xref: /openbmc/linux/fs/ext4/page-io.c (revision 9fb29c73)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/fs/ext4/page-io.c
4  *
5  * This contains the new page_io functions for ext4
6  *
7  * Written by Theodore Ts'o, 2010.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/time.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/backing-dev.h>
28 
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32 
33 static struct kmem_cache *io_end_cachep;
34 
35 int __init ext4_init_pageio(void)
36 {
37 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
38 	if (io_end_cachep == NULL)
39 		return -ENOMEM;
40 	return 0;
41 }
42 
43 void ext4_exit_pageio(void)
44 {
45 	kmem_cache_destroy(io_end_cachep);
46 }
47 
48 /*
49  * Print an buffer I/O error compatible with the fs/buffer.c.  This
50  * provides compatibility with dmesg scrapers that look for a specific
51  * buffer I/O error message.  We really need a unified error reporting
52  * structure to userspace ala Digital Unix's uerf system, but it's
53  * probably not going to happen in my lifetime, due to LKML politics...
54  */
55 static void buffer_io_error(struct buffer_head *bh)
56 {
57 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
58 		       bh->b_bdev,
59 			(unsigned long long)bh->b_blocknr);
60 }
61 
62 static void ext4_finish_bio(struct bio *bio)
63 {
64 	int i;
65 	struct bio_vec *bvec;
66 
67 	bio_for_each_segment_all(bvec, bio, i) {
68 		struct page *page = bvec->bv_page;
69 #ifdef CONFIG_EXT4_FS_ENCRYPTION
70 		struct page *data_page = NULL;
71 #endif
72 		struct buffer_head *bh, *head;
73 		unsigned bio_start = bvec->bv_offset;
74 		unsigned bio_end = bio_start + bvec->bv_len;
75 		unsigned under_io = 0;
76 		unsigned long flags;
77 
78 		if (!page)
79 			continue;
80 
81 #ifdef CONFIG_EXT4_FS_ENCRYPTION
82 		if (!page->mapping) {
83 			/* The bounce data pages are unmapped. */
84 			data_page = page;
85 			fscrypt_pullback_bio_page(&page, false);
86 		}
87 #endif
88 
89 		if (bio->bi_status) {
90 			SetPageError(page);
91 			mapping_set_error(page->mapping, -EIO);
92 		}
93 		bh = head = page_buffers(page);
94 		/*
95 		 * We check all buffers in the page under BH_Uptodate_Lock
96 		 * to avoid races with other end io clearing async_write flags
97 		 */
98 		local_irq_save(flags);
99 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
100 		do {
101 			if (bh_offset(bh) < bio_start ||
102 			    bh_offset(bh) + bh->b_size > bio_end) {
103 				if (buffer_async_write(bh))
104 					under_io++;
105 				continue;
106 			}
107 			clear_buffer_async_write(bh);
108 			if (bio->bi_status)
109 				buffer_io_error(bh);
110 		} while ((bh = bh->b_this_page) != head);
111 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
112 		local_irq_restore(flags);
113 		if (!under_io) {
114 #ifdef CONFIG_EXT4_FS_ENCRYPTION
115 			if (data_page)
116 				fscrypt_restore_control_page(data_page);
117 #endif
118 			end_page_writeback(page);
119 		}
120 	}
121 }
122 
123 static void ext4_release_io_end(ext4_io_end_t *io_end)
124 {
125 	struct bio *bio, *next_bio;
126 
127 	BUG_ON(!list_empty(&io_end->list));
128 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
129 	WARN_ON(io_end->handle);
130 
131 	for (bio = io_end->bio; bio; bio = next_bio) {
132 		next_bio = bio->bi_private;
133 		ext4_finish_bio(bio);
134 		bio_put(bio);
135 	}
136 	kmem_cache_free(io_end_cachep, io_end);
137 }
138 
139 /*
140  * Check a range of space and convert unwritten extents to written. Note that
141  * we are protected from truncate touching same part of extent tree by the
142  * fact that truncate code waits for all DIO to finish (thus exclusion from
143  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
144  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
145  * completed (happens from ext4_free_ioend()).
146  */
147 static int ext4_end_io(ext4_io_end_t *io)
148 {
149 	struct inode *inode = io->inode;
150 	loff_t offset = io->offset;
151 	ssize_t size = io->size;
152 	handle_t *handle = io->handle;
153 	int ret = 0;
154 
155 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
156 		   "list->prev 0x%p\n",
157 		   io, inode->i_ino, io->list.next, io->list.prev);
158 
159 	io->handle = NULL;	/* Following call will use up the handle */
160 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
161 	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
162 		ext4_msg(inode->i_sb, KERN_EMERG,
163 			 "failed to convert unwritten extents to written "
164 			 "extents -- potential data loss!  "
165 			 "(inode %lu, offset %llu, size %zd, error %d)",
166 			 inode->i_ino, offset, size, ret);
167 	}
168 	ext4_clear_io_unwritten_flag(io);
169 	ext4_release_io_end(io);
170 	return ret;
171 }
172 
173 static void dump_completed_IO(struct inode *inode, struct list_head *head)
174 {
175 #ifdef	EXT4FS_DEBUG
176 	struct list_head *cur, *before, *after;
177 	ext4_io_end_t *io, *io0, *io1;
178 
179 	if (list_empty(head))
180 		return;
181 
182 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
183 	list_for_each_entry(io, head, list) {
184 		cur = &io->list;
185 		before = cur->prev;
186 		io0 = container_of(before, ext4_io_end_t, list);
187 		after = cur->next;
188 		io1 = container_of(after, ext4_io_end_t, list);
189 
190 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
191 			    io, inode->i_ino, io0, io1);
192 	}
193 #endif
194 }
195 
196 /* Add the io_end to per-inode completed end_io list. */
197 static void ext4_add_complete_io(ext4_io_end_t *io_end)
198 {
199 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
200 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
201 	struct workqueue_struct *wq;
202 	unsigned long flags;
203 
204 	/* Only reserved conversions from writeback should enter here */
205 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
206 	WARN_ON(!io_end->handle && sbi->s_journal);
207 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
208 	wq = sbi->rsv_conversion_wq;
209 	if (list_empty(&ei->i_rsv_conversion_list))
210 		queue_work(wq, &ei->i_rsv_conversion_work);
211 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
212 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
213 }
214 
215 static int ext4_do_flush_completed_IO(struct inode *inode,
216 				      struct list_head *head)
217 {
218 	ext4_io_end_t *io;
219 	struct list_head unwritten;
220 	unsigned long flags;
221 	struct ext4_inode_info *ei = EXT4_I(inode);
222 	int err, ret = 0;
223 
224 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
225 	dump_completed_IO(inode, head);
226 	list_replace_init(head, &unwritten);
227 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
228 
229 	while (!list_empty(&unwritten)) {
230 		io = list_entry(unwritten.next, ext4_io_end_t, list);
231 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
232 		list_del_init(&io->list);
233 
234 		err = ext4_end_io(io);
235 		if (unlikely(!ret && err))
236 			ret = err;
237 	}
238 	return ret;
239 }
240 
241 /*
242  * work on completed IO, to convert unwritten extents to extents
243  */
244 void ext4_end_io_rsv_work(struct work_struct *work)
245 {
246 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
247 						  i_rsv_conversion_work);
248 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
249 }
250 
251 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
252 {
253 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
254 	if (io) {
255 		io->inode = inode;
256 		INIT_LIST_HEAD(&io->list);
257 		atomic_set(&io->count, 1);
258 	}
259 	return io;
260 }
261 
262 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
263 {
264 	if (atomic_dec_and_test(&io_end->count)) {
265 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
266 			ext4_release_io_end(io_end);
267 			return;
268 		}
269 		ext4_add_complete_io(io_end);
270 	}
271 }
272 
273 int ext4_put_io_end(ext4_io_end_t *io_end)
274 {
275 	int err = 0;
276 
277 	if (atomic_dec_and_test(&io_end->count)) {
278 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
279 			err = ext4_convert_unwritten_extents(io_end->handle,
280 						io_end->inode, io_end->offset,
281 						io_end->size);
282 			io_end->handle = NULL;
283 			ext4_clear_io_unwritten_flag(io_end);
284 		}
285 		ext4_release_io_end(io_end);
286 	}
287 	return err;
288 }
289 
290 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
291 {
292 	atomic_inc(&io_end->count);
293 	return io_end;
294 }
295 
296 /* BIO completion function for page writeback */
297 static void ext4_end_bio(struct bio *bio)
298 {
299 	ext4_io_end_t *io_end = bio->bi_private;
300 	sector_t bi_sector = bio->bi_iter.bi_sector;
301 	char b[BDEVNAME_SIZE];
302 
303 	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
304 		      bio_devname(bio, b),
305 		      (long long) bio->bi_iter.bi_sector,
306 		      (unsigned) bio_sectors(bio),
307 		      bio->bi_status)) {
308 		ext4_finish_bio(bio);
309 		bio_put(bio);
310 		return;
311 	}
312 	bio->bi_end_io = NULL;
313 
314 	if (bio->bi_status) {
315 		struct inode *inode = io_end->inode;
316 
317 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
318 			     "(offset %llu size %ld starting block %llu)",
319 			     bio->bi_status, inode->i_ino,
320 			     (unsigned long long) io_end->offset,
321 			     (long) io_end->size,
322 			     (unsigned long long)
323 			     bi_sector >> (inode->i_blkbits - 9));
324 		mapping_set_error(inode->i_mapping,
325 				blk_status_to_errno(bio->bi_status));
326 	}
327 
328 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
329 		/*
330 		 * Link bio into list hanging from io_end. We have to do it
331 		 * atomically as bio completions can be racing against each
332 		 * other.
333 		 */
334 		bio->bi_private = xchg(&io_end->bio, bio);
335 		ext4_put_io_end_defer(io_end);
336 	} else {
337 		/*
338 		 * Drop io_end reference early. Inode can get freed once
339 		 * we finish the bio.
340 		 */
341 		ext4_put_io_end_defer(io_end);
342 		ext4_finish_bio(bio);
343 		bio_put(bio);
344 	}
345 }
346 
347 void ext4_io_submit(struct ext4_io_submit *io)
348 {
349 	struct bio *bio = io->io_bio;
350 
351 	if (bio) {
352 		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
353 				  REQ_SYNC : 0;
354 		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
355 		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
356 		submit_bio(io->io_bio);
357 	}
358 	io->io_bio = NULL;
359 }
360 
361 void ext4_io_submit_init(struct ext4_io_submit *io,
362 			 struct writeback_control *wbc)
363 {
364 	io->io_wbc = wbc;
365 	io->io_bio = NULL;
366 	io->io_end = NULL;
367 }
368 
369 static int io_submit_init_bio(struct ext4_io_submit *io,
370 			      struct buffer_head *bh)
371 {
372 	struct bio *bio;
373 
374 	bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
375 	if (!bio)
376 		return -ENOMEM;
377 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
378 	bio_set_dev(bio, bh->b_bdev);
379 	bio->bi_end_io = ext4_end_bio;
380 	bio->bi_private = ext4_get_io_end(io->io_end);
381 	io->io_bio = bio;
382 	io->io_next_block = bh->b_blocknr;
383 	wbc_init_bio(io->io_wbc, bio);
384 	return 0;
385 }
386 
387 static int io_submit_add_bh(struct ext4_io_submit *io,
388 			    struct inode *inode,
389 			    struct page *page,
390 			    struct buffer_head *bh)
391 {
392 	int ret;
393 
394 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
395 submit_and_retry:
396 		ext4_io_submit(io);
397 	}
398 	if (io->io_bio == NULL) {
399 		ret = io_submit_init_bio(io, bh);
400 		if (ret)
401 			return ret;
402 		io->io_bio->bi_write_hint = inode->i_write_hint;
403 	}
404 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
405 	if (ret != bh->b_size)
406 		goto submit_and_retry;
407 	wbc_account_io(io->io_wbc, page, bh->b_size);
408 	io->io_next_block++;
409 	return 0;
410 }
411 
412 int ext4_bio_write_page(struct ext4_io_submit *io,
413 			struct page *page,
414 			int len,
415 			struct writeback_control *wbc,
416 			bool keep_towrite)
417 {
418 	struct page *data_page = NULL;
419 	struct inode *inode = page->mapping->host;
420 	unsigned block_start;
421 	struct buffer_head *bh, *head;
422 	int ret = 0;
423 	int nr_submitted = 0;
424 	int nr_to_submit = 0;
425 
426 	BUG_ON(!PageLocked(page));
427 	BUG_ON(PageWriteback(page));
428 
429 	if (keep_towrite)
430 		set_page_writeback_keepwrite(page);
431 	else
432 		set_page_writeback(page);
433 	ClearPageError(page);
434 
435 	/*
436 	 * Comments copied from block_write_full_page:
437 	 *
438 	 * The page straddles i_size.  It must be zeroed out on each and every
439 	 * writepage invocation because it may be mmapped.  "A file is mapped
440 	 * in multiples of the page size.  For a file that is not a multiple of
441 	 * the page size, the remaining memory is zeroed when mapped, and
442 	 * writes to that region are not written out to the file."
443 	 */
444 	if (len < PAGE_SIZE)
445 		zero_user_segment(page, len, PAGE_SIZE);
446 	/*
447 	 * In the first loop we prepare and mark buffers to submit. We have to
448 	 * mark all buffers in the page before submitting so that
449 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
450 	 * on the first buffer finishes and we are still working on submitting
451 	 * the second buffer.
452 	 */
453 	bh = head = page_buffers(page);
454 	do {
455 		block_start = bh_offset(bh);
456 		if (block_start >= len) {
457 			clear_buffer_dirty(bh);
458 			set_buffer_uptodate(bh);
459 			continue;
460 		}
461 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
462 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
463 			/* A hole? We can safely clear the dirty bit */
464 			if (!buffer_mapped(bh))
465 				clear_buffer_dirty(bh);
466 			if (io->io_bio)
467 				ext4_io_submit(io);
468 			continue;
469 		}
470 		if (buffer_new(bh)) {
471 			clear_buffer_new(bh);
472 			clean_bdev_bh_alias(bh);
473 		}
474 		set_buffer_async_write(bh);
475 		nr_to_submit++;
476 	} while ((bh = bh->b_this_page) != head);
477 
478 	bh = head = page_buffers(page);
479 
480 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode) &&
481 	    nr_to_submit) {
482 		gfp_t gfp_flags = GFP_NOFS;
483 
484 	retry_encrypt:
485 		data_page = fscrypt_encrypt_page(inode, page, PAGE_SIZE, 0,
486 						page->index, gfp_flags);
487 		if (IS_ERR(data_page)) {
488 			ret = PTR_ERR(data_page);
489 			if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) {
490 				if (io->io_bio) {
491 					ext4_io_submit(io);
492 					congestion_wait(BLK_RW_ASYNC, HZ/50);
493 				}
494 				gfp_flags |= __GFP_NOFAIL;
495 				goto retry_encrypt;
496 			}
497 			data_page = NULL;
498 			goto out;
499 		}
500 	}
501 
502 	/* Now submit buffers to write */
503 	do {
504 		if (!buffer_async_write(bh))
505 			continue;
506 		ret = io_submit_add_bh(io, inode,
507 				       data_page ? data_page : page, bh);
508 		if (ret) {
509 			/*
510 			 * We only get here on ENOMEM.  Not much else
511 			 * we can do but mark the page as dirty, and
512 			 * better luck next time.
513 			 */
514 			break;
515 		}
516 		nr_submitted++;
517 		clear_buffer_dirty(bh);
518 	} while ((bh = bh->b_this_page) != head);
519 
520 	/* Error stopped previous loop? Clean up buffers... */
521 	if (ret) {
522 	out:
523 		if (data_page)
524 			fscrypt_restore_control_page(data_page);
525 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
526 		redirty_page_for_writepage(wbc, page);
527 		do {
528 			clear_buffer_async_write(bh);
529 			bh = bh->b_this_page;
530 		} while (bh != head);
531 	}
532 	unlock_page(page);
533 	/* Nothing submitted - we have to end page writeback */
534 	if (!nr_submitted)
535 		end_page_writeback(page);
536 	return ret;
537 }
538