1 /* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19 #include <linux/module.h> 20 #include <linux/string.h> 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/parser.h> 29 #include <linux/buffer_head.h> 30 #include <linux/exportfs.h> 31 #include <linux/vfs.h> 32 #include <linux/random.h> 33 #include <linux/mount.h> 34 #include <linux/namei.h> 35 #include <linux/quotaops.h> 36 #include <linux/seq_file.h> 37 #include <linux/ctype.h> 38 #include <linux/log2.h> 39 #include <linux/crc16.h> 40 #include <linux/cleancache.h> 41 #include <asm/uaccess.h> 42 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 46 #include "ext4.h" 47 #include "ext4_extents.h" /* Needed for trace points definition */ 48 #include "ext4_jbd2.h" 49 #include "xattr.h" 50 #include "acl.h" 51 #include "mballoc.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/ext4.h> 55 56 static struct ext4_lazy_init *ext4_li_info; 57 static struct mutex ext4_li_mtx; 58 static int ext4_mballoc_ready; 59 static struct ratelimit_state ext4_mount_msg_ratelimit; 60 61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 62 unsigned long journal_devnum); 63 static int ext4_show_options(struct seq_file *seq, struct dentry *root); 64 static int ext4_commit_super(struct super_block *sb, int sync); 65 static void ext4_mark_recovery_complete(struct super_block *sb, 66 struct ext4_super_block *es); 67 static void ext4_clear_journal_err(struct super_block *sb, 68 struct ext4_super_block *es); 69 static int ext4_sync_fs(struct super_block *sb, int wait); 70 static int ext4_remount(struct super_block *sb, int *flags, char *data); 71 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 72 static int ext4_unfreeze(struct super_block *sb); 73 static int ext4_freeze(struct super_block *sb); 74 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 75 const char *dev_name, void *data); 76 static inline int ext2_feature_set_ok(struct super_block *sb); 77 static inline int ext3_feature_set_ok(struct super_block *sb); 78 static int ext4_feature_set_ok(struct super_block *sb, int readonly); 79 static void ext4_destroy_lazyinit_thread(void); 80 static void ext4_unregister_li_request(struct super_block *sb); 81 static void ext4_clear_request_list(void); 82 83 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 84 static struct file_system_type ext2_fs_type = { 85 .owner = THIS_MODULE, 86 .name = "ext2", 87 .mount = ext4_mount, 88 .kill_sb = kill_block_super, 89 .fs_flags = FS_REQUIRES_DEV, 90 }; 91 MODULE_ALIAS_FS("ext2"); 92 MODULE_ALIAS("ext2"); 93 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 94 #else 95 #define IS_EXT2_SB(sb) (0) 96 #endif 97 98 99 static struct file_system_type ext3_fs_type = { 100 .owner = THIS_MODULE, 101 .name = "ext3", 102 .mount = ext4_mount, 103 .kill_sb = kill_block_super, 104 .fs_flags = FS_REQUIRES_DEV, 105 }; 106 MODULE_ALIAS_FS("ext3"); 107 MODULE_ALIAS("ext3"); 108 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 109 110 static int ext4_verify_csum_type(struct super_block *sb, 111 struct ext4_super_block *es) 112 { 113 if (!ext4_has_feature_metadata_csum(sb)) 114 return 1; 115 116 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 117 } 118 119 static __le32 ext4_superblock_csum(struct super_block *sb, 120 struct ext4_super_block *es) 121 { 122 struct ext4_sb_info *sbi = EXT4_SB(sb); 123 int offset = offsetof(struct ext4_super_block, s_checksum); 124 __u32 csum; 125 126 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 127 128 return cpu_to_le32(csum); 129 } 130 131 static int ext4_superblock_csum_verify(struct super_block *sb, 132 struct ext4_super_block *es) 133 { 134 if (!ext4_has_metadata_csum(sb)) 135 return 1; 136 137 return es->s_checksum == ext4_superblock_csum(sb, es); 138 } 139 140 void ext4_superblock_csum_set(struct super_block *sb) 141 { 142 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 143 144 if (!ext4_has_metadata_csum(sb)) 145 return; 146 147 es->s_checksum = ext4_superblock_csum(sb, es); 148 } 149 150 void *ext4_kvmalloc(size_t size, gfp_t flags) 151 { 152 void *ret; 153 154 ret = kmalloc(size, flags | __GFP_NOWARN); 155 if (!ret) 156 ret = __vmalloc(size, flags, PAGE_KERNEL); 157 return ret; 158 } 159 160 void *ext4_kvzalloc(size_t size, gfp_t flags) 161 { 162 void *ret; 163 164 ret = kzalloc(size, flags | __GFP_NOWARN); 165 if (!ret) 166 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 167 return ret; 168 } 169 170 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 171 struct ext4_group_desc *bg) 172 { 173 return le32_to_cpu(bg->bg_block_bitmap_lo) | 174 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 175 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 176 } 177 178 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 179 struct ext4_group_desc *bg) 180 { 181 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 183 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 184 } 185 186 ext4_fsblk_t ext4_inode_table(struct super_block *sb, 187 struct ext4_group_desc *bg) 188 { 189 return le32_to_cpu(bg->bg_inode_table_lo) | 190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 192 } 193 194 __u32 ext4_free_group_clusters(struct super_block *sb, 195 struct ext4_group_desc *bg) 196 { 197 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 199 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 200 } 201 202 __u32 ext4_free_inodes_count(struct super_block *sb, 203 struct ext4_group_desc *bg) 204 { 205 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 208 } 209 210 __u32 ext4_used_dirs_count(struct super_block *sb, 211 struct ext4_group_desc *bg) 212 { 213 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 216 } 217 218 __u32 ext4_itable_unused_count(struct super_block *sb, 219 struct ext4_group_desc *bg) 220 { 221 return le16_to_cpu(bg->bg_itable_unused_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 224 } 225 226 void ext4_block_bitmap_set(struct super_block *sb, 227 struct ext4_group_desc *bg, ext4_fsblk_t blk) 228 { 229 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 230 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 231 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 232 } 233 234 void ext4_inode_bitmap_set(struct super_block *sb, 235 struct ext4_group_desc *bg, ext4_fsblk_t blk) 236 { 237 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 239 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 240 } 241 242 void ext4_inode_table_set(struct super_block *sb, 243 struct ext4_group_desc *bg, ext4_fsblk_t blk) 244 { 245 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 247 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 248 } 249 250 void ext4_free_group_clusters_set(struct super_block *sb, 251 struct ext4_group_desc *bg, __u32 count) 252 { 253 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 255 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 256 } 257 258 void ext4_free_inodes_set(struct super_block *sb, 259 struct ext4_group_desc *bg, __u32 count) 260 { 261 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 264 } 265 266 void ext4_used_dirs_set(struct super_block *sb, 267 struct ext4_group_desc *bg, __u32 count) 268 { 269 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 272 } 273 274 void ext4_itable_unused_set(struct super_block *sb, 275 struct ext4_group_desc *bg, __u32 count) 276 { 277 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 280 } 281 282 283 static void __save_error_info(struct super_block *sb, const char *func, 284 unsigned int line) 285 { 286 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 287 288 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 289 if (bdev_read_only(sb->s_bdev)) 290 return; 291 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 292 es->s_last_error_time = cpu_to_le32(get_seconds()); 293 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 294 es->s_last_error_line = cpu_to_le32(line); 295 if (!es->s_first_error_time) { 296 es->s_first_error_time = es->s_last_error_time; 297 strncpy(es->s_first_error_func, func, 298 sizeof(es->s_first_error_func)); 299 es->s_first_error_line = cpu_to_le32(line); 300 es->s_first_error_ino = es->s_last_error_ino; 301 es->s_first_error_block = es->s_last_error_block; 302 } 303 /* 304 * Start the daily error reporting function if it hasn't been 305 * started already 306 */ 307 if (!es->s_error_count) 308 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 309 le32_add_cpu(&es->s_error_count, 1); 310 } 311 312 static void save_error_info(struct super_block *sb, const char *func, 313 unsigned int line) 314 { 315 __save_error_info(sb, func, line); 316 ext4_commit_super(sb, 1); 317 } 318 319 /* 320 * The del_gendisk() function uninitializes the disk-specific data 321 * structures, including the bdi structure, without telling anyone 322 * else. Once this happens, any attempt to call mark_buffer_dirty() 323 * (for example, by ext4_commit_super), will cause a kernel OOPS. 324 * This is a kludge to prevent these oops until we can put in a proper 325 * hook in del_gendisk() to inform the VFS and file system layers. 326 */ 327 static int block_device_ejected(struct super_block *sb) 328 { 329 struct inode *bd_inode = sb->s_bdev->bd_inode; 330 struct backing_dev_info *bdi = inode_to_bdi(bd_inode); 331 332 return bdi->dev == NULL; 333 } 334 335 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 336 { 337 struct super_block *sb = journal->j_private; 338 struct ext4_sb_info *sbi = EXT4_SB(sb); 339 int error = is_journal_aborted(journal); 340 struct ext4_journal_cb_entry *jce; 341 342 BUG_ON(txn->t_state == T_FINISHED); 343 spin_lock(&sbi->s_md_lock); 344 while (!list_empty(&txn->t_private_list)) { 345 jce = list_entry(txn->t_private_list.next, 346 struct ext4_journal_cb_entry, jce_list); 347 list_del_init(&jce->jce_list); 348 spin_unlock(&sbi->s_md_lock); 349 jce->jce_func(sb, jce, error); 350 spin_lock(&sbi->s_md_lock); 351 } 352 spin_unlock(&sbi->s_md_lock); 353 } 354 355 /* Deal with the reporting of failure conditions on a filesystem such as 356 * inconsistencies detected or read IO failures. 357 * 358 * On ext2, we can store the error state of the filesystem in the 359 * superblock. That is not possible on ext4, because we may have other 360 * write ordering constraints on the superblock which prevent us from 361 * writing it out straight away; and given that the journal is about to 362 * be aborted, we can't rely on the current, or future, transactions to 363 * write out the superblock safely. 364 * 365 * We'll just use the jbd2_journal_abort() error code to record an error in 366 * the journal instead. On recovery, the journal will complain about 367 * that error until we've noted it down and cleared it. 368 */ 369 370 static void ext4_handle_error(struct super_block *sb) 371 { 372 if (sb->s_flags & MS_RDONLY) 373 return; 374 375 if (!test_opt(sb, ERRORS_CONT)) { 376 journal_t *journal = EXT4_SB(sb)->s_journal; 377 378 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 379 if (journal) 380 jbd2_journal_abort(journal, -EIO); 381 } 382 if (test_opt(sb, ERRORS_RO)) { 383 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 384 /* 385 * Make sure updated value of ->s_mount_flags will be visible 386 * before ->s_flags update 387 */ 388 smp_wmb(); 389 sb->s_flags |= MS_RDONLY; 390 } 391 if (test_opt(sb, ERRORS_PANIC)) { 392 if (EXT4_SB(sb)->s_journal && 393 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 394 return; 395 panic("EXT4-fs (device %s): panic forced after error\n", 396 sb->s_id); 397 } 398 } 399 400 #define ext4_error_ratelimit(sb) \ 401 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \ 402 "EXT4-fs error") 403 404 void __ext4_error(struct super_block *sb, const char *function, 405 unsigned int line, const char *fmt, ...) 406 { 407 struct va_format vaf; 408 va_list args; 409 410 if (ext4_error_ratelimit(sb)) { 411 va_start(args, fmt); 412 vaf.fmt = fmt; 413 vaf.va = &args; 414 printk(KERN_CRIT 415 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 416 sb->s_id, function, line, current->comm, &vaf); 417 va_end(args); 418 } 419 save_error_info(sb, function, line); 420 ext4_handle_error(sb); 421 } 422 423 void __ext4_error_inode(struct inode *inode, const char *function, 424 unsigned int line, ext4_fsblk_t block, 425 const char *fmt, ...) 426 { 427 va_list args; 428 struct va_format vaf; 429 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 430 431 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 432 es->s_last_error_block = cpu_to_le64(block); 433 if (ext4_error_ratelimit(inode->i_sb)) { 434 va_start(args, fmt); 435 vaf.fmt = fmt; 436 vaf.va = &args; 437 if (block) 438 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 439 "inode #%lu: block %llu: comm %s: %pV\n", 440 inode->i_sb->s_id, function, line, inode->i_ino, 441 block, current->comm, &vaf); 442 else 443 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 444 "inode #%lu: comm %s: %pV\n", 445 inode->i_sb->s_id, function, line, inode->i_ino, 446 current->comm, &vaf); 447 va_end(args); 448 } 449 save_error_info(inode->i_sb, function, line); 450 ext4_handle_error(inode->i_sb); 451 } 452 453 void __ext4_error_file(struct file *file, const char *function, 454 unsigned int line, ext4_fsblk_t block, 455 const char *fmt, ...) 456 { 457 va_list args; 458 struct va_format vaf; 459 struct ext4_super_block *es; 460 struct inode *inode = file_inode(file); 461 char pathname[80], *path; 462 463 es = EXT4_SB(inode->i_sb)->s_es; 464 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 465 if (ext4_error_ratelimit(inode->i_sb)) { 466 path = file_path(file, pathname, sizeof(pathname)); 467 if (IS_ERR(path)) 468 path = "(unknown)"; 469 va_start(args, fmt); 470 vaf.fmt = fmt; 471 vaf.va = &args; 472 if (block) 473 printk(KERN_CRIT 474 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 475 "block %llu: comm %s: path %s: %pV\n", 476 inode->i_sb->s_id, function, line, inode->i_ino, 477 block, current->comm, path, &vaf); 478 else 479 printk(KERN_CRIT 480 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 481 "comm %s: path %s: %pV\n", 482 inode->i_sb->s_id, function, line, inode->i_ino, 483 current->comm, path, &vaf); 484 va_end(args); 485 } 486 save_error_info(inode->i_sb, function, line); 487 ext4_handle_error(inode->i_sb); 488 } 489 490 const char *ext4_decode_error(struct super_block *sb, int errno, 491 char nbuf[16]) 492 { 493 char *errstr = NULL; 494 495 switch (errno) { 496 case -EFSCORRUPTED: 497 errstr = "Corrupt filesystem"; 498 break; 499 case -EFSBADCRC: 500 errstr = "Filesystem failed CRC"; 501 break; 502 case -EIO: 503 errstr = "IO failure"; 504 break; 505 case -ENOMEM: 506 errstr = "Out of memory"; 507 break; 508 case -EROFS: 509 if (!sb || (EXT4_SB(sb)->s_journal && 510 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 511 errstr = "Journal has aborted"; 512 else 513 errstr = "Readonly filesystem"; 514 break; 515 default: 516 /* If the caller passed in an extra buffer for unknown 517 * errors, textualise them now. Else we just return 518 * NULL. */ 519 if (nbuf) { 520 /* Check for truncated error codes... */ 521 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 522 errstr = nbuf; 523 } 524 break; 525 } 526 527 return errstr; 528 } 529 530 /* __ext4_std_error decodes expected errors from journaling functions 531 * automatically and invokes the appropriate error response. */ 532 533 void __ext4_std_error(struct super_block *sb, const char *function, 534 unsigned int line, int errno) 535 { 536 char nbuf[16]; 537 const char *errstr; 538 539 /* Special case: if the error is EROFS, and we're not already 540 * inside a transaction, then there's really no point in logging 541 * an error. */ 542 if (errno == -EROFS && journal_current_handle() == NULL && 543 (sb->s_flags & MS_RDONLY)) 544 return; 545 546 if (ext4_error_ratelimit(sb)) { 547 errstr = ext4_decode_error(sb, errno, nbuf); 548 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 549 sb->s_id, function, line, errstr); 550 } 551 552 save_error_info(sb, function, line); 553 ext4_handle_error(sb); 554 } 555 556 /* 557 * ext4_abort is a much stronger failure handler than ext4_error. The 558 * abort function may be used to deal with unrecoverable failures such 559 * as journal IO errors or ENOMEM at a critical moment in log management. 560 * 561 * We unconditionally force the filesystem into an ABORT|READONLY state, 562 * unless the error response on the fs has been set to panic in which 563 * case we take the easy way out and panic immediately. 564 */ 565 566 void __ext4_abort(struct super_block *sb, const char *function, 567 unsigned int line, const char *fmt, ...) 568 { 569 va_list args; 570 571 save_error_info(sb, function, line); 572 va_start(args, fmt); 573 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 574 function, line); 575 vprintk(fmt, args); 576 printk("\n"); 577 va_end(args); 578 579 if ((sb->s_flags & MS_RDONLY) == 0) { 580 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 581 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 582 /* 583 * Make sure updated value of ->s_mount_flags will be visible 584 * before ->s_flags update 585 */ 586 smp_wmb(); 587 sb->s_flags |= MS_RDONLY; 588 if (EXT4_SB(sb)->s_journal) 589 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 590 save_error_info(sb, function, line); 591 } 592 if (test_opt(sb, ERRORS_PANIC)) { 593 if (EXT4_SB(sb)->s_journal && 594 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR)) 595 return; 596 panic("EXT4-fs panic from previous error\n"); 597 } 598 } 599 600 void __ext4_msg(struct super_block *sb, 601 const char *prefix, const char *fmt, ...) 602 { 603 struct va_format vaf; 604 va_list args; 605 606 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs")) 607 return; 608 609 va_start(args, fmt); 610 vaf.fmt = fmt; 611 vaf.va = &args; 612 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 613 va_end(args); 614 } 615 616 #define ext4_warning_ratelimit(sb) \ 617 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \ 618 "EXT4-fs warning") 619 620 void __ext4_warning(struct super_block *sb, const char *function, 621 unsigned int line, const char *fmt, ...) 622 { 623 struct va_format vaf; 624 va_list args; 625 626 if (!ext4_warning_ratelimit(sb)) 627 return; 628 629 va_start(args, fmt); 630 vaf.fmt = fmt; 631 vaf.va = &args; 632 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 633 sb->s_id, function, line, &vaf); 634 va_end(args); 635 } 636 637 void __ext4_warning_inode(const struct inode *inode, const char *function, 638 unsigned int line, const char *fmt, ...) 639 { 640 struct va_format vaf; 641 va_list args; 642 643 if (!ext4_warning_ratelimit(inode->i_sb)) 644 return; 645 646 va_start(args, fmt); 647 vaf.fmt = fmt; 648 vaf.va = &args; 649 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: " 650 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id, 651 function, line, inode->i_ino, current->comm, &vaf); 652 va_end(args); 653 } 654 655 void __ext4_grp_locked_error(const char *function, unsigned int line, 656 struct super_block *sb, ext4_group_t grp, 657 unsigned long ino, ext4_fsblk_t block, 658 const char *fmt, ...) 659 __releases(bitlock) 660 __acquires(bitlock) 661 { 662 struct va_format vaf; 663 va_list args; 664 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 665 666 es->s_last_error_ino = cpu_to_le32(ino); 667 es->s_last_error_block = cpu_to_le64(block); 668 __save_error_info(sb, function, line); 669 670 if (ext4_error_ratelimit(sb)) { 671 va_start(args, fmt); 672 vaf.fmt = fmt; 673 vaf.va = &args; 674 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 675 sb->s_id, function, line, grp); 676 if (ino) 677 printk(KERN_CONT "inode %lu: ", ino); 678 if (block) 679 printk(KERN_CONT "block %llu:", 680 (unsigned long long) block); 681 printk(KERN_CONT "%pV\n", &vaf); 682 va_end(args); 683 } 684 685 if (test_opt(sb, ERRORS_CONT)) { 686 ext4_commit_super(sb, 0); 687 return; 688 } 689 690 ext4_unlock_group(sb, grp); 691 ext4_handle_error(sb); 692 /* 693 * We only get here in the ERRORS_RO case; relocking the group 694 * may be dangerous, but nothing bad will happen since the 695 * filesystem will have already been marked read/only and the 696 * journal has been aborted. We return 1 as a hint to callers 697 * who might what to use the return value from 698 * ext4_grp_locked_error() to distinguish between the 699 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 700 * aggressively from the ext4 function in question, with a 701 * more appropriate error code. 702 */ 703 ext4_lock_group(sb, grp); 704 return; 705 } 706 707 void ext4_update_dynamic_rev(struct super_block *sb) 708 { 709 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 710 711 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 712 return; 713 714 ext4_warning(sb, 715 "updating to rev %d because of new feature flag, " 716 "running e2fsck is recommended", 717 EXT4_DYNAMIC_REV); 718 719 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 720 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 721 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 722 /* leave es->s_feature_*compat flags alone */ 723 /* es->s_uuid will be set by e2fsck if empty */ 724 725 /* 726 * The rest of the superblock fields should be zero, and if not it 727 * means they are likely already in use, so leave them alone. We 728 * can leave it up to e2fsck to clean up any inconsistencies there. 729 */ 730 } 731 732 /* 733 * Open the external journal device 734 */ 735 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 736 { 737 struct block_device *bdev; 738 char b[BDEVNAME_SIZE]; 739 740 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 741 if (IS_ERR(bdev)) 742 goto fail; 743 return bdev; 744 745 fail: 746 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 747 __bdevname(dev, b), PTR_ERR(bdev)); 748 return NULL; 749 } 750 751 /* 752 * Release the journal device 753 */ 754 static void ext4_blkdev_put(struct block_device *bdev) 755 { 756 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 757 } 758 759 static void ext4_blkdev_remove(struct ext4_sb_info *sbi) 760 { 761 struct block_device *bdev; 762 bdev = sbi->journal_bdev; 763 if (bdev) { 764 ext4_blkdev_put(bdev); 765 sbi->journal_bdev = NULL; 766 } 767 } 768 769 static inline struct inode *orphan_list_entry(struct list_head *l) 770 { 771 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 772 } 773 774 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 775 { 776 struct list_head *l; 777 778 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 779 le32_to_cpu(sbi->s_es->s_last_orphan)); 780 781 printk(KERN_ERR "sb_info orphan list:\n"); 782 list_for_each(l, &sbi->s_orphan) { 783 struct inode *inode = orphan_list_entry(l); 784 printk(KERN_ERR " " 785 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 786 inode->i_sb->s_id, inode->i_ino, inode, 787 inode->i_mode, inode->i_nlink, 788 NEXT_ORPHAN(inode)); 789 } 790 } 791 792 static void ext4_put_super(struct super_block *sb) 793 { 794 struct ext4_sb_info *sbi = EXT4_SB(sb); 795 struct ext4_super_block *es = sbi->s_es; 796 int i, err; 797 798 ext4_unregister_li_request(sb); 799 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 800 801 flush_workqueue(sbi->rsv_conversion_wq); 802 destroy_workqueue(sbi->rsv_conversion_wq); 803 804 if (sbi->s_journal) { 805 err = jbd2_journal_destroy(sbi->s_journal); 806 sbi->s_journal = NULL; 807 if (err < 0) 808 ext4_abort(sb, "Couldn't clean up the journal"); 809 } 810 811 ext4_unregister_sysfs(sb); 812 ext4_es_unregister_shrinker(sbi); 813 del_timer_sync(&sbi->s_err_report); 814 ext4_release_system_zone(sb); 815 ext4_mb_release(sb); 816 ext4_ext_release(sb); 817 ext4_xattr_put_super(sb); 818 819 if (!(sb->s_flags & MS_RDONLY)) { 820 ext4_clear_feature_journal_needs_recovery(sb); 821 es->s_state = cpu_to_le16(sbi->s_mount_state); 822 } 823 if (!(sb->s_flags & MS_RDONLY)) 824 ext4_commit_super(sb, 1); 825 826 for (i = 0; i < sbi->s_gdb_count; i++) 827 brelse(sbi->s_group_desc[i]); 828 kvfree(sbi->s_group_desc); 829 kvfree(sbi->s_flex_groups); 830 percpu_counter_destroy(&sbi->s_freeclusters_counter); 831 percpu_counter_destroy(&sbi->s_freeinodes_counter); 832 percpu_counter_destroy(&sbi->s_dirs_counter); 833 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 834 brelse(sbi->s_sbh); 835 #ifdef CONFIG_QUOTA 836 for (i = 0; i < EXT4_MAXQUOTAS; i++) 837 kfree(sbi->s_qf_names[i]); 838 #endif 839 840 /* Debugging code just in case the in-memory inode orphan list 841 * isn't empty. The on-disk one can be non-empty if we've 842 * detected an error and taken the fs readonly, but the 843 * in-memory list had better be clean by this point. */ 844 if (!list_empty(&sbi->s_orphan)) 845 dump_orphan_list(sb, sbi); 846 J_ASSERT(list_empty(&sbi->s_orphan)); 847 848 sync_blockdev(sb->s_bdev); 849 invalidate_bdev(sb->s_bdev); 850 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 851 /* 852 * Invalidate the journal device's buffers. We don't want them 853 * floating about in memory - the physical journal device may 854 * hotswapped, and it breaks the `ro-after' testing code. 855 */ 856 sync_blockdev(sbi->journal_bdev); 857 invalidate_bdev(sbi->journal_bdev); 858 ext4_blkdev_remove(sbi); 859 } 860 if (sbi->s_mb_cache) { 861 ext4_xattr_destroy_cache(sbi->s_mb_cache); 862 sbi->s_mb_cache = NULL; 863 } 864 if (sbi->s_mmp_tsk) 865 kthread_stop(sbi->s_mmp_tsk); 866 sb->s_fs_info = NULL; 867 /* 868 * Now that we are completely done shutting down the 869 * superblock, we need to actually destroy the kobject. 870 */ 871 kobject_put(&sbi->s_kobj); 872 wait_for_completion(&sbi->s_kobj_unregister); 873 if (sbi->s_chksum_driver) 874 crypto_free_shash(sbi->s_chksum_driver); 875 kfree(sbi->s_blockgroup_lock); 876 kfree(sbi); 877 } 878 879 static struct kmem_cache *ext4_inode_cachep; 880 881 /* 882 * Called inside transaction, so use GFP_NOFS 883 */ 884 static struct inode *ext4_alloc_inode(struct super_block *sb) 885 { 886 struct ext4_inode_info *ei; 887 888 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 889 if (!ei) 890 return NULL; 891 892 ei->vfs_inode.i_version = 1; 893 spin_lock_init(&ei->i_raw_lock); 894 INIT_LIST_HEAD(&ei->i_prealloc_list); 895 spin_lock_init(&ei->i_prealloc_lock); 896 ext4_es_init_tree(&ei->i_es_tree); 897 rwlock_init(&ei->i_es_lock); 898 INIT_LIST_HEAD(&ei->i_es_list); 899 ei->i_es_all_nr = 0; 900 ei->i_es_shk_nr = 0; 901 ei->i_es_shrink_lblk = 0; 902 ei->i_reserved_data_blocks = 0; 903 ei->i_reserved_meta_blocks = 0; 904 ei->i_allocated_meta_blocks = 0; 905 ei->i_da_metadata_calc_len = 0; 906 ei->i_da_metadata_calc_last_lblock = 0; 907 spin_lock_init(&(ei->i_block_reservation_lock)); 908 #ifdef CONFIG_QUOTA 909 ei->i_reserved_quota = 0; 910 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot)); 911 #endif 912 ei->jinode = NULL; 913 INIT_LIST_HEAD(&ei->i_rsv_conversion_list); 914 spin_lock_init(&ei->i_completed_io_lock); 915 ei->i_sync_tid = 0; 916 ei->i_datasync_tid = 0; 917 atomic_set(&ei->i_ioend_count, 0); 918 atomic_set(&ei->i_unwritten, 0); 919 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work); 920 #ifdef CONFIG_EXT4_FS_ENCRYPTION 921 ei->i_crypt_info = NULL; 922 #endif 923 return &ei->vfs_inode; 924 } 925 926 static int ext4_drop_inode(struct inode *inode) 927 { 928 int drop = generic_drop_inode(inode); 929 930 trace_ext4_drop_inode(inode, drop); 931 return drop; 932 } 933 934 static void ext4_i_callback(struct rcu_head *head) 935 { 936 struct inode *inode = container_of(head, struct inode, i_rcu); 937 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 938 } 939 940 static void ext4_destroy_inode(struct inode *inode) 941 { 942 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 943 ext4_msg(inode->i_sb, KERN_ERR, 944 "Inode %lu (%p): orphan list check failed!", 945 inode->i_ino, EXT4_I(inode)); 946 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 947 EXT4_I(inode), sizeof(struct ext4_inode_info), 948 true); 949 dump_stack(); 950 } 951 call_rcu(&inode->i_rcu, ext4_i_callback); 952 } 953 954 static void init_once(void *foo) 955 { 956 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 957 958 INIT_LIST_HEAD(&ei->i_orphan); 959 init_rwsem(&ei->xattr_sem); 960 init_rwsem(&ei->i_data_sem); 961 inode_init_once(&ei->vfs_inode); 962 } 963 964 static int __init init_inodecache(void) 965 { 966 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 967 sizeof(struct ext4_inode_info), 968 0, (SLAB_RECLAIM_ACCOUNT| 969 SLAB_MEM_SPREAD), 970 init_once); 971 if (ext4_inode_cachep == NULL) 972 return -ENOMEM; 973 return 0; 974 } 975 976 static void destroy_inodecache(void) 977 { 978 /* 979 * Make sure all delayed rcu free inodes are flushed before we 980 * destroy cache. 981 */ 982 rcu_barrier(); 983 kmem_cache_destroy(ext4_inode_cachep); 984 } 985 986 void ext4_clear_inode(struct inode *inode) 987 { 988 invalidate_inode_buffers(inode); 989 clear_inode(inode); 990 dquot_drop(inode); 991 ext4_discard_preallocations(inode); 992 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 993 if (EXT4_I(inode)->jinode) { 994 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 995 EXT4_I(inode)->jinode); 996 jbd2_free_inode(EXT4_I(inode)->jinode); 997 EXT4_I(inode)->jinode = NULL; 998 } 999 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1000 if (EXT4_I(inode)->i_crypt_info) 1001 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info); 1002 #endif 1003 } 1004 1005 static struct inode *ext4_nfs_get_inode(struct super_block *sb, 1006 u64 ino, u32 generation) 1007 { 1008 struct inode *inode; 1009 1010 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 1011 return ERR_PTR(-ESTALE); 1012 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 1013 return ERR_PTR(-ESTALE); 1014 1015 /* iget isn't really right if the inode is currently unallocated!! 1016 * 1017 * ext4_read_inode will return a bad_inode if the inode had been 1018 * deleted, so we should be safe. 1019 * 1020 * Currently we don't know the generation for parent directory, so 1021 * a generation of 0 means "accept any" 1022 */ 1023 inode = ext4_iget_normal(sb, ino); 1024 if (IS_ERR(inode)) 1025 return ERR_CAST(inode); 1026 if (generation && inode->i_generation != generation) { 1027 iput(inode); 1028 return ERR_PTR(-ESTALE); 1029 } 1030 1031 return inode; 1032 } 1033 1034 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 1035 int fh_len, int fh_type) 1036 { 1037 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1038 ext4_nfs_get_inode); 1039 } 1040 1041 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 1042 int fh_len, int fh_type) 1043 { 1044 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1045 ext4_nfs_get_inode); 1046 } 1047 1048 /* 1049 * Try to release metadata pages (indirect blocks, directories) which are 1050 * mapped via the block device. Since these pages could have journal heads 1051 * which would prevent try_to_free_buffers() from freeing them, we must use 1052 * jbd2 layer's try_to_free_buffers() function to release them. 1053 */ 1054 static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 1055 gfp_t wait) 1056 { 1057 journal_t *journal = EXT4_SB(sb)->s_journal; 1058 1059 WARN_ON(PageChecked(page)); 1060 if (!page_has_buffers(page)) 1061 return 0; 1062 if (journal) 1063 return jbd2_journal_try_to_free_buffers(journal, page, 1064 wait & ~__GFP_DIRECT_RECLAIM); 1065 return try_to_free_buffers(page); 1066 } 1067 1068 #ifdef CONFIG_QUOTA 1069 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1070 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1071 1072 static int ext4_write_dquot(struct dquot *dquot); 1073 static int ext4_acquire_dquot(struct dquot *dquot); 1074 static int ext4_release_dquot(struct dquot *dquot); 1075 static int ext4_mark_dquot_dirty(struct dquot *dquot); 1076 static int ext4_write_info(struct super_block *sb, int type); 1077 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1078 struct path *path); 1079 static int ext4_quota_off(struct super_block *sb, int type); 1080 static int ext4_quota_on_mount(struct super_block *sb, int type); 1081 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1082 size_t len, loff_t off); 1083 static ssize_t ext4_quota_write(struct super_block *sb, int type, 1084 const char *data, size_t len, loff_t off); 1085 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1086 unsigned int flags); 1087 static int ext4_enable_quotas(struct super_block *sb); 1088 1089 static struct dquot **ext4_get_dquots(struct inode *inode) 1090 { 1091 return EXT4_I(inode)->i_dquot; 1092 } 1093 1094 static const struct dquot_operations ext4_quota_operations = { 1095 .get_reserved_space = ext4_get_reserved_space, 1096 .write_dquot = ext4_write_dquot, 1097 .acquire_dquot = ext4_acquire_dquot, 1098 .release_dquot = ext4_release_dquot, 1099 .mark_dirty = ext4_mark_dquot_dirty, 1100 .write_info = ext4_write_info, 1101 .alloc_dquot = dquot_alloc, 1102 .destroy_dquot = dquot_destroy, 1103 }; 1104 1105 static const struct quotactl_ops ext4_qctl_operations = { 1106 .quota_on = ext4_quota_on, 1107 .quota_off = ext4_quota_off, 1108 .quota_sync = dquot_quota_sync, 1109 .get_state = dquot_get_state, 1110 .set_info = dquot_set_dqinfo, 1111 .get_dqblk = dquot_get_dqblk, 1112 .set_dqblk = dquot_set_dqblk 1113 }; 1114 #endif 1115 1116 static const struct super_operations ext4_sops = { 1117 .alloc_inode = ext4_alloc_inode, 1118 .destroy_inode = ext4_destroy_inode, 1119 .write_inode = ext4_write_inode, 1120 .dirty_inode = ext4_dirty_inode, 1121 .drop_inode = ext4_drop_inode, 1122 .evict_inode = ext4_evict_inode, 1123 .put_super = ext4_put_super, 1124 .sync_fs = ext4_sync_fs, 1125 .freeze_fs = ext4_freeze, 1126 .unfreeze_fs = ext4_unfreeze, 1127 .statfs = ext4_statfs, 1128 .remount_fs = ext4_remount, 1129 .show_options = ext4_show_options, 1130 #ifdef CONFIG_QUOTA 1131 .quota_read = ext4_quota_read, 1132 .quota_write = ext4_quota_write, 1133 .get_dquots = ext4_get_dquots, 1134 #endif 1135 .bdev_try_to_free_page = bdev_try_to_free_page, 1136 }; 1137 1138 static const struct export_operations ext4_export_ops = { 1139 .fh_to_dentry = ext4_fh_to_dentry, 1140 .fh_to_parent = ext4_fh_to_parent, 1141 .get_parent = ext4_get_parent, 1142 }; 1143 1144 enum { 1145 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1146 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1147 Opt_nouid32, Opt_debug, Opt_removed, 1148 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1149 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1150 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev, 1151 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit, 1152 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1153 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption, 1154 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1155 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1156 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1157 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax, 1158 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1159 Opt_lazytime, Opt_nolazytime, 1160 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1161 Opt_inode_readahead_blks, Opt_journal_ioprio, 1162 Opt_dioread_nolock, Opt_dioread_lock, 1163 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1164 Opt_max_dir_size_kb, Opt_nojournal_checksum, 1165 }; 1166 1167 static const match_table_t tokens = { 1168 {Opt_bsd_df, "bsddf"}, 1169 {Opt_minix_df, "minixdf"}, 1170 {Opt_grpid, "grpid"}, 1171 {Opt_grpid, "bsdgroups"}, 1172 {Opt_nogrpid, "nogrpid"}, 1173 {Opt_nogrpid, "sysvgroups"}, 1174 {Opt_resgid, "resgid=%u"}, 1175 {Opt_resuid, "resuid=%u"}, 1176 {Opt_sb, "sb=%u"}, 1177 {Opt_err_cont, "errors=continue"}, 1178 {Opt_err_panic, "errors=panic"}, 1179 {Opt_err_ro, "errors=remount-ro"}, 1180 {Opt_nouid32, "nouid32"}, 1181 {Opt_debug, "debug"}, 1182 {Opt_removed, "oldalloc"}, 1183 {Opt_removed, "orlov"}, 1184 {Opt_user_xattr, "user_xattr"}, 1185 {Opt_nouser_xattr, "nouser_xattr"}, 1186 {Opt_acl, "acl"}, 1187 {Opt_noacl, "noacl"}, 1188 {Opt_noload, "norecovery"}, 1189 {Opt_noload, "noload"}, 1190 {Opt_removed, "nobh"}, 1191 {Opt_removed, "bh"}, 1192 {Opt_commit, "commit=%u"}, 1193 {Opt_min_batch_time, "min_batch_time=%u"}, 1194 {Opt_max_batch_time, "max_batch_time=%u"}, 1195 {Opt_journal_dev, "journal_dev=%u"}, 1196 {Opt_journal_path, "journal_path=%s"}, 1197 {Opt_journal_checksum, "journal_checksum"}, 1198 {Opt_nojournal_checksum, "nojournal_checksum"}, 1199 {Opt_journal_async_commit, "journal_async_commit"}, 1200 {Opt_abort, "abort"}, 1201 {Opt_data_journal, "data=journal"}, 1202 {Opt_data_ordered, "data=ordered"}, 1203 {Opt_data_writeback, "data=writeback"}, 1204 {Opt_data_err_abort, "data_err=abort"}, 1205 {Opt_data_err_ignore, "data_err=ignore"}, 1206 {Opt_offusrjquota, "usrjquota="}, 1207 {Opt_usrjquota, "usrjquota=%s"}, 1208 {Opt_offgrpjquota, "grpjquota="}, 1209 {Opt_grpjquota, "grpjquota=%s"}, 1210 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1211 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1212 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1213 {Opt_grpquota, "grpquota"}, 1214 {Opt_noquota, "noquota"}, 1215 {Opt_quota, "quota"}, 1216 {Opt_usrquota, "usrquota"}, 1217 {Opt_barrier, "barrier=%u"}, 1218 {Opt_barrier, "barrier"}, 1219 {Opt_nobarrier, "nobarrier"}, 1220 {Opt_i_version, "i_version"}, 1221 {Opt_dax, "dax"}, 1222 {Opt_stripe, "stripe=%u"}, 1223 {Opt_delalloc, "delalloc"}, 1224 {Opt_lazytime, "lazytime"}, 1225 {Opt_nolazytime, "nolazytime"}, 1226 {Opt_nodelalloc, "nodelalloc"}, 1227 {Opt_removed, "mblk_io_submit"}, 1228 {Opt_removed, "nomblk_io_submit"}, 1229 {Opt_block_validity, "block_validity"}, 1230 {Opt_noblock_validity, "noblock_validity"}, 1231 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1232 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1233 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1234 {Opt_auto_da_alloc, "auto_da_alloc"}, 1235 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1236 {Opt_dioread_nolock, "dioread_nolock"}, 1237 {Opt_dioread_lock, "dioread_lock"}, 1238 {Opt_discard, "discard"}, 1239 {Opt_nodiscard, "nodiscard"}, 1240 {Opt_init_itable, "init_itable=%u"}, 1241 {Opt_init_itable, "init_itable"}, 1242 {Opt_noinit_itable, "noinit_itable"}, 1243 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1244 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 1245 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1246 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1247 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1248 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1249 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1250 {Opt_err, NULL}, 1251 }; 1252 1253 static ext4_fsblk_t get_sb_block(void **data) 1254 { 1255 ext4_fsblk_t sb_block; 1256 char *options = (char *) *data; 1257 1258 if (!options || strncmp(options, "sb=", 3) != 0) 1259 return 1; /* Default location */ 1260 1261 options += 3; 1262 /* TODO: use simple_strtoll with >32bit ext4 */ 1263 sb_block = simple_strtoul(options, &options, 0); 1264 if (*options && *options != ',') { 1265 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1266 (char *) *data); 1267 return 1; 1268 } 1269 if (*options == ',') 1270 options++; 1271 *data = (void *) options; 1272 1273 return sb_block; 1274 } 1275 1276 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1277 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1278 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1279 1280 #ifdef CONFIG_QUOTA 1281 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1282 { 1283 struct ext4_sb_info *sbi = EXT4_SB(sb); 1284 char *qname; 1285 int ret = -1; 1286 1287 if (sb_any_quota_loaded(sb) && 1288 !sbi->s_qf_names[qtype]) { 1289 ext4_msg(sb, KERN_ERR, 1290 "Cannot change journaled " 1291 "quota options when quota turned on"); 1292 return -1; 1293 } 1294 if (ext4_has_feature_quota(sb)) { 1295 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1296 "when QUOTA feature is enabled"); 1297 return -1; 1298 } 1299 qname = match_strdup(args); 1300 if (!qname) { 1301 ext4_msg(sb, KERN_ERR, 1302 "Not enough memory for storing quotafile name"); 1303 return -1; 1304 } 1305 if (sbi->s_qf_names[qtype]) { 1306 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1307 ret = 1; 1308 else 1309 ext4_msg(sb, KERN_ERR, 1310 "%s quota file already specified", 1311 QTYPE2NAME(qtype)); 1312 goto errout; 1313 } 1314 if (strchr(qname, '/')) { 1315 ext4_msg(sb, KERN_ERR, 1316 "quotafile must be on filesystem root"); 1317 goto errout; 1318 } 1319 sbi->s_qf_names[qtype] = qname; 1320 set_opt(sb, QUOTA); 1321 return 1; 1322 errout: 1323 kfree(qname); 1324 return ret; 1325 } 1326 1327 static int clear_qf_name(struct super_block *sb, int qtype) 1328 { 1329 1330 struct ext4_sb_info *sbi = EXT4_SB(sb); 1331 1332 if (sb_any_quota_loaded(sb) && 1333 sbi->s_qf_names[qtype]) { 1334 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1335 " when quota turned on"); 1336 return -1; 1337 } 1338 kfree(sbi->s_qf_names[qtype]); 1339 sbi->s_qf_names[qtype] = NULL; 1340 return 1; 1341 } 1342 #endif 1343 1344 #define MOPT_SET 0x0001 1345 #define MOPT_CLEAR 0x0002 1346 #define MOPT_NOSUPPORT 0x0004 1347 #define MOPT_EXPLICIT 0x0008 1348 #define MOPT_CLEAR_ERR 0x0010 1349 #define MOPT_GTE0 0x0020 1350 #ifdef CONFIG_QUOTA 1351 #define MOPT_Q 0 1352 #define MOPT_QFMT 0x0040 1353 #else 1354 #define MOPT_Q MOPT_NOSUPPORT 1355 #define MOPT_QFMT MOPT_NOSUPPORT 1356 #endif 1357 #define MOPT_DATAJ 0x0080 1358 #define MOPT_NO_EXT2 0x0100 1359 #define MOPT_NO_EXT3 0x0200 1360 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1361 #define MOPT_STRING 0x0400 1362 1363 static const struct mount_opts { 1364 int token; 1365 int mount_opt; 1366 int flags; 1367 } ext4_mount_opts[] = { 1368 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1369 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1370 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1371 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1372 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1373 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1374 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1375 MOPT_EXT4_ONLY | MOPT_SET}, 1376 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1377 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1378 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1379 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1380 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1381 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1382 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1383 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1384 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1385 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1386 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1387 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1388 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1389 EXT4_MOUNT_JOURNAL_CHECKSUM), 1390 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1391 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1392 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1393 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1394 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1395 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1396 MOPT_NO_EXT2 | MOPT_SET}, 1397 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1398 MOPT_NO_EXT2 | MOPT_CLEAR}, 1399 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1400 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1401 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1402 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1403 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1404 {Opt_commit, 0, MOPT_GTE0}, 1405 {Opt_max_batch_time, 0, MOPT_GTE0}, 1406 {Opt_min_batch_time, 0, MOPT_GTE0}, 1407 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1408 {Opt_init_itable, 0, MOPT_GTE0}, 1409 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET}, 1410 {Opt_stripe, 0, MOPT_GTE0}, 1411 {Opt_resuid, 0, MOPT_GTE0}, 1412 {Opt_resgid, 0, MOPT_GTE0}, 1413 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1414 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING}, 1415 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0}, 1416 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1417 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1418 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1419 MOPT_NO_EXT2 | MOPT_DATAJ}, 1420 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1421 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1422 #ifdef CONFIG_EXT4_FS_POSIX_ACL 1423 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1424 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1425 #else 1426 {Opt_acl, 0, MOPT_NOSUPPORT}, 1427 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1428 #endif 1429 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1430 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1431 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1432 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1433 MOPT_SET | MOPT_Q}, 1434 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1435 MOPT_SET | MOPT_Q}, 1436 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1437 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1438 {Opt_usrjquota, 0, MOPT_Q}, 1439 {Opt_grpjquota, 0, MOPT_Q}, 1440 {Opt_offusrjquota, 0, MOPT_Q}, 1441 {Opt_offgrpjquota, 0, MOPT_Q}, 1442 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1443 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1444 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1445 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1446 {Opt_test_dummy_encryption, 0, MOPT_GTE0}, 1447 {Opt_err, 0, 0} 1448 }; 1449 1450 static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1451 substring_t *args, unsigned long *journal_devnum, 1452 unsigned int *journal_ioprio, int is_remount) 1453 { 1454 struct ext4_sb_info *sbi = EXT4_SB(sb); 1455 const struct mount_opts *m; 1456 kuid_t uid; 1457 kgid_t gid; 1458 int arg = 0; 1459 1460 #ifdef CONFIG_QUOTA 1461 if (token == Opt_usrjquota) 1462 return set_qf_name(sb, USRQUOTA, &args[0]); 1463 else if (token == Opt_grpjquota) 1464 return set_qf_name(sb, GRPQUOTA, &args[0]); 1465 else if (token == Opt_offusrjquota) 1466 return clear_qf_name(sb, USRQUOTA); 1467 else if (token == Opt_offgrpjquota) 1468 return clear_qf_name(sb, GRPQUOTA); 1469 #endif 1470 switch (token) { 1471 case Opt_noacl: 1472 case Opt_nouser_xattr: 1473 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1474 break; 1475 case Opt_sb: 1476 return 1; /* handled by get_sb_block() */ 1477 case Opt_removed: 1478 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1479 return 1; 1480 case Opt_abort: 1481 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1482 return 1; 1483 case Opt_i_version: 1484 sb->s_flags |= MS_I_VERSION; 1485 return 1; 1486 case Opt_lazytime: 1487 sb->s_flags |= MS_LAZYTIME; 1488 return 1; 1489 case Opt_nolazytime: 1490 sb->s_flags &= ~MS_LAZYTIME; 1491 return 1; 1492 } 1493 1494 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1495 if (token == m->token) 1496 break; 1497 1498 if (m->token == Opt_err) { 1499 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1500 "or missing value", opt); 1501 return -1; 1502 } 1503 1504 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1505 ext4_msg(sb, KERN_ERR, 1506 "Mount option \"%s\" incompatible with ext2", opt); 1507 return -1; 1508 } 1509 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1510 ext4_msg(sb, KERN_ERR, 1511 "Mount option \"%s\" incompatible with ext3", opt); 1512 return -1; 1513 } 1514 1515 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg)) 1516 return -1; 1517 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1518 return -1; 1519 if (m->flags & MOPT_EXPLICIT) { 1520 if (m->mount_opt & EXT4_MOUNT_DELALLOC) { 1521 set_opt2(sb, EXPLICIT_DELALLOC); 1522 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) { 1523 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM); 1524 } else 1525 return -1; 1526 } 1527 if (m->flags & MOPT_CLEAR_ERR) 1528 clear_opt(sb, ERRORS_MASK); 1529 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1530 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1531 "options when quota turned on"); 1532 return -1; 1533 } 1534 1535 if (m->flags & MOPT_NOSUPPORT) { 1536 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1537 } else if (token == Opt_commit) { 1538 if (arg == 0) 1539 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1540 sbi->s_commit_interval = HZ * arg; 1541 } else if (token == Opt_max_batch_time) { 1542 sbi->s_max_batch_time = arg; 1543 } else if (token == Opt_min_batch_time) { 1544 sbi->s_min_batch_time = arg; 1545 } else if (token == Opt_inode_readahead_blks) { 1546 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1547 ext4_msg(sb, KERN_ERR, 1548 "EXT4-fs: inode_readahead_blks must be " 1549 "0 or a power of 2 smaller than 2^31"); 1550 return -1; 1551 } 1552 sbi->s_inode_readahead_blks = arg; 1553 } else if (token == Opt_init_itable) { 1554 set_opt(sb, INIT_INODE_TABLE); 1555 if (!args->from) 1556 arg = EXT4_DEF_LI_WAIT_MULT; 1557 sbi->s_li_wait_mult = arg; 1558 } else if (token == Opt_max_dir_size_kb) { 1559 sbi->s_max_dir_size_kb = arg; 1560 } else if (token == Opt_stripe) { 1561 sbi->s_stripe = arg; 1562 } else if (token == Opt_resuid) { 1563 uid = make_kuid(current_user_ns(), arg); 1564 if (!uid_valid(uid)) { 1565 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1566 return -1; 1567 } 1568 sbi->s_resuid = uid; 1569 } else if (token == Opt_resgid) { 1570 gid = make_kgid(current_user_ns(), arg); 1571 if (!gid_valid(gid)) { 1572 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1573 return -1; 1574 } 1575 sbi->s_resgid = gid; 1576 } else if (token == Opt_journal_dev) { 1577 if (is_remount) { 1578 ext4_msg(sb, KERN_ERR, 1579 "Cannot specify journal on remount"); 1580 return -1; 1581 } 1582 *journal_devnum = arg; 1583 } else if (token == Opt_journal_path) { 1584 char *journal_path; 1585 struct inode *journal_inode; 1586 struct path path; 1587 int error; 1588 1589 if (is_remount) { 1590 ext4_msg(sb, KERN_ERR, 1591 "Cannot specify journal on remount"); 1592 return -1; 1593 } 1594 journal_path = match_strdup(&args[0]); 1595 if (!journal_path) { 1596 ext4_msg(sb, KERN_ERR, "error: could not dup " 1597 "journal device string"); 1598 return -1; 1599 } 1600 1601 error = kern_path(journal_path, LOOKUP_FOLLOW, &path); 1602 if (error) { 1603 ext4_msg(sb, KERN_ERR, "error: could not find " 1604 "journal device path: error %d", error); 1605 kfree(journal_path); 1606 return -1; 1607 } 1608 1609 journal_inode = d_inode(path.dentry); 1610 if (!S_ISBLK(journal_inode->i_mode)) { 1611 ext4_msg(sb, KERN_ERR, "error: journal path %s " 1612 "is not a block device", journal_path); 1613 path_put(&path); 1614 kfree(journal_path); 1615 return -1; 1616 } 1617 1618 *journal_devnum = new_encode_dev(journal_inode->i_rdev); 1619 path_put(&path); 1620 kfree(journal_path); 1621 } else if (token == Opt_journal_ioprio) { 1622 if (arg > 7) { 1623 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1624 " (must be 0-7)"); 1625 return -1; 1626 } 1627 *journal_ioprio = 1628 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1629 } else if (token == Opt_test_dummy_encryption) { 1630 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1631 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION; 1632 ext4_msg(sb, KERN_WARNING, 1633 "Test dummy encryption mode enabled"); 1634 #else 1635 ext4_msg(sb, KERN_WARNING, 1636 "Test dummy encryption mount option ignored"); 1637 #endif 1638 } else if (m->flags & MOPT_DATAJ) { 1639 if (is_remount) { 1640 if (!sbi->s_journal) 1641 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1642 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1643 ext4_msg(sb, KERN_ERR, 1644 "Cannot change data mode on remount"); 1645 return -1; 1646 } 1647 } else { 1648 clear_opt(sb, DATA_FLAGS); 1649 sbi->s_mount_opt |= m->mount_opt; 1650 } 1651 #ifdef CONFIG_QUOTA 1652 } else if (m->flags & MOPT_QFMT) { 1653 if (sb_any_quota_loaded(sb) && 1654 sbi->s_jquota_fmt != m->mount_opt) { 1655 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1656 "quota options when quota turned on"); 1657 return -1; 1658 } 1659 if (ext4_has_feature_quota(sb)) { 1660 ext4_msg(sb, KERN_ERR, 1661 "Cannot set journaled quota options " 1662 "when QUOTA feature is enabled"); 1663 return -1; 1664 } 1665 sbi->s_jquota_fmt = m->mount_opt; 1666 #endif 1667 #ifndef CONFIG_FS_DAX 1668 } else if (token == Opt_dax) { 1669 ext4_msg(sb, KERN_INFO, "dax option not supported"); 1670 return -1; 1671 #endif 1672 } else { 1673 if (!args->from) 1674 arg = 1; 1675 if (m->flags & MOPT_CLEAR) 1676 arg = !arg; 1677 else if (unlikely(!(m->flags & MOPT_SET))) { 1678 ext4_msg(sb, KERN_WARNING, 1679 "buggy handling of option %s", opt); 1680 WARN_ON(1); 1681 return -1; 1682 } 1683 if (arg != 0) 1684 sbi->s_mount_opt |= m->mount_opt; 1685 else 1686 sbi->s_mount_opt &= ~m->mount_opt; 1687 } 1688 return 1; 1689 } 1690 1691 static int parse_options(char *options, struct super_block *sb, 1692 unsigned long *journal_devnum, 1693 unsigned int *journal_ioprio, 1694 int is_remount) 1695 { 1696 struct ext4_sb_info *sbi = EXT4_SB(sb); 1697 char *p; 1698 substring_t args[MAX_OPT_ARGS]; 1699 int token; 1700 1701 if (!options) 1702 return 1; 1703 1704 while ((p = strsep(&options, ",")) != NULL) { 1705 if (!*p) 1706 continue; 1707 /* 1708 * Initialize args struct so we know whether arg was 1709 * found; some options take optional arguments. 1710 */ 1711 args[0].to = args[0].from = NULL; 1712 token = match_token(p, tokens, args); 1713 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1714 journal_ioprio, is_remount) < 0) 1715 return 0; 1716 } 1717 #ifdef CONFIG_QUOTA 1718 if (ext4_has_feature_quota(sb) && 1719 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1720 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1721 "feature is enabled"); 1722 return 0; 1723 } 1724 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1725 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1726 clear_opt(sb, USRQUOTA); 1727 1728 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1729 clear_opt(sb, GRPQUOTA); 1730 1731 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1732 ext4_msg(sb, KERN_ERR, "old and new quota " 1733 "format mixing"); 1734 return 0; 1735 } 1736 1737 if (!sbi->s_jquota_fmt) { 1738 ext4_msg(sb, KERN_ERR, "journaled quota format " 1739 "not specified"); 1740 return 0; 1741 } 1742 } 1743 #endif 1744 if (test_opt(sb, DIOREAD_NOLOCK)) { 1745 int blocksize = 1746 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1747 1748 if (blocksize < PAGE_CACHE_SIZE) { 1749 ext4_msg(sb, KERN_ERR, "can't mount with " 1750 "dioread_nolock if block size != PAGE_SIZE"); 1751 return 0; 1752 } 1753 } 1754 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA && 1755 test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 1756 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit " 1757 "in data=ordered mode"); 1758 return 0; 1759 } 1760 return 1; 1761 } 1762 1763 static inline void ext4_show_quota_options(struct seq_file *seq, 1764 struct super_block *sb) 1765 { 1766 #if defined(CONFIG_QUOTA) 1767 struct ext4_sb_info *sbi = EXT4_SB(sb); 1768 1769 if (sbi->s_jquota_fmt) { 1770 char *fmtname = ""; 1771 1772 switch (sbi->s_jquota_fmt) { 1773 case QFMT_VFS_OLD: 1774 fmtname = "vfsold"; 1775 break; 1776 case QFMT_VFS_V0: 1777 fmtname = "vfsv0"; 1778 break; 1779 case QFMT_VFS_V1: 1780 fmtname = "vfsv1"; 1781 break; 1782 } 1783 seq_printf(seq, ",jqfmt=%s", fmtname); 1784 } 1785 1786 if (sbi->s_qf_names[USRQUOTA]) 1787 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]); 1788 1789 if (sbi->s_qf_names[GRPQUOTA]) 1790 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]); 1791 #endif 1792 } 1793 1794 static const char *token2str(int token) 1795 { 1796 const struct match_token *t; 1797 1798 for (t = tokens; t->token != Opt_err; t++) 1799 if (t->token == token && !strchr(t->pattern, '=')) 1800 break; 1801 return t->pattern; 1802 } 1803 1804 /* 1805 * Show an option if 1806 * - it's set to a non-default value OR 1807 * - if the per-sb default is different from the global default 1808 */ 1809 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1810 int nodefs) 1811 { 1812 struct ext4_sb_info *sbi = EXT4_SB(sb); 1813 struct ext4_super_block *es = sbi->s_es; 1814 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1815 const struct mount_opts *m; 1816 char sep = nodefs ? '\n' : ','; 1817 1818 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1819 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1820 1821 if (sbi->s_sb_block != 1) 1822 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1823 1824 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1825 int want_set = m->flags & MOPT_SET; 1826 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1827 (m->flags & MOPT_CLEAR_ERR)) 1828 continue; 1829 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1830 continue; /* skip if same as the default */ 1831 if ((want_set && 1832 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1833 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1834 continue; /* select Opt_noFoo vs Opt_Foo */ 1835 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1836 } 1837 1838 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1839 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1840 SEQ_OPTS_PRINT("resuid=%u", 1841 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1842 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1843 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1844 SEQ_OPTS_PRINT("resgid=%u", 1845 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1846 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1847 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1848 SEQ_OPTS_PUTS("errors=remount-ro"); 1849 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1850 SEQ_OPTS_PUTS("errors=continue"); 1851 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1852 SEQ_OPTS_PUTS("errors=panic"); 1853 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1854 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1855 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1856 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1857 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1858 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1859 if (sb->s_flags & MS_I_VERSION) 1860 SEQ_OPTS_PUTS("i_version"); 1861 if (nodefs || sbi->s_stripe) 1862 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1863 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1864 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1865 SEQ_OPTS_PUTS("data=journal"); 1866 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1867 SEQ_OPTS_PUTS("data=ordered"); 1868 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1869 SEQ_OPTS_PUTS("data=writeback"); 1870 } 1871 if (nodefs || 1872 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1873 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1874 sbi->s_inode_readahead_blks); 1875 1876 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1877 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1878 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1879 if (nodefs || sbi->s_max_dir_size_kb) 1880 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1881 1882 ext4_show_quota_options(seq, sb); 1883 return 0; 1884 } 1885 1886 static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1887 { 1888 return _ext4_show_options(seq, root->d_sb, 0); 1889 } 1890 1891 int ext4_seq_options_show(struct seq_file *seq, void *offset) 1892 { 1893 struct super_block *sb = seq->private; 1894 int rc; 1895 1896 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1897 rc = _ext4_show_options(seq, sb, 1); 1898 seq_puts(seq, "\n"); 1899 return rc; 1900 } 1901 1902 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1903 int read_only) 1904 { 1905 struct ext4_sb_info *sbi = EXT4_SB(sb); 1906 int res = 0; 1907 1908 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1909 ext4_msg(sb, KERN_ERR, "revision level too high, " 1910 "forcing read-only mode"); 1911 res = MS_RDONLY; 1912 } 1913 if (read_only) 1914 goto done; 1915 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1916 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1917 "running e2fsck is recommended"); 1918 else if (sbi->s_mount_state & EXT4_ERROR_FS) 1919 ext4_msg(sb, KERN_WARNING, 1920 "warning: mounting fs with errors, " 1921 "running e2fsck is recommended"); 1922 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1923 le16_to_cpu(es->s_mnt_count) >= 1924 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1925 ext4_msg(sb, KERN_WARNING, 1926 "warning: maximal mount count reached, " 1927 "running e2fsck is recommended"); 1928 else if (le32_to_cpu(es->s_checkinterval) && 1929 (le32_to_cpu(es->s_lastcheck) + 1930 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1931 ext4_msg(sb, KERN_WARNING, 1932 "warning: checktime reached, " 1933 "running e2fsck is recommended"); 1934 if (!sbi->s_journal) 1935 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1936 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1937 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1938 le16_add_cpu(&es->s_mnt_count, 1); 1939 es->s_mtime = cpu_to_le32(get_seconds()); 1940 ext4_update_dynamic_rev(sb); 1941 if (sbi->s_journal) 1942 ext4_set_feature_journal_needs_recovery(sb); 1943 1944 ext4_commit_super(sb, 1); 1945 done: 1946 if (test_opt(sb, DEBUG)) 1947 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1948 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1949 sb->s_blocksize, 1950 sbi->s_groups_count, 1951 EXT4_BLOCKS_PER_GROUP(sb), 1952 EXT4_INODES_PER_GROUP(sb), 1953 sbi->s_mount_opt, sbi->s_mount_opt2); 1954 1955 cleancache_init_fs(sb); 1956 return res; 1957 } 1958 1959 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1960 { 1961 struct ext4_sb_info *sbi = EXT4_SB(sb); 1962 struct flex_groups *new_groups; 1963 int size; 1964 1965 if (!sbi->s_log_groups_per_flex) 1966 return 0; 1967 1968 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1969 if (size <= sbi->s_flex_groups_allocated) 1970 return 0; 1971 1972 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1973 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1974 if (!new_groups) { 1975 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1976 size / (int) sizeof(struct flex_groups)); 1977 return -ENOMEM; 1978 } 1979 1980 if (sbi->s_flex_groups) { 1981 memcpy(new_groups, sbi->s_flex_groups, 1982 (sbi->s_flex_groups_allocated * 1983 sizeof(struct flex_groups))); 1984 kvfree(sbi->s_flex_groups); 1985 } 1986 sbi->s_flex_groups = new_groups; 1987 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1988 return 0; 1989 } 1990 1991 static int ext4_fill_flex_info(struct super_block *sb) 1992 { 1993 struct ext4_sb_info *sbi = EXT4_SB(sb); 1994 struct ext4_group_desc *gdp = NULL; 1995 ext4_group_t flex_group; 1996 int i, err; 1997 1998 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1999 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 2000 sbi->s_log_groups_per_flex = 0; 2001 return 1; 2002 } 2003 2004 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 2005 if (err) 2006 goto failed; 2007 2008 for (i = 0; i < sbi->s_groups_count; i++) { 2009 gdp = ext4_get_group_desc(sb, i, NULL); 2010 2011 flex_group = ext4_flex_group(sbi, i); 2012 atomic_add(ext4_free_inodes_count(sb, gdp), 2013 &sbi->s_flex_groups[flex_group].free_inodes); 2014 atomic64_add(ext4_free_group_clusters(sb, gdp), 2015 &sbi->s_flex_groups[flex_group].free_clusters); 2016 atomic_add(ext4_used_dirs_count(sb, gdp), 2017 &sbi->s_flex_groups[flex_group].used_dirs); 2018 } 2019 2020 return 1; 2021 failed: 2022 return 0; 2023 } 2024 2025 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group, 2026 struct ext4_group_desc *gdp) 2027 { 2028 int offset; 2029 __u16 crc = 0; 2030 __le32 le_group = cpu_to_le32(block_group); 2031 struct ext4_sb_info *sbi = EXT4_SB(sb); 2032 2033 if (ext4_has_metadata_csum(sbi->s_sb)) { 2034 /* Use new metadata_csum algorithm */ 2035 __le16 save_csum; 2036 __u32 csum32; 2037 2038 save_csum = gdp->bg_checksum; 2039 gdp->bg_checksum = 0; 2040 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 2041 sizeof(le_group)); 2042 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 2043 sbi->s_desc_size); 2044 gdp->bg_checksum = save_csum; 2045 2046 crc = csum32 & 0xFFFF; 2047 goto out; 2048 } 2049 2050 /* old crc16 code */ 2051 if (!ext4_has_feature_gdt_csum(sb)) 2052 return 0; 2053 2054 offset = offsetof(struct ext4_group_desc, bg_checksum); 2055 2056 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 2057 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 2058 crc = crc16(crc, (__u8 *)gdp, offset); 2059 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 2060 /* for checksum of struct ext4_group_desc do the rest...*/ 2061 if (ext4_has_feature_64bit(sb) && 2062 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 2063 crc = crc16(crc, (__u8 *)gdp + offset, 2064 le16_to_cpu(sbi->s_es->s_desc_size) - 2065 offset); 2066 2067 out: 2068 return cpu_to_le16(crc); 2069 } 2070 2071 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 2072 struct ext4_group_desc *gdp) 2073 { 2074 if (ext4_has_group_desc_csum(sb) && 2075 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp))) 2076 return 0; 2077 2078 return 1; 2079 } 2080 2081 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 2082 struct ext4_group_desc *gdp) 2083 { 2084 if (!ext4_has_group_desc_csum(sb)) 2085 return; 2086 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp); 2087 } 2088 2089 /* Called at mount-time, super-block is locked */ 2090 static int ext4_check_descriptors(struct super_block *sb, 2091 ext4_group_t *first_not_zeroed) 2092 { 2093 struct ext4_sb_info *sbi = EXT4_SB(sb); 2094 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2095 ext4_fsblk_t last_block; 2096 ext4_fsblk_t block_bitmap; 2097 ext4_fsblk_t inode_bitmap; 2098 ext4_fsblk_t inode_table; 2099 int flexbg_flag = 0; 2100 ext4_group_t i, grp = sbi->s_groups_count; 2101 2102 if (ext4_has_feature_flex_bg(sb)) 2103 flexbg_flag = 1; 2104 2105 ext4_debug("Checking group descriptors"); 2106 2107 for (i = 0; i < sbi->s_groups_count; i++) { 2108 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2109 2110 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2111 last_block = ext4_blocks_count(sbi->s_es) - 1; 2112 else 2113 last_block = first_block + 2114 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2115 2116 if ((grp == sbi->s_groups_count) && 2117 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2118 grp = i; 2119 2120 block_bitmap = ext4_block_bitmap(sb, gdp); 2121 if (block_bitmap < first_block || block_bitmap > last_block) { 2122 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2123 "Block bitmap for group %u not in group " 2124 "(block %llu)!", i, block_bitmap); 2125 return 0; 2126 } 2127 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2128 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2129 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2130 "Inode bitmap for group %u not in group " 2131 "(block %llu)!", i, inode_bitmap); 2132 return 0; 2133 } 2134 inode_table = ext4_inode_table(sb, gdp); 2135 if (inode_table < first_block || 2136 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2137 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2138 "Inode table for group %u not in group " 2139 "(block %llu)!", i, inode_table); 2140 return 0; 2141 } 2142 ext4_lock_group(sb, i); 2143 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2144 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2145 "Checksum for group %u failed (%u!=%u)", 2146 i, le16_to_cpu(ext4_group_desc_csum(sb, i, 2147 gdp)), le16_to_cpu(gdp->bg_checksum)); 2148 if (!(sb->s_flags & MS_RDONLY)) { 2149 ext4_unlock_group(sb, i); 2150 return 0; 2151 } 2152 } 2153 ext4_unlock_group(sb, i); 2154 if (!flexbg_flag) 2155 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2156 } 2157 if (NULL != first_not_zeroed) 2158 *first_not_zeroed = grp; 2159 return 1; 2160 } 2161 2162 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2163 * the superblock) which were deleted from all directories, but held open by 2164 * a process at the time of a crash. We walk the list and try to delete these 2165 * inodes at recovery time (only with a read-write filesystem). 2166 * 2167 * In order to keep the orphan inode chain consistent during traversal (in 2168 * case of crash during recovery), we link each inode into the superblock 2169 * orphan list_head and handle it the same way as an inode deletion during 2170 * normal operation (which journals the operations for us). 2171 * 2172 * We only do an iget() and an iput() on each inode, which is very safe if we 2173 * accidentally point at an in-use or already deleted inode. The worst that 2174 * can happen in this case is that we get a "bit already cleared" message from 2175 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2176 * e2fsck was run on this filesystem, and it must have already done the orphan 2177 * inode cleanup for us, so we can safely abort without any further action. 2178 */ 2179 static void ext4_orphan_cleanup(struct super_block *sb, 2180 struct ext4_super_block *es) 2181 { 2182 unsigned int s_flags = sb->s_flags; 2183 int nr_orphans = 0, nr_truncates = 0; 2184 #ifdef CONFIG_QUOTA 2185 int i; 2186 #endif 2187 if (!es->s_last_orphan) { 2188 jbd_debug(4, "no orphan inodes to clean up\n"); 2189 return; 2190 } 2191 2192 if (bdev_read_only(sb->s_bdev)) { 2193 ext4_msg(sb, KERN_ERR, "write access " 2194 "unavailable, skipping orphan cleanup"); 2195 return; 2196 } 2197 2198 /* Check if feature set would not allow a r/w mount */ 2199 if (!ext4_feature_set_ok(sb, 0)) { 2200 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2201 "unknown ROCOMPAT features"); 2202 return; 2203 } 2204 2205 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2206 /* don't clear list on RO mount w/ errors */ 2207 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2208 ext4_msg(sb, KERN_INFO, "Errors on filesystem, " 2209 "clearing orphan list.\n"); 2210 es->s_last_orphan = 0; 2211 } 2212 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2213 return; 2214 } 2215 2216 if (s_flags & MS_RDONLY) { 2217 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2218 sb->s_flags &= ~MS_RDONLY; 2219 } 2220 #ifdef CONFIG_QUOTA 2221 /* Needed for iput() to work correctly and not trash data */ 2222 sb->s_flags |= MS_ACTIVE; 2223 /* Turn on quotas so that they are updated correctly */ 2224 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2225 if (EXT4_SB(sb)->s_qf_names[i]) { 2226 int ret = ext4_quota_on_mount(sb, i); 2227 if (ret < 0) 2228 ext4_msg(sb, KERN_ERR, 2229 "Cannot turn on journaled " 2230 "quota: error %d", ret); 2231 } 2232 } 2233 #endif 2234 2235 while (es->s_last_orphan) { 2236 struct inode *inode; 2237 2238 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2239 if (IS_ERR(inode)) { 2240 es->s_last_orphan = 0; 2241 break; 2242 } 2243 2244 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2245 dquot_initialize(inode); 2246 if (inode->i_nlink) { 2247 if (test_opt(sb, DEBUG)) 2248 ext4_msg(sb, KERN_DEBUG, 2249 "%s: truncating inode %lu to %lld bytes", 2250 __func__, inode->i_ino, inode->i_size); 2251 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2252 inode->i_ino, inode->i_size); 2253 mutex_lock(&inode->i_mutex); 2254 truncate_inode_pages(inode->i_mapping, inode->i_size); 2255 ext4_truncate(inode); 2256 mutex_unlock(&inode->i_mutex); 2257 nr_truncates++; 2258 } else { 2259 if (test_opt(sb, DEBUG)) 2260 ext4_msg(sb, KERN_DEBUG, 2261 "%s: deleting unreferenced inode %lu", 2262 __func__, inode->i_ino); 2263 jbd_debug(2, "deleting unreferenced inode %lu\n", 2264 inode->i_ino); 2265 nr_orphans++; 2266 } 2267 iput(inode); /* The delete magic happens here! */ 2268 } 2269 2270 #define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2271 2272 if (nr_orphans) 2273 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2274 PLURAL(nr_orphans)); 2275 if (nr_truncates) 2276 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2277 PLURAL(nr_truncates)); 2278 #ifdef CONFIG_QUOTA 2279 /* Turn quotas off */ 2280 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 2281 if (sb_dqopt(sb)->files[i]) 2282 dquot_quota_off(sb, i); 2283 } 2284 #endif 2285 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2286 } 2287 2288 /* 2289 * Maximal extent format file size. 2290 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2291 * extent format containers, within a sector_t, and within i_blocks 2292 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2293 * so that won't be a limiting factor. 2294 * 2295 * However there is other limiting factor. We do store extents in the form 2296 * of starting block and length, hence the resulting length of the extent 2297 * covering maximum file size must fit into on-disk format containers as 2298 * well. Given that length is always by 1 unit bigger than max unit (because 2299 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2300 * 2301 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2302 */ 2303 static loff_t ext4_max_size(int blkbits, int has_huge_files) 2304 { 2305 loff_t res; 2306 loff_t upper_limit = MAX_LFS_FILESIZE; 2307 2308 /* small i_blocks in vfs inode? */ 2309 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2310 /* 2311 * CONFIG_LBDAF is not enabled implies the inode 2312 * i_block represent total blocks in 512 bytes 2313 * 32 == size of vfs inode i_blocks * 8 2314 */ 2315 upper_limit = (1LL << 32) - 1; 2316 2317 /* total blocks in file system block size */ 2318 upper_limit >>= (blkbits - 9); 2319 upper_limit <<= blkbits; 2320 } 2321 2322 /* 2323 * 32-bit extent-start container, ee_block. We lower the maxbytes 2324 * by one fs block, so ee_len can cover the extent of maximum file 2325 * size 2326 */ 2327 res = (1LL << 32) - 1; 2328 res <<= blkbits; 2329 2330 /* Sanity check against vm- & vfs- imposed limits */ 2331 if (res > upper_limit) 2332 res = upper_limit; 2333 2334 return res; 2335 } 2336 2337 /* 2338 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2339 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2340 * We need to be 1 filesystem block less than the 2^48 sector limit. 2341 */ 2342 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2343 { 2344 loff_t res = EXT4_NDIR_BLOCKS; 2345 int meta_blocks; 2346 loff_t upper_limit; 2347 /* This is calculated to be the largest file size for a dense, block 2348 * mapped file such that the file's total number of 512-byte sectors, 2349 * including data and all indirect blocks, does not exceed (2^48 - 1). 2350 * 2351 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2352 * number of 512-byte sectors of the file. 2353 */ 2354 2355 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2356 /* 2357 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2358 * the inode i_block field represents total file blocks in 2359 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2360 */ 2361 upper_limit = (1LL << 32) - 1; 2362 2363 /* total blocks in file system block size */ 2364 upper_limit >>= (bits - 9); 2365 2366 } else { 2367 /* 2368 * We use 48 bit ext4_inode i_blocks 2369 * With EXT4_HUGE_FILE_FL set the i_blocks 2370 * represent total number of blocks in 2371 * file system block size 2372 */ 2373 upper_limit = (1LL << 48) - 1; 2374 2375 } 2376 2377 /* indirect blocks */ 2378 meta_blocks = 1; 2379 /* double indirect blocks */ 2380 meta_blocks += 1 + (1LL << (bits-2)); 2381 /* tripple indirect blocks */ 2382 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2383 2384 upper_limit -= meta_blocks; 2385 upper_limit <<= bits; 2386 2387 res += 1LL << (bits-2); 2388 res += 1LL << (2*(bits-2)); 2389 res += 1LL << (3*(bits-2)); 2390 res <<= bits; 2391 if (res > upper_limit) 2392 res = upper_limit; 2393 2394 if (res > MAX_LFS_FILESIZE) 2395 res = MAX_LFS_FILESIZE; 2396 2397 return res; 2398 } 2399 2400 static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2401 ext4_fsblk_t logical_sb_block, int nr) 2402 { 2403 struct ext4_sb_info *sbi = EXT4_SB(sb); 2404 ext4_group_t bg, first_meta_bg; 2405 int has_super = 0; 2406 2407 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2408 2409 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg) 2410 return logical_sb_block + nr + 1; 2411 bg = sbi->s_desc_per_block * nr; 2412 if (ext4_bg_has_super(sb, bg)) 2413 has_super = 1; 2414 2415 /* 2416 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at 2417 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled 2418 * on modern mke2fs or blksize > 1k on older mke2fs) then we must 2419 * compensate. 2420 */ 2421 if (sb->s_blocksize == 1024 && nr == 0 && 2422 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0) 2423 has_super++; 2424 2425 return (has_super + ext4_group_first_block_no(sb, bg)); 2426 } 2427 2428 /** 2429 * ext4_get_stripe_size: Get the stripe size. 2430 * @sbi: In memory super block info 2431 * 2432 * If we have specified it via mount option, then 2433 * use the mount option value. If the value specified at mount time is 2434 * greater than the blocks per group use the super block value. 2435 * If the super block value is greater than blocks per group return 0. 2436 * Allocator needs it be less than blocks per group. 2437 * 2438 */ 2439 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2440 { 2441 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2442 unsigned long stripe_width = 2443 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2444 int ret; 2445 2446 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2447 ret = sbi->s_stripe; 2448 else if (stripe_width <= sbi->s_blocks_per_group) 2449 ret = stripe_width; 2450 else if (stride <= sbi->s_blocks_per_group) 2451 ret = stride; 2452 else 2453 ret = 0; 2454 2455 /* 2456 * If the stripe width is 1, this makes no sense and 2457 * we set it to 0 to turn off stripe handling code. 2458 */ 2459 if (ret <= 1) 2460 ret = 0; 2461 2462 return ret; 2463 } 2464 2465 /* 2466 * Check whether this filesystem can be mounted based on 2467 * the features present and the RDONLY/RDWR mount requested. 2468 * Returns 1 if this filesystem can be mounted as requested, 2469 * 0 if it cannot be. 2470 */ 2471 static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2472 { 2473 if (ext4_has_unknown_ext4_incompat_features(sb)) { 2474 ext4_msg(sb, KERN_ERR, 2475 "Couldn't mount because of " 2476 "unsupported optional features (%x)", 2477 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2478 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2479 return 0; 2480 } 2481 2482 if (readonly) 2483 return 1; 2484 2485 if (ext4_has_feature_readonly(sb)) { 2486 ext4_msg(sb, KERN_INFO, "filesystem is read-only"); 2487 sb->s_flags |= MS_RDONLY; 2488 return 1; 2489 } 2490 2491 /* Check that feature set is OK for a read-write mount */ 2492 if (ext4_has_unknown_ext4_ro_compat_features(sb)) { 2493 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2494 "unsupported optional features (%x)", 2495 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2496 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2497 return 0; 2498 } 2499 /* 2500 * Large file size enabled file system can only be mounted 2501 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2502 */ 2503 if (ext4_has_feature_huge_file(sb)) { 2504 if (sizeof(blkcnt_t) < sizeof(u64)) { 2505 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2506 "cannot be mounted RDWR without " 2507 "CONFIG_LBDAF"); 2508 return 0; 2509 } 2510 } 2511 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) { 2512 ext4_msg(sb, KERN_ERR, 2513 "Can't support bigalloc feature without " 2514 "extents feature\n"); 2515 return 0; 2516 } 2517 2518 #ifndef CONFIG_QUOTA 2519 if (ext4_has_feature_quota(sb) && !readonly) { 2520 ext4_msg(sb, KERN_ERR, 2521 "Filesystem with quota feature cannot be mounted RDWR " 2522 "without CONFIG_QUOTA"); 2523 return 0; 2524 } 2525 #endif /* CONFIG_QUOTA */ 2526 return 1; 2527 } 2528 2529 /* 2530 * This function is called once a day if we have errors logged 2531 * on the file system 2532 */ 2533 static void print_daily_error_info(unsigned long arg) 2534 { 2535 struct super_block *sb = (struct super_block *) arg; 2536 struct ext4_sb_info *sbi; 2537 struct ext4_super_block *es; 2538 2539 sbi = EXT4_SB(sb); 2540 es = sbi->s_es; 2541 2542 if (es->s_error_count) 2543 /* fsck newer than v1.41.13 is needed to clean this condition. */ 2544 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u", 2545 le32_to_cpu(es->s_error_count)); 2546 if (es->s_first_error_time) { 2547 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d", 2548 sb->s_id, le32_to_cpu(es->s_first_error_time), 2549 (int) sizeof(es->s_first_error_func), 2550 es->s_first_error_func, 2551 le32_to_cpu(es->s_first_error_line)); 2552 if (es->s_first_error_ino) 2553 printk(": inode %u", 2554 le32_to_cpu(es->s_first_error_ino)); 2555 if (es->s_first_error_block) 2556 printk(": block %llu", (unsigned long long) 2557 le64_to_cpu(es->s_first_error_block)); 2558 printk("\n"); 2559 } 2560 if (es->s_last_error_time) { 2561 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d", 2562 sb->s_id, le32_to_cpu(es->s_last_error_time), 2563 (int) sizeof(es->s_last_error_func), 2564 es->s_last_error_func, 2565 le32_to_cpu(es->s_last_error_line)); 2566 if (es->s_last_error_ino) 2567 printk(": inode %u", 2568 le32_to_cpu(es->s_last_error_ino)); 2569 if (es->s_last_error_block) 2570 printk(": block %llu", (unsigned long long) 2571 le64_to_cpu(es->s_last_error_block)); 2572 printk("\n"); 2573 } 2574 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2575 } 2576 2577 /* Find next suitable group and run ext4_init_inode_table */ 2578 static int ext4_run_li_request(struct ext4_li_request *elr) 2579 { 2580 struct ext4_group_desc *gdp = NULL; 2581 ext4_group_t group, ngroups; 2582 struct super_block *sb; 2583 unsigned long timeout = 0; 2584 int ret = 0; 2585 2586 sb = elr->lr_super; 2587 ngroups = EXT4_SB(sb)->s_groups_count; 2588 2589 sb_start_write(sb); 2590 for (group = elr->lr_next_group; group < ngroups; group++) { 2591 gdp = ext4_get_group_desc(sb, group, NULL); 2592 if (!gdp) { 2593 ret = 1; 2594 break; 2595 } 2596 2597 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2598 break; 2599 } 2600 2601 if (group >= ngroups) 2602 ret = 1; 2603 2604 if (!ret) { 2605 timeout = jiffies; 2606 ret = ext4_init_inode_table(sb, group, 2607 elr->lr_timeout ? 0 : 1); 2608 if (elr->lr_timeout == 0) { 2609 timeout = (jiffies - timeout) * 2610 elr->lr_sbi->s_li_wait_mult; 2611 elr->lr_timeout = timeout; 2612 } 2613 elr->lr_next_sched = jiffies + elr->lr_timeout; 2614 elr->lr_next_group = group + 1; 2615 } 2616 sb_end_write(sb); 2617 2618 return ret; 2619 } 2620 2621 /* 2622 * Remove lr_request from the list_request and free the 2623 * request structure. Should be called with li_list_mtx held 2624 */ 2625 static void ext4_remove_li_request(struct ext4_li_request *elr) 2626 { 2627 struct ext4_sb_info *sbi; 2628 2629 if (!elr) 2630 return; 2631 2632 sbi = elr->lr_sbi; 2633 2634 list_del(&elr->lr_request); 2635 sbi->s_li_request = NULL; 2636 kfree(elr); 2637 } 2638 2639 static void ext4_unregister_li_request(struct super_block *sb) 2640 { 2641 mutex_lock(&ext4_li_mtx); 2642 if (!ext4_li_info) { 2643 mutex_unlock(&ext4_li_mtx); 2644 return; 2645 } 2646 2647 mutex_lock(&ext4_li_info->li_list_mtx); 2648 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2649 mutex_unlock(&ext4_li_info->li_list_mtx); 2650 mutex_unlock(&ext4_li_mtx); 2651 } 2652 2653 static struct task_struct *ext4_lazyinit_task; 2654 2655 /* 2656 * This is the function where ext4lazyinit thread lives. It walks 2657 * through the request list searching for next scheduled filesystem. 2658 * When such a fs is found, run the lazy initialization request 2659 * (ext4_rn_li_request) and keep track of the time spend in this 2660 * function. Based on that time we compute next schedule time of 2661 * the request. When walking through the list is complete, compute 2662 * next waking time and put itself into sleep. 2663 */ 2664 static int ext4_lazyinit_thread(void *arg) 2665 { 2666 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2667 struct list_head *pos, *n; 2668 struct ext4_li_request *elr; 2669 unsigned long next_wakeup, cur; 2670 2671 BUG_ON(NULL == eli); 2672 2673 cont_thread: 2674 while (true) { 2675 next_wakeup = MAX_JIFFY_OFFSET; 2676 2677 mutex_lock(&eli->li_list_mtx); 2678 if (list_empty(&eli->li_request_list)) { 2679 mutex_unlock(&eli->li_list_mtx); 2680 goto exit_thread; 2681 } 2682 2683 list_for_each_safe(pos, n, &eli->li_request_list) { 2684 elr = list_entry(pos, struct ext4_li_request, 2685 lr_request); 2686 2687 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2688 if (ext4_run_li_request(elr) != 0) { 2689 /* error, remove the lazy_init job */ 2690 ext4_remove_li_request(elr); 2691 continue; 2692 } 2693 } 2694 2695 if (time_before(elr->lr_next_sched, next_wakeup)) 2696 next_wakeup = elr->lr_next_sched; 2697 } 2698 mutex_unlock(&eli->li_list_mtx); 2699 2700 try_to_freeze(); 2701 2702 cur = jiffies; 2703 if ((time_after_eq(cur, next_wakeup)) || 2704 (MAX_JIFFY_OFFSET == next_wakeup)) { 2705 cond_resched(); 2706 continue; 2707 } 2708 2709 schedule_timeout_interruptible(next_wakeup - cur); 2710 2711 if (kthread_should_stop()) { 2712 ext4_clear_request_list(); 2713 goto exit_thread; 2714 } 2715 } 2716 2717 exit_thread: 2718 /* 2719 * It looks like the request list is empty, but we need 2720 * to check it under the li_list_mtx lock, to prevent any 2721 * additions into it, and of course we should lock ext4_li_mtx 2722 * to atomically free the list and ext4_li_info, because at 2723 * this point another ext4 filesystem could be registering 2724 * new one. 2725 */ 2726 mutex_lock(&ext4_li_mtx); 2727 mutex_lock(&eli->li_list_mtx); 2728 if (!list_empty(&eli->li_request_list)) { 2729 mutex_unlock(&eli->li_list_mtx); 2730 mutex_unlock(&ext4_li_mtx); 2731 goto cont_thread; 2732 } 2733 mutex_unlock(&eli->li_list_mtx); 2734 kfree(ext4_li_info); 2735 ext4_li_info = NULL; 2736 mutex_unlock(&ext4_li_mtx); 2737 2738 return 0; 2739 } 2740 2741 static void ext4_clear_request_list(void) 2742 { 2743 struct list_head *pos, *n; 2744 struct ext4_li_request *elr; 2745 2746 mutex_lock(&ext4_li_info->li_list_mtx); 2747 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2748 elr = list_entry(pos, struct ext4_li_request, 2749 lr_request); 2750 ext4_remove_li_request(elr); 2751 } 2752 mutex_unlock(&ext4_li_info->li_list_mtx); 2753 } 2754 2755 static int ext4_run_lazyinit_thread(void) 2756 { 2757 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2758 ext4_li_info, "ext4lazyinit"); 2759 if (IS_ERR(ext4_lazyinit_task)) { 2760 int err = PTR_ERR(ext4_lazyinit_task); 2761 ext4_clear_request_list(); 2762 kfree(ext4_li_info); 2763 ext4_li_info = NULL; 2764 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2765 "initialization thread\n", 2766 err); 2767 return err; 2768 } 2769 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2770 return 0; 2771 } 2772 2773 /* 2774 * Check whether it make sense to run itable init. thread or not. 2775 * If there is at least one uninitialized inode table, return 2776 * corresponding group number, else the loop goes through all 2777 * groups and return total number of groups. 2778 */ 2779 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2780 { 2781 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2782 struct ext4_group_desc *gdp = NULL; 2783 2784 for (group = 0; group < ngroups; group++) { 2785 gdp = ext4_get_group_desc(sb, group, NULL); 2786 if (!gdp) 2787 continue; 2788 2789 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2790 break; 2791 } 2792 2793 return group; 2794 } 2795 2796 static int ext4_li_info_new(void) 2797 { 2798 struct ext4_lazy_init *eli = NULL; 2799 2800 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2801 if (!eli) 2802 return -ENOMEM; 2803 2804 INIT_LIST_HEAD(&eli->li_request_list); 2805 mutex_init(&eli->li_list_mtx); 2806 2807 eli->li_state |= EXT4_LAZYINIT_QUIT; 2808 2809 ext4_li_info = eli; 2810 2811 return 0; 2812 } 2813 2814 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2815 ext4_group_t start) 2816 { 2817 struct ext4_sb_info *sbi = EXT4_SB(sb); 2818 struct ext4_li_request *elr; 2819 2820 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2821 if (!elr) 2822 return NULL; 2823 2824 elr->lr_super = sb; 2825 elr->lr_sbi = sbi; 2826 elr->lr_next_group = start; 2827 2828 /* 2829 * Randomize first schedule time of the request to 2830 * spread the inode table initialization requests 2831 * better. 2832 */ 2833 elr->lr_next_sched = jiffies + (prandom_u32() % 2834 (EXT4_DEF_LI_MAX_START_DELAY * HZ)); 2835 return elr; 2836 } 2837 2838 int ext4_register_li_request(struct super_block *sb, 2839 ext4_group_t first_not_zeroed) 2840 { 2841 struct ext4_sb_info *sbi = EXT4_SB(sb); 2842 struct ext4_li_request *elr = NULL; 2843 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2844 int ret = 0; 2845 2846 mutex_lock(&ext4_li_mtx); 2847 if (sbi->s_li_request != NULL) { 2848 /* 2849 * Reset timeout so it can be computed again, because 2850 * s_li_wait_mult might have changed. 2851 */ 2852 sbi->s_li_request->lr_timeout = 0; 2853 goto out; 2854 } 2855 2856 if (first_not_zeroed == ngroups || 2857 (sb->s_flags & MS_RDONLY) || 2858 !test_opt(sb, INIT_INODE_TABLE)) 2859 goto out; 2860 2861 elr = ext4_li_request_new(sb, first_not_zeroed); 2862 if (!elr) { 2863 ret = -ENOMEM; 2864 goto out; 2865 } 2866 2867 if (NULL == ext4_li_info) { 2868 ret = ext4_li_info_new(); 2869 if (ret) 2870 goto out; 2871 } 2872 2873 mutex_lock(&ext4_li_info->li_list_mtx); 2874 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 2875 mutex_unlock(&ext4_li_info->li_list_mtx); 2876 2877 sbi->s_li_request = elr; 2878 /* 2879 * set elr to NULL here since it has been inserted to 2880 * the request_list and the removal and free of it is 2881 * handled by ext4_clear_request_list from now on. 2882 */ 2883 elr = NULL; 2884 2885 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 2886 ret = ext4_run_lazyinit_thread(); 2887 if (ret) 2888 goto out; 2889 } 2890 out: 2891 mutex_unlock(&ext4_li_mtx); 2892 if (ret) 2893 kfree(elr); 2894 return ret; 2895 } 2896 2897 /* 2898 * We do not need to lock anything since this is called on 2899 * module unload. 2900 */ 2901 static void ext4_destroy_lazyinit_thread(void) 2902 { 2903 /* 2904 * If thread exited earlier 2905 * there's nothing to be done. 2906 */ 2907 if (!ext4_li_info || !ext4_lazyinit_task) 2908 return; 2909 2910 kthread_stop(ext4_lazyinit_task); 2911 } 2912 2913 static int set_journal_csum_feature_set(struct super_block *sb) 2914 { 2915 int ret = 1; 2916 int compat, incompat; 2917 struct ext4_sb_info *sbi = EXT4_SB(sb); 2918 2919 if (ext4_has_metadata_csum(sb)) { 2920 /* journal checksum v3 */ 2921 compat = 0; 2922 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3; 2923 } else { 2924 /* journal checksum v1 */ 2925 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 2926 incompat = 0; 2927 } 2928 2929 jbd2_journal_clear_features(sbi->s_journal, 2930 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 2931 JBD2_FEATURE_INCOMPAT_CSUM_V3 | 2932 JBD2_FEATURE_INCOMPAT_CSUM_V2); 2933 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 2934 ret = jbd2_journal_set_features(sbi->s_journal, 2935 compat, 0, 2936 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 2937 incompat); 2938 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 2939 ret = jbd2_journal_set_features(sbi->s_journal, 2940 compat, 0, 2941 incompat); 2942 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2943 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2944 } else { 2945 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 2946 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 2947 } 2948 2949 return ret; 2950 } 2951 2952 /* 2953 * Note: calculating the overhead so we can be compatible with 2954 * historical BSD practice is quite difficult in the face of 2955 * clusters/bigalloc. This is because multiple metadata blocks from 2956 * different block group can end up in the same allocation cluster. 2957 * Calculating the exact overhead in the face of clustered allocation 2958 * requires either O(all block bitmaps) in memory or O(number of block 2959 * groups**2) in time. We will still calculate the superblock for 2960 * older file systems --- and if we come across with a bigalloc file 2961 * system with zero in s_overhead_clusters the estimate will be close to 2962 * correct especially for very large cluster sizes --- but for newer 2963 * file systems, it's better to calculate this figure once at mkfs 2964 * time, and store it in the superblock. If the superblock value is 2965 * present (even for non-bigalloc file systems), we will use it. 2966 */ 2967 static int count_overhead(struct super_block *sb, ext4_group_t grp, 2968 char *buf) 2969 { 2970 struct ext4_sb_info *sbi = EXT4_SB(sb); 2971 struct ext4_group_desc *gdp; 2972 ext4_fsblk_t first_block, last_block, b; 2973 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 2974 int s, j, count = 0; 2975 2976 if (!ext4_has_feature_bigalloc(sb)) 2977 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 2978 sbi->s_itb_per_group + 2); 2979 2980 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 2981 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 2982 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 2983 for (i = 0; i < ngroups; i++) { 2984 gdp = ext4_get_group_desc(sb, i, NULL); 2985 b = ext4_block_bitmap(sb, gdp); 2986 if (b >= first_block && b <= last_block) { 2987 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 2988 count++; 2989 } 2990 b = ext4_inode_bitmap(sb, gdp); 2991 if (b >= first_block && b <= last_block) { 2992 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 2993 count++; 2994 } 2995 b = ext4_inode_table(sb, gdp); 2996 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 2997 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 2998 int c = EXT4_B2C(sbi, b - first_block); 2999 ext4_set_bit(c, buf); 3000 count++; 3001 } 3002 if (i != grp) 3003 continue; 3004 s = 0; 3005 if (ext4_bg_has_super(sb, grp)) { 3006 ext4_set_bit(s++, buf); 3007 count++; 3008 } 3009 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3010 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3011 count++; 3012 } 3013 } 3014 if (!count) 3015 return 0; 3016 return EXT4_CLUSTERS_PER_GROUP(sb) - 3017 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3018 } 3019 3020 /* 3021 * Compute the overhead and stash it in sbi->s_overhead 3022 */ 3023 int ext4_calculate_overhead(struct super_block *sb) 3024 { 3025 struct ext4_sb_info *sbi = EXT4_SB(sb); 3026 struct ext4_super_block *es = sbi->s_es; 3027 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3028 ext4_fsblk_t overhead = 0; 3029 char *buf = (char *) get_zeroed_page(GFP_NOFS); 3030 3031 if (!buf) 3032 return -ENOMEM; 3033 3034 /* 3035 * Compute the overhead (FS structures). This is constant 3036 * for a given filesystem unless the number of block groups 3037 * changes so we cache the previous value until it does. 3038 */ 3039 3040 /* 3041 * All of the blocks before first_data_block are overhead 3042 */ 3043 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3044 3045 /* 3046 * Add the overhead found in each block group 3047 */ 3048 for (i = 0; i < ngroups; i++) { 3049 int blks; 3050 3051 blks = count_overhead(sb, i, buf); 3052 overhead += blks; 3053 if (blks) 3054 memset(buf, 0, PAGE_SIZE); 3055 cond_resched(); 3056 } 3057 /* Add the internal journal blocks as well */ 3058 if (sbi->s_journal && !sbi->journal_bdev) 3059 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3060 3061 sbi->s_overhead = overhead; 3062 smp_wmb(); 3063 free_page((unsigned long) buf); 3064 return 0; 3065 } 3066 3067 static void ext4_set_resv_clusters(struct super_block *sb) 3068 { 3069 ext4_fsblk_t resv_clusters; 3070 struct ext4_sb_info *sbi = EXT4_SB(sb); 3071 3072 /* 3073 * There's no need to reserve anything when we aren't using extents. 3074 * The space estimates are exact, there are no unwritten extents, 3075 * hole punching doesn't need new metadata... This is needed especially 3076 * to keep ext2/3 backward compatibility. 3077 */ 3078 if (!ext4_has_feature_extents(sb)) 3079 return; 3080 /* 3081 * By default we reserve 2% or 4096 clusters, whichever is smaller. 3082 * This should cover the situations where we can not afford to run 3083 * out of space like for example punch hole, or converting 3084 * unwritten extents in delalloc path. In most cases such 3085 * allocation would require 1, or 2 blocks, higher numbers are 3086 * very rare. 3087 */ 3088 resv_clusters = (ext4_blocks_count(sbi->s_es) >> 3089 sbi->s_cluster_bits); 3090 3091 do_div(resv_clusters, 50); 3092 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096); 3093 3094 atomic64_set(&sbi->s_resv_clusters, resv_clusters); 3095 } 3096 3097 static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3098 { 3099 char *orig_data = kstrdup(data, GFP_KERNEL); 3100 struct buffer_head *bh; 3101 struct ext4_super_block *es = NULL; 3102 struct ext4_sb_info *sbi; 3103 ext4_fsblk_t block; 3104 ext4_fsblk_t sb_block = get_sb_block(&data); 3105 ext4_fsblk_t logical_sb_block; 3106 unsigned long offset = 0; 3107 unsigned long journal_devnum = 0; 3108 unsigned long def_mount_opts; 3109 struct inode *root; 3110 const char *descr; 3111 int ret = -ENOMEM; 3112 int blocksize, clustersize; 3113 unsigned int db_count; 3114 unsigned int i; 3115 int needs_recovery, has_huge_files, has_bigalloc; 3116 __u64 blocks_count; 3117 int err = 0; 3118 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3119 ext4_group_t first_not_zeroed; 3120 3121 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3122 if (!sbi) 3123 goto out_free_orig; 3124 3125 sbi->s_blockgroup_lock = 3126 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3127 if (!sbi->s_blockgroup_lock) { 3128 kfree(sbi); 3129 goto out_free_orig; 3130 } 3131 sb->s_fs_info = sbi; 3132 sbi->s_sb = sb; 3133 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3134 sbi->s_sb_block = sb_block; 3135 if (sb->s_bdev->bd_part) 3136 sbi->s_sectors_written_start = 3137 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3138 3139 /* Cleanup superblock name */ 3140 strreplace(sb->s_id, '/', '!'); 3141 3142 /* -EINVAL is default */ 3143 ret = -EINVAL; 3144 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3145 if (!blocksize) { 3146 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3147 goto out_fail; 3148 } 3149 3150 /* 3151 * The ext4 superblock will not be buffer aligned for other than 1kB 3152 * block sizes. We need to calculate the offset from buffer start. 3153 */ 3154 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3155 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3156 offset = do_div(logical_sb_block, blocksize); 3157 } else { 3158 logical_sb_block = sb_block; 3159 } 3160 3161 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) { 3162 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3163 goto out_fail; 3164 } 3165 /* 3166 * Note: s_es must be initialized as soon as possible because 3167 * some ext4 macro-instructions depend on its value 3168 */ 3169 es = (struct ext4_super_block *) (bh->b_data + offset); 3170 sbi->s_es = es; 3171 sb->s_magic = le16_to_cpu(es->s_magic); 3172 if (sb->s_magic != EXT4_SUPER_MAGIC) 3173 goto cantfind_ext4; 3174 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3175 3176 /* Warn if metadata_csum and gdt_csum are both set. */ 3177 if (ext4_has_feature_metadata_csum(sb) && 3178 ext4_has_feature_gdt_csum(sb)) 3179 ext4_warning(sb, "metadata_csum and uninit_bg are " 3180 "redundant flags; please run fsck."); 3181 3182 /* Check for a known checksum algorithm */ 3183 if (!ext4_verify_csum_type(sb, es)) { 3184 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3185 "unknown checksum algorithm."); 3186 silent = 1; 3187 goto cantfind_ext4; 3188 } 3189 3190 /* Load the checksum driver */ 3191 if (ext4_has_feature_metadata_csum(sb)) { 3192 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3193 if (IS_ERR(sbi->s_chksum_driver)) { 3194 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3195 ret = PTR_ERR(sbi->s_chksum_driver); 3196 sbi->s_chksum_driver = NULL; 3197 goto failed_mount; 3198 } 3199 } 3200 3201 /* Check superblock checksum */ 3202 if (!ext4_superblock_csum_verify(sb, es)) { 3203 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3204 "invalid superblock checksum. Run e2fsck?"); 3205 silent = 1; 3206 ret = -EFSBADCRC; 3207 goto cantfind_ext4; 3208 } 3209 3210 /* Precompute checksum seed for all metadata */ 3211 if (ext4_has_feature_csum_seed(sb)) 3212 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed); 3213 else if (ext4_has_metadata_csum(sb)) 3214 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3215 sizeof(es->s_uuid)); 3216 3217 /* Set defaults before we parse the mount options */ 3218 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3219 set_opt(sb, INIT_INODE_TABLE); 3220 if (def_mount_opts & EXT4_DEFM_DEBUG) 3221 set_opt(sb, DEBUG); 3222 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3223 set_opt(sb, GRPID); 3224 if (def_mount_opts & EXT4_DEFM_UID16) 3225 set_opt(sb, NO_UID32); 3226 /* xattr user namespace & acls are now defaulted on */ 3227 set_opt(sb, XATTR_USER); 3228 #ifdef CONFIG_EXT4_FS_POSIX_ACL 3229 set_opt(sb, POSIX_ACL); 3230 #endif 3231 /* don't forget to enable journal_csum when metadata_csum is enabled. */ 3232 if (ext4_has_metadata_csum(sb)) 3233 set_opt(sb, JOURNAL_CHECKSUM); 3234 3235 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3236 set_opt(sb, JOURNAL_DATA); 3237 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3238 set_opt(sb, ORDERED_DATA); 3239 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3240 set_opt(sb, WRITEBACK_DATA); 3241 3242 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3243 set_opt(sb, ERRORS_PANIC); 3244 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3245 set_opt(sb, ERRORS_CONT); 3246 else 3247 set_opt(sb, ERRORS_RO); 3248 /* block_validity enabled by default; disable with noblock_validity */ 3249 set_opt(sb, BLOCK_VALIDITY); 3250 if (def_mount_opts & EXT4_DEFM_DISCARD) 3251 set_opt(sb, DISCARD); 3252 3253 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3254 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3255 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3256 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3257 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3258 3259 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3260 set_opt(sb, BARRIER); 3261 3262 /* 3263 * enable delayed allocation by default 3264 * Use -o nodelalloc to turn it off 3265 */ 3266 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3267 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3268 set_opt(sb, DELALLOC); 3269 3270 /* 3271 * set default s_li_wait_mult for lazyinit, for the case there is 3272 * no mount option specified. 3273 */ 3274 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3275 3276 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3277 &journal_devnum, &journal_ioprio, 0)) { 3278 ext4_msg(sb, KERN_WARNING, 3279 "failed to parse options in superblock: %s", 3280 sbi->s_es->s_mount_opts); 3281 } 3282 sbi->s_def_mount_opt = sbi->s_mount_opt; 3283 if (!parse_options((char *) data, sb, &journal_devnum, 3284 &journal_ioprio, 0)) 3285 goto failed_mount; 3286 3287 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3288 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3289 "with data=journal disables delayed " 3290 "allocation and O_DIRECT support!\n"); 3291 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3292 ext4_msg(sb, KERN_ERR, "can't mount with " 3293 "both data=journal and delalloc"); 3294 goto failed_mount; 3295 } 3296 if (test_opt(sb, DIOREAD_NOLOCK)) { 3297 ext4_msg(sb, KERN_ERR, "can't mount with " 3298 "both data=journal and dioread_nolock"); 3299 goto failed_mount; 3300 } 3301 if (test_opt(sb, DAX)) { 3302 ext4_msg(sb, KERN_ERR, "can't mount with " 3303 "both data=journal and dax"); 3304 goto failed_mount; 3305 } 3306 if (test_opt(sb, DELALLOC)) 3307 clear_opt(sb, DELALLOC); 3308 } else { 3309 sb->s_iflags |= SB_I_CGROUPWB; 3310 } 3311 3312 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3313 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3314 3315 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3316 (ext4_has_compat_features(sb) || 3317 ext4_has_ro_compat_features(sb) || 3318 ext4_has_incompat_features(sb))) 3319 ext4_msg(sb, KERN_WARNING, 3320 "feature flags set on rev 0 fs, " 3321 "running e2fsck is recommended"); 3322 3323 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) { 3324 set_opt2(sb, HURD_COMPAT); 3325 if (ext4_has_feature_64bit(sb)) { 3326 ext4_msg(sb, KERN_ERR, 3327 "The Hurd can't support 64-bit file systems"); 3328 goto failed_mount; 3329 } 3330 } 3331 3332 if (IS_EXT2_SB(sb)) { 3333 if (ext2_feature_set_ok(sb)) 3334 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3335 "using the ext4 subsystem"); 3336 else { 3337 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3338 "to feature incompatibilities"); 3339 goto failed_mount; 3340 } 3341 } 3342 3343 if (IS_EXT3_SB(sb)) { 3344 if (ext3_feature_set_ok(sb)) 3345 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3346 "using the ext4 subsystem"); 3347 else { 3348 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3349 "to feature incompatibilities"); 3350 goto failed_mount; 3351 } 3352 } 3353 3354 /* 3355 * Check feature flags regardless of the revision level, since we 3356 * previously didn't change the revision level when setting the flags, 3357 * so there is a chance incompat flags are set on a rev 0 filesystem. 3358 */ 3359 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3360 goto failed_mount; 3361 3362 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3363 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3364 blocksize > EXT4_MAX_BLOCK_SIZE) { 3365 ext4_msg(sb, KERN_ERR, 3366 "Unsupported filesystem blocksize %d", blocksize); 3367 goto failed_mount; 3368 } 3369 3370 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) { 3371 if (blocksize != PAGE_SIZE) { 3372 ext4_msg(sb, KERN_ERR, 3373 "error: unsupported blocksize for dax"); 3374 goto failed_mount; 3375 } 3376 if (!sb->s_bdev->bd_disk->fops->direct_access) { 3377 ext4_msg(sb, KERN_ERR, 3378 "error: device does not support dax"); 3379 goto failed_mount; 3380 } 3381 } 3382 3383 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) { 3384 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d", 3385 es->s_encryption_level); 3386 goto failed_mount; 3387 } 3388 3389 if (sb->s_blocksize != blocksize) { 3390 /* Validate the filesystem blocksize */ 3391 if (!sb_set_blocksize(sb, blocksize)) { 3392 ext4_msg(sb, KERN_ERR, "bad block size %d", 3393 blocksize); 3394 goto failed_mount; 3395 } 3396 3397 brelse(bh); 3398 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3399 offset = do_div(logical_sb_block, blocksize); 3400 bh = sb_bread_unmovable(sb, logical_sb_block); 3401 if (!bh) { 3402 ext4_msg(sb, KERN_ERR, 3403 "Can't read superblock on 2nd try"); 3404 goto failed_mount; 3405 } 3406 es = (struct ext4_super_block *)(bh->b_data + offset); 3407 sbi->s_es = es; 3408 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3409 ext4_msg(sb, KERN_ERR, 3410 "Magic mismatch, very weird!"); 3411 goto failed_mount; 3412 } 3413 } 3414 3415 has_huge_files = ext4_has_feature_huge_file(sb); 3416 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3417 has_huge_files); 3418 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3419 3420 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3421 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3422 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3423 } else { 3424 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3425 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3426 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3427 (!is_power_of_2(sbi->s_inode_size)) || 3428 (sbi->s_inode_size > blocksize)) { 3429 ext4_msg(sb, KERN_ERR, 3430 "unsupported inode size: %d", 3431 sbi->s_inode_size); 3432 goto failed_mount; 3433 } 3434 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3435 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3436 } 3437 3438 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3439 if (ext4_has_feature_64bit(sb)) { 3440 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3441 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3442 !is_power_of_2(sbi->s_desc_size)) { 3443 ext4_msg(sb, KERN_ERR, 3444 "unsupported descriptor size %lu", 3445 sbi->s_desc_size); 3446 goto failed_mount; 3447 } 3448 } else 3449 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3450 3451 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3452 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3453 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3454 goto cantfind_ext4; 3455 3456 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3457 if (sbi->s_inodes_per_block == 0) 3458 goto cantfind_ext4; 3459 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3460 sbi->s_inodes_per_block; 3461 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3462 sbi->s_sbh = bh; 3463 sbi->s_mount_state = le16_to_cpu(es->s_state); 3464 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3465 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3466 3467 for (i = 0; i < 4; i++) 3468 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3469 sbi->s_def_hash_version = es->s_def_hash_version; 3470 if (ext4_has_feature_dir_index(sb)) { 3471 i = le32_to_cpu(es->s_flags); 3472 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3473 sbi->s_hash_unsigned = 3; 3474 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3475 #ifdef __CHAR_UNSIGNED__ 3476 if (!(sb->s_flags & MS_RDONLY)) 3477 es->s_flags |= 3478 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3479 sbi->s_hash_unsigned = 3; 3480 #else 3481 if (!(sb->s_flags & MS_RDONLY)) 3482 es->s_flags |= 3483 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3484 #endif 3485 } 3486 } 3487 3488 /* Handle clustersize */ 3489 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3490 has_bigalloc = ext4_has_feature_bigalloc(sb); 3491 if (has_bigalloc) { 3492 if (clustersize < blocksize) { 3493 ext4_msg(sb, KERN_ERR, 3494 "cluster size (%d) smaller than " 3495 "block size (%d)", clustersize, blocksize); 3496 goto failed_mount; 3497 } 3498 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3499 le32_to_cpu(es->s_log_block_size); 3500 sbi->s_clusters_per_group = 3501 le32_to_cpu(es->s_clusters_per_group); 3502 if (sbi->s_clusters_per_group > blocksize * 8) { 3503 ext4_msg(sb, KERN_ERR, 3504 "#clusters per group too big: %lu", 3505 sbi->s_clusters_per_group); 3506 goto failed_mount; 3507 } 3508 if (sbi->s_blocks_per_group != 3509 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3510 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3511 "clusters per group (%lu) inconsistent", 3512 sbi->s_blocks_per_group, 3513 sbi->s_clusters_per_group); 3514 goto failed_mount; 3515 } 3516 } else { 3517 if (clustersize != blocksize) { 3518 ext4_warning(sb, "fragment/cluster size (%d) != " 3519 "block size (%d)", clustersize, 3520 blocksize); 3521 clustersize = blocksize; 3522 } 3523 if (sbi->s_blocks_per_group > blocksize * 8) { 3524 ext4_msg(sb, KERN_ERR, 3525 "#blocks per group too big: %lu", 3526 sbi->s_blocks_per_group); 3527 goto failed_mount; 3528 } 3529 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3530 sbi->s_cluster_bits = 0; 3531 } 3532 sbi->s_cluster_ratio = clustersize / blocksize; 3533 3534 if (sbi->s_inodes_per_group > blocksize * 8) { 3535 ext4_msg(sb, KERN_ERR, 3536 "#inodes per group too big: %lu", 3537 sbi->s_inodes_per_group); 3538 goto failed_mount; 3539 } 3540 3541 /* Do we have standard group size of clustersize * 8 blocks ? */ 3542 if (sbi->s_blocks_per_group == clustersize << 3) 3543 set_opt2(sb, STD_GROUP_SIZE); 3544 3545 /* 3546 * Test whether we have more sectors than will fit in sector_t, 3547 * and whether the max offset is addressable by the page cache. 3548 */ 3549 err = generic_check_addressable(sb->s_blocksize_bits, 3550 ext4_blocks_count(es)); 3551 if (err) { 3552 ext4_msg(sb, KERN_ERR, "filesystem" 3553 " too large to mount safely on this system"); 3554 if (sizeof(sector_t) < 8) 3555 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3556 goto failed_mount; 3557 } 3558 3559 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3560 goto cantfind_ext4; 3561 3562 /* check blocks count against device size */ 3563 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3564 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3565 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3566 "exceeds size of device (%llu blocks)", 3567 ext4_blocks_count(es), blocks_count); 3568 goto failed_mount; 3569 } 3570 3571 /* 3572 * It makes no sense for the first data block to be beyond the end 3573 * of the filesystem. 3574 */ 3575 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3576 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3577 "block %u is beyond end of filesystem (%llu)", 3578 le32_to_cpu(es->s_first_data_block), 3579 ext4_blocks_count(es)); 3580 goto failed_mount; 3581 } 3582 blocks_count = (ext4_blocks_count(es) - 3583 le32_to_cpu(es->s_first_data_block) + 3584 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3585 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3586 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3587 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3588 "(block count %llu, first data block %u, " 3589 "blocks per group %lu)", sbi->s_groups_count, 3590 ext4_blocks_count(es), 3591 le32_to_cpu(es->s_first_data_block), 3592 EXT4_BLOCKS_PER_GROUP(sb)); 3593 goto failed_mount; 3594 } 3595 sbi->s_groups_count = blocks_count; 3596 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3597 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3598 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3599 EXT4_DESC_PER_BLOCK(sb); 3600 sbi->s_group_desc = ext4_kvmalloc(db_count * 3601 sizeof(struct buffer_head *), 3602 GFP_KERNEL); 3603 if (sbi->s_group_desc == NULL) { 3604 ext4_msg(sb, KERN_ERR, "not enough memory"); 3605 ret = -ENOMEM; 3606 goto failed_mount; 3607 } 3608 3609 bgl_lock_init(sbi->s_blockgroup_lock); 3610 3611 for (i = 0; i < db_count; i++) { 3612 block = descriptor_loc(sb, logical_sb_block, i); 3613 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block); 3614 if (!sbi->s_group_desc[i]) { 3615 ext4_msg(sb, KERN_ERR, 3616 "can't read group descriptor %d", i); 3617 db_count = i; 3618 goto failed_mount2; 3619 } 3620 } 3621 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3622 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3623 ret = -EFSCORRUPTED; 3624 goto failed_mount2; 3625 } 3626 3627 sbi->s_gdb_count = db_count; 3628 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3629 spin_lock_init(&sbi->s_next_gen_lock); 3630 3631 setup_timer(&sbi->s_err_report, print_daily_error_info, 3632 (unsigned long) sb); 3633 3634 /* Register extent status tree shrinker */ 3635 if (ext4_es_register_shrinker(sbi)) 3636 goto failed_mount3; 3637 3638 sbi->s_stripe = ext4_get_stripe_size(sbi); 3639 sbi->s_extent_max_zeroout_kb = 32; 3640 3641 /* 3642 * set up enough so that it can read an inode 3643 */ 3644 sb->s_op = &ext4_sops; 3645 sb->s_export_op = &ext4_export_ops; 3646 sb->s_xattr = ext4_xattr_handlers; 3647 #ifdef CONFIG_QUOTA 3648 sb->dq_op = &ext4_quota_operations; 3649 if (ext4_has_feature_quota(sb)) 3650 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3651 else 3652 sb->s_qcop = &ext4_qctl_operations; 3653 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 3654 #endif 3655 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3656 3657 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3658 mutex_init(&sbi->s_orphan_lock); 3659 3660 sb->s_root = NULL; 3661 3662 needs_recovery = (es->s_last_orphan != 0 || 3663 ext4_has_feature_journal_needs_recovery(sb)); 3664 3665 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY)) 3666 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3667 goto failed_mount3a; 3668 3669 /* 3670 * The first inode we look at is the journal inode. Don't try 3671 * root first: it may be modified in the journal! 3672 */ 3673 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) { 3674 if (ext4_load_journal(sb, es, journal_devnum)) 3675 goto failed_mount3a; 3676 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3677 ext4_has_feature_journal_needs_recovery(sb)) { 3678 ext4_msg(sb, KERN_ERR, "required journal recovery " 3679 "suppressed and not mounted read-only"); 3680 goto failed_mount_wq; 3681 } else { 3682 /* Nojournal mode, all journal mount options are illegal */ 3683 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) { 3684 ext4_msg(sb, KERN_ERR, "can't mount with " 3685 "journal_checksum, fs mounted w/o journal"); 3686 goto failed_mount_wq; 3687 } 3688 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3689 ext4_msg(sb, KERN_ERR, "can't mount with " 3690 "journal_async_commit, fs mounted w/o journal"); 3691 goto failed_mount_wq; 3692 } 3693 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) { 3694 ext4_msg(sb, KERN_ERR, "can't mount with " 3695 "commit=%lu, fs mounted w/o journal", 3696 sbi->s_commit_interval / HZ); 3697 goto failed_mount_wq; 3698 } 3699 if (EXT4_MOUNT_DATA_FLAGS & 3700 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) { 3701 ext4_msg(sb, KERN_ERR, "can't mount with " 3702 "data=, fs mounted w/o journal"); 3703 goto failed_mount_wq; 3704 } 3705 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM; 3706 clear_opt(sb, JOURNAL_CHECKSUM); 3707 clear_opt(sb, DATA_FLAGS); 3708 sbi->s_journal = NULL; 3709 needs_recovery = 0; 3710 goto no_journal; 3711 } 3712 3713 if (ext4_has_feature_64bit(sb) && 3714 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3715 JBD2_FEATURE_INCOMPAT_64BIT)) { 3716 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3717 goto failed_mount_wq; 3718 } 3719 3720 if (!set_journal_csum_feature_set(sb)) { 3721 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3722 "feature set"); 3723 goto failed_mount_wq; 3724 } 3725 3726 /* We have now updated the journal if required, so we can 3727 * validate the data journaling mode. */ 3728 switch (test_opt(sb, DATA_FLAGS)) { 3729 case 0: 3730 /* No mode set, assume a default based on the journal 3731 * capabilities: ORDERED_DATA if the journal can 3732 * cope, else JOURNAL_DATA 3733 */ 3734 if (jbd2_journal_check_available_features 3735 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3736 set_opt(sb, ORDERED_DATA); 3737 else 3738 set_opt(sb, JOURNAL_DATA); 3739 break; 3740 3741 case EXT4_MOUNT_ORDERED_DATA: 3742 case EXT4_MOUNT_WRITEBACK_DATA: 3743 if (!jbd2_journal_check_available_features 3744 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3745 ext4_msg(sb, KERN_ERR, "Journal does not support " 3746 "requested data journaling mode"); 3747 goto failed_mount_wq; 3748 } 3749 default: 3750 break; 3751 } 3752 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3753 3754 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3755 3756 no_journal: 3757 if (ext4_mballoc_ready) { 3758 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id); 3759 if (!sbi->s_mb_cache) { 3760 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache"); 3761 goto failed_mount_wq; 3762 } 3763 } 3764 3765 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) && 3766 (blocksize != PAGE_CACHE_SIZE)) { 3767 ext4_msg(sb, KERN_ERR, 3768 "Unsupported blocksize for fs encryption"); 3769 goto failed_mount_wq; 3770 } 3771 3772 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) && 3773 !ext4_has_feature_encrypt(sb)) { 3774 ext4_set_feature_encrypt(sb); 3775 ext4_commit_super(sb, 1); 3776 } 3777 3778 /* 3779 * Get the # of file system overhead blocks from the 3780 * superblock if present. 3781 */ 3782 if (es->s_overhead_clusters) 3783 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3784 else { 3785 err = ext4_calculate_overhead(sb); 3786 if (err) 3787 goto failed_mount_wq; 3788 } 3789 3790 /* 3791 * The maximum number of concurrent works can be high and 3792 * concurrency isn't really necessary. Limit it to 1. 3793 */ 3794 EXT4_SB(sb)->rsv_conversion_wq = 3795 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3796 if (!EXT4_SB(sb)->rsv_conversion_wq) { 3797 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n"); 3798 ret = -ENOMEM; 3799 goto failed_mount4; 3800 } 3801 3802 /* 3803 * The jbd2_journal_load will have done any necessary log recovery, 3804 * so we can safely mount the rest of the filesystem now. 3805 */ 3806 3807 root = ext4_iget(sb, EXT4_ROOT_INO); 3808 if (IS_ERR(root)) { 3809 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3810 ret = PTR_ERR(root); 3811 root = NULL; 3812 goto failed_mount4; 3813 } 3814 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3815 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3816 iput(root); 3817 goto failed_mount4; 3818 } 3819 sb->s_root = d_make_root(root); 3820 if (!sb->s_root) { 3821 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3822 ret = -ENOMEM; 3823 goto failed_mount4; 3824 } 3825 3826 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3827 sb->s_flags |= MS_RDONLY; 3828 3829 /* determine the minimum size of new large inodes, if present */ 3830 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3831 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3832 EXT4_GOOD_OLD_INODE_SIZE; 3833 if (ext4_has_feature_extra_isize(sb)) { 3834 if (sbi->s_want_extra_isize < 3835 le16_to_cpu(es->s_want_extra_isize)) 3836 sbi->s_want_extra_isize = 3837 le16_to_cpu(es->s_want_extra_isize); 3838 if (sbi->s_want_extra_isize < 3839 le16_to_cpu(es->s_min_extra_isize)) 3840 sbi->s_want_extra_isize = 3841 le16_to_cpu(es->s_min_extra_isize); 3842 } 3843 } 3844 /* Check if enough inode space is available */ 3845 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3846 sbi->s_inode_size) { 3847 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3848 EXT4_GOOD_OLD_INODE_SIZE; 3849 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3850 "available"); 3851 } 3852 3853 ext4_set_resv_clusters(sb); 3854 3855 err = ext4_setup_system_zone(sb); 3856 if (err) { 3857 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3858 "zone (%d)", err); 3859 goto failed_mount4a; 3860 } 3861 3862 ext4_ext_init(sb); 3863 err = ext4_mb_init(sb); 3864 if (err) { 3865 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3866 err); 3867 goto failed_mount5; 3868 } 3869 3870 block = ext4_count_free_clusters(sb); 3871 ext4_free_blocks_count_set(sbi->s_es, 3872 EXT4_C2B(sbi, block)); 3873 err = percpu_counter_init(&sbi->s_freeclusters_counter, block, 3874 GFP_KERNEL); 3875 if (!err) { 3876 unsigned long freei = ext4_count_free_inodes(sb); 3877 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei); 3878 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei, 3879 GFP_KERNEL); 3880 } 3881 if (!err) 3882 err = percpu_counter_init(&sbi->s_dirs_counter, 3883 ext4_count_dirs(sb), GFP_KERNEL); 3884 if (!err) 3885 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0, 3886 GFP_KERNEL); 3887 if (err) { 3888 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3889 goto failed_mount6; 3890 } 3891 3892 if (ext4_has_feature_flex_bg(sb)) 3893 if (!ext4_fill_flex_info(sb)) { 3894 ext4_msg(sb, KERN_ERR, 3895 "unable to initialize " 3896 "flex_bg meta info!"); 3897 goto failed_mount6; 3898 } 3899 3900 err = ext4_register_li_request(sb, first_not_zeroed); 3901 if (err) 3902 goto failed_mount6; 3903 3904 err = ext4_register_sysfs(sb); 3905 if (err) 3906 goto failed_mount7; 3907 3908 #ifdef CONFIG_QUOTA 3909 /* Enable quota usage during mount. */ 3910 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) { 3911 err = ext4_enable_quotas(sb); 3912 if (err) 3913 goto failed_mount8; 3914 } 3915 #endif /* CONFIG_QUOTA */ 3916 3917 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3918 ext4_orphan_cleanup(sb, es); 3919 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3920 if (needs_recovery) { 3921 ext4_msg(sb, KERN_INFO, "recovery complete"); 3922 ext4_mark_recovery_complete(sb, es); 3923 } 3924 if (EXT4_SB(sb)->s_journal) { 3925 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3926 descr = " journalled data mode"; 3927 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3928 descr = " ordered data mode"; 3929 else 3930 descr = " writeback data mode"; 3931 } else 3932 descr = "out journal"; 3933 3934 if (test_opt(sb, DISCARD)) { 3935 struct request_queue *q = bdev_get_queue(sb->s_bdev); 3936 if (!blk_queue_discard(q)) 3937 ext4_msg(sb, KERN_WARNING, 3938 "mounting with \"discard\" option, but " 3939 "the device does not support discard"); 3940 } 3941 3942 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount")) 3943 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3944 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3945 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3946 3947 if (es->s_error_count) 3948 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3949 3950 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */ 3951 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10); 3952 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10); 3953 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); 3954 3955 kfree(orig_data); 3956 return 0; 3957 3958 cantfind_ext4: 3959 if (!silent) 3960 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3961 goto failed_mount; 3962 3963 #ifdef CONFIG_QUOTA 3964 failed_mount8: 3965 ext4_unregister_sysfs(sb); 3966 #endif 3967 failed_mount7: 3968 ext4_unregister_li_request(sb); 3969 failed_mount6: 3970 ext4_mb_release(sb); 3971 if (sbi->s_flex_groups) 3972 kvfree(sbi->s_flex_groups); 3973 percpu_counter_destroy(&sbi->s_freeclusters_counter); 3974 percpu_counter_destroy(&sbi->s_freeinodes_counter); 3975 percpu_counter_destroy(&sbi->s_dirs_counter); 3976 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 3977 failed_mount5: 3978 ext4_ext_release(sb); 3979 ext4_release_system_zone(sb); 3980 failed_mount4a: 3981 dput(sb->s_root); 3982 sb->s_root = NULL; 3983 failed_mount4: 3984 ext4_msg(sb, KERN_ERR, "mount failed"); 3985 if (EXT4_SB(sb)->rsv_conversion_wq) 3986 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq); 3987 failed_mount_wq: 3988 if (sbi->s_journal) { 3989 jbd2_journal_destroy(sbi->s_journal); 3990 sbi->s_journal = NULL; 3991 } 3992 failed_mount3a: 3993 ext4_es_unregister_shrinker(sbi); 3994 failed_mount3: 3995 del_timer_sync(&sbi->s_err_report); 3996 if (sbi->s_mmp_tsk) 3997 kthread_stop(sbi->s_mmp_tsk); 3998 failed_mount2: 3999 for (i = 0; i < db_count; i++) 4000 brelse(sbi->s_group_desc[i]); 4001 kvfree(sbi->s_group_desc); 4002 failed_mount: 4003 if (sbi->s_chksum_driver) 4004 crypto_free_shash(sbi->s_chksum_driver); 4005 #ifdef CONFIG_QUOTA 4006 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4007 kfree(sbi->s_qf_names[i]); 4008 #endif 4009 ext4_blkdev_remove(sbi); 4010 brelse(bh); 4011 out_fail: 4012 sb->s_fs_info = NULL; 4013 kfree(sbi->s_blockgroup_lock); 4014 kfree(sbi); 4015 out_free_orig: 4016 kfree(orig_data); 4017 return err ? err : ret; 4018 } 4019 4020 /* 4021 * Setup any per-fs journal parameters now. We'll do this both on 4022 * initial mount, once the journal has been initialised but before we've 4023 * done any recovery; and again on any subsequent remount. 4024 */ 4025 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4026 { 4027 struct ext4_sb_info *sbi = EXT4_SB(sb); 4028 4029 journal->j_commit_interval = sbi->s_commit_interval; 4030 journal->j_min_batch_time = sbi->s_min_batch_time; 4031 journal->j_max_batch_time = sbi->s_max_batch_time; 4032 4033 write_lock(&journal->j_state_lock); 4034 if (test_opt(sb, BARRIER)) 4035 journal->j_flags |= JBD2_BARRIER; 4036 else 4037 journal->j_flags &= ~JBD2_BARRIER; 4038 if (test_opt(sb, DATA_ERR_ABORT)) 4039 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4040 else 4041 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4042 write_unlock(&journal->j_state_lock); 4043 } 4044 4045 static journal_t *ext4_get_journal(struct super_block *sb, 4046 unsigned int journal_inum) 4047 { 4048 struct inode *journal_inode; 4049 journal_t *journal; 4050 4051 BUG_ON(!ext4_has_feature_journal(sb)); 4052 4053 /* First, test for the existence of a valid inode on disk. Bad 4054 * things happen if we iget() an unused inode, as the subsequent 4055 * iput() will try to delete it. */ 4056 4057 journal_inode = ext4_iget(sb, journal_inum); 4058 if (IS_ERR(journal_inode)) { 4059 ext4_msg(sb, KERN_ERR, "no journal found"); 4060 return NULL; 4061 } 4062 if (!journal_inode->i_nlink) { 4063 make_bad_inode(journal_inode); 4064 iput(journal_inode); 4065 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4066 return NULL; 4067 } 4068 4069 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4070 journal_inode, journal_inode->i_size); 4071 if (!S_ISREG(journal_inode->i_mode)) { 4072 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4073 iput(journal_inode); 4074 return NULL; 4075 } 4076 4077 journal = jbd2_journal_init_inode(journal_inode); 4078 if (!journal) { 4079 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4080 iput(journal_inode); 4081 return NULL; 4082 } 4083 journal->j_private = sb; 4084 ext4_init_journal_params(sb, journal); 4085 return journal; 4086 } 4087 4088 static journal_t *ext4_get_dev_journal(struct super_block *sb, 4089 dev_t j_dev) 4090 { 4091 struct buffer_head *bh; 4092 journal_t *journal; 4093 ext4_fsblk_t start; 4094 ext4_fsblk_t len; 4095 int hblock, blocksize; 4096 ext4_fsblk_t sb_block; 4097 unsigned long offset; 4098 struct ext4_super_block *es; 4099 struct block_device *bdev; 4100 4101 BUG_ON(!ext4_has_feature_journal(sb)); 4102 4103 bdev = ext4_blkdev_get(j_dev, sb); 4104 if (bdev == NULL) 4105 return NULL; 4106 4107 blocksize = sb->s_blocksize; 4108 hblock = bdev_logical_block_size(bdev); 4109 if (blocksize < hblock) { 4110 ext4_msg(sb, KERN_ERR, 4111 "blocksize too small for journal device"); 4112 goto out_bdev; 4113 } 4114 4115 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4116 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4117 set_blocksize(bdev, blocksize); 4118 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4119 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4120 "external journal"); 4121 goto out_bdev; 4122 } 4123 4124 es = (struct ext4_super_block *) (bh->b_data + offset); 4125 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4126 !(le32_to_cpu(es->s_feature_incompat) & 4127 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4128 ext4_msg(sb, KERN_ERR, "external journal has " 4129 "bad superblock"); 4130 brelse(bh); 4131 goto out_bdev; 4132 } 4133 4134 if ((le32_to_cpu(es->s_feature_ro_compat) & 4135 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 4136 es->s_checksum != ext4_superblock_csum(sb, es)) { 4137 ext4_msg(sb, KERN_ERR, "external journal has " 4138 "corrupt superblock"); 4139 brelse(bh); 4140 goto out_bdev; 4141 } 4142 4143 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4144 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4145 brelse(bh); 4146 goto out_bdev; 4147 } 4148 4149 len = ext4_blocks_count(es); 4150 start = sb_block + 1; 4151 brelse(bh); /* we're done with the superblock */ 4152 4153 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4154 start, len, blocksize); 4155 if (!journal) { 4156 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4157 goto out_bdev; 4158 } 4159 journal->j_private = sb; 4160 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer); 4161 wait_on_buffer(journal->j_sb_buffer); 4162 if (!buffer_uptodate(journal->j_sb_buffer)) { 4163 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4164 goto out_journal; 4165 } 4166 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4167 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4168 "user (unsupported) - %d", 4169 be32_to_cpu(journal->j_superblock->s_nr_users)); 4170 goto out_journal; 4171 } 4172 EXT4_SB(sb)->journal_bdev = bdev; 4173 ext4_init_journal_params(sb, journal); 4174 return journal; 4175 4176 out_journal: 4177 jbd2_journal_destroy(journal); 4178 out_bdev: 4179 ext4_blkdev_put(bdev); 4180 return NULL; 4181 } 4182 4183 static int ext4_load_journal(struct super_block *sb, 4184 struct ext4_super_block *es, 4185 unsigned long journal_devnum) 4186 { 4187 journal_t *journal; 4188 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4189 dev_t journal_dev; 4190 int err = 0; 4191 int really_read_only; 4192 4193 BUG_ON(!ext4_has_feature_journal(sb)); 4194 4195 if (journal_devnum && 4196 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4197 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4198 "numbers have changed"); 4199 journal_dev = new_decode_dev(journal_devnum); 4200 } else 4201 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4202 4203 really_read_only = bdev_read_only(sb->s_bdev); 4204 4205 /* 4206 * Are we loading a blank journal or performing recovery after a 4207 * crash? For recovery, we need to check in advance whether we 4208 * can get read-write access to the device. 4209 */ 4210 if (ext4_has_feature_journal_needs_recovery(sb)) { 4211 if (sb->s_flags & MS_RDONLY) { 4212 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4213 "required on readonly filesystem"); 4214 if (really_read_only) { 4215 ext4_msg(sb, KERN_ERR, "write access " 4216 "unavailable, cannot proceed"); 4217 return -EROFS; 4218 } 4219 ext4_msg(sb, KERN_INFO, "write access will " 4220 "be enabled during recovery"); 4221 } 4222 } 4223 4224 if (journal_inum && journal_dev) { 4225 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4226 "and inode journals!"); 4227 return -EINVAL; 4228 } 4229 4230 if (journal_inum) { 4231 if (!(journal = ext4_get_journal(sb, journal_inum))) 4232 return -EINVAL; 4233 } else { 4234 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4235 return -EINVAL; 4236 } 4237 4238 if (!(journal->j_flags & JBD2_BARRIER)) 4239 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4240 4241 if (!ext4_has_feature_journal_needs_recovery(sb)) 4242 err = jbd2_journal_wipe(journal, !really_read_only); 4243 if (!err) { 4244 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4245 if (save) 4246 memcpy(save, ((char *) es) + 4247 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4248 err = jbd2_journal_load(journal); 4249 if (save) 4250 memcpy(((char *) es) + EXT4_S_ERR_START, 4251 save, EXT4_S_ERR_LEN); 4252 kfree(save); 4253 } 4254 4255 if (err) { 4256 ext4_msg(sb, KERN_ERR, "error loading journal"); 4257 jbd2_journal_destroy(journal); 4258 return err; 4259 } 4260 4261 EXT4_SB(sb)->s_journal = journal; 4262 ext4_clear_journal_err(sb, es); 4263 4264 if (!really_read_only && journal_devnum && 4265 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4266 es->s_journal_dev = cpu_to_le32(journal_devnum); 4267 4268 /* Make sure we flush the recovery flag to disk. */ 4269 ext4_commit_super(sb, 1); 4270 } 4271 4272 return 0; 4273 } 4274 4275 static int ext4_commit_super(struct super_block *sb, int sync) 4276 { 4277 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4278 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4279 int error = 0; 4280 4281 if (!sbh || block_device_ejected(sb)) 4282 return error; 4283 if (buffer_write_io_error(sbh)) { 4284 /* 4285 * Oh, dear. A previous attempt to write the 4286 * superblock failed. This could happen because the 4287 * USB device was yanked out. Or it could happen to 4288 * be a transient write error and maybe the block will 4289 * be remapped. Nothing we can do but to retry the 4290 * write and hope for the best. 4291 */ 4292 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4293 "superblock detected"); 4294 clear_buffer_write_io_error(sbh); 4295 set_buffer_uptodate(sbh); 4296 } 4297 /* 4298 * If the file system is mounted read-only, don't update the 4299 * superblock write time. This avoids updating the superblock 4300 * write time when we are mounting the root file system 4301 * read/only but we need to replay the journal; at that point, 4302 * for people who are east of GMT and who make their clock 4303 * tick in localtime for Windows bug-for-bug compatibility, 4304 * the clock is set in the future, and this will cause e2fsck 4305 * to complain and force a full file system check. 4306 */ 4307 if (!(sb->s_flags & MS_RDONLY)) 4308 es->s_wtime = cpu_to_le32(get_seconds()); 4309 if (sb->s_bdev->bd_part) 4310 es->s_kbytes_written = 4311 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4312 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4313 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4314 else 4315 es->s_kbytes_written = 4316 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4317 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter)) 4318 ext4_free_blocks_count_set(es, 4319 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4320 &EXT4_SB(sb)->s_freeclusters_counter))); 4321 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter)) 4322 es->s_free_inodes_count = 4323 cpu_to_le32(percpu_counter_sum_positive( 4324 &EXT4_SB(sb)->s_freeinodes_counter)); 4325 BUFFER_TRACE(sbh, "marking dirty"); 4326 ext4_superblock_csum_set(sb); 4327 mark_buffer_dirty(sbh); 4328 if (sync) { 4329 error = __sync_dirty_buffer(sbh, 4330 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC); 4331 if (error) 4332 return error; 4333 4334 error = buffer_write_io_error(sbh); 4335 if (error) { 4336 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4337 "superblock"); 4338 clear_buffer_write_io_error(sbh); 4339 set_buffer_uptodate(sbh); 4340 } 4341 } 4342 return error; 4343 } 4344 4345 /* 4346 * Have we just finished recovery? If so, and if we are mounting (or 4347 * remounting) the filesystem readonly, then we will end up with a 4348 * consistent fs on disk. Record that fact. 4349 */ 4350 static void ext4_mark_recovery_complete(struct super_block *sb, 4351 struct ext4_super_block *es) 4352 { 4353 journal_t *journal = EXT4_SB(sb)->s_journal; 4354 4355 if (!ext4_has_feature_journal(sb)) { 4356 BUG_ON(journal != NULL); 4357 return; 4358 } 4359 jbd2_journal_lock_updates(journal); 4360 if (jbd2_journal_flush(journal) < 0) 4361 goto out; 4362 4363 if (ext4_has_feature_journal_needs_recovery(sb) && 4364 sb->s_flags & MS_RDONLY) { 4365 ext4_clear_feature_journal_needs_recovery(sb); 4366 ext4_commit_super(sb, 1); 4367 } 4368 4369 out: 4370 jbd2_journal_unlock_updates(journal); 4371 } 4372 4373 /* 4374 * If we are mounting (or read-write remounting) a filesystem whose journal 4375 * has recorded an error from a previous lifetime, move that error to the 4376 * main filesystem now. 4377 */ 4378 static void ext4_clear_journal_err(struct super_block *sb, 4379 struct ext4_super_block *es) 4380 { 4381 journal_t *journal; 4382 int j_errno; 4383 const char *errstr; 4384 4385 BUG_ON(!ext4_has_feature_journal(sb)); 4386 4387 journal = EXT4_SB(sb)->s_journal; 4388 4389 /* 4390 * Now check for any error status which may have been recorded in the 4391 * journal by a prior ext4_error() or ext4_abort() 4392 */ 4393 4394 j_errno = jbd2_journal_errno(journal); 4395 if (j_errno) { 4396 char nbuf[16]; 4397 4398 errstr = ext4_decode_error(sb, j_errno, nbuf); 4399 ext4_warning(sb, "Filesystem error recorded " 4400 "from previous mount: %s", errstr); 4401 ext4_warning(sb, "Marking fs in need of filesystem check."); 4402 4403 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4404 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4405 ext4_commit_super(sb, 1); 4406 4407 jbd2_journal_clear_err(journal); 4408 jbd2_journal_update_sb_errno(journal); 4409 } 4410 } 4411 4412 /* 4413 * Force the running and committing transactions to commit, 4414 * and wait on the commit. 4415 */ 4416 int ext4_force_commit(struct super_block *sb) 4417 { 4418 journal_t *journal; 4419 4420 if (sb->s_flags & MS_RDONLY) 4421 return 0; 4422 4423 journal = EXT4_SB(sb)->s_journal; 4424 return ext4_journal_force_commit(journal); 4425 } 4426 4427 static int ext4_sync_fs(struct super_block *sb, int wait) 4428 { 4429 int ret = 0; 4430 tid_t target; 4431 bool needs_barrier = false; 4432 struct ext4_sb_info *sbi = EXT4_SB(sb); 4433 4434 trace_ext4_sync_fs(sb, wait); 4435 flush_workqueue(sbi->rsv_conversion_wq); 4436 /* 4437 * Writeback quota in non-journalled quota case - journalled quota has 4438 * no dirty dquots 4439 */ 4440 dquot_writeback_dquots(sb, -1); 4441 /* 4442 * Data writeback is possible w/o journal transaction, so barrier must 4443 * being sent at the end of the function. But we can skip it if 4444 * transaction_commit will do it for us. 4445 */ 4446 if (sbi->s_journal) { 4447 target = jbd2_get_latest_transaction(sbi->s_journal); 4448 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER && 4449 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target)) 4450 needs_barrier = true; 4451 4452 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4453 if (wait) 4454 ret = jbd2_log_wait_commit(sbi->s_journal, 4455 target); 4456 } 4457 } else if (wait && test_opt(sb, BARRIER)) 4458 needs_barrier = true; 4459 if (needs_barrier) { 4460 int err; 4461 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL); 4462 if (!ret) 4463 ret = err; 4464 } 4465 4466 return ret; 4467 } 4468 4469 /* 4470 * LVM calls this function before a (read-only) snapshot is created. This 4471 * gives us a chance to flush the journal completely and mark the fs clean. 4472 * 4473 * Note that only this function cannot bring a filesystem to be in a clean 4474 * state independently. It relies on upper layer to stop all data & metadata 4475 * modifications. 4476 */ 4477 static int ext4_freeze(struct super_block *sb) 4478 { 4479 int error = 0; 4480 journal_t *journal; 4481 4482 if (sb->s_flags & MS_RDONLY) 4483 return 0; 4484 4485 journal = EXT4_SB(sb)->s_journal; 4486 4487 if (journal) { 4488 /* Now we set up the journal barrier. */ 4489 jbd2_journal_lock_updates(journal); 4490 4491 /* 4492 * Don't clear the needs_recovery flag if we failed to 4493 * flush the journal. 4494 */ 4495 error = jbd2_journal_flush(journal); 4496 if (error < 0) 4497 goto out; 4498 4499 /* Journal blocked and flushed, clear needs_recovery flag. */ 4500 ext4_clear_feature_journal_needs_recovery(sb); 4501 } 4502 4503 error = ext4_commit_super(sb, 1); 4504 out: 4505 if (journal) 4506 /* we rely on upper layer to stop further updates */ 4507 jbd2_journal_unlock_updates(journal); 4508 return error; 4509 } 4510 4511 /* 4512 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4513 * flag here, even though the filesystem is not technically dirty yet. 4514 */ 4515 static int ext4_unfreeze(struct super_block *sb) 4516 { 4517 if (sb->s_flags & MS_RDONLY) 4518 return 0; 4519 4520 if (EXT4_SB(sb)->s_journal) { 4521 /* Reset the needs_recovery flag before the fs is unlocked. */ 4522 ext4_set_feature_journal_needs_recovery(sb); 4523 } 4524 4525 ext4_commit_super(sb, 1); 4526 return 0; 4527 } 4528 4529 /* 4530 * Structure to save mount options for ext4_remount's benefit 4531 */ 4532 struct ext4_mount_options { 4533 unsigned long s_mount_opt; 4534 unsigned long s_mount_opt2; 4535 kuid_t s_resuid; 4536 kgid_t s_resgid; 4537 unsigned long s_commit_interval; 4538 u32 s_min_batch_time, s_max_batch_time; 4539 #ifdef CONFIG_QUOTA 4540 int s_jquota_fmt; 4541 char *s_qf_names[EXT4_MAXQUOTAS]; 4542 #endif 4543 }; 4544 4545 static int ext4_remount(struct super_block *sb, int *flags, char *data) 4546 { 4547 struct ext4_super_block *es; 4548 struct ext4_sb_info *sbi = EXT4_SB(sb); 4549 unsigned long old_sb_flags; 4550 struct ext4_mount_options old_opts; 4551 int enable_quota = 0; 4552 ext4_group_t g; 4553 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4554 int err = 0; 4555 #ifdef CONFIG_QUOTA 4556 int i, j; 4557 #endif 4558 char *orig_data = kstrdup(data, GFP_KERNEL); 4559 4560 /* Store the original options */ 4561 old_sb_flags = sb->s_flags; 4562 old_opts.s_mount_opt = sbi->s_mount_opt; 4563 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4564 old_opts.s_resuid = sbi->s_resuid; 4565 old_opts.s_resgid = sbi->s_resgid; 4566 old_opts.s_commit_interval = sbi->s_commit_interval; 4567 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4568 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4569 #ifdef CONFIG_QUOTA 4570 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4571 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4572 if (sbi->s_qf_names[i]) { 4573 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4574 GFP_KERNEL); 4575 if (!old_opts.s_qf_names[i]) { 4576 for (j = 0; j < i; j++) 4577 kfree(old_opts.s_qf_names[j]); 4578 kfree(orig_data); 4579 return -ENOMEM; 4580 } 4581 } else 4582 old_opts.s_qf_names[i] = NULL; 4583 #endif 4584 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4585 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4586 4587 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4588 err = -EINVAL; 4589 goto restore_opts; 4590 } 4591 4592 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^ 4593 test_opt(sb, JOURNAL_CHECKSUM)) { 4594 ext4_msg(sb, KERN_ERR, "changing journal_checksum " 4595 "during remount not supported; ignoring"); 4596 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM; 4597 } 4598 4599 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 4600 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 4601 ext4_msg(sb, KERN_ERR, "can't mount with " 4602 "both data=journal and delalloc"); 4603 err = -EINVAL; 4604 goto restore_opts; 4605 } 4606 if (test_opt(sb, DIOREAD_NOLOCK)) { 4607 ext4_msg(sb, KERN_ERR, "can't mount with " 4608 "both data=journal and dioread_nolock"); 4609 err = -EINVAL; 4610 goto restore_opts; 4611 } 4612 if (test_opt(sb, DAX)) { 4613 ext4_msg(sb, KERN_ERR, "can't mount with " 4614 "both data=journal and dax"); 4615 err = -EINVAL; 4616 goto restore_opts; 4617 } 4618 } 4619 4620 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) { 4621 ext4_msg(sb, KERN_WARNING, "warning: refusing change of " 4622 "dax flag with busy inodes while remounting"); 4623 sbi->s_mount_opt ^= EXT4_MOUNT_DAX; 4624 } 4625 4626 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4627 ext4_abort(sb, "Abort forced by user"); 4628 4629 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4630 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4631 4632 es = sbi->s_es; 4633 4634 if (sbi->s_journal) { 4635 ext4_init_journal_params(sb, sbi->s_journal); 4636 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4637 } 4638 4639 if (*flags & MS_LAZYTIME) 4640 sb->s_flags |= MS_LAZYTIME; 4641 4642 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4643 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4644 err = -EROFS; 4645 goto restore_opts; 4646 } 4647 4648 if (*flags & MS_RDONLY) { 4649 err = sync_filesystem(sb); 4650 if (err < 0) 4651 goto restore_opts; 4652 err = dquot_suspend(sb, -1); 4653 if (err < 0) 4654 goto restore_opts; 4655 4656 /* 4657 * First of all, the unconditional stuff we have to do 4658 * to disable replay of the journal when we next remount 4659 */ 4660 sb->s_flags |= MS_RDONLY; 4661 4662 /* 4663 * OK, test if we are remounting a valid rw partition 4664 * readonly, and if so set the rdonly flag and then 4665 * mark the partition as valid again. 4666 */ 4667 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4668 (sbi->s_mount_state & EXT4_VALID_FS)) 4669 es->s_state = cpu_to_le16(sbi->s_mount_state); 4670 4671 if (sbi->s_journal) 4672 ext4_mark_recovery_complete(sb, es); 4673 } else { 4674 /* Make sure we can mount this feature set readwrite */ 4675 if (ext4_has_feature_readonly(sb) || 4676 !ext4_feature_set_ok(sb, 0)) { 4677 err = -EROFS; 4678 goto restore_opts; 4679 } 4680 /* 4681 * Make sure the group descriptor checksums 4682 * are sane. If they aren't, refuse to remount r/w. 4683 */ 4684 for (g = 0; g < sbi->s_groups_count; g++) { 4685 struct ext4_group_desc *gdp = 4686 ext4_get_group_desc(sb, g, NULL); 4687 4688 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4689 ext4_msg(sb, KERN_ERR, 4690 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4691 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)), 4692 le16_to_cpu(gdp->bg_checksum)); 4693 err = -EFSBADCRC; 4694 goto restore_opts; 4695 } 4696 } 4697 4698 /* 4699 * If we have an unprocessed orphan list hanging 4700 * around from a previously readonly bdev mount, 4701 * require a full umount/remount for now. 4702 */ 4703 if (es->s_last_orphan) { 4704 ext4_msg(sb, KERN_WARNING, "Couldn't " 4705 "remount RDWR because of unprocessed " 4706 "orphan inode list. Please " 4707 "umount/remount instead"); 4708 err = -EINVAL; 4709 goto restore_opts; 4710 } 4711 4712 /* 4713 * Mounting a RDONLY partition read-write, so reread 4714 * and store the current valid flag. (It may have 4715 * been changed by e2fsck since we originally mounted 4716 * the partition.) 4717 */ 4718 if (sbi->s_journal) 4719 ext4_clear_journal_err(sb, es); 4720 sbi->s_mount_state = le16_to_cpu(es->s_state); 4721 if (!ext4_setup_super(sb, es, 0)) 4722 sb->s_flags &= ~MS_RDONLY; 4723 if (ext4_has_feature_mmp(sb)) 4724 if (ext4_multi_mount_protect(sb, 4725 le64_to_cpu(es->s_mmp_block))) { 4726 err = -EROFS; 4727 goto restore_opts; 4728 } 4729 enable_quota = 1; 4730 } 4731 } 4732 4733 /* 4734 * Reinitialize lazy itable initialization thread based on 4735 * current settings 4736 */ 4737 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4738 ext4_unregister_li_request(sb); 4739 else { 4740 ext4_group_t first_not_zeroed; 4741 first_not_zeroed = ext4_has_uninit_itable(sb); 4742 ext4_register_li_request(sb, first_not_zeroed); 4743 } 4744 4745 ext4_setup_system_zone(sb); 4746 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4747 ext4_commit_super(sb, 1); 4748 4749 #ifdef CONFIG_QUOTA 4750 /* Release old quota file names */ 4751 for (i = 0; i < EXT4_MAXQUOTAS; i++) 4752 kfree(old_opts.s_qf_names[i]); 4753 if (enable_quota) { 4754 if (sb_any_quota_suspended(sb)) 4755 dquot_resume(sb, -1); 4756 else if (ext4_has_feature_quota(sb)) { 4757 err = ext4_enable_quotas(sb); 4758 if (err) 4759 goto restore_opts; 4760 } 4761 } 4762 #endif 4763 4764 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME); 4765 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4766 kfree(orig_data); 4767 return 0; 4768 4769 restore_opts: 4770 sb->s_flags = old_sb_flags; 4771 sbi->s_mount_opt = old_opts.s_mount_opt; 4772 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4773 sbi->s_resuid = old_opts.s_resuid; 4774 sbi->s_resgid = old_opts.s_resgid; 4775 sbi->s_commit_interval = old_opts.s_commit_interval; 4776 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4777 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4778 #ifdef CONFIG_QUOTA 4779 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4780 for (i = 0; i < EXT4_MAXQUOTAS; i++) { 4781 kfree(sbi->s_qf_names[i]); 4782 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4783 } 4784 #endif 4785 kfree(orig_data); 4786 return err; 4787 } 4788 4789 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4790 { 4791 struct super_block *sb = dentry->d_sb; 4792 struct ext4_sb_info *sbi = EXT4_SB(sb); 4793 struct ext4_super_block *es = sbi->s_es; 4794 ext4_fsblk_t overhead = 0, resv_blocks; 4795 u64 fsid; 4796 s64 bfree; 4797 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters)); 4798 4799 if (!test_opt(sb, MINIX_DF)) 4800 overhead = sbi->s_overhead; 4801 4802 buf->f_type = EXT4_SUPER_MAGIC; 4803 buf->f_bsize = sb->s_blocksize; 4804 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4805 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4806 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4807 /* prevent underflow in case that few free space is available */ 4808 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4809 buf->f_bavail = buf->f_bfree - 4810 (ext4_r_blocks_count(es) + resv_blocks); 4811 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks)) 4812 buf->f_bavail = 0; 4813 buf->f_files = le32_to_cpu(es->s_inodes_count); 4814 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4815 buf->f_namelen = EXT4_NAME_LEN; 4816 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4817 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4818 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4819 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4820 4821 return 0; 4822 } 4823 4824 /* Helper function for writing quotas on sync - we need to start transaction 4825 * before quota file is locked for write. Otherwise the are possible deadlocks: 4826 * Process 1 Process 2 4827 * ext4_create() quota_sync() 4828 * jbd2_journal_start() write_dquot() 4829 * dquot_initialize() down(dqio_mutex) 4830 * down(dqio_mutex) jbd2_journal_start() 4831 * 4832 */ 4833 4834 #ifdef CONFIG_QUOTA 4835 4836 static inline struct inode *dquot_to_inode(struct dquot *dquot) 4837 { 4838 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4839 } 4840 4841 static int ext4_write_dquot(struct dquot *dquot) 4842 { 4843 int ret, err; 4844 handle_t *handle; 4845 struct inode *inode; 4846 4847 inode = dquot_to_inode(dquot); 4848 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4849 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4850 if (IS_ERR(handle)) 4851 return PTR_ERR(handle); 4852 ret = dquot_commit(dquot); 4853 err = ext4_journal_stop(handle); 4854 if (!ret) 4855 ret = err; 4856 return ret; 4857 } 4858 4859 static int ext4_acquire_dquot(struct dquot *dquot) 4860 { 4861 int ret, err; 4862 handle_t *handle; 4863 4864 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4865 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4866 if (IS_ERR(handle)) 4867 return PTR_ERR(handle); 4868 ret = dquot_acquire(dquot); 4869 err = ext4_journal_stop(handle); 4870 if (!ret) 4871 ret = err; 4872 return ret; 4873 } 4874 4875 static int ext4_release_dquot(struct dquot *dquot) 4876 { 4877 int ret, err; 4878 handle_t *handle; 4879 4880 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4881 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4882 if (IS_ERR(handle)) { 4883 /* Release dquot anyway to avoid endless cycle in dqput() */ 4884 dquot_release(dquot); 4885 return PTR_ERR(handle); 4886 } 4887 ret = dquot_release(dquot); 4888 err = ext4_journal_stop(handle); 4889 if (!ret) 4890 ret = err; 4891 return ret; 4892 } 4893 4894 static int ext4_mark_dquot_dirty(struct dquot *dquot) 4895 { 4896 struct super_block *sb = dquot->dq_sb; 4897 struct ext4_sb_info *sbi = EXT4_SB(sb); 4898 4899 /* Are we journaling quotas? */ 4900 if (ext4_has_feature_quota(sb) || 4901 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4902 dquot_mark_dquot_dirty(dquot); 4903 return ext4_write_dquot(dquot); 4904 } else { 4905 return dquot_mark_dquot_dirty(dquot); 4906 } 4907 } 4908 4909 static int ext4_write_info(struct super_block *sb, int type) 4910 { 4911 int ret, err; 4912 handle_t *handle; 4913 4914 /* Data block + inode block */ 4915 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2); 4916 if (IS_ERR(handle)) 4917 return PTR_ERR(handle); 4918 ret = dquot_commit_info(sb, type); 4919 err = ext4_journal_stop(handle); 4920 if (!ret) 4921 ret = err; 4922 return ret; 4923 } 4924 4925 /* 4926 * Turn on quotas during mount time - we need to find 4927 * the quota file and such... 4928 */ 4929 static int ext4_quota_on_mount(struct super_block *sb, int type) 4930 { 4931 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4932 EXT4_SB(sb)->s_jquota_fmt, type); 4933 } 4934 4935 /* 4936 * Standard function to be called on quota_on 4937 */ 4938 static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4939 struct path *path) 4940 { 4941 int err; 4942 4943 if (!test_opt(sb, QUOTA)) 4944 return -EINVAL; 4945 4946 /* Quotafile not on the same filesystem? */ 4947 if (path->dentry->d_sb != sb) 4948 return -EXDEV; 4949 /* Journaling quota? */ 4950 if (EXT4_SB(sb)->s_qf_names[type]) { 4951 /* Quotafile not in fs root? */ 4952 if (path->dentry->d_parent != sb->s_root) 4953 ext4_msg(sb, KERN_WARNING, 4954 "Quota file not on filesystem root. " 4955 "Journaled quota will not work"); 4956 } 4957 4958 /* 4959 * When we journal data on quota file, we have to flush journal to see 4960 * all updates to the file when we bypass pagecache... 4961 */ 4962 if (EXT4_SB(sb)->s_journal && 4963 ext4_should_journal_data(d_inode(path->dentry))) { 4964 /* 4965 * We don't need to lock updates but journal_flush() could 4966 * otherwise be livelocked... 4967 */ 4968 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4969 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4970 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4971 if (err) 4972 return err; 4973 } 4974 4975 return dquot_quota_on(sb, type, format_id, path); 4976 } 4977 4978 static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4979 unsigned int flags) 4980 { 4981 int err; 4982 struct inode *qf_inode; 4983 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 4984 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4985 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4986 }; 4987 4988 BUG_ON(!ext4_has_feature_quota(sb)); 4989 4990 if (!qf_inums[type]) 4991 return -EPERM; 4992 4993 qf_inode = ext4_iget(sb, qf_inums[type]); 4994 if (IS_ERR(qf_inode)) { 4995 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4996 return PTR_ERR(qf_inode); 4997 } 4998 4999 /* Don't account quota for quota files to avoid recursion */ 5000 qf_inode->i_flags |= S_NOQUOTA; 5001 err = dquot_enable(qf_inode, type, format_id, flags); 5002 iput(qf_inode); 5003 5004 return err; 5005 } 5006 5007 /* Enable usage tracking for all quota types. */ 5008 static int ext4_enable_quotas(struct super_block *sb) 5009 { 5010 int type, err = 0; 5011 unsigned long qf_inums[EXT4_MAXQUOTAS] = { 5012 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 5013 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 5014 }; 5015 5016 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 5017 for (type = 0; type < EXT4_MAXQUOTAS; type++) { 5018 if (qf_inums[type]) { 5019 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 5020 DQUOT_USAGE_ENABLED); 5021 if (err) { 5022 ext4_warning(sb, 5023 "Failed to enable quota tracking " 5024 "(type=%d, err=%d). Please run " 5025 "e2fsck to fix.", type, err); 5026 return err; 5027 } 5028 } 5029 } 5030 return 0; 5031 } 5032 5033 static int ext4_quota_off(struct super_block *sb, int type) 5034 { 5035 struct inode *inode = sb_dqopt(sb)->files[type]; 5036 handle_t *handle; 5037 5038 /* Force all delayed allocation blocks to be allocated. 5039 * Caller already holds s_umount sem */ 5040 if (test_opt(sb, DELALLOC)) 5041 sync_filesystem(sb); 5042 5043 if (!inode) 5044 goto out; 5045 5046 /* Update modification times of quota files when userspace can 5047 * start looking at them */ 5048 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5049 if (IS_ERR(handle)) 5050 goto out; 5051 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5052 ext4_mark_inode_dirty(handle, inode); 5053 ext4_journal_stop(handle); 5054 5055 out: 5056 return dquot_quota_off(sb, type); 5057 } 5058 5059 /* Read data from quotafile - avoid pagecache and such because we cannot afford 5060 * acquiring the locks... As quota files are never truncated and quota code 5061 * itself serializes the operations (and no one else should touch the files) 5062 * we don't have to be afraid of races */ 5063 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5064 size_t len, loff_t off) 5065 { 5066 struct inode *inode = sb_dqopt(sb)->files[type]; 5067 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5068 int offset = off & (sb->s_blocksize - 1); 5069 int tocopy; 5070 size_t toread; 5071 struct buffer_head *bh; 5072 loff_t i_size = i_size_read(inode); 5073 5074 if (off > i_size) 5075 return 0; 5076 if (off+len > i_size) 5077 len = i_size-off; 5078 toread = len; 5079 while (toread > 0) { 5080 tocopy = sb->s_blocksize - offset < toread ? 5081 sb->s_blocksize - offset : toread; 5082 bh = ext4_bread(NULL, inode, blk, 0); 5083 if (IS_ERR(bh)) 5084 return PTR_ERR(bh); 5085 if (!bh) /* A hole? */ 5086 memset(data, 0, tocopy); 5087 else 5088 memcpy(data, bh->b_data+offset, tocopy); 5089 brelse(bh); 5090 offset = 0; 5091 toread -= tocopy; 5092 data += tocopy; 5093 blk++; 5094 } 5095 return len; 5096 } 5097 5098 /* Write to quotafile (we know the transaction is already started and has 5099 * enough credits) */ 5100 static ssize_t ext4_quota_write(struct super_block *sb, int type, 5101 const char *data, size_t len, loff_t off) 5102 { 5103 struct inode *inode = sb_dqopt(sb)->files[type]; 5104 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5105 int err, offset = off & (sb->s_blocksize - 1); 5106 int retries = 0; 5107 struct buffer_head *bh; 5108 handle_t *handle = journal_current_handle(); 5109 5110 if (EXT4_SB(sb)->s_journal && !handle) { 5111 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5112 " cancelled because transaction is not started", 5113 (unsigned long long)off, (unsigned long long)len); 5114 return -EIO; 5115 } 5116 /* 5117 * Since we account only one data block in transaction credits, 5118 * then it is impossible to cross a block boundary. 5119 */ 5120 if (sb->s_blocksize - offset < len) { 5121 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5122 " cancelled because not block aligned", 5123 (unsigned long long)off, (unsigned long long)len); 5124 return -EIO; 5125 } 5126 5127 do { 5128 bh = ext4_bread(handle, inode, blk, 5129 EXT4_GET_BLOCKS_CREATE | 5130 EXT4_GET_BLOCKS_METADATA_NOFAIL); 5131 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) && 5132 ext4_should_retry_alloc(inode->i_sb, &retries)); 5133 if (IS_ERR(bh)) 5134 return PTR_ERR(bh); 5135 if (!bh) 5136 goto out; 5137 BUFFER_TRACE(bh, "get write access"); 5138 err = ext4_journal_get_write_access(handle, bh); 5139 if (err) { 5140 brelse(bh); 5141 return err; 5142 } 5143 lock_buffer(bh); 5144 memcpy(bh->b_data+offset, data, len); 5145 flush_dcache_page(bh->b_page); 5146 unlock_buffer(bh); 5147 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5148 brelse(bh); 5149 out: 5150 if (inode->i_size < off + len) { 5151 i_size_write(inode, off + len); 5152 EXT4_I(inode)->i_disksize = inode->i_size; 5153 ext4_mark_inode_dirty(handle, inode); 5154 } 5155 return len; 5156 } 5157 5158 #endif 5159 5160 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5161 const char *dev_name, void *data) 5162 { 5163 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5164 } 5165 5166 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2) 5167 static inline void register_as_ext2(void) 5168 { 5169 int err = register_filesystem(&ext2_fs_type); 5170 if (err) 5171 printk(KERN_WARNING 5172 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5173 } 5174 5175 static inline void unregister_as_ext2(void) 5176 { 5177 unregister_filesystem(&ext2_fs_type); 5178 } 5179 5180 static inline int ext2_feature_set_ok(struct super_block *sb) 5181 { 5182 if (ext4_has_unknown_ext2_incompat_features(sb)) 5183 return 0; 5184 if (sb->s_flags & MS_RDONLY) 5185 return 1; 5186 if (ext4_has_unknown_ext2_ro_compat_features(sb)) 5187 return 0; 5188 return 1; 5189 } 5190 #else 5191 static inline void register_as_ext2(void) { } 5192 static inline void unregister_as_ext2(void) { } 5193 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5194 #endif 5195 5196 static inline void register_as_ext3(void) 5197 { 5198 int err = register_filesystem(&ext3_fs_type); 5199 if (err) 5200 printk(KERN_WARNING 5201 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5202 } 5203 5204 static inline void unregister_as_ext3(void) 5205 { 5206 unregister_filesystem(&ext3_fs_type); 5207 } 5208 5209 static inline int ext3_feature_set_ok(struct super_block *sb) 5210 { 5211 if (ext4_has_unknown_ext3_incompat_features(sb)) 5212 return 0; 5213 if (!ext4_has_feature_journal(sb)) 5214 return 0; 5215 if (sb->s_flags & MS_RDONLY) 5216 return 1; 5217 if (ext4_has_unknown_ext3_ro_compat_features(sb)) 5218 return 0; 5219 return 1; 5220 } 5221 5222 static struct file_system_type ext4_fs_type = { 5223 .owner = THIS_MODULE, 5224 .name = "ext4", 5225 .mount = ext4_mount, 5226 .kill_sb = kill_block_super, 5227 .fs_flags = FS_REQUIRES_DEV, 5228 }; 5229 MODULE_ALIAS_FS("ext4"); 5230 5231 /* Shared across all ext4 file systems */ 5232 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5233 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5234 5235 static int __init ext4_init_fs(void) 5236 { 5237 int i, err; 5238 5239 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64); 5240 ext4_li_info = NULL; 5241 mutex_init(&ext4_li_mtx); 5242 5243 /* Build-time check for flags consistency */ 5244 ext4_check_flag_values(); 5245 5246 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5247 mutex_init(&ext4__aio_mutex[i]); 5248 init_waitqueue_head(&ext4__ioend_wq[i]); 5249 } 5250 5251 err = ext4_init_es(); 5252 if (err) 5253 return err; 5254 5255 err = ext4_init_pageio(); 5256 if (err) 5257 goto out5; 5258 5259 err = ext4_init_system_zone(); 5260 if (err) 5261 goto out4; 5262 5263 err = ext4_init_sysfs(); 5264 if (err) 5265 goto out3; 5266 5267 err = ext4_init_mballoc(); 5268 if (err) 5269 goto out2; 5270 else 5271 ext4_mballoc_ready = 1; 5272 err = init_inodecache(); 5273 if (err) 5274 goto out1; 5275 register_as_ext3(); 5276 register_as_ext2(); 5277 err = register_filesystem(&ext4_fs_type); 5278 if (err) 5279 goto out; 5280 5281 return 0; 5282 out: 5283 unregister_as_ext2(); 5284 unregister_as_ext3(); 5285 destroy_inodecache(); 5286 out1: 5287 ext4_mballoc_ready = 0; 5288 ext4_exit_mballoc(); 5289 out2: 5290 ext4_exit_sysfs(); 5291 out3: 5292 ext4_exit_system_zone(); 5293 out4: 5294 ext4_exit_pageio(); 5295 out5: 5296 ext4_exit_es(); 5297 5298 return err; 5299 } 5300 5301 static void __exit ext4_exit_fs(void) 5302 { 5303 ext4_exit_crypto(); 5304 ext4_destroy_lazyinit_thread(); 5305 unregister_as_ext2(); 5306 unregister_as_ext3(); 5307 unregister_filesystem(&ext4_fs_type); 5308 destroy_inodecache(); 5309 ext4_exit_mballoc(); 5310 ext4_exit_sysfs(); 5311 ext4_exit_system_zone(); 5312 ext4_exit_pageio(); 5313 ext4_exit_es(); 5314 } 5315 5316 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5317 MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5318 MODULE_LICENSE("GPL"); 5319 module_init(ext4_init_fs) 5320 module_exit(ext4_exit_fs) 5321