1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/page-io.c 4 * 5 * This contains the new page_io functions for ext4 6 * 7 * Written by Theodore Ts'o, 2010. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/time.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 #include <linux/workqueue.h> 24 #include <linux/kernel.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 #include <linux/backing-dev.h> 28 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 static struct kmem_cache *io_end_cachep; 34 35 int __init ext4_init_pageio(void) 36 { 37 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 38 if (io_end_cachep == NULL) 39 return -ENOMEM; 40 return 0; 41 } 42 43 void ext4_exit_pageio(void) 44 { 45 kmem_cache_destroy(io_end_cachep); 46 } 47 48 /* 49 * Print an buffer I/O error compatible with the fs/buffer.c. This 50 * provides compatibility with dmesg scrapers that look for a specific 51 * buffer I/O error message. We really need a unified error reporting 52 * structure to userspace ala Digital Unix's uerf system, but it's 53 * probably not going to happen in my lifetime, due to LKML politics... 54 */ 55 static void buffer_io_error(struct buffer_head *bh) 56 { 57 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n", 58 bh->b_bdev, 59 (unsigned long long)bh->b_blocknr); 60 } 61 62 static void ext4_finish_bio(struct bio *bio) 63 { 64 struct bio_vec *bvec; 65 struct bvec_iter_all iter_all; 66 67 bio_for_each_segment_all(bvec, bio, iter_all) { 68 struct page *page = bvec->bv_page; 69 struct page *bounce_page = NULL; 70 struct buffer_head *bh, *head; 71 unsigned bio_start = bvec->bv_offset; 72 unsigned bio_end = bio_start + bvec->bv_len; 73 unsigned under_io = 0; 74 unsigned long flags; 75 76 if (!page) 77 continue; 78 79 if (fscrypt_is_bounce_page(page)) { 80 bounce_page = page; 81 page = fscrypt_pagecache_page(bounce_page); 82 } 83 84 if (bio->bi_status) { 85 SetPageError(page); 86 mapping_set_error(page->mapping, -EIO); 87 } 88 bh = head = page_buffers(page); 89 /* 90 * We check all buffers in the page under BH_Uptodate_Lock 91 * to avoid races with other end io clearing async_write flags 92 */ 93 local_irq_save(flags); 94 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 95 do { 96 if (bh_offset(bh) < bio_start || 97 bh_offset(bh) + bh->b_size > bio_end) { 98 if (buffer_async_write(bh)) 99 under_io++; 100 continue; 101 } 102 clear_buffer_async_write(bh); 103 if (bio->bi_status) 104 buffer_io_error(bh); 105 } while ((bh = bh->b_this_page) != head); 106 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 107 local_irq_restore(flags); 108 if (!under_io) { 109 fscrypt_free_bounce_page(bounce_page); 110 end_page_writeback(page); 111 } 112 } 113 } 114 115 static void ext4_release_io_end(ext4_io_end_t *io_end) 116 { 117 struct bio *bio, *next_bio; 118 119 BUG_ON(!list_empty(&io_end->list)); 120 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 121 WARN_ON(io_end->handle); 122 123 for (bio = io_end->bio; bio; bio = next_bio) { 124 next_bio = bio->bi_private; 125 ext4_finish_bio(bio); 126 bio_put(bio); 127 } 128 kmem_cache_free(io_end_cachep, io_end); 129 } 130 131 /* 132 * Check a range of space and convert unwritten extents to written. Note that 133 * we are protected from truncate touching same part of extent tree by the 134 * fact that truncate code waits for all DIO to finish (thus exclusion from 135 * direct IO is achieved) and also waits for PageWriteback bits. Thus we 136 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are 137 * completed (happens from ext4_free_ioend()). 138 */ 139 static int ext4_end_io(ext4_io_end_t *io) 140 { 141 struct inode *inode = io->inode; 142 loff_t offset = io->offset; 143 ssize_t size = io->size; 144 handle_t *handle = io->handle; 145 int ret = 0; 146 147 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 148 "list->prev 0x%p\n", 149 io, inode->i_ino, io->list.next, io->list.prev); 150 151 io->handle = NULL; /* Following call will use up the handle */ 152 ret = ext4_convert_unwritten_extents(handle, inode, offset, size); 153 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) { 154 ext4_msg(inode->i_sb, KERN_EMERG, 155 "failed to convert unwritten extents to written " 156 "extents -- potential data loss! " 157 "(inode %lu, offset %llu, size %zd, error %d)", 158 inode->i_ino, offset, size, ret); 159 } 160 ext4_clear_io_unwritten_flag(io); 161 ext4_release_io_end(io); 162 return ret; 163 } 164 165 static void dump_completed_IO(struct inode *inode, struct list_head *head) 166 { 167 #ifdef EXT4FS_DEBUG 168 struct list_head *cur, *before, *after; 169 ext4_io_end_t *io, *io0, *io1; 170 171 if (list_empty(head)) 172 return; 173 174 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino); 175 list_for_each_entry(io, head, list) { 176 cur = &io->list; 177 before = cur->prev; 178 io0 = container_of(before, ext4_io_end_t, list); 179 after = cur->next; 180 io1 = container_of(after, ext4_io_end_t, list); 181 182 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 183 io, inode->i_ino, io0, io1); 184 } 185 #endif 186 } 187 188 /* Add the io_end to per-inode completed end_io list. */ 189 static void ext4_add_complete_io(ext4_io_end_t *io_end) 190 { 191 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 192 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb); 193 struct workqueue_struct *wq; 194 unsigned long flags; 195 196 /* Only reserved conversions from writeback should enter here */ 197 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 198 WARN_ON(!io_end->handle && sbi->s_journal); 199 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 200 wq = sbi->rsv_conversion_wq; 201 if (list_empty(&ei->i_rsv_conversion_list)) 202 queue_work(wq, &ei->i_rsv_conversion_work); 203 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list); 204 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 205 } 206 207 static int ext4_do_flush_completed_IO(struct inode *inode, 208 struct list_head *head) 209 { 210 ext4_io_end_t *io; 211 struct list_head unwritten; 212 unsigned long flags; 213 struct ext4_inode_info *ei = EXT4_I(inode); 214 int err, ret = 0; 215 216 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 217 dump_completed_IO(inode, head); 218 list_replace_init(head, &unwritten); 219 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 220 221 while (!list_empty(&unwritten)) { 222 io = list_entry(unwritten.next, ext4_io_end_t, list); 223 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN)); 224 list_del_init(&io->list); 225 226 err = ext4_end_io(io); 227 if (unlikely(!ret && err)) 228 ret = err; 229 } 230 return ret; 231 } 232 233 /* 234 * work on completed IO, to convert unwritten extents to extents 235 */ 236 void ext4_end_io_rsv_work(struct work_struct *work) 237 { 238 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 239 i_rsv_conversion_work); 240 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list); 241 } 242 243 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 244 { 245 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags); 246 if (io) { 247 io->inode = inode; 248 INIT_LIST_HEAD(&io->list); 249 atomic_set(&io->count, 1); 250 } 251 return io; 252 } 253 254 void ext4_put_io_end_defer(ext4_io_end_t *io_end) 255 { 256 if (atomic_dec_and_test(&io_end->count)) { 257 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) { 258 ext4_release_io_end(io_end); 259 return; 260 } 261 ext4_add_complete_io(io_end); 262 } 263 } 264 265 int ext4_put_io_end(ext4_io_end_t *io_end) 266 { 267 int err = 0; 268 269 if (atomic_dec_and_test(&io_end->count)) { 270 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 271 err = ext4_convert_unwritten_extents(io_end->handle, 272 io_end->inode, io_end->offset, 273 io_end->size); 274 io_end->handle = NULL; 275 ext4_clear_io_unwritten_flag(io_end); 276 } 277 ext4_release_io_end(io_end); 278 } 279 return err; 280 } 281 282 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) 283 { 284 atomic_inc(&io_end->count); 285 return io_end; 286 } 287 288 /* BIO completion function for page writeback */ 289 static void ext4_end_bio(struct bio *bio) 290 { 291 ext4_io_end_t *io_end = bio->bi_private; 292 sector_t bi_sector = bio->bi_iter.bi_sector; 293 char b[BDEVNAME_SIZE]; 294 295 if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n", 296 bio_devname(bio, b), 297 (long long) bio->bi_iter.bi_sector, 298 (unsigned) bio_sectors(bio), 299 bio->bi_status)) { 300 ext4_finish_bio(bio); 301 bio_put(bio); 302 return; 303 } 304 bio->bi_end_io = NULL; 305 306 if (bio->bi_status) { 307 struct inode *inode = io_end->inode; 308 309 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu " 310 "(offset %llu size %ld starting block %llu)", 311 bio->bi_status, inode->i_ino, 312 (unsigned long long) io_end->offset, 313 (long) io_end->size, 314 (unsigned long long) 315 bi_sector >> (inode->i_blkbits - 9)); 316 mapping_set_error(inode->i_mapping, 317 blk_status_to_errno(bio->bi_status)); 318 } 319 320 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 321 /* 322 * Link bio into list hanging from io_end. We have to do it 323 * atomically as bio completions can be racing against each 324 * other. 325 */ 326 bio->bi_private = xchg(&io_end->bio, bio); 327 ext4_put_io_end_defer(io_end); 328 } else { 329 /* 330 * Drop io_end reference early. Inode can get freed once 331 * we finish the bio. 332 */ 333 ext4_put_io_end_defer(io_end); 334 ext4_finish_bio(bio); 335 bio_put(bio); 336 } 337 } 338 339 void ext4_io_submit(struct ext4_io_submit *io) 340 { 341 struct bio *bio = io->io_bio; 342 343 if (bio) { 344 int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ? 345 REQ_SYNC : 0; 346 io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint; 347 bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags); 348 submit_bio(io->io_bio); 349 } 350 io->io_bio = NULL; 351 } 352 353 void ext4_io_submit_init(struct ext4_io_submit *io, 354 struct writeback_control *wbc) 355 { 356 io->io_wbc = wbc; 357 io->io_bio = NULL; 358 io->io_end = NULL; 359 } 360 361 static int io_submit_init_bio(struct ext4_io_submit *io, 362 struct buffer_head *bh) 363 { 364 struct bio *bio; 365 366 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES); 367 if (!bio) 368 return -ENOMEM; 369 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 370 bio_set_dev(bio, bh->b_bdev); 371 bio->bi_end_io = ext4_end_bio; 372 bio->bi_private = ext4_get_io_end(io->io_end); 373 io->io_bio = bio; 374 io->io_next_block = bh->b_blocknr; 375 wbc_init_bio(io->io_wbc, bio); 376 return 0; 377 } 378 379 static int io_submit_add_bh(struct ext4_io_submit *io, 380 struct inode *inode, 381 struct page *page, 382 struct buffer_head *bh) 383 { 384 int ret; 385 386 if (io->io_bio && bh->b_blocknr != io->io_next_block) { 387 submit_and_retry: 388 ext4_io_submit(io); 389 } 390 if (io->io_bio == NULL) { 391 ret = io_submit_init_bio(io, bh); 392 if (ret) 393 return ret; 394 io->io_bio->bi_write_hint = inode->i_write_hint; 395 } 396 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh)); 397 if (ret != bh->b_size) 398 goto submit_and_retry; 399 wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size); 400 io->io_next_block++; 401 return 0; 402 } 403 404 int ext4_bio_write_page(struct ext4_io_submit *io, 405 struct page *page, 406 int len, 407 struct writeback_control *wbc, 408 bool keep_towrite) 409 { 410 struct page *bounce_page = NULL; 411 struct inode *inode = page->mapping->host; 412 unsigned block_start; 413 struct buffer_head *bh, *head; 414 int ret = 0; 415 int nr_submitted = 0; 416 int nr_to_submit = 0; 417 418 BUG_ON(!PageLocked(page)); 419 BUG_ON(PageWriteback(page)); 420 421 if (keep_towrite) 422 set_page_writeback_keepwrite(page); 423 else 424 set_page_writeback(page); 425 ClearPageError(page); 426 427 /* 428 * Comments copied from block_write_full_page: 429 * 430 * The page straddles i_size. It must be zeroed out on each and every 431 * writepage invocation because it may be mmapped. "A file is mapped 432 * in multiples of the page size. For a file that is not a multiple of 433 * the page size, the remaining memory is zeroed when mapped, and 434 * writes to that region are not written out to the file." 435 */ 436 if (len < PAGE_SIZE) 437 zero_user_segment(page, len, PAGE_SIZE); 438 /* 439 * In the first loop we prepare and mark buffers to submit. We have to 440 * mark all buffers in the page before submitting so that 441 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO 442 * on the first buffer finishes and we are still working on submitting 443 * the second buffer. 444 */ 445 bh = head = page_buffers(page); 446 do { 447 block_start = bh_offset(bh); 448 if (block_start >= len) { 449 clear_buffer_dirty(bh); 450 set_buffer_uptodate(bh); 451 continue; 452 } 453 if (!buffer_dirty(bh) || buffer_delay(bh) || 454 !buffer_mapped(bh) || buffer_unwritten(bh)) { 455 /* A hole? We can safely clear the dirty bit */ 456 if (!buffer_mapped(bh)) 457 clear_buffer_dirty(bh); 458 if (io->io_bio) 459 ext4_io_submit(io); 460 continue; 461 } 462 if (buffer_new(bh)) 463 clear_buffer_new(bh); 464 set_buffer_async_write(bh); 465 nr_to_submit++; 466 } while ((bh = bh->b_this_page) != head); 467 468 bh = head = page_buffers(page); 469 470 /* 471 * If any blocks are being written to an encrypted file, encrypt them 472 * into a bounce page. For simplicity, just encrypt until the last 473 * block which might be needed. This may cause some unneeded blocks 474 * (e.g. holes) to be unnecessarily encrypted, but this is rare and 475 * can't happen in the common case of blocksize == PAGE_SIZE. 476 */ 477 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) && nr_to_submit) { 478 gfp_t gfp_flags = GFP_NOFS; 479 unsigned int enc_bytes = round_up(len, i_blocksize(inode)); 480 481 retry_encrypt: 482 bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes, 483 0, gfp_flags); 484 if (IS_ERR(bounce_page)) { 485 ret = PTR_ERR(bounce_page); 486 if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) { 487 if (io->io_bio) { 488 ext4_io_submit(io); 489 congestion_wait(BLK_RW_ASYNC, HZ/50); 490 } 491 gfp_flags |= __GFP_NOFAIL; 492 goto retry_encrypt; 493 } 494 bounce_page = NULL; 495 goto out; 496 } 497 } 498 499 /* Now submit buffers to write */ 500 do { 501 if (!buffer_async_write(bh)) 502 continue; 503 ret = io_submit_add_bh(io, inode, bounce_page ?: page, bh); 504 if (ret) { 505 /* 506 * We only get here on ENOMEM. Not much else 507 * we can do but mark the page as dirty, and 508 * better luck next time. 509 */ 510 break; 511 } 512 nr_submitted++; 513 clear_buffer_dirty(bh); 514 } while ((bh = bh->b_this_page) != head); 515 516 /* Error stopped previous loop? Clean up buffers... */ 517 if (ret) { 518 out: 519 fscrypt_free_bounce_page(bounce_page); 520 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret); 521 redirty_page_for_writepage(wbc, page); 522 do { 523 clear_buffer_async_write(bh); 524 bh = bh->b_this_page; 525 } while (bh != head); 526 } 527 unlock_page(page); 528 /* Nothing submitted - we have to end page writeback */ 529 if (!nr_submitted) 530 end_page_writeback(page); 531 return ret; 532 } 533