xref: /openbmc/linux/fs/ext4/readpage.c (revision 11c416e3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46 #include <linux/cleancache.h>
47 
48 #include "ext4.h"
49 
50 #define NUM_PREALLOC_POST_READ_CTXS	128
51 
52 static struct kmem_cache *bio_post_read_ctx_cache;
53 static mempool_t *bio_post_read_ctx_pool;
54 
55 /* postprocessing steps for read bios */
56 enum bio_post_read_step {
57 	STEP_INITIAL = 0,
58 	STEP_DECRYPT,
59 	STEP_VERITY,
60 	STEP_MAX,
61 };
62 
63 struct bio_post_read_ctx {
64 	struct bio *bio;
65 	struct work_struct work;
66 	unsigned int cur_step;
67 	unsigned int enabled_steps;
68 };
69 
70 static void __read_end_io(struct bio *bio)
71 {
72 	struct page *page;
73 	struct bio_vec *bv;
74 	struct bvec_iter_all iter_all;
75 
76 	bio_for_each_segment_all(bv, bio, iter_all) {
77 		page = bv->bv_page;
78 
79 		/* PG_error was set if any post_read step failed */
80 		if (bio->bi_status || PageError(page)) {
81 			ClearPageUptodate(page);
82 			/* will re-read again later */
83 			ClearPageError(page);
84 		} else {
85 			SetPageUptodate(page);
86 		}
87 		unlock_page(page);
88 	}
89 	if (bio->bi_private)
90 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
91 	bio_put(bio);
92 }
93 
94 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
95 
96 static void decrypt_work(struct work_struct *work)
97 {
98 	struct bio_post_read_ctx *ctx =
99 		container_of(work, struct bio_post_read_ctx, work);
100 
101 	fscrypt_decrypt_bio(ctx->bio);
102 
103 	bio_post_read_processing(ctx);
104 }
105 
106 static void verity_work(struct work_struct *work)
107 {
108 	struct bio_post_read_ctx *ctx =
109 		container_of(work, struct bio_post_read_ctx, work);
110 	struct bio *bio = ctx->bio;
111 
112 	/*
113 	 * fsverity_verify_bio() may call readpages() again, and although verity
114 	 * will be disabled for that, decryption may still be needed, causing
115 	 * another bio_post_read_ctx to be allocated.  So to guarantee that
116 	 * mempool_alloc() never deadlocks we must free the current ctx first.
117 	 * This is safe because verity is the last post-read step.
118 	 */
119 	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
120 	mempool_free(ctx, bio_post_read_ctx_pool);
121 	bio->bi_private = NULL;
122 
123 	fsverity_verify_bio(bio);
124 
125 	__read_end_io(bio);
126 }
127 
128 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
129 {
130 	/*
131 	 * We use different work queues for decryption and for verity because
132 	 * verity may require reading metadata pages that need decryption, and
133 	 * we shouldn't recurse to the same workqueue.
134 	 */
135 	switch (++ctx->cur_step) {
136 	case STEP_DECRYPT:
137 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
138 			INIT_WORK(&ctx->work, decrypt_work);
139 			fscrypt_enqueue_decrypt_work(&ctx->work);
140 			return;
141 		}
142 		ctx->cur_step++;
143 		/* fall-through */
144 	case STEP_VERITY:
145 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
146 			INIT_WORK(&ctx->work, verity_work);
147 			fsverity_enqueue_verify_work(&ctx->work);
148 			return;
149 		}
150 		ctx->cur_step++;
151 		/* fall-through */
152 	default:
153 		__read_end_io(ctx->bio);
154 	}
155 }
156 
157 static bool bio_post_read_required(struct bio *bio)
158 {
159 	return bio->bi_private && !bio->bi_status;
160 }
161 
162 /*
163  * I/O completion handler for multipage BIOs.
164  *
165  * The mpage code never puts partial pages into a BIO (except for end-of-file).
166  * If a page does not map to a contiguous run of blocks then it simply falls
167  * back to block_read_full_page().
168  *
169  * Why is this?  If a page's completion depends on a number of different BIOs
170  * which can complete in any order (or at the same time) then determining the
171  * status of that page is hard.  See end_buffer_async_read() for the details.
172  * There is no point in duplicating all that complexity.
173  */
174 static void mpage_end_io(struct bio *bio)
175 {
176 	if (bio_post_read_required(bio)) {
177 		struct bio_post_read_ctx *ctx = bio->bi_private;
178 
179 		ctx->cur_step = STEP_INITIAL;
180 		bio_post_read_processing(ctx);
181 		return;
182 	}
183 	__read_end_io(bio);
184 }
185 
186 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
187 {
188 	return fsverity_active(inode) &&
189 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
190 }
191 
192 static void ext4_set_bio_post_read_ctx(struct bio *bio,
193 				       const struct inode *inode,
194 				       pgoff_t first_idx)
195 {
196 	unsigned int post_read_steps = 0;
197 
198 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
199 		post_read_steps |= 1 << STEP_DECRYPT;
200 
201 	if (ext4_need_verity(inode, first_idx))
202 		post_read_steps |= 1 << STEP_VERITY;
203 
204 	if (post_read_steps) {
205 		/* Due to the mempool, this never fails. */
206 		struct bio_post_read_ctx *ctx =
207 			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
208 
209 		ctx->bio = bio;
210 		ctx->enabled_steps = post_read_steps;
211 		bio->bi_private = ctx;
212 	}
213 }
214 
215 static inline loff_t ext4_readpage_limit(struct inode *inode)
216 {
217 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
218 	    (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
219 		return inode->i_sb->s_maxbytes;
220 
221 	return i_size_read(inode);
222 }
223 
224 int ext4_mpage_readpages(struct inode *inode,
225 		struct readahead_control *rac, struct page *page)
226 {
227 	struct bio *bio = NULL;
228 	sector_t last_block_in_bio = 0;
229 
230 	const unsigned blkbits = inode->i_blkbits;
231 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
232 	const unsigned blocksize = 1 << blkbits;
233 	sector_t block_in_file;
234 	sector_t last_block;
235 	sector_t last_block_in_file;
236 	sector_t blocks[MAX_BUF_PER_PAGE];
237 	unsigned page_block;
238 	struct block_device *bdev = inode->i_sb->s_bdev;
239 	int length;
240 	unsigned relative_block = 0;
241 	struct ext4_map_blocks map;
242 	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
243 
244 	map.m_pblk = 0;
245 	map.m_lblk = 0;
246 	map.m_len = 0;
247 	map.m_flags = 0;
248 
249 	for (; nr_pages; nr_pages--) {
250 		int fully_mapped = 1;
251 		unsigned first_hole = blocks_per_page;
252 
253 		if (rac) {
254 			page = readahead_page(rac);
255 			prefetchw(&page->flags);
256 		}
257 
258 		if (page_has_buffers(page))
259 			goto confused;
260 
261 		block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
262 		last_block = block_in_file + nr_pages * blocks_per_page;
263 		last_block_in_file = (ext4_readpage_limit(inode) +
264 				      blocksize - 1) >> blkbits;
265 		if (last_block > last_block_in_file)
266 			last_block = last_block_in_file;
267 		page_block = 0;
268 
269 		/*
270 		 * Map blocks using the previous result first.
271 		 */
272 		if ((map.m_flags & EXT4_MAP_MAPPED) &&
273 		    block_in_file > map.m_lblk &&
274 		    block_in_file < (map.m_lblk + map.m_len)) {
275 			unsigned map_offset = block_in_file - map.m_lblk;
276 			unsigned last = map.m_len - map_offset;
277 
278 			for (relative_block = 0; ; relative_block++) {
279 				if (relative_block == last) {
280 					/* needed? */
281 					map.m_flags &= ~EXT4_MAP_MAPPED;
282 					break;
283 				}
284 				if (page_block == blocks_per_page)
285 					break;
286 				blocks[page_block] = map.m_pblk + map_offset +
287 					relative_block;
288 				page_block++;
289 				block_in_file++;
290 			}
291 		}
292 
293 		/*
294 		 * Then do more ext4_map_blocks() calls until we are
295 		 * done with this page.
296 		 */
297 		while (page_block < blocks_per_page) {
298 			if (block_in_file < last_block) {
299 				map.m_lblk = block_in_file;
300 				map.m_len = last_block - block_in_file;
301 
302 				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
303 				set_error_page:
304 					SetPageError(page);
305 					zero_user_segment(page, 0,
306 							  PAGE_SIZE);
307 					unlock_page(page);
308 					goto next_page;
309 				}
310 			}
311 			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
312 				fully_mapped = 0;
313 				if (first_hole == blocks_per_page)
314 					first_hole = page_block;
315 				page_block++;
316 				block_in_file++;
317 				continue;
318 			}
319 			if (first_hole != blocks_per_page)
320 				goto confused;		/* hole -> non-hole */
321 
322 			/* Contiguous blocks? */
323 			if (page_block && blocks[page_block-1] != map.m_pblk-1)
324 				goto confused;
325 			for (relative_block = 0; ; relative_block++) {
326 				if (relative_block == map.m_len) {
327 					/* needed? */
328 					map.m_flags &= ~EXT4_MAP_MAPPED;
329 					break;
330 				} else if (page_block == blocks_per_page)
331 					break;
332 				blocks[page_block] = map.m_pblk+relative_block;
333 				page_block++;
334 				block_in_file++;
335 			}
336 		}
337 		if (first_hole != blocks_per_page) {
338 			zero_user_segment(page, first_hole << blkbits,
339 					  PAGE_SIZE);
340 			if (first_hole == 0) {
341 				if (ext4_need_verity(inode, page->index) &&
342 				    !fsverity_verify_page(page))
343 					goto set_error_page;
344 				SetPageUptodate(page);
345 				unlock_page(page);
346 				goto next_page;
347 			}
348 		} else if (fully_mapped) {
349 			SetPageMappedToDisk(page);
350 		}
351 		if (fully_mapped && blocks_per_page == 1 &&
352 		    !PageUptodate(page) && cleancache_get_page(page) == 0) {
353 			SetPageUptodate(page);
354 			goto confused;
355 		}
356 
357 		/*
358 		 * This page will go to BIO.  Do we need to send this
359 		 * BIO off first?
360 		 */
361 		if (bio && (last_block_in_bio != blocks[0] - 1)) {
362 		submit_and_realloc:
363 			submit_bio(bio);
364 			bio = NULL;
365 		}
366 		if (bio == NULL) {
367 			/*
368 			 * bio_alloc will _always_ be able to allocate a bio if
369 			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
370 			 */
371 			bio = bio_alloc(GFP_KERNEL,
372 				min_t(int, nr_pages, BIO_MAX_PAGES));
373 			ext4_set_bio_post_read_ctx(bio, inode, page->index);
374 			bio_set_dev(bio, bdev);
375 			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
376 			bio->bi_end_io = mpage_end_io;
377 			bio_set_op_attrs(bio, REQ_OP_READ,
378 						rac ? REQ_RAHEAD : 0);
379 		}
380 
381 		length = first_hole << blkbits;
382 		if (bio_add_page(bio, page, length, 0) < length)
383 			goto submit_and_realloc;
384 
385 		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
386 		     (relative_block == map.m_len)) ||
387 		    (first_hole != blocks_per_page)) {
388 			submit_bio(bio);
389 			bio = NULL;
390 		} else
391 			last_block_in_bio = blocks[blocks_per_page - 1];
392 		goto next_page;
393 	confused:
394 		if (bio) {
395 			submit_bio(bio);
396 			bio = NULL;
397 		}
398 		if (!PageUptodate(page))
399 			block_read_full_page(page, ext4_get_block);
400 		else
401 			unlock_page(page);
402 	next_page:
403 		if (rac)
404 			put_page(page);
405 	}
406 	if (bio)
407 		submit_bio(bio);
408 	return 0;
409 }
410 
411 int __init ext4_init_post_read_processing(void)
412 {
413 	bio_post_read_ctx_cache =
414 		kmem_cache_create("ext4_bio_post_read_ctx",
415 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
416 	if (!bio_post_read_ctx_cache)
417 		goto fail;
418 	bio_post_read_ctx_pool =
419 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
420 					 bio_post_read_ctx_cache);
421 	if (!bio_post_read_ctx_pool)
422 		goto fail_free_cache;
423 	return 0;
424 
425 fail_free_cache:
426 	kmem_cache_destroy(bio_post_read_ctx_cache);
427 fail:
428 	return -ENOMEM;
429 }
430 
431 void ext4_exit_post_read_processing(void)
432 {
433 	mempool_destroy(bio_post_read_ctx_pool);
434 	kmem_cache_destroy(bio_post_read_ctx_cache);
435 }
436