1 /* 2 * linux/fs/ext4/namei.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/namei.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 * Directory entry file type support and forward compatibility hooks 18 * for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998 19 * Hash Tree Directory indexing (c) 20 * Daniel Phillips, 2001 21 * Hash Tree Directory indexing porting 22 * Christopher Li, 2002 23 * Hash Tree Directory indexing cleanup 24 * Theodore Ts'o, 2002 25 */ 26 27 #include <linux/fs.h> 28 #include <linux/pagemap.h> 29 #include <linux/time.h> 30 #include <linux/fcntl.h> 31 #include <linux/stat.h> 32 #include <linux/string.h> 33 #include <linux/quotaops.h> 34 #include <linux/buffer_head.h> 35 #include <linux/bio.h> 36 #include "ext4.h" 37 #include "ext4_jbd2.h" 38 39 #include "xattr.h" 40 #include "acl.h" 41 42 #include <trace/events/ext4.h> 43 /* 44 * define how far ahead to read directories while searching them. 45 */ 46 #define NAMEI_RA_CHUNKS 2 47 #define NAMEI_RA_BLOCKS 4 48 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS) 49 50 static struct buffer_head *ext4_append(handle_t *handle, 51 struct inode *inode, 52 ext4_lblk_t *block) 53 { 54 struct buffer_head *bh; 55 int err; 56 57 if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb && 58 ((inode->i_size >> 10) >= 59 EXT4_SB(inode->i_sb)->s_max_dir_size_kb))) 60 return ERR_PTR(-ENOSPC); 61 62 *block = inode->i_size >> inode->i_sb->s_blocksize_bits; 63 64 bh = ext4_bread(handle, inode, *block, EXT4_GET_BLOCKS_CREATE); 65 if (IS_ERR(bh)) 66 return bh; 67 inode->i_size += inode->i_sb->s_blocksize; 68 EXT4_I(inode)->i_disksize = inode->i_size; 69 BUFFER_TRACE(bh, "get_write_access"); 70 err = ext4_journal_get_write_access(handle, bh); 71 if (err) { 72 brelse(bh); 73 ext4_std_error(inode->i_sb, err); 74 return ERR_PTR(err); 75 } 76 return bh; 77 } 78 79 static int ext4_dx_csum_verify(struct inode *inode, 80 struct ext4_dir_entry *dirent); 81 82 typedef enum { 83 EITHER, INDEX, DIRENT 84 } dirblock_type_t; 85 86 #define ext4_read_dirblock(inode, block, type) \ 87 __ext4_read_dirblock((inode), (block), (type), __func__, __LINE__) 88 89 static struct buffer_head *__ext4_read_dirblock(struct inode *inode, 90 ext4_lblk_t block, 91 dirblock_type_t type, 92 const char *func, 93 unsigned int line) 94 { 95 struct buffer_head *bh; 96 struct ext4_dir_entry *dirent; 97 int is_dx_block = 0; 98 99 bh = ext4_bread(NULL, inode, block, 0); 100 if (IS_ERR(bh)) { 101 __ext4_warning(inode->i_sb, func, line, 102 "inode #%lu: lblock %lu: comm %s: " 103 "error %ld reading directory block", 104 inode->i_ino, (unsigned long)block, 105 current->comm, PTR_ERR(bh)); 106 107 return bh; 108 } 109 if (!bh) { 110 ext4_error_inode(inode, func, line, block, 111 "Directory hole found"); 112 return ERR_PTR(-EFSCORRUPTED); 113 } 114 dirent = (struct ext4_dir_entry *) bh->b_data; 115 /* Determine whether or not we have an index block */ 116 if (is_dx(inode)) { 117 if (block == 0) 118 is_dx_block = 1; 119 else if (ext4_rec_len_from_disk(dirent->rec_len, 120 inode->i_sb->s_blocksize) == 121 inode->i_sb->s_blocksize) 122 is_dx_block = 1; 123 } 124 if (!is_dx_block && type == INDEX) { 125 ext4_error_inode(inode, func, line, block, 126 "directory leaf block found instead of index block"); 127 return ERR_PTR(-EFSCORRUPTED); 128 } 129 if (!ext4_has_metadata_csum(inode->i_sb) || 130 buffer_verified(bh)) 131 return bh; 132 133 /* 134 * An empty leaf block can get mistaken for a index block; for 135 * this reason, we can only check the index checksum when the 136 * caller is sure it should be an index block. 137 */ 138 if (is_dx_block && type == INDEX) { 139 if (ext4_dx_csum_verify(inode, dirent)) 140 set_buffer_verified(bh); 141 else { 142 ext4_error_inode(inode, func, line, block, 143 "Directory index failed checksum"); 144 brelse(bh); 145 return ERR_PTR(-EFSBADCRC); 146 } 147 } 148 if (!is_dx_block) { 149 if (ext4_dirent_csum_verify(inode, dirent)) 150 set_buffer_verified(bh); 151 else { 152 ext4_error_inode(inode, func, line, block, 153 "Directory block failed checksum"); 154 brelse(bh); 155 return ERR_PTR(-EFSBADCRC); 156 } 157 } 158 return bh; 159 } 160 161 #ifndef assert 162 #define assert(test) J_ASSERT(test) 163 #endif 164 165 #ifdef DX_DEBUG 166 #define dxtrace(command) command 167 #else 168 #define dxtrace(command) 169 #endif 170 171 struct fake_dirent 172 { 173 __le32 inode; 174 __le16 rec_len; 175 u8 name_len; 176 u8 file_type; 177 }; 178 179 struct dx_countlimit 180 { 181 __le16 limit; 182 __le16 count; 183 }; 184 185 struct dx_entry 186 { 187 __le32 hash; 188 __le32 block; 189 }; 190 191 /* 192 * dx_root_info is laid out so that if it should somehow get overlaid by a 193 * dirent the two low bits of the hash version will be zero. Therefore, the 194 * hash version mod 4 should never be 0. Sincerely, the paranoia department. 195 */ 196 197 struct dx_root 198 { 199 struct fake_dirent dot; 200 char dot_name[4]; 201 struct fake_dirent dotdot; 202 char dotdot_name[4]; 203 struct dx_root_info 204 { 205 __le32 reserved_zero; 206 u8 hash_version; 207 u8 info_length; /* 8 */ 208 u8 indirect_levels; 209 u8 unused_flags; 210 } 211 info; 212 struct dx_entry entries[0]; 213 }; 214 215 struct dx_node 216 { 217 struct fake_dirent fake; 218 struct dx_entry entries[0]; 219 }; 220 221 222 struct dx_frame 223 { 224 struct buffer_head *bh; 225 struct dx_entry *entries; 226 struct dx_entry *at; 227 }; 228 229 struct dx_map_entry 230 { 231 u32 hash; 232 u16 offs; 233 u16 size; 234 }; 235 236 /* 237 * This goes at the end of each htree block. 238 */ 239 struct dx_tail { 240 u32 dt_reserved; 241 __le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */ 242 }; 243 244 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry); 245 static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value); 246 static inline unsigned dx_get_hash(struct dx_entry *entry); 247 static void dx_set_hash(struct dx_entry *entry, unsigned value); 248 static unsigned dx_get_count(struct dx_entry *entries); 249 static unsigned dx_get_limit(struct dx_entry *entries); 250 static void dx_set_count(struct dx_entry *entries, unsigned value); 251 static void dx_set_limit(struct dx_entry *entries, unsigned value); 252 static unsigned dx_root_limit(struct inode *dir, unsigned infosize); 253 static unsigned dx_node_limit(struct inode *dir); 254 static struct dx_frame *dx_probe(struct ext4_filename *fname, 255 struct inode *dir, 256 struct dx_hash_info *hinfo, 257 struct dx_frame *frame); 258 static void dx_release(struct dx_frame *frames); 259 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 260 unsigned blocksize, struct dx_hash_info *hinfo, 261 struct dx_map_entry map[]); 262 static void dx_sort_map(struct dx_map_entry *map, unsigned count); 263 static struct ext4_dir_entry_2 *dx_move_dirents(char *from, char *to, 264 struct dx_map_entry *offsets, int count, unsigned blocksize); 265 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize); 266 static void dx_insert_block(struct dx_frame *frame, 267 u32 hash, ext4_lblk_t block); 268 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 269 struct dx_frame *frame, 270 struct dx_frame *frames, 271 __u32 *start_hash); 272 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 273 struct ext4_filename *fname, 274 struct ext4_dir_entry_2 **res_dir); 275 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 276 struct inode *dir, struct inode *inode); 277 278 /* checksumming functions */ 279 void initialize_dirent_tail(struct ext4_dir_entry_tail *t, 280 unsigned int blocksize) 281 { 282 memset(t, 0, sizeof(struct ext4_dir_entry_tail)); 283 t->det_rec_len = ext4_rec_len_to_disk( 284 sizeof(struct ext4_dir_entry_tail), blocksize); 285 t->det_reserved_ft = EXT4_FT_DIR_CSUM; 286 } 287 288 /* Walk through a dirent block to find a checksum "dirent" at the tail */ 289 static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode, 290 struct ext4_dir_entry *de) 291 { 292 struct ext4_dir_entry_tail *t; 293 294 #ifdef PARANOID 295 struct ext4_dir_entry *d, *top; 296 297 d = de; 298 top = (struct ext4_dir_entry *)(((void *)de) + 299 (EXT4_BLOCK_SIZE(inode->i_sb) - 300 sizeof(struct ext4_dir_entry_tail))); 301 while (d < top && d->rec_len) 302 d = (struct ext4_dir_entry *)(((void *)d) + 303 le16_to_cpu(d->rec_len)); 304 305 if (d != top) 306 return NULL; 307 308 t = (struct ext4_dir_entry_tail *)d; 309 #else 310 t = EXT4_DIRENT_TAIL(de, EXT4_BLOCK_SIZE(inode->i_sb)); 311 #endif 312 313 if (t->det_reserved_zero1 || 314 le16_to_cpu(t->det_rec_len) != sizeof(struct ext4_dir_entry_tail) || 315 t->det_reserved_zero2 || 316 t->det_reserved_ft != EXT4_FT_DIR_CSUM) 317 return NULL; 318 319 return t; 320 } 321 322 static __le32 ext4_dirent_csum(struct inode *inode, 323 struct ext4_dir_entry *dirent, int size) 324 { 325 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 326 struct ext4_inode_info *ei = EXT4_I(inode); 327 __u32 csum; 328 329 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 330 return cpu_to_le32(csum); 331 } 332 333 #define warn_no_space_for_csum(inode) \ 334 __warn_no_space_for_csum((inode), __func__, __LINE__) 335 336 static void __warn_no_space_for_csum(struct inode *inode, const char *func, 337 unsigned int line) 338 { 339 __ext4_warning_inode(inode, func, line, 340 "No space for directory leaf checksum. Please run e2fsck -D."); 341 } 342 343 int ext4_dirent_csum_verify(struct inode *inode, struct ext4_dir_entry *dirent) 344 { 345 struct ext4_dir_entry_tail *t; 346 347 if (!ext4_has_metadata_csum(inode->i_sb)) 348 return 1; 349 350 t = get_dirent_tail(inode, dirent); 351 if (!t) { 352 warn_no_space_for_csum(inode); 353 return 0; 354 } 355 356 if (t->det_checksum != ext4_dirent_csum(inode, dirent, 357 (void *)t - (void *)dirent)) 358 return 0; 359 360 return 1; 361 } 362 363 static void ext4_dirent_csum_set(struct inode *inode, 364 struct ext4_dir_entry *dirent) 365 { 366 struct ext4_dir_entry_tail *t; 367 368 if (!ext4_has_metadata_csum(inode->i_sb)) 369 return; 370 371 t = get_dirent_tail(inode, dirent); 372 if (!t) { 373 warn_no_space_for_csum(inode); 374 return; 375 } 376 377 t->det_checksum = ext4_dirent_csum(inode, dirent, 378 (void *)t - (void *)dirent); 379 } 380 381 int ext4_handle_dirty_dirent_node(handle_t *handle, 382 struct inode *inode, 383 struct buffer_head *bh) 384 { 385 ext4_dirent_csum_set(inode, (struct ext4_dir_entry *)bh->b_data); 386 return ext4_handle_dirty_metadata(handle, inode, bh); 387 } 388 389 static struct dx_countlimit *get_dx_countlimit(struct inode *inode, 390 struct ext4_dir_entry *dirent, 391 int *offset) 392 { 393 struct ext4_dir_entry *dp; 394 struct dx_root_info *root; 395 int count_offset; 396 397 if (le16_to_cpu(dirent->rec_len) == EXT4_BLOCK_SIZE(inode->i_sb)) 398 count_offset = 8; 399 else if (le16_to_cpu(dirent->rec_len) == 12) { 400 dp = (struct ext4_dir_entry *)(((void *)dirent) + 12); 401 if (le16_to_cpu(dp->rec_len) != 402 EXT4_BLOCK_SIZE(inode->i_sb) - 12) 403 return NULL; 404 root = (struct dx_root_info *)(((void *)dp + 12)); 405 if (root->reserved_zero || 406 root->info_length != sizeof(struct dx_root_info)) 407 return NULL; 408 count_offset = 32; 409 } else 410 return NULL; 411 412 if (offset) 413 *offset = count_offset; 414 return (struct dx_countlimit *)(((void *)dirent) + count_offset); 415 } 416 417 static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent, 418 int count_offset, int count, struct dx_tail *t) 419 { 420 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 421 struct ext4_inode_info *ei = EXT4_I(inode); 422 __u32 csum; 423 int size; 424 __u32 dummy_csum = 0; 425 int offset = offsetof(struct dx_tail, dt_checksum); 426 427 size = count_offset + (count * sizeof(struct dx_entry)); 428 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 429 csum = ext4_chksum(sbi, csum, (__u8 *)t, offset); 430 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, sizeof(dummy_csum)); 431 432 return cpu_to_le32(csum); 433 } 434 435 static int ext4_dx_csum_verify(struct inode *inode, 436 struct ext4_dir_entry *dirent) 437 { 438 struct dx_countlimit *c; 439 struct dx_tail *t; 440 int count_offset, limit, count; 441 442 if (!ext4_has_metadata_csum(inode->i_sb)) 443 return 1; 444 445 c = get_dx_countlimit(inode, dirent, &count_offset); 446 if (!c) { 447 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 448 return 0; 449 } 450 limit = le16_to_cpu(c->limit); 451 count = le16_to_cpu(c->count); 452 if (count_offset + (limit * sizeof(struct dx_entry)) > 453 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 454 warn_no_space_for_csum(inode); 455 return 0; 456 } 457 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 458 459 if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset, 460 count, t)) 461 return 0; 462 return 1; 463 } 464 465 static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent) 466 { 467 struct dx_countlimit *c; 468 struct dx_tail *t; 469 int count_offset, limit, count; 470 471 if (!ext4_has_metadata_csum(inode->i_sb)) 472 return; 473 474 c = get_dx_countlimit(inode, dirent, &count_offset); 475 if (!c) { 476 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 477 return; 478 } 479 limit = le16_to_cpu(c->limit); 480 count = le16_to_cpu(c->count); 481 if (count_offset + (limit * sizeof(struct dx_entry)) > 482 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 483 warn_no_space_for_csum(inode); 484 return; 485 } 486 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 487 488 t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t); 489 } 490 491 static inline int ext4_handle_dirty_dx_node(handle_t *handle, 492 struct inode *inode, 493 struct buffer_head *bh) 494 { 495 ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data); 496 return ext4_handle_dirty_metadata(handle, inode, bh); 497 } 498 499 /* 500 * p is at least 6 bytes before the end of page 501 */ 502 static inline struct ext4_dir_entry_2 * 503 ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize) 504 { 505 return (struct ext4_dir_entry_2 *)((char *)p + 506 ext4_rec_len_from_disk(p->rec_len, blocksize)); 507 } 508 509 /* 510 * Future: use high four bits of block for coalesce-on-delete flags 511 * Mask them off for now. 512 */ 513 514 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry) 515 { 516 return le32_to_cpu(entry->block) & 0x00ffffff; 517 } 518 519 static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value) 520 { 521 entry->block = cpu_to_le32(value); 522 } 523 524 static inline unsigned dx_get_hash(struct dx_entry *entry) 525 { 526 return le32_to_cpu(entry->hash); 527 } 528 529 static inline void dx_set_hash(struct dx_entry *entry, unsigned value) 530 { 531 entry->hash = cpu_to_le32(value); 532 } 533 534 static inline unsigned dx_get_count(struct dx_entry *entries) 535 { 536 return le16_to_cpu(((struct dx_countlimit *) entries)->count); 537 } 538 539 static inline unsigned dx_get_limit(struct dx_entry *entries) 540 { 541 return le16_to_cpu(((struct dx_countlimit *) entries)->limit); 542 } 543 544 static inline void dx_set_count(struct dx_entry *entries, unsigned value) 545 { 546 ((struct dx_countlimit *) entries)->count = cpu_to_le16(value); 547 } 548 549 static inline void dx_set_limit(struct dx_entry *entries, unsigned value) 550 { 551 ((struct dx_countlimit *) entries)->limit = cpu_to_le16(value); 552 } 553 554 static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize) 555 { 556 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(1) - 557 EXT4_DIR_REC_LEN(2) - infosize; 558 559 if (ext4_has_metadata_csum(dir->i_sb)) 560 entry_space -= sizeof(struct dx_tail); 561 return entry_space / sizeof(struct dx_entry); 562 } 563 564 static inline unsigned dx_node_limit(struct inode *dir) 565 { 566 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(0); 567 568 if (ext4_has_metadata_csum(dir->i_sb)) 569 entry_space -= sizeof(struct dx_tail); 570 return entry_space / sizeof(struct dx_entry); 571 } 572 573 /* 574 * Debug 575 */ 576 #ifdef DX_DEBUG 577 static void dx_show_index(char * label, struct dx_entry *entries) 578 { 579 int i, n = dx_get_count (entries); 580 printk(KERN_DEBUG "%s index", label); 581 for (i = 0; i < n; i++) { 582 printk(KERN_CONT " %x->%lu", 583 i ? dx_get_hash(entries + i) : 0, 584 (unsigned long)dx_get_block(entries + i)); 585 } 586 printk(KERN_CONT "\n"); 587 } 588 589 struct stats 590 { 591 unsigned names; 592 unsigned space; 593 unsigned bcount; 594 }; 595 596 static struct stats dx_show_leaf(struct inode *dir, 597 struct dx_hash_info *hinfo, 598 struct ext4_dir_entry_2 *de, 599 int size, int show_names) 600 { 601 unsigned names = 0, space = 0; 602 char *base = (char *) de; 603 struct dx_hash_info h = *hinfo; 604 605 printk("names: "); 606 while ((char *) de < base + size) 607 { 608 if (de->inode) 609 { 610 if (show_names) 611 { 612 #ifdef CONFIG_EXT4_FS_ENCRYPTION 613 int len; 614 char *name; 615 struct fscrypt_str fname_crypto_str = 616 FSTR_INIT(NULL, 0); 617 int res = 0; 618 619 name = de->name; 620 len = de->name_len; 621 if (ext4_encrypted_inode(dir)) 622 res = fscrypt_get_encryption_info(dir); 623 if (res) { 624 printk(KERN_WARNING "Error setting up" 625 " fname crypto: %d\n", res); 626 } 627 if (!fscrypt_has_encryption_key(dir)) { 628 /* Directory is not encrypted */ 629 ext4fs_dirhash(de->name, 630 de->name_len, &h); 631 printk("%*.s:(U)%x.%u ", len, 632 name, h.hash, 633 (unsigned) ((char *) de 634 - base)); 635 } else { 636 struct fscrypt_str de_name = 637 FSTR_INIT(name, len); 638 639 /* Directory is encrypted */ 640 res = fscrypt_fname_alloc_buffer( 641 dir, len, 642 &fname_crypto_str); 643 if (res) 644 printk(KERN_WARNING "Error " 645 "allocating crypto " 646 "buffer--skipping " 647 "crypto\n"); 648 res = fscrypt_fname_disk_to_usr(dir, 649 0, 0, &de_name, 650 &fname_crypto_str); 651 if (res) { 652 printk(KERN_WARNING "Error " 653 "converting filename " 654 "from disk to usr" 655 "\n"); 656 name = "??"; 657 len = 2; 658 } else { 659 name = fname_crypto_str.name; 660 len = fname_crypto_str.len; 661 } 662 ext4fs_dirhash(de->name, de->name_len, 663 &h); 664 printk("%*.s:(E)%x.%u ", len, name, 665 h.hash, (unsigned) ((char *) de 666 - base)); 667 fscrypt_fname_free_buffer( 668 &fname_crypto_str); 669 } 670 #else 671 int len = de->name_len; 672 char *name = de->name; 673 ext4fs_dirhash(de->name, de->name_len, &h); 674 printk("%*.s:%x.%u ", len, name, h.hash, 675 (unsigned) ((char *) de - base)); 676 #endif 677 } 678 space += EXT4_DIR_REC_LEN(de->name_len); 679 names++; 680 } 681 de = ext4_next_entry(de, size); 682 } 683 printk(KERN_CONT "(%i)\n", names); 684 return (struct stats) { names, space, 1 }; 685 } 686 687 struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir, 688 struct dx_entry *entries, int levels) 689 { 690 unsigned blocksize = dir->i_sb->s_blocksize; 691 unsigned count = dx_get_count(entries), names = 0, space = 0, i; 692 unsigned bcount = 0; 693 struct buffer_head *bh; 694 printk("%i indexed blocks...\n", count); 695 for (i = 0; i < count; i++, entries++) 696 { 697 ext4_lblk_t block = dx_get_block(entries); 698 ext4_lblk_t hash = i ? dx_get_hash(entries): 0; 699 u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash; 700 struct stats stats; 701 printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range); 702 bh = ext4_bread(NULL,dir, block, 0); 703 if (!bh || IS_ERR(bh)) 704 continue; 705 stats = levels? 706 dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1): 707 dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) 708 bh->b_data, blocksize, 0); 709 names += stats.names; 710 space += stats.space; 711 bcount += stats.bcount; 712 brelse(bh); 713 } 714 if (bcount) 715 printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n", 716 levels ? "" : " ", names, space/bcount, 717 (space/bcount)*100/blocksize); 718 return (struct stats) { names, space, bcount}; 719 } 720 #endif /* DX_DEBUG */ 721 722 /* 723 * Probe for a directory leaf block to search. 724 * 725 * dx_probe can return ERR_BAD_DX_DIR, which means there was a format 726 * error in the directory index, and the caller should fall back to 727 * searching the directory normally. The callers of dx_probe **MUST** 728 * check for this error code, and make sure it never gets reflected 729 * back to userspace. 730 */ 731 static struct dx_frame * 732 dx_probe(struct ext4_filename *fname, struct inode *dir, 733 struct dx_hash_info *hinfo, struct dx_frame *frame_in) 734 { 735 unsigned count, indirect; 736 struct dx_entry *at, *entries, *p, *q, *m; 737 struct dx_root *root; 738 struct dx_frame *frame = frame_in; 739 struct dx_frame *ret_err = ERR_PTR(ERR_BAD_DX_DIR); 740 u32 hash; 741 742 frame->bh = ext4_read_dirblock(dir, 0, INDEX); 743 if (IS_ERR(frame->bh)) 744 return (struct dx_frame *) frame->bh; 745 746 root = (struct dx_root *) frame->bh->b_data; 747 if (root->info.hash_version != DX_HASH_TEA && 748 root->info.hash_version != DX_HASH_HALF_MD4 && 749 root->info.hash_version != DX_HASH_LEGACY) { 750 ext4_warning_inode(dir, "Unrecognised inode hash code %u", 751 root->info.hash_version); 752 goto fail; 753 } 754 if (fname) 755 hinfo = &fname->hinfo; 756 hinfo->hash_version = root->info.hash_version; 757 if (hinfo->hash_version <= DX_HASH_TEA) 758 hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 759 hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed; 760 if (fname && fname_name(fname)) 761 ext4fs_dirhash(fname_name(fname), fname_len(fname), hinfo); 762 hash = hinfo->hash; 763 764 if (root->info.unused_flags & 1) { 765 ext4_warning_inode(dir, "Unimplemented hash flags: %#06x", 766 root->info.unused_flags); 767 goto fail; 768 } 769 770 indirect = root->info.indirect_levels; 771 if (indirect > 1) { 772 ext4_warning_inode(dir, "Unimplemented hash depth: %#06x", 773 root->info.indirect_levels); 774 goto fail; 775 } 776 777 entries = (struct dx_entry *)(((char *)&root->info) + 778 root->info.info_length); 779 780 if (dx_get_limit(entries) != dx_root_limit(dir, 781 root->info.info_length)) { 782 ext4_warning_inode(dir, "dx entry: limit %u != root limit %u", 783 dx_get_limit(entries), 784 dx_root_limit(dir, root->info.info_length)); 785 goto fail; 786 } 787 788 dxtrace(printk("Look up %x", hash)); 789 while (1) { 790 count = dx_get_count(entries); 791 if (!count || count > dx_get_limit(entries)) { 792 ext4_warning_inode(dir, 793 "dx entry: count %u beyond limit %u", 794 count, dx_get_limit(entries)); 795 goto fail; 796 } 797 798 p = entries + 1; 799 q = entries + count - 1; 800 while (p <= q) { 801 m = p + (q - p) / 2; 802 dxtrace(printk(KERN_CONT ".")); 803 if (dx_get_hash(m) > hash) 804 q = m - 1; 805 else 806 p = m + 1; 807 } 808 809 if (0) { // linear search cross check 810 unsigned n = count - 1; 811 at = entries; 812 while (n--) 813 { 814 dxtrace(printk(KERN_CONT ",")); 815 if (dx_get_hash(++at) > hash) 816 { 817 at--; 818 break; 819 } 820 } 821 assert (at == p - 1); 822 } 823 824 at = p - 1; 825 dxtrace(printk(KERN_CONT " %x->%u\n", 826 at == entries ? 0 : dx_get_hash(at), 827 dx_get_block(at))); 828 frame->entries = entries; 829 frame->at = at; 830 if (!indirect--) 831 return frame; 832 frame++; 833 frame->bh = ext4_read_dirblock(dir, dx_get_block(at), INDEX); 834 if (IS_ERR(frame->bh)) { 835 ret_err = (struct dx_frame *) frame->bh; 836 frame->bh = NULL; 837 goto fail; 838 } 839 entries = ((struct dx_node *) frame->bh->b_data)->entries; 840 841 if (dx_get_limit(entries) != dx_node_limit(dir)) { 842 ext4_warning_inode(dir, 843 "dx entry: limit %u != node limit %u", 844 dx_get_limit(entries), dx_node_limit(dir)); 845 goto fail; 846 } 847 } 848 fail: 849 while (frame >= frame_in) { 850 brelse(frame->bh); 851 frame--; 852 } 853 854 if (ret_err == ERR_PTR(ERR_BAD_DX_DIR)) 855 ext4_warning_inode(dir, 856 "Corrupt directory, running e2fsck is recommended"); 857 return ret_err; 858 } 859 860 static void dx_release(struct dx_frame *frames) 861 { 862 if (frames[0].bh == NULL) 863 return; 864 865 if (((struct dx_root *)frames[0].bh->b_data)->info.indirect_levels) 866 brelse(frames[1].bh); 867 brelse(frames[0].bh); 868 } 869 870 /* 871 * This function increments the frame pointer to search the next leaf 872 * block, and reads in the necessary intervening nodes if the search 873 * should be necessary. Whether or not the search is necessary is 874 * controlled by the hash parameter. If the hash value is even, then 875 * the search is only continued if the next block starts with that 876 * hash value. This is used if we are searching for a specific file. 877 * 878 * If the hash value is HASH_NB_ALWAYS, then always go to the next block. 879 * 880 * This function returns 1 if the caller should continue to search, 881 * or 0 if it should not. If there is an error reading one of the 882 * index blocks, it will a negative error code. 883 * 884 * If start_hash is non-null, it will be filled in with the starting 885 * hash of the next page. 886 */ 887 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 888 struct dx_frame *frame, 889 struct dx_frame *frames, 890 __u32 *start_hash) 891 { 892 struct dx_frame *p; 893 struct buffer_head *bh; 894 int num_frames = 0; 895 __u32 bhash; 896 897 p = frame; 898 /* 899 * Find the next leaf page by incrementing the frame pointer. 900 * If we run out of entries in the interior node, loop around and 901 * increment pointer in the parent node. When we break out of 902 * this loop, num_frames indicates the number of interior 903 * nodes need to be read. 904 */ 905 while (1) { 906 if (++(p->at) < p->entries + dx_get_count(p->entries)) 907 break; 908 if (p == frames) 909 return 0; 910 num_frames++; 911 p--; 912 } 913 914 /* 915 * If the hash is 1, then continue only if the next page has a 916 * continuation hash of any value. This is used for readdir 917 * handling. Otherwise, check to see if the hash matches the 918 * desired contiuation hash. If it doesn't, return since 919 * there's no point to read in the successive index pages. 920 */ 921 bhash = dx_get_hash(p->at); 922 if (start_hash) 923 *start_hash = bhash; 924 if ((hash & 1) == 0) { 925 if ((bhash & ~1) != hash) 926 return 0; 927 } 928 /* 929 * If the hash is HASH_NB_ALWAYS, we always go to the next 930 * block so no check is necessary 931 */ 932 while (num_frames--) { 933 bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX); 934 if (IS_ERR(bh)) 935 return PTR_ERR(bh); 936 p++; 937 brelse(p->bh); 938 p->bh = bh; 939 p->at = p->entries = ((struct dx_node *) bh->b_data)->entries; 940 } 941 return 1; 942 } 943 944 945 /* 946 * This function fills a red-black tree with information from a 947 * directory block. It returns the number directory entries loaded 948 * into the tree. If there is an error it is returned in err. 949 */ 950 static int htree_dirblock_to_tree(struct file *dir_file, 951 struct inode *dir, ext4_lblk_t block, 952 struct dx_hash_info *hinfo, 953 __u32 start_hash, __u32 start_minor_hash) 954 { 955 struct buffer_head *bh; 956 struct ext4_dir_entry_2 *de, *top; 957 int err = 0, count = 0; 958 struct fscrypt_str fname_crypto_str = FSTR_INIT(NULL, 0), tmp_str; 959 960 dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n", 961 (unsigned long)block)); 962 bh = ext4_read_dirblock(dir, block, DIRENT); 963 if (IS_ERR(bh)) 964 return PTR_ERR(bh); 965 966 de = (struct ext4_dir_entry_2 *) bh->b_data; 967 top = (struct ext4_dir_entry_2 *) ((char *) de + 968 dir->i_sb->s_blocksize - 969 EXT4_DIR_REC_LEN(0)); 970 #ifdef CONFIG_EXT4_FS_ENCRYPTION 971 /* Check if the directory is encrypted */ 972 if (ext4_encrypted_inode(dir)) { 973 err = fscrypt_get_encryption_info(dir); 974 if (err < 0) { 975 brelse(bh); 976 return err; 977 } 978 err = fscrypt_fname_alloc_buffer(dir, EXT4_NAME_LEN, 979 &fname_crypto_str); 980 if (err < 0) { 981 brelse(bh); 982 return err; 983 } 984 } 985 #endif 986 for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) { 987 if (ext4_check_dir_entry(dir, NULL, de, bh, 988 bh->b_data, bh->b_size, 989 (block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb)) 990 + ((char *)de - bh->b_data))) { 991 /* silently ignore the rest of the block */ 992 break; 993 } 994 ext4fs_dirhash(de->name, de->name_len, hinfo); 995 if ((hinfo->hash < start_hash) || 996 ((hinfo->hash == start_hash) && 997 (hinfo->minor_hash < start_minor_hash))) 998 continue; 999 if (de->inode == 0) 1000 continue; 1001 if (!ext4_encrypted_inode(dir)) { 1002 tmp_str.name = de->name; 1003 tmp_str.len = de->name_len; 1004 err = ext4_htree_store_dirent(dir_file, 1005 hinfo->hash, hinfo->minor_hash, de, 1006 &tmp_str); 1007 } else { 1008 int save_len = fname_crypto_str.len; 1009 struct fscrypt_str de_name = FSTR_INIT(de->name, 1010 de->name_len); 1011 1012 /* Directory is encrypted */ 1013 err = fscrypt_fname_disk_to_usr(dir, hinfo->hash, 1014 hinfo->minor_hash, &de_name, 1015 &fname_crypto_str); 1016 if (err) { 1017 count = err; 1018 goto errout; 1019 } 1020 err = ext4_htree_store_dirent(dir_file, 1021 hinfo->hash, hinfo->minor_hash, de, 1022 &fname_crypto_str); 1023 fname_crypto_str.len = save_len; 1024 } 1025 if (err != 0) { 1026 count = err; 1027 goto errout; 1028 } 1029 count++; 1030 } 1031 errout: 1032 brelse(bh); 1033 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1034 fscrypt_fname_free_buffer(&fname_crypto_str); 1035 #endif 1036 return count; 1037 } 1038 1039 1040 /* 1041 * This function fills a red-black tree with information from a 1042 * directory. We start scanning the directory in hash order, starting 1043 * at start_hash and start_minor_hash. 1044 * 1045 * This function returns the number of entries inserted into the tree, 1046 * or a negative error code. 1047 */ 1048 int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash, 1049 __u32 start_minor_hash, __u32 *next_hash) 1050 { 1051 struct dx_hash_info hinfo; 1052 struct ext4_dir_entry_2 *de; 1053 struct dx_frame frames[2], *frame; 1054 struct inode *dir; 1055 ext4_lblk_t block; 1056 int count = 0; 1057 int ret, err; 1058 __u32 hashval; 1059 struct fscrypt_str tmp_str; 1060 1061 dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n", 1062 start_hash, start_minor_hash)); 1063 dir = file_inode(dir_file); 1064 if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) { 1065 hinfo.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version; 1066 if (hinfo.hash_version <= DX_HASH_TEA) 1067 hinfo.hash_version += 1068 EXT4_SB(dir->i_sb)->s_hash_unsigned; 1069 hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 1070 if (ext4_has_inline_data(dir)) { 1071 int has_inline_data = 1; 1072 count = htree_inlinedir_to_tree(dir_file, dir, 0, 1073 &hinfo, start_hash, 1074 start_minor_hash, 1075 &has_inline_data); 1076 if (has_inline_data) { 1077 *next_hash = ~0; 1078 return count; 1079 } 1080 } 1081 count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo, 1082 start_hash, start_minor_hash); 1083 *next_hash = ~0; 1084 return count; 1085 } 1086 hinfo.hash = start_hash; 1087 hinfo.minor_hash = 0; 1088 frame = dx_probe(NULL, dir, &hinfo, frames); 1089 if (IS_ERR(frame)) 1090 return PTR_ERR(frame); 1091 1092 /* Add '.' and '..' from the htree header */ 1093 if (!start_hash && !start_minor_hash) { 1094 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1095 tmp_str.name = de->name; 1096 tmp_str.len = de->name_len; 1097 err = ext4_htree_store_dirent(dir_file, 0, 0, 1098 de, &tmp_str); 1099 if (err != 0) 1100 goto errout; 1101 count++; 1102 } 1103 if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) { 1104 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1105 de = ext4_next_entry(de, dir->i_sb->s_blocksize); 1106 tmp_str.name = de->name; 1107 tmp_str.len = de->name_len; 1108 err = ext4_htree_store_dirent(dir_file, 2, 0, 1109 de, &tmp_str); 1110 if (err != 0) 1111 goto errout; 1112 count++; 1113 } 1114 1115 while (1) { 1116 if (fatal_signal_pending(current)) { 1117 err = -ERESTARTSYS; 1118 goto errout; 1119 } 1120 cond_resched(); 1121 block = dx_get_block(frame->at); 1122 ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo, 1123 start_hash, start_minor_hash); 1124 if (ret < 0) { 1125 err = ret; 1126 goto errout; 1127 } 1128 count += ret; 1129 hashval = ~0; 1130 ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS, 1131 frame, frames, &hashval); 1132 *next_hash = hashval; 1133 if (ret < 0) { 1134 err = ret; 1135 goto errout; 1136 } 1137 /* 1138 * Stop if: (a) there are no more entries, or 1139 * (b) we have inserted at least one entry and the 1140 * next hash value is not a continuation 1141 */ 1142 if ((ret == 0) || 1143 (count && ((hashval & 1) == 0))) 1144 break; 1145 } 1146 dx_release(frames); 1147 dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, " 1148 "next hash: %x\n", count, *next_hash)); 1149 return count; 1150 errout: 1151 dx_release(frames); 1152 return (err); 1153 } 1154 1155 static inline int search_dirblock(struct buffer_head *bh, 1156 struct inode *dir, 1157 struct ext4_filename *fname, 1158 unsigned int offset, 1159 struct ext4_dir_entry_2 **res_dir) 1160 { 1161 return ext4_search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir, 1162 fname, offset, res_dir); 1163 } 1164 1165 /* 1166 * Directory block splitting, compacting 1167 */ 1168 1169 /* 1170 * Create map of hash values, offsets, and sizes, stored at end of block. 1171 * Returns number of entries mapped. 1172 */ 1173 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 1174 unsigned blocksize, struct dx_hash_info *hinfo, 1175 struct dx_map_entry *map_tail) 1176 { 1177 int count = 0; 1178 char *base = (char *) de; 1179 struct dx_hash_info h = *hinfo; 1180 1181 while ((char *) de < base + blocksize) { 1182 if (de->name_len && de->inode) { 1183 ext4fs_dirhash(de->name, de->name_len, &h); 1184 map_tail--; 1185 map_tail->hash = h.hash; 1186 map_tail->offs = ((char *) de - base)>>2; 1187 map_tail->size = le16_to_cpu(de->rec_len); 1188 count++; 1189 cond_resched(); 1190 } 1191 /* XXX: do we need to check rec_len == 0 case? -Chris */ 1192 de = ext4_next_entry(de, blocksize); 1193 } 1194 return count; 1195 } 1196 1197 /* Sort map by hash value */ 1198 static void dx_sort_map (struct dx_map_entry *map, unsigned count) 1199 { 1200 struct dx_map_entry *p, *q, *top = map + count - 1; 1201 int more; 1202 /* Combsort until bubble sort doesn't suck */ 1203 while (count > 2) { 1204 count = count*10/13; 1205 if (count - 9 < 2) /* 9, 10 -> 11 */ 1206 count = 11; 1207 for (p = top, q = p - count; q >= map; p--, q--) 1208 if (p->hash < q->hash) 1209 swap(*p, *q); 1210 } 1211 /* Garden variety bubble sort */ 1212 do { 1213 more = 0; 1214 q = top; 1215 while (q-- > map) { 1216 if (q[1].hash >= q[0].hash) 1217 continue; 1218 swap(*(q+1), *q); 1219 more = 1; 1220 } 1221 } while(more); 1222 } 1223 1224 static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block) 1225 { 1226 struct dx_entry *entries = frame->entries; 1227 struct dx_entry *old = frame->at, *new = old + 1; 1228 int count = dx_get_count(entries); 1229 1230 assert(count < dx_get_limit(entries)); 1231 assert(old < entries + count); 1232 memmove(new + 1, new, (char *)(entries + count) - (char *)(new)); 1233 dx_set_hash(new, hash); 1234 dx_set_block(new, block); 1235 dx_set_count(entries, count + 1); 1236 } 1237 1238 /* 1239 * Test whether a directory entry matches the filename being searched for. 1240 * 1241 * Return: %true if the directory entry matches, otherwise %false. 1242 */ 1243 static inline bool ext4_match(const struct ext4_filename *fname, 1244 const struct ext4_dir_entry_2 *de) 1245 { 1246 struct fscrypt_name f; 1247 1248 if (!de->inode) 1249 return false; 1250 1251 f.usr_fname = fname->usr_fname; 1252 f.disk_name = fname->disk_name; 1253 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1254 f.crypto_buf = fname->crypto_buf; 1255 #endif 1256 return fscrypt_match_name(&f, de->name, de->name_len); 1257 } 1258 1259 /* 1260 * Returns 0 if not found, -1 on failure, and 1 on success 1261 */ 1262 int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size, 1263 struct inode *dir, struct ext4_filename *fname, 1264 unsigned int offset, struct ext4_dir_entry_2 **res_dir) 1265 { 1266 struct ext4_dir_entry_2 * de; 1267 char * dlimit; 1268 int de_len; 1269 1270 de = (struct ext4_dir_entry_2 *)search_buf; 1271 dlimit = search_buf + buf_size; 1272 while ((char *) de < dlimit) { 1273 /* this code is executed quadratically often */ 1274 /* do minimal checking `by hand' */ 1275 if ((char *) de + de->name_len <= dlimit && 1276 ext4_match(fname, de)) { 1277 /* found a match - just to be sure, do 1278 * a full check */ 1279 if (ext4_check_dir_entry(dir, NULL, de, bh, bh->b_data, 1280 bh->b_size, offset)) 1281 return -1; 1282 *res_dir = de; 1283 return 1; 1284 } 1285 /* prevent looping on a bad block */ 1286 de_len = ext4_rec_len_from_disk(de->rec_len, 1287 dir->i_sb->s_blocksize); 1288 if (de_len <= 0) 1289 return -1; 1290 offset += de_len; 1291 de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); 1292 } 1293 return 0; 1294 } 1295 1296 static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block, 1297 struct ext4_dir_entry *de) 1298 { 1299 struct super_block *sb = dir->i_sb; 1300 1301 if (!is_dx(dir)) 1302 return 0; 1303 if (block == 0) 1304 return 1; 1305 if (de->inode == 0 && 1306 ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) == 1307 sb->s_blocksize) 1308 return 1; 1309 return 0; 1310 } 1311 1312 /* 1313 * ext4_find_entry() 1314 * 1315 * finds an entry in the specified directory with the wanted name. It 1316 * returns the cache buffer in which the entry was found, and the entry 1317 * itself (as a parameter - res_dir). It does NOT read the inode of the 1318 * entry - you'll have to do that yourself if you want to. 1319 * 1320 * The returned buffer_head has ->b_count elevated. The caller is expected 1321 * to brelse() it when appropriate. 1322 */ 1323 static struct buffer_head * ext4_find_entry (struct inode *dir, 1324 const struct qstr *d_name, 1325 struct ext4_dir_entry_2 **res_dir, 1326 int *inlined) 1327 { 1328 struct super_block *sb; 1329 struct buffer_head *bh_use[NAMEI_RA_SIZE]; 1330 struct buffer_head *bh, *ret = NULL; 1331 ext4_lblk_t start, block, b; 1332 const u8 *name = d_name->name; 1333 int ra_max = 0; /* Number of bh's in the readahead 1334 buffer, bh_use[] */ 1335 int ra_ptr = 0; /* Current index into readahead 1336 buffer */ 1337 int num = 0; 1338 ext4_lblk_t nblocks; 1339 int i, namelen, retval; 1340 struct ext4_filename fname; 1341 1342 *res_dir = NULL; 1343 sb = dir->i_sb; 1344 namelen = d_name->len; 1345 if (namelen > EXT4_NAME_LEN) 1346 return NULL; 1347 1348 retval = ext4_fname_setup_filename(dir, d_name, 1, &fname); 1349 if (retval == -ENOENT) 1350 return NULL; 1351 if (retval) 1352 return ERR_PTR(retval); 1353 1354 if (ext4_has_inline_data(dir)) { 1355 int has_inline_data = 1; 1356 ret = ext4_find_inline_entry(dir, &fname, res_dir, 1357 &has_inline_data); 1358 if (has_inline_data) { 1359 if (inlined) 1360 *inlined = 1; 1361 goto cleanup_and_exit; 1362 } 1363 } 1364 1365 if ((namelen <= 2) && (name[0] == '.') && 1366 (name[1] == '.' || name[1] == '\0')) { 1367 /* 1368 * "." or ".." will only be in the first block 1369 * NFS may look up ".."; "." should be handled by the VFS 1370 */ 1371 block = start = 0; 1372 nblocks = 1; 1373 goto restart; 1374 } 1375 if (is_dx(dir)) { 1376 ret = ext4_dx_find_entry(dir, &fname, res_dir); 1377 /* 1378 * On success, or if the error was file not found, 1379 * return. Otherwise, fall back to doing a search the 1380 * old fashioned way. 1381 */ 1382 if (!IS_ERR(ret) || PTR_ERR(ret) != ERR_BAD_DX_DIR) 1383 goto cleanup_and_exit; 1384 dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, " 1385 "falling back\n")); 1386 } 1387 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1388 start = EXT4_I(dir)->i_dir_start_lookup; 1389 if (start >= nblocks) 1390 start = 0; 1391 block = start; 1392 restart: 1393 do { 1394 /* 1395 * We deal with the read-ahead logic here. 1396 */ 1397 if (ra_ptr >= ra_max) { 1398 /* Refill the readahead buffer */ 1399 ra_ptr = 0; 1400 b = block; 1401 for (ra_max = 0; ra_max < NAMEI_RA_SIZE; ra_max++) { 1402 /* 1403 * Terminate if we reach the end of the 1404 * directory and must wrap, or if our 1405 * search has finished at this block. 1406 */ 1407 if (b >= nblocks || (num && block == start)) { 1408 bh_use[ra_max] = NULL; 1409 break; 1410 } 1411 num++; 1412 bh = ext4_getblk(NULL, dir, b++, 0); 1413 if (IS_ERR(bh)) { 1414 if (ra_max == 0) { 1415 ret = bh; 1416 goto cleanup_and_exit; 1417 } 1418 break; 1419 } 1420 bh_use[ra_max] = bh; 1421 if (bh) 1422 ll_rw_block(REQ_OP_READ, 1423 REQ_META | REQ_PRIO, 1424 1, &bh); 1425 } 1426 } 1427 if ((bh = bh_use[ra_ptr++]) == NULL) 1428 goto next; 1429 wait_on_buffer(bh); 1430 if (!buffer_uptodate(bh)) { 1431 /* read error, skip block & hope for the best */ 1432 EXT4_ERROR_INODE(dir, "reading directory lblock %lu", 1433 (unsigned long) block); 1434 brelse(bh); 1435 goto next; 1436 } 1437 if (!buffer_verified(bh) && 1438 !is_dx_internal_node(dir, block, 1439 (struct ext4_dir_entry *)bh->b_data) && 1440 !ext4_dirent_csum_verify(dir, 1441 (struct ext4_dir_entry *)bh->b_data)) { 1442 EXT4_ERROR_INODE(dir, "checksumming directory " 1443 "block %lu", (unsigned long)block); 1444 brelse(bh); 1445 goto next; 1446 } 1447 set_buffer_verified(bh); 1448 i = search_dirblock(bh, dir, &fname, 1449 block << EXT4_BLOCK_SIZE_BITS(sb), res_dir); 1450 if (i == 1) { 1451 EXT4_I(dir)->i_dir_start_lookup = block; 1452 ret = bh; 1453 goto cleanup_and_exit; 1454 } else { 1455 brelse(bh); 1456 if (i < 0) 1457 goto cleanup_and_exit; 1458 } 1459 next: 1460 if (++block >= nblocks) 1461 block = 0; 1462 } while (block != start); 1463 1464 /* 1465 * If the directory has grown while we were searching, then 1466 * search the last part of the directory before giving up. 1467 */ 1468 block = nblocks; 1469 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1470 if (block < nblocks) { 1471 start = 0; 1472 goto restart; 1473 } 1474 1475 cleanup_and_exit: 1476 /* Clean up the read-ahead blocks */ 1477 for (; ra_ptr < ra_max; ra_ptr++) 1478 brelse(bh_use[ra_ptr]); 1479 ext4_fname_free_filename(&fname); 1480 return ret; 1481 } 1482 1483 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 1484 struct ext4_filename *fname, 1485 struct ext4_dir_entry_2 **res_dir) 1486 { 1487 struct super_block * sb = dir->i_sb; 1488 struct dx_frame frames[2], *frame; 1489 struct buffer_head *bh; 1490 ext4_lblk_t block; 1491 int retval; 1492 1493 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1494 *res_dir = NULL; 1495 #endif 1496 frame = dx_probe(fname, dir, NULL, frames); 1497 if (IS_ERR(frame)) 1498 return (struct buffer_head *) frame; 1499 do { 1500 block = dx_get_block(frame->at); 1501 bh = ext4_read_dirblock(dir, block, DIRENT); 1502 if (IS_ERR(bh)) 1503 goto errout; 1504 1505 retval = search_dirblock(bh, dir, fname, 1506 block << EXT4_BLOCK_SIZE_BITS(sb), 1507 res_dir); 1508 if (retval == 1) 1509 goto success; 1510 brelse(bh); 1511 if (retval == -1) { 1512 bh = ERR_PTR(ERR_BAD_DX_DIR); 1513 goto errout; 1514 } 1515 1516 /* Check to see if we should continue to search */ 1517 retval = ext4_htree_next_block(dir, fname->hinfo.hash, frame, 1518 frames, NULL); 1519 if (retval < 0) { 1520 ext4_warning_inode(dir, 1521 "error %d reading directory index block", 1522 retval); 1523 bh = ERR_PTR(retval); 1524 goto errout; 1525 } 1526 } while (retval == 1); 1527 1528 bh = NULL; 1529 errout: 1530 dxtrace(printk(KERN_DEBUG "%s not found\n", fname->usr_fname->name)); 1531 success: 1532 dx_release(frames); 1533 return bh; 1534 } 1535 1536 static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1537 { 1538 struct inode *inode; 1539 struct ext4_dir_entry_2 *de; 1540 struct buffer_head *bh; 1541 1542 if (ext4_encrypted_inode(dir)) { 1543 int res = fscrypt_get_encryption_info(dir); 1544 1545 /* 1546 * DCACHE_ENCRYPTED_WITH_KEY is set if the dentry is 1547 * created while the directory was encrypted and we 1548 * have access to the key. 1549 */ 1550 if (fscrypt_has_encryption_key(dir)) 1551 fscrypt_set_encrypted_dentry(dentry); 1552 fscrypt_set_d_op(dentry); 1553 if (res && res != -ENOKEY) 1554 return ERR_PTR(res); 1555 } 1556 1557 if (dentry->d_name.len > EXT4_NAME_LEN) 1558 return ERR_PTR(-ENAMETOOLONG); 1559 1560 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 1561 if (IS_ERR(bh)) 1562 return (struct dentry *) bh; 1563 inode = NULL; 1564 if (bh) { 1565 __u32 ino = le32_to_cpu(de->inode); 1566 brelse(bh); 1567 if (!ext4_valid_inum(dir->i_sb, ino)) { 1568 EXT4_ERROR_INODE(dir, "bad inode number: %u", ino); 1569 return ERR_PTR(-EFSCORRUPTED); 1570 } 1571 if (unlikely(ino == dir->i_ino)) { 1572 EXT4_ERROR_INODE(dir, "'%pd' linked to parent dir", 1573 dentry); 1574 return ERR_PTR(-EFSCORRUPTED); 1575 } 1576 inode = ext4_iget_normal(dir->i_sb, ino); 1577 if (inode == ERR_PTR(-ESTALE)) { 1578 EXT4_ERROR_INODE(dir, 1579 "deleted inode referenced: %u", 1580 ino); 1581 return ERR_PTR(-EFSCORRUPTED); 1582 } 1583 if (!IS_ERR(inode) && ext4_encrypted_inode(dir) && 1584 (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) && 1585 !fscrypt_has_permitted_context(dir, inode)) { 1586 ext4_warning(inode->i_sb, 1587 "Inconsistent encryption contexts: %lu/%lu", 1588 dir->i_ino, inode->i_ino); 1589 iput(inode); 1590 return ERR_PTR(-EPERM); 1591 } 1592 } 1593 return d_splice_alias(inode, dentry); 1594 } 1595 1596 1597 struct dentry *ext4_get_parent(struct dentry *child) 1598 { 1599 __u32 ino; 1600 static const struct qstr dotdot = QSTR_INIT("..", 2); 1601 struct ext4_dir_entry_2 * de; 1602 struct buffer_head *bh; 1603 1604 bh = ext4_find_entry(d_inode(child), &dotdot, &de, NULL); 1605 if (IS_ERR(bh)) 1606 return (struct dentry *) bh; 1607 if (!bh) 1608 return ERR_PTR(-ENOENT); 1609 ino = le32_to_cpu(de->inode); 1610 brelse(bh); 1611 1612 if (!ext4_valid_inum(child->d_sb, ino)) { 1613 EXT4_ERROR_INODE(d_inode(child), 1614 "bad parent inode number: %u", ino); 1615 return ERR_PTR(-EFSCORRUPTED); 1616 } 1617 1618 return d_obtain_alias(ext4_iget_normal(child->d_sb, ino)); 1619 } 1620 1621 /* 1622 * Move count entries from end of map between two memory locations. 1623 * Returns pointer to last entry moved. 1624 */ 1625 static struct ext4_dir_entry_2 * 1626 dx_move_dirents(char *from, char *to, struct dx_map_entry *map, int count, 1627 unsigned blocksize) 1628 { 1629 unsigned rec_len = 0; 1630 1631 while (count--) { 1632 struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *) 1633 (from + (map->offs<<2)); 1634 rec_len = EXT4_DIR_REC_LEN(de->name_len); 1635 memcpy (to, de, rec_len); 1636 ((struct ext4_dir_entry_2 *) to)->rec_len = 1637 ext4_rec_len_to_disk(rec_len, blocksize); 1638 de->inode = 0; 1639 map++; 1640 to += rec_len; 1641 } 1642 return (struct ext4_dir_entry_2 *) (to - rec_len); 1643 } 1644 1645 /* 1646 * Compact each dir entry in the range to the minimal rec_len. 1647 * Returns pointer to last entry in range. 1648 */ 1649 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize) 1650 { 1651 struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base; 1652 unsigned rec_len = 0; 1653 1654 prev = to = de; 1655 while ((char*)de < base + blocksize) { 1656 next = ext4_next_entry(de, blocksize); 1657 if (de->inode && de->name_len) { 1658 rec_len = EXT4_DIR_REC_LEN(de->name_len); 1659 if (de > to) 1660 memmove(to, de, rec_len); 1661 to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize); 1662 prev = to; 1663 to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len); 1664 } 1665 de = next; 1666 } 1667 return prev; 1668 } 1669 1670 /* 1671 * Split a full leaf block to make room for a new dir entry. 1672 * Allocate a new block, and move entries so that they are approx. equally full. 1673 * Returns pointer to de in block into which the new entry will be inserted. 1674 */ 1675 static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir, 1676 struct buffer_head **bh,struct dx_frame *frame, 1677 struct dx_hash_info *hinfo) 1678 { 1679 unsigned blocksize = dir->i_sb->s_blocksize; 1680 unsigned count, continued; 1681 struct buffer_head *bh2; 1682 ext4_lblk_t newblock; 1683 u32 hash2; 1684 struct dx_map_entry *map; 1685 char *data1 = (*bh)->b_data, *data2; 1686 unsigned split, move, size; 1687 struct ext4_dir_entry_2 *de = NULL, *de2; 1688 struct ext4_dir_entry_tail *t; 1689 int csum_size = 0; 1690 int err = 0, i; 1691 1692 if (ext4_has_metadata_csum(dir->i_sb)) 1693 csum_size = sizeof(struct ext4_dir_entry_tail); 1694 1695 bh2 = ext4_append(handle, dir, &newblock); 1696 if (IS_ERR(bh2)) { 1697 brelse(*bh); 1698 *bh = NULL; 1699 return (struct ext4_dir_entry_2 *) bh2; 1700 } 1701 1702 BUFFER_TRACE(*bh, "get_write_access"); 1703 err = ext4_journal_get_write_access(handle, *bh); 1704 if (err) 1705 goto journal_error; 1706 1707 BUFFER_TRACE(frame->bh, "get_write_access"); 1708 err = ext4_journal_get_write_access(handle, frame->bh); 1709 if (err) 1710 goto journal_error; 1711 1712 data2 = bh2->b_data; 1713 1714 /* create map in the end of data2 block */ 1715 map = (struct dx_map_entry *) (data2 + blocksize); 1716 count = dx_make_map(dir, (struct ext4_dir_entry_2 *) data1, 1717 blocksize, hinfo, map); 1718 map -= count; 1719 dx_sort_map(map, count); 1720 /* Split the existing block in the middle, size-wise */ 1721 size = 0; 1722 move = 0; 1723 for (i = count-1; i >= 0; i--) { 1724 /* is more than half of this entry in 2nd half of the block? */ 1725 if (size + map[i].size/2 > blocksize/2) 1726 break; 1727 size += map[i].size; 1728 move++; 1729 } 1730 /* map index at which we will split */ 1731 split = count - move; 1732 hash2 = map[split].hash; 1733 continued = hash2 == map[split - 1].hash; 1734 dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n", 1735 (unsigned long)dx_get_block(frame->at), 1736 hash2, split, count-split)); 1737 1738 /* Fancy dance to stay within two buffers */ 1739 de2 = dx_move_dirents(data1, data2, map + split, count - split, 1740 blocksize); 1741 de = dx_pack_dirents(data1, blocksize); 1742 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) - 1743 (char *) de, 1744 blocksize); 1745 de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) - 1746 (char *) de2, 1747 blocksize); 1748 if (csum_size) { 1749 t = EXT4_DIRENT_TAIL(data2, blocksize); 1750 initialize_dirent_tail(t, blocksize); 1751 1752 t = EXT4_DIRENT_TAIL(data1, blocksize); 1753 initialize_dirent_tail(t, blocksize); 1754 } 1755 1756 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data1, 1757 blocksize, 1)); 1758 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data2, 1759 blocksize, 1)); 1760 1761 /* Which block gets the new entry? */ 1762 if (hinfo->hash >= hash2) { 1763 swap(*bh, bh2); 1764 de = de2; 1765 } 1766 dx_insert_block(frame, hash2 + continued, newblock); 1767 err = ext4_handle_dirty_dirent_node(handle, dir, bh2); 1768 if (err) 1769 goto journal_error; 1770 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 1771 if (err) 1772 goto journal_error; 1773 brelse(bh2); 1774 dxtrace(dx_show_index("frame", frame->entries)); 1775 return de; 1776 1777 journal_error: 1778 brelse(*bh); 1779 brelse(bh2); 1780 *bh = NULL; 1781 ext4_std_error(dir->i_sb, err); 1782 return ERR_PTR(err); 1783 } 1784 1785 int ext4_find_dest_de(struct inode *dir, struct inode *inode, 1786 struct buffer_head *bh, 1787 void *buf, int buf_size, 1788 struct ext4_filename *fname, 1789 struct ext4_dir_entry_2 **dest_de) 1790 { 1791 struct ext4_dir_entry_2 *de; 1792 unsigned short reclen = EXT4_DIR_REC_LEN(fname_len(fname)); 1793 int nlen, rlen; 1794 unsigned int offset = 0; 1795 char *top; 1796 1797 de = (struct ext4_dir_entry_2 *)buf; 1798 top = buf + buf_size - reclen; 1799 while ((char *) de <= top) { 1800 if (ext4_check_dir_entry(dir, NULL, de, bh, 1801 buf, buf_size, offset)) 1802 return -EFSCORRUPTED; 1803 if (ext4_match(fname, de)) 1804 return -EEXIST; 1805 nlen = EXT4_DIR_REC_LEN(de->name_len); 1806 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 1807 if ((de->inode ? rlen - nlen : rlen) >= reclen) 1808 break; 1809 de = (struct ext4_dir_entry_2 *)((char *)de + rlen); 1810 offset += rlen; 1811 } 1812 if ((char *) de > top) 1813 return -ENOSPC; 1814 1815 *dest_de = de; 1816 return 0; 1817 } 1818 1819 void ext4_insert_dentry(struct inode *inode, 1820 struct ext4_dir_entry_2 *de, 1821 int buf_size, 1822 struct ext4_filename *fname) 1823 { 1824 1825 int nlen, rlen; 1826 1827 nlen = EXT4_DIR_REC_LEN(de->name_len); 1828 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 1829 if (de->inode) { 1830 struct ext4_dir_entry_2 *de1 = 1831 (struct ext4_dir_entry_2 *)((char *)de + nlen); 1832 de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size); 1833 de->rec_len = ext4_rec_len_to_disk(nlen, buf_size); 1834 de = de1; 1835 } 1836 de->file_type = EXT4_FT_UNKNOWN; 1837 de->inode = cpu_to_le32(inode->i_ino); 1838 ext4_set_de_type(inode->i_sb, de, inode->i_mode); 1839 de->name_len = fname_len(fname); 1840 memcpy(de->name, fname_name(fname), fname_len(fname)); 1841 } 1842 1843 /* 1844 * Add a new entry into a directory (leaf) block. If de is non-NULL, 1845 * it points to a directory entry which is guaranteed to be large 1846 * enough for new directory entry. If de is NULL, then 1847 * add_dirent_to_buf will attempt search the directory block for 1848 * space. It will return -ENOSPC if no space is available, and -EIO 1849 * and -EEXIST if directory entry already exists. 1850 */ 1851 static int add_dirent_to_buf(handle_t *handle, struct ext4_filename *fname, 1852 struct inode *dir, 1853 struct inode *inode, struct ext4_dir_entry_2 *de, 1854 struct buffer_head *bh) 1855 { 1856 unsigned int blocksize = dir->i_sb->s_blocksize; 1857 int csum_size = 0; 1858 int err; 1859 1860 if (ext4_has_metadata_csum(inode->i_sb)) 1861 csum_size = sizeof(struct ext4_dir_entry_tail); 1862 1863 if (!de) { 1864 err = ext4_find_dest_de(dir, inode, bh, bh->b_data, 1865 blocksize - csum_size, fname, &de); 1866 if (err) 1867 return err; 1868 } 1869 BUFFER_TRACE(bh, "get_write_access"); 1870 err = ext4_journal_get_write_access(handle, bh); 1871 if (err) { 1872 ext4_std_error(dir->i_sb, err); 1873 return err; 1874 } 1875 1876 /* By now the buffer is marked for journaling */ 1877 ext4_insert_dentry(inode, de, blocksize, fname); 1878 1879 /* 1880 * XXX shouldn't update any times until successful 1881 * completion of syscall, but too many callers depend 1882 * on this. 1883 * 1884 * XXX similarly, too many callers depend on 1885 * ext4_new_inode() setting the times, but error 1886 * recovery deletes the inode, so the worst that can 1887 * happen is that the times are slightly out of date 1888 * and/or different from the directory change time. 1889 */ 1890 dir->i_mtime = dir->i_ctime = current_time(dir); 1891 ext4_update_dx_flag(dir); 1892 dir->i_version++; 1893 ext4_mark_inode_dirty(handle, dir); 1894 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1895 err = ext4_handle_dirty_dirent_node(handle, dir, bh); 1896 if (err) 1897 ext4_std_error(dir->i_sb, err); 1898 return 0; 1899 } 1900 1901 /* 1902 * This converts a one block unindexed directory to a 3 block indexed 1903 * directory, and adds the dentry to the indexed directory. 1904 */ 1905 static int make_indexed_dir(handle_t *handle, struct ext4_filename *fname, 1906 struct inode *dir, 1907 struct inode *inode, struct buffer_head *bh) 1908 { 1909 struct buffer_head *bh2; 1910 struct dx_root *root; 1911 struct dx_frame frames[2], *frame; 1912 struct dx_entry *entries; 1913 struct ext4_dir_entry_2 *de, *de2; 1914 struct ext4_dir_entry_tail *t; 1915 char *data1, *top; 1916 unsigned len; 1917 int retval; 1918 unsigned blocksize; 1919 ext4_lblk_t block; 1920 struct fake_dirent *fde; 1921 int csum_size = 0; 1922 1923 if (ext4_has_metadata_csum(inode->i_sb)) 1924 csum_size = sizeof(struct ext4_dir_entry_tail); 1925 1926 blocksize = dir->i_sb->s_blocksize; 1927 dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino)); 1928 BUFFER_TRACE(bh, "get_write_access"); 1929 retval = ext4_journal_get_write_access(handle, bh); 1930 if (retval) { 1931 ext4_std_error(dir->i_sb, retval); 1932 brelse(bh); 1933 return retval; 1934 } 1935 root = (struct dx_root *) bh->b_data; 1936 1937 /* The 0th block becomes the root, move the dirents out */ 1938 fde = &root->dotdot; 1939 de = (struct ext4_dir_entry_2 *)((char *)fde + 1940 ext4_rec_len_from_disk(fde->rec_len, blocksize)); 1941 if ((char *) de >= (((char *) root) + blocksize)) { 1942 EXT4_ERROR_INODE(dir, "invalid rec_len for '..'"); 1943 brelse(bh); 1944 return -EFSCORRUPTED; 1945 } 1946 len = ((char *) root) + (blocksize - csum_size) - (char *) de; 1947 1948 /* Allocate new block for the 0th block's dirents */ 1949 bh2 = ext4_append(handle, dir, &block); 1950 if (IS_ERR(bh2)) { 1951 brelse(bh); 1952 return PTR_ERR(bh2); 1953 } 1954 ext4_set_inode_flag(dir, EXT4_INODE_INDEX); 1955 data1 = bh2->b_data; 1956 1957 memcpy (data1, de, len); 1958 de = (struct ext4_dir_entry_2 *) data1; 1959 top = data1 + len; 1960 while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top) 1961 de = de2; 1962 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) - 1963 (char *) de, 1964 blocksize); 1965 1966 if (csum_size) { 1967 t = EXT4_DIRENT_TAIL(data1, blocksize); 1968 initialize_dirent_tail(t, blocksize); 1969 } 1970 1971 /* Initialize the root; the dot dirents already exist */ 1972 de = (struct ext4_dir_entry_2 *) (&root->dotdot); 1973 de->rec_len = ext4_rec_len_to_disk(blocksize - EXT4_DIR_REC_LEN(2), 1974 blocksize); 1975 memset (&root->info, 0, sizeof(root->info)); 1976 root->info.info_length = sizeof(root->info); 1977 root->info.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version; 1978 entries = root->entries; 1979 dx_set_block(entries, 1); 1980 dx_set_count(entries, 1); 1981 dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info))); 1982 1983 /* Initialize as for dx_probe */ 1984 fname->hinfo.hash_version = root->info.hash_version; 1985 if (fname->hinfo.hash_version <= DX_HASH_TEA) 1986 fname->hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 1987 fname->hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 1988 ext4fs_dirhash(fname_name(fname), fname_len(fname), &fname->hinfo); 1989 1990 memset(frames, 0, sizeof(frames)); 1991 frame = frames; 1992 frame->entries = entries; 1993 frame->at = entries; 1994 frame->bh = bh; 1995 1996 retval = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 1997 if (retval) 1998 goto out_frames; 1999 retval = ext4_handle_dirty_dirent_node(handle, dir, bh2); 2000 if (retval) 2001 goto out_frames; 2002 2003 de = do_split(handle,dir, &bh2, frame, &fname->hinfo); 2004 if (IS_ERR(de)) { 2005 retval = PTR_ERR(de); 2006 goto out_frames; 2007 } 2008 2009 retval = add_dirent_to_buf(handle, fname, dir, inode, de, bh2); 2010 out_frames: 2011 /* 2012 * Even if the block split failed, we have to properly write 2013 * out all the changes we did so far. Otherwise we can end up 2014 * with corrupted filesystem. 2015 */ 2016 if (retval) 2017 ext4_mark_inode_dirty(handle, dir); 2018 dx_release(frames); 2019 brelse(bh2); 2020 return retval; 2021 } 2022 2023 /* 2024 * ext4_add_entry() 2025 * 2026 * adds a file entry to the specified directory, using the same 2027 * semantics as ext4_find_entry(). It returns NULL if it failed. 2028 * 2029 * NOTE!! The inode part of 'de' is left at 0 - which means you 2030 * may not sleep between calling this and putting something into 2031 * the entry, as someone else might have used it while you slept. 2032 */ 2033 static int ext4_add_entry(handle_t *handle, struct dentry *dentry, 2034 struct inode *inode) 2035 { 2036 struct inode *dir = d_inode(dentry->d_parent); 2037 struct buffer_head *bh = NULL; 2038 struct ext4_dir_entry_2 *de; 2039 struct ext4_dir_entry_tail *t; 2040 struct super_block *sb; 2041 struct ext4_filename fname; 2042 int retval; 2043 int dx_fallback=0; 2044 unsigned blocksize; 2045 ext4_lblk_t block, blocks; 2046 int csum_size = 0; 2047 2048 if (ext4_has_metadata_csum(inode->i_sb)) 2049 csum_size = sizeof(struct ext4_dir_entry_tail); 2050 2051 sb = dir->i_sb; 2052 blocksize = sb->s_blocksize; 2053 if (!dentry->d_name.len) 2054 return -EINVAL; 2055 2056 retval = ext4_fname_setup_filename(dir, &dentry->d_name, 0, &fname); 2057 if (retval) 2058 return retval; 2059 2060 if (ext4_has_inline_data(dir)) { 2061 retval = ext4_try_add_inline_entry(handle, &fname, dir, inode); 2062 if (retval < 0) 2063 goto out; 2064 if (retval == 1) { 2065 retval = 0; 2066 goto out; 2067 } 2068 } 2069 2070 if (is_dx(dir)) { 2071 retval = ext4_dx_add_entry(handle, &fname, dir, inode); 2072 if (!retval || (retval != ERR_BAD_DX_DIR)) 2073 goto out; 2074 ext4_clear_inode_flag(dir, EXT4_INODE_INDEX); 2075 dx_fallback++; 2076 ext4_mark_inode_dirty(handle, dir); 2077 } 2078 blocks = dir->i_size >> sb->s_blocksize_bits; 2079 for (block = 0; block < blocks; block++) { 2080 bh = ext4_read_dirblock(dir, block, DIRENT); 2081 if (IS_ERR(bh)) { 2082 retval = PTR_ERR(bh); 2083 bh = NULL; 2084 goto out; 2085 } 2086 retval = add_dirent_to_buf(handle, &fname, dir, inode, 2087 NULL, bh); 2088 if (retval != -ENOSPC) 2089 goto out; 2090 2091 if (blocks == 1 && !dx_fallback && 2092 ext4_has_feature_dir_index(sb)) { 2093 retval = make_indexed_dir(handle, &fname, dir, 2094 inode, bh); 2095 bh = NULL; /* make_indexed_dir releases bh */ 2096 goto out; 2097 } 2098 brelse(bh); 2099 } 2100 bh = ext4_append(handle, dir, &block); 2101 if (IS_ERR(bh)) { 2102 retval = PTR_ERR(bh); 2103 bh = NULL; 2104 goto out; 2105 } 2106 de = (struct ext4_dir_entry_2 *) bh->b_data; 2107 de->inode = 0; 2108 de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize); 2109 2110 if (csum_size) { 2111 t = EXT4_DIRENT_TAIL(bh->b_data, blocksize); 2112 initialize_dirent_tail(t, blocksize); 2113 } 2114 2115 retval = add_dirent_to_buf(handle, &fname, dir, inode, de, bh); 2116 out: 2117 ext4_fname_free_filename(&fname); 2118 brelse(bh); 2119 if (retval == 0) 2120 ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY); 2121 return retval; 2122 } 2123 2124 /* 2125 * Returns 0 for success, or a negative error value 2126 */ 2127 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 2128 struct inode *dir, struct inode *inode) 2129 { 2130 struct dx_frame frames[2], *frame; 2131 struct dx_entry *entries, *at; 2132 struct buffer_head *bh; 2133 struct super_block *sb = dir->i_sb; 2134 struct ext4_dir_entry_2 *de; 2135 int err; 2136 2137 frame = dx_probe(fname, dir, NULL, frames); 2138 if (IS_ERR(frame)) 2139 return PTR_ERR(frame); 2140 entries = frame->entries; 2141 at = frame->at; 2142 bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT); 2143 if (IS_ERR(bh)) { 2144 err = PTR_ERR(bh); 2145 bh = NULL; 2146 goto cleanup; 2147 } 2148 2149 BUFFER_TRACE(bh, "get_write_access"); 2150 err = ext4_journal_get_write_access(handle, bh); 2151 if (err) 2152 goto journal_error; 2153 2154 err = add_dirent_to_buf(handle, fname, dir, inode, NULL, bh); 2155 if (err != -ENOSPC) 2156 goto cleanup; 2157 2158 /* Block full, should compress but for now just split */ 2159 dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n", 2160 dx_get_count(entries), dx_get_limit(entries))); 2161 /* Need to split index? */ 2162 if (dx_get_count(entries) == dx_get_limit(entries)) { 2163 ext4_lblk_t newblock; 2164 unsigned icount = dx_get_count(entries); 2165 int levels = frame - frames; 2166 struct dx_entry *entries2; 2167 struct dx_node *node2; 2168 struct buffer_head *bh2; 2169 2170 if (levels && (dx_get_count(frames->entries) == 2171 dx_get_limit(frames->entries))) { 2172 ext4_warning_inode(dir, "Directory index full!"); 2173 err = -ENOSPC; 2174 goto cleanup; 2175 } 2176 bh2 = ext4_append(handle, dir, &newblock); 2177 if (IS_ERR(bh2)) { 2178 err = PTR_ERR(bh2); 2179 goto cleanup; 2180 } 2181 node2 = (struct dx_node *)(bh2->b_data); 2182 entries2 = node2->entries; 2183 memset(&node2->fake, 0, sizeof(struct fake_dirent)); 2184 node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize, 2185 sb->s_blocksize); 2186 BUFFER_TRACE(frame->bh, "get_write_access"); 2187 err = ext4_journal_get_write_access(handle, frame->bh); 2188 if (err) 2189 goto journal_error; 2190 if (levels) { 2191 unsigned icount1 = icount/2, icount2 = icount - icount1; 2192 unsigned hash2 = dx_get_hash(entries + icount1); 2193 dxtrace(printk(KERN_DEBUG "Split index %i/%i\n", 2194 icount1, icount2)); 2195 2196 BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */ 2197 err = ext4_journal_get_write_access(handle, 2198 frames[0].bh); 2199 if (err) 2200 goto journal_error; 2201 2202 memcpy((char *) entries2, (char *) (entries + icount1), 2203 icount2 * sizeof(struct dx_entry)); 2204 dx_set_count(entries, icount1); 2205 dx_set_count(entries2, icount2); 2206 dx_set_limit(entries2, dx_node_limit(dir)); 2207 2208 /* Which index block gets the new entry? */ 2209 if (at - entries >= icount1) { 2210 frame->at = at = at - entries - icount1 + entries2; 2211 frame->entries = entries = entries2; 2212 swap(frame->bh, bh2); 2213 } 2214 dx_insert_block(frames + 0, hash2, newblock); 2215 dxtrace(dx_show_index("node", frames[1].entries)); 2216 dxtrace(dx_show_index("node", 2217 ((struct dx_node *) bh2->b_data)->entries)); 2218 err = ext4_handle_dirty_dx_node(handle, dir, bh2); 2219 if (err) 2220 goto journal_error; 2221 brelse (bh2); 2222 } else { 2223 dxtrace(printk(KERN_DEBUG 2224 "Creating second level index...\n")); 2225 memcpy((char *) entries2, (char *) entries, 2226 icount * sizeof(struct dx_entry)); 2227 dx_set_limit(entries2, dx_node_limit(dir)); 2228 2229 /* Set up root */ 2230 dx_set_count(entries, 1); 2231 dx_set_block(entries + 0, newblock); 2232 ((struct dx_root *) frames[0].bh->b_data)->info.indirect_levels = 1; 2233 2234 /* Add new access path frame */ 2235 frame = frames + 1; 2236 frame->at = at = at - entries + entries2; 2237 frame->entries = entries = entries2; 2238 frame->bh = bh2; 2239 err = ext4_journal_get_write_access(handle, 2240 frame->bh); 2241 if (err) 2242 goto journal_error; 2243 } 2244 err = ext4_handle_dirty_dx_node(handle, dir, frames[0].bh); 2245 if (err) { 2246 ext4_std_error(inode->i_sb, err); 2247 goto cleanup; 2248 } 2249 } 2250 de = do_split(handle, dir, &bh, frame, &fname->hinfo); 2251 if (IS_ERR(de)) { 2252 err = PTR_ERR(de); 2253 goto cleanup; 2254 } 2255 err = add_dirent_to_buf(handle, fname, dir, inode, de, bh); 2256 goto cleanup; 2257 2258 journal_error: 2259 ext4_std_error(dir->i_sb, err); 2260 cleanup: 2261 brelse(bh); 2262 dx_release(frames); 2263 return err; 2264 } 2265 2266 /* 2267 * ext4_generic_delete_entry deletes a directory entry by merging it 2268 * with the previous entry 2269 */ 2270 int ext4_generic_delete_entry(handle_t *handle, 2271 struct inode *dir, 2272 struct ext4_dir_entry_2 *de_del, 2273 struct buffer_head *bh, 2274 void *entry_buf, 2275 int buf_size, 2276 int csum_size) 2277 { 2278 struct ext4_dir_entry_2 *de, *pde; 2279 unsigned int blocksize = dir->i_sb->s_blocksize; 2280 int i; 2281 2282 i = 0; 2283 pde = NULL; 2284 de = (struct ext4_dir_entry_2 *)entry_buf; 2285 while (i < buf_size - csum_size) { 2286 if (ext4_check_dir_entry(dir, NULL, de, bh, 2287 bh->b_data, bh->b_size, i)) 2288 return -EFSCORRUPTED; 2289 if (de == de_del) { 2290 if (pde) 2291 pde->rec_len = ext4_rec_len_to_disk( 2292 ext4_rec_len_from_disk(pde->rec_len, 2293 blocksize) + 2294 ext4_rec_len_from_disk(de->rec_len, 2295 blocksize), 2296 blocksize); 2297 else 2298 de->inode = 0; 2299 dir->i_version++; 2300 return 0; 2301 } 2302 i += ext4_rec_len_from_disk(de->rec_len, blocksize); 2303 pde = de; 2304 de = ext4_next_entry(de, blocksize); 2305 } 2306 return -ENOENT; 2307 } 2308 2309 static int ext4_delete_entry(handle_t *handle, 2310 struct inode *dir, 2311 struct ext4_dir_entry_2 *de_del, 2312 struct buffer_head *bh) 2313 { 2314 int err, csum_size = 0; 2315 2316 if (ext4_has_inline_data(dir)) { 2317 int has_inline_data = 1; 2318 err = ext4_delete_inline_entry(handle, dir, de_del, bh, 2319 &has_inline_data); 2320 if (has_inline_data) 2321 return err; 2322 } 2323 2324 if (ext4_has_metadata_csum(dir->i_sb)) 2325 csum_size = sizeof(struct ext4_dir_entry_tail); 2326 2327 BUFFER_TRACE(bh, "get_write_access"); 2328 err = ext4_journal_get_write_access(handle, bh); 2329 if (unlikely(err)) 2330 goto out; 2331 2332 err = ext4_generic_delete_entry(handle, dir, de_del, 2333 bh, bh->b_data, 2334 dir->i_sb->s_blocksize, csum_size); 2335 if (err) 2336 goto out; 2337 2338 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 2339 err = ext4_handle_dirty_dirent_node(handle, dir, bh); 2340 if (unlikely(err)) 2341 goto out; 2342 2343 return 0; 2344 out: 2345 if (err != -ENOENT) 2346 ext4_std_error(dir->i_sb, err); 2347 return err; 2348 } 2349 2350 /* 2351 * DIR_NLINK feature is set if 1) nlinks > EXT4_LINK_MAX or 2) nlinks == 2, 2352 * since this indicates that nlinks count was previously 1. 2353 */ 2354 static void ext4_inc_count(handle_t *handle, struct inode *inode) 2355 { 2356 inc_nlink(inode); 2357 if (is_dx(inode) && inode->i_nlink > 1) { 2358 /* limit is 16-bit i_links_count */ 2359 if (inode->i_nlink >= EXT4_LINK_MAX || inode->i_nlink == 2) { 2360 set_nlink(inode, 1); 2361 ext4_set_feature_dir_nlink(inode->i_sb); 2362 } 2363 } 2364 } 2365 2366 /* 2367 * If a directory had nlink == 1, then we should let it be 1. This indicates 2368 * directory has >EXT4_LINK_MAX subdirs. 2369 */ 2370 static void ext4_dec_count(handle_t *handle, struct inode *inode) 2371 { 2372 if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2) 2373 drop_nlink(inode); 2374 } 2375 2376 2377 static int ext4_add_nondir(handle_t *handle, 2378 struct dentry *dentry, struct inode *inode) 2379 { 2380 int err = ext4_add_entry(handle, dentry, inode); 2381 if (!err) { 2382 ext4_mark_inode_dirty(handle, inode); 2383 unlock_new_inode(inode); 2384 d_instantiate(dentry, inode); 2385 return 0; 2386 } 2387 drop_nlink(inode); 2388 unlock_new_inode(inode); 2389 iput(inode); 2390 return err; 2391 } 2392 2393 /* 2394 * By the time this is called, we already have created 2395 * the directory cache entry for the new file, but it 2396 * is so far negative - it has no inode. 2397 * 2398 * If the create succeeds, we fill in the inode information 2399 * with d_instantiate(). 2400 */ 2401 static int ext4_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2402 bool excl) 2403 { 2404 handle_t *handle; 2405 struct inode *inode; 2406 int err, credits, retries = 0; 2407 2408 err = dquot_initialize(dir); 2409 if (err) 2410 return err; 2411 2412 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2413 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2414 retry: 2415 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0, 2416 NULL, EXT4_HT_DIR, credits); 2417 handle = ext4_journal_current_handle(); 2418 err = PTR_ERR(inode); 2419 if (!IS_ERR(inode)) { 2420 inode->i_op = &ext4_file_inode_operations; 2421 inode->i_fop = &ext4_file_operations; 2422 ext4_set_aops(inode); 2423 err = ext4_add_nondir(handle, dentry, inode); 2424 if (!err && IS_DIRSYNC(dir)) 2425 ext4_handle_sync(handle); 2426 } 2427 if (handle) 2428 ext4_journal_stop(handle); 2429 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2430 goto retry; 2431 return err; 2432 } 2433 2434 static int ext4_mknod(struct inode *dir, struct dentry *dentry, 2435 umode_t mode, dev_t rdev) 2436 { 2437 handle_t *handle; 2438 struct inode *inode; 2439 int err, credits, retries = 0; 2440 2441 err = dquot_initialize(dir); 2442 if (err) 2443 return err; 2444 2445 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2446 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2447 retry: 2448 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0, 2449 NULL, EXT4_HT_DIR, credits); 2450 handle = ext4_journal_current_handle(); 2451 err = PTR_ERR(inode); 2452 if (!IS_ERR(inode)) { 2453 init_special_inode(inode, inode->i_mode, rdev); 2454 inode->i_op = &ext4_special_inode_operations; 2455 err = ext4_add_nondir(handle, dentry, inode); 2456 if (!err && IS_DIRSYNC(dir)) 2457 ext4_handle_sync(handle); 2458 } 2459 if (handle) 2460 ext4_journal_stop(handle); 2461 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2462 goto retry; 2463 return err; 2464 } 2465 2466 static int ext4_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2467 { 2468 handle_t *handle; 2469 struct inode *inode; 2470 int err, retries = 0; 2471 2472 err = dquot_initialize(dir); 2473 if (err) 2474 return err; 2475 2476 retry: 2477 inode = ext4_new_inode_start_handle(dir, mode, 2478 NULL, 0, NULL, 2479 EXT4_HT_DIR, 2480 EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 2481 4 + EXT4_XATTR_TRANS_BLOCKS); 2482 handle = ext4_journal_current_handle(); 2483 err = PTR_ERR(inode); 2484 if (!IS_ERR(inode)) { 2485 inode->i_op = &ext4_file_inode_operations; 2486 inode->i_fop = &ext4_file_operations; 2487 ext4_set_aops(inode); 2488 d_tmpfile(dentry, inode); 2489 err = ext4_orphan_add(handle, inode); 2490 if (err) 2491 goto err_unlock_inode; 2492 mark_inode_dirty(inode); 2493 unlock_new_inode(inode); 2494 } 2495 if (handle) 2496 ext4_journal_stop(handle); 2497 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2498 goto retry; 2499 return err; 2500 err_unlock_inode: 2501 ext4_journal_stop(handle); 2502 unlock_new_inode(inode); 2503 return err; 2504 } 2505 2506 struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode, 2507 struct ext4_dir_entry_2 *de, 2508 int blocksize, int csum_size, 2509 unsigned int parent_ino, int dotdot_real_len) 2510 { 2511 de->inode = cpu_to_le32(inode->i_ino); 2512 de->name_len = 1; 2513 de->rec_len = ext4_rec_len_to_disk(EXT4_DIR_REC_LEN(de->name_len), 2514 blocksize); 2515 strcpy(de->name, "."); 2516 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2517 2518 de = ext4_next_entry(de, blocksize); 2519 de->inode = cpu_to_le32(parent_ino); 2520 de->name_len = 2; 2521 if (!dotdot_real_len) 2522 de->rec_len = ext4_rec_len_to_disk(blocksize - 2523 (csum_size + EXT4_DIR_REC_LEN(1)), 2524 blocksize); 2525 else 2526 de->rec_len = ext4_rec_len_to_disk( 2527 EXT4_DIR_REC_LEN(de->name_len), blocksize); 2528 strcpy(de->name, ".."); 2529 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2530 2531 return ext4_next_entry(de, blocksize); 2532 } 2533 2534 static int ext4_init_new_dir(handle_t *handle, struct inode *dir, 2535 struct inode *inode) 2536 { 2537 struct buffer_head *dir_block = NULL; 2538 struct ext4_dir_entry_2 *de; 2539 struct ext4_dir_entry_tail *t; 2540 ext4_lblk_t block = 0; 2541 unsigned int blocksize = dir->i_sb->s_blocksize; 2542 int csum_size = 0; 2543 int err; 2544 2545 if (ext4_has_metadata_csum(dir->i_sb)) 2546 csum_size = sizeof(struct ext4_dir_entry_tail); 2547 2548 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2549 err = ext4_try_create_inline_dir(handle, dir, inode); 2550 if (err < 0 && err != -ENOSPC) 2551 goto out; 2552 if (!err) 2553 goto out; 2554 } 2555 2556 inode->i_size = 0; 2557 dir_block = ext4_append(handle, inode, &block); 2558 if (IS_ERR(dir_block)) 2559 return PTR_ERR(dir_block); 2560 de = (struct ext4_dir_entry_2 *)dir_block->b_data; 2561 ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0); 2562 set_nlink(inode, 2); 2563 if (csum_size) { 2564 t = EXT4_DIRENT_TAIL(dir_block->b_data, blocksize); 2565 initialize_dirent_tail(t, blocksize); 2566 } 2567 2568 BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata"); 2569 err = ext4_handle_dirty_dirent_node(handle, inode, dir_block); 2570 if (err) 2571 goto out; 2572 set_buffer_verified(dir_block); 2573 out: 2574 brelse(dir_block); 2575 return err; 2576 } 2577 2578 static int ext4_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2579 { 2580 handle_t *handle; 2581 struct inode *inode; 2582 int err, credits, retries = 0; 2583 2584 if (EXT4_DIR_LINK_MAX(dir)) 2585 return -EMLINK; 2586 2587 err = dquot_initialize(dir); 2588 if (err) 2589 return err; 2590 2591 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2592 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2593 retry: 2594 inode = ext4_new_inode_start_handle(dir, S_IFDIR | mode, 2595 &dentry->d_name, 2596 0, NULL, EXT4_HT_DIR, credits); 2597 handle = ext4_journal_current_handle(); 2598 err = PTR_ERR(inode); 2599 if (IS_ERR(inode)) 2600 goto out_stop; 2601 2602 inode->i_op = &ext4_dir_inode_operations; 2603 inode->i_fop = &ext4_dir_operations; 2604 err = ext4_init_new_dir(handle, dir, inode); 2605 if (err) 2606 goto out_clear_inode; 2607 err = ext4_mark_inode_dirty(handle, inode); 2608 if (!err) 2609 err = ext4_add_entry(handle, dentry, inode); 2610 if (err) { 2611 out_clear_inode: 2612 clear_nlink(inode); 2613 unlock_new_inode(inode); 2614 ext4_mark_inode_dirty(handle, inode); 2615 iput(inode); 2616 goto out_stop; 2617 } 2618 ext4_inc_count(handle, dir); 2619 ext4_update_dx_flag(dir); 2620 err = ext4_mark_inode_dirty(handle, dir); 2621 if (err) 2622 goto out_clear_inode; 2623 unlock_new_inode(inode); 2624 d_instantiate(dentry, inode); 2625 if (IS_DIRSYNC(dir)) 2626 ext4_handle_sync(handle); 2627 2628 out_stop: 2629 if (handle) 2630 ext4_journal_stop(handle); 2631 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2632 goto retry; 2633 return err; 2634 } 2635 2636 /* 2637 * routine to check that the specified directory is empty (for rmdir) 2638 */ 2639 bool ext4_empty_dir(struct inode *inode) 2640 { 2641 unsigned int offset; 2642 struct buffer_head *bh; 2643 struct ext4_dir_entry_2 *de, *de1; 2644 struct super_block *sb; 2645 2646 if (ext4_has_inline_data(inode)) { 2647 int has_inline_data = 1; 2648 int ret; 2649 2650 ret = empty_inline_dir(inode, &has_inline_data); 2651 if (has_inline_data) 2652 return ret; 2653 } 2654 2655 sb = inode->i_sb; 2656 if (inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)) { 2657 EXT4_ERROR_INODE(inode, "invalid size"); 2658 return true; 2659 } 2660 bh = ext4_read_dirblock(inode, 0, EITHER); 2661 if (IS_ERR(bh)) 2662 return true; 2663 2664 de = (struct ext4_dir_entry_2 *) bh->b_data; 2665 de1 = ext4_next_entry(de, sb->s_blocksize); 2666 if (le32_to_cpu(de->inode) != inode->i_ino || 2667 le32_to_cpu(de1->inode) == 0 || 2668 strcmp(".", de->name) || strcmp("..", de1->name)) { 2669 ext4_warning_inode(inode, "directory missing '.' and/or '..'"); 2670 brelse(bh); 2671 return true; 2672 } 2673 offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) + 2674 ext4_rec_len_from_disk(de1->rec_len, sb->s_blocksize); 2675 de = ext4_next_entry(de1, sb->s_blocksize); 2676 while (offset < inode->i_size) { 2677 if ((void *) de >= (void *) (bh->b_data+sb->s_blocksize)) { 2678 unsigned int lblock; 2679 brelse(bh); 2680 lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb); 2681 bh = ext4_read_dirblock(inode, lblock, EITHER); 2682 if (IS_ERR(bh)) 2683 return true; 2684 de = (struct ext4_dir_entry_2 *) bh->b_data; 2685 } 2686 if (ext4_check_dir_entry(inode, NULL, de, bh, 2687 bh->b_data, bh->b_size, offset)) { 2688 de = (struct ext4_dir_entry_2 *)(bh->b_data + 2689 sb->s_blocksize); 2690 offset = (offset | (sb->s_blocksize - 1)) + 1; 2691 continue; 2692 } 2693 if (le32_to_cpu(de->inode)) { 2694 brelse(bh); 2695 return false; 2696 } 2697 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize); 2698 de = ext4_next_entry(de, sb->s_blocksize); 2699 } 2700 brelse(bh); 2701 return true; 2702 } 2703 2704 /* 2705 * ext4_orphan_add() links an unlinked or truncated inode into a list of 2706 * such inodes, starting at the superblock, in case we crash before the 2707 * file is closed/deleted, or in case the inode truncate spans multiple 2708 * transactions and the last transaction is not recovered after a crash. 2709 * 2710 * At filesystem recovery time, we walk this list deleting unlinked 2711 * inodes and truncating linked inodes in ext4_orphan_cleanup(). 2712 * 2713 * Orphan list manipulation functions must be called under i_mutex unless 2714 * we are just creating the inode or deleting it. 2715 */ 2716 int ext4_orphan_add(handle_t *handle, struct inode *inode) 2717 { 2718 struct super_block *sb = inode->i_sb; 2719 struct ext4_sb_info *sbi = EXT4_SB(sb); 2720 struct ext4_iloc iloc; 2721 int err = 0, rc; 2722 bool dirty = false; 2723 2724 if (!sbi->s_journal || is_bad_inode(inode)) 2725 return 0; 2726 2727 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 2728 !inode_is_locked(inode)); 2729 /* 2730 * Exit early if inode already is on orphan list. This is a big speedup 2731 * since we don't have to contend on the global s_orphan_lock. 2732 */ 2733 if (!list_empty(&EXT4_I(inode)->i_orphan)) 2734 return 0; 2735 2736 /* 2737 * Orphan handling is only valid for files with data blocks 2738 * being truncated, or files being unlinked. Note that we either 2739 * hold i_mutex, or the inode can not be referenced from outside, 2740 * so i_nlink should not be bumped due to race 2741 */ 2742 J_ASSERT((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2743 S_ISLNK(inode->i_mode)) || inode->i_nlink == 0); 2744 2745 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 2746 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 2747 if (err) 2748 goto out; 2749 2750 err = ext4_reserve_inode_write(handle, inode, &iloc); 2751 if (err) 2752 goto out; 2753 2754 mutex_lock(&sbi->s_orphan_lock); 2755 /* 2756 * Due to previous errors inode may be already a part of on-disk 2757 * orphan list. If so skip on-disk list modification. 2758 */ 2759 if (!NEXT_ORPHAN(inode) || NEXT_ORPHAN(inode) > 2760 (le32_to_cpu(sbi->s_es->s_inodes_count))) { 2761 /* Insert this inode at the head of the on-disk orphan list */ 2762 NEXT_ORPHAN(inode) = le32_to_cpu(sbi->s_es->s_last_orphan); 2763 sbi->s_es->s_last_orphan = cpu_to_le32(inode->i_ino); 2764 dirty = true; 2765 } 2766 list_add(&EXT4_I(inode)->i_orphan, &sbi->s_orphan); 2767 mutex_unlock(&sbi->s_orphan_lock); 2768 2769 if (dirty) { 2770 err = ext4_handle_dirty_super(handle, sb); 2771 rc = ext4_mark_iloc_dirty(handle, inode, &iloc); 2772 if (!err) 2773 err = rc; 2774 if (err) { 2775 /* 2776 * We have to remove inode from in-memory list if 2777 * addition to on disk orphan list failed. Stray orphan 2778 * list entries can cause panics at unmount time. 2779 */ 2780 mutex_lock(&sbi->s_orphan_lock); 2781 list_del_init(&EXT4_I(inode)->i_orphan); 2782 mutex_unlock(&sbi->s_orphan_lock); 2783 } 2784 } 2785 jbd_debug(4, "superblock will point to %lu\n", inode->i_ino); 2786 jbd_debug(4, "orphan inode %lu will point to %d\n", 2787 inode->i_ino, NEXT_ORPHAN(inode)); 2788 out: 2789 ext4_std_error(sb, err); 2790 return err; 2791 } 2792 2793 /* 2794 * ext4_orphan_del() removes an unlinked or truncated inode from the list 2795 * of such inodes stored on disk, because it is finally being cleaned up. 2796 */ 2797 int ext4_orphan_del(handle_t *handle, struct inode *inode) 2798 { 2799 struct list_head *prev; 2800 struct ext4_inode_info *ei = EXT4_I(inode); 2801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2802 __u32 ino_next; 2803 struct ext4_iloc iloc; 2804 int err = 0; 2805 2806 if (!sbi->s_journal && !(sbi->s_mount_state & EXT4_ORPHAN_FS)) 2807 return 0; 2808 2809 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 2810 !inode_is_locked(inode)); 2811 /* Do this quick check before taking global s_orphan_lock. */ 2812 if (list_empty(&ei->i_orphan)) 2813 return 0; 2814 2815 if (handle) { 2816 /* Grab inode buffer early before taking global s_orphan_lock */ 2817 err = ext4_reserve_inode_write(handle, inode, &iloc); 2818 } 2819 2820 mutex_lock(&sbi->s_orphan_lock); 2821 jbd_debug(4, "remove inode %lu from orphan list\n", inode->i_ino); 2822 2823 prev = ei->i_orphan.prev; 2824 list_del_init(&ei->i_orphan); 2825 2826 /* If we're on an error path, we may not have a valid 2827 * transaction handle with which to update the orphan list on 2828 * disk, but we still need to remove the inode from the linked 2829 * list in memory. */ 2830 if (!handle || err) { 2831 mutex_unlock(&sbi->s_orphan_lock); 2832 goto out_err; 2833 } 2834 2835 ino_next = NEXT_ORPHAN(inode); 2836 if (prev == &sbi->s_orphan) { 2837 jbd_debug(4, "superblock will point to %u\n", ino_next); 2838 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 2839 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 2840 if (err) { 2841 mutex_unlock(&sbi->s_orphan_lock); 2842 goto out_brelse; 2843 } 2844 sbi->s_es->s_last_orphan = cpu_to_le32(ino_next); 2845 mutex_unlock(&sbi->s_orphan_lock); 2846 err = ext4_handle_dirty_super(handle, inode->i_sb); 2847 } else { 2848 struct ext4_iloc iloc2; 2849 struct inode *i_prev = 2850 &list_entry(prev, struct ext4_inode_info, i_orphan)->vfs_inode; 2851 2852 jbd_debug(4, "orphan inode %lu will point to %u\n", 2853 i_prev->i_ino, ino_next); 2854 err = ext4_reserve_inode_write(handle, i_prev, &iloc2); 2855 if (err) { 2856 mutex_unlock(&sbi->s_orphan_lock); 2857 goto out_brelse; 2858 } 2859 NEXT_ORPHAN(i_prev) = ino_next; 2860 err = ext4_mark_iloc_dirty(handle, i_prev, &iloc2); 2861 mutex_unlock(&sbi->s_orphan_lock); 2862 } 2863 if (err) 2864 goto out_brelse; 2865 NEXT_ORPHAN(inode) = 0; 2866 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 2867 out_err: 2868 ext4_std_error(inode->i_sb, err); 2869 return err; 2870 2871 out_brelse: 2872 brelse(iloc.bh); 2873 goto out_err; 2874 } 2875 2876 static int ext4_rmdir(struct inode *dir, struct dentry *dentry) 2877 { 2878 int retval; 2879 struct inode *inode; 2880 struct buffer_head *bh; 2881 struct ext4_dir_entry_2 *de; 2882 handle_t *handle = NULL; 2883 2884 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 2885 return -EIO; 2886 2887 /* Initialize quotas before so that eventual writes go in 2888 * separate transaction */ 2889 retval = dquot_initialize(dir); 2890 if (retval) 2891 return retval; 2892 retval = dquot_initialize(d_inode(dentry)); 2893 if (retval) 2894 return retval; 2895 2896 retval = -ENOENT; 2897 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 2898 if (IS_ERR(bh)) 2899 return PTR_ERR(bh); 2900 if (!bh) 2901 goto end_rmdir; 2902 2903 inode = d_inode(dentry); 2904 2905 retval = -EFSCORRUPTED; 2906 if (le32_to_cpu(de->inode) != inode->i_ino) 2907 goto end_rmdir; 2908 2909 retval = -ENOTEMPTY; 2910 if (!ext4_empty_dir(inode)) 2911 goto end_rmdir; 2912 2913 handle = ext4_journal_start(dir, EXT4_HT_DIR, 2914 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 2915 if (IS_ERR(handle)) { 2916 retval = PTR_ERR(handle); 2917 handle = NULL; 2918 goto end_rmdir; 2919 } 2920 2921 if (IS_DIRSYNC(dir)) 2922 ext4_handle_sync(handle); 2923 2924 retval = ext4_delete_entry(handle, dir, de, bh); 2925 if (retval) 2926 goto end_rmdir; 2927 if (!EXT4_DIR_LINK_EMPTY(inode)) 2928 ext4_warning_inode(inode, 2929 "empty directory '%.*s' has too many links (%u)", 2930 dentry->d_name.len, dentry->d_name.name, 2931 inode->i_nlink); 2932 inode->i_version++; 2933 clear_nlink(inode); 2934 /* There's no need to set i_disksize: the fact that i_nlink is 2935 * zero will ensure that the right thing happens during any 2936 * recovery. */ 2937 inode->i_size = 0; 2938 ext4_orphan_add(handle, inode); 2939 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2940 ext4_mark_inode_dirty(handle, inode); 2941 ext4_dec_count(handle, dir); 2942 ext4_update_dx_flag(dir); 2943 ext4_mark_inode_dirty(handle, dir); 2944 2945 end_rmdir: 2946 brelse(bh); 2947 if (handle) 2948 ext4_journal_stop(handle); 2949 return retval; 2950 } 2951 2952 static int ext4_unlink(struct inode *dir, struct dentry *dentry) 2953 { 2954 int retval; 2955 struct inode *inode; 2956 struct buffer_head *bh; 2957 struct ext4_dir_entry_2 *de; 2958 handle_t *handle = NULL; 2959 2960 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 2961 return -EIO; 2962 2963 trace_ext4_unlink_enter(dir, dentry); 2964 /* Initialize quotas before so that eventual writes go 2965 * in separate transaction */ 2966 retval = dquot_initialize(dir); 2967 if (retval) 2968 return retval; 2969 retval = dquot_initialize(d_inode(dentry)); 2970 if (retval) 2971 return retval; 2972 2973 retval = -ENOENT; 2974 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 2975 if (IS_ERR(bh)) 2976 return PTR_ERR(bh); 2977 if (!bh) 2978 goto end_unlink; 2979 2980 inode = d_inode(dentry); 2981 2982 retval = -EFSCORRUPTED; 2983 if (le32_to_cpu(de->inode) != inode->i_ino) 2984 goto end_unlink; 2985 2986 handle = ext4_journal_start(dir, EXT4_HT_DIR, 2987 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 2988 if (IS_ERR(handle)) { 2989 retval = PTR_ERR(handle); 2990 handle = NULL; 2991 goto end_unlink; 2992 } 2993 2994 if (IS_DIRSYNC(dir)) 2995 ext4_handle_sync(handle); 2996 2997 if (inode->i_nlink == 0) { 2998 ext4_warning_inode(inode, "Deleting file '%.*s' with no links", 2999 dentry->d_name.len, dentry->d_name.name); 3000 set_nlink(inode, 1); 3001 } 3002 retval = ext4_delete_entry(handle, dir, de, bh); 3003 if (retval) 3004 goto end_unlink; 3005 dir->i_ctime = dir->i_mtime = current_time(dir); 3006 ext4_update_dx_flag(dir); 3007 ext4_mark_inode_dirty(handle, dir); 3008 drop_nlink(inode); 3009 if (!inode->i_nlink) 3010 ext4_orphan_add(handle, inode); 3011 inode->i_ctime = current_time(inode); 3012 ext4_mark_inode_dirty(handle, inode); 3013 3014 end_unlink: 3015 brelse(bh); 3016 if (handle) 3017 ext4_journal_stop(handle); 3018 trace_ext4_unlink_exit(dentry, retval); 3019 return retval; 3020 } 3021 3022 static int ext4_symlink(struct inode *dir, 3023 struct dentry *dentry, const char *symname) 3024 { 3025 handle_t *handle; 3026 struct inode *inode; 3027 int err, len = strlen(symname); 3028 int credits; 3029 bool encryption_required; 3030 struct fscrypt_str disk_link; 3031 struct fscrypt_symlink_data *sd = NULL; 3032 3033 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 3034 return -EIO; 3035 3036 disk_link.len = len + 1; 3037 disk_link.name = (char *) symname; 3038 3039 encryption_required = (ext4_encrypted_inode(dir) || 3040 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))); 3041 if (encryption_required) { 3042 err = fscrypt_get_encryption_info(dir); 3043 if (err) 3044 return err; 3045 if (!fscrypt_has_encryption_key(dir)) 3046 return -ENOKEY; 3047 disk_link.len = (fscrypt_fname_encrypted_size(dir, len) + 3048 sizeof(struct fscrypt_symlink_data)); 3049 sd = kzalloc(disk_link.len, GFP_KERNEL); 3050 if (!sd) 3051 return -ENOMEM; 3052 } 3053 3054 if (disk_link.len > dir->i_sb->s_blocksize) { 3055 err = -ENAMETOOLONG; 3056 goto err_free_sd; 3057 } 3058 3059 err = dquot_initialize(dir); 3060 if (err) 3061 goto err_free_sd; 3062 3063 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3064 /* 3065 * For non-fast symlinks, we just allocate inode and put it on 3066 * orphan list in the first transaction => we need bitmap, 3067 * group descriptor, sb, inode block, quota blocks, and 3068 * possibly selinux xattr blocks. 3069 */ 3070 credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 3071 EXT4_XATTR_TRANS_BLOCKS; 3072 } else { 3073 /* 3074 * Fast symlink. We have to add entry to directory 3075 * (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS), 3076 * allocate new inode (bitmap, group descriptor, inode block, 3077 * quota blocks, sb is already counted in previous macros). 3078 */ 3079 credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3080 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3; 3081 } 3082 3083 inode = ext4_new_inode_start_handle(dir, S_IFLNK|S_IRWXUGO, 3084 &dentry->d_name, 0, NULL, 3085 EXT4_HT_DIR, credits); 3086 handle = ext4_journal_current_handle(); 3087 if (IS_ERR(inode)) { 3088 if (handle) 3089 ext4_journal_stop(handle); 3090 err = PTR_ERR(inode); 3091 goto err_free_sd; 3092 } 3093 3094 if (encryption_required) { 3095 struct qstr istr; 3096 struct fscrypt_str ostr = 3097 FSTR_INIT(sd->encrypted_path, disk_link.len); 3098 3099 istr.name = (const unsigned char *) symname; 3100 istr.len = len; 3101 err = fscrypt_fname_usr_to_disk(inode, &istr, &ostr); 3102 if (err) 3103 goto err_drop_inode; 3104 sd->len = cpu_to_le16(ostr.len); 3105 disk_link.name = (char *) sd; 3106 inode->i_op = &ext4_encrypted_symlink_inode_operations; 3107 } 3108 3109 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3110 if (!encryption_required) 3111 inode->i_op = &ext4_symlink_inode_operations; 3112 inode_nohighmem(inode); 3113 ext4_set_aops(inode); 3114 /* 3115 * We cannot call page_symlink() with transaction started 3116 * because it calls into ext4_write_begin() which can wait 3117 * for transaction commit if we are running out of space 3118 * and thus we deadlock. So we have to stop transaction now 3119 * and restart it when symlink contents is written. 3120 * 3121 * To keep fs consistent in case of crash, we have to put inode 3122 * to orphan list in the mean time. 3123 */ 3124 drop_nlink(inode); 3125 err = ext4_orphan_add(handle, inode); 3126 ext4_journal_stop(handle); 3127 handle = NULL; 3128 if (err) 3129 goto err_drop_inode; 3130 err = __page_symlink(inode, disk_link.name, disk_link.len, 1); 3131 if (err) 3132 goto err_drop_inode; 3133 /* 3134 * Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS 3135 * + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified 3136 */ 3137 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3138 EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3139 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1); 3140 if (IS_ERR(handle)) { 3141 err = PTR_ERR(handle); 3142 handle = NULL; 3143 goto err_drop_inode; 3144 } 3145 set_nlink(inode, 1); 3146 err = ext4_orphan_del(handle, inode); 3147 if (err) 3148 goto err_drop_inode; 3149 } else { 3150 /* clear the extent format for fast symlink */ 3151 ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS); 3152 if (!encryption_required) { 3153 inode->i_op = &ext4_fast_symlink_inode_operations; 3154 inode->i_link = (char *)&EXT4_I(inode)->i_data; 3155 } 3156 memcpy((char *)&EXT4_I(inode)->i_data, disk_link.name, 3157 disk_link.len); 3158 inode->i_size = disk_link.len - 1; 3159 } 3160 EXT4_I(inode)->i_disksize = inode->i_size; 3161 err = ext4_add_nondir(handle, dentry, inode); 3162 if (!err && IS_DIRSYNC(dir)) 3163 ext4_handle_sync(handle); 3164 3165 if (handle) 3166 ext4_journal_stop(handle); 3167 kfree(sd); 3168 return err; 3169 err_drop_inode: 3170 if (handle) 3171 ext4_journal_stop(handle); 3172 clear_nlink(inode); 3173 unlock_new_inode(inode); 3174 iput(inode); 3175 err_free_sd: 3176 kfree(sd); 3177 return err; 3178 } 3179 3180 static int ext4_link(struct dentry *old_dentry, 3181 struct inode *dir, struct dentry *dentry) 3182 { 3183 handle_t *handle; 3184 struct inode *inode = d_inode(old_dentry); 3185 int err, retries = 0; 3186 3187 if (inode->i_nlink >= EXT4_LINK_MAX) 3188 return -EMLINK; 3189 if (ext4_encrypted_inode(dir) && 3190 !fscrypt_has_permitted_context(dir, inode)) 3191 return -EPERM; 3192 3193 if ((ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) && 3194 (!projid_eq(EXT4_I(dir)->i_projid, 3195 EXT4_I(old_dentry->d_inode)->i_projid))) 3196 return -EXDEV; 3197 3198 err = dquot_initialize(dir); 3199 if (err) 3200 return err; 3201 3202 retry: 3203 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3204 (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3205 EXT4_INDEX_EXTRA_TRANS_BLOCKS) + 1); 3206 if (IS_ERR(handle)) 3207 return PTR_ERR(handle); 3208 3209 if (IS_DIRSYNC(dir)) 3210 ext4_handle_sync(handle); 3211 3212 inode->i_ctime = current_time(inode); 3213 ext4_inc_count(handle, inode); 3214 ihold(inode); 3215 3216 err = ext4_add_entry(handle, dentry, inode); 3217 if (!err) { 3218 ext4_mark_inode_dirty(handle, inode); 3219 /* this can happen only for tmpfile being 3220 * linked the first time 3221 */ 3222 if (inode->i_nlink == 1) 3223 ext4_orphan_del(handle, inode); 3224 d_instantiate(dentry, inode); 3225 } else { 3226 drop_nlink(inode); 3227 iput(inode); 3228 } 3229 ext4_journal_stop(handle); 3230 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 3231 goto retry; 3232 return err; 3233 } 3234 3235 3236 /* 3237 * Try to find buffer head where contains the parent block. 3238 * It should be the inode block if it is inlined or the 1st block 3239 * if it is a normal dir. 3240 */ 3241 static struct buffer_head *ext4_get_first_dir_block(handle_t *handle, 3242 struct inode *inode, 3243 int *retval, 3244 struct ext4_dir_entry_2 **parent_de, 3245 int *inlined) 3246 { 3247 struct buffer_head *bh; 3248 3249 if (!ext4_has_inline_data(inode)) { 3250 bh = ext4_read_dirblock(inode, 0, EITHER); 3251 if (IS_ERR(bh)) { 3252 *retval = PTR_ERR(bh); 3253 return NULL; 3254 } 3255 *parent_de = ext4_next_entry( 3256 (struct ext4_dir_entry_2 *)bh->b_data, 3257 inode->i_sb->s_blocksize); 3258 return bh; 3259 } 3260 3261 *inlined = 1; 3262 return ext4_get_first_inline_block(inode, parent_de, retval); 3263 } 3264 3265 struct ext4_renament { 3266 struct inode *dir; 3267 struct dentry *dentry; 3268 struct inode *inode; 3269 bool is_dir; 3270 int dir_nlink_delta; 3271 3272 /* entry for "dentry" */ 3273 struct buffer_head *bh; 3274 struct ext4_dir_entry_2 *de; 3275 int inlined; 3276 3277 /* entry for ".." in inode if it's a directory */ 3278 struct buffer_head *dir_bh; 3279 struct ext4_dir_entry_2 *parent_de; 3280 int dir_inlined; 3281 }; 3282 3283 static int ext4_rename_dir_prepare(handle_t *handle, struct ext4_renament *ent) 3284 { 3285 int retval; 3286 3287 ent->dir_bh = ext4_get_first_dir_block(handle, ent->inode, 3288 &retval, &ent->parent_de, 3289 &ent->dir_inlined); 3290 if (!ent->dir_bh) 3291 return retval; 3292 if (le32_to_cpu(ent->parent_de->inode) != ent->dir->i_ino) 3293 return -EFSCORRUPTED; 3294 BUFFER_TRACE(ent->dir_bh, "get_write_access"); 3295 return ext4_journal_get_write_access(handle, ent->dir_bh); 3296 } 3297 3298 static int ext4_rename_dir_finish(handle_t *handle, struct ext4_renament *ent, 3299 unsigned dir_ino) 3300 { 3301 int retval; 3302 3303 ent->parent_de->inode = cpu_to_le32(dir_ino); 3304 BUFFER_TRACE(ent->dir_bh, "call ext4_handle_dirty_metadata"); 3305 if (!ent->dir_inlined) { 3306 if (is_dx(ent->inode)) { 3307 retval = ext4_handle_dirty_dx_node(handle, 3308 ent->inode, 3309 ent->dir_bh); 3310 } else { 3311 retval = ext4_handle_dirty_dirent_node(handle, 3312 ent->inode, 3313 ent->dir_bh); 3314 } 3315 } else { 3316 retval = ext4_mark_inode_dirty(handle, ent->inode); 3317 } 3318 if (retval) { 3319 ext4_std_error(ent->dir->i_sb, retval); 3320 return retval; 3321 } 3322 return 0; 3323 } 3324 3325 static int ext4_setent(handle_t *handle, struct ext4_renament *ent, 3326 unsigned ino, unsigned file_type) 3327 { 3328 int retval; 3329 3330 BUFFER_TRACE(ent->bh, "get write access"); 3331 retval = ext4_journal_get_write_access(handle, ent->bh); 3332 if (retval) 3333 return retval; 3334 ent->de->inode = cpu_to_le32(ino); 3335 if (ext4_has_feature_filetype(ent->dir->i_sb)) 3336 ent->de->file_type = file_type; 3337 ent->dir->i_version++; 3338 ent->dir->i_ctime = ent->dir->i_mtime = 3339 current_time(ent->dir); 3340 ext4_mark_inode_dirty(handle, ent->dir); 3341 BUFFER_TRACE(ent->bh, "call ext4_handle_dirty_metadata"); 3342 if (!ent->inlined) { 3343 retval = ext4_handle_dirty_dirent_node(handle, 3344 ent->dir, ent->bh); 3345 if (unlikely(retval)) { 3346 ext4_std_error(ent->dir->i_sb, retval); 3347 return retval; 3348 } 3349 } 3350 brelse(ent->bh); 3351 ent->bh = NULL; 3352 3353 return 0; 3354 } 3355 3356 static int ext4_find_delete_entry(handle_t *handle, struct inode *dir, 3357 const struct qstr *d_name) 3358 { 3359 int retval = -ENOENT; 3360 struct buffer_head *bh; 3361 struct ext4_dir_entry_2 *de; 3362 3363 bh = ext4_find_entry(dir, d_name, &de, NULL); 3364 if (IS_ERR(bh)) 3365 return PTR_ERR(bh); 3366 if (bh) { 3367 retval = ext4_delete_entry(handle, dir, de, bh); 3368 brelse(bh); 3369 } 3370 return retval; 3371 } 3372 3373 static void ext4_rename_delete(handle_t *handle, struct ext4_renament *ent, 3374 int force_reread) 3375 { 3376 int retval; 3377 /* 3378 * ent->de could have moved from under us during htree split, so make 3379 * sure that we are deleting the right entry. We might also be pointing 3380 * to a stale entry in the unused part of ent->bh so just checking inum 3381 * and the name isn't enough. 3382 */ 3383 if (le32_to_cpu(ent->de->inode) != ent->inode->i_ino || 3384 ent->de->name_len != ent->dentry->d_name.len || 3385 strncmp(ent->de->name, ent->dentry->d_name.name, 3386 ent->de->name_len) || 3387 force_reread) { 3388 retval = ext4_find_delete_entry(handle, ent->dir, 3389 &ent->dentry->d_name); 3390 } else { 3391 retval = ext4_delete_entry(handle, ent->dir, ent->de, ent->bh); 3392 if (retval == -ENOENT) { 3393 retval = ext4_find_delete_entry(handle, ent->dir, 3394 &ent->dentry->d_name); 3395 } 3396 } 3397 3398 if (retval) { 3399 ext4_warning_inode(ent->dir, 3400 "Deleting old file: nlink %d, error=%d", 3401 ent->dir->i_nlink, retval); 3402 } 3403 } 3404 3405 static void ext4_update_dir_count(handle_t *handle, struct ext4_renament *ent) 3406 { 3407 if (ent->dir_nlink_delta) { 3408 if (ent->dir_nlink_delta == -1) 3409 ext4_dec_count(handle, ent->dir); 3410 else 3411 ext4_inc_count(handle, ent->dir); 3412 ext4_mark_inode_dirty(handle, ent->dir); 3413 } 3414 } 3415 3416 static struct inode *ext4_whiteout_for_rename(struct ext4_renament *ent, 3417 int credits, handle_t **h) 3418 { 3419 struct inode *wh; 3420 handle_t *handle; 3421 int retries = 0; 3422 3423 /* 3424 * for inode block, sb block, group summaries, 3425 * and inode bitmap 3426 */ 3427 credits += (EXT4_MAXQUOTAS_TRANS_BLOCKS(ent->dir->i_sb) + 3428 EXT4_XATTR_TRANS_BLOCKS + 4); 3429 retry: 3430 wh = ext4_new_inode_start_handle(ent->dir, S_IFCHR | WHITEOUT_MODE, 3431 &ent->dentry->d_name, 0, NULL, 3432 EXT4_HT_DIR, credits); 3433 3434 handle = ext4_journal_current_handle(); 3435 if (IS_ERR(wh)) { 3436 if (handle) 3437 ext4_journal_stop(handle); 3438 if (PTR_ERR(wh) == -ENOSPC && 3439 ext4_should_retry_alloc(ent->dir->i_sb, &retries)) 3440 goto retry; 3441 } else { 3442 *h = handle; 3443 init_special_inode(wh, wh->i_mode, WHITEOUT_DEV); 3444 wh->i_op = &ext4_special_inode_operations; 3445 } 3446 return wh; 3447 } 3448 3449 /* 3450 * Anybody can rename anything with this: the permission checks are left to the 3451 * higher-level routines. 3452 * 3453 * n.b. old_{dentry,inode) refers to the source dentry/inode 3454 * while new_{dentry,inode) refers to the destination dentry/inode 3455 * This comes from rename(const char *oldpath, const char *newpath) 3456 */ 3457 static int ext4_rename(struct inode *old_dir, struct dentry *old_dentry, 3458 struct inode *new_dir, struct dentry *new_dentry, 3459 unsigned int flags) 3460 { 3461 handle_t *handle = NULL; 3462 struct ext4_renament old = { 3463 .dir = old_dir, 3464 .dentry = old_dentry, 3465 .inode = d_inode(old_dentry), 3466 }; 3467 struct ext4_renament new = { 3468 .dir = new_dir, 3469 .dentry = new_dentry, 3470 .inode = d_inode(new_dentry), 3471 }; 3472 int force_reread; 3473 int retval; 3474 struct inode *whiteout = NULL; 3475 int credits; 3476 u8 old_file_type; 3477 3478 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT)) && 3479 (!projid_eq(EXT4_I(new_dir)->i_projid, 3480 EXT4_I(old_dentry->d_inode)->i_projid))) 3481 return -EXDEV; 3482 3483 if ((ext4_encrypted_inode(old_dir) && 3484 !fscrypt_has_encryption_key(old_dir)) || 3485 (ext4_encrypted_inode(new_dir) && 3486 !fscrypt_has_encryption_key(new_dir))) 3487 return -ENOKEY; 3488 3489 retval = dquot_initialize(old.dir); 3490 if (retval) 3491 return retval; 3492 retval = dquot_initialize(new.dir); 3493 if (retval) 3494 return retval; 3495 3496 /* Initialize quotas before so that eventual writes go 3497 * in separate transaction */ 3498 if (new.inode) { 3499 retval = dquot_initialize(new.inode); 3500 if (retval) 3501 return retval; 3502 } 3503 3504 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de, NULL); 3505 if (IS_ERR(old.bh)) 3506 return PTR_ERR(old.bh); 3507 /* 3508 * Check for inode number is _not_ due to possible IO errors. 3509 * We might rmdir the source, keep it as pwd of some process 3510 * and merrily kill the link to whatever was created under the 3511 * same name. Goodbye sticky bit ;-< 3512 */ 3513 retval = -ENOENT; 3514 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 3515 goto end_rename; 3516 3517 if ((old.dir != new.dir) && 3518 ext4_encrypted_inode(new.dir) && 3519 !fscrypt_has_permitted_context(new.dir, old.inode)) { 3520 retval = -EPERM; 3521 goto end_rename; 3522 } 3523 3524 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 3525 &new.de, &new.inlined); 3526 if (IS_ERR(new.bh)) { 3527 retval = PTR_ERR(new.bh); 3528 new.bh = NULL; 3529 goto end_rename; 3530 } 3531 if (new.bh) { 3532 if (!new.inode) { 3533 brelse(new.bh); 3534 new.bh = NULL; 3535 } 3536 } 3537 if (new.inode && !test_opt(new.dir->i_sb, NO_AUTO_DA_ALLOC)) 3538 ext4_alloc_da_blocks(old.inode); 3539 3540 credits = (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 3541 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2); 3542 if (!(flags & RENAME_WHITEOUT)) { 3543 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, credits); 3544 if (IS_ERR(handle)) { 3545 retval = PTR_ERR(handle); 3546 handle = NULL; 3547 goto end_rename; 3548 } 3549 } else { 3550 whiteout = ext4_whiteout_for_rename(&old, credits, &handle); 3551 if (IS_ERR(whiteout)) { 3552 retval = PTR_ERR(whiteout); 3553 whiteout = NULL; 3554 goto end_rename; 3555 } 3556 } 3557 3558 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 3559 ext4_handle_sync(handle); 3560 3561 if (S_ISDIR(old.inode->i_mode)) { 3562 if (new.inode) { 3563 retval = -ENOTEMPTY; 3564 if (!ext4_empty_dir(new.inode)) 3565 goto end_rename; 3566 } else { 3567 retval = -EMLINK; 3568 if (new.dir != old.dir && EXT4_DIR_LINK_MAX(new.dir)) 3569 goto end_rename; 3570 } 3571 retval = ext4_rename_dir_prepare(handle, &old); 3572 if (retval) 3573 goto end_rename; 3574 } 3575 /* 3576 * If we're renaming a file within an inline_data dir and adding or 3577 * setting the new dirent causes a conversion from inline_data to 3578 * extents/blockmap, we need to force the dirent delete code to 3579 * re-read the directory, or else we end up trying to delete a dirent 3580 * from what is now the extent tree root (or a block map). 3581 */ 3582 force_reread = (new.dir->i_ino == old.dir->i_ino && 3583 ext4_test_inode_flag(new.dir, EXT4_INODE_INLINE_DATA)); 3584 3585 old_file_type = old.de->file_type; 3586 if (whiteout) { 3587 /* 3588 * Do this before adding a new entry, so the old entry is sure 3589 * to be still pointing to the valid old entry. 3590 */ 3591 retval = ext4_setent(handle, &old, whiteout->i_ino, 3592 EXT4_FT_CHRDEV); 3593 if (retval) 3594 goto end_rename; 3595 ext4_mark_inode_dirty(handle, whiteout); 3596 } 3597 if (!new.bh) { 3598 retval = ext4_add_entry(handle, new.dentry, old.inode); 3599 if (retval) 3600 goto end_rename; 3601 } else { 3602 retval = ext4_setent(handle, &new, 3603 old.inode->i_ino, old_file_type); 3604 if (retval) 3605 goto end_rename; 3606 } 3607 if (force_reread) 3608 force_reread = !ext4_test_inode_flag(new.dir, 3609 EXT4_INODE_INLINE_DATA); 3610 3611 /* 3612 * Like most other Unix systems, set the ctime for inodes on a 3613 * rename. 3614 */ 3615 old.inode->i_ctime = current_time(old.inode); 3616 ext4_mark_inode_dirty(handle, old.inode); 3617 3618 if (!whiteout) { 3619 /* 3620 * ok, that's it 3621 */ 3622 ext4_rename_delete(handle, &old, force_reread); 3623 } 3624 3625 if (new.inode) { 3626 ext4_dec_count(handle, new.inode); 3627 new.inode->i_ctime = current_time(new.inode); 3628 } 3629 old.dir->i_ctime = old.dir->i_mtime = current_time(old.dir); 3630 ext4_update_dx_flag(old.dir); 3631 if (old.dir_bh) { 3632 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 3633 if (retval) 3634 goto end_rename; 3635 3636 ext4_dec_count(handle, old.dir); 3637 if (new.inode) { 3638 /* checked ext4_empty_dir above, can't have another 3639 * parent, ext4_dec_count() won't work for many-linked 3640 * dirs */ 3641 clear_nlink(new.inode); 3642 } else { 3643 ext4_inc_count(handle, new.dir); 3644 ext4_update_dx_flag(new.dir); 3645 ext4_mark_inode_dirty(handle, new.dir); 3646 } 3647 } 3648 ext4_mark_inode_dirty(handle, old.dir); 3649 if (new.inode) { 3650 ext4_mark_inode_dirty(handle, new.inode); 3651 if (!new.inode->i_nlink) 3652 ext4_orphan_add(handle, new.inode); 3653 } 3654 retval = 0; 3655 3656 end_rename: 3657 brelse(old.dir_bh); 3658 brelse(old.bh); 3659 brelse(new.bh); 3660 if (whiteout) { 3661 if (retval) 3662 drop_nlink(whiteout); 3663 unlock_new_inode(whiteout); 3664 iput(whiteout); 3665 } 3666 if (handle) 3667 ext4_journal_stop(handle); 3668 return retval; 3669 } 3670 3671 static int ext4_cross_rename(struct inode *old_dir, struct dentry *old_dentry, 3672 struct inode *new_dir, struct dentry *new_dentry) 3673 { 3674 handle_t *handle = NULL; 3675 struct ext4_renament old = { 3676 .dir = old_dir, 3677 .dentry = old_dentry, 3678 .inode = d_inode(old_dentry), 3679 }; 3680 struct ext4_renament new = { 3681 .dir = new_dir, 3682 .dentry = new_dentry, 3683 .inode = d_inode(new_dentry), 3684 }; 3685 u8 new_file_type; 3686 int retval; 3687 struct timespec ctime; 3688 3689 if ((ext4_encrypted_inode(old_dir) && 3690 !fscrypt_has_encryption_key(old_dir)) || 3691 (ext4_encrypted_inode(new_dir) && 3692 !fscrypt_has_encryption_key(new_dir))) 3693 return -ENOKEY; 3694 3695 if ((ext4_encrypted_inode(old_dir) || 3696 ext4_encrypted_inode(new_dir)) && 3697 (old_dir != new_dir) && 3698 (!fscrypt_has_permitted_context(new_dir, old.inode) || 3699 !fscrypt_has_permitted_context(old_dir, new.inode))) 3700 return -EPERM; 3701 3702 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT) && 3703 !projid_eq(EXT4_I(new_dir)->i_projid, 3704 EXT4_I(old_dentry->d_inode)->i_projid)) || 3705 (ext4_test_inode_flag(old_dir, EXT4_INODE_PROJINHERIT) && 3706 !projid_eq(EXT4_I(old_dir)->i_projid, 3707 EXT4_I(new_dentry->d_inode)->i_projid))) 3708 return -EXDEV; 3709 3710 retval = dquot_initialize(old.dir); 3711 if (retval) 3712 return retval; 3713 retval = dquot_initialize(new.dir); 3714 if (retval) 3715 return retval; 3716 3717 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, 3718 &old.de, &old.inlined); 3719 if (IS_ERR(old.bh)) 3720 return PTR_ERR(old.bh); 3721 /* 3722 * Check for inode number is _not_ due to possible IO errors. 3723 * We might rmdir the source, keep it as pwd of some process 3724 * and merrily kill the link to whatever was created under the 3725 * same name. Goodbye sticky bit ;-< 3726 */ 3727 retval = -ENOENT; 3728 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 3729 goto end_rename; 3730 3731 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 3732 &new.de, &new.inlined); 3733 if (IS_ERR(new.bh)) { 3734 retval = PTR_ERR(new.bh); 3735 new.bh = NULL; 3736 goto end_rename; 3737 } 3738 3739 /* RENAME_EXCHANGE case: old *and* new must both exist */ 3740 if (!new.bh || le32_to_cpu(new.de->inode) != new.inode->i_ino) 3741 goto end_rename; 3742 3743 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, 3744 (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 3745 2 * EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2)); 3746 if (IS_ERR(handle)) { 3747 retval = PTR_ERR(handle); 3748 handle = NULL; 3749 goto end_rename; 3750 } 3751 3752 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 3753 ext4_handle_sync(handle); 3754 3755 if (S_ISDIR(old.inode->i_mode)) { 3756 old.is_dir = true; 3757 retval = ext4_rename_dir_prepare(handle, &old); 3758 if (retval) 3759 goto end_rename; 3760 } 3761 if (S_ISDIR(new.inode->i_mode)) { 3762 new.is_dir = true; 3763 retval = ext4_rename_dir_prepare(handle, &new); 3764 if (retval) 3765 goto end_rename; 3766 } 3767 3768 /* 3769 * Other than the special case of overwriting a directory, parents' 3770 * nlink only needs to be modified if this is a cross directory rename. 3771 */ 3772 if (old.dir != new.dir && old.is_dir != new.is_dir) { 3773 old.dir_nlink_delta = old.is_dir ? -1 : 1; 3774 new.dir_nlink_delta = -old.dir_nlink_delta; 3775 retval = -EMLINK; 3776 if ((old.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(old.dir)) || 3777 (new.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(new.dir))) 3778 goto end_rename; 3779 } 3780 3781 new_file_type = new.de->file_type; 3782 retval = ext4_setent(handle, &new, old.inode->i_ino, old.de->file_type); 3783 if (retval) 3784 goto end_rename; 3785 3786 retval = ext4_setent(handle, &old, new.inode->i_ino, new_file_type); 3787 if (retval) 3788 goto end_rename; 3789 3790 /* 3791 * Like most other Unix systems, set the ctime for inodes on a 3792 * rename. 3793 */ 3794 ctime = current_time(old.inode); 3795 old.inode->i_ctime = ctime; 3796 new.inode->i_ctime = ctime; 3797 ext4_mark_inode_dirty(handle, old.inode); 3798 ext4_mark_inode_dirty(handle, new.inode); 3799 3800 if (old.dir_bh) { 3801 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 3802 if (retval) 3803 goto end_rename; 3804 } 3805 if (new.dir_bh) { 3806 retval = ext4_rename_dir_finish(handle, &new, old.dir->i_ino); 3807 if (retval) 3808 goto end_rename; 3809 } 3810 ext4_update_dir_count(handle, &old); 3811 ext4_update_dir_count(handle, &new); 3812 retval = 0; 3813 3814 end_rename: 3815 brelse(old.dir_bh); 3816 brelse(new.dir_bh); 3817 brelse(old.bh); 3818 brelse(new.bh); 3819 if (handle) 3820 ext4_journal_stop(handle); 3821 return retval; 3822 } 3823 3824 static int ext4_rename2(struct inode *old_dir, struct dentry *old_dentry, 3825 struct inode *new_dir, struct dentry *new_dentry, 3826 unsigned int flags) 3827 { 3828 if (unlikely(ext4_forced_shutdown(EXT4_SB(old_dir->i_sb)))) 3829 return -EIO; 3830 3831 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3832 return -EINVAL; 3833 3834 if (flags & RENAME_EXCHANGE) { 3835 return ext4_cross_rename(old_dir, old_dentry, 3836 new_dir, new_dentry); 3837 } 3838 3839 return ext4_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 3840 } 3841 3842 /* 3843 * directories can handle most operations... 3844 */ 3845 const struct inode_operations ext4_dir_inode_operations = { 3846 .create = ext4_create, 3847 .lookup = ext4_lookup, 3848 .link = ext4_link, 3849 .unlink = ext4_unlink, 3850 .symlink = ext4_symlink, 3851 .mkdir = ext4_mkdir, 3852 .rmdir = ext4_rmdir, 3853 .mknod = ext4_mknod, 3854 .tmpfile = ext4_tmpfile, 3855 .rename = ext4_rename2, 3856 .setattr = ext4_setattr, 3857 .getattr = ext4_getattr, 3858 .listxattr = ext4_listxattr, 3859 .get_acl = ext4_get_acl, 3860 .set_acl = ext4_set_acl, 3861 .fiemap = ext4_fiemap, 3862 }; 3863 3864 const struct inode_operations ext4_special_inode_operations = { 3865 .setattr = ext4_setattr, 3866 .getattr = ext4_getattr, 3867 .listxattr = ext4_listxattr, 3868 .get_acl = ext4_get_acl, 3869 .set_acl = ext4_set_acl, 3870 }; 3871