xref: /openbmc/linux/fs/ext4/readpage.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46 #include <linux/cleancache.h>
47 
48 #include "ext4.h"
49 
50 #define NUM_PREALLOC_POST_READ_CTXS	128
51 
52 static struct kmem_cache *bio_post_read_ctx_cache;
53 static mempool_t *bio_post_read_ctx_pool;
54 
55 /* postprocessing steps for read bios */
56 enum bio_post_read_step {
57 	STEP_INITIAL = 0,
58 	STEP_DECRYPT,
59 	STEP_VERITY,
60 	STEP_MAX,
61 };
62 
63 struct bio_post_read_ctx {
64 	struct bio *bio;
65 	struct work_struct work;
66 	unsigned int cur_step;
67 	unsigned int enabled_steps;
68 };
69 
70 static void __read_end_io(struct bio *bio)
71 {
72 	struct page *page;
73 	struct bio_vec *bv;
74 	struct bvec_iter_all iter_all;
75 
76 	bio_for_each_segment_all(bv, bio, iter_all) {
77 		page = bv->bv_page;
78 
79 		/* PG_error was set if any post_read step failed */
80 		if (bio->bi_status || PageError(page)) {
81 			ClearPageUptodate(page);
82 			/* will re-read again later */
83 			ClearPageError(page);
84 		} else {
85 			SetPageUptodate(page);
86 		}
87 		unlock_page(page);
88 	}
89 	if (bio->bi_private)
90 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
91 	bio_put(bio);
92 }
93 
94 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
95 
96 static void decrypt_work(struct work_struct *work)
97 {
98 	struct bio_post_read_ctx *ctx =
99 		container_of(work, struct bio_post_read_ctx, work);
100 
101 	fscrypt_decrypt_bio(ctx->bio);
102 
103 	bio_post_read_processing(ctx);
104 }
105 
106 static void verity_work(struct work_struct *work)
107 {
108 	struct bio_post_read_ctx *ctx =
109 		container_of(work, struct bio_post_read_ctx, work);
110 	struct bio *bio = ctx->bio;
111 
112 	/*
113 	 * fsverity_verify_bio() may call readpages() again, and although verity
114 	 * will be disabled for that, decryption may still be needed, causing
115 	 * another bio_post_read_ctx to be allocated.  So to guarantee that
116 	 * mempool_alloc() never deadlocks we must free the current ctx first.
117 	 * This is safe because verity is the last post-read step.
118 	 */
119 	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
120 	mempool_free(ctx, bio_post_read_ctx_pool);
121 	bio->bi_private = NULL;
122 
123 	fsverity_verify_bio(bio);
124 
125 	__read_end_io(bio);
126 }
127 
128 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
129 {
130 	/*
131 	 * We use different work queues for decryption and for verity because
132 	 * verity may require reading metadata pages that need decryption, and
133 	 * we shouldn't recurse to the same workqueue.
134 	 */
135 	switch (++ctx->cur_step) {
136 	case STEP_DECRYPT:
137 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
138 			INIT_WORK(&ctx->work, decrypt_work);
139 			fscrypt_enqueue_decrypt_work(&ctx->work);
140 			return;
141 		}
142 		ctx->cur_step++;
143 		fallthrough;
144 	case STEP_VERITY:
145 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
146 			INIT_WORK(&ctx->work, verity_work);
147 			fsverity_enqueue_verify_work(&ctx->work);
148 			return;
149 		}
150 		ctx->cur_step++;
151 		fallthrough;
152 	default:
153 		__read_end_io(ctx->bio);
154 	}
155 }
156 
157 static bool bio_post_read_required(struct bio *bio)
158 {
159 	return bio->bi_private && !bio->bi_status;
160 }
161 
162 /*
163  * I/O completion handler for multipage BIOs.
164  *
165  * The mpage code never puts partial pages into a BIO (except for end-of-file).
166  * If a page does not map to a contiguous run of blocks then it simply falls
167  * back to block_read_full_page().
168  *
169  * Why is this?  If a page's completion depends on a number of different BIOs
170  * which can complete in any order (or at the same time) then determining the
171  * status of that page is hard.  See end_buffer_async_read() for the details.
172  * There is no point in duplicating all that complexity.
173  */
174 static void mpage_end_io(struct bio *bio)
175 {
176 	if (bio_post_read_required(bio)) {
177 		struct bio_post_read_ctx *ctx = bio->bi_private;
178 
179 		ctx->cur_step = STEP_INITIAL;
180 		bio_post_read_processing(ctx);
181 		return;
182 	}
183 	__read_end_io(bio);
184 }
185 
186 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
187 {
188 	return fsverity_active(inode) &&
189 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
190 }
191 
192 static void ext4_set_bio_post_read_ctx(struct bio *bio,
193 				       const struct inode *inode,
194 				       pgoff_t first_idx)
195 {
196 	unsigned int post_read_steps = 0;
197 
198 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
199 		post_read_steps |= 1 << STEP_DECRYPT;
200 
201 	if (ext4_need_verity(inode, first_idx))
202 		post_read_steps |= 1 << STEP_VERITY;
203 
204 	if (post_read_steps) {
205 		/* Due to the mempool, this never fails. */
206 		struct bio_post_read_ctx *ctx =
207 			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
208 
209 		ctx->bio = bio;
210 		ctx->enabled_steps = post_read_steps;
211 		bio->bi_private = ctx;
212 	}
213 }
214 
215 static inline loff_t ext4_readpage_limit(struct inode *inode)
216 {
217 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
218 	    (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
219 		return inode->i_sb->s_maxbytes;
220 
221 	return i_size_read(inode);
222 }
223 
224 int ext4_mpage_readpages(struct inode *inode,
225 		struct readahead_control *rac, struct page *page)
226 {
227 	struct bio *bio = NULL;
228 	sector_t last_block_in_bio = 0;
229 
230 	const unsigned blkbits = inode->i_blkbits;
231 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
232 	const unsigned blocksize = 1 << blkbits;
233 	sector_t next_block;
234 	sector_t block_in_file;
235 	sector_t last_block;
236 	sector_t last_block_in_file;
237 	sector_t blocks[MAX_BUF_PER_PAGE];
238 	unsigned page_block;
239 	struct block_device *bdev = inode->i_sb->s_bdev;
240 	int length;
241 	unsigned relative_block = 0;
242 	struct ext4_map_blocks map;
243 	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
244 
245 	map.m_pblk = 0;
246 	map.m_lblk = 0;
247 	map.m_len = 0;
248 	map.m_flags = 0;
249 
250 	for (; nr_pages; nr_pages--) {
251 		int fully_mapped = 1;
252 		unsigned first_hole = blocks_per_page;
253 
254 		if (rac) {
255 			page = readahead_page(rac);
256 			prefetchw(&page->flags);
257 		}
258 
259 		if (page_has_buffers(page))
260 			goto confused;
261 
262 		block_in_file = next_block =
263 			(sector_t)page->index << (PAGE_SHIFT - blkbits);
264 		last_block = block_in_file + nr_pages * blocks_per_page;
265 		last_block_in_file = (ext4_readpage_limit(inode) +
266 				      blocksize - 1) >> blkbits;
267 		if (last_block > last_block_in_file)
268 			last_block = last_block_in_file;
269 		page_block = 0;
270 
271 		/*
272 		 * Map blocks using the previous result first.
273 		 */
274 		if ((map.m_flags & EXT4_MAP_MAPPED) &&
275 		    block_in_file > map.m_lblk &&
276 		    block_in_file < (map.m_lblk + map.m_len)) {
277 			unsigned map_offset = block_in_file - map.m_lblk;
278 			unsigned last = map.m_len - map_offset;
279 
280 			for (relative_block = 0; ; relative_block++) {
281 				if (relative_block == last) {
282 					/* needed? */
283 					map.m_flags &= ~EXT4_MAP_MAPPED;
284 					break;
285 				}
286 				if (page_block == blocks_per_page)
287 					break;
288 				blocks[page_block] = map.m_pblk + map_offset +
289 					relative_block;
290 				page_block++;
291 				block_in_file++;
292 			}
293 		}
294 
295 		/*
296 		 * Then do more ext4_map_blocks() calls until we are
297 		 * done with this page.
298 		 */
299 		while (page_block < blocks_per_page) {
300 			if (block_in_file < last_block) {
301 				map.m_lblk = block_in_file;
302 				map.m_len = last_block - block_in_file;
303 
304 				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
305 				set_error_page:
306 					SetPageError(page);
307 					zero_user_segment(page, 0,
308 							  PAGE_SIZE);
309 					unlock_page(page);
310 					goto next_page;
311 				}
312 			}
313 			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
314 				fully_mapped = 0;
315 				if (first_hole == blocks_per_page)
316 					first_hole = page_block;
317 				page_block++;
318 				block_in_file++;
319 				continue;
320 			}
321 			if (first_hole != blocks_per_page)
322 				goto confused;		/* hole -> non-hole */
323 
324 			/* Contiguous blocks? */
325 			if (page_block && blocks[page_block-1] != map.m_pblk-1)
326 				goto confused;
327 			for (relative_block = 0; ; relative_block++) {
328 				if (relative_block == map.m_len) {
329 					/* needed? */
330 					map.m_flags &= ~EXT4_MAP_MAPPED;
331 					break;
332 				} else if (page_block == blocks_per_page)
333 					break;
334 				blocks[page_block] = map.m_pblk+relative_block;
335 				page_block++;
336 				block_in_file++;
337 			}
338 		}
339 		if (first_hole != blocks_per_page) {
340 			zero_user_segment(page, first_hole << blkbits,
341 					  PAGE_SIZE);
342 			if (first_hole == 0) {
343 				if (ext4_need_verity(inode, page->index) &&
344 				    !fsverity_verify_page(page))
345 					goto set_error_page;
346 				SetPageUptodate(page);
347 				unlock_page(page);
348 				goto next_page;
349 			}
350 		} else if (fully_mapped) {
351 			SetPageMappedToDisk(page);
352 		}
353 		if (fully_mapped && blocks_per_page == 1 &&
354 		    !PageUptodate(page) && cleancache_get_page(page) == 0) {
355 			SetPageUptodate(page);
356 			goto confused;
357 		}
358 
359 		/*
360 		 * This page will go to BIO.  Do we need to send this
361 		 * BIO off first?
362 		 */
363 		if (bio && (last_block_in_bio != blocks[0] - 1 ||
364 			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
365 		submit_and_realloc:
366 			submit_bio(bio);
367 			bio = NULL;
368 		}
369 		if (bio == NULL) {
370 			/*
371 			 * bio_alloc will _always_ be able to allocate a bio if
372 			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
373 			 */
374 			bio = bio_alloc(GFP_KERNEL,
375 				min_t(int, nr_pages, BIO_MAX_PAGES));
376 			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
377 						  GFP_KERNEL);
378 			ext4_set_bio_post_read_ctx(bio, inode, page->index);
379 			bio_set_dev(bio, bdev);
380 			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
381 			bio->bi_end_io = mpage_end_io;
382 			bio_set_op_attrs(bio, REQ_OP_READ,
383 						rac ? REQ_RAHEAD : 0);
384 		}
385 
386 		length = first_hole << blkbits;
387 		if (bio_add_page(bio, page, length, 0) < length)
388 			goto submit_and_realloc;
389 
390 		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
391 		     (relative_block == map.m_len)) ||
392 		    (first_hole != blocks_per_page)) {
393 			submit_bio(bio);
394 			bio = NULL;
395 		} else
396 			last_block_in_bio = blocks[blocks_per_page - 1];
397 		goto next_page;
398 	confused:
399 		if (bio) {
400 			submit_bio(bio);
401 			bio = NULL;
402 		}
403 		if (!PageUptodate(page))
404 			block_read_full_page(page, ext4_get_block);
405 		else
406 			unlock_page(page);
407 	next_page:
408 		if (rac)
409 			put_page(page);
410 	}
411 	if (bio)
412 		submit_bio(bio);
413 	return 0;
414 }
415 
416 int __init ext4_init_post_read_processing(void)
417 {
418 	bio_post_read_ctx_cache =
419 		kmem_cache_create("ext4_bio_post_read_ctx",
420 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
421 	if (!bio_post_read_ctx_cache)
422 		goto fail;
423 	bio_post_read_ctx_pool =
424 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
425 					 bio_post_read_ctx_cache);
426 	if (!bio_post_read_ctx_pool)
427 		goto fail_free_cache;
428 	return 0;
429 
430 fail_free_cache:
431 	kmem_cache_destroy(bio_post_read_ctx_cache);
432 fail:
433 	return -ENOMEM;
434 }
435 
436 void ext4_exit_post_read_processing(void)
437 {
438 	mempool_destroy(bio_post_read_ctx_pool);
439 	kmem_cache_destroy(bio_post_read_ctx_cache);
440 }
441