1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/page-io.c 4 * 5 * This contains the new page_io functions for ext4 6 * 7 * Written by Theodore Ts'o, 2010. 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/time.h> 12 #include <linux/highuid.h> 13 #include <linux/pagemap.h> 14 #include <linux/quotaops.h> 15 #include <linux/string.h> 16 #include <linux/buffer_head.h> 17 #include <linux/writeback.h> 18 #include <linux/pagevec.h> 19 #include <linux/mpage.h> 20 #include <linux/namei.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 #include <linux/workqueue.h> 24 #include <linux/kernel.h> 25 #include <linux/slab.h> 26 #include <linux/mm.h> 27 #include <linux/sched/mm.h> 28 29 #include "ext4_jbd2.h" 30 #include "xattr.h" 31 #include "acl.h" 32 33 static struct kmem_cache *io_end_cachep; 34 static struct kmem_cache *io_end_vec_cachep; 35 36 int __init ext4_init_pageio(void) 37 { 38 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); 39 if (io_end_cachep == NULL) 40 return -ENOMEM; 41 42 io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0); 43 if (io_end_vec_cachep == NULL) { 44 kmem_cache_destroy(io_end_cachep); 45 return -ENOMEM; 46 } 47 return 0; 48 } 49 50 void ext4_exit_pageio(void) 51 { 52 kmem_cache_destroy(io_end_cachep); 53 kmem_cache_destroy(io_end_vec_cachep); 54 } 55 56 struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end) 57 { 58 struct ext4_io_end_vec *io_end_vec; 59 60 io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS); 61 if (!io_end_vec) 62 return ERR_PTR(-ENOMEM); 63 INIT_LIST_HEAD(&io_end_vec->list); 64 list_add_tail(&io_end_vec->list, &io_end->list_vec); 65 return io_end_vec; 66 } 67 68 static void ext4_free_io_end_vec(ext4_io_end_t *io_end) 69 { 70 struct ext4_io_end_vec *io_end_vec, *tmp; 71 72 if (list_empty(&io_end->list_vec)) 73 return; 74 list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) { 75 list_del(&io_end_vec->list); 76 kmem_cache_free(io_end_vec_cachep, io_end_vec); 77 } 78 } 79 80 struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end) 81 { 82 BUG_ON(list_empty(&io_end->list_vec)); 83 return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list); 84 } 85 86 /* 87 * Print an buffer I/O error compatible with the fs/buffer.c. This 88 * provides compatibility with dmesg scrapers that look for a specific 89 * buffer I/O error message. We really need a unified error reporting 90 * structure to userspace ala Digital Unix's uerf system, but it's 91 * probably not going to happen in my lifetime, due to LKML politics... 92 */ 93 static void buffer_io_error(struct buffer_head *bh) 94 { 95 printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n", 96 bh->b_bdev, 97 (unsigned long long)bh->b_blocknr); 98 } 99 100 static void ext4_finish_bio(struct bio *bio) 101 { 102 struct bio_vec *bvec; 103 struct bvec_iter_all iter_all; 104 105 bio_for_each_segment_all(bvec, bio, iter_all) { 106 struct page *page = bvec->bv_page; 107 struct page *bounce_page = NULL; 108 struct buffer_head *bh, *head; 109 unsigned bio_start = bvec->bv_offset; 110 unsigned bio_end = bio_start + bvec->bv_len; 111 unsigned under_io = 0; 112 unsigned long flags; 113 114 if (fscrypt_is_bounce_page(page)) { 115 bounce_page = page; 116 page = fscrypt_pagecache_page(bounce_page); 117 } 118 119 if (bio->bi_status) { 120 SetPageError(page); 121 mapping_set_error(page->mapping, -EIO); 122 } 123 bh = head = page_buffers(page); 124 /* 125 * We check all buffers in the page under b_uptodate_lock 126 * to avoid races with other end io clearing async_write flags 127 */ 128 spin_lock_irqsave(&head->b_uptodate_lock, flags); 129 do { 130 if (bh_offset(bh) < bio_start || 131 bh_offset(bh) + bh->b_size > bio_end) { 132 if (buffer_async_write(bh)) 133 under_io++; 134 continue; 135 } 136 clear_buffer_async_write(bh); 137 if (bio->bi_status) { 138 set_buffer_write_io_error(bh); 139 buffer_io_error(bh); 140 } 141 } while ((bh = bh->b_this_page) != head); 142 spin_unlock_irqrestore(&head->b_uptodate_lock, flags); 143 if (!under_io) { 144 fscrypt_free_bounce_page(bounce_page); 145 end_page_writeback(page); 146 } 147 } 148 } 149 150 static void ext4_release_io_end(ext4_io_end_t *io_end) 151 { 152 struct bio *bio, *next_bio; 153 154 BUG_ON(!list_empty(&io_end->list)); 155 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 156 WARN_ON(io_end->handle); 157 158 for (bio = io_end->bio; bio; bio = next_bio) { 159 next_bio = bio->bi_private; 160 ext4_finish_bio(bio); 161 bio_put(bio); 162 } 163 ext4_free_io_end_vec(io_end); 164 kmem_cache_free(io_end_cachep, io_end); 165 } 166 167 /* 168 * Check a range of space and convert unwritten extents to written. Note that 169 * we are protected from truncate touching same part of extent tree by the 170 * fact that truncate code waits for all DIO to finish (thus exclusion from 171 * direct IO is achieved) and also waits for PageWriteback bits. Thus we 172 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are 173 * completed (happens from ext4_free_ioend()). 174 */ 175 static int ext4_end_io_end(ext4_io_end_t *io_end) 176 { 177 struct inode *inode = io_end->inode; 178 handle_t *handle = io_end->handle; 179 int ret = 0; 180 181 ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p," 182 "list->prev 0x%p\n", 183 io_end, inode->i_ino, io_end->list.next, io_end->list.prev); 184 185 io_end->handle = NULL; /* Following call will use up the handle */ 186 ret = ext4_convert_unwritten_io_end_vec(handle, io_end); 187 if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) { 188 ext4_msg(inode->i_sb, KERN_EMERG, 189 "failed to convert unwritten extents to written " 190 "extents -- potential data loss! " 191 "(inode %lu, error %d)", inode->i_ino, ret); 192 } 193 ext4_clear_io_unwritten_flag(io_end); 194 ext4_release_io_end(io_end); 195 return ret; 196 } 197 198 static void dump_completed_IO(struct inode *inode, struct list_head *head) 199 { 200 #ifdef EXT4FS_DEBUG 201 struct list_head *cur, *before, *after; 202 ext4_io_end_t *io_end, *io_end0, *io_end1; 203 204 if (list_empty(head)) 205 return; 206 207 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino); 208 list_for_each_entry(io_end, head, list) { 209 cur = &io_end->list; 210 before = cur->prev; 211 io_end0 = container_of(before, ext4_io_end_t, list); 212 after = cur->next; 213 io_end1 = container_of(after, ext4_io_end_t, list); 214 215 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", 216 io_end, inode->i_ino, io_end0, io_end1); 217 } 218 #endif 219 } 220 221 /* Add the io_end to per-inode completed end_io list. */ 222 static void ext4_add_complete_io(ext4_io_end_t *io_end) 223 { 224 struct ext4_inode_info *ei = EXT4_I(io_end->inode); 225 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb); 226 struct workqueue_struct *wq; 227 unsigned long flags; 228 229 /* Only reserved conversions from writeback should enter here */ 230 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 231 WARN_ON(!io_end->handle && sbi->s_journal); 232 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 233 wq = sbi->rsv_conversion_wq; 234 if (list_empty(&ei->i_rsv_conversion_list)) 235 queue_work(wq, &ei->i_rsv_conversion_work); 236 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list); 237 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 238 } 239 240 static int ext4_do_flush_completed_IO(struct inode *inode, 241 struct list_head *head) 242 { 243 ext4_io_end_t *io_end; 244 struct list_head unwritten; 245 unsigned long flags; 246 struct ext4_inode_info *ei = EXT4_I(inode); 247 int err, ret = 0; 248 249 spin_lock_irqsave(&ei->i_completed_io_lock, flags); 250 dump_completed_IO(inode, head); 251 list_replace_init(head, &unwritten); 252 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); 253 254 while (!list_empty(&unwritten)) { 255 io_end = list_entry(unwritten.next, ext4_io_end_t, list); 256 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); 257 list_del_init(&io_end->list); 258 259 err = ext4_end_io_end(io_end); 260 if (unlikely(!ret && err)) 261 ret = err; 262 } 263 return ret; 264 } 265 266 /* 267 * work on completed IO, to convert unwritten extents to extents 268 */ 269 void ext4_end_io_rsv_work(struct work_struct *work) 270 { 271 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, 272 i_rsv_conversion_work); 273 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list); 274 } 275 276 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) 277 { 278 ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags); 279 280 if (io_end) { 281 io_end->inode = inode; 282 INIT_LIST_HEAD(&io_end->list); 283 INIT_LIST_HEAD(&io_end->list_vec); 284 refcount_set(&io_end->count, 1); 285 } 286 return io_end; 287 } 288 289 void ext4_put_io_end_defer(ext4_io_end_t *io_end) 290 { 291 if (refcount_dec_and_test(&io_end->count)) { 292 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || 293 list_empty(&io_end->list_vec)) { 294 ext4_release_io_end(io_end); 295 return; 296 } 297 ext4_add_complete_io(io_end); 298 } 299 } 300 301 int ext4_put_io_end(ext4_io_end_t *io_end) 302 { 303 int err = 0; 304 305 if (refcount_dec_and_test(&io_end->count)) { 306 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 307 err = ext4_convert_unwritten_io_end_vec(io_end->handle, 308 io_end); 309 io_end->handle = NULL; 310 ext4_clear_io_unwritten_flag(io_end); 311 } 312 ext4_release_io_end(io_end); 313 } 314 return err; 315 } 316 317 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) 318 { 319 refcount_inc(&io_end->count); 320 return io_end; 321 } 322 323 /* BIO completion function for page writeback */ 324 static void ext4_end_bio(struct bio *bio) 325 { 326 ext4_io_end_t *io_end = bio->bi_private; 327 sector_t bi_sector = bio->bi_iter.bi_sector; 328 329 if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n", 330 bio->bi_bdev, 331 (long long) bio->bi_iter.bi_sector, 332 (unsigned) bio_sectors(bio), 333 bio->bi_status)) { 334 ext4_finish_bio(bio); 335 bio_put(bio); 336 return; 337 } 338 bio->bi_end_io = NULL; 339 340 if (bio->bi_status) { 341 struct inode *inode = io_end->inode; 342 343 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu " 344 "starting block %llu)", 345 bio->bi_status, inode->i_ino, 346 (unsigned long long) 347 bi_sector >> (inode->i_blkbits - 9)); 348 mapping_set_error(inode->i_mapping, 349 blk_status_to_errno(bio->bi_status)); 350 } 351 352 if (io_end->flag & EXT4_IO_END_UNWRITTEN) { 353 /* 354 * Link bio into list hanging from io_end. We have to do it 355 * atomically as bio completions can be racing against each 356 * other. 357 */ 358 bio->bi_private = xchg(&io_end->bio, bio); 359 ext4_put_io_end_defer(io_end); 360 } else { 361 /* 362 * Drop io_end reference early. Inode can get freed once 363 * we finish the bio. 364 */ 365 ext4_put_io_end_defer(io_end); 366 ext4_finish_bio(bio); 367 bio_put(bio); 368 } 369 } 370 371 void ext4_io_submit(struct ext4_io_submit *io) 372 { 373 struct bio *bio = io->io_bio; 374 375 if (bio) { 376 if (io->io_wbc->sync_mode == WB_SYNC_ALL) 377 io->io_bio->bi_opf |= REQ_SYNC; 378 submit_bio(io->io_bio); 379 } 380 io->io_bio = NULL; 381 } 382 383 void ext4_io_submit_init(struct ext4_io_submit *io, 384 struct writeback_control *wbc) 385 { 386 io->io_wbc = wbc; 387 io->io_bio = NULL; 388 io->io_end = NULL; 389 } 390 391 static void io_submit_init_bio(struct ext4_io_submit *io, 392 struct buffer_head *bh) 393 { 394 struct bio *bio; 395 396 /* 397 * bio_alloc will _always_ be able to allocate a bio if 398 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset(). 399 */ 400 bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO); 401 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 402 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 403 bio->bi_end_io = ext4_end_bio; 404 bio->bi_private = ext4_get_io_end(io->io_end); 405 io->io_bio = bio; 406 io->io_next_block = bh->b_blocknr; 407 wbc_init_bio(io->io_wbc, bio); 408 } 409 410 static void io_submit_add_bh(struct ext4_io_submit *io, 411 struct inode *inode, 412 struct page *page, 413 struct buffer_head *bh) 414 { 415 int ret; 416 417 if (io->io_bio && (bh->b_blocknr != io->io_next_block || 418 !fscrypt_mergeable_bio_bh(io->io_bio, bh))) { 419 submit_and_retry: 420 ext4_io_submit(io); 421 } 422 if (io->io_bio == NULL) 423 io_submit_init_bio(io, bh); 424 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh)); 425 if (ret != bh->b_size) 426 goto submit_and_retry; 427 wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size); 428 io->io_next_block++; 429 } 430 431 int ext4_bio_write_page(struct ext4_io_submit *io, 432 struct page *page, 433 int len, 434 bool keep_towrite) 435 { 436 struct page *bounce_page = NULL; 437 struct inode *inode = page->mapping->host; 438 unsigned block_start; 439 struct buffer_head *bh, *head; 440 int ret = 0; 441 int nr_submitted = 0; 442 int nr_to_submit = 0; 443 struct writeback_control *wbc = io->io_wbc; 444 445 BUG_ON(!PageLocked(page)); 446 BUG_ON(PageWriteback(page)); 447 448 if (keep_towrite) 449 set_page_writeback_keepwrite(page); 450 else 451 set_page_writeback(page); 452 ClearPageError(page); 453 454 /* 455 * Comments copied from block_write_full_page: 456 * 457 * The page straddles i_size. It must be zeroed out on each and every 458 * writepage invocation because it may be mmapped. "A file is mapped 459 * in multiples of the page size. For a file that is not a multiple of 460 * the page size, the remaining memory is zeroed when mapped, and 461 * writes to that region are not written out to the file." 462 */ 463 if (len < PAGE_SIZE) 464 zero_user_segment(page, len, PAGE_SIZE); 465 /* 466 * In the first loop we prepare and mark buffers to submit. We have to 467 * mark all buffers in the page before submitting so that 468 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO 469 * on the first buffer finishes and we are still working on submitting 470 * the second buffer. 471 */ 472 bh = head = page_buffers(page); 473 do { 474 block_start = bh_offset(bh); 475 if (block_start >= len) { 476 clear_buffer_dirty(bh); 477 set_buffer_uptodate(bh); 478 continue; 479 } 480 if (!buffer_dirty(bh) || buffer_delay(bh) || 481 !buffer_mapped(bh) || buffer_unwritten(bh)) { 482 /* A hole? We can safely clear the dirty bit */ 483 if (!buffer_mapped(bh)) 484 clear_buffer_dirty(bh); 485 if (io->io_bio) 486 ext4_io_submit(io); 487 continue; 488 } 489 if (buffer_new(bh)) 490 clear_buffer_new(bh); 491 set_buffer_async_write(bh); 492 nr_to_submit++; 493 } while ((bh = bh->b_this_page) != head); 494 495 bh = head = page_buffers(page); 496 497 /* 498 * If any blocks are being written to an encrypted file, encrypt them 499 * into a bounce page. For simplicity, just encrypt until the last 500 * block which might be needed. This may cause some unneeded blocks 501 * (e.g. holes) to be unnecessarily encrypted, but this is rare and 502 * can't happen in the common case of blocksize == PAGE_SIZE. 503 */ 504 if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) { 505 gfp_t gfp_flags = GFP_NOFS; 506 unsigned int enc_bytes = round_up(len, i_blocksize(inode)); 507 508 /* 509 * Since bounce page allocation uses a mempool, we can only use 510 * a waiting mask (i.e. request guaranteed allocation) on the 511 * first page of the bio. Otherwise it can deadlock. 512 */ 513 if (io->io_bio) 514 gfp_flags = GFP_NOWAIT | __GFP_NOWARN; 515 retry_encrypt: 516 bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes, 517 0, gfp_flags); 518 if (IS_ERR(bounce_page)) { 519 ret = PTR_ERR(bounce_page); 520 if (ret == -ENOMEM && 521 (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) { 522 gfp_t new_gfp_flags = GFP_NOFS; 523 if (io->io_bio) 524 ext4_io_submit(io); 525 else 526 new_gfp_flags |= __GFP_NOFAIL; 527 memalloc_retry_wait(gfp_flags); 528 gfp_flags = new_gfp_flags; 529 goto retry_encrypt; 530 } 531 532 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret); 533 redirty_page_for_writepage(wbc, page); 534 do { 535 clear_buffer_async_write(bh); 536 bh = bh->b_this_page; 537 } while (bh != head); 538 goto unlock; 539 } 540 } 541 542 /* Now submit buffers to write */ 543 do { 544 if (!buffer_async_write(bh)) 545 continue; 546 io_submit_add_bh(io, inode, 547 bounce_page ? bounce_page : page, bh); 548 nr_submitted++; 549 clear_buffer_dirty(bh); 550 } while ((bh = bh->b_this_page) != head); 551 552 unlock: 553 unlock_page(page); 554 /* Nothing submitted - we have to end page writeback */ 555 if (!nr_submitted) 556 end_page_writeback(page); 557 return ret; 558 } 559