1 /* 2 * linux/fs/ext4/page-io.c 3 * 4 * This contains the new page_io functions for ext4 5 * 6 * Written by Theodore Ts'o, 2010. 7 */ 8 9 #include <linux/fs.h> 10 #include <linux/time.h> 11 #include <linux/jbd2.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 #include <linux/workqueue.h> 24 #include <linux/kernel.h> 25 #include <linux/slab.h> 26 27 #include "ext4_jbd2.h" 28 #include "xattr.h" 29 #include "acl.h" 30 31 static struct kmem_cache *io_page_cachep, *io_end_cachep; 32 33 int __init ext4_init_pageio(void) 34 { 35 io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT); 36 if (io_page_cachep == NULL) 37 return -ENOMEM; 38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 39 if (io_end_cachep == NULL) { 40 kmem_cache_destroy(io_page_cachep); 41 return -ENOMEM; 42 } 43 return 0; 44 } 45 46 void ext4_exit_pageio(void) 47 { 48 kmem_cache_destroy(io_end_cachep); 49 kmem_cache_destroy(io_page_cachep); 50 } 51 52 void ext4_ioend_wait(struct inode *inode) 53 { 54 wait_queue_head_t *wq = ext4_ioend_wq(inode); 55 56 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0)); 57 } 58 59 static void put_io_page(struct ext4_io_page *io_page) 60 { 61 if (atomic_dec_and_test(&io_page->p_count)) { 62 end_page_writeback(io_page->p_page); 63 put_page(io_page->p_page); 64 kmem_cache_free(io_page_cachep, io_page); 65 } 66 } 67 68 void ext4_free_io_end(ext4_io_end_t *io) 69 { 70 int i; 71 72 BUG_ON(!io); 73 BUG_ON(!list_empty(&io->list)); 74 BUG_ON(io->flag & EXT4_IO_END_UNWRITTEN); 75 76 if (io->page) 77 put_page(io->page); 78 for (i = 0; i < io->num_io_pages; i++) 79 put_io_page(io->pages[i]); 80 io->num_io_pages = 0; 81 if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count)) 82 wake_up_all(ext4_ioend_wq(io->inode)); 83 kmem_cache_free(io_end_cachep, io); 84 } 85 86 /* check a range of space and convert unwritten extents to written. */ 87 static int ext4_end_io(ext4_io_end_t *io) 88 { 89 struct inode *inode = io->inode; 90 loff_t offset = io->offset; 91 ssize_t size = io->size; 92 int ret = 0; 93 94 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 95 "list->prev 0x%p\n", 96 io, inode->i_ino, io->list.next, io->list.prev); 97 98 ret = ext4_convert_unwritten_extents(inode, offset, size); 99 if (ret < 0) { 100 ext4_msg(inode->i_sb, KERN_EMERG, 101 "failed to convert unwritten extents to written " 102 "extents -- potential data loss! " 103 "(inode %lu, offset %llu, size %zd, error %d)", 104 inode->i_ino, offset, size, ret); 105 } 106 if (io->iocb) 107 aio_complete(io->iocb, io->result, 0); 108 109 if (io->flag & EXT4_IO_END_DIRECT) 110 inode_dio_done(inode); 111 /* Wake up anyone waiting on unwritten extent conversion */ 112 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten)) 113 wake_up_all(ext4_ioend_wq(inode)); 114 return ret; 115 } 116 117 static void dump_completed_IO(struct inode *inode) 118 { 119 #ifdef EXT4FS_DEBUG 120 struct list_head *cur, *before, *after; 121 ext4_io_end_t *io, *io0, *io1; 122 unsigned long flags; 123 124 if (list_empty(&EXT4_I(inode)->i_completed_io_list)) { 125 ext4_debug("inode %lu completed_io list is empty\n", 126 inode->i_ino); 127 return; 128 } 129 130 ext4_debug("Dump inode %lu completed_io list\n", inode->i_ino); 131 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list) { 132 cur = &io->list; 133 before = cur->prev; 134 io0 = container_of(before, ext4_io_end_t, list); 135 after = cur->next; 136 io1 = container_of(after, ext4_io_end_t, list); 137 138 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 139 io, inode->i_ino, io0, io1); 140 } 141 #endif 142 } 143 144 /* Add the io_end to per-inode completed end_io list. */ 145 void ext4_add_complete_io(ext4_io_end_t *io_end) 146 { 147 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 148 struct workqueue_struct *wq; 149 unsigned long flags; 150 151 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 152 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; 153 154 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 155 if (list_empty(&ei->i_completed_io_list)) { 156 io_end->flag |= EXT4_IO_END_QUEUED; 157 queue_work(wq, &io_end->work); 158 } 159 list_add_tail(&io_end->list, &ei->i_completed_io_list); 160 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 161 } 162 163 static int ext4_do_flush_completed_IO(struct inode *inode, 164 ext4_io_end_t *work_io) 165 { 166 ext4_io_end_t *io; 167 struct list_head unwritten, complete, to_free; 168 unsigned long flags; 169 struct ext4_inode_info *ei = EXT4_I(inode); 170 int err, ret = 0; 171 172 INIT_LIST_HEAD(&complete); 173 INIT_LIST_HEAD(&to_free); 174 175 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 176 dump_completed_IO(inode); 177 list_replace_init(&ei->i_completed_io_list, &unwritten); 178 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 179 180 while (!list_empty(&unwritten)) { 181 io = list_entry(unwritten.next, ext4_io_end_t, list); 182 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN)); 183 list_del_init(&io->list); 184 185 err = ext4_end_io(io); 186 if (unlikely(!ret && err)) 187 ret = err; 188 189 list_add_tail(&io->list, &complete); 190 } 191 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 192 while (!list_empty(&complete)) { 193 io = list_entry(complete.next, ext4_io_end_t, list); 194 io->flag &= ~EXT4_IO_END_UNWRITTEN; 195 /* end_io context can not be destroyed now because it still 196 * used by queued worker. Worker thread will destroy it later */ 197 if (io->flag & EXT4_IO_END_QUEUED) 198 list_del_init(&io->list); 199 else 200 list_move(&io->list, &to_free); 201 } 202 /* If we are called from worker context, it is time to clear queued 203 * flag, and destroy it's end_io if it was converted already */ 204 if (work_io) { 205 work_io->flag &= ~EXT4_IO_END_QUEUED; 206 if (!(work_io->flag & EXT4_IO_END_UNWRITTEN)) 207 list_add_tail(&work_io->list, &to_free); 208 } 209 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 210 211 while (!list_empty(&to_free)) { 212 io = list_entry(to_free.next, ext4_io_end_t, list); 213 list_del_init(&io->list); 214 ext4_free_io_end(io); 215 } 216 return ret; 217 } 218 219 /* 220 * work on completed aio dio IO, to convert unwritten extents to extents 221 */ 222 static void ext4_end_io_work(struct work_struct *work) 223 { 224 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work); 225 ext4_do_flush_completed_IO(io->inode, io); 226 } 227 228 int ext4_flush_unwritten_io(struct inode *inode) 229 { 230 int ret; 231 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex) && 232 !(inode->i_state & I_FREEING)); 233 ret = ext4_do_flush_completed_IO(inode, NULL); 234 ext4_unwritten_wait(inode); 235 return ret; 236 } 237 238 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 239 { 240 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags); 241 if (io) { 242 atomic_inc(&EXT4_I(inode)->i_ioend_count); 243 io->inode = inode; 244 INIT_WORK(&io->work, ext4_end_io_work); 245 INIT_LIST_HEAD(&io->list); 246 } 247 return io; 248 } 249 250 /* 251 * Print an buffer I/O error compatible with the fs/buffer.c. This 252 * provides compatibility with dmesg scrapers that look for a specific 253 * buffer I/O error message. We really need a unified error reporting 254 * structure to userspace ala Digital Unix's uerf system, but it's 255 * probably not going to happen in my lifetime, due to LKML politics... 256 */ 257 static void buffer_io_error(struct buffer_head *bh) 258 { 259 char b[BDEVNAME_SIZE]; 260 printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n", 261 bdevname(bh->b_bdev, b), 262 (unsigned long long)bh->b_blocknr); 263 } 264 265 static void ext4_end_bio(struct bio *bio, int error) 266 { 267 ext4_io_end_t *io_end = bio->bi_private; 268 struct inode *inode; 269 int i; 270 sector_t bi_sector = bio->bi_sector; 271 272 BUG_ON(!io_end); 273 bio->bi_private = NULL; 274 bio->bi_end_io = NULL; 275 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 276 error = 0; 277 bio_put(bio); 278 279 for (i = 0; i < io_end->num_io_pages; i++) { 280 struct page *page = io_end->pages[i]->p_page; 281 struct buffer_head *bh, *head; 282 loff_t offset; 283 loff_t io_end_offset; 284 285 if (error) { 286 SetPageError(page); 287 set_bit(AS_EIO, &page->mapping->flags); 288 head = page_buffers(page); 289 BUG_ON(!head); 290 291 io_end_offset = io_end->offset + io_end->size; 292 293 offset = (sector_t) page->index << PAGE_CACHE_SHIFT; 294 bh = head; 295 do { 296 if ((offset >= io_end->offset) && 297 (offset+bh->b_size <= io_end_offset)) 298 buffer_io_error(bh); 299 300 offset += bh->b_size; 301 bh = bh->b_this_page; 302 } while (bh != head); 303 } 304 305 put_io_page(io_end->pages[i]); 306 } 307 io_end->num_io_pages = 0; 308 inode = io_end->inode; 309 310 if (error) { 311 io_end->flag |= EXT4_IO_END_ERROR; 312 ext4_warning(inode->i_sb, "I/O error writing to inode %lu " 313 "(offset %llu size %ld starting block %llu)", 314 inode->i_ino, 315 (unsigned long long) io_end->offset, 316 (long) io_end->size, 317 (unsigned long long) 318 bi_sector >> (inode->i_blkbits - 9)); 319 } 320 321 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) { 322 ext4_free_io_end(io_end); 323 return; 324 } 325 326 ext4_add_complete_io(io_end); 327 } 328 329 void ext4_io_submit(struct ext4_io_submit *io) 330 { 331 struct bio *bio = io->io_bio; 332 333 if (bio) { 334 bio_get(io->io_bio); 335 submit_bio(io->io_op, io->io_bio); 336 BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP)); 337 bio_put(io->io_bio); 338 } 339 io->io_bio = NULL; 340 io->io_op = 0; 341 io->io_end = NULL; 342 } 343 344 static int io_submit_init(struct ext4_io_submit *io, 345 struct inode *inode, 346 struct writeback_control *wbc, 347 struct buffer_head *bh) 348 { 349 ext4_io_end_t *io_end; 350 struct page *page = bh->b_page; 351 int nvecs = bio_get_nr_vecs(bh->b_bdev); 352 struct bio *bio; 353 354 io_end = ext4_init_io_end(inode, GFP_NOFS); 355 if (!io_end) 356 return -ENOMEM; 357 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES)); 358 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 359 bio->bi_bdev = bh->b_bdev; 360 bio->bi_private = io->io_end = io_end; 361 bio->bi_end_io = ext4_end_bio; 362 363 io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh); 364 365 io->io_bio = bio; 366 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); 367 io->io_next_block = bh->b_blocknr; 368 return 0; 369 } 370 371 static int io_submit_add_bh(struct ext4_io_submit *io, 372 struct ext4_io_page *io_page, 373 struct inode *inode, 374 struct writeback_control *wbc, 375 struct buffer_head *bh) 376 { 377 ext4_io_end_t *io_end; 378 int ret; 379 380 if (buffer_new(bh)) { 381 clear_buffer_new(bh); 382 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 383 } 384 385 if (!buffer_mapped(bh) || buffer_delay(bh)) { 386 if (!buffer_mapped(bh)) 387 clear_buffer_dirty(bh); 388 if (io->io_bio) 389 ext4_io_submit(io); 390 return 0; 391 } 392 393 if (io->io_bio && bh->b_blocknr != io->io_next_block) { 394 submit_and_retry: 395 ext4_io_submit(io); 396 } 397 if (io->io_bio == NULL) { 398 ret = io_submit_init(io, inode, wbc, bh); 399 if (ret) 400 return ret; 401 } 402 io_end = io->io_end; 403 if ((io_end->num_io_pages >= MAX_IO_PAGES) && 404 (io_end->pages[io_end->num_io_pages-1] != io_page)) 405 goto submit_and_retry; 406 if (buffer_uninit(bh)) 407 ext4_set_io_unwritten_flag(inode, io_end); 408 io->io_end->size += bh->b_size; 409 io->io_next_block++; 410 ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh)); 411 if (ret != bh->b_size) 412 goto submit_and_retry; 413 if ((io_end->num_io_pages == 0) || 414 (io_end->pages[io_end->num_io_pages-1] != io_page)) { 415 io_end->pages[io_end->num_io_pages++] = io_page; 416 atomic_inc(&io_page->p_count); 417 } 418 return 0; 419 } 420 421 int ext4_bio_write_page(struct ext4_io_submit *io, 422 struct page *page, 423 int len, 424 struct writeback_control *wbc) 425 { 426 struct inode *inode = page->mapping->host; 427 unsigned block_start, block_end, blocksize; 428 struct ext4_io_page *io_page; 429 struct buffer_head *bh, *head; 430 int ret = 0; 431 432 blocksize = 1 << inode->i_blkbits; 433 434 BUG_ON(!PageLocked(page)); 435 BUG_ON(PageWriteback(page)); 436 437 io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS); 438 if (!io_page) { 439 set_page_dirty(page); 440 unlock_page(page); 441 return -ENOMEM; 442 } 443 io_page->p_page = page; 444 atomic_set(&io_page->p_count, 1); 445 get_page(page); 446 set_page_writeback(page); 447 ClearPageError(page); 448 449 for (bh = head = page_buffers(page), block_start = 0; 450 bh != head || !block_start; 451 block_start = block_end, bh = bh->b_this_page) { 452 453 block_end = block_start + blocksize; 454 if (block_start >= len) { 455 /* 456 * Comments copied from block_write_full_page_endio: 457 * 458 * The page straddles i_size. It must be zeroed out on 459 * each and every writepage invocation because it may 460 * be mmapped. "A file is mapped in multiples of the 461 * page size. For a file that is not a multiple of 462 * the page size, the remaining memory is zeroed when 463 * mapped, and writes to that region are not written 464 * out to the file." 465 */ 466 zero_user_segment(page, block_start, block_end); 467 clear_buffer_dirty(bh); 468 set_buffer_uptodate(bh); 469 continue; 470 } 471 clear_buffer_dirty(bh); 472 ret = io_submit_add_bh(io, io_page, inode, wbc, bh); 473 if (ret) { 474 /* 475 * We only get here on ENOMEM. Not much else 476 * we can do but mark the page as dirty, and 477 * better luck next time. 478 */ 479 set_page_dirty(page); 480 break; 481 } 482 } 483 unlock_page(page); 484 /* 485 * If the page was truncated before we could do the writeback, 486 * or we had a memory allocation error while trying to write 487 * the first buffer head, we won't have submitted any pages for 488 * I/O. In that case we need to make sure we've cleared the 489 * PageWriteback bit from the page to prevent the system from 490 * wedging later on. 491 */ 492 put_io_page(io_page); 493 return ret; 494 } 495