xref: /openbmc/linux/fs/ext4/readpage.c (revision db66795f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46 
47 #include "ext4.h"
48 
49 #define NUM_PREALLOC_POST_READ_CTXS	128
50 
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53 
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56 	STEP_INITIAL = 0,
57 	STEP_DECRYPT,
58 	STEP_VERITY,
59 	STEP_MAX,
60 };
61 
62 struct bio_post_read_ctx {
63 	struct bio *bio;
64 	struct work_struct work;
65 	unsigned int cur_step;
66 	unsigned int enabled_steps;
67 };
68 
69 static void __read_end_io(struct bio *bio)
70 {
71 	struct folio_iter fi;
72 
73 	bio_for_each_folio_all(fi, bio) {
74 		struct folio *folio = fi.folio;
75 
76 		if (bio->bi_status)
77 			folio_clear_uptodate(folio);
78 		else
79 			folio_mark_uptodate(folio);
80 		folio_unlock(folio);
81 	}
82 	if (bio->bi_private)
83 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
84 	bio_put(bio);
85 }
86 
87 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
88 
89 static void decrypt_work(struct work_struct *work)
90 {
91 	struct bio_post_read_ctx *ctx =
92 		container_of(work, struct bio_post_read_ctx, work);
93 	struct bio *bio = ctx->bio;
94 
95 	if (fscrypt_decrypt_bio(bio))
96 		bio_post_read_processing(ctx);
97 	else
98 		__read_end_io(bio);
99 }
100 
101 static void verity_work(struct work_struct *work)
102 {
103 	struct bio_post_read_ctx *ctx =
104 		container_of(work, struct bio_post_read_ctx, work);
105 	struct bio *bio = ctx->bio;
106 
107 	/*
108 	 * fsverity_verify_bio() may call readahead() again, and although verity
109 	 * will be disabled for that, decryption may still be needed, causing
110 	 * another bio_post_read_ctx to be allocated.  So to guarantee that
111 	 * mempool_alloc() never deadlocks we must free the current ctx first.
112 	 * This is safe because verity is the last post-read step.
113 	 */
114 	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
115 	mempool_free(ctx, bio_post_read_ctx_pool);
116 	bio->bi_private = NULL;
117 
118 	fsverity_verify_bio(bio);
119 
120 	__read_end_io(bio);
121 }
122 
123 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
124 {
125 	/*
126 	 * We use different work queues for decryption and for verity because
127 	 * verity may require reading metadata pages that need decryption, and
128 	 * we shouldn't recurse to the same workqueue.
129 	 */
130 	switch (++ctx->cur_step) {
131 	case STEP_DECRYPT:
132 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
133 			INIT_WORK(&ctx->work, decrypt_work);
134 			fscrypt_enqueue_decrypt_work(&ctx->work);
135 			return;
136 		}
137 		ctx->cur_step++;
138 		fallthrough;
139 	case STEP_VERITY:
140 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
141 			INIT_WORK(&ctx->work, verity_work);
142 			fsverity_enqueue_verify_work(&ctx->work);
143 			return;
144 		}
145 		ctx->cur_step++;
146 		fallthrough;
147 	default:
148 		__read_end_io(ctx->bio);
149 	}
150 }
151 
152 static bool bio_post_read_required(struct bio *bio)
153 {
154 	return bio->bi_private && !bio->bi_status;
155 }
156 
157 /*
158  * I/O completion handler for multipage BIOs.
159  *
160  * The mpage code never puts partial pages into a BIO (except for end-of-file).
161  * If a page does not map to a contiguous run of blocks then it simply falls
162  * back to block_read_full_folio().
163  *
164  * Why is this?  If a page's completion depends on a number of different BIOs
165  * which can complete in any order (or at the same time) then determining the
166  * status of that page is hard.  See end_buffer_async_read() for the details.
167  * There is no point in duplicating all that complexity.
168  */
169 static void mpage_end_io(struct bio *bio)
170 {
171 	if (bio_post_read_required(bio)) {
172 		struct bio_post_read_ctx *ctx = bio->bi_private;
173 
174 		ctx->cur_step = STEP_INITIAL;
175 		bio_post_read_processing(ctx);
176 		return;
177 	}
178 	__read_end_io(bio);
179 }
180 
181 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
182 {
183 	return fsverity_active(inode) &&
184 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
185 }
186 
187 static void ext4_set_bio_post_read_ctx(struct bio *bio,
188 				       const struct inode *inode,
189 				       pgoff_t first_idx)
190 {
191 	unsigned int post_read_steps = 0;
192 
193 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
194 		post_read_steps |= 1 << STEP_DECRYPT;
195 
196 	if (ext4_need_verity(inode, first_idx))
197 		post_read_steps |= 1 << STEP_VERITY;
198 
199 	if (post_read_steps) {
200 		/* Due to the mempool, this never fails. */
201 		struct bio_post_read_ctx *ctx =
202 			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
203 
204 		ctx->bio = bio;
205 		ctx->enabled_steps = post_read_steps;
206 		bio->bi_private = ctx;
207 	}
208 }
209 
210 static inline loff_t ext4_readpage_limit(struct inode *inode)
211 {
212 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
213 		return inode->i_sb->s_maxbytes;
214 
215 	return i_size_read(inode);
216 }
217 
218 int ext4_mpage_readpages(struct inode *inode,
219 		struct readahead_control *rac, struct folio *folio)
220 {
221 	struct bio *bio = NULL;
222 	sector_t last_block_in_bio = 0;
223 
224 	const unsigned blkbits = inode->i_blkbits;
225 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
226 	const unsigned blocksize = 1 << blkbits;
227 	sector_t next_block;
228 	sector_t block_in_file;
229 	sector_t last_block;
230 	sector_t last_block_in_file;
231 	sector_t blocks[MAX_BUF_PER_PAGE];
232 	unsigned page_block;
233 	struct block_device *bdev = inode->i_sb->s_bdev;
234 	int length;
235 	unsigned relative_block = 0;
236 	struct ext4_map_blocks map;
237 	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
238 
239 	map.m_pblk = 0;
240 	map.m_lblk = 0;
241 	map.m_len = 0;
242 	map.m_flags = 0;
243 
244 	for (; nr_pages; nr_pages--) {
245 		int fully_mapped = 1;
246 		unsigned first_hole = blocks_per_page;
247 
248 		if (rac)
249 			folio = readahead_folio(rac);
250 		prefetchw(&folio->flags);
251 
252 		if (folio_buffers(folio))
253 			goto confused;
254 
255 		block_in_file = next_block =
256 			(sector_t)folio->index << (PAGE_SHIFT - blkbits);
257 		last_block = block_in_file + nr_pages * blocks_per_page;
258 		last_block_in_file = (ext4_readpage_limit(inode) +
259 				      blocksize - 1) >> blkbits;
260 		if (last_block > last_block_in_file)
261 			last_block = last_block_in_file;
262 		page_block = 0;
263 
264 		/*
265 		 * Map blocks using the previous result first.
266 		 */
267 		if ((map.m_flags & EXT4_MAP_MAPPED) &&
268 		    block_in_file > map.m_lblk &&
269 		    block_in_file < (map.m_lblk + map.m_len)) {
270 			unsigned map_offset = block_in_file - map.m_lblk;
271 			unsigned last = map.m_len - map_offset;
272 
273 			for (relative_block = 0; ; relative_block++) {
274 				if (relative_block == last) {
275 					/* needed? */
276 					map.m_flags &= ~EXT4_MAP_MAPPED;
277 					break;
278 				}
279 				if (page_block == blocks_per_page)
280 					break;
281 				blocks[page_block] = map.m_pblk + map_offset +
282 					relative_block;
283 				page_block++;
284 				block_in_file++;
285 			}
286 		}
287 
288 		/*
289 		 * Then do more ext4_map_blocks() calls until we are
290 		 * done with this folio.
291 		 */
292 		while (page_block < blocks_per_page) {
293 			if (block_in_file < last_block) {
294 				map.m_lblk = block_in_file;
295 				map.m_len = last_block - block_in_file;
296 
297 				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
298 				set_error_page:
299 					folio_set_error(folio);
300 					folio_zero_segment(folio, 0,
301 							  folio_size(folio));
302 					folio_unlock(folio);
303 					goto next_page;
304 				}
305 			}
306 			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
307 				fully_mapped = 0;
308 				if (first_hole == blocks_per_page)
309 					first_hole = page_block;
310 				page_block++;
311 				block_in_file++;
312 				continue;
313 			}
314 			if (first_hole != blocks_per_page)
315 				goto confused;		/* hole -> non-hole */
316 
317 			/* Contiguous blocks? */
318 			if (page_block && blocks[page_block-1] != map.m_pblk-1)
319 				goto confused;
320 			for (relative_block = 0; ; relative_block++) {
321 				if (relative_block == map.m_len) {
322 					/* needed? */
323 					map.m_flags &= ~EXT4_MAP_MAPPED;
324 					break;
325 				} else if (page_block == blocks_per_page)
326 					break;
327 				blocks[page_block] = map.m_pblk+relative_block;
328 				page_block++;
329 				block_in_file++;
330 			}
331 		}
332 		if (first_hole != blocks_per_page) {
333 			folio_zero_segment(folio, first_hole << blkbits,
334 					  folio_size(folio));
335 			if (first_hole == 0) {
336 				if (ext4_need_verity(inode, folio->index) &&
337 				    !fsverity_verify_folio(folio))
338 					goto set_error_page;
339 				folio_mark_uptodate(folio);
340 				folio_unlock(folio);
341 				continue;
342 			}
343 		} else if (fully_mapped) {
344 			folio_set_mappedtodisk(folio);
345 		}
346 
347 		/*
348 		 * This folio will go to BIO.  Do we need to send this
349 		 * BIO off first?
350 		 */
351 		if (bio && (last_block_in_bio != blocks[0] - 1 ||
352 			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
353 		submit_and_realloc:
354 			submit_bio(bio);
355 			bio = NULL;
356 		}
357 		if (bio == NULL) {
358 			/*
359 			 * bio_alloc will _always_ be able to allocate a bio if
360 			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
361 			 */
362 			bio = bio_alloc(bdev, bio_max_segs(nr_pages),
363 					REQ_OP_READ, GFP_KERNEL);
364 			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
365 						  GFP_KERNEL);
366 			ext4_set_bio_post_read_ctx(bio, inode, folio->index);
367 			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
368 			bio->bi_end_io = mpage_end_io;
369 			if (rac)
370 				bio->bi_opf |= REQ_RAHEAD;
371 		}
372 
373 		length = first_hole << blkbits;
374 		if (!bio_add_folio(bio, folio, length, 0))
375 			goto submit_and_realloc;
376 
377 		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
378 		     (relative_block == map.m_len)) ||
379 		    (first_hole != blocks_per_page)) {
380 			submit_bio(bio);
381 			bio = NULL;
382 		} else
383 			last_block_in_bio = blocks[blocks_per_page - 1];
384 		continue;
385 	confused:
386 		if (bio) {
387 			submit_bio(bio);
388 			bio = NULL;
389 		}
390 		if (!folio_test_uptodate(folio))
391 			block_read_full_folio(folio, ext4_get_block);
392 		else
393 			folio_unlock(folio);
394 next_page:
395 		; /* A label shall be followed by a statement until C23 */
396 	}
397 	if (bio)
398 		submit_bio(bio);
399 	return 0;
400 }
401 
402 int __init ext4_init_post_read_processing(void)
403 {
404 	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
405 
406 	if (!bio_post_read_ctx_cache)
407 		goto fail;
408 	bio_post_read_ctx_pool =
409 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
410 					 bio_post_read_ctx_cache);
411 	if (!bio_post_read_ctx_pool)
412 		goto fail_free_cache;
413 	return 0;
414 
415 fail_free_cache:
416 	kmem_cache_destroy(bio_post_read_ctx_cache);
417 fail:
418 	return -ENOMEM;
419 }
420 
421 void ext4_exit_post_read_processing(void)
422 {
423 	mempool_destroy(bio_post_read_ctx_pool);
424 	kmem_cache_destroy(bio_post_read_ctx_cache);
425 }
426