xref: /openbmc/linux/fs/ext4/page-io.c (revision 803f6914)
1 /*
2  * linux/fs/ext4/page-io.c
3  *
4  * This contains the new page_io functions for ext4
5  *
6  * Written by Theodore Ts'o, 2010.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/jbd2.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/uio.h>
22 #include <linux/bio.h>
23 #include <linux/workqueue.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "ext4_extents.h"
31 
32 static struct kmem_cache *io_page_cachep, *io_end_cachep;
33 
34 int __init ext4_init_pageio(void)
35 {
36 	io_page_cachep = KMEM_CACHE(ext4_io_page, SLAB_RECLAIM_ACCOUNT);
37 	if (io_page_cachep == NULL)
38 		return -ENOMEM;
39 	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
40 	if (io_end_cachep == NULL) {
41 		kmem_cache_destroy(io_page_cachep);
42 		return -ENOMEM;
43 	}
44 	return 0;
45 }
46 
47 void ext4_exit_pageio(void)
48 {
49 	kmem_cache_destroy(io_end_cachep);
50 	kmem_cache_destroy(io_page_cachep);
51 }
52 
53 void ext4_ioend_wait(struct inode *inode)
54 {
55 	wait_queue_head_t *wq = ext4_ioend_wq(inode);
56 
57 	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
58 }
59 
60 static void put_io_page(struct ext4_io_page *io_page)
61 {
62 	if (atomic_dec_and_test(&io_page->p_count)) {
63 		end_page_writeback(io_page->p_page);
64 		put_page(io_page->p_page);
65 		kmem_cache_free(io_page_cachep, io_page);
66 	}
67 }
68 
69 void ext4_free_io_end(ext4_io_end_t *io)
70 {
71 	int i;
72 
73 	BUG_ON(!io);
74 	if (io->page)
75 		put_page(io->page);
76 	for (i = 0; i < io->num_io_pages; i++)
77 		put_io_page(io->pages[i]);
78 	io->num_io_pages = 0;
79 	if (atomic_dec_and_test(&EXT4_I(io->inode)->i_ioend_count))
80 		wake_up_all(ext4_ioend_wq(io->inode));
81 	kmem_cache_free(io_end_cachep, io);
82 }
83 
84 /*
85  * check a range of space and convert unwritten extents to written.
86  *
87  * Called with inode->i_mutex; we depend on this when we manipulate
88  * io->flag, since we could otherwise race with ext4_flush_completed_IO()
89  */
90 int ext4_end_io_nolock(ext4_io_end_t *io)
91 {
92 	struct inode *inode = io->inode;
93 	loff_t offset = io->offset;
94 	ssize_t size = io->size;
95 	int ret = 0;
96 
97 	ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
98 		   "list->prev 0x%p\n",
99 		   io, inode->i_ino, io->list.next, io->list.prev);
100 
101 	ret = ext4_convert_unwritten_extents(inode, offset, size);
102 	if (ret < 0) {
103 		ext4_msg(inode->i_sb, KERN_EMERG,
104 			 "failed to convert unwritten extents to written "
105 			 "extents -- potential data loss!  "
106 			 "(inode %lu, offset %llu, size %zd, error %d)",
107 			 inode->i_ino, offset, size, ret);
108 	}
109 
110 	if (io->iocb)
111 		aio_complete(io->iocb, io->result, 0);
112 
113 	/* Wake up anyone waiting on unwritten extent conversion */
114 	if (atomic_dec_and_test(&EXT4_I(inode)->i_aiodio_unwritten))
115 		wake_up_all(ext4_ioend_wq(io->inode));
116 	return ret;
117 }
118 
119 /*
120  * work on completed aio dio IO, to convert unwritten extents to extents
121  */
122 static void ext4_end_io_work(struct work_struct *work)
123 {
124 	ext4_io_end_t		*io = container_of(work, ext4_io_end_t, work);
125 	struct inode		*inode = io->inode;
126 	struct ext4_inode_info	*ei = EXT4_I(inode);
127 	unsigned long		flags;
128 
129 	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
130 	if (list_empty(&io->list)) {
131 		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
132 		goto free;
133 	}
134 
135 	if (!mutex_trylock(&inode->i_mutex)) {
136 		spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
137 		/*
138 		 * Requeue the work instead of waiting so that the work
139 		 * items queued after this can be processed.
140 		 */
141 		queue_work(EXT4_SB(inode->i_sb)->dio_unwritten_wq, &io->work);
142 		/*
143 		 * To prevent the ext4-dio-unwritten thread from keeping
144 		 * requeueing end_io requests and occupying cpu for too long,
145 		 * yield the cpu if it sees an end_io request that has already
146 		 * been requeued.
147 		 */
148 		if (io->flag & EXT4_IO_END_QUEUED)
149 			yield();
150 		io->flag |= EXT4_IO_END_QUEUED;
151 		return;
152 	}
153 	list_del_init(&io->list);
154 	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
155 	(void) ext4_end_io_nolock(io);
156 	mutex_unlock(&inode->i_mutex);
157 free:
158 	ext4_free_io_end(io);
159 }
160 
161 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
162 {
163 	ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
164 	if (io) {
165 		atomic_inc(&EXT4_I(inode)->i_ioend_count);
166 		io->inode = inode;
167 		INIT_WORK(&io->work, ext4_end_io_work);
168 		INIT_LIST_HEAD(&io->list);
169 	}
170 	return io;
171 }
172 
173 /*
174  * Print an buffer I/O error compatible with the fs/buffer.c.  This
175  * provides compatibility with dmesg scrapers that look for a specific
176  * buffer I/O error message.  We really need a unified error reporting
177  * structure to userspace ala Digital Unix's uerf system, but it's
178  * probably not going to happen in my lifetime, due to LKML politics...
179  */
180 static void buffer_io_error(struct buffer_head *bh)
181 {
182 	char b[BDEVNAME_SIZE];
183 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
184 			bdevname(bh->b_bdev, b),
185 			(unsigned long long)bh->b_blocknr);
186 }
187 
188 static void ext4_end_bio(struct bio *bio, int error)
189 {
190 	ext4_io_end_t *io_end = bio->bi_private;
191 	struct workqueue_struct *wq;
192 	struct inode *inode;
193 	unsigned long flags;
194 	int i;
195 	sector_t bi_sector = bio->bi_sector;
196 
197 	BUG_ON(!io_end);
198 	bio->bi_private = NULL;
199 	bio->bi_end_io = NULL;
200 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
201 		error = 0;
202 	bio_put(bio);
203 
204 	for (i = 0; i < io_end->num_io_pages; i++) {
205 		struct page *page = io_end->pages[i]->p_page;
206 		struct buffer_head *bh, *head;
207 		loff_t offset;
208 		loff_t io_end_offset;
209 
210 		if (error) {
211 			SetPageError(page);
212 			set_bit(AS_EIO, &page->mapping->flags);
213 			head = page_buffers(page);
214 			BUG_ON(!head);
215 
216 			io_end_offset = io_end->offset + io_end->size;
217 
218 			offset = (sector_t) page->index << PAGE_CACHE_SHIFT;
219 			bh = head;
220 			do {
221 				if ((offset >= io_end->offset) &&
222 				    (offset+bh->b_size <= io_end_offset))
223 					buffer_io_error(bh);
224 
225 				offset += bh->b_size;
226 				bh = bh->b_this_page;
227 			} while (bh != head);
228 		}
229 
230 		put_io_page(io_end->pages[i]);
231 	}
232 	io_end->num_io_pages = 0;
233 	inode = io_end->inode;
234 
235 	if (error) {
236 		io_end->flag |= EXT4_IO_END_ERROR;
237 		ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
238 			     "(offset %llu size %ld starting block %llu)",
239 			     inode->i_ino,
240 			     (unsigned long long) io_end->offset,
241 			     (long) io_end->size,
242 			     (unsigned long long)
243 			     bi_sector >> (inode->i_blkbits - 9));
244 	}
245 
246 	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
247 		ext4_free_io_end(io_end);
248 		return;
249 	}
250 
251 	/* Add the io_end to per-inode completed io list*/
252 	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
253 	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
254 	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
255 
256 	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
257 	/* queue the work to convert unwritten extents to written */
258 	queue_work(wq, &io_end->work);
259 }
260 
261 void ext4_io_submit(struct ext4_io_submit *io)
262 {
263 	struct bio *bio = io->io_bio;
264 
265 	if (bio) {
266 		bio_get(io->io_bio);
267 		submit_bio(io->io_op, io->io_bio);
268 		BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
269 		bio_put(io->io_bio);
270 	}
271 	io->io_bio = NULL;
272 	io->io_op = 0;
273 	io->io_end = NULL;
274 }
275 
276 static int io_submit_init(struct ext4_io_submit *io,
277 			  struct inode *inode,
278 			  struct writeback_control *wbc,
279 			  struct buffer_head *bh)
280 {
281 	ext4_io_end_t *io_end;
282 	struct page *page = bh->b_page;
283 	int nvecs = bio_get_nr_vecs(bh->b_bdev);
284 	struct bio *bio;
285 
286 	io_end = ext4_init_io_end(inode, GFP_NOFS);
287 	if (!io_end)
288 		return -ENOMEM;
289 	bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
290 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
291 	bio->bi_bdev = bh->b_bdev;
292 	bio->bi_private = io->io_end = io_end;
293 	bio->bi_end_io = ext4_end_bio;
294 
295 	io_end->offset = (page->index << PAGE_CACHE_SHIFT) + bh_offset(bh);
296 
297 	io->io_bio = bio;
298 	io->io_op = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
299 	io->io_next_block = bh->b_blocknr;
300 	return 0;
301 }
302 
303 static int io_submit_add_bh(struct ext4_io_submit *io,
304 			    struct ext4_io_page *io_page,
305 			    struct inode *inode,
306 			    struct writeback_control *wbc,
307 			    struct buffer_head *bh)
308 {
309 	ext4_io_end_t *io_end;
310 	int ret;
311 
312 	if (buffer_new(bh)) {
313 		clear_buffer_new(bh);
314 		unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
315 	}
316 
317 	if (!buffer_mapped(bh) || buffer_delay(bh)) {
318 		if (!buffer_mapped(bh))
319 			clear_buffer_dirty(bh);
320 		if (io->io_bio)
321 			ext4_io_submit(io);
322 		return 0;
323 	}
324 
325 	if (io->io_bio && bh->b_blocknr != io->io_next_block) {
326 submit_and_retry:
327 		ext4_io_submit(io);
328 	}
329 	if (io->io_bio == NULL) {
330 		ret = io_submit_init(io, inode, wbc, bh);
331 		if (ret)
332 			return ret;
333 	}
334 	io_end = io->io_end;
335 	if ((io_end->num_io_pages >= MAX_IO_PAGES) &&
336 	    (io_end->pages[io_end->num_io_pages-1] != io_page))
337 		goto submit_and_retry;
338 	if (buffer_uninit(bh))
339 		ext4_set_io_unwritten_flag(inode, io_end);
340 	io->io_end->size += bh->b_size;
341 	io->io_next_block++;
342 	ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
343 	if (ret != bh->b_size)
344 		goto submit_and_retry;
345 	if ((io_end->num_io_pages == 0) ||
346 	    (io_end->pages[io_end->num_io_pages-1] != io_page)) {
347 		io_end->pages[io_end->num_io_pages++] = io_page;
348 		atomic_inc(&io_page->p_count);
349 	}
350 	return 0;
351 }
352 
353 int ext4_bio_write_page(struct ext4_io_submit *io,
354 			struct page *page,
355 			int len,
356 			struct writeback_control *wbc)
357 {
358 	struct inode *inode = page->mapping->host;
359 	unsigned block_start, block_end, blocksize;
360 	struct ext4_io_page *io_page;
361 	struct buffer_head *bh, *head;
362 	int ret = 0;
363 
364 	blocksize = 1 << inode->i_blkbits;
365 
366 	BUG_ON(!PageLocked(page));
367 	BUG_ON(PageWriteback(page));
368 
369 	io_page = kmem_cache_alloc(io_page_cachep, GFP_NOFS);
370 	if (!io_page) {
371 		set_page_dirty(page);
372 		unlock_page(page);
373 		return -ENOMEM;
374 	}
375 	io_page->p_page = page;
376 	atomic_set(&io_page->p_count, 1);
377 	get_page(page);
378 	set_page_writeback(page);
379 	ClearPageError(page);
380 
381 	for (bh = head = page_buffers(page), block_start = 0;
382 	     bh != head || !block_start;
383 	     block_start = block_end, bh = bh->b_this_page) {
384 
385 		block_end = block_start + blocksize;
386 		if (block_start >= len) {
387 			/*
388 			 * Comments copied from block_write_full_page_endio:
389 			 *
390 			 * The page straddles i_size.  It must be zeroed out on
391 			 * each and every writepage invocation because it may
392 			 * be mmapped.  "A file is mapped in multiples of the
393 			 * page size.  For a file that is not a multiple of
394 			 * the  page size, the remaining memory is zeroed when
395 			 * mapped, and writes to that region are not written
396 			 * out to the file."
397 			 */
398 			zero_user_segment(page, block_start, block_end);
399 			clear_buffer_dirty(bh);
400 			set_buffer_uptodate(bh);
401 			continue;
402 		}
403 		clear_buffer_dirty(bh);
404 		ret = io_submit_add_bh(io, io_page, inode, wbc, bh);
405 		if (ret) {
406 			/*
407 			 * We only get here on ENOMEM.  Not much else
408 			 * we can do but mark the page as dirty, and
409 			 * better luck next time.
410 			 */
411 			set_page_dirty(page);
412 			break;
413 		}
414 	}
415 	unlock_page(page);
416 	/*
417 	 * If the page was truncated before we could do the writeback,
418 	 * or we had a memory allocation error while trying to write
419 	 * the first buffer head, we won't have submitted any pages for
420 	 * I/O.  In that case we need to make sure we've cleared the
421 	 * PageWriteback bit from the page to prevent the system from
422 	 * wedging later on.
423 	 */
424 	put_io_page(io_page);
425 	return ret;
426 }
427