xref: /openbmc/linux/fs/ext4/page-io.c (revision e6c81cce)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 
31 static struct kmem_cache *io_end_cachep;
32 
33 int __init ext4_init_pageio(void)
34 {
35 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
36 	if (io_end_cachep == NULL)
37 		return -ENOMEM;
38 	return 0;
39 }
40 
41 void ext4_exit_pageio(void)
42 {
43 	kmem_cache_destroy(io_end_cachep);
44 }
45 
46 /*
47  * Print an buffer I/O error compatible with the fs/buffer.c.  This
48  * provides compatibility with dmesg scrapers that look for a specific
49  * buffer I/O error message.  We really need a unified error reporting
50  * structure to userspace ala Digital Unix's uerf system, but it's
51  * probably not going to happen in my lifetime, due to LKML politics...
52  */
53 static void buffer_io_error(struct buffer_head *bh)
54 {
55 	char b[BDEVNAME_SIZE];
56 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
57 			bdevname(bh->b_bdev, b),
58 			(unsigned long long)bh->b_blocknr);
59 }
60 
61 static void ext4_finish_bio(struct bio *bio)
62 {
63 	int i;
64 	int error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
65 	struct bio_vec *bvec;
66 
67 	bio_for_each_segment_all(bvec, bio, i) {
68 		struct page *page = bvec->bv_page;
69 #ifdef CONFIG_EXT4_FS_ENCRYPTION
70 		struct page *data_page = NULL;
71 		struct ext4_crypto_ctx *ctx = NULL;
72 #endif
73 		struct buffer_head *bh, *head;
74 		unsigned bio_start = bvec->bv_offset;
75 		unsigned bio_end = bio_start + bvec->bv_len;
76 		unsigned under_io = 0;
77 		unsigned long flags;
78 
79 		if (!page)
80 			continue;
81 
82 #ifdef CONFIG_EXT4_FS_ENCRYPTION
83 		if (!page->mapping) {
84 			/* The bounce data pages are unmapped. */
85 			data_page = page;
86 			ctx = (struct ext4_crypto_ctx *)page_private(data_page);
87 			page = ctx->control_page;
88 		}
89 #endif
90 
91 		if (error) {
92 			SetPageError(page);
93 			set_bit(AS_EIO, &page->mapping->flags);
94 		}
95 		bh = head = page_buffers(page);
96 		/*
97 		 * We check all buffers in the page under BH_Uptodate_Lock
98 		 * to avoid races with other end io clearing async_write flags
99 		 */
100 		local_irq_save(flags);
101 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
102 		do {
103 			if (bh_offset(bh) < bio_start ||
104 			    bh_offset(bh) + bh->b_size > bio_end) {
105 				if (buffer_async_write(bh))
106 					under_io++;
107 				continue;
108 			}
109 			clear_buffer_async_write(bh);
110 			if (error)
111 				buffer_io_error(bh);
112 		} while ((bh = bh->b_this_page) != head);
113 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
114 		local_irq_restore(flags);
115 		if (!under_io) {
116 #ifdef CONFIG_EXT4_FS_ENCRYPTION
117 			if (ctx)
118 				ext4_restore_control_page(data_page);
119 #endif
120 			end_page_writeback(page);
121 		}
122 	}
123 }
124 
125 static void ext4_release_io_end(ext4_io_end_t *io_end)
126 {
127 	struct bio *bio, *next_bio;
128 
129 	BUG_ON(!list_empty(&io_end->list));
130 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
131 	WARN_ON(io_end->handle);
132 
133 	if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
134 		wake_up_all(ext4_ioend_wq(io_end->inode));
135 
136 	for (bio = io_end->bio; bio; bio = next_bio) {
137 		next_bio = bio->bi_private;
138 		ext4_finish_bio(bio);
139 		bio_put(bio);
140 	}
141 	kmem_cache_free(io_end_cachep, io_end);
142 }
143 
144 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
145 {
146 	struct inode *inode = io_end->inode;
147 
148 	io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
149 	/* Wake up anyone waiting on unwritten extent conversion */
150 	if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
151 		wake_up_all(ext4_ioend_wq(inode));
152 }
153 
154 /*
155  * Check a range of space and convert unwritten extents to written. Note that
156  * we are protected from truncate touching same part of extent tree by the
157  * fact that truncate code waits for all DIO to finish (thus exclusion from
158  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
159  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
160  * completed (happens from ext4_free_ioend()).
161  */
162 static int ext4_end_io(ext4_io_end_t *io)
163 {
164 	struct inode *inode = io->inode;
165 	loff_t offset = io->offset;
166 	ssize_t size = io->size;
167 	handle_t *handle = io->handle;
168 	int ret = 0;
169 
170 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
171 		   "list->prev 0x%p\n",
172 		   io, inode->i_ino, io->list.next, io->list.prev);
173 
174 	io->handle = NULL;	/* Following call will use up the handle */
175 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
176 	if (ret < 0) {
177 		ext4_msg(inode->i_sb, KERN_EMERG,
178 			 "failed to convert unwritten extents to written "
179 			 "extents -- potential data loss!  "
180 			 "(inode %lu, offset %llu, size %zd, error %d)",
181 			 inode->i_ino, offset, size, ret);
182 	}
183 	ext4_clear_io_unwritten_flag(io);
184 	ext4_release_io_end(io);
185 	return ret;
186 }
187 
188 static void dump_completed_IO(struct inode *inode, struct list_head *head)
189 {
190 #ifdef	EXT4FS_DEBUG
191 	struct list_head *cur, *before, *after;
192 	ext4_io_end_t *io, *io0, *io1;
193 
194 	if (list_empty(head))
195 		return;
196 
197 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
198 	list_for_each_entry(io, head, list) {
199 		cur = &io->list;
200 		before = cur->prev;
201 		io0 = container_of(before, ext4_io_end_t, list);
202 		after = cur->next;
203 		io1 = container_of(after, ext4_io_end_t, list);
204 
205 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
206 			    io, inode->i_ino, io0, io1);
207 	}
208 #endif
209 }
210 
211 /* Add the io_end to per-inode completed end_io list. */
212 static void ext4_add_complete_io(ext4_io_end_t *io_end)
213 {
214 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
215 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
216 	struct workqueue_struct *wq;
217 	unsigned long flags;
218 
219 	/* Only reserved conversions from writeback should enter here */
220 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
221 	WARN_ON(!io_end->handle && sbi->s_journal);
222 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
223 	wq = sbi->rsv_conversion_wq;
224 	if (list_empty(&ei->i_rsv_conversion_list))
225 		queue_work(wq, &ei->i_rsv_conversion_work);
226 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
227 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
228 }
229 
230 static int ext4_do_flush_completed_IO(struct inode *inode,
231 				      struct list_head *head)
232 {
233 	ext4_io_end_t *io;
234 	struct list_head unwritten;
235 	unsigned long flags;
236 	struct ext4_inode_info *ei = EXT4_I(inode);
237 	int err, ret = 0;
238 
239 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
240 	dump_completed_IO(inode, head);
241 	list_replace_init(head, &unwritten);
242 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
243 
244 	while (!list_empty(&unwritten)) {
245 		io = list_entry(unwritten.next, ext4_io_end_t, list);
246 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
247 		list_del_init(&io->list);
248 
249 		err = ext4_end_io(io);
250 		if (unlikely(!ret && err))
251 			ret = err;
252 	}
253 	return ret;
254 }
255 
256 /*
257  * work on completed IO, to convert unwritten extents to extents
258  */
259 void ext4_end_io_rsv_work(struct work_struct *work)
260 {
261 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
262 						  i_rsv_conversion_work);
263 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
264 }
265 
266 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
267 {
268 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
269 	if (io) {
270 		atomic_inc(&EXT4_I(inode)->i_ioend_count);
271 		io->inode = inode;
272 		INIT_LIST_HEAD(&io->list);
273 		atomic_set(&io->count, 1);
274 	}
275 	return io;
276 }
277 
278 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
279 {
280 	if (atomic_dec_and_test(&io_end->count)) {
281 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
282 			ext4_release_io_end(io_end);
283 			return;
284 		}
285 		ext4_add_complete_io(io_end);
286 	}
287 }
288 
289 int ext4_put_io_end(ext4_io_end_t *io_end)
290 {
291 	int err = 0;
292 
293 	if (atomic_dec_and_test(&io_end->count)) {
294 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
295 			err = ext4_convert_unwritten_extents(io_end->handle,
296 						io_end->inode, io_end->offset,
297 						io_end->size);
298 			io_end->handle = NULL;
299 			ext4_clear_io_unwritten_flag(io_end);
300 		}
301 		ext4_release_io_end(io_end);
302 	}
303 	return err;
304 }
305 
306 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
307 {
308 	atomic_inc(&io_end->count);
309 	return io_end;
310 }
311 
312 /* BIO completion function for page writeback */
313 static void ext4_end_bio(struct bio *bio, int error)
314 {
315 	ext4_io_end_t *io_end = bio->bi_private;
316 	sector_t bi_sector = bio->bi_iter.bi_sector;
317 
318 	BUG_ON(!io_end);
319 	bio->bi_end_io = NULL;
320 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
321 		error = 0;
322 
323 	if (error) {
324 		struct inode *inode = io_end->inode;
325 
326 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
327 			     "(offset %llu size %ld starting block %llu)",
328 			     error, inode->i_ino,
329 			     (unsigned long long) io_end->offset,
330 			     (long) io_end->size,
331 			     (unsigned long long)
332 			     bi_sector >> (inode->i_blkbits - 9));
333 		mapping_set_error(inode->i_mapping, error);
334 	}
335 
336 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
337 		/*
338 		 * Link bio into list hanging from io_end. We have to do it
339 		 * atomically as bio completions can be racing against each
340 		 * other.
341 		 */
342 		bio->bi_private = xchg(&io_end->bio, bio);
343 		ext4_put_io_end_defer(io_end);
344 	} else {
345 		/*
346 		 * Drop io_end reference early. Inode can get freed once
347 		 * we finish the bio.
348 		 */
349 		ext4_put_io_end_defer(io_end);
350 		ext4_finish_bio(bio);
351 		bio_put(bio);
352 	}
353 }
354 
355 void ext4_io_submit(struct ext4_io_submit *io)
356 {
357 	struct bio *bio = io->io_bio;
358 
359 	if (bio) {
360 		bio_get(io->io_bio);
361 		submit_bio(io->io_op, io->io_bio);
362 		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
363 		bio_put(io->io_bio);
364 	}
365 	io->io_bio = NULL;
366 }
367 
368 void ext4_io_submit_init(struct ext4_io_submit *io,
369 			 struct writeback_control *wbc)
370 {
371 	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
372 	io->io_bio = NULL;
373 	io->io_end = NULL;
374 }
375 
376 static int io_submit_init_bio(struct ext4_io_submit *io,
377 			      struct buffer_head *bh)
378 {
379 	int nvecs = bio_get_nr_vecs(bh->b_bdev);
380 	struct bio *bio;
381 
382 	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
383 	if (!bio)
384 		return -ENOMEM;
385 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
386 	bio->bi_bdev = bh->b_bdev;
387 	bio->bi_end_io = ext4_end_bio;
388 	bio->bi_private = ext4_get_io_end(io->io_end);
389 	io->io_bio = bio;
390 	io->io_next_block = bh->b_blocknr;
391 	return 0;
392 }
393 
394 static int io_submit_add_bh(struct ext4_io_submit *io,
395 			    struct inode *inode,
396 			    struct page *page,
397 			    struct buffer_head *bh)
398 {
399 	int ret;
400 
401 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
402 submit_and_retry:
403 		ext4_io_submit(io);
404 	}
405 	if (io->io_bio == NULL) {
406 		ret = io_submit_init_bio(io, bh);
407 		if (ret)
408 			return ret;
409 	}
410 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
411 	if (ret != bh->b_size)
412 		goto submit_and_retry;
413 	io->io_next_block++;
414 	return 0;
415 }
416 
417 int ext4_bio_write_page(struct ext4_io_submit *io,
418 			struct page *page,
419 			int len,
420 			struct writeback_control *wbc,
421 			bool keep_towrite)
422 {
423 	struct page *data_page = NULL;
424 	struct inode *inode = page->mapping->host;
425 	unsigned block_start, blocksize;
426 	struct buffer_head *bh, *head;
427 	int ret = 0;
428 	int nr_submitted = 0;
429 
430 	blocksize = 1 << inode->i_blkbits;
431 
432 	BUG_ON(!PageLocked(page));
433 	BUG_ON(PageWriteback(page));
434 
435 	if (keep_towrite)
436 		set_page_writeback_keepwrite(page);
437 	else
438 		set_page_writeback(page);
439 	ClearPageError(page);
440 
441 	/*
442 	 * Comments copied from block_write_full_page:
443 	 *
444 	 * The page straddles i_size.  It must be zeroed out on each and every
445 	 * writepage invocation because it may be mmapped.  "A file is mapped
446 	 * in multiples of the page size.  For a file that is not a multiple of
447 	 * the page size, the remaining memory is zeroed when mapped, and
448 	 * writes to that region are not written out to the file."
449 	 */
450 	if (len < PAGE_CACHE_SIZE)
451 		zero_user_segment(page, len, PAGE_CACHE_SIZE);
452 	/*
453 	 * In the first loop we prepare and mark buffers to submit. We have to
454 	 * mark all buffers in the page before submitting so that
455 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
456 	 * on the first buffer finishes and we are still working on submitting
457 	 * the second buffer.
458 	 */
459 	bh = head = page_buffers(page);
460 	do {
461 		block_start = bh_offset(bh);
462 		if (block_start >= len) {
463 			clear_buffer_dirty(bh);
464 			set_buffer_uptodate(bh);
465 			continue;
466 		}
467 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
468 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
469 			/* A hole? We can safely clear the dirty bit */
470 			if (!buffer_mapped(bh))
471 				clear_buffer_dirty(bh);
472 			if (io->io_bio)
473 				ext4_io_submit(io);
474 			continue;
475 		}
476 		if (buffer_new(bh)) {
477 			clear_buffer_new(bh);
478 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
479 		}
480 		set_buffer_async_write(bh);
481 	} while ((bh = bh->b_this_page) != head);
482 
483 	bh = head = page_buffers(page);
484 
485 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
486 		data_page = ext4_encrypt(inode, page);
487 		if (IS_ERR(data_page)) {
488 			ret = PTR_ERR(data_page);
489 			data_page = NULL;
490 			goto out;
491 		}
492 	}
493 
494 	/* Now submit buffers to write */
495 	do {
496 		if (!buffer_async_write(bh))
497 			continue;
498 		ret = io_submit_add_bh(io, inode,
499 				       data_page ? data_page : page, bh);
500 		if (ret) {
501 			/*
502 			 * We only get here on ENOMEM.  Not much else
503 			 * we can do but mark the page as dirty, and
504 			 * better luck next time.
505 			 */
506 			break;
507 		}
508 		nr_submitted++;
509 		clear_buffer_dirty(bh);
510 	} while ((bh = bh->b_this_page) != head);
511 
512 	/* Error stopped previous loop? Clean up buffers... */
513 	if (ret) {
514 	out:
515 		if (data_page)
516 			ext4_restore_control_page(data_page);
517 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
518 		redirty_page_for_writepage(wbc, page);
519 		do {
520 			clear_buffer_async_write(bh);
521 			bh = bh->b_this_page;
522 		} while (bh != head);
523 	}
524 	unlock_page(page);
525 	/* Nothing submitted - we have to end page writeback */
526 	if (!nr_submitted)
527 		end_page_writeback(page);
528 	return ret;
529 }
530