xref: /openbmc/linux/fs/ext4/page-io.c (revision 92b19ff5)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 
31 static struct kmem_cache *io_end_cachep;
32 
33 int __init ext4_init_pageio(void)
34 {
35 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
36 	if (io_end_cachep == NULL)
37 		return -ENOMEM;
38 	return 0;
39 }
40 
41 void ext4_exit_pageio(void)
42 {
43 	kmem_cache_destroy(io_end_cachep);
44 }
45 
46 /*
47  * Print an buffer I/O error compatible with the fs/buffer.c.  This
48  * provides compatibility with dmesg scrapers that look for a specific
49  * buffer I/O error message.  We really need a unified error reporting
50  * structure to userspace ala Digital Unix's uerf system, but it's
51  * probably not going to happen in my lifetime, due to LKML politics...
52  */
53 static void buffer_io_error(struct buffer_head *bh)
54 {
55 	char b[BDEVNAME_SIZE];
56 	printk_ratelimited(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
57 			bdevname(bh->b_bdev, b),
58 			(unsigned long long)bh->b_blocknr);
59 }
60 
61 static void ext4_finish_bio(struct bio *bio)
62 {
63 	int i;
64 	int error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
65 	struct bio_vec *bvec;
66 
67 	bio_for_each_segment_all(bvec, bio, i) {
68 		struct page *page = bvec->bv_page;
69 #ifdef CONFIG_EXT4_FS_ENCRYPTION
70 		struct page *data_page = NULL;
71 		struct ext4_crypto_ctx *ctx = NULL;
72 #endif
73 		struct buffer_head *bh, *head;
74 		unsigned bio_start = bvec->bv_offset;
75 		unsigned bio_end = bio_start + bvec->bv_len;
76 		unsigned under_io = 0;
77 		unsigned long flags;
78 
79 		if (!page)
80 			continue;
81 
82 #ifdef CONFIG_EXT4_FS_ENCRYPTION
83 		if (!page->mapping) {
84 			/* The bounce data pages are unmapped. */
85 			data_page = page;
86 			ctx = (struct ext4_crypto_ctx *)page_private(data_page);
87 			page = ctx->w.control_page;
88 		}
89 #endif
90 
91 		if (error) {
92 			SetPageError(page);
93 			set_bit(AS_EIO, &page->mapping->flags);
94 		}
95 		bh = head = page_buffers(page);
96 		/*
97 		 * We check all buffers in the page under BH_Uptodate_Lock
98 		 * to avoid races with other end io clearing async_write flags
99 		 */
100 		local_irq_save(flags);
101 		bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
102 		do {
103 			if (bh_offset(bh) < bio_start ||
104 			    bh_offset(bh) + bh->b_size > bio_end) {
105 				if (buffer_async_write(bh))
106 					under_io++;
107 				continue;
108 			}
109 			clear_buffer_async_write(bh);
110 			if (error)
111 				buffer_io_error(bh);
112 		} while ((bh = bh->b_this_page) != head);
113 		bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
114 		local_irq_restore(flags);
115 		if (!under_io) {
116 #ifdef CONFIG_EXT4_FS_ENCRYPTION
117 			if (ctx)
118 				ext4_restore_control_page(data_page);
119 #endif
120 			end_page_writeback(page);
121 		}
122 	}
123 }
124 
125 static void ext4_release_io_end(ext4_io_end_t *io_end)
126 {
127 	struct bio *bio, *next_bio;
128 
129 	BUG_ON(!list_empty(&io_end->list));
130 	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
131 	WARN_ON(io_end->handle);
132 
133 	if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
134 		wake_up_all(ext4_ioend_wq(io_end->inode));
135 
136 	for (bio = io_end->bio; bio; bio = next_bio) {
137 		next_bio = bio->bi_private;
138 		ext4_finish_bio(bio);
139 		bio_put(bio);
140 	}
141 	kmem_cache_free(io_end_cachep, io_end);
142 }
143 
144 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
145 {
146 	struct inode *inode = io_end->inode;
147 
148 	io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
149 	/* Wake up anyone waiting on unwritten extent conversion */
150 	if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
151 		wake_up_all(ext4_ioend_wq(inode));
152 }
153 
154 /*
155  * Check a range of space and convert unwritten extents to written. Note that
156  * we are protected from truncate touching same part of extent tree by the
157  * fact that truncate code waits for all DIO to finish (thus exclusion from
158  * direct IO is achieved) and also waits for PageWriteback bits. Thus we
159  * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
160  * completed (happens from ext4_free_ioend()).
161  */
162 static int ext4_end_io(ext4_io_end_t *io)
163 {
164 	struct inode *inode = io->inode;
165 	loff_t offset = io->offset;
166 	ssize_t size = io->size;
167 	handle_t *handle = io->handle;
168 	int ret = 0;
169 
170 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
171 		   "list->prev 0x%p\n",
172 		   io, inode->i_ino, io->list.next, io->list.prev);
173 
174 	io->handle = NULL;	/* Following call will use up the handle */
175 	ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
176 	if (ret < 0) {
177 		ext4_msg(inode->i_sb, KERN_EMERG,
178 			 "failed to convert unwritten extents to written "
179 			 "extents -- potential data loss!  "
180 			 "(inode %lu, offset %llu, size %zd, error %d)",
181 			 inode->i_ino, offset, size, ret);
182 	}
183 	ext4_clear_io_unwritten_flag(io);
184 	ext4_release_io_end(io);
185 	return ret;
186 }
187 
188 static void dump_completed_IO(struct inode *inode, struct list_head *head)
189 {
190 #ifdef	EXT4FS_DEBUG
191 	struct list_head *cur, *before, *after;
192 	ext4_io_end_t *io, *io0, *io1;
193 
194 	if (list_empty(head))
195 		return;
196 
197 	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
198 	list_for_each_entry(io, head, list) {
199 		cur = &io->list;
200 		before = cur->prev;
201 		io0 = container_of(before, ext4_io_end_t, list);
202 		after = cur->next;
203 		io1 = container_of(after, ext4_io_end_t, list);
204 
205 		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
206 			    io, inode->i_ino, io0, io1);
207 	}
208 #endif
209 }
210 
211 /* Add the io_end to per-inode completed end_io list. */
212 static void ext4_add_complete_io(ext4_io_end_t *io_end)
213 {
214 	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
215 	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
216 	struct workqueue_struct *wq;
217 	unsigned long flags;
218 
219 	/* Only reserved conversions from writeback should enter here */
220 	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
221 	WARN_ON(!io_end->handle && sbi->s_journal);
222 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
223 	wq = sbi->rsv_conversion_wq;
224 	if (list_empty(&ei->i_rsv_conversion_list))
225 		queue_work(wq, &ei->i_rsv_conversion_work);
226 	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
227 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
228 }
229 
230 static int ext4_do_flush_completed_IO(struct inode *inode,
231 				      struct list_head *head)
232 {
233 	ext4_io_end_t *io;
234 	struct list_head unwritten;
235 	unsigned long flags;
236 	struct ext4_inode_info *ei = EXT4_I(inode);
237 	int err, ret = 0;
238 
239 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
240 	dump_completed_IO(inode, head);
241 	list_replace_init(head, &unwritten);
242 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
243 
244 	while (!list_empty(&unwritten)) {
245 		io = list_entry(unwritten.next, ext4_io_end_t, list);
246 		BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
247 		list_del_init(&io->list);
248 
249 		err = ext4_end_io(io);
250 		if (unlikely(!ret && err))
251 			ret = err;
252 	}
253 	return ret;
254 }
255 
256 /*
257  * work on completed IO, to convert unwritten extents to extents
258  */
259 void ext4_end_io_rsv_work(struct work_struct *work)
260 {
261 	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
262 						  i_rsv_conversion_work);
263 	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
264 }
265 
266 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
267 {
268 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
269 	if (io) {
270 		atomic_inc(&EXT4_I(inode)->i_ioend_count);
271 		io->inode = inode;
272 		INIT_LIST_HEAD(&io->list);
273 		atomic_set(&io->count, 1);
274 	}
275 	return io;
276 }
277 
278 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
279 {
280 	if (atomic_dec_and_test(&io_end->count)) {
281 		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
282 			ext4_release_io_end(io_end);
283 			return;
284 		}
285 		ext4_add_complete_io(io_end);
286 	}
287 }
288 
289 int ext4_put_io_end(ext4_io_end_t *io_end)
290 {
291 	int err = 0;
292 
293 	if (atomic_dec_and_test(&io_end->count)) {
294 		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
295 			err = ext4_convert_unwritten_extents(io_end->handle,
296 						io_end->inode, io_end->offset,
297 						io_end->size);
298 			io_end->handle = NULL;
299 			ext4_clear_io_unwritten_flag(io_end);
300 		}
301 		ext4_release_io_end(io_end);
302 	}
303 	return err;
304 }
305 
306 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
307 {
308 	atomic_inc(&io_end->count);
309 	return io_end;
310 }
311 
312 /* BIO completion function for page writeback */
313 static void ext4_end_bio(struct bio *bio, int error)
314 {
315 	ext4_io_end_t *io_end = bio->bi_private;
316 	sector_t bi_sector = bio->bi_iter.bi_sector;
317 
318 	BUG_ON(!io_end);
319 	bio->bi_end_io = NULL;
320 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
321 		error = 0;
322 
323 	if (error) {
324 		struct inode *inode = io_end->inode;
325 
326 		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
327 			     "(offset %llu size %ld starting block %llu)",
328 			     error, inode->i_ino,
329 			     (unsigned long long) io_end->offset,
330 			     (long) io_end->size,
331 			     (unsigned long long)
332 			     bi_sector >> (inode->i_blkbits - 9));
333 		mapping_set_error(inode->i_mapping, error);
334 	}
335 
336 	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
337 		/*
338 		 * Link bio into list hanging from io_end. We have to do it
339 		 * atomically as bio completions can be racing against each
340 		 * other.
341 		 */
342 		bio->bi_private = xchg(&io_end->bio, bio);
343 		ext4_put_io_end_defer(io_end);
344 	} else {
345 		/*
346 		 * Drop io_end reference early. Inode can get freed once
347 		 * we finish the bio.
348 		 */
349 		ext4_put_io_end_defer(io_end);
350 		ext4_finish_bio(bio);
351 		bio_put(bio);
352 	}
353 }
354 
355 void ext4_io_submit(struct ext4_io_submit *io)
356 {
357 	struct bio *bio = io->io_bio;
358 
359 	if (bio) {
360 		bio_get(io->io_bio);
361 		submit_bio(io->io_op, io->io_bio);
362 		bio_put(io->io_bio);
363 	}
364 	io->io_bio = NULL;
365 }
366 
367 void ext4_io_submit_init(struct ext4_io_submit *io,
368 			 struct writeback_control *wbc)
369 {
370 	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
371 	io->io_bio = NULL;
372 	io->io_end = NULL;
373 }
374 
375 static int io_submit_init_bio(struct ext4_io_submit *io,
376 			      struct buffer_head *bh)
377 {
378 	int nvecs = bio_get_nr_vecs(bh->b_bdev);
379 	struct bio *bio;
380 
381 	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
382 	if (!bio)
383 		return -ENOMEM;
384 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
385 	bio->bi_bdev = bh->b_bdev;
386 	bio->bi_end_io = ext4_end_bio;
387 	bio->bi_private = ext4_get_io_end(io->io_end);
388 	io->io_bio = bio;
389 	io->io_next_block = bh->b_blocknr;
390 	return 0;
391 }
392 
393 static int io_submit_add_bh(struct ext4_io_submit *io,
394 			    struct inode *inode,
395 			    struct page *page,
396 			    struct buffer_head *bh)
397 {
398 	int ret;
399 
400 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
401 submit_and_retry:
402 		ext4_io_submit(io);
403 	}
404 	if (io->io_bio == NULL) {
405 		ret = io_submit_init_bio(io, bh);
406 		if (ret)
407 			return ret;
408 	}
409 	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
410 	if (ret != bh->b_size)
411 		goto submit_and_retry;
412 	io->io_next_block++;
413 	return 0;
414 }
415 
416 int ext4_bio_write_page(struct ext4_io_submit *io,
417 			struct page *page,
418 			int len,
419 			struct writeback_control *wbc,
420 			bool keep_towrite)
421 {
422 	struct page *data_page = NULL;
423 	struct inode *inode = page->mapping->host;
424 	unsigned block_start, blocksize;
425 	struct buffer_head *bh, *head;
426 	int ret = 0;
427 	int nr_submitted = 0;
428 
429 	blocksize = 1 << inode->i_blkbits;
430 
431 	BUG_ON(!PageLocked(page));
432 	BUG_ON(PageWriteback(page));
433 
434 	if (keep_towrite)
435 		set_page_writeback_keepwrite(page);
436 	else
437 		set_page_writeback(page);
438 	ClearPageError(page);
439 
440 	/*
441 	 * Comments copied from block_write_full_page:
442 	 *
443 	 * The page straddles i_size.  It must be zeroed out on each and every
444 	 * writepage invocation because it may be mmapped.  "A file is mapped
445 	 * in multiples of the page size.  For a file that is not a multiple of
446 	 * the page size, the remaining memory is zeroed when mapped, and
447 	 * writes to that region are not written out to the file."
448 	 */
449 	if (len < PAGE_CACHE_SIZE)
450 		zero_user_segment(page, len, PAGE_CACHE_SIZE);
451 	/*
452 	 * In the first loop we prepare and mark buffers to submit. We have to
453 	 * mark all buffers in the page before submitting so that
454 	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
455 	 * on the first buffer finishes and we are still working on submitting
456 	 * the second buffer.
457 	 */
458 	bh = head = page_buffers(page);
459 	do {
460 		block_start = bh_offset(bh);
461 		if (block_start >= len) {
462 			clear_buffer_dirty(bh);
463 			set_buffer_uptodate(bh);
464 			continue;
465 		}
466 		if (!buffer_dirty(bh) || buffer_delay(bh) ||
467 		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
468 			/* A hole? We can safely clear the dirty bit */
469 			if (!buffer_mapped(bh))
470 				clear_buffer_dirty(bh);
471 			if (io->io_bio)
472 				ext4_io_submit(io);
473 			continue;
474 		}
475 		if (buffer_new(bh)) {
476 			clear_buffer_new(bh);
477 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
478 		}
479 		set_buffer_async_write(bh);
480 	} while ((bh = bh->b_this_page) != head);
481 
482 	bh = head = page_buffers(page);
483 
484 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
485 		data_page = ext4_encrypt(inode, page);
486 		if (IS_ERR(data_page)) {
487 			ret = PTR_ERR(data_page);
488 			data_page = NULL;
489 			goto out;
490 		}
491 	}
492 
493 	/* Now submit buffers to write */
494 	do {
495 		if (!buffer_async_write(bh))
496 			continue;
497 		ret = io_submit_add_bh(io, inode,
498 				       data_page ? data_page : page, bh);
499 		if (ret) {
500 			/*
501 			 * We only get here on ENOMEM.  Not much else
502 			 * we can do but mark the page as dirty, and
503 			 * better luck next time.
504 			 */
505 			break;
506 		}
507 		nr_submitted++;
508 		clear_buffer_dirty(bh);
509 	} while ((bh = bh->b_this_page) != head);
510 
511 	/* Error stopped previous loop? Clean up buffers... */
512 	if (ret) {
513 	out:
514 		if (data_page)
515 			ext4_restore_control_page(data_page);
516 		printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
517 		redirty_page_for_writepage(wbc, page);
518 		do {
519 			clear_buffer_async_write(bh);
520 			bh = bh->b_this_page;
521 		} while (bh != head);
522 	}
523 	unlock_page(page);
524 	/* Nothing submitted - we have to end page writeback */
525 	if (!nr_submitted)
526 		end_page_writeback(page);
527 	return ret;
528 }
529