xref: /openbmc/linux/fs/ext4/page-io.c (revision c699ce1a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/sched/mm.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 static struct kmem_cache *io_end_vec_cachep;
35 
36 int __init ext4_init_pageio(void)
37 {
38 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
39 	if (io_end_cachep == NULL)
40 		return -ENOMEM;
41 
42 	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
43 	if (io_end_vec_cachep == NULL) {
44 		kmem_cache_destroy(io_end_cachep);
45 		return -ENOMEM;
46 	}
47 	return 0;
48 }
49 
50 void ext4_exit_pageio(void)
51 {
52 	kmem_cache_destroy(io_end_cachep);
53 	kmem_cache_destroy(io_end_vec_cachep);
54 }
55 
56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
57 {
58 	struct ext4_io_end_vec *io_end_vec;
59 
60 	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
61 	if (!io_end_vec)
62 		return ERR_PTR(-ENOMEM);
63 	INIT_LIST_HEAD(&io_end_vec->list);
64 	list_add_tail(&io_end_vec->list, &io_end->list_vec);
65 	return io_end_vec;
66 }
67 
68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
69 {
70 	struct ext4_io_end_vec *io_end_vec, *tmp;
71 
72 	if (list_empty(&io_end->list_vec))
73 		return;
74 	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
75 		list_del(&io_end_vec->list);
76 		kmem_cache_free(io_end_vec_cachep, io_end_vec);
77 	}
78 }
79 
80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
81 {
82 	BUG_ON(list_empty(&io_end->list_vec));
83 	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
84 }
85 
86 /*
87  * Print an buffer I/O error compatible with the fs/buffer.c.  This
88  * provides compatibility with dmesg scrapers that look for a specific
89  * buffer I/O error message.  We really need a unified error reporting
90  * structure to userspace ala Digital Unix's uerf system, but it's
91  * probably not going to happen in my lifetime, due to LKML politics...
92  */
93 static void buffer_io_error(struct buffer_head *bh)
94 {
95 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
96 		       bh->b_bdev,
97 			(unsigned long long)bh->b_blocknr);
98 }
99 
100 static void ext4_finish_bio(struct bio *bio)
101 {
102 	struct bio_vec *bvec;
103 	struct bvec_iter_all iter_all;
104 
105 	bio_for_each_segment_all(bvec, bio, iter_all) {
106 		struct page *page = bvec->bv_page;
107 		struct page *bounce_page = NULL;
108 		struct buffer_head *bh, *head;
109 		unsigned bio_start = bvec->bv_offset;
110 		unsigned bio_end = bio_start + bvec->bv_len;
111 		unsigned under_io = 0;
112 		unsigned long flags;
113 
114 		if (fscrypt_is_bounce_page(page)) {
115 			bounce_page = page;
116 			page = fscrypt_pagecache_page(bounce_page);
117 		}
118 
119 		if (bio->bi_status) {
120 			SetPageError(page);
121 			mapping_set_error(page->mapping, -EIO);
122 		}
123 		bh = head = page_buffers(page);
124 		/*
125 		 * We check all buffers in the page under b_uptodate_lock
126 		 * to avoid races with other end io clearing async_write flags
127 		 */
128 		spin_lock_irqsave(&head->b_uptodate_lock, flags);
129 		do {
130 			if (bh_offset(bh) < bio_start ||
131 			    bh_offset(bh) + bh->b_size > bio_end) {
132 				if (buffer_async_write(bh))
133 					under_io++;
134 				continue;
135 			}
136 			clear_buffer_async_write(bh);
137 			if (bio->bi_status) {
138 				set_buffer_write_io_error(bh);
139 				buffer_io_error(bh);
140 			}
141 		} while ((bh = bh->b_this_page) != head);
142 		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
143 		if (!under_io) {
144 			fscrypt_free_bounce_page(bounce_page);
145 			end_page_writeback(page);
146 		}
147 	}
148 }
149 
150 static void ext4_release_io_end(ext4_io_end_t *io_end)
151 {
152 	struct bio *bio, *next_bio;
153 
154 	BUG_ON(!list_empty(&io_end->list));
155 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
156 	WARN_ON(io_end->handle);
157 
158 	for (bio = io_end->bio; bio; bio = next_bio) {
159 		next_bio = bio->bi_private;
160 		ext4_finish_bio(bio);
161 		bio_put(bio);
162 	}
163 	ext4_free_io_end_vec(io_end);
164 	kmem_cache_free(io_end_cachep, io_end);
165 }
166 
167 /*
168  * Check a range of space and convert unwritten extents to written. Note that
169  * we are protected from truncate touching same part of extent tree by the
170  * fact that truncate code waits for all DIO to finish (thus exclusion from
171  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
172  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
173  * completed (happens from ext4_free_ioend()).
174  */
175 static int ext4_end_io_end(ext4_io_end_t *io_end)
176 {
177 	struct inode *inode = io_end->inode;
178 	handle_t *handle = io_end->handle;
179 	int ret = 0;
180 
181 	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
182 		   "list->prev 0x%p\n",
183 		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
184 
185 	io_end->handle = NULL;	/* Following call will use up the handle */
186 	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
187 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
188 		ext4_msg(inode->i_sb, KERN_EMERG,
189 			 "failed to convert unwritten extents to written "
190 			 "extents -- potential data loss!  "
191 			 "(inode %lu, error %d)", inode->i_ino, ret);
192 	}
193 	ext4_clear_io_unwritten_flag(io_end);
194 	ext4_release_io_end(io_end);
195 	return ret;
196 }
197 
198 static void dump_completed_IO(struct inode *inode, struct list_head *head)
199 {
200 #ifdef	EXT4FS_DEBUG
201 	struct list_head *cur, *before, *after;
202 	ext4_io_end_t *io_end, *io_end0, *io_end1;
203 
204 	if (list_empty(head))
205 		return;
206 
207 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
208 	list_for_each_entry(io_end, head, list) {
209 		cur = &io_end->list;
210 		before = cur->prev;
211 		io_end0 = container_of(before, ext4_io_end_t, list);
212 		after = cur->next;
213 		io_end1 = container_of(after, ext4_io_end_t, list);
214 
215 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
216 			    io_end, inode->i_ino, io_end0, io_end1);
217 	}
218 #endif
219 }
220 
221 /* Add the io_end to per-inode completed end_io list. */
222 static void ext4_add_complete_io(ext4_io_end_t *io_end)
223 {
224 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
225 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
226 	struct workqueue_struct *wq;
227 	unsigned long flags;
228 
229 	/* Only reserved conversions from writeback should enter here */
230 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
231 	WARN_ON(!io_end->handle && sbi->s_journal);
232 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
233 	wq = sbi->rsv_conversion_wq;
234 	if (list_empty(&ei->i_rsv_conversion_list))
235 		queue_work(wq, &ei->i_rsv_conversion_work);
236 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
237 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
238 }
239 
240 static int ext4_do_flush_completed_IO(struct inode *inode,
241 				      struct list_head *head)
242 {
243 	ext4_io_end_t *io_end;
244 	struct list_head unwritten;
245 	unsigned long flags;
246 	struct ext4_inode_info *ei = EXT4_I(inode);
247 	int err, ret = 0;
248 
249 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
250 	dump_completed_IO(inode, head);
251 	list_replace_init(head, &unwritten);
252 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
253 
254 	while (!list_empty(&unwritten)) {
255 		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
256 		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
257 		list_del_init(&io_end->list);
258 
259 		err = ext4_end_io_end(io_end);
260 		if (unlikely(!ret && err))
261 			ret = err;
262 	}
263 	return ret;
264 }
265 
266 /*
267  * work on completed IO, to convert unwritten extents to extents
268  */
269 void ext4_end_io_rsv_work(struct work_struct *work)
270 {
271 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
272 						  i_rsv_conversion_work);
273 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
274 }
275 
276 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
277 {
278 	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
279 
280 	if (io_end) {
281 		io_end->inode = inode;
282 		INIT_LIST_HEAD(&io_end->list);
283 		INIT_LIST_HEAD(&io_end->list_vec);
284 		refcount_set(&io_end->count, 1);
285 	}
286 	return io_end;
287 }
288 
289 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
290 {
291 	if (refcount_dec_and_test(&io_end->count)) {
292 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
293 				list_empty(&io_end->list_vec)) {
294 			ext4_release_io_end(io_end);
295 			return;
296 		}
297 		ext4_add_complete_io(io_end);
298 	}
299 }
300 
301 int ext4_put_io_end(ext4_io_end_t *io_end)
302 {
303 	int err = 0;
304 
305 	if (refcount_dec_and_test(&io_end->count)) {
306 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
307 			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
308 								io_end);
309 			io_end->handle = NULL;
310 			ext4_clear_io_unwritten_flag(io_end);
311 		}
312 		ext4_release_io_end(io_end);
313 	}
314 	return err;
315 }
316 
317 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
318 {
319 	refcount_inc(&io_end->count);
320 	return io_end;
321 }
322 
323 /* BIO completion function for page writeback */
324 static void ext4_end_bio(struct bio *bio)
325 {
326 	ext4_io_end_t *io_end = bio->bi_private;
327 	sector_t bi_sector = bio->bi_iter.bi_sector;
328 
329 	if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
330 		      bio->bi_bdev,
331 		      (long long) bio->bi_iter.bi_sector,
332 		      (unsigned) bio_sectors(bio),
333 		      bio->bi_status)) {
334 		ext4_finish_bio(bio);
335 		bio_put(bio);
336 		return;
337 	}
338 	bio->bi_end_io = NULL;
339 
340 	if (bio->bi_status) {
341 		struct inode *inode = io_end->inode;
342 
343 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
344 			     "starting block %llu)",
345 			     bio->bi_status, inode->i_ino,
346 			     (unsigned long long)
347 			     bi_sector >> (inode->i_blkbits - 9));
348 		mapping_set_error(inode->i_mapping,
349 				blk_status_to_errno(bio->bi_status));
350 	}
351 
352 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
353 		/*
354 		 * Link bio into list hanging from io_end. We have to do it
355 		 * atomically as bio completions can be racing against each
356 		 * other.
357 		 */
358 		bio->bi_private = xchg(&io_end->bio, bio);
359 		ext4_put_io_end_defer(io_end);
360 	} else {
361 		/*
362 		 * Drop io_end reference early. Inode can get freed once
363 		 * we finish the bio.
364 		 */
365 		ext4_put_io_end_defer(io_end);
366 		ext4_finish_bio(bio);
367 		bio_put(bio);
368 	}
369 }
370 
371 void ext4_io_submit(struct ext4_io_submit *io)
372 {
373 	struct bio *bio = io->io_bio;
374 
375 	if (bio) {
376 		if (io->io_wbc->sync_mode == WB_SYNC_ALL)
377 			io->io_bio->bi_opf |= REQ_SYNC;
378 		submit_bio(io->io_bio);
379 	}
380 	io->io_bio = NULL;
381 }
382 
383 void ext4_io_submit_init(struct ext4_io_submit *io,
384 			 struct writeback_control *wbc)
385 {
386 	io->io_wbc = wbc;
387 	io->io_bio = NULL;
388 	io->io_end = NULL;
389 }
390 
391 static void io_submit_init_bio(struct ext4_io_submit *io,
392 			       struct buffer_head *bh)
393 {
394 	struct bio *bio;
395 
396 	/*
397 	 * bio_alloc will _always_ be able to allocate a bio if
398 	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
399 	 */
400 	bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
401 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
402 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
403 	bio->bi_end_io = ext4_end_bio;
404 	bio->bi_private = ext4_get_io_end(io->io_end);
405 	io->io_bio = bio;
406 	io->io_next_block = bh->b_blocknr;
407 	wbc_init_bio(io->io_wbc, bio);
408 }
409 
410 static void io_submit_add_bh(struct ext4_io_submit *io,
411 			     struct inode *inode,
412 			     struct page *page,
413 			     struct buffer_head *bh)
414 {
415 	int ret;
416 
417 	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
418 			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
419 submit_and_retry:
420 		ext4_io_submit(io);
421 	}
422 	if (io->io_bio == NULL)
423 		io_submit_init_bio(io, bh);
424 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
425 	if (ret != bh->b_size)
426 		goto submit_and_retry;
427 	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
428 	io->io_next_block++;
429 }
430 
431 int ext4_bio_write_page(struct ext4_io_submit *io,
432 			struct page *page,
433 			int len)
434 {
435 	struct page *bounce_page = NULL;
436 	struct inode *inode = page->mapping->host;
437 	unsigned block_start;
438 	struct buffer_head *bh, *head;
439 	int ret = 0;
440 	int nr_to_submit = 0;
441 	struct writeback_control *wbc = io->io_wbc;
442 	bool keep_towrite = false;
443 
444 	BUG_ON(!PageLocked(page));
445 	BUG_ON(PageWriteback(page));
446 
447 	ClearPageError(page);
448 
449 	/*
450 	 * Comments copied from block_write_full_page:
451 	 *
452 	 * The page straddles i_size.  It must be zeroed out on each and every
453 	 * writepage invocation because it may be mmapped.  "A file is mapped
454 	 * in multiples of the page size.  For a file that is not a multiple of
455 	 * the page size, the remaining memory is zeroed when mapped, and
456 	 * writes to that region are not written out to the file."
457 	 */
458 	if (len < PAGE_SIZE)
459 		zero_user_segment(page, len, PAGE_SIZE);
460 	/*
461 	 * In the first loop we prepare and mark buffers to submit. We have to
462 	 * mark all buffers in the page before submitting so that
463 	 * end_page_writeback() cannot be called from ext4_end_bio() when IO
464 	 * on the first buffer finishes and we are still working on submitting
465 	 * the second buffer.
466 	 */
467 	bh = head = page_buffers(page);
468 	do {
469 		block_start = bh_offset(bh);
470 		if (block_start >= len) {
471 			clear_buffer_dirty(bh);
472 			set_buffer_uptodate(bh);
473 			continue;
474 		}
475 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
476 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
477 			/* A hole? We can safely clear the dirty bit */
478 			if (!buffer_mapped(bh))
479 				clear_buffer_dirty(bh);
480 			/*
481 			 * Keeping dirty some buffer we cannot write? Make sure
482 			 * to redirty the page and keep TOWRITE tag so that
483 			 * racing WB_SYNC_ALL writeback does not skip the page.
484 			 * This happens e.g. when doing writeout for
485 			 * transaction commit.
486 			 */
487 			if (buffer_dirty(bh)) {
488 				if (!PageDirty(page))
489 					redirty_page_for_writepage(wbc, page);
490 				keep_towrite = true;
491 			}
492 			continue;
493 		}
494 		if (buffer_new(bh))
495 			clear_buffer_new(bh);
496 		set_buffer_async_write(bh);
497 		clear_buffer_dirty(bh);
498 		nr_to_submit++;
499 	} while ((bh = bh->b_this_page) != head);
500 
501 	/* Nothing to submit? Just unlock the page... */
502 	if (!nr_to_submit)
503 		goto unlock;
504 
505 	bh = head = page_buffers(page);
506 
507 	/*
508 	 * If any blocks are being written to an encrypted file, encrypt them
509 	 * into a bounce page.  For simplicity, just encrypt until the last
510 	 * block which might be needed.  This may cause some unneeded blocks
511 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
512 	 * can't happen in the common case of blocksize == PAGE_SIZE.
513 	 */
514 	if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
515 		gfp_t gfp_flags = GFP_NOFS;
516 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
517 
518 		/*
519 		 * Since bounce page allocation uses a mempool, we can only use
520 		 * a waiting mask (i.e. request guaranteed allocation) on the
521 		 * first page of the bio.  Otherwise it can deadlock.
522 		 */
523 		if (io->io_bio)
524 			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
525 	retry_encrypt:
526 		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
527 							       0, gfp_flags);
528 		if (IS_ERR(bounce_page)) {
529 			ret = PTR_ERR(bounce_page);
530 			if (ret == -ENOMEM &&
531 			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
532 				gfp_t new_gfp_flags = GFP_NOFS;
533 				if (io->io_bio)
534 					ext4_io_submit(io);
535 				else
536 					new_gfp_flags |= __GFP_NOFAIL;
537 				memalloc_retry_wait(gfp_flags);
538 				gfp_flags = new_gfp_flags;
539 				goto retry_encrypt;
540 			}
541 
542 			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
543 			redirty_page_for_writepage(wbc, page);
544 			do {
545 				if (buffer_async_write(bh)) {
546 					clear_buffer_async_write(bh);
547 					set_buffer_dirty(bh);
548 				}
549 				bh = bh->b_this_page;
550 			} while (bh != head);
551 			goto unlock;
552 		}
553 	}
554 
555 	if (keep_towrite)
556 		set_page_writeback_keepwrite(page);
557 	else
558 		set_page_writeback(page);
559 
560 	/* Now submit buffers to write */
561 	do {
562 		if (!buffer_async_write(bh))
563 			continue;
564 		io_submit_add_bh(io, inode,
565 				 bounce_page ? bounce_page : page, bh);
566 	} while ((bh = bh->b_this_page) != head);
567 unlock:
568 	unlock_page(page);
569 	return ret;
570 }
571