xref: /openbmc/linux/fs/ext4/readpage.c (revision 01ab991f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/readpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2015, Google, Inc.
7  *
8  * This was originally taken from fs/mpage.c
9  *
10  * The ext4_mpage_readpages() function here is intended to
11  * replace mpage_readahead() in the general case, not just for
12  * encrypted files.  It has some limitations (see below), where it
13  * will fall back to read_block_full_page(), but these limitations
14  * should only be hit when page_size != block_size.
15  *
16  * This will allow us to attach a callback function to support ext4
17  * encryption.
18  *
19  * If anything unusual happens, such as:
20  *
21  * - encountering a page which has buffers
22  * - encountering a page which has a non-hole after a hole
23  * - encountering a page with non-contiguous blocks
24  *
25  * then this code just gives up and calls the buffer_head-based read function.
26  * It does handle a page which has holes at the end - that is a common case:
27  * the end-of-file on blocksize < PAGE_SIZE setups.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/export.h>
33 #include <linux/mm.h>
34 #include <linux/kdev_t.h>
35 #include <linux/gfp.h>
36 #include <linux/bio.h>
37 #include <linux/fs.h>
38 #include <linux/buffer_head.h>
39 #include <linux/blkdev.h>
40 #include <linux/highmem.h>
41 #include <linux/prefetch.h>
42 #include <linux/mpage.h>
43 #include <linux/writeback.h>
44 #include <linux/backing-dev.h>
45 #include <linux/pagevec.h>
46 
47 #include "ext4.h"
48 
49 #define NUM_PREALLOC_POST_READ_CTXS	128
50 
51 static struct kmem_cache *bio_post_read_ctx_cache;
52 static mempool_t *bio_post_read_ctx_pool;
53 
54 /* postprocessing steps for read bios */
55 enum bio_post_read_step {
56 	STEP_INITIAL = 0,
57 	STEP_DECRYPT,
58 	STEP_VERITY,
59 	STEP_MAX,
60 };
61 
62 struct bio_post_read_ctx {
63 	struct bio *bio;
64 	struct work_struct work;
65 	unsigned int cur_step;
66 	unsigned int enabled_steps;
67 };
68 
69 static void __read_end_io(struct bio *bio)
70 {
71 	struct page *page;
72 	struct bio_vec *bv;
73 	struct bvec_iter_all iter_all;
74 
75 	bio_for_each_segment_all(bv, bio, iter_all) {
76 		page = bv->bv_page;
77 
78 		/* PG_error was set if verity failed. */
79 		if (bio->bi_status || PageError(page)) {
80 			ClearPageUptodate(page);
81 			/* will re-read again later */
82 			ClearPageError(page);
83 		} else {
84 			SetPageUptodate(page);
85 		}
86 		unlock_page(page);
87 	}
88 	if (bio->bi_private)
89 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
90 	bio_put(bio);
91 }
92 
93 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
94 
95 static void decrypt_work(struct work_struct *work)
96 {
97 	struct bio_post_read_ctx *ctx =
98 		container_of(work, struct bio_post_read_ctx, work);
99 	struct bio *bio = ctx->bio;
100 
101 	if (fscrypt_decrypt_bio(bio))
102 		bio_post_read_processing(ctx);
103 	else
104 		__read_end_io(bio);
105 }
106 
107 static void verity_work(struct work_struct *work)
108 {
109 	struct bio_post_read_ctx *ctx =
110 		container_of(work, struct bio_post_read_ctx, work);
111 	struct bio *bio = ctx->bio;
112 
113 	/*
114 	 * fsverity_verify_bio() may call readahead() again, and although verity
115 	 * will be disabled for that, decryption may still be needed, causing
116 	 * another bio_post_read_ctx to be allocated.  So to guarantee that
117 	 * mempool_alloc() never deadlocks we must free the current ctx first.
118 	 * This is safe because verity is the last post-read step.
119 	 */
120 	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
121 	mempool_free(ctx, bio_post_read_ctx_pool);
122 	bio->bi_private = NULL;
123 
124 	fsverity_verify_bio(bio);
125 
126 	__read_end_io(bio);
127 }
128 
129 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
130 {
131 	/*
132 	 * We use different work queues for decryption and for verity because
133 	 * verity may require reading metadata pages that need decryption, and
134 	 * we shouldn't recurse to the same workqueue.
135 	 */
136 	switch (++ctx->cur_step) {
137 	case STEP_DECRYPT:
138 		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
139 			INIT_WORK(&ctx->work, decrypt_work);
140 			fscrypt_enqueue_decrypt_work(&ctx->work);
141 			return;
142 		}
143 		ctx->cur_step++;
144 		fallthrough;
145 	case STEP_VERITY:
146 		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
147 			INIT_WORK(&ctx->work, verity_work);
148 			fsverity_enqueue_verify_work(&ctx->work);
149 			return;
150 		}
151 		ctx->cur_step++;
152 		fallthrough;
153 	default:
154 		__read_end_io(ctx->bio);
155 	}
156 }
157 
158 static bool bio_post_read_required(struct bio *bio)
159 {
160 	return bio->bi_private && !bio->bi_status;
161 }
162 
163 /*
164  * I/O completion handler for multipage BIOs.
165  *
166  * The mpage code never puts partial pages into a BIO (except for end-of-file).
167  * If a page does not map to a contiguous run of blocks then it simply falls
168  * back to block_read_full_folio().
169  *
170  * Why is this?  If a page's completion depends on a number of different BIOs
171  * which can complete in any order (or at the same time) then determining the
172  * status of that page is hard.  See end_buffer_async_read() for the details.
173  * There is no point in duplicating all that complexity.
174  */
175 static void mpage_end_io(struct bio *bio)
176 {
177 	if (bio_post_read_required(bio)) {
178 		struct bio_post_read_ctx *ctx = bio->bi_private;
179 
180 		ctx->cur_step = STEP_INITIAL;
181 		bio_post_read_processing(ctx);
182 		return;
183 	}
184 	__read_end_io(bio);
185 }
186 
187 static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
188 {
189 	return fsverity_active(inode) &&
190 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
191 }
192 
193 static void ext4_set_bio_post_read_ctx(struct bio *bio,
194 				       const struct inode *inode,
195 				       pgoff_t first_idx)
196 {
197 	unsigned int post_read_steps = 0;
198 
199 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
200 		post_read_steps |= 1 << STEP_DECRYPT;
201 
202 	if (ext4_need_verity(inode, first_idx))
203 		post_read_steps |= 1 << STEP_VERITY;
204 
205 	if (post_read_steps) {
206 		/* Due to the mempool, this never fails. */
207 		struct bio_post_read_ctx *ctx =
208 			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
209 
210 		ctx->bio = bio;
211 		ctx->enabled_steps = post_read_steps;
212 		bio->bi_private = ctx;
213 	}
214 }
215 
216 static inline loff_t ext4_readpage_limit(struct inode *inode)
217 {
218 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
219 	    (IS_VERITY(inode) || ext4_verity_in_progress(inode)))
220 		return inode->i_sb->s_maxbytes;
221 
222 	return i_size_read(inode);
223 }
224 
225 int ext4_mpage_readpages(struct inode *inode,
226 		struct readahead_control *rac, struct page *page)
227 {
228 	struct bio *bio = NULL;
229 	sector_t last_block_in_bio = 0;
230 
231 	const unsigned blkbits = inode->i_blkbits;
232 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
233 	const unsigned blocksize = 1 << blkbits;
234 	sector_t next_block;
235 	sector_t block_in_file;
236 	sector_t last_block;
237 	sector_t last_block_in_file;
238 	sector_t blocks[MAX_BUF_PER_PAGE];
239 	unsigned page_block;
240 	struct block_device *bdev = inode->i_sb->s_bdev;
241 	int length;
242 	unsigned relative_block = 0;
243 	struct ext4_map_blocks map;
244 	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
245 
246 	map.m_pblk = 0;
247 	map.m_lblk = 0;
248 	map.m_len = 0;
249 	map.m_flags = 0;
250 
251 	for (; nr_pages; nr_pages--) {
252 		int fully_mapped = 1;
253 		unsigned first_hole = blocks_per_page;
254 
255 		if (rac) {
256 			page = readahead_page(rac);
257 			prefetchw(&page->flags);
258 		}
259 
260 		if (page_has_buffers(page))
261 			goto confused;
262 
263 		block_in_file = next_block =
264 			(sector_t)page->index << (PAGE_SHIFT - blkbits);
265 		last_block = block_in_file + nr_pages * blocks_per_page;
266 		last_block_in_file = (ext4_readpage_limit(inode) +
267 				      blocksize - 1) >> blkbits;
268 		if (last_block > last_block_in_file)
269 			last_block = last_block_in_file;
270 		page_block = 0;
271 
272 		/*
273 		 * Map blocks using the previous result first.
274 		 */
275 		if ((map.m_flags & EXT4_MAP_MAPPED) &&
276 		    block_in_file > map.m_lblk &&
277 		    block_in_file < (map.m_lblk + map.m_len)) {
278 			unsigned map_offset = block_in_file - map.m_lblk;
279 			unsigned last = map.m_len - map_offset;
280 
281 			for (relative_block = 0; ; relative_block++) {
282 				if (relative_block == last) {
283 					/* needed? */
284 					map.m_flags &= ~EXT4_MAP_MAPPED;
285 					break;
286 				}
287 				if (page_block == blocks_per_page)
288 					break;
289 				blocks[page_block] = map.m_pblk + map_offset +
290 					relative_block;
291 				page_block++;
292 				block_in_file++;
293 			}
294 		}
295 
296 		/*
297 		 * Then do more ext4_map_blocks() calls until we are
298 		 * done with this page.
299 		 */
300 		while (page_block < blocks_per_page) {
301 			if (block_in_file < last_block) {
302 				map.m_lblk = block_in_file;
303 				map.m_len = last_block - block_in_file;
304 
305 				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
306 				set_error_page:
307 					SetPageError(page);
308 					zero_user_segment(page, 0,
309 							  PAGE_SIZE);
310 					unlock_page(page);
311 					goto next_page;
312 				}
313 			}
314 			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
315 				fully_mapped = 0;
316 				if (first_hole == blocks_per_page)
317 					first_hole = page_block;
318 				page_block++;
319 				block_in_file++;
320 				continue;
321 			}
322 			if (first_hole != blocks_per_page)
323 				goto confused;		/* hole -> non-hole */
324 
325 			/* Contiguous blocks? */
326 			if (page_block && blocks[page_block-1] != map.m_pblk-1)
327 				goto confused;
328 			for (relative_block = 0; ; relative_block++) {
329 				if (relative_block == map.m_len) {
330 					/* needed? */
331 					map.m_flags &= ~EXT4_MAP_MAPPED;
332 					break;
333 				} else if (page_block == blocks_per_page)
334 					break;
335 				blocks[page_block] = map.m_pblk+relative_block;
336 				page_block++;
337 				block_in_file++;
338 			}
339 		}
340 		if (first_hole != blocks_per_page) {
341 			zero_user_segment(page, first_hole << blkbits,
342 					  PAGE_SIZE);
343 			if (first_hole == 0) {
344 				if (ext4_need_verity(inode, page->index) &&
345 				    !fsverity_verify_page(page))
346 					goto set_error_page;
347 				SetPageUptodate(page);
348 				unlock_page(page);
349 				goto next_page;
350 			}
351 		} else if (fully_mapped) {
352 			SetPageMappedToDisk(page);
353 		}
354 
355 		/*
356 		 * This page will go to BIO.  Do we need to send this
357 		 * BIO off first?
358 		 */
359 		if (bio && (last_block_in_bio != blocks[0] - 1 ||
360 			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
361 		submit_and_realloc:
362 			submit_bio(bio);
363 			bio = NULL;
364 		}
365 		if (bio == NULL) {
366 			/*
367 			 * bio_alloc will _always_ be able to allocate a bio if
368 			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
369 			 */
370 			bio = bio_alloc(bdev, bio_max_segs(nr_pages),
371 					REQ_OP_READ, GFP_KERNEL);
372 			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
373 						  GFP_KERNEL);
374 			ext4_set_bio_post_read_ctx(bio, inode, page->index);
375 			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
376 			bio->bi_end_io = mpage_end_io;
377 			if (rac)
378 				bio->bi_opf |= REQ_RAHEAD;
379 		}
380 
381 		length = first_hole << blkbits;
382 		if (bio_add_page(bio, page, length, 0) < length)
383 			goto submit_and_realloc;
384 
385 		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
386 		     (relative_block == map.m_len)) ||
387 		    (first_hole != blocks_per_page)) {
388 			submit_bio(bio);
389 			bio = NULL;
390 		} else
391 			last_block_in_bio = blocks[blocks_per_page - 1];
392 		goto next_page;
393 	confused:
394 		if (bio) {
395 			submit_bio(bio);
396 			bio = NULL;
397 		}
398 		if (!PageUptodate(page))
399 			block_read_full_folio(page_folio(page), ext4_get_block);
400 		else
401 			unlock_page(page);
402 	next_page:
403 		if (rac)
404 			put_page(page);
405 	}
406 	if (bio)
407 		submit_bio(bio);
408 	return 0;
409 }
410 
411 int __init ext4_init_post_read_processing(void)
412 {
413 	bio_post_read_ctx_cache =
414 		kmem_cache_create("ext4_bio_post_read_ctx",
415 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
416 	if (!bio_post_read_ctx_cache)
417 		goto fail;
418 	bio_post_read_ctx_pool =
419 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
420 					 bio_post_read_ctx_cache);
421 	if (!bio_post_read_ctx_pool)
422 		goto fail_free_cache;
423 	return 0;
424 
425 fail_free_cache:
426 	kmem_cache_destroy(bio_post_read_ctx_cache);
427 fail:
428 	return -ENOMEM;
429 }
430 
431 void ext4_exit_post_read_processing(void)
432 {
433 	mempool_destroy(bio_post_read_ctx_pool);
434 	kmem_cache_destroy(bio_post_read_ctx_cache);
435 }
436