xref: /openbmc/linux/fs/ext4/page-io.c (revision a2cce7a9)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 
31 static struct kmem_cache *io_end_cachep;
32 
33 int __init ext4_init_pageio(void)
34 {
35 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
36 	if (io_end_cachep == NULL)
37 		return -ENOMEM;
38 	return 0;
39 }
40 
41 void ext4_exit_pageio(void)
42 {
43 	kmem_cache_destroy(io_end_cachep);
44 }
45 
46 /*
47  * Print an buffer I/O error compatible with the fs/buffer.c.  This
48  * provides compatibility with dmesg scrapers that look for a specific
49  * buffer I/O error message.  We really need a unified error reporting
50  * structure to userspace ala Digital Unix's uerf system, but it's
51  * probably not going to happen in my lifetime, due to LKML politics...
52  */
53 static void buffer_io_error(struct buffer_head *bh)
54 {
55 	char b[BDEVNAME_SIZE];
56 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
57 			bdevname(bh->b_bdev, b),
58 			(unsigned long long)bh->b_blocknr);
59 }
60 
61 static void ext4_finish_bio(struct bio *bio)
62 {
63 	int i;
64 	struct bio_vec *bvec;
65 
66 	bio_for_each_segment_all(bvec, bio, i) {
67 		struct page *page = bvec->bv_page;
68 #ifdef CONFIG_EXT4_FS_ENCRYPTION
69 		struct page *data_page = NULL;
70 		struct ext4_crypto_ctx *ctx = NULL;
71 #endif
72 		struct buffer_head *bh, *head;
73 		unsigned bio_start = bvec->bv_offset;
74 		unsigned bio_end = bio_start + bvec->bv_len;
75 		unsigned under_io = 0;
76 		unsigned long flags;
77 
78 		if (!page)
79 			continue;
80 
81 #ifdef CONFIG_EXT4_FS_ENCRYPTION
82 		if (!page->mapping) {
83 			/* The bounce data pages are unmapped. */
84 			data_page = page;
85 			ctx = (struct ext4_crypto_ctx *)page_private(data_page);
86 			page = ctx->w.control_page;
87 		}
88 #endif
89 
90 		if (bio->bi_error) {
91 			SetPageError(page);
92 			set_bit(AS_EIO, &page->mapping->flags);
93 		}
94 		bh = head = page_buffers(page);
95 		/*
96 		 * We check all buffers in the page under BH_Uptodate_Lock
97 		 * to avoid races with other end io clearing async_write flags
98 		 */
99 		local_irq_save(flags);
100 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
101 		do {
102 			if (bh_offset(bh) < bio_start ||
103 			    bh_offset(bh) + bh->b_size > bio_end) {
104 				if (buffer_async_write(bh))
105 					under_io++;
106 				continue;
107 			}
108 			clear_buffer_async_write(bh);
109 			if (bio->bi_error)
110 				buffer_io_error(bh);
111 		} while ((bh = bh->b_this_page) != head);
112 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
113 		local_irq_restore(flags);
114 		if (!under_io) {
115 #ifdef CONFIG_EXT4_FS_ENCRYPTION
116 			if (ctx)
117 				ext4_restore_control_page(data_page);
118 #endif
119 			end_page_writeback(page);
120 		}
121 	}
122 }
123 
124 static void ext4_release_io_end(ext4_io_end_t *io_end)
125 {
126 	struct bio *bio, *next_bio;
127 
128 	BUG_ON(!list_empty(&io_end->list));
129 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
130 	WARN_ON(io_end->handle);
131 
132 	if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
133 		wake_up_all(ext4_ioend_wq(io_end->inode));
134 
135 	for (bio = io_end->bio; bio; bio = next_bio) {
136 		next_bio = bio->bi_private;
137 		ext4_finish_bio(bio);
138 		bio_put(bio);
139 	}
140 	kmem_cache_free(io_end_cachep, io_end);
141 }
142 
143 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
144 {
145 	struct inode *inode = io_end->inode;
146 
147 	io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
148 	/* Wake up anyone waiting on unwritten extent conversion */
149 	if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
150 		wake_up_all(ext4_ioend_wq(inode));
151 }
152 
153 /*
154  * Check a range of space and convert unwritten extents to written. Note that
155  * we are protected from truncate touching same part of extent tree by the
156  * fact that truncate code waits for all DIO to finish (thus exclusion from
157  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
158  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
159  * completed (happens from ext4_free_ioend()).
160  */
161 static int ext4_end_io(ext4_io_end_t *io)
162 {
163 	struct inode *inode = io->inode;
164 	loff_t offset = io->offset;
165 	ssize_t size = io->size;
166 	handle_t *handle = io->handle;
167 	int ret = 0;
168 
169 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
170 		   "list->prev 0x%p\n",
171 		   io, inode->i_ino, io->list.next, io->list.prev);
172 
173 	io->handle = NULL;	/* Following call will use up the handle */
174 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
175 	if (ret < 0) {
176 		ext4_msg(inode->i_sb, KERN_EMERG,
177 			 "failed to convert unwritten extents to written "
178 			 "extents -- potential data loss!  "
179 			 "(inode %lu, offset %llu, size %zd, error %d)",
180 			 inode->i_ino, offset, size, ret);
181 	}
182 	ext4_clear_io_unwritten_flag(io);
183 	ext4_release_io_end(io);
184 	return ret;
185 }
186 
187 static void dump_completed_IO(struct inode *inode, struct list_head *head)
188 {
189 #ifdef	EXT4FS_DEBUG
190 	struct list_head *cur, *before, *after;
191 	ext4_io_end_t *io, *io0, *io1;
192 
193 	if (list_empty(head))
194 		return;
195 
196 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
197 	list_for_each_entry(io, head, list) {
198 		cur = &io->list;
199 		before = cur->prev;
200 		io0 = container_of(before, ext4_io_end_t, list);
201 		after = cur->next;
202 		io1 = container_of(after, ext4_io_end_t, list);
203 
204 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
205 			    io, inode->i_ino, io0, io1);
206 	}
207 #endif
208 }
209 
210 /* Add the io_end to per-inode completed end_io list. */
211 static void ext4_add_complete_io(ext4_io_end_t *io_end)
212 {
213 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
214 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
215 	struct workqueue_struct *wq;
216 	unsigned long flags;
217 
218 	/* Only reserved conversions from writeback should enter here */
219 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
220 	WARN_ON(!io_end->handle && sbi->s_journal);
221 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
222 	wq = sbi->rsv_conversion_wq;
223 	if (list_empty(&ei->i_rsv_conversion_list))
224 		queue_work(wq, &ei->i_rsv_conversion_work);
225 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
226 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
227 }
228 
229 static int ext4_do_flush_completed_IO(struct inode *inode,
230 				      struct list_head *head)
231 {
232 	ext4_io_end_t *io;
233 	struct list_head unwritten;
234 	unsigned long flags;
235 	struct ext4_inode_info *ei = EXT4_I(inode);
236 	int err, ret = 0;
237 
238 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
239 	dump_completed_IO(inode, head);
240 	list_replace_init(head, &unwritten);
241 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
242 
243 	while (!list_empty(&unwritten)) {
244 		io = list_entry(unwritten.next, ext4_io_end_t, list);
245 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
246 		list_del_init(&io->list);
247 
248 		err = ext4_end_io(io);
249 		if (unlikely(!ret && err))
250 			ret = err;
251 	}
252 	return ret;
253 }
254 
255 /*
256  * work on completed IO, to convert unwritten extents to extents
257  */
258 void ext4_end_io_rsv_work(struct work_struct *work)
259 {
260 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
261 						  i_rsv_conversion_work);
262 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
263 }
264 
265 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
266 {
267 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
268 	if (io) {
269 		atomic_inc(&EXT4_I(inode)->i_ioend_count);
270 		io->inode = inode;
271 		INIT_LIST_HEAD(&io->list);
272 		atomic_set(&io->count, 1);
273 	}
274 	return io;
275 }
276 
277 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
278 {
279 	if (atomic_dec_and_test(&io_end->count)) {
280 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
281 			ext4_release_io_end(io_end);
282 			return;
283 		}
284 		ext4_add_complete_io(io_end);
285 	}
286 }
287 
288 int ext4_put_io_end(ext4_io_end_t *io_end)
289 {
290 	int err = 0;
291 
292 	if (atomic_dec_and_test(&io_end->count)) {
293 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
294 			err = ext4_convert_unwritten_extents(io_end->handle,
295 						io_end->inode, io_end->offset,
296 						io_end->size);
297 			io_end->handle = NULL;
298 			ext4_clear_io_unwritten_flag(io_end);
299 		}
300 		ext4_release_io_end(io_end);
301 	}
302 	return err;
303 }
304 
305 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
306 {
307 	atomic_inc(&io_end->count);
308 	return io_end;
309 }
310 
311 /* BIO completion function for page writeback */
312 static void ext4_end_bio(struct bio *bio)
313 {
314 	ext4_io_end_t *io_end = bio->bi_private;
315 	sector_t bi_sector = bio->bi_iter.bi_sector;
316 
317 	BUG_ON(!io_end);
318 	bio->bi_end_io = NULL;
319 
320 	if (bio->bi_error) {
321 		struct inode *inode = io_end->inode;
322 
323 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
324 			     "(offset %llu size %ld starting block %llu)",
325 			     bio->bi_error, inode->i_ino,
326 			     (unsigned long long) io_end->offset,
327 			     (long) io_end->size,
328 			     (unsigned long long)
329 			     bi_sector >> (inode->i_blkbits - 9));
330 		mapping_set_error(inode->i_mapping, bio->bi_error);
331 	}
332 
333 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
334 		/*
335 		 * Link bio into list hanging from io_end. We have to do it
336 		 * atomically as bio completions can be racing against each
337 		 * other.
338 		 */
339 		bio->bi_private = xchg(&io_end->bio, bio);
340 		ext4_put_io_end_defer(io_end);
341 	} else {
342 		/*
343 		 * Drop io_end reference early. Inode can get freed once
344 		 * we finish the bio.
345 		 */
346 		ext4_put_io_end_defer(io_end);
347 		ext4_finish_bio(bio);
348 		bio_put(bio);
349 	}
350 }
351 
352 void ext4_io_submit(struct ext4_io_submit *io)
353 {
354 	struct bio *bio = io->io_bio;
355 
356 	if (bio) {
357 		int io_op = io->io_wbc->sync_mode == WB_SYNC_ALL ?
358 			    WRITE_SYNC : WRITE;
359 		bio_get(io->io_bio);
360 		submit_bio(io_op, io->io_bio);
361 		bio_put(io->io_bio);
362 	}
363 	io->io_bio = NULL;
364 }
365 
366 void ext4_io_submit_init(struct ext4_io_submit *io,
367 			 struct writeback_control *wbc)
368 {
369 	io->io_wbc = wbc;
370 	io->io_bio = NULL;
371 	io->io_end = NULL;
372 }
373 
374 static int io_submit_init_bio(struct ext4_io_submit *io,
375 			      struct buffer_head *bh)
376 {
377 	struct bio *bio;
378 
379 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
380 	if (!bio)
381 		return -ENOMEM;
382 	wbc_init_bio(io->io_wbc, bio);
383 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
384 	bio->bi_bdev = bh->b_bdev;
385 	bio->bi_end_io = ext4_end_bio;
386 	bio->bi_private = ext4_get_io_end(io->io_end);
387 	io->io_bio = bio;
388 	io->io_next_block = bh->b_blocknr;
389 	return 0;
390 }
391 
392 static int io_submit_add_bh(struct ext4_io_submit *io,
393 			    struct inode *inode,
394 			    struct page *page,
395 			    struct buffer_head *bh)
396 {
397 	int ret;
398 
399 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
400 submit_and_retry:
401 		ext4_io_submit(io);
402 	}
403 	if (io->io_bio == NULL) {
404 		ret = io_submit_init_bio(io, bh);
405 		if (ret)
406 			return ret;
407 	}
408 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
409 	if (ret != bh->b_size)
410 		goto submit_and_retry;
411 	wbc_account_io(io->io_wbc, page, bh->b_size);
412 	io->io_next_block++;
413 	return 0;
414 }
415 
416 int ext4_bio_write_page(struct ext4_io_submit *io,
417 			struct page *page,
418 			int len,
419 			struct writeback_control *wbc,
420 			bool keep_towrite)
421 {
422 	struct page *data_page = NULL;
423 	struct inode *inode = page->mapping->host;
424 	unsigned block_start, blocksize;
425 	struct buffer_head *bh, *head;
426 	int ret = 0;
427 	int nr_submitted = 0;
428 
429 	blocksize = 1 << inode->i_blkbits;
430 
431 	BUG_ON(!PageLocked(page));
432 	BUG_ON(PageWriteback(page));
433 
434 	if (keep_towrite)
435 		set_page_writeback_keepwrite(page);
436 	else
437 		set_page_writeback(page);
438 	ClearPageError(page);
439 
440 	/*
441 	 * Comments copied from block_write_full_page:
442 	 *
443 	 * The page straddles i_size.  It must be zeroed out on each and every
444 	 * writepage invocation because it may be mmapped.  "A file is mapped
445 	 * in multiples of the page size.  For a file that is not a multiple of
446 	 * the page size, the remaining memory is zeroed when mapped, and
447 	 * writes to that region are not written out to the file."
448 	 */
449 	if (len < PAGE_CACHE_SIZE)
450 		zero_user_segment(page, len, PAGE_CACHE_SIZE);
451 	/*
452 	 * In the first loop we prepare and mark buffers to submit. We have to
453 	 * mark all buffers in the page before submitting so that
454 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
455 	 * on the first buffer finishes and we are still working on submitting
456 	 * the second buffer.
457 	 */
458 	bh = head = page_buffers(page);
459 	do {
460 		block_start = bh_offset(bh);
461 		if (block_start >= len) {
462 			clear_buffer_dirty(bh);
463 			set_buffer_uptodate(bh);
464 			continue;
465 		}
466 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
467 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
468 			/* A hole? We can safely clear the dirty bit */
469 			if (!buffer_mapped(bh))
470 				clear_buffer_dirty(bh);
471 			if (io->io_bio)
472 				ext4_io_submit(io);
473 			continue;
474 		}
475 		if (buffer_new(bh)) {
476 			clear_buffer_new(bh);
477 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
478 		}
479 		set_buffer_async_write(bh);
480 	} while ((bh = bh->b_this_page) != head);
481 
482 	bh = head = page_buffers(page);
483 
484 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
485 		data_page = ext4_encrypt(inode, page);
486 		if (IS_ERR(data_page)) {
487 			ret = PTR_ERR(data_page);
488 			data_page = NULL;
489 			goto out;
490 		}
491 	}
492 
493 	/* Now submit buffers to write */
494 	do {
495 		if (!buffer_async_write(bh))
496 			continue;
497 		ret = io_submit_add_bh(io, inode,
498 				       data_page ? data_page : page, bh);
499 		if (ret) {
500 			/*
501 			 * We only get here on ENOMEM.  Not much else
502 			 * we can do but mark the page as dirty, and
503 			 * better luck next time.
504 			 */
505 			break;
506 		}
507 		nr_submitted++;
508 		clear_buffer_dirty(bh);
509 	} while ((bh = bh->b_this_page) != head);
510 
511 	/* Error stopped previous loop? Clean up buffers... */
512 	if (ret) {
513 	out:
514 		if (data_page)
515 			ext4_restore_control_page(data_page);
516 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
517 		redirty_page_for_writepage(wbc, page);
518 		do {
519 			clear_buffer_async_write(bh);
520 			bh = bh->b_this_page;
521 		} while (bh != head);
522 	}
523 	unlock_page(page);
524 	/* Nothing submitted - we have to end page writeback */
525 	if (!nr_submitted)
526 		end_page_writeback(page);
527 	return ret;
528 }
529