xref: /openbmc/linux/fs/ext4/page-io.c (revision f7d84fa7)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 #include <linux/backing-dev.h>
27 
28 #include "ext4_jbd2.h"
29 #include "xattr.h"
30 #include "acl.h"
31 
32 static struct kmem_cache *io_end_cachep;
33 
34 int __init ext4_init_pageio(void)
35 {
36 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
37 	if (io_end_cachep == NULL)
38 		return -ENOMEM;
39 	return 0;
40 }
41 
42 void ext4_exit_pageio(void)
43 {
44 	kmem_cache_destroy(io_end_cachep);
45 }
46 
47 /*
48  * Print an buffer I/O error compatible with the fs/buffer.c.  This
49  * provides compatibility with dmesg scrapers that look for a specific
50  * buffer I/O error message.  We really need a unified error reporting
51  * structure to userspace ala Digital Unix's uerf system, but it's
52  * probably not going to happen in my lifetime, due to LKML politics...
53  */
54 static void buffer_io_error(struct buffer_head *bh)
55 {
56 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
57 		       bh->b_bdev,
58 			(unsigned long long)bh->b_blocknr);
59 }
60 
61 static void ext4_finish_bio(struct bio *bio)
62 {
63 	int i;
64 	struct bio_vec *bvec;
65 
66 	bio_for_each_segment_all(bvec, bio, i) {
67 		struct page *page = bvec->bv_page;
68 #ifdef CONFIG_EXT4_FS_ENCRYPTION
69 		struct page *data_page = NULL;
70 #endif
71 		struct buffer_head *bh, *head;
72 		unsigned bio_start = bvec->bv_offset;
73 		unsigned bio_end = bio_start + bvec->bv_len;
74 		unsigned under_io = 0;
75 		unsigned long flags;
76 
77 		if (!page)
78 			continue;
79 
80 #ifdef CONFIG_EXT4_FS_ENCRYPTION
81 		if (!page->mapping) {
82 			/* The bounce data pages are unmapped. */
83 			data_page = page;
84 			fscrypt_pullback_bio_page(&page, false);
85 		}
86 #endif
87 
88 		if (bio->bi_error) {
89 			SetPageError(page);
90 			mapping_set_error(page->mapping, -EIO);
91 		}
92 		bh = head = page_buffers(page);
93 		/*
94 		 * We check all buffers in the page under BH_Uptodate_Lock
95 		 * to avoid races with other end io clearing async_write flags
96 		 */
97 		local_irq_save(flags);
98 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
99 		do {
100 			if (bh_offset(bh) < bio_start ||
101 			    bh_offset(bh) + bh->b_size > bio_end) {
102 				if (buffer_async_write(bh))
103 					under_io++;
104 				continue;
105 			}
106 			clear_buffer_async_write(bh);
107 			if (bio->bi_error)
108 				buffer_io_error(bh);
109 		} while ((bh = bh->b_this_page) != head);
110 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
111 		local_irq_restore(flags);
112 		if (!under_io) {
113 #ifdef CONFIG_EXT4_FS_ENCRYPTION
114 			if (data_page)
115 				fscrypt_restore_control_page(data_page);
116 #endif
117 			end_page_writeback(page);
118 		}
119 	}
120 }
121 
122 static void ext4_release_io_end(ext4_io_end_t *io_end)
123 {
124 	struct bio *bio, *next_bio;
125 
126 	BUG_ON(!list_empty(&io_end->list));
127 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
128 	WARN_ON(io_end->handle);
129 
130 	for (bio = io_end->bio; bio; bio = next_bio) {
131 		next_bio = bio->bi_private;
132 		ext4_finish_bio(bio);
133 		bio_put(bio);
134 	}
135 	kmem_cache_free(io_end_cachep, io_end);
136 }
137 
138 /*
139  * Check a range of space and convert unwritten extents to written. Note that
140  * we are protected from truncate touching same part of extent tree by the
141  * fact that truncate code waits for all DIO to finish (thus exclusion from
142  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
143  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
144  * completed (happens from ext4_free_ioend()).
145  */
146 static int ext4_end_io(ext4_io_end_t *io)
147 {
148 	struct inode *inode = io->inode;
149 	loff_t offset = io->offset;
150 	ssize_t size = io->size;
151 	handle_t *handle = io->handle;
152 	int ret = 0;
153 
154 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
155 		   "list->prev 0x%p\n",
156 		   io, inode->i_ino, io->list.next, io->list.prev);
157 
158 	io->handle = NULL;	/* Following call will use up the handle */
159 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
160 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
161 		ext4_msg(inode->i_sb, KERN_EMERG,
162 			 "failed to convert unwritten extents to written "
163 			 "extents -- potential data loss!  "
164 			 "(inode %lu, offset %llu, size %zd, error %d)",
165 			 inode->i_ino, offset, size, ret);
166 	}
167 	ext4_clear_io_unwritten_flag(io);
168 	ext4_release_io_end(io);
169 	return ret;
170 }
171 
172 static void dump_completed_IO(struct inode *inode, struct list_head *head)
173 {
174 #ifdef	EXT4FS_DEBUG
175 	struct list_head *cur, *before, *after;
176 	ext4_io_end_t *io, *io0, *io1;
177 
178 	if (list_empty(head))
179 		return;
180 
181 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
182 	list_for_each_entry(io, head, list) {
183 		cur = &io->list;
184 		before = cur->prev;
185 		io0 = container_of(before, ext4_io_end_t, list);
186 		after = cur->next;
187 		io1 = container_of(after, ext4_io_end_t, list);
188 
189 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
190 			    io, inode->i_ino, io0, io1);
191 	}
192 #endif
193 }
194 
195 /* Add the io_end to per-inode completed end_io list. */
196 static void ext4_add_complete_io(ext4_io_end_t *io_end)
197 {
198 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
199 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
200 	struct workqueue_struct *wq;
201 	unsigned long flags;
202 
203 	/* Only reserved conversions from writeback should enter here */
204 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
205 	WARN_ON(!io_end->handle && sbi->s_journal);
206 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
207 	wq = sbi->rsv_conversion_wq;
208 	if (list_empty(&ei->i_rsv_conversion_list))
209 		queue_work(wq, &ei->i_rsv_conversion_work);
210 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
211 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
212 }
213 
214 static int ext4_do_flush_completed_IO(struct inode *inode,
215 				      struct list_head *head)
216 {
217 	ext4_io_end_t *io;
218 	struct list_head unwritten;
219 	unsigned long flags;
220 	struct ext4_inode_info *ei = EXT4_I(inode);
221 	int err, ret = 0;
222 
223 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
224 	dump_completed_IO(inode, head);
225 	list_replace_init(head, &unwritten);
226 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
227 
228 	while (!list_empty(&unwritten)) {
229 		io = list_entry(unwritten.next, ext4_io_end_t, list);
230 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
231 		list_del_init(&io->list);
232 
233 		err = ext4_end_io(io);
234 		if (unlikely(!ret && err))
235 			ret = err;
236 	}
237 	return ret;
238 }
239 
240 /*
241  * work on completed IO, to convert unwritten extents to extents
242  */
243 void ext4_end_io_rsv_work(struct work_struct *work)
244 {
245 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
246 						  i_rsv_conversion_work);
247 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
248 }
249 
250 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
251 {
252 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
253 	if (io) {
254 		io->inode = inode;
255 		INIT_LIST_HEAD(&io->list);
256 		atomic_set(&io->count, 1);
257 	}
258 	return io;
259 }
260 
261 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
262 {
263 	if (atomic_dec_and_test(&io_end->count)) {
264 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
265 			ext4_release_io_end(io_end);
266 			return;
267 		}
268 		ext4_add_complete_io(io_end);
269 	}
270 }
271 
272 int ext4_put_io_end(ext4_io_end_t *io_end)
273 {
274 	int err = 0;
275 
276 	if (atomic_dec_and_test(&io_end->count)) {
277 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
278 			err = ext4_convert_unwritten_extents(io_end->handle,
279 						io_end->inode, io_end->offset,
280 						io_end->size);
281 			io_end->handle = NULL;
282 			ext4_clear_io_unwritten_flag(io_end);
283 		}
284 		ext4_release_io_end(io_end);
285 	}
286 	return err;
287 }
288 
289 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
290 {
291 	atomic_inc(&io_end->count);
292 	return io_end;
293 }
294 
295 /* BIO completion function for page writeback */
296 static void ext4_end_bio(struct bio *bio)
297 {
298 	ext4_io_end_t *io_end = bio->bi_private;
299 	sector_t bi_sector = bio->bi_iter.bi_sector;
300 	char b[BDEVNAME_SIZE];
301 
302 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
303 		      bdevname(bio->bi_bdev, b),
304 		      (long long) bio->bi_iter.bi_sector,
305 		      (unsigned) bio_sectors(bio),
306 		      bio->bi_error)) {
307 		ext4_finish_bio(bio);
308 		bio_put(bio);
309 		return;
310 	}
311 	bio->bi_end_io = NULL;
312 
313 	if (bio->bi_error) {
314 		struct inode *inode = io_end->inode;
315 
316 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
317 			     "(offset %llu size %ld starting block %llu)",
318 			     bio->bi_error, inode->i_ino,
319 			     (unsigned long long) io_end->offset,
320 			     (long) io_end->size,
321 			     (unsigned long long)
322 			     bi_sector >> (inode->i_blkbits - 9));
323 		mapping_set_error(inode->i_mapping, bio->bi_error);
324 	}
325 
326 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
327 		/*
328 		 * Link bio into list hanging from io_end. We have to do it
329 		 * atomically as bio completions can be racing against each
330 		 * other.
331 		 */
332 		bio->bi_private = xchg(&io_end->bio, bio);
333 		ext4_put_io_end_defer(io_end);
334 	} else {
335 		/*
336 		 * Drop io_end reference early. Inode can get freed once
337 		 * we finish the bio.
338 		 */
339 		ext4_put_io_end_defer(io_end);
340 		ext4_finish_bio(bio);
341 		bio_put(bio);
342 	}
343 }
344 
345 void ext4_io_submit(struct ext4_io_submit *io)
346 {
347 	struct bio *bio = io->io_bio;
348 
349 	if (bio) {
350 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
351 				  REQ_SYNC : 0;
352 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
353 		submit_bio(io->io_bio);
354 	}
355 	io->io_bio = NULL;
356 }
357 
358 void ext4_io_submit_init(struct ext4_io_submit *io,
359 			 struct writeback_control *wbc)
360 {
361 	io->io_wbc = wbc;
362 	io->io_bio = NULL;
363 	io->io_end = NULL;
364 }
365 
366 static int io_submit_init_bio(struct ext4_io_submit *io,
367 			      struct buffer_head *bh)
368 {
369 	struct bio *bio;
370 
371 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
372 	if (!bio)
373 		return -ENOMEM;
374 	wbc_init_bio(io->io_wbc, bio);
375 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
376 	bio->bi_bdev = bh->b_bdev;
377 	bio->bi_end_io = ext4_end_bio;
378 	bio->bi_private = ext4_get_io_end(io->io_end);
379 	io->io_bio = bio;
380 	io->io_next_block = bh->b_blocknr;
381 	return 0;
382 }
383 
384 static int io_submit_add_bh(struct ext4_io_submit *io,
385 			    struct inode *inode,
386 			    struct page *page,
387 			    struct buffer_head *bh)
388 {
389 	int ret;
390 
391 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
392 submit_and_retry:
393 		ext4_io_submit(io);
394 	}
395 	if (io->io_bio == NULL) {
396 		ret = io_submit_init_bio(io, bh);
397 		if (ret)
398 			return ret;
399 	}
400 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
401 	if (ret != bh->b_size)
402 		goto submit_and_retry;
403 	wbc_account_io(io->io_wbc, page, bh->b_size);
404 	io->io_next_block++;
405 	return 0;
406 }
407 
408 int ext4_bio_write_page(struct ext4_io_submit *io,
409 			struct page *page,
410 			int len,
411 			struct writeback_control *wbc,
412 			bool keep_towrite)
413 {
414 	struct page *data_page = NULL;
415 	struct inode *inode = page->mapping->host;
416 	unsigned block_start;
417 	struct buffer_head *bh, *head;
418 	int ret = 0;
419 	int nr_submitted = 0;
420 	int nr_to_submit = 0;
421 
422 	BUG_ON(!PageLocked(page));
423 	BUG_ON(PageWriteback(page));
424 
425 	if (keep_towrite)
426 		set_page_writeback_keepwrite(page);
427 	else
428 		set_page_writeback(page);
429 	ClearPageError(page);
430 
431 	/*
432 	 * Comments copied from block_write_full_page:
433 	 *
434 	 * The page straddles i_size.  It must be zeroed out on each and every
435 	 * writepage invocation because it may be mmapped.  "A file is mapped
436 	 * in multiples of the page size.  For a file that is not a multiple of
437 	 * the page size, the remaining memory is zeroed when mapped, and
438 	 * writes to that region are not written out to the file."
439 	 */
440 	if (len < PAGE_SIZE)
441 		zero_user_segment(page, len, PAGE_SIZE);
442 	/*
443 	 * In the first loop we prepare and mark buffers to submit. We have to
444 	 * mark all buffers in the page before submitting so that
445 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
446 	 * on the first buffer finishes and we are still working on submitting
447 	 * the second buffer.
448 	 */
449 	bh = head = page_buffers(page);
450 	do {
451 		block_start = bh_offset(bh);
452 		if (block_start >= len) {
453 			clear_buffer_dirty(bh);
454 			set_buffer_uptodate(bh);
455 			continue;
456 		}
457 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
458 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
459 			/* A hole? We can safely clear the dirty bit */
460 			if (!buffer_mapped(bh))
461 				clear_buffer_dirty(bh);
462 			if (io->io_bio)
463 				ext4_io_submit(io);
464 			continue;
465 		}
466 		if (buffer_new(bh)) {
467 			clear_buffer_new(bh);
468 			clean_bdev_bh_alias(bh);
469 		}
470 		set_buffer_async_write(bh);
471 		nr_to_submit++;
472 	} while ((bh = bh->b_this_page) != head);
473 
474 	bh = head = page_buffers(page);
475 
476 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
477 	    nr_to_submit) {
478 		gfp_t gfp_flags = GFP_NOFS;
479 
480 	retry_encrypt:
481 		data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0,
482 						page->index, gfp_flags);
483 		if (IS_ERR(data_page)) {
484 			ret = PTR_ERR(data_page);
485 			if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
486 				if (io->io_bio) {
487 					ext4_io_submit(io);
488 					congestion_wait(BLK_RW_ASYNC, HZ/50);
489 				}
490 				gfp_flags |= __GFP_NOFAIL;
491 				goto retry_encrypt;
492 			}
493 			data_page = NULL;
494 			goto out;
495 		}
496 	}
497 
498 	/* Now submit buffers to write */
499 	do {
500 		if (!buffer_async_write(bh))
501 			continue;
502 		ret = io_submit_add_bh(io, inode,
503 				       data_page ? data_page : page, bh);
504 		if (ret) {
505 			/*
506 			 * We only get here on ENOMEM.  Not much else
507 			 * we can do but mark the page as dirty, and
508 			 * better luck next time.
509 			 */
510 			break;
511 		}
512 		nr_submitted++;
513 		clear_buffer_dirty(bh);
514 	} while ((bh = bh->b_this_page) != head);
515 
516 	/* Error stopped previous loop? Clean up buffers... */
517 	if (ret) {
518 	out:
519 		if (data_page)
520 			fscrypt_restore_control_page(data_page);
521 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
522 		redirty_page_for_writepage(wbc, page);
523 		do {
524 			clear_buffer_async_write(bh);
525 			bh = bh->b_this_page;
526 		} while (bh != head);
527 	}
528 	unlock_page(page);
529 	/* Nothing submitted - we have to end page writeback */
530 	if (!nr_submitted)
531 		end_page_writeback(page);
532 	return ret;
533 }
534