1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/page-io.c 4 * 5 * This contains the new page_io functions for ext4 6 * 7 * Written by Theodore Ts'o, 2010. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/time.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 #include <linux/workqueue.h> 24 #include <linux/kernel.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 #include <linux/backing-dev.h> 28 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 static struct kmem_cache *io_end_cachep; 34 static struct kmem_cache *io_end_vec_cachep; 35 36 int __init ext4_init_pageio(void) 37 { 38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 39 if (io_end_cachep == NULL) 40 return -ENOMEM; 41 42 io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0); 43 if (io_end_vec_cachep == NULL) { 44 kmem_cache_destroy(io_end_cachep); 45 return -ENOMEM; 46 } 47 return 0; 48 } 49 50 void ext4_exit_pageio(void) 51 { 52 kmem_cache_destroy(io_end_cachep); 53 kmem_cache_destroy(io_end_vec_cachep); 54 } 55 56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end) 57 { 58 struct ext4_io_end_vec *io_end_vec; 59 60 io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS); 61 if (!io_end_vec) 62 return ERR_PTR(-ENOMEM); 63 INIT_LIST_HEAD(&io_end_vec->list); 64 list_add_tail(&io_end_vec->list, &io_end->list_vec); 65 return io_end_vec; 66 } 67 68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end) 69 { 70 struct ext4_io_end_vec *io_end_vec, *tmp; 71 72 if (list_empty(&io_end->list_vec)) 73 return; 74 list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) { 75 list_del(&io_end_vec->list); 76 kmem_cache_free(io_end_vec_cachep, io_end_vec); 77 } 78 } 79 80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end) 81 { 82 BUG_ON(list_empty(&io_end->list_vec)); 83 return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list); 84 } 85 86 /* 87 * Print an buffer I/O error compatible with the fs/buffer.c. This 88 * provides compatibility with dmesg scrapers that look for a specific 89 * buffer I/O error message. We really need a unified error reporting 90 * structure to userspace ala Digital Unix's uerf system, but it's 91 * probably not going to happen in my lifetime, due to LKML politics... 92 */ 93 static void buffer_io_error(struct buffer_head *bh) 94 { 95 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n", 96 bh->b_bdev, 97 (unsigned long long)bh->b_blocknr); 98 } 99 100 static void ext4_finish_bio(struct bio *bio) 101 { 102 struct bio_vec *bvec; 103 struct bvec_iter_all iter_all; 104 105 bio_for_each_segment_all(bvec, bio, iter_all) { 106 struct page *page = bvec->bv_page; 107 struct page *bounce_page = NULL; 108 struct buffer_head *bh, *head; 109 unsigned bio_start = bvec->bv_offset; 110 unsigned bio_end = bio_start + bvec->bv_len; 111 unsigned under_io = 0; 112 unsigned long flags; 113 114 if (!page) 115 continue; 116 117 if (fscrypt_is_bounce_page(page)) { 118 bounce_page = page; 119 page = fscrypt_pagecache_page(bounce_page); 120 } 121 122 if (bio->bi_status) { 123 SetPageError(page); 124 mapping_set_error(page->mapping, -EIO); 125 } 126 bh = head = page_buffers(page); 127 /* 128 * We check all buffers in the page under BH_Uptodate_Lock 129 * to avoid races with other end io clearing async_write flags 130 */ 131 local_irq_save(flags); 132 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 133 do { 134 if (bh_offset(bh) < bio_start || 135 bh_offset(bh) + bh->b_size > bio_end) { 136 if (buffer_async_write(bh)) 137 under_io++; 138 continue; 139 } 140 clear_buffer_async_write(bh); 141 if (bio->bi_status) 142 buffer_io_error(bh); 143 } while ((bh = bh->b_this_page) != head); 144 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 145 local_irq_restore(flags); 146 if (!under_io) { 147 fscrypt_free_bounce_page(bounce_page); 148 end_page_writeback(page); 149 } 150 } 151 } 152 153 static void ext4_release_io_end(ext4_io_end_t *io_end) 154 { 155 struct bio *bio, *next_bio; 156 157 BUG_ON(!list_empty(&io_end->list)); 158 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 159 WARN_ON(io_end->handle); 160 161 for (bio = io_end->bio; bio; bio = next_bio) { 162 next_bio = bio->bi_private; 163 ext4_finish_bio(bio); 164 bio_put(bio); 165 } 166 ext4_free_io_end_vec(io_end); 167 kmem_cache_free(io_end_cachep, io_end); 168 } 169 170 /* 171 * Check a range of space and convert unwritten extents to written. Note that 172 * we are protected from truncate touching same part of extent tree by the 173 * fact that truncate code waits for all DIO to finish (thus exclusion from 174 * direct IO is achieved) and also waits for PageWriteback bits. Thus we 175 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are 176 * completed (happens from ext4_free_ioend()). 177 */ 178 static int ext4_end_io_end(ext4_io_end_t *io_end) 179 { 180 struct inode *inode = io_end->inode; 181 handle_t *handle = io_end->handle; 182 int ret = 0; 183 184 ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p," 185 "list->prev 0x%p\n", 186 io_end, inode->i_ino, io_end->list.next, io_end->list.prev); 187 188 io_end->handle = NULL; /* Following call will use up the handle */ 189 ret = ext4_convert_unwritten_io_end_vec(handle, io_end); 190 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) { 191 ext4_msg(inode->i_sb, KERN_EMERG, 192 "failed to convert unwritten extents to written " 193 "extents -- potential data loss! " 194 "(inode %lu, error %d)", inode->i_ino, ret); 195 } 196 ext4_clear_io_unwritten_flag(io_end); 197 ext4_release_io_end(io_end); 198 return ret; 199 } 200 201 static void dump_completed_IO(struct inode *inode, struct list_head *head) 202 { 203 #ifdef EXT4FS_DEBUG 204 struct list_head *cur, *before, *after; 205 ext4_io_end_t *io_end, *io_end0, *io_end1; 206 207 if (list_empty(head)) 208 return; 209 210 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino); 211 list_for_each_entry(io_end, head, list) { 212 cur = &io_end->list; 213 before = cur->prev; 214 io_end0 = container_of(before, ext4_io_end_t, list); 215 after = cur->next; 216 io_end1 = container_of(after, ext4_io_end_t, list); 217 218 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 219 io_end, inode->i_ino, io_end0, io_end1); 220 } 221 #endif 222 } 223 224 /* Add the io_end to per-inode completed end_io list. */ 225 static void ext4_add_complete_io(ext4_io_end_t *io_end) 226 { 227 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 228 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb); 229 struct workqueue_struct *wq; 230 unsigned long flags; 231 232 /* Only reserved conversions from writeback should enter here */ 233 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 234 WARN_ON(!io_end->handle && sbi->s_journal); 235 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 236 wq = sbi->rsv_conversion_wq; 237 if (list_empty(&ei->i_rsv_conversion_list)) 238 queue_work(wq, &ei->i_rsv_conversion_work); 239 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list); 240 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 241 } 242 243 static int ext4_do_flush_completed_IO(struct inode *inode, 244 struct list_head *head) 245 { 246 ext4_io_end_t *io_end; 247 struct list_head unwritten; 248 unsigned long flags; 249 struct ext4_inode_info *ei = EXT4_I(inode); 250 int err, ret = 0; 251 252 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 253 dump_completed_IO(inode, head); 254 list_replace_init(head, &unwritten); 255 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 256 257 while (!list_empty(&unwritten)) { 258 io_end = list_entry(unwritten.next, ext4_io_end_t, list); 259 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 260 list_del_init(&io_end->list); 261 262 err = ext4_end_io_end(io_end); 263 if (unlikely(!ret && err)) 264 ret = err; 265 } 266 return ret; 267 } 268 269 /* 270 * work on completed IO, to convert unwritten extents to extents 271 */ 272 void ext4_end_io_rsv_work(struct work_struct *work) 273 { 274 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 275 i_rsv_conversion_work); 276 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list); 277 } 278 279 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 280 { 281 ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags); 282 283 if (io_end) { 284 io_end->inode = inode; 285 INIT_LIST_HEAD(&io_end->list); 286 INIT_LIST_HEAD(&io_end->list_vec); 287 atomic_set(&io_end->count, 1); 288 } 289 return io_end; 290 } 291 292 void ext4_put_io_end_defer(ext4_io_end_t *io_end) 293 { 294 if (atomic_dec_and_test(&io_end->count)) { 295 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || 296 list_empty(&io_end->list_vec)) { 297 ext4_release_io_end(io_end); 298 return; 299 } 300 ext4_add_complete_io(io_end); 301 } 302 } 303 304 int ext4_put_io_end(ext4_io_end_t *io_end) 305 { 306 int err = 0; 307 308 if (atomic_dec_and_test(&io_end->count)) { 309 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 310 err = ext4_convert_unwritten_io_end_vec(io_end->handle, 311 io_end); 312 io_end->handle = NULL; 313 ext4_clear_io_unwritten_flag(io_end); 314 } 315 ext4_release_io_end(io_end); 316 } 317 return err; 318 } 319 320 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) 321 { 322 atomic_inc(&io_end->count); 323 return io_end; 324 } 325 326 /* BIO completion function for page writeback */ 327 static void ext4_end_bio(struct bio *bio) 328 { 329 ext4_io_end_t *io_end = bio->bi_private; 330 sector_t bi_sector = bio->bi_iter.bi_sector; 331 char b[BDEVNAME_SIZE]; 332 333 if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n", 334 bio_devname(bio, b), 335 (long long) bio->bi_iter.bi_sector, 336 (unsigned) bio_sectors(bio), 337 bio->bi_status)) { 338 ext4_finish_bio(bio); 339 bio_put(bio); 340 return; 341 } 342 bio->bi_end_io = NULL; 343 344 if (bio->bi_status) { 345 struct inode *inode = io_end->inode; 346 347 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu " 348 "starting block %llu)", 349 bio->bi_status, inode->i_ino, 350 (unsigned long long) 351 bi_sector >> (inode->i_blkbits - 9)); 352 mapping_set_error(inode->i_mapping, 353 blk_status_to_errno(bio->bi_status)); 354 } 355 356 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 357 /* 358 * Link bio into list hanging from io_end. We have to do it 359 * atomically as bio completions can be racing against each 360 * other. 361 */ 362 bio->bi_private = xchg(&io_end->bio, bio); 363 ext4_put_io_end_defer(io_end); 364 } else { 365 /* 366 * Drop io_end reference early. Inode can get freed once 367 * we finish the bio. 368 */ 369 ext4_put_io_end_defer(io_end); 370 ext4_finish_bio(bio); 371 bio_put(bio); 372 } 373 } 374 375 void ext4_io_submit(struct ext4_io_submit *io) 376 { 377 struct bio *bio = io->io_bio; 378 379 if (bio) { 380 int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ? 381 REQ_SYNC : 0; 382 io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint; 383 bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags); 384 submit_bio(io->io_bio); 385 } 386 io->io_bio = NULL; 387 } 388 389 void ext4_io_submit_init(struct ext4_io_submit *io, 390 struct writeback_control *wbc) 391 { 392 io->io_wbc = wbc; 393 io->io_bio = NULL; 394 io->io_end = NULL; 395 } 396 397 static void io_submit_init_bio(struct ext4_io_submit *io, 398 struct buffer_head *bh) 399 { 400 struct bio *bio; 401 402 /* 403 * bio_alloc will _always_ be able to allocate a bio if 404 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset(). 405 */ 406 bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES); 407 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 408 bio_set_dev(bio, bh->b_bdev); 409 bio->bi_end_io = ext4_end_bio; 410 bio->bi_private = ext4_get_io_end(io->io_end); 411 io->io_bio = bio; 412 io->io_next_block = bh->b_blocknr; 413 wbc_init_bio(io->io_wbc, bio); 414 } 415 416 static void io_submit_add_bh(struct ext4_io_submit *io, 417 struct inode *inode, 418 struct page *page, 419 struct buffer_head *bh) 420 { 421 int ret; 422 423 if (io->io_bio && bh->b_blocknr != io->io_next_block) { 424 submit_and_retry: 425 ext4_io_submit(io); 426 } 427 if (io->io_bio == NULL) { 428 io_submit_init_bio(io, bh); 429 io->io_bio->bi_write_hint = inode->i_write_hint; 430 } 431 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh)); 432 if (ret != bh->b_size) 433 goto submit_and_retry; 434 wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size); 435 io->io_next_block++; 436 } 437 438 int ext4_bio_write_page(struct ext4_io_submit *io, 439 struct page *page, 440 int len, 441 struct writeback_control *wbc, 442 bool keep_towrite) 443 { 444 struct page *bounce_page = NULL; 445 struct inode *inode = page->mapping->host; 446 unsigned block_start; 447 struct buffer_head *bh, *head; 448 int ret = 0; 449 int nr_submitted = 0; 450 int nr_to_submit = 0; 451 452 BUG_ON(!PageLocked(page)); 453 BUG_ON(PageWriteback(page)); 454 455 if (keep_towrite) 456 set_page_writeback_keepwrite(page); 457 else 458 set_page_writeback(page); 459 ClearPageError(page); 460 461 /* 462 * Comments copied from block_write_full_page: 463 * 464 * The page straddles i_size. It must be zeroed out on each and every 465 * writepage invocation because it may be mmapped. "A file is mapped 466 * in multiples of the page size. For a file that is not a multiple of 467 * the page size, the remaining memory is zeroed when mapped, and 468 * writes to that region are not written out to the file." 469 */ 470 if (len < PAGE_SIZE) 471 zero_user_segment(page, len, PAGE_SIZE); 472 /* 473 * In the first loop we prepare and mark buffers to submit. We have to 474 * mark all buffers in the page before submitting so that 475 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO 476 * on the first buffer finishes and we are still working on submitting 477 * the second buffer. 478 */ 479 bh = head = page_buffers(page); 480 do { 481 block_start = bh_offset(bh); 482 if (block_start >= len) { 483 clear_buffer_dirty(bh); 484 set_buffer_uptodate(bh); 485 continue; 486 } 487 if (!buffer_dirty(bh) || buffer_delay(bh) || 488 !buffer_mapped(bh) || buffer_unwritten(bh)) { 489 /* A hole? We can safely clear the dirty bit */ 490 if (!buffer_mapped(bh)) 491 clear_buffer_dirty(bh); 492 if (io->io_bio) 493 ext4_io_submit(io); 494 continue; 495 } 496 if (buffer_new(bh)) 497 clear_buffer_new(bh); 498 set_buffer_async_write(bh); 499 nr_to_submit++; 500 } while ((bh = bh->b_this_page) != head); 501 502 bh = head = page_buffers(page); 503 504 /* 505 * If any blocks are being written to an encrypted file, encrypt them 506 * into a bounce page. For simplicity, just encrypt until the last 507 * block which might be needed. This may cause some unneeded blocks 508 * (e.g. holes) to be unnecessarily encrypted, but this is rare and 509 * can't happen in the common case of blocksize == PAGE_SIZE. 510 */ 511 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) && nr_to_submit) { 512 gfp_t gfp_flags = GFP_NOFS; 513 unsigned int enc_bytes = round_up(len, i_blocksize(inode)); 514 515 retry_encrypt: 516 bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes, 517 0, gfp_flags); 518 if (IS_ERR(bounce_page)) { 519 ret = PTR_ERR(bounce_page); 520 if (ret == -ENOMEM && wbc->sync_mode == WB_SYNC_ALL) { 521 if (io->io_bio) { 522 ext4_io_submit(io); 523 congestion_wait(BLK_RW_ASYNC, HZ/50); 524 } 525 gfp_flags |= __GFP_NOFAIL; 526 goto retry_encrypt; 527 } 528 529 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret); 530 redirty_page_for_writepage(wbc, page); 531 do { 532 clear_buffer_async_write(bh); 533 bh = bh->b_this_page; 534 } while (bh != head); 535 goto unlock; 536 } 537 } 538 539 /* Now submit buffers to write */ 540 do { 541 if (!buffer_async_write(bh)) 542 continue; 543 io_submit_add_bh(io, inode, 544 bounce_page ? bounce_page : page, bh); 545 nr_submitted++; 546 clear_buffer_dirty(bh); 547 } while ((bh = bh->b_this_page) != head); 548 549 unlock: 550 unlock_page(page); 551 /* Nothing submitted - we have to end page writeback */ 552 if (!nr_submitted) 553 end_page_writeback(page); 554 return ret; 555 } 556