_block *) (bh->b_data + offset); 4683 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4684 !(le32_to_cpu(es->s_feature_incompat) & 4685 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4686 ext4_msg(sb, KERN_ERR, "external journal has " 4687 "bad superblock"); 4688 brelse(bh); 4689 goto out_bdev; 4690 } 4691 4692 if ((le32_to_cpu(es->s_feature_ro_compat) & 4693 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4694 es->s_checksum != ext4_superblock_csum(sb, es)) { 4695 ext4_msg(sb, KERN_ERR, "external journal has " 4696 "corrupt superblock"); 4697 brelse(bh); 4698 goto out_bdev; 4699 } 4700 4701 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4702 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4703 brelse(bh); 4704 goto out_bdev; 4705 } 4706 4707 len = ext4_blocks_count(es); 4708 start = sb_block + 1; 4709 brelse(bh); /* we're done with the superblock */ 4710 4711 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4712 start, len, blocksize); 4713 if (!journal) { 4714 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4715 goto out_bdev; 4716 } 4717 journal->j_private = sb; 4718 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4719 wait_on_buffer(journal->j_sb_buffer); 4720 if (!buffer_uptodate(journal->j_sb_buffer)) { 4721 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4722 goto out_journal; 4723 } 4724 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4725 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4726 "user (unsupported) - %d", 4727 be32_to_cpu(journal->j_superblock->s_nr_users)); 4728 goto out_journal; 4729 } 4730 EXT4_SB(sb)->journal_bdev = bdev; 4731 ext4_init_journal_params(sb, journal); 4732 return journal; 4733 4734 out_journal: 4735 jbd2_journal_destroy(journal); 4736 out_bdev: 4737 ext4_blkdev_put(bdev); 4738 return NULL; 4739 } 4740 4741 static int ext4_load_journal(struct super_block *sb, 4742 struct ext4_super_block *es, 4743 unsigned long journal_devnum) 4744 { 4745 journal_t *journal; 4746 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4747 dev_t journal_dev; 4748 int err = 0; 4749 int really_read_only; 4750 4751 BUG_ON(!ext4_has_feature_journal(sb)); 4752 4753 if (journal_devnum && 4754 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4755 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4756 "numbers have changed"); 4757 journal_dev = new_decode_dev(journal_devnum); 4758 } else 4759 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4760 4761 really_read_only = bdev_read_only(sb->s_bdev); 4762 4763 /* 4764 * Are we loading a blank journal or performing recovery after a 4765 * crash? For recovery, we need to check in advance whether we 4766 * can get read-write access to the device. 4767 */ 4768 if (ext4_has_feature_journal_needs_recovery(sb)) { 4769 if (sb_rdonly(sb)) { 4770 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4771 "required on readonly filesystem"); 4772 if (really_read_only) { 4773 ext4_msg(sb, KERN_ERR, "write access " 4774 "unavailable, cannot proceed " 4775 "(try mounting with noload)"); 4776 return -EROFS; 4777 } 4778 ext4_msg(sb, KERN_INFO, "write access will " 4779 "be enabled during recovery"); 4780 } 4781 } 4782 4783 if (journal_inum && journal_dev) { 4784 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4785 "and inode journals!"); 4786 return -EINVAL; 4787 } 4788 4789 if (journal_inum) { 4790 if (!(journal = ext4_get_journal(sb, journal_inum))) 4791 return -EINVAL; 4792 } else { 4793 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4794 return -EINVAL; 4795 } 4796 4797 if (!(journal->j_flags & JBD2_BARRIER)) 4798 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4799 4800 if (!ext4_has_feature_journal_needs_recovery(sb)) 4801 err = jbd2_journal_wipe(journal, !really_read_only); 4802 if (!err) { 4803 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4804 if (save) 4805 memcpy(save, ((char *) es) + 4806 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4807 err = jbd2_journal_load(journal); 4808 if (save) 4809 memcpy(((char *) es) + EXT4_S_ERR_START, 4810 save, EXT4_S_ERR_LEN); 4811 kfree(save); 4812 } 4813 4814 if (err) { 4815 ext4_msg(sb, KERN_ERR, "error loading journal"); 4816 jbd2_journal_destroy(journal); 4817 return err; 4818 } 4819 4820 EXT4_SB(sb)->s_journal = journal; 4821 ext4_clear_journal_err(sb, es); 4822 4823 if (!really_read_only && journal_devnum && 4824 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4825 es->s_journal_dev = cpu_to_le32(journal_devnum); 4826 4827 /* Make sure we flush the recovery flag to disk. */ 4828 ext4_commit_super(sb, 1); 4829 } 4830 4831 return 0; 4832 } 4833 4834 static int ext4_commit_super(struct super_block *sb, int sync) 4835 { 4836 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4837 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4838 int error = 0; 4839 4840 if (!sbh || block_device_ejected(sb)) 4841 return error; 4842 4843 /* 4844 * The superblock bh should be mapped, but it might not be if the 4845 * device was hot-removed. Not much we can do but fail the I/O. 4846 */ 4847 if (!buffer_mapped(sbh)) 4848 return error; 4849 4850 /* 4851 * If the file system is mounted read-only, don't update the 4852 * superblock write time. This avoids updating the superblock 4853 * write time when we are mounting the root file system 4854 * read/only but we need to replay the journal; at that point, 4855 * for people who are east of GMT and who make their clock 4856 * tick in localtime for Windows bug-for-bug compatibility, 4857 * the clock is set in the future, and this will cause e2fsck 4858 * to complain and force a full file system check. 4859 */ 4860 if (!(sb->s_flags & SB_RDONLY)) 4861 ext4_update_tstamp(es, s_wtime); 4862 if (sb->s_bdev->bd_part) 4863 es->s_kbytes_written = 4864 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4865 ((part_stat_read(sb->s_bdev->bd_part, 4866 sectors[STAT_WRITE]) - 4867 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4868 else 4869 es->s_kbytes_written = 4870 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4871 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4872 ext4_free_blocks_count_set(es, 4873 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4874 &EXT4_SB(sb)->s_freeclusters_counter))); 4875 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4876 es->s_free_inodes_count = 4877 cpu_to_le32(percpu_counter_sum_positive( 4878 &EXT4_SB(sb)->s_freeinodes_counter)); 4879 BUFFER_TRACE(sbh, "marking dirty"); 4880 ext4_superblock_csum_set(sb); 4881 if (sync) 4882 lock_buffer(sbh); 4883 if (buffer_write_io_error(sbh)) { 4884 /* 4885 * Oh, dear. A previous attempt to write the 4886 * superblock failed. This could happen because the 4887 * USB device was yanked out. Or it could happen to 4888 * be a transient write error and maybe the block will 4889 * be remapped. Nothing we can do but to retry the 4890 * write and hope for the best. 4891 */ 4892 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4893 "superblock detected"); 4894 clear_buffer_write_io_error(sbh); 4895 set_buffer_uptodate(sbh); 4896 } 4897 mark_buffer_dirty(sbh); 4898 if (sync) { 4899 unlock_buffer(sbh); 4900 error = __sync_dirty_buffer(sbh, 4901 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0)); 4902 if (buffer_write_io_error(sbh)) { 4903 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4904 "superblock"); 4905 clear_buffer_write_io_error(sbh); 4906 set_buffer_uptodate(sbh); 4907 } 4908 } 4909 return error; 4910 } 4911 4912 /* 4913 * Have we just finished recovery? If so, and if we are mounting (or 4914 * remounting) the filesystem readonly, then we will end up with a 4915 * consistent fs on disk. Record that fact. 4916 */ 4917 static void ext4_mark_recovery_complete(struct super_block *sb, 4918 struct ext4_super_block *es) 4919 { 4920 journal_t *journal = EXT4_SB(sb)->s_journal; 4921 4922 if (!ext4_has_feature_journal(sb)) { 4923 BUG_ON(journal != NULL); 4924 return; 4925 } 4926 jbd2_journal_lock_updates(journal); 4927 if (jbd2_journal_flush(journal) < 0) 4928 goto out; 4929 4930 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) { 4931 ext4_clear_feature_journal_needs_recovery(sb); 4932 ext4_commit_super(sb, 1); 4933 } 4934 4935 out: 4936 jbd2_journal_unlock_updates(journal); 4937 } 4938 4939 /* 4940 * If we are mounting (or read-write remounting) a filesystem whose journal 4941 * has recorded an error from a previous lifetime, move that error to the 4942 * main filesystem now. 4943 */ 4944 static void ext4_clear_journal_err(struct super_block *sb, 4945 struct ext4_super_block *es) 4946 { 4947 journal_t *journal; 4948 int j_errno; 4949 const char *errstr; 4950 4951 BUG_ON(!ext4_has_feature_journal(sb)); 4952 4953 journal = EXT4_SB(sb)->s_journal; 4954 4955 /* 4956 * Now check for any error status which may have been recorded in the 4957 * journal by a prior ext4_error() or ext4_abort() 4958 */ 4959 4960 j_errno = jbd2_journal_errno(journal); 4961 if (j_errno) { 4962 char nbuf[16]; 4963 4964 errstr = ext4_decode_error(sb, j_errno, nbuf); 4965 ext4_warning(sb, "Filesystem error recorded " 4966 "from previous mount: %s", errstr); 4967 ext4_warning(sb, "Marking fs in need of filesystem check."); 4968 4969 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4970 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4971 ext4_commit_super(sb, 1); 4972 4973 jbd2_journal_clear_err(journal); 4974 jbd2_journal_update_sb_errno(journal); 4975 } 4976 } 4977 4978 /* 4979 * Force the running and committing transactions to commit, 4980 * and wait on the commit. 4981 */ 4982 int ext4_force_commit(struct super_block *sb) 4983 { 4984 journal_t *journal; 4985 4986 if (sb_rdonly(sb)) 4987 return 0; 4988 4989 journal = EXT4_SB(sb)->s_journal; 4990 return ext4_journal_force_commit(journal); 4991 } 4992 4993 static int ext4_sync_fs(struct super_block *sb, int wait) 4994 { 4995 int ret = 0; 4996 tid_t target; 4997 bool needs_barrier = false; 4998 struct ext4_sb_info *sbi = EXT4_SB(sb); 4999 5000 if (unlikely(ext4_forced_shutdown(sbi))) 5001 return 0; 5002 5003 trace_ext4_sync_fs(sb, wait); 5004 flush_workqueue(sbi->rsv_conversion_wq); 5005 /* 5006 * Writeback quota in non-journalled quota case - journalled quota has 5007 * no dirty dquots 5008 */ 5009 dquot_writeback_dquots(sb, -1); 5010 /* 5011 * Data writeback is possible w/o journal transaction, so barrier must 5012 * being sent at the end of the function. But we can skip it if 5013 * transaction_commit will do it for us. 5014 */ 5015 if (sbi->s_journal) { 5016 target = jbd2_get_latest_transaction(sbi->s_journal); 5017 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 5018 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 5019 needs_barrier = true; 5020 5021 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 5022 if (wait) 5023 ret = jbd2_log_wait_commit(sbi->s_journal, 5024 target); 5025 } 5026 } else if (wait && test_opt(sb, BARRIER)) 5027 needs_barrier = true; 5028 if (needs_barrier) { 5029 int err; 5030 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 5031 if (!ret) 5032 ret = err; 5033 } 5034 5035 return ret; 5036 } 5037 5038 /* 5039 * LVM calls this function before a (read-only) snapshot is created. This 5040 * gives us a chance to flush the journal completely and mark the fs clean. 5041 * 5042 * Note that only this function cannot bring a filesystem to be in a clean 5043 * state independently. It relies on upper layer to stop all data & metadata 5044 * modifications. 5045 */ 5046 static int ext4_freeze(struct super_block *sb) 5047 { 5048 int error = 0; 5049 journal_t *journal; 5050 5051 if (sb_rdonly(sb)) 5052 return 0; 5053 5054 journal = EXT4_SB(sb)->s_journal; 5055 5056 if (journal) { 5057 /* Now we set up the journal barrier. */ 5058 jbd2_journal_lock_updates(journal); 5059 5060 /* 5061 * Don't clear the needs_recovery flag if we failed to 5062 * flush the journal. 5063 */ 5064 error = jbd2_journal_flush(journal); 5065 if (error < 0) 5066 goto out; 5067 5068 /* Journal blocked and flushed, clear needs_recovery flag. */ 5069 ext4_clear_feature_journal_needs_recovery(sb); 5070 } 5071 5072 error = ext4_commit_super(sb, 1); 5073 out: 5074 if (journal) 5075 /* we rely on upper layer to stop further updates */ 5076 jbd2_journal_unlock_updates(journal); 5077 return error; 5078 } 5079 5080 /* 5081 * Called by LVM after the snapshot is done. We need to reset the RECOVER 5082 * flag here, even though the filesystem is not technically dirty yet. 5083 */ 5084 static int ext4_unfreeze(struct super_block *sb) 5085 { 5086 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb))) 5087 return 0; 5088 5089 if (EXT4_SB(sb)->s_journal) { 5090 /* Reset the needs_recovery flag before the fs is unlocked. */ 5091 ext4_set_feature_journal_needs_recovery(sb); 5092 } 5093 5094 ext4_commit_super(sb, 1); 5095 return 0; 5096 } 5097 5098 /* 5099 * Structure to save mount options for ext4_remount's benefit 5100 */ 5101 struct ext4_mount_options { 5102 unsigned long s_mount_opt; 5103 unsigned long s_mount_opt2; 5104 kuid_t s_resuid; 5105 kgid_t s_resgid; 5106 unsigned long s_commit_interval; 5107 u32 s_min_batch_time, s_max_batch_time; 5108 #ifdef CONFIG_QUOTA 5109 int s_jquota_fmt; 5110 char *s_qf_names[EXT4_MAXQUOTAS]; 5111 #endif 5112 }; 5113 5114 static int ext4_remount(struct super_block *sb, int *flags, char *data) 5115 { 5116 struct ext4_super_block *es; 5117 struct ext4_sb_info *sbi = EXT4_SB(sb); 5118 unsigned long old_sb_flags; 5119 struct ext4_mount_options old_opts; 5120 int enable_quota = 0; 5121 ext4_group_t g; 5122 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 5123 int err = 0; 5124 #ifdef CONFIG_QUOTA 5125 int i, j; 5126 char *to_free[EXT4_MAXQUOTAS]; 5127 #endif 5128 char *orig_data = kstrdup(data, GFP_KERNEL); 5129 5130 if (data && !orig_data) 5131 return -ENOMEM; 5132 5133 /* Store the original options */ 5134 old_sb_flags = sb->s_flags; 5135 old_opts.s_mount_opt = sbi->s_mount_opt; 5136 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 5137 old_opts.s_resuid = sbi->s_resuid; 5138 old_opts.s_resgid = sbi->s_resgid; 5139 old_opts.s_commit_interval = sbi->s_commit_interval; 5140 old_opts.s_min_batch_time = sbi->s_min_batch_time; 5141 old_opts.s_max_batch_time = sbi->s_max_batch_time; 5142 #ifdef CONFIG_QUOTA 5143 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 5144 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5145 if (sbi->s_qf_names[i]) { 5146 char *qf_name = get_qf_name(sb, sbi, i); 5147 5148 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL); 5149 if (!old_opts.s_qf_names[i]) { 5150 for (j = 0; j < i; j++) 5151 kfree(old_opts.s_qf_names[j]); 5152 kfree(orig_data); 5153 return -ENOMEM; 5154 } 5155 } else 5156 old_opts.s_qf_names[i] = NULL; 5157 #endif 5158 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 5159 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 5160 5161 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 5162 err = -EINVAL; 5163 goto restore_opts; 5164 } 5165 5166 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 5167 test_opt(sb, JOURNAL_CHECKSUM)) { 5168 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 5169 "during remount not supported; ignoring"); 5170 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 5171 } 5172 5173 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 5174 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 5175 ext4_msg(sb, KERN_ERR, "can't mount with " 5176 "both data=journal and delalloc"); 5177 err = -EINVAL; 5178 goto restore_opts; 5179 } 5180 if (test_opt(sb, DIOREAD_NOLOCK)) { 5181 ext4_msg(sb, KERN_ERR, "can't mount with " 5182 "both data=journal and dioread_nolock"); 5183 err = -EINVAL; 5184 goto restore_opts; 5185 } 5186 if (test_opt(sb, DAX)) { 5187 ext4_msg(sb, KERN_ERR, "can't mount with " 5188 "both data=journal and dax"); 5189 err = -EINVAL; 5190 goto restore_opts; 5191 } 5192 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) { 5193 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 5194 ext4_msg(sb, KERN_ERR, "can't mount with " 5195 "journal_async_commit in data=ordered mode"); 5196 err = -EINVAL; 5197 goto restore_opts; 5198 } 5199 } 5200 5201 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) { 5202 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount"); 5203 err = -EINVAL; 5204 goto restore_opts; 5205 } 5206 5207 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 5208 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 5209 "dax flag with busy inodes while remounting"); 5210 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 5211 } 5212 5213 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 5214 ext4_abort(sb, "Abort forced by user"); 5215 5216 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 5217 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0); 5218 5219 es = sbi->s_es; 5220 5221 if (sbi->s_journal) { 5222 ext4_init_journal_params(sb, sbi->s_journal); 5223 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 5224 } 5225 5226 if (*flags & SB_LAZYTIME) 5227 sb->s_flags |= SB_LAZYTIME; 5228 5229 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) { 5230 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 5231 err = -EROFS; 5232 goto restore_opts; 5233 } 5234 5235 if (*flags & SB_RDONLY) { 5236 err = sync_filesystem(sb); 5237 if (err < 0) 5238 goto restore_opts; 5239 err = dquot_suspend(sb, -1); 5240 if (err < 0) 5241 goto restore_opts; 5242 5243 /* 5244 * First of all, the unconditional stuff we have to do 5245 * to disable replay of the journal when we next remount 5246 */ 5247 sb->s_flags |= SB_RDONLY; 5248 5249 /* 5250 * OK, test if we are remounting a valid rw partition 5251 * readonly, and if so set the rdonly flag and then 5252 * mark the partition as valid again. 5253 */ 5254 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 5255 (sbi->s_mount_state & EXT4_VALID_FS)) 5256 es->s_state = cpu_to_le16(sbi->s_mount_state); 5257 5258 if (sbi->s_journal) 5259 ext4_mark_recovery_complete(sb, es); 5260 if (sbi->s_mmp_tsk) 5261 kthread_stop(sbi->s_mmp_tsk); 5262 } else { 5263 /* Make sure we can mount this feature set readwrite */ 5264 if (ext4_has_feature_readonly(sb) || 5265 !ext4_feature_set_ok(sb, 0)) { 5266 err = -EROFS; 5267 goto restore_opts; 5268 } 5269 /* 5270 * Make sure the group descriptor checksums 5271 * are sane. If they aren't, refuse to remount r/w. 5272 */ 5273 for (g = 0; g < sbi->s_groups_count; g++) { 5274 struct ext4_group_desc *gdp = 5275 ext4_get_group_desc(sb, g, NULL); 5276 5277 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 5278 ext4_msg(sb, KERN_ERR, 5279 "ext4_remount: Checksum for group %u failed (%u!=%u)", 5280 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 5281 le16_to_cpu(gdp->bg_checksum)); 5282 err = -EFSBADCRC; 5283 goto restore_opts; 5284 } 5285 } 5286 5287 /* 5288 * If we have an unprocessed orphan list hanging 5289 * around from a previously readonly bdev mount, 5290 * require a full umount/remount for now. 5291 */ 5292 if (es->s_last_orphan) { 5293 ext4_msg(sb, KERN_WARNING, "Couldn't " 5294 "remount RDWR because of unprocessed " 5295 "orphan inode list. Please " 5296 "umount/remount instead"); 5297 err = -EINVAL; 5298 goto restore_opts; 5299 } 5300 5301 /* 5302 * Mounting a RDONLY partition read-write, so reread 5303 * and store the current valid flag. (It may have 5304 * been changed by e2fsck since we originally mounted 5305 * the partition.) 5306 */ 5307 if (sbi->s_journal) 5308 ext4_clear_journal_err(sb, es); 5309 sbi->s_mount_state = le16_to_cpu(es->s_state); 5310 5311 err = ext4_setup_super(sb, es, 0); 5312 if (err) 5313 goto restore_opts; 5314 5315 sb->s_flags &= ~SB_RDONLY; 5316 if (ext4_has_feature_mmp(sb)) 5317 if (ext4_multi_mount_protect(sb, 5318 le64_to_cpu(es->s_mmp_block))) { 5319 err = -EROFS; 5320 goto restore_opts; 5321 } 5322 enable_quota = 1; 5323 } 5324 } 5325 5326 /* 5327 * Reinitialize lazy itable initialization thread based on 5328 * current settings 5329 */ 5330 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE)) 5331 ext4_unregister_li_request(sb); 5332 else { 5333 ext4_group_t first_not_zeroed; 5334 first_not_zeroed = ext4_has_uninit_itable(sb); 5335 ext4_register_li_request(sb, first_not_zeroed); 5336 } 5337 5338 ext4_setup_system_zone(sb); 5339 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) { 5340 err = ext4_commit_super(sb, 1); 5341 if (err) 5342 goto restore_opts; 5343 } 5344 5345 #ifdef CONFIG_QUOTA 5346 /* Release old quota file names */ 5347 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5348 kfree(old_opts.s_qf_names[i]); 5349 if (enable_quota) { 5350 if (sb_any_quota_suspended(sb)) 5351 dquot_resume(sb, -1); 5352 else if (ext4_has_feature_quota(sb)) { 5353 err = ext4_enable_quotas(sb); 5354 if (err) 5355 goto restore_opts; 5356 } 5357 } 5358 #endif 5359 5360 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 5361 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 5362 kfree(orig_data); 5363 return 0; 5364 5365 restore_opts: 5366 sb->s_flags = old_sb_flags; 5367 sbi->s_mount_opt = old_opts.s_mount_opt; 5368 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 5369 sbi->s_resuid = old_opts.s_resuid; 5370 sbi->s_resgid = old_opts.s_resgid; 5371 sbi->s_commit_interval = old_opts.s_commit_interval; 5372 sbi->s_min_batch_time = old_opts.s_min_batch_time; 5373 sbi->s_max_batch_time = old_opts.s_max_batch_time; 5374 #ifdef CONFIG_QUOTA 5375 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 5376 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 5377 to_free[i] = get_qf_name(sb, sbi, i); 5378 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]); 5379 } 5380 synchronize_rcu(); 5381 for (i = 0; i < EXT4_MAXQUOTAS; i++) 5382 kfree(to_free[i]); 5383 #endif 5384 kfree(orig_data); 5385 return err; 5386 } 5387 5388 #ifdef CONFIG_QUOTA 5389 static int ext4_statfs_project(struct super_block *sb, 5390 kprojid_t projid, struct kstatfs *buf) 5391 { 5392 struct kqid qid; 5393 struct dquot *dquot; 5394 u64 limit; 5395 u64 curblock; 5396 5397 qid = make_kqid_projid(projid); 5398 dquot = dqget(sb, qid); 5399 if (IS_ERR(dquot)) 5400 return PTR_ERR(dquot); 5401 spin_lock(&dquot->dq_dqb_lock); 5402 5403 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 5404 dquot->dq_dqb.dqb_bsoftlimit : 5405 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 5406 if (limit && buf->f_blocks > limit) { 5407 curblock = (dquot->dq_dqb.dqb_curspace + 5408 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 5409 buf->f_blocks = limit; 5410 buf->f_bfree = buf->f_bavail = 5411 (buf->f_blocks > curblock) ? 5412 (buf->f_blocks - curblock) : 0; 5413 } 5414 5415 limit = dquot->dq_dqb.dqb_isoftlimit ? 5416 dquot->dq_dqb.dqb_isoftlimit : 5417 dquot->dq_dqb.dqb_ihardlimit; 5418 if (limit && buf->f_files > limit) { 5419 buf->f_files = limit; 5420 buf->f_ffree = 5421 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 5422 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 5423 } 5424 5425 spin_unlock(&dquot->dq_dqb_lock); 5426 dqput(dquot); 5427 return 0; 5428 } 5429 #endif 5430 5431 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 5432 { 5433 struct super_block *sb = dentry->d_sb; 5434 struct ext4_sb_info *sbi = EXT4_SB(sb); 5435 struct ext4_super_block *es = sbi->s_es; 5436 ext4_fsblk_t overhead = 0, resv_blocks; 5437 u64 fsid; 5438 s64 bfree; 5439 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 5440 5441 if (!test_opt(sb, MINIX_DF)) 5442 overhead = sbi->s_overhead; 5443 5444 buf->f_type = EXT4_SUPER_MAGIC; 5445 buf->f_bsize = sb->s_blocksize; 5446 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 5447 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 5448 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 5449 /* prevent underflow in case that few free space is available */ 5450 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 5451 buf->f_bavail = buf->f_bfree - 5452 (ext4_r_blocks_count(es) + resv_blocks); 5453 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 5454 buf->f_bavail = 0; 5455 buf->f_files = le32_to_cpu(es->s_inodes_count); 5456 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 5457 buf->f_namelen = EXT4_NAME_LEN; 5458 fsid = le64_to_cpup((void *)es->s_uuid) ^ 5459 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 5460 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 5461 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 5462 5463 #ifdef CONFIG_QUOTA 5464 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) && 5465 sb_has_quota_limits_enabled(sb, PRJQUOTA)) 5466 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf); 5467 #endif 5468 return 0; 5469 } 5470 5471 5472 #ifdef CONFIG_QUOTA 5473 5474 /* 5475 * Helper functions so that transaction is started before we acquire dqio_sem 5476 * to keep correct lock ordering of transaction > dqio_sem 5477 */ 5478 static inline struct inode *dquot_to_inode(struct dquot *dquot) 5479 { 5480 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 5481 } 5482 5483 static int ext4_write_dquot(struct dquot *dquot) 5484 { 5485 int ret, err; 5486 handle_t *handle; 5487 struct inode *inode; 5488 5489 inode = dquot_to_inode(dquot); 5490 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5491 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 5492 if (IS_ERR(handle)) 5493 return PTR_ERR(handle); 5494 ret = dquot_commit(dquot); 5495 err = ext4_journal_stop(handle); 5496 if (!ret) 5497 ret = err; 5498 return ret; 5499 } 5500 5501 static int ext4_acquire_dquot(struct dquot *dquot) 5502 { 5503 int ret, err; 5504 handle_t *handle; 5505 5506 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5507 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 5508 if (IS_ERR(handle)) 5509 return PTR_ERR(handle); 5510 ret = dquot_acquire(dquot); 5511 err = ext4_journal_stop(handle); 5512 if (!ret) 5513 ret = err; 5514 return ret; 5515 } 5516 5517 static int ext4_release_dquot(struct dquot *dquot) 5518 { 5519 int ret, err; 5520 handle_t *handle; 5521 5522 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 5523 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 5524 if (IS_ERR(handle)) { 5525 /* Release dquot anyway to avoid endless cycle in dqput() */ 5526 dquot_release(dquot); 5527 return PTR_ERR(handle); 5528 } 5529 ret = dquot_release(dquot); 5530 err = ext4_journal_stop(handle); 5531 if (!ret) 5532 ret = err; 5533 return ret; 5534 } 5535 5536 static int ext4_mark_dquot_dirty(struct dquot *dquot) 5537 { 5538 struct super_block *sb = dquot->dq_sb; 5539 struct ext4_sb_info *sbi = EXT4_SB(sb); 5540 5541 /* Are we journaling quotas? */ 5542 if (ext4_has_feature_quota(sb) || 5543 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 5544 dquot_mark_dquot_dirty(dquot); 5545 return ext4_write_dquot(dquot); 5546 } else { 5547 return dquot_mark_dquot_dirty(dquot); 5548 } 5549 } 5550 5551 static int ext4_write_info(struct super_block *sb, int type) 5552 { 5553 int ret, err; 5554 handle_t *handle; 5555 5556 /* Data block + inode block */ 5557 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 5558 if (IS_ERR(handle)) 5559 return PTR_ERR(handle); 5560 ret = dquot_commit_info(sb, type); 5561 err = ext4_journal_stop(handle); 5562 if (!ret) 5563 ret = err; 5564 return ret; 5565 } 5566 5567 /* 5568 * Turn on quotas during mount time - we need to find 5569 * the quota file and such... 5570 */ 5571 static int ext4_quota_on_mount(struct super_block *sb, int type) 5572 { 5573 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type), 5574 EXT4_SB(sb)->s_jquota_fmt, type); 5575 } 5576 5577 static void lockdep_set_quota_inode(struct inode *inode, int subclass) 5578 { 5579 struct ext4_inode_info *ei = EXT4_I(inode); 5580 5581 /* The first argument of lockdep_set_subclass has to be 5582 * *exactly* the same as the argument to init_rwsem() --- in 5583 * this case, in init_once() --- or lockdep gets unhappy 5584 * because the name of the lock is set using the 5585 * stringification of the argument to init_rwsem(). 5586 */ 5587 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */ 5588 lockdep_set_subclass(&ei->i_data_sem, subclass); 5589 } 5590 5591 /* 5592 * Standard function to be called on quota_on 5593 */ 5594 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 5595 const struct path *path) 5596 { 5597 int err; 5598 5599 if (!test_opt(sb, QUOTA)) 5600 return -EINVAL; 5601 5602 /* Quotafile not on the same filesystem? */ 5603 if (path->dentry->d_sb != sb) 5604 return -EXDEV; 5605 /* Journaling quota? */ 5606 if (EXT4_SB(sb)->s_qf_names[type]) { 5607 /* Quotafile not in fs root? */ 5608 if (path->dentry->d_parent != sb->s_root) 5609 ext4_msg(sb, KERN_WARNING, 5610 "Quota file not on filesystem root. " 5611 "Journaled quota will not work"); 5612 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY; 5613 } else { 5614 /* 5615 * Clear the flag just in case mount options changed since 5616 * last time. 5617 */ 5618 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY; 5619 } 5620 5621 /* 5622 * When we journal data on quota file, we have to flush journal to see 5623 * all updates to the file when we bypass pagecache... 5624 */ 5625 if (EXT4_SB(sb)->s_journal && 5626 ext4_should_journal_data(d_inode(path->dentry))) { 5627 /* 5628 * We don't need to lock updates but journal_flush() could 5629 * otherwise be livelocked... 5630 */ 5631 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 5632 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 5633 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 5634 if (err) 5635 return err; 5636 } 5637 5638 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA); 5639 err = dquot_quota_on(sb, type, format_id, path); 5640 if (err) { 5641 lockdep_set_quota_inode(path->dentry->d_inode, 5642 I_DATA_SEM_NORMAL); 5643 } else { 5644 struct inode *inode = d_inode(path->dentry); 5645 handle_t *handle; 5646 5647 /* 5648 * Set inode flags to prevent userspace from messing with quota 5649 * files. If this fails, we return success anyway since quotas 5650 * are already enabled and this is not a hard failure. 5651 */ 5652 inode_lock(inode); 5653 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5654 if (IS_ERR(handle)) 5655 goto unlock_inode; 5656 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL; 5657 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 5658 S_NOATIME | S_IMMUTABLE); 5659 ext4_mark_inode_dirty(handle, inode); 5660 ext4_journal_stop(handle); 5661 unlock_inode: 5662 inode_unlock(inode); 5663 } 5664 return err; 5665 } 5666 5667 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 5668 unsigned int flags) 5669 { 5670 int err; 5671 struct inode *qf_inode; 5672 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5673 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5674 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5675 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5676 }; 5677 5678 BUG_ON(!ext4_has_feature_quota(sb)); 5679 5680 if (!qf_inums[type]) 5681 return -EPERM; 5682 5683 qf_inode = ext4_iget(sb, qf_inums[type]); 5684 if (IS_ERR(qf_inode)) { 5685 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 5686 return PTR_ERR(qf_inode); 5687 } 5688 5689 /* Don't account quota for quota files to avoid recursion */ 5690 qf_inode->i_flags |= S_NOQUOTA; 5691 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA); 5692 err = dquot_enable(qf_inode, type, format_id, flags); 5693 iput(qf_inode); 5694 if (err) 5695 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL); 5696 5697 return err; 5698 } 5699 5700 /* Enable usage tracking for all quota types. */ 5701 static int ext4_enable_quotas(struct super_block *sb) 5702 { 5703 int type, err = 0; 5704 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5705 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5706 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum), 5707 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum) 5708 }; 5709 bool quota_mopt[EXT4_MAXQUOTAS] = { 5710 test_opt(sb, USRQUOTA), 5711 test_opt(sb, GRPQUOTA), 5712 test_opt(sb, PRJQUOTA), 5713 }; 5714 5715 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 5716 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5717 if (qf_inums[type]) { 5718 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5719 DQUOT_USAGE_ENABLED | 5720 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 5721 if (err) { 5722 ext4_warning(sb, 5723 "Failed to enable quota tracking " 5724 "(type=%d, err=%d). Please run " 5725 "e2fsck to fix.", type, err); 5726 for (type--; type >= 0; type--) 5727 dquot_quota_off(sb, type); 5728 5729 return err; 5730 } 5731 } 5732 } 5733 return 0; 5734 } 5735 5736 static int ext4_quota_off(struct super_block *sb, int type) 5737 { 5738 struct inode *inode = sb_dqopt(sb)->files[type]; 5739 handle_t *handle; 5740 int err; 5741 5742 /* Force all delayed allocation blocks to be allocated. 5743 * Caller already holds s_umount sem */ 5744 if (test_opt(sb, DELALLOC)) 5745 sync_filesystem(sb); 5746 5747 if (!inode || !igrab(inode)) 5748 goto out; 5749 5750 err = dquot_quota_off(sb, type); 5751 if (err || ext4_has_feature_quota(sb)) 5752 goto out_put; 5753 5754 inode_lock(inode); 5755 /* 5756 * Update modification times of quota files when userspace can 5757 * start looking at them. If we fail, we return success anyway since 5758 * this is not a hard failure and quotas are already disabled. 5759 */ 5760 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5761 if (IS_ERR(handle)) 5762 goto out_unlock; 5763 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL); 5764 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 5765 inode->i_mtime = inode->i_ctime = current_time(inode); 5766 ext4_mark_inode_dirty(handle, inode); 5767 ext4_journal_stop(handle); 5768 out_unlock: 5769 inode_unlock(inode); 5770 out_put: 5771 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL); 5772 iput(inode); 5773 return err; 5774 out: 5775 return dquot_quota_off(sb, type); 5776 } 5777 5778 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5779 * acquiring the locks... As quota files are never truncated and quota code 5780 * itself serializes the operations (and no one else should touch the files) 5781 * we don't have to be afraid of races */ 5782 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5783 size_t len, loff_t off) 5784 { 5785 struct inode *inode = sb_dqopt(sb)->files[type]; 5786 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5787 int offset = off & (sb->s_blocksize - 1); 5788 int tocopy; 5789 size_t toread; 5790 struct buffer_head *bh; 5791 loff_t i_size = i_size_read(inode); 5792 5793 if (off > i_size) 5794 return 0; 5795 if (off+len > i_size) 5796 len = i_size-off; 5797 toread = len; 5798 while (toread > 0) { 5799 tocopy = sb->s_blocksize - offset < toread ? 5800 sb->s_blocksize - offset : toread; 5801 bh = ext4_bread(NULL, inode, blk, 0); 5802 if (IS_ERR(bh)) 5803 return PTR_ERR(bh); 5804 if (!bh) /* A hole? */ 5805 memset(data, 0, tocopy); 5806 else 5807 memcpy(data, bh->b_data+offset, tocopy); 5808 brelse(bh); 5809 offset = 0; 5810 toread -= tocopy; 5811 data += tocopy; 5812 blk++; 5813 } 5814 return len; 5815 } 5816 5817 /* Write to quotafile (we know the transaction is already started and has 5818 * enough credits) */ 5819 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5820 const char *data, size_t len, loff_t off) 5821 { 5822 struct inode *inode = sb_dqopt(sb)->files[type]; 5823 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5824 int err, offset = off & (sb->s_blocksize - 1); 5825 int retries = 0; 5826 struct buffer_head *bh; 5827 handle_t *handle = journal_current_handle(); 5828 5829 if (EXT4_SB(sb)->s_journal && !handle) { 5830 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5831 " cancelled because transaction is not started", 5832 (unsigned long long)off, (unsigned long long)len); 5833 return -EIO; 5834 } 5835 /* 5836 * Since we account only one data block in transaction credits, 5837 * then it is impossible to cross a block boundary. 5838 */ 5839 if (sb->s_blocksize - offset < len) { 5840 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5841 " cancelled because not block aligned", 5842 (unsigned long long)off, (unsigned long long)len); 5843 return -EIO; 5844 } 5845 5846 do { 5847 bh = ext4_bread(handle, inode, blk, 5848 EXT4_GET_BLOCKS_CREATE | 5849 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5850 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5851 ext4_should_retry_alloc(inode->i_sb, &retries)); 5852 if (IS_ERR(bh)) 5853 return PTR_ERR(bh); 5854 if (!bh) 5855 goto out; 5856 BUFFER_TRACE(bh, "get write access"); 5857 err = ext4_journal_get_write_access(handle, bh); 5858 if (err) { 5859 brelse(bh); 5860 return err; 5861 } 5862 lock_buffer(bh); 5863 memcpy(bh->b_data+offset, data, len); 5864 flush_dcache_page(bh->b_page); 5865 unlock_buffer(bh); 5866 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5867 brelse(bh); 5868 out: 5869 if (inode->i_size < off + len) { 5870 i_size_write(inode, off + len); 5871 EXT4_I(inode)->i_disksize = inode->i_size; 5872 ext4_mark_inode_dirty(handle, inode); 5873 } 5874 return len; 5875 } 5876 5877 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid) 5878 { 5879 const struct quota_format_ops *ops; 5880 5881 if (!sb_has_quota_loaded(sb, qid->type)) 5882 return -ESRCH; 5883 ops = sb_dqopt(sb)->ops[qid->type]; 5884 if (!ops || !ops->get_next_id) 5885 return -ENOSYS; 5886 return dquot_get_next_id(sb, qid); 5887 } 5888 #endif 5889 5890 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5891 const char *dev_name, void *data) 5892 { 5893 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5894 } 5895 5896 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5897 static inline void register_as_ext2(void) 5898 { 5899 int err = register_filesystem(&ext2_fs_type); 5900 if (err) 5901 printk(KERN_WARNING 5902 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5903 } 5904 5905 static inline void unregister_as_ext2(void) 5906 { 5907 unregister_filesystem(&ext2_fs_type); 5908 } 5909 5910 static inline int ext2_feature_set_ok(struct super_block *sb) 5911 { 5912 if (ext4_has_unknown_ext2_incompat_features(sb)) 5913 return 0; 5914 if (sb_rdonly(sb)) 5915 return 1; 5916 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5917 return 0; 5918 return 1; 5919 } 5920 #else 5921 static inline void register_as_ext2(void) { } 5922 static inline void unregister_as_ext2(void) { } 5923 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5924 #endif 5925 5926 static inline void register_as_ext3(void) 5927 { 5928 int err = register_filesystem(&ext3_fs_type); 5929 if (err) 5930 printk(KERN_WARNING 5931 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5932 } 5933 5934 static inline void unregister_as_ext3(void) 5935 { 5936 unregister_filesystem(&ext3_fs_type); 5937 } 5938 5939 static inline int ext3_feature_set_ok(struct super_block *sb) 5940 { 5941 if (ext4_has_unknown_ext3_incompat_features(sb)) 5942 return 0; 5943 if (!ext4_has_feature_journal(sb)) 5944 return 0; 5945 if (sb_rdonly(sb)) 5946 return 1; 5947 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5948 return 0; 5949 return 1; 5950 } 5951 5952 static struct file_system_type ext4_fs_type = { 5953 .owner = THIS_MODULE, 5954 .name = "ext4", 5955 .mount = ext4_mount, 5956 .kill_sb = kill_block_super, 5957 .fs_flags = FS_REQUIRES_DEV, 5958 }; 5959 MODULE_ALIAS_FS("ext4"); 5960 5961 /* Shared across all ext4 file systems */ 5962 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5963 5964 static int __init ext4_init_fs(void) 5965 { 5966 int i, err; 5967 5968 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5969 ext4_li_info = NULL; 5970 mutex_init(&ext4_li_mtx); 5971 5972 /* Build-time check for flags consistency */ 5973 ext4_check_flag_values(); 5974 5975 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) 5976 init_waitqueue_head(&ext4__ioend_wq[i]); 5977 5978 err = ext4_init_es(); 5979 if (err) 5980 return err; 5981 5982 err = ext4_init_pending(); 5983 if (err) 5984 goto out6; 5985 5986 err = ext4_init_pageio(); 5987 if (err) 5988 goto out5; 5989 5990 err = ext4_init_system_zone(); 5991 if (err) 5992 goto out4; 5993 5994 err = ext4_init_sysfs(); 5995 if (err) 5996 goto out3; 5997 5998 err = ext4_init_mballoc(); 5999 if (err) 6000 goto out2; 6001 err = init_inodecache(); 6002 if (err) 6003 goto out1; 6004 register_as_ext3(); 6005 register_as_ext2(); 6006 err = register_filesystem(&ext4_fs_type); 6007 if (err) 6008 goto out; 6009 6010 return 0; 6011 out: 6012 unregister_as_ext2(); 6013 unregister_as_ext3(); 6014 destroy_inodecache(); 6015 out1: 6016 ext4_exit_mballoc(); 6017 out2: 6018 ext4_exit_sysfs(); 6019 out3: 6020 ext4_exit_system_zone(); 6021 out4: 6022 ext4_exit_pageio(); 6023 out5: 6024 ext4_exit_pending(); 6025 out6: 6026 ext4_exit_es(); 6027 6028 return err; 6029 } 6030 6031 static void __exit ext4_exit_fs(void) 6032 { 6033 ext4_destroy_lazyinit_thread(); 6034 unregister_as_ext2(); 6035 unregister_as_ext3(); 6036 unregister_filesystem(&ext4_fs_type); 6037 destroy_inodecache(); 6038 ext4_exit_mballoc(); 6039 ext4_exit_sysfs(); 6040 ext4_exit_system_zone(); 6041 ext4_exit_pageio(); 6042 ext4_exit_es(); 6043 ext4_exit_pending(); 6044 } 6045 6046 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 6047 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 6048 MODULE_LICENSE("GPL"); 6049 MODULE_SOFTDEP("pre: crc32c"); 6050 module_init(ext4_init_fs) 6051 module_exit(ext4_exit_fs) 6052