xref: /openbmc/linux/fs/ext4/page-io.c (revision f9a82c48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 
35 int __init ext4_init_pageio(void)
36 {
37 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
38 	if (io_end_cachep == NULL)
39 		return -ENOMEM;
40 	return 0;
41 }
42 
43 void ext4_exit_pageio(void)
44 {
45 	kmem_cache_destroy(io_end_cachep);
46 }
47 
48 /*
49  * Print an buffer I/O error compatible with the fs/buffer.c.  This
50  * provides compatibility with dmesg scrapers that look for a specific
51  * buffer I/O error message.  We really need a unified error reporting
52  * structure to userspace ala Digital Unix's uerf system, but it's
53  * probably not going to happen in my lifetime, due to LKML politics...
54  */
55 static void buffer_io_error(struct buffer_head *bh)
56 {
57 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
58 		       bh->b_bdev,
59 			(unsigned long long)bh->b_blocknr);
60 }
61 
62 static void ext4_finish_bio(struct bio *bio)
63 {
64 	int i;
65 	struct bio_vec *bvec;
66 	struct bvec_iter_all iter_all;
67 
68 	bio_for_each_segment_all(bvec, bio, i, iter_all) {
69 		struct page *page = bvec->bv_page;
70 #ifdef CONFIG_FS_ENCRYPTION
71 		struct page *data_page = NULL;
72 #endif
73 		struct buffer_head *bh, *head;
74 		unsigned bio_start = bvec->bv_offset;
75 		unsigned bio_end = bio_start + bvec->bv_len;
76 		unsigned under_io = 0;
77 		unsigned long flags;
78 
79 		if (!page)
80 			continue;
81 
82 #ifdef CONFIG_FS_ENCRYPTION
83 		if (!page->mapping) {
84 			/* The bounce data pages are unmapped. */
85 			data_page = page;
86 			fscrypt_pullback_bio_page(&page, false);
87 		}
88 #endif
89 
90 		if (bio->bi_status) {
91 			SetPageError(page);
92 			mapping_set_error(page->mapping, -EIO);
93 		}
94 		bh = head = page_buffers(page);
95 		/*
96 		 * We check all buffers in the page under BH_Uptodate_Lock
97 		 * to avoid races with other end io clearing async_write flags
98 		 */
99 		local_irq_save(flags);
100 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
101 		do {
102 			if (bh_offset(bh) < bio_start ||
103 			    bh_offset(bh) + bh->b_size > bio_end) {
104 				if (buffer_async_write(bh))
105 					under_io++;
106 				continue;
107 			}
108 			clear_buffer_async_write(bh);
109 			if (bio->bi_status)
110 				buffer_io_error(bh);
111 		} while ((bh = bh->b_this_page) != head);
112 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
113 		local_irq_restore(flags);
114 		if (!under_io) {
115 #ifdef CONFIG_FS_ENCRYPTION
116 			if (data_page)
117 				fscrypt_restore_control_page(data_page);
118 #endif
119 			end_page_writeback(page);
120 		}
121 	}
122 }
123 
124 static void ext4_release_io_end(ext4_io_end_t *io_end)
125 {
126 	struct bio *bio, *next_bio;
127 
128 	BUG_ON(!list_empty(&io_end->list));
129 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
130 	WARN_ON(io_end->handle);
131 
132 	for (bio = io_end->bio; bio; bio = next_bio) {
133 		next_bio = bio->bi_private;
134 		ext4_finish_bio(bio);
135 		bio_put(bio);
136 	}
137 	kmem_cache_free(io_end_cachep, io_end);
138 }
139 
140 /*
141  * Check a range of space and convert unwritten extents to written. Note that
142  * we are protected from truncate touching same part of extent tree by the
143  * fact that truncate code waits for all DIO to finish (thus exclusion from
144  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
145  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
146  * completed (happens from ext4_free_ioend()).
147  */
148 static int ext4_end_io(ext4_io_end_t *io)
149 {
150 	struct inode *inode = io->inode;
151 	loff_t offset = io->offset;
152 	ssize_t size = io->size;
153 	handle_t *handle = io->handle;
154 	int ret = 0;
155 
156 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
157 		   "list->prev 0x%p\n",
158 		   io, inode->i_ino, io->list.next, io->list.prev);
159 
160 	io->handle = NULL;	/* Following call will use up the handle */
161 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
162 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
163 		ext4_msg(inode->i_sb, KERN_EMERG,
164 			 "failed to convert unwritten extents to written "
165 			 "extents -- potential data loss!  "
166 			 "(inode %lu, offset %llu, size %zd, error %d)",
167 			 inode->i_ino, offset, size, ret);
168 	}
169 	ext4_clear_io_unwritten_flag(io);
170 	ext4_release_io_end(io);
171 	return ret;
172 }
173 
174 static void dump_completed_IO(struct inode *inode, struct list_head *head)
175 {
176 #ifdef	EXT4FS_DEBUG
177 	struct list_head *cur, *before, *after;
178 	ext4_io_end_t *io, *io0, *io1;
179 
180 	if (list_empty(head))
181 		return;
182 
183 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
184 	list_for_each_entry(io, head, list) {
185 		cur = &io->list;
186 		before = cur->prev;
187 		io0 = container_of(before, ext4_io_end_t, list);
188 		after = cur->next;
189 		io1 = container_of(after, ext4_io_end_t, list);
190 
191 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
192 			    io, inode->i_ino, io0, io1);
193 	}
194 #endif
195 }
196 
197 /* Add the io_end to per-inode completed end_io list. */
198 static void ext4_add_complete_io(ext4_io_end_t *io_end)
199 {
200 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
201 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
202 	struct workqueue_struct *wq;
203 	unsigned long flags;
204 
205 	/* Only reserved conversions from writeback should enter here */
206 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
207 	WARN_ON(!io_end->handle && sbi->s_journal);
208 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
209 	wq = sbi->rsv_conversion_wq;
210 	if (list_empty(&ei->i_rsv_conversion_list))
211 		queue_work(wq, &ei->i_rsv_conversion_work);
212 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
213 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
214 }
215 
216 static int ext4_do_flush_completed_IO(struct inode *inode,
217 				      struct list_head *head)
218 {
219 	ext4_io_end_t *io;
220 	struct list_head unwritten;
221 	unsigned long flags;
222 	struct ext4_inode_info *ei = EXT4_I(inode);
223 	int err, ret = 0;
224 
225 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
226 	dump_completed_IO(inode, head);
227 	list_replace_init(head, &unwritten);
228 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
229 
230 	while (!list_empty(&unwritten)) {
231 		io = list_entry(unwritten.next, ext4_io_end_t, list);
232 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
233 		list_del_init(&io->list);
234 
235 		err = ext4_end_io(io);
236 		if (unlikely(!ret && err))
237 			ret = err;
238 	}
239 	return ret;
240 }
241 
242 /*
243  * work on completed IO, to convert unwritten extents to extents
244  */
245 void ext4_end_io_rsv_work(struct work_struct *work)
246 {
247 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
248 						  i_rsv_conversion_work);
249 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
250 }
251 
252 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
253 {
254 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
255 	if (io) {
256 		io->inode = inode;
257 		INIT_LIST_HEAD(&io->list);
258 		atomic_set(&io->count, 1);
259 	}
260 	return io;
261 }
262 
263 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
264 {
265 	if (atomic_dec_and_test(&io_end->count)) {
266 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
267 			ext4_release_io_end(io_end);
268 			return;
269 		}
270 		ext4_add_complete_io(io_end);
271 	}
272 }
273 
274 int ext4_put_io_end(ext4_io_end_t *io_end)
275 {
276 	int err = 0;
277 
278 	if (atomic_dec_and_test(&io_end->count)) {
279 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
280 			err = ext4_convert_unwritten_extents(io_end->handle,
281 						io_end->inode, io_end->offset,
282 						io_end->size);
283 			io_end->handle = NULL;
284 			ext4_clear_io_unwritten_flag(io_end);
285 		}
286 		ext4_release_io_end(io_end);
287 	}
288 	return err;
289 }
290 
291 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
292 {
293 	atomic_inc(&io_end->count);
294 	return io_end;
295 }
296 
297 /* BIO completion function for page writeback */
298 static void ext4_end_bio(struct bio *bio)
299 {
300 	ext4_io_end_t *io_end = bio->bi_private;
301 	sector_t bi_sector = bio->bi_iter.bi_sector;
302 	char b[BDEVNAME_SIZE];
303 
304 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
305 		      bio_devname(bio, b),
306 		      (long long) bio->bi_iter.bi_sector,
307 		      (unsigned) bio_sectors(bio),
308 		      bio->bi_status)) {
309 		ext4_finish_bio(bio);
310 		bio_put(bio);
311 		return;
312 	}
313 	bio->bi_end_io = NULL;
314 
315 	if (bio->bi_status) {
316 		struct inode *inode = io_end->inode;
317 
318 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
319 			     "(offset %llu size %ld starting block %llu)",
320 			     bio->bi_status, inode->i_ino,
321 			     (unsigned long long) io_end->offset,
322 			     (long) io_end->size,
323 			     (unsigned long long)
324 			     bi_sector >> (inode->i_blkbits - 9));
325 		mapping_set_error(inode->i_mapping,
326 				blk_status_to_errno(bio->bi_status));
327 	}
328 
329 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
330 		/*
331 		 * Link bio into list hanging from io_end. We have to do it
332 		 * atomically as bio completions can be racing against each
333 		 * other.
334 		 */
335 		bio->bi_private = xchg(&io_end->bio, bio);
336 		ext4_put_io_end_defer(io_end);
337 	} else {
338 		/*
339 		 * Drop io_end reference early. Inode can get freed once
340 		 * we finish the bio.
341 		 */
342 		ext4_put_io_end_defer(io_end);
343 		ext4_finish_bio(bio);
344 		bio_put(bio);
345 	}
346 }
347 
348 void ext4_io_submit(struct ext4_io_submit *io)
349 {
350 	struct bio *bio = io->io_bio;
351 
352 	if (bio) {
353 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
354 				  REQ_SYNC : 0;
355 		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
356 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
357 		submit_bio(io->io_bio);
358 	}
359 	io->io_bio = NULL;
360 }
361 
362 void ext4_io_submit_init(struct ext4_io_submit *io,
363 			 struct writeback_control *wbc)
364 {
365 	io->io_wbc = wbc;
366 	io->io_bio = NULL;
367 	io->io_end = NULL;
368 }
369 
370 static int io_submit_init_bio(struct ext4_io_submit *io,
371 			      struct buffer_head *bh)
372 {
373 	struct bio *bio;
374 
375 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
376 	if (!bio)
377 		return -ENOMEM;
378 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
379 	bio_set_dev(bio, bh->b_bdev);
380 	bio->bi_end_io = ext4_end_bio;
381 	bio->bi_private = ext4_get_io_end(io->io_end);
382 	io->io_bio = bio;
383 	io->io_next_block = bh->b_blocknr;
384 	wbc_init_bio(io->io_wbc, bio);
385 	return 0;
386 }
387 
388 static int io_submit_add_bh(struct ext4_io_submit *io,
389 			    struct inode *inode,
390 			    struct page *page,
391 			    struct buffer_head *bh)
392 {
393 	int ret;
394 
395 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
396 submit_and_retry:
397 		ext4_io_submit(io);
398 	}
399 	if (io->io_bio == NULL) {
400 		ret = io_submit_init_bio(io, bh);
401 		if (ret)
402 			return ret;
403 		io->io_bio->bi_write_hint = inode->i_write_hint;
404 	}
405 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
406 	if (ret != bh->b_size)
407 		goto submit_and_retry;
408 	wbc_account_io(io->io_wbc, page, bh->b_size);
409 	io->io_next_block++;
410 	return 0;
411 }
412 
413 int ext4_bio_write_page(struct ext4_io_submit *io,
414 			struct page *page,
415 			int len,
416 			struct writeback_control *wbc,
417 			bool keep_towrite)
418 {
419 	struct page *data_page = NULL;
420 	struct inode *inode = page->mapping->host;
421 	unsigned block_start;
422 	struct buffer_head *bh, *head;
423 	int ret = 0;
424 	int nr_submitted = 0;
425 	int nr_to_submit = 0;
426 
427 	BUG_ON(!PageLocked(page));
428 	BUG_ON(PageWriteback(page));
429 
430 	if (keep_towrite)
431 		set_page_writeback_keepwrite(page);
432 	else
433 		set_page_writeback(page);
434 	ClearPageError(page);
435 
436 	/*
437 	 * Comments copied from block_write_full_page:
438 	 *
439 	 * The page straddles i_size.  It must be zeroed out on each and every
440 	 * writepage invocation because it may be mmapped.  "A file is mapped
441 	 * in multiples of the page size.  For a file that is not a multiple of
442 	 * the page size, the remaining memory is zeroed when mapped, and
443 	 * writes to that region are not written out to the file."
444 	 */
445 	if (len < PAGE_SIZE)
446 		zero_user_segment(page, len, PAGE_SIZE);
447 	/*
448 	 * In the first loop we prepare and mark buffers to submit. We have to
449 	 * mark all buffers in the page before submitting so that
450 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
451 	 * on the first buffer finishes and we are still working on submitting
452 	 * the second buffer.
453 	 */
454 	bh = head = page_buffers(page);
455 	do {
456 		block_start = bh_offset(bh);
457 		if (block_start >= len) {
458 			clear_buffer_dirty(bh);
459 			set_buffer_uptodate(bh);
460 			continue;
461 		}
462 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
463 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
464 			/* A hole? We can safely clear the dirty bit */
465 			if (!buffer_mapped(bh))
466 				clear_buffer_dirty(bh);
467 			if (io->io_bio)
468 				ext4_io_submit(io);
469 			continue;
470 		}
471 		if (buffer_new(bh))
472 			clear_buffer_new(bh);
473 		set_buffer_async_write(bh);
474 		nr_to_submit++;
475 	} while ((bh = bh->b_this_page) != head);
476 
477 	bh = head = page_buffers(page);
478 
479 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) && nr_to_submit) {
480 		gfp_t gfp_flags = GFP_NOFS;
481 
482 	retry_encrypt:
483 		data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0,
484 						page->index, gfp_flags);
485 		if (IS_ERR(data_page)) {
486 			ret = PTR_ERR(data_page);
487 			if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
488 				if (io->io_bio) {
489 					ext4_io_submit(io);
490 					congestion_wait(BLK_RW_ASYNC, HZ/50);
491 				}
492 				gfp_flags |= __GFP_NOFAIL;
493 				goto retry_encrypt;
494 			}
495 			data_page = NULL;
496 			goto out;
497 		}
498 	}
499 
500 	/* Now submit buffers to write */
501 	do {
502 		if (!buffer_async_write(bh))
503 			continue;
504 		ret = io_submit_add_bh(io, inode,
505 				       data_page ? data_page : page, bh);
506 		if (ret) {
507 			/*
508 			 * We only get here on ENOMEM.  Not much else
509 			 * we can do but mark the page as dirty, and
510 			 * better luck next time.
511 			 */
512 			break;
513 		}
514 		nr_submitted++;
515 		clear_buffer_dirty(bh);
516 	} while ((bh = bh->b_this_page) != head);
517 
518 	/* Error stopped previous loop? Clean up buffers... */
519 	if (ret) {
520 	out:
521 		if (data_page)
522 			fscrypt_restore_control_page(data_page);
523 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
524 		redirty_page_for_writepage(wbc, page);
525 		do {
526 			clear_buffer_async_write(bh);
527 			bh = bh->b_this_page;
528 		} while (bh != head);
529 	}
530 	unlock_page(page);
531 	/* Nothing submitted - we have to end page writeback */
532 	if (!nr_submitted)
533 		end_page_writeback(page);
534 	return ret;
535 }
536