xref: /openbmc/linux/fs/ext4/page-io.c (revision a20eefae)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 
35 int __init ext4_init_pageio(void)
36 {
37 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
38 	if (io_end_cachep == NULL)
39 		return -ENOMEM;
40 	return 0;
41 }
42 
43 void ext4_exit_pageio(void)
44 {
45 	kmem_cache_destroy(io_end_cachep);
46 }
47 
48 /*
49  * Print an buffer I/O error compatible with the fs/buffer.c.  This
50  * provides compatibility with dmesg scrapers that look for a specific
51  * buffer I/O error message.  We really need a unified error reporting
52  * structure to userspace ala Digital Unix's uerf system, but it's
53  * probably not going to happen in my lifetime, due to LKML politics...
54  */
55 static void buffer_io_error(struct buffer_head *bh)
56 {
57 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
58 		       bh->b_bdev,
59 			(unsigned long long)bh->b_blocknr);
60 }
61 
62 static void ext4_finish_bio(struct bio *bio)
63 {
64 	struct bio_vec *bvec;
65 	struct bvec_iter_all iter_all;
66 
67 	bio_for_each_segment_all(bvec, bio, iter_all) {
68 		struct page *page = bvec->bv_page;
69 		struct page *bounce_page = NULL;
70 		struct buffer_head *bh, *head;
71 		unsigned bio_start = bvec->bv_offset;
72 		unsigned bio_end = bio_start + bvec->bv_len;
73 		unsigned under_io = 0;
74 		unsigned long flags;
75 
76 		if (!page)
77 			continue;
78 
79 		if (fscrypt_is_bounce_page(page)) {
80 			bounce_page = page;
81 			page = fscrypt_pagecache_page(bounce_page);
82 		}
83 
84 		if (bio->bi_status) {
85 			SetPageError(page);
86 			mapping_set_error(page->mapping, -EIO);
87 		}
88 		bh = head = page_buffers(page);
89 		/*
90 		 * We check all buffers in the page under BH_Uptodate_Lock
91 		 * to avoid races with other end io clearing async_write flags
92 		 */
93 		local_irq_save(flags);
94 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
95 		do {
96 			if (bh_offset(bh) < bio_start ||
97 			    bh_offset(bh) + bh->b_size > bio_end) {
98 				if (buffer_async_write(bh))
99 					under_io++;
100 				continue;
101 			}
102 			clear_buffer_async_write(bh);
103 			if (bio->bi_status)
104 				buffer_io_error(bh);
105 		} while ((bh = bh->b_this_page) != head);
106 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
107 		local_irq_restore(flags);
108 		if (!under_io) {
109 			fscrypt_free_bounce_page(bounce_page);
110 			end_page_writeback(page);
111 		}
112 	}
113 }
114 
115 static void ext4_release_io_end(ext4_io_end_t *io_end)
116 {
117 	struct bio *bio, *next_bio;
118 
119 	BUG_ON(!list_empty(&io_end->list));
120 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
121 	WARN_ON(io_end->handle);
122 
123 	for (bio = io_end->bio; bio; bio = next_bio) {
124 		next_bio = bio->bi_private;
125 		ext4_finish_bio(bio);
126 		bio_put(bio);
127 	}
128 	kmem_cache_free(io_end_cachep, io_end);
129 }
130 
131 /*
132  * Check a range of space and convert unwritten extents to written. Note that
133  * we are protected from truncate touching same part of extent tree by the
134  * fact that truncate code waits for all DIO to finish (thus exclusion from
135  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
136  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
137  * completed (happens from ext4_free_ioend()).
138  */
139 static int ext4_end_io(ext4_io_end_t *io)
140 {
141 	struct inode *inode = io->inode;
142 	loff_t offset = io->offset;
143 	ssize_t size = io->size;
144 	handle_t *handle = io->handle;
145 	int ret = 0;
146 
147 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
148 		   "list->prev 0x%p\n",
149 		   io, inode->i_ino, io->list.next, io->list.prev);
150 
151 	io->handle = NULL;	/* Following call will use up the handle */
152 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
153 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
154 		ext4_msg(inode->i_sb, KERN_EMERG,
155 			 "failed to convert unwritten extents to written "
156 			 "extents -- potential data loss!  "
157 			 "(inode %lu, offset %llu, size %zd, error %d)",
158 			 inode->i_ino, offset, size, ret);
159 	}
160 	ext4_clear_io_unwritten_flag(io);
161 	ext4_release_io_end(io);
162 	return ret;
163 }
164 
165 static void dump_completed_IO(struct inode *inode, struct list_head *head)
166 {
167 #ifdef	EXT4FS_DEBUG
168 	struct list_head *cur, *before, *after;
169 	ext4_io_end_t *io, *io0, *io1;
170 
171 	if (list_empty(head))
172 		return;
173 
174 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
175 	list_for_each_entry(io, head, list) {
176 		cur = &io->list;
177 		before = cur->prev;
178 		io0 = container_of(before, ext4_io_end_t, list);
179 		after = cur->next;
180 		io1 = container_of(after, ext4_io_end_t, list);
181 
182 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
183 			    io, inode->i_ino, io0, io1);
184 	}
185 #endif
186 }
187 
188 /* Add the io_end to per-inode completed end_io list. */
189 static void ext4_add_complete_io(ext4_io_end_t *io_end)
190 {
191 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
192 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
193 	struct workqueue_struct *wq;
194 	unsigned long flags;
195 
196 	/* Only reserved conversions from writeback should enter here */
197 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
198 	WARN_ON(!io_end->handle && sbi->s_journal);
199 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
200 	wq = sbi->rsv_conversion_wq;
201 	if (list_empty(&ei->i_rsv_conversion_list))
202 		queue_work(wq, &ei->i_rsv_conversion_work);
203 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
204 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
205 }
206 
207 static int ext4_do_flush_completed_IO(struct inode *inode,
208 				      struct list_head *head)
209 {
210 	ext4_io_end_t *io;
211 	struct list_head unwritten;
212 	unsigned long flags;
213 	struct ext4_inode_info *ei = EXT4_I(inode);
214 	int err, ret = 0;
215 
216 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
217 	dump_completed_IO(inode, head);
218 	list_replace_init(head, &unwritten);
219 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
220 
221 	while (!list_empty(&unwritten)) {
222 		io = list_entry(unwritten.next, ext4_io_end_t, list);
223 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
224 		list_del_init(&io->list);
225 
226 		err = ext4_end_io(io);
227 		if (unlikely(!ret && err))
228 			ret = err;
229 	}
230 	return ret;
231 }
232 
233 /*
234  * work on completed IO, to convert unwritten extents to extents
235  */
236 void ext4_end_io_rsv_work(struct work_struct *work)
237 {
238 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
239 						  i_rsv_conversion_work);
240 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
241 }
242 
243 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
244 {
245 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
246 	if (io) {
247 		io->inode = inode;
248 		INIT_LIST_HEAD(&io->list);
249 		atomic_set(&io->count, 1);
250 	}
251 	return io;
252 }
253 
254 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
255 {
256 	if (atomic_dec_and_test(&io_end->count)) {
257 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
258 			ext4_release_io_end(io_end);
259 			return;
260 		}
261 		ext4_add_complete_io(io_end);
262 	}
263 }
264 
265 int ext4_put_io_end(ext4_io_end_t *io_end)
266 {
267 	int err = 0;
268 
269 	if (atomic_dec_and_test(&io_end->count)) {
270 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
271 			err = ext4_convert_unwritten_extents(io_end->handle,
272 						io_end->inode, io_end->offset,
273 						io_end->size);
274 			io_end->handle = NULL;
275 			ext4_clear_io_unwritten_flag(io_end);
276 		}
277 		ext4_release_io_end(io_end);
278 	}
279 	return err;
280 }
281 
282 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
283 {
284 	atomic_inc(&io_end->count);
285 	return io_end;
286 }
287 
288 /* BIO completion function for page writeback */
289 static void ext4_end_bio(struct bio *bio)
290 {
291 	ext4_io_end_t *io_end = bio->bi_private;
292 	sector_t bi_sector = bio->bi_iter.bi_sector;
293 	char b[BDEVNAME_SIZE];
294 
295 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
296 		      bio_devname(bio, b),
297 		      (long long) bio->bi_iter.bi_sector,
298 		      (unsigned) bio_sectors(bio),
299 		      bio->bi_status)) {
300 		ext4_finish_bio(bio);
301 		bio_put(bio);
302 		return;
303 	}
304 	bio->bi_end_io = NULL;
305 
306 	if (bio->bi_status) {
307 		struct inode *inode = io_end->inode;
308 
309 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
310 			     "(offset %llu size %ld starting block %llu)",
311 			     bio->bi_status, inode->i_ino,
312 			     (unsigned long long) io_end->offset,
313 			     (long) io_end->size,
314 			     (unsigned long long)
315 			     bi_sector >> (inode->i_blkbits - 9));
316 		mapping_set_error(inode->i_mapping,
317 				blk_status_to_errno(bio->bi_status));
318 	}
319 
320 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
321 		/*
322 		 * Link bio into list hanging from io_end. We have to do it
323 		 * atomically as bio completions can be racing against each
324 		 * other.
325 		 */
326 		bio->bi_private = xchg(&io_end->bio, bio);
327 		ext4_put_io_end_defer(io_end);
328 	} else {
329 		/*
330 		 * Drop io_end reference early. Inode can get freed once
331 		 * we finish the bio.
332 		 */
333 		ext4_put_io_end_defer(io_end);
334 		ext4_finish_bio(bio);
335 		bio_put(bio);
336 	}
337 }
338 
339 void ext4_io_submit(struct ext4_io_submit *io)
340 {
341 	struct bio *bio = io->io_bio;
342 
343 	if (bio) {
344 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
345 				  REQ_SYNC : 0;
346 		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
347 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
348 		submit_bio(io->io_bio);
349 	}
350 	io->io_bio = NULL;
351 }
352 
353 void ext4_io_submit_init(struct ext4_io_submit *io,
354 			 struct writeback_control *wbc)
355 {
356 	io->io_wbc = wbc;
357 	io->io_bio = NULL;
358 	io->io_end = NULL;
359 }
360 
361 static int io_submit_init_bio(struct ext4_io_submit *io,
362 			      struct buffer_head *bh)
363 {
364 	struct bio *bio;
365 
366 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
367 	if (!bio)
368 		return -ENOMEM;
369 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
370 	bio_set_dev(bio, bh->b_bdev);
371 	bio->bi_end_io = ext4_end_bio;
372 	bio->bi_private = ext4_get_io_end(io->io_end);
373 	io->io_bio = bio;
374 	io->io_next_block = bh->b_blocknr;
375 	wbc_init_bio(io->io_wbc, bio);
376 	return 0;
377 }
378 
379 static int io_submit_add_bh(struct ext4_io_submit *io,
380 			    struct inode *inode,
381 			    struct page *page,
382 			    struct buffer_head *bh)
383 {
384 	int ret;
385 
386 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
387 submit_and_retry:
388 		ext4_io_submit(io);
389 	}
390 	if (io->io_bio == NULL) {
391 		ret = io_submit_init_bio(io, bh);
392 		if (ret)
393 			return ret;
394 		io->io_bio->bi_write_hint = inode->i_write_hint;
395 	}
396 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
397 	if (ret != bh->b_size)
398 		goto submit_and_retry;
399 	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
400 	io->io_next_block++;
401 	return 0;
402 }
403 
404 int ext4_bio_write_page(struct ext4_io_submit *io,
405 			struct page *page,
406 			int len,
407 			struct writeback_control *wbc,
408 			bool keep_towrite)
409 {
410 	struct page *bounce_page = NULL;
411 	struct inode *inode = page->mapping->host;
412 	unsigned block_start;
413 	struct buffer_head *bh, *head;
414 	int ret = 0;
415 	int nr_submitted = 0;
416 	int nr_to_submit = 0;
417 
418 	BUG_ON(!PageLocked(page));
419 	BUG_ON(PageWriteback(page));
420 
421 	if (keep_towrite)
422 		set_page_writeback_keepwrite(page);
423 	else
424 		set_page_writeback(page);
425 	ClearPageError(page);
426 
427 	/*
428 	 * Comments copied from block_write_full_page:
429 	 *
430 	 * The page straddles i_size.  It must be zeroed out on each and every
431 	 * writepage invocation because it may be mmapped.  "A file is mapped
432 	 * in multiples of the page size.  For a file that is not a multiple of
433 	 * the page size, the remaining memory is zeroed when mapped, and
434 	 * writes to that region are not written out to the file."
435 	 */
436 	if (len < PAGE_SIZE)
437 		zero_user_segment(page, len, PAGE_SIZE);
438 	/*
439 	 * In the first loop we prepare and mark buffers to submit. We have to
440 	 * mark all buffers in the page before submitting so that
441 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
442 	 * on the first buffer finishes and we are still working on submitting
443 	 * the second buffer.
444 	 */
445 	bh = head = page_buffers(page);
446 	do {
447 		block_start = bh_offset(bh);
448 		if (block_start >= len) {
449 			clear_buffer_dirty(bh);
450 			set_buffer_uptodate(bh);
451 			continue;
452 		}
453 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
454 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
455 			/* A hole? We can safely clear the dirty bit */
456 			if (!buffer_mapped(bh))
457 				clear_buffer_dirty(bh);
458 			if (io->io_bio)
459 				ext4_io_submit(io);
460 			continue;
461 		}
462 		if (buffer_new(bh))
463 			clear_buffer_new(bh);
464 		set_buffer_async_write(bh);
465 		nr_to_submit++;
466 	} while ((bh = bh->b_this_page) != head);
467 
468 	bh = head = page_buffers(page);
469 
470 	/*
471 	 * If any blocks are being written to an encrypted file, encrypt them
472 	 * into a bounce page.  For simplicity, just encrypt until the last
473 	 * block which might be needed.  This may cause some unneeded blocks
474 	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
475 	 * can't happen in the common case of blocksize == PAGE_SIZE.
476 	 */
477 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) && nr_to_submit) {
478 		gfp_t gfp_flags = GFP_NOFS;
479 		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
480 
481 	retry_encrypt:
482 		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
483 							       0, gfp_flags);
484 		if (IS_ERR(bounce_page)) {
485 			ret = PTR_ERR(bounce_page);
486 			if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
487 				if (io->io_bio) {
488 					ext4_io_submit(io);
489 					congestion_wait(BLK_RW_ASYNC, HZ/50);
490 				}
491 				gfp_flags |= __GFP_NOFAIL;
492 				goto retry_encrypt;
493 			}
494 			bounce_page = NULL;
495 			goto out;
496 		}
497 	}
498 
499 	/* Now submit buffers to write */
500 	do {
501 		if (!buffer_async_write(bh))
502 			continue;
503 		ret = io_submit_add_bh(io, inode, bounce_page ?: page, bh);
504 		if (ret) {
505 			/*
506 			 * We only get here on ENOMEM.  Not much else
507 			 * we can do but mark the page as dirty, and
508 			 * better luck next time.
509 			 */
510 			break;
511 		}
512 		nr_submitted++;
513 		clear_buffer_dirty(bh);
514 	} while ((bh = bh->b_this_page) != head);
515 
516 	/* Error stopped previous loop? Clean up buffers... */
517 	if (ret) {
518 	out:
519 		fscrypt_free_bounce_page(bounce_page);
520 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
521 		redirty_page_for_writepage(wbc, page);
522 		do {
523 			clear_buffer_async_write(bh);
524 			bh = bh->b_this_page;
525 		} while (bh != head);
526 	}
527 	unlock_page(page);
528 	/* Nothing submitted - we have to end page writeback */
529 	if (!nr_submitted)
530 		end_page_writeback(page);
531 	return ret;
532 }
533