1 /* 2 * linux/fs/ext4/page-io.c 3 * 4 * This contains the new page_io functions for ext4 5 * 6 * Written by Theodore Ts'o, 2010. 7 */ 8 9 #include <linux/fs.h> 10 #include <linux/time.h> 11 #include <linux/jbd2.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/aio.h> 22 #include <linux/uio.h> 23 #include <linux/bio.h> 24 #include <linux/workqueue.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/ratelimit.h> 29 30 #include "ext4_jbd2.h" 31 #include "xattr.h" 32 #include "acl.h" 33 34 static struct kmem_cache *io_end_cachep; 35 36 int __init ext4_init_pageio(void) 37 { 38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 39 if (io_end_cachep == NULL) 40 return -ENOMEM; 41 return 0; 42 } 43 44 void ext4_exit_pageio(void) 45 { 46 kmem_cache_destroy(io_end_cachep); 47 } 48 49 /* 50 * Print an buffer I/O error compatible with the fs/buffer.c. This 51 * provides compatibility with dmesg scrapers that look for a specific 52 * buffer I/O error message. We really need a unified error reporting 53 * structure to userspace ala Digital Unix's uerf system, but it's 54 * probably not going to happen in my lifetime, due to LKML politics... 55 */ 56 static void buffer_io_error(struct buffer_head *bh) 57 { 58 char b[BDEVNAME_SIZE]; 59 printk_ratelimited(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n", 60 bdevname(bh->b_bdev, b), 61 (unsigned long long)bh->b_blocknr); 62 } 63 64 static void ext4_finish_bio(struct bio *bio) 65 { 66 int i; 67 int error = !test_bit(BIO_UPTODATE, &bio->bi_flags); 68 69 for (i = 0; i < bio->bi_vcnt; i++) { 70 struct bio_vec *bvec = &bio->bi_io_vec[i]; 71 struct page *page = bvec->bv_page; 72 struct buffer_head *bh, *head; 73 unsigned bio_start = bvec->bv_offset; 74 unsigned bio_end = bio_start + bvec->bv_len; 75 unsigned under_io = 0; 76 unsigned long flags; 77 78 if (!page) 79 continue; 80 81 if (error) { 82 SetPageError(page); 83 set_bit(AS_EIO, &page->mapping->flags); 84 } 85 bh = head = page_buffers(page); 86 /* 87 * We check all buffers in the page under BH_Uptodate_Lock 88 * to avoid races with other end io clearing async_write flags 89 */ 90 local_irq_save(flags); 91 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 92 do { 93 if (bh_offset(bh) < bio_start || 94 bh_offset(bh) + bh->b_size > bio_end) { 95 if (buffer_async_write(bh)) 96 under_io++; 97 continue; 98 } 99 clear_buffer_async_write(bh); 100 if (error) 101 buffer_io_error(bh); 102 } while ((bh = bh->b_this_page) != head); 103 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 104 local_irq_restore(flags); 105 if (!under_io) 106 end_page_writeback(page); 107 } 108 } 109 110 static void ext4_release_io_end(ext4_io_end_t *io_end) 111 { 112 struct bio *bio, *next_bio; 113 114 BUG_ON(!list_empty(&io_end->list)); 115 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 116 WARN_ON(io_end->handle); 117 118 if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count)) 119 wake_up_all(ext4_ioend_wq(io_end->inode)); 120 121 for (bio = io_end->bio; bio; bio = next_bio) { 122 next_bio = bio->bi_private; 123 ext4_finish_bio(bio); 124 bio_put(bio); 125 } 126 kmem_cache_free(io_end_cachep, io_end); 127 } 128 129 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end) 130 { 131 struct inode *inode = io_end->inode; 132 133 io_end->flag &= ~EXT4_IO_END_UNWRITTEN; 134 /* Wake up anyone waiting on unwritten extent conversion */ 135 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten)) 136 wake_up_all(ext4_ioend_wq(inode)); 137 } 138 139 /* 140 * Check a range of space and convert unwritten extents to written. Note that 141 * we are protected from truncate touching same part of extent tree by the 142 * fact that truncate code waits for all DIO to finish (thus exclusion from 143 * direct IO is achieved) and also waits for PageWriteback bits. Thus we 144 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are 145 * completed (happens from ext4_free_ioend()). 146 */ 147 static int ext4_end_io(ext4_io_end_t *io) 148 { 149 struct inode *inode = io->inode; 150 loff_t offset = io->offset; 151 ssize_t size = io->size; 152 handle_t *handle = io->handle; 153 int ret = 0; 154 155 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," 156 "list->prev 0x%p\n", 157 io, inode->i_ino, io->list.next, io->list.prev); 158 159 io->handle = NULL; /* Following call will use up the handle */ 160 ret = ext4_convert_unwritten_extents(handle, inode, offset, size); 161 if (ret < 0) { 162 ext4_msg(inode->i_sb, KERN_EMERG, 163 "failed to convert unwritten extents to written " 164 "extents -- potential data loss! " 165 "(inode %lu, offset %llu, size %zd, error %d)", 166 inode->i_ino, offset, size, ret); 167 } 168 ext4_clear_io_unwritten_flag(io); 169 ext4_release_io_end(io); 170 return ret; 171 } 172 173 static void dump_completed_IO(struct inode *inode, struct list_head *head) 174 { 175 #ifdef EXT4FS_DEBUG 176 struct list_head *cur, *before, *after; 177 ext4_io_end_t *io, *io0, *io1; 178 179 if (list_empty(head)) 180 return; 181 182 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino); 183 list_for_each_entry(io, head, list) { 184 cur = &io->list; 185 before = cur->prev; 186 io0 = container_of(before, ext4_io_end_t, list); 187 after = cur->next; 188 io1 = container_of(after, ext4_io_end_t, list); 189 190 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 191 io, inode->i_ino, io0, io1); 192 } 193 #endif 194 } 195 196 /* Add the io_end to per-inode completed end_io list. */ 197 static void ext4_add_complete_io(ext4_io_end_t *io_end) 198 { 199 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 200 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb); 201 struct workqueue_struct *wq; 202 unsigned long flags; 203 204 /* Only reserved conversions from writeback should enter here */ 205 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 206 WARN_ON(!io_end->handle && sbi->s_journal); 207 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 208 wq = sbi->rsv_conversion_wq; 209 if (list_empty(&ei->i_rsv_conversion_list)) 210 queue_work(wq, &ei->i_rsv_conversion_work); 211 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list); 212 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 213 } 214 215 static int ext4_do_flush_completed_IO(struct inode *inode, 216 struct list_head *head) 217 { 218 ext4_io_end_t *io; 219 struct list_head unwritten; 220 unsigned long flags; 221 struct ext4_inode_info *ei = EXT4_I(inode); 222 int err, ret = 0; 223 224 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 225 dump_completed_IO(inode, head); 226 list_replace_init(head, &unwritten); 227 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 228 229 while (!list_empty(&unwritten)) { 230 io = list_entry(unwritten.next, ext4_io_end_t, list); 231 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN)); 232 list_del_init(&io->list); 233 234 err = ext4_end_io(io); 235 if (unlikely(!ret && err)) 236 ret = err; 237 } 238 return ret; 239 } 240 241 /* 242 * work on completed IO, to convert unwritten extents to extents 243 */ 244 void ext4_end_io_rsv_work(struct work_struct *work) 245 { 246 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 247 i_rsv_conversion_work); 248 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list); 249 } 250 251 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 252 { 253 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags); 254 if (io) { 255 atomic_inc(&EXT4_I(inode)->i_ioend_count); 256 io->inode = inode; 257 INIT_LIST_HEAD(&io->list); 258 atomic_set(&io->count, 1); 259 } 260 return io; 261 } 262 263 void ext4_put_io_end_defer(ext4_io_end_t *io_end) 264 { 265 if (atomic_dec_and_test(&io_end->count)) { 266 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) { 267 ext4_release_io_end(io_end); 268 return; 269 } 270 ext4_add_complete_io(io_end); 271 } 272 } 273 274 int ext4_put_io_end(ext4_io_end_t *io_end) 275 { 276 int err = 0; 277 278 if (atomic_dec_and_test(&io_end->count)) { 279 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 280 err = ext4_convert_unwritten_extents(io_end->handle, 281 io_end->inode, io_end->offset, 282 io_end->size); 283 io_end->handle = NULL; 284 ext4_clear_io_unwritten_flag(io_end); 285 } 286 ext4_release_io_end(io_end); 287 } 288 return err; 289 } 290 291 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) 292 { 293 atomic_inc(&io_end->count); 294 return io_end; 295 } 296 297 /* BIO completion function for page writeback */ 298 static void ext4_end_bio(struct bio *bio, int error) 299 { 300 ext4_io_end_t *io_end = bio->bi_private; 301 sector_t bi_sector = bio->bi_sector; 302 303 BUG_ON(!io_end); 304 bio->bi_end_io = NULL; 305 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 306 error = 0; 307 308 if (error) { 309 struct inode *inode = io_end->inode; 310 311 ext4_warning(inode->i_sb, "I/O error writing to inode %lu " 312 "(offset %llu size %ld starting block %llu)", 313 inode->i_ino, 314 (unsigned long long) io_end->offset, 315 (long) io_end->size, 316 (unsigned long long) 317 bi_sector >> (inode->i_blkbits - 9)); 318 } 319 320 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 321 /* 322 * Link bio into list hanging from io_end. We have to do it 323 * atomically as bio completions can be racing against each 324 * other. 325 */ 326 bio->bi_private = xchg(&io_end->bio, bio); 327 ext4_put_io_end_defer(io_end); 328 } else { 329 /* 330 * Drop io_end reference early. Inode can get freed once 331 * we finish the bio. 332 */ 333 ext4_put_io_end_defer(io_end); 334 ext4_finish_bio(bio); 335 bio_put(bio); 336 } 337 } 338 339 void ext4_io_submit(struct ext4_io_submit *io) 340 { 341 struct bio *bio = io->io_bio; 342 343 if (bio) { 344 bio_get(io->io_bio); 345 submit_bio(io->io_op, io->io_bio); 346 BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP)); 347 bio_put(io->io_bio); 348 } 349 io->io_bio = NULL; 350 } 351 352 void ext4_io_submit_init(struct ext4_io_submit *io, 353 struct writeback_control *wbc) 354 { 355 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); 356 io->io_bio = NULL; 357 io->io_end = NULL; 358 } 359 360 static int io_submit_init_bio(struct ext4_io_submit *io, 361 struct buffer_head *bh) 362 { 363 int nvecs = bio_get_nr_vecs(bh->b_bdev); 364 struct bio *bio; 365 366 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES)); 367 if (!bio) 368 return -ENOMEM; 369 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 370 bio->bi_bdev = bh->b_bdev; 371 bio->bi_end_io = ext4_end_bio; 372 bio->bi_private = ext4_get_io_end(io->io_end); 373 io->io_bio = bio; 374 io->io_next_block = bh->b_blocknr; 375 return 0; 376 } 377 378 static int io_submit_add_bh(struct ext4_io_submit *io, 379 struct inode *inode, 380 struct buffer_head *bh) 381 { 382 int ret; 383 384 if (io->io_bio && bh->b_blocknr != io->io_next_block) { 385 submit_and_retry: 386 ext4_io_submit(io); 387 } 388 if (io->io_bio == NULL) { 389 ret = io_submit_init_bio(io, bh); 390 if (ret) 391 return ret; 392 } 393 ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh)); 394 if (ret != bh->b_size) 395 goto submit_and_retry; 396 io->io_next_block++; 397 return 0; 398 } 399 400 int ext4_bio_write_page(struct ext4_io_submit *io, 401 struct page *page, 402 int len, 403 struct writeback_control *wbc) 404 { 405 struct inode *inode = page->mapping->host; 406 unsigned block_start, blocksize; 407 struct buffer_head *bh, *head; 408 int ret = 0; 409 int nr_submitted = 0; 410 411 blocksize = 1 << inode->i_blkbits; 412 413 BUG_ON(!PageLocked(page)); 414 BUG_ON(PageWriteback(page)); 415 416 set_page_writeback(page); 417 ClearPageError(page); 418 419 /* 420 * In the first loop we prepare and mark buffers to submit. We have to 421 * mark all buffers in the page before submitting so that 422 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO 423 * on the first buffer finishes and we are still working on submitting 424 * the second buffer. 425 */ 426 bh = head = page_buffers(page); 427 do { 428 block_start = bh_offset(bh); 429 if (block_start >= len) { 430 /* 431 * Comments copied from block_write_full_page_endio: 432 * 433 * The page straddles i_size. It must be zeroed out on 434 * each and every writepage invocation because it may 435 * be mmapped. "A file is mapped in multiples of the 436 * page size. For a file that is not a multiple of 437 * the page size, the remaining memory is zeroed when 438 * mapped, and writes to that region are not written 439 * out to the file." 440 */ 441 zero_user_segment(page, block_start, 442 block_start + blocksize); 443 clear_buffer_dirty(bh); 444 set_buffer_uptodate(bh); 445 continue; 446 } 447 if (!buffer_dirty(bh) || buffer_delay(bh) || 448 !buffer_mapped(bh) || buffer_unwritten(bh)) { 449 /* A hole? We can safely clear the dirty bit */ 450 if (!buffer_mapped(bh)) 451 clear_buffer_dirty(bh); 452 if (io->io_bio) 453 ext4_io_submit(io); 454 continue; 455 } 456 if (buffer_new(bh)) { 457 clear_buffer_new(bh); 458 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 459 } 460 set_buffer_async_write(bh); 461 } while ((bh = bh->b_this_page) != head); 462 463 /* Now submit buffers to write */ 464 bh = head = page_buffers(page); 465 do { 466 if (!buffer_async_write(bh)) 467 continue; 468 ret = io_submit_add_bh(io, inode, bh); 469 if (ret) { 470 /* 471 * We only get here on ENOMEM. Not much else 472 * we can do but mark the page as dirty, and 473 * better luck next time. 474 */ 475 redirty_page_for_writepage(wbc, page); 476 break; 477 } 478 nr_submitted++; 479 clear_buffer_dirty(bh); 480 } while ((bh = bh->b_this_page) != head); 481 482 /* Error stopped previous loop? Clean up buffers... */ 483 if (ret) { 484 do { 485 clear_buffer_async_write(bh); 486 bh = bh->b_this_page; 487 } while (bh != head); 488 } 489 unlock_page(page); 490 /* Nothing submitted - we have to end page writeback */ 491 if (!nr_submitted) 492 end_page_writeback(page); 493 return ret; 494 } 495