1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/page-io.c 4 * 5 * This contains the new page_io functions for ext4 6 * 7 * Written by Theodore Ts'o, 2010. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/time.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 #include <linux/workqueue.h> 24 #include <linux/kernel.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 #include <linux/backing-dev.h> 28 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 static struct kmem_cache *io_end_cachep; 34 35 int __init ext4_init_pageio(void) 36 { 37 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 38 if (io_end_cachep == NULL) 39 return -ENOMEM; 40 return 0; 41 } 42 43 void ext4_exit_pageio(void) 44 { 45 kmem_cache_destroy(io_end_cachep); 46 } 47 48 /* 49 * Print an buffer I/O error compatible with the fs/buffer.c. This 50 * provides compatibility with dmesg scrapers that look for a specific 51 * buffer I/O error message. We really need a unified error reporting 52 * structure to userspace ala Digital Unix's uerf system, but it's 53 * probably not going to happen in my lifetime, due to LKML politics... 54 */ 55 static void buffer_io_error(struct buffer_head *bh) 56 { 57 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n", 58 bh->b_bdev, 59 (unsigned long long)bh->b_blocknr); 60 } 61 62 static void ext4_finish_bio(struct bio *bio) 63 { 64 int i; 65 struct bio_vec *bvec; 66 67 bio_for_each_segment_all(bvec, bio, i) { 68 struct page *page = bvec->bv_page; 69 #ifdef CONFIG_EXT4_FS_ENCRYPTION 70 struct page *data_page = NULL; 71 #endif 72 struct buffer_head *bh, *head; 73 unsigned bio_start = bvec->bv_offset; 74 unsigned bio_end = bio_start + bvec->bv_len; 75 unsigned under_io = 0; 76 unsigned long flags; 77 78 if (!page) 79 continue; 80 81 #ifdef CONFIG_EXT4_FS_ENCRYPTION 82 if (!page->mapping) { 83 /* The bounce data pages are unmapped. */ 84 data_page = page; 85 fscrypt_pullback_bio_page(&page, false); 86 } 87 #endif 88 89 if (bio->bi_status) { 90 SetPageError(page); 91 mapping_set_error(page->mapping, -EIO); 92 } 93 bh = head = page_buffers(page); 94 /* 95 * We check all buffers in the page under BH_Uptodate_Lock 96 * to avoid races with other end io clearing async_write flags 97 */ 98 local_irq_save(flags); 99 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 100 do { 101 if (bh_offset(bh) < bio_start || 102 bh_offset(bh) + bh->b_size > bio_end) { 103 if (buffer_async_write(bh)) 104 under_io++; 105 continue; 106 } 107 clear_buffer_async_write(bh); 108 if (bio->bi_status) 109 buffer_io_error(bh); 110 } while ((bh = bh->b_this_page) != head); 111 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 112 local_irq_restore(flags); 113 if (!under_io) { 114 #ifdef CONFIG_EXT4_FS_ENCRYPTION 115 if (data_page) 116 fscrypt_restore_control_page(data_page); 117 #endif 118 end_page_writeback(page); 119 } 120 } 121 } 122 123 static void ext4_release_io_end(ext4_io_end_t *io_end) 124 { 125 struct bio *bio, *next_bio; 126 127 BUG_ON(!list_empty(&io_end->list)); 128 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 129 WARN_ON(io_end->handle); 130 131 for (bio = io_end->bio; bio; bio = next_bio) { 132 next_bio = bio->bi_private; 133 ext4_finish_bio(bio); 134 bio_put(bio); 135 } 136 kmem_cache_free(io_end_cachep, io_end); 137 } 138 139 /* 140 * Check a range of space and convert unwritten extents to written. Note that 141 * we are protected from truncate touching same part of extent tree by the 142 * fact that truncate code waits for all DIO to finish (thus exclusion from 143 * direct IO is achieved) and also waits for PageWriteback bits. Thus we 144 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are 145 * completed (happens from ext4_free_ioend()). 146 */ 147 static int ext4_end_io(ext4_io_end_t *io) 148 { 149 struct inode *inode = io->inode; 150 loff_t offset = io->offset; 151 ssize_t size = io->size; 152 handle_t *handle = io->handle; 153 int ret = 0; 154 155 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 156 "list->prev 0x%p\n", 157 io, inode->i_ino, io->list.next, io->list.prev); 158 159 io->handle = NULL; /* Following call will use up the handle */ 160 ret = ext4_convert_unwritten_extents(handle, inode, offset, size); 161 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) { 162 ext4_msg(inode->i_sb, KERN_EMERG, 163 "failed to convert unwritten extents to written " 164 "extents -- potential data loss! " 165 "(inode %lu, offset %llu, size %zd, error %d)", 166 inode->i_ino, offset, size, ret); 167 } 168 ext4_clear_io_unwritten_flag(io); 169 ext4_release_io_end(io); 170 return ret; 171 } 172 173 static void dump_completed_IO(struct inode *inode, struct list_head *head) 174 { 175 #ifdef EXT4FS_DEBUG 176 struct list_head *cur, *before, *after; 177 ext4_io_end_t *io, *io0, *io1; 178 179 if (list_empty(head)) 180 return; 181 182 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino); 183 list_for_each_entry(io, head, list) { 184 cur = &io->list; 185 before = cur->prev; 186 io0 = container_of(before, ext4_io_end_t, list); 187 after = cur->next; 188 io1 = container_of(after, ext4_io_end_t, list); 189 190 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 191 io, inode->i_ino, io0, io1); 192 } 193 #endif 194 } 195 196 /* Add the io_end to per-inode completed end_io list. */ 197 static void ext4_add_complete_io(ext4_io_end_t *io_end) 198 { 199 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 200 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb); 201 struct workqueue_struct *wq; 202 unsigned long flags; 203 204 /* Only reserved conversions from writeback should enter here */ 205 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 206 WARN_ON(!io_end->handle && sbi->s_journal); 207 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 208 wq = sbi->rsv_conversion_wq; 209 if (list_empty(&ei->i_rsv_conversion_list)) 210 queue_work(wq, &ei->i_rsv_conversion_work); 211 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list); 212 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 213 } 214 215 static int ext4_do_flush_completed_IO(struct inode *inode, 216 struct list_head *head) 217 { 218 ext4_io_end_t *io; 219 struct list_head unwritten; 220 unsigned long flags; 221 struct ext4_inode_info *ei = EXT4_I(inode); 222 int err, ret = 0; 223 224 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 225 dump_completed_IO(inode, head); 226 list_replace_init(head, &unwritten); 227 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 228 229 while (!list_empty(&unwritten)) { 230 io = list_entry(unwritten.next, ext4_io_end_t, list); 231 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN)); 232 list_del_init(&io->list); 233 234 err = ext4_end_io(io); 235 if (unlikely(!ret && err)) 236 ret = err; 237 } 238 return ret; 239 } 240 241 /* 242 * work on completed IO, to convert unwritten extents to extents 243 */ 244 void ext4_end_io_rsv_work(struct work_struct *work) 245 { 246 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 247 i_rsv_conversion_work); 248 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list); 249 } 250 251 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 252 { 253 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags); 254 if (io) { 255 io->inode = inode; 256 INIT_LIST_HEAD(&io->list); 257 atomic_set(&io->count, 1); 258 } 259 return io; 260 } 261 262 void ext4_put_io_end_defer(ext4_io_end_t *io_end) 263 { 264 if (atomic_dec_and_test(&io_end->count)) { 265 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) { 266 ext4_release_io_end(io_end); 267 return; 268 } 269 ext4_add_complete_io(io_end); 270 } 271 } 272 273 int ext4_put_io_end(ext4_io_end_t *io_end) 274 { 275 int err = 0; 276 277 if (atomic_dec_and_test(&io_end->count)) { 278 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 279 err = ext4_convert_unwritten_extents(io_end->handle, 280 io_end->inode, io_end->offset, 281 io_end->size); 282 io_end->handle = NULL; 283 ext4_clear_io_unwritten_flag(io_end); 284 } 285 ext4_release_io_end(io_end); 286 } 287 return err; 288 } 289 290 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) 291 { 292 atomic_inc(&io_end->count); 293 return io_end; 294 } 295 296 /* BIO completion function for page writeback */ 297 static void ext4_end_bio(struct bio *bio) 298 { 299 ext4_io_end_t *io_end = bio->bi_private; 300 sector_t bi_sector = bio->bi_iter.bi_sector; 301 char b[BDEVNAME_SIZE]; 302 303 if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n", 304 bio_devname(bio, b), 305 (long long) bio->bi_iter.bi_sector, 306 (unsigned) bio_sectors(bio), 307 bio->bi_status)) { 308 ext4_finish_bio(bio); 309 bio_put(bio); 310 return; 311 } 312 bio->bi_end_io = NULL; 313 314 if (bio->bi_status) { 315 struct inode *inode = io_end->inode; 316 317 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu " 318 "(offset %llu size %ld starting block %llu)", 319 bio->bi_status, inode->i_ino, 320 (unsigned long long) io_end->offset, 321 (long) io_end->size, 322 (unsigned long long) 323 bi_sector >> (inode->i_blkbits - 9)); 324 mapping_set_error(inode->i_mapping, 325 blk_status_to_errno(bio->bi_status)); 326 } 327 328 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 329 /* 330 * Link bio into list hanging from io_end. We have to do it 331 * atomically as bio completions can be racing against each 332 * other. 333 */ 334 bio->bi_private = xchg(&io_end->bio, bio); 335 ext4_put_io_end_defer(io_end); 336 } else { 337 /* 338 * Drop io_end reference early. Inode can get freed once 339 * we finish the bio. 340 */ 341 ext4_put_io_end_defer(io_end); 342 ext4_finish_bio(bio); 343 bio_put(bio); 344 } 345 } 346 347 void ext4_io_submit(struct ext4_io_submit *io) 348 { 349 struct bio *bio = io->io_bio; 350 351 if (bio) { 352 int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ? 353 REQ_SYNC : 0; 354 io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint; 355 bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags); 356 submit_bio(io->io_bio); 357 } 358 io->io_bio = NULL; 359 } 360 361 void ext4_io_submit_init(struct ext4_io_submit *io, 362 struct writeback_control *wbc) 363 { 364 io->io_wbc = wbc; 365 io->io_bio = NULL; 366 io->io_end = NULL; 367 } 368 369 static int io_submit_init_bio(struct ext4_io_submit *io, 370 struct buffer_head *bh) 371 { 372 struct bio *bio; 373 374 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES); 375 if (!bio) 376 return -ENOMEM; 377 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 378 bio_set_dev(bio, bh->b_bdev); 379 bio->bi_end_io = ext4_end_bio; 380 bio->bi_private = ext4_get_io_end(io->io_end); 381 io->io_bio = bio; 382 io->io_next_block = bh->b_blocknr; 383 wbc_init_bio(io->io_wbc, bio); 384 return 0; 385 } 386 387 static int io_submit_add_bh(struct ext4_io_submit *io, 388 struct inode *inode, 389 struct page *page, 390 struct buffer_head *bh) 391 { 392 int ret; 393 394 if (io->io_bio && bh->b_blocknr != io->io_next_block) { 395 submit_and_retry: 396 ext4_io_submit(io); 397 } 398 if (io->io_bio == NULL) { 399 ret = io_submit_init_bio(io, bh); 400 if (ret) 401 return ret; 402 io->io_bio->bi_write_hint = inode->i_write_hint; 403 } 404 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh)); 405 if (ret != bh->b_size) 406 goto submit_and_retry; 407 wbc_account_io(io->io_wbc, page, bh->b_size); 408 io->io_next_block++; 409 return 0; 410 } 411 412 int ext4_bio_write_page(struct ext4_io_submit *io, 413 struct page *page, 414 int len, 415 struct writeback_control *wbc, 416 bool keep_towrite) 417 { 418 struct page *data_page = NULL; 419 struct inode *inode = page->mapping->host; 420 unsigned block_start; 421 struct buffer_head *bh, *head; 422 int ret = 0; 423 int nr_submitted = 0; 424 int nr_to_submit = 0; 425 426 BUG_ON(!PageLocked(page)); 427 BUG_ON(PageWriteback(page)); 428 429 if (keep_towrite) 430 set_page_writeback_keepwrite(page); 431 else 432 set_page_writeback(page); 433 ClearPageError(page); 434 435 /* 436 * Comments copied from block_write_full_page: 437 * 438 * The page straddles i_size. It must be zeroed out on each and every 439 * writepage invocation because it may be mmapped. "A file is mapped 440 * in multiples of the page size. For a file that is not a multiple of 441 * the page size, the remaining memory is zeroed when mapped, and 442 * writes to that region are not written out to the file." 443 */ 444 if (len < PAGE_SIZE) 445 zero_user_segment(page, len, PAGE_SIZE); 446 /* 447 * In the first loop we prepare and mark buffers to submit. We have to 448 * mark all buffers in the page before submitting so that 449 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO 450 * on the first buffer finishes and we are still working on submitting 451 * the second buffer. 452 */ 453 bh = head = page_buffers(page); 454 do { 455 block_start = bh_offset(bh); 456 if (block_start >= len) { 457 clear_buffer_dirty(bh); 458 set_buffer_uptodate(bh); 459 continue; 460 } 461 if (!buffer_dirty(bh) || buffer_delay(bh) || 462 !buffer_mapped(bh) || buffer_unwritten(bh)) { 463 /* A hole? We can safely clear the dirty bit */ 464 if (!buffer_mapped(bh)) 465 clear_buffer_dirty(bh); 466 if (io->io_bio) 467 ext4_io_submit(io); 468 continue; 469 } 470 if (buffer_new(bh)) { 471 clear_buffer_new(bh); 472 clean_bdev_bh_alias(bh); 473 } 474 set_buffer_async_write(bh); 475 nr_to_submit++; 476 } while ((bh = bh->b_this_page) != head); 477 478 bh = head = page_buffers(page); 479 480 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) && 481 nr_to_submit) { 482 gfp_t gfp_flags = GFP_NOFS; 483 484 retry_encrypt: 485 data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0, 486 page->index, gfp_flags); 487 if (IS_ERR(data_page)) { 488 ret = PTR_ERR(data_page); 489 if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) { 490 if (io->io_bio) { 491 ext4_io_submit(io); 492 congestion_wait(BLK_RW_ASYNC, HZ/50); 493 } 494 gfp_flags |= __GFP_NOFAIL; 495 goto retry_encrypt; 496 } 497 data_page = NULL; 498 goto out; 499 } 500 } 501 502 /* Now submit buffers to write */ 503 do { 504 if (!buffer_async_write(bh)) 505 continue; 506 ret = io_submit_add_bh(io, inode, 507 data_page ? data_page : page, bh); 508 if (ret) { 509 /* 510 * We only get here on ENOMEM. Not much else 511 * we can do but mark the page as dirty, and 512 * better luck next time. 513 */ 514 break; 515 } 516 nr_submitted++; 517 clear_buffer_dirty(bh); 518 } while ((bh = bh->b_this_page) != head); 519 520 /* Error stopped previous loop? Clean up buffers... */ 521 if (ret) { 522 out: 523 if (data_page) 524 fscrypt_restore_control_page(data_page); 525 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret); 526 redirty_page_for_writepage(wbc, page); 527 do { 528 clear_buffer_async_write(bh); 529 bh = bh->b_this_page; 530 } while (bh != head); 531 } 532 unlock_page(page); 533 /* Nothing submitted - we have to end page writeback */ 534 if (!nr_submitted) 535 end_page_writeback(page); 536 return ret; 537 } 538