1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/namei.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/namei.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * Big-endian to little-endian byte-swapping/bitmaps by 17 * David S. Miller (davem@caip.rutgers.edu), 1995 18 * Directory entry file type support and forward compatibility hooks 19 * for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998 20 * Hash Tree Directory indexing (c) 21 * Daniel Phillips, 2001 22 * Hash Tree Directory indexing porting 23 * Christopher Li, 2002 24 * Hash Tree Directory indexing cleanup 25 * Theodore Ts'o, 2002 26 */ 27 28 #include <linux/fs.h> 29 #include <linux/pagemap.h> 30 #include <linux/time.h> 31 #include <linux/fcntl.h> 32 #include <linux/stat.h> 33 #include <linux/string.h> 34 #include <linux/quotaops.h> 35 #include <linux/buffer_head.h> 36 #include <linux/bio.h> 37 #include <linux/iversion.h> 38 #include <linux/unicode.h> 39 #include "ext4.h" 40 #include "ext4_jbd2.h" 41 42 #include "xattr.h" 43 #include "acl.h" 44 45 #include <trace/events/ext4.h> 46 /* 47 * define how far ahead to read directories while searching them. 48 */ 49 #define NAMEI_RA_CHUNKS 2 50 #define NAMEI_RA_BLOCKS 4 51 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS) 52 53 static struct buffer_head *ext4_append(handle_t *handle, 54 struct inode *inode, 55 ext4_lblk_t *block) 56 { 57 struct buffer_head *bh; 58 int err; 59 60 if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb && 61 ((inode->i_size >> 10) >= 62 EXT4_SB(inode->i_sb)->s_max_dir_size_kb))) 63 return ERR_PTR(-ENOSPC); 64 65 *block = inode->i_size >> inode->i_sb->s_blocksize_bits; 66 67 bh = ext4_bread(handle, inode, *block, EXT4_GET_BLOCKS_CREATE); 68 if (IS_ERR(bh)) 69 return bh; 70 inode->i_size += inode->i_sb->s_blocksize; 71 EXT4_I(inode)->i_disksize = inode->i_size; 72 BUFFER_TRACE(bh, "get_write_access"); 73 err = ext4_journal_get_write_access(handle, bh); 74 if (err) { 75 brelse(bh); 76 ext4_std_error(inode->i_sb, err); 77 return ERR_PTR(err); 78 } 79 return bh; 80 } 81 82 static int ext4_dx_csum_verify(struct inode *inode, 83 struct ext4_dir_entry *dirent); 84 85 /* 86 * Hints to ext4_read_dirblock regarding whether we expect a directory 87 * block being read to be an index block, or a block containing 88 * directory entries (and if the latter, whether it was found via a 89 * logical block in an htree index block). This is used to control 90 * what sort of sanity checkinig ext4_read_dirblock() will do on the 91 * directory block read from the storage device. EITHER will means 92 * the caller doesn't know what kind of directory block will be read, 93 * so no specific verification will be done. 94 */ 95 typedef enum { 96 EITHER, INDEX, DIRENT, DIRENT_HTREE 97 } dirblock_type_t; 98 99 #define ext4_read_dirblock(inode, block, type) \ 100 __ext4_read_dirblock((inode), (block), (type), __func__, __LINE__) 101 102 static struct buffer_head *__ext4_read_dirblock(struct inode *inode, 103 ext4_lblk_t block, 104 dirblock_type_t type, 105 const char *func, 106 unsigned int line) 107 { 108 struct buffer_head *bh; 109 struct ext4_dir_entry *dirent; 110 int is_dx_block = 0; 111 112 if (ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_EIO)) 113 bh = ERR_PTR(-EIO); 114 else 115 bh = ext4_bread(NULL, inode, block, 0); 116 if (IS_ERR(bh)) { 117 __ext4_warning(inode->i_sb, func, line, 118 "inode #%lu: lblock %lu: comm %s: " 119 "error %ld reading directory block", 120 inode->i_ino, (unsigned long)block, 121 current->comm, PTR_ERR(bh)); 122 123 return bh; 124 } 125 if (!bh && (type == INDEX || type == DIRENT_HTREE)) { 126 ext4_error_inode(inode, func, line, block, 127 "Directory hole found for htree %s block", 128 (type == INDEX) ? "index" : "leaf"); 129 return ERR_PTR(-EFSCORRUPTED); 130 } 131 if (!bh) 132 return NULL; 133 dirent = (struct ext4_dir_entry *) bh->b_data; 134 /* Determine whether or not we have an index block */ 135 if (is_dx(inode)) { 136 if (block == 0) 137 is_dx_block = 1; 138 else if (ext4_rec_len_from_disk(dirent->rec_len, 139 inode->i_sb->s_blocksize) == 140 inode->i_sb->s_blocksize) 141 is_dx_block = 1; 142 } 143 if (!is_dx_block && type == INDEX) { 144 ext4_error_inode(inode, func, line, block, 145 "directory leaf block found instead of index block"); 146 brelse(bh); 147 return ERR_PTR(-EFSCORRUPTED); 148 } 149 if (!ext4_has_metadata_csum(inode->i_sb) || 150 buffer_verified(bh)) 151 return bh; 152 153 /* 154 * An empty leaf block can get mistaken for a index block; for 155 * this reason, we can only check the index checksum when the 156 * caller is sure it should be an index block. 157 */ 158 if (is_dx_block && type == INDEX) { 159 if (ext4_dx_csum_verify(inode, dirent) && 160 !ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_CRC)) 161 set_buffer_verified(bh); 162 else { 163 ext4_error_inode_err(inode, func, line, block, 164 EFSBADCRC, 165 "Directory index failed checksum"); 166 brelse(bh); 167 return ERR_PTR(-EFSBADCRC); 168 } 169 } 170 if (!is_dx_block) { 171 if (ext4_dirblock_csum_verify(inode, bh) && 172 !ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_CRC)) 173 set_buffer_verified(bh); 174 else { 175 ext4_error_inode_err(inode, func, line, block, 176 EFSBADCRC, 177 "Directory block failed checksum"); 178 brelse(bh); 179 return ERR_PTR(-EFSBADCRC); 180 } 181 } 182 return bh; 183 } 184 185 #ifndef assert 186 #define assert(test) J_ASSERT(test) 187 #endif 188 189 #ifdef DX_DEBUG 190 #define dxtrace(command) command 191 #else 192 #define dxtrace(command) 193 #endif 194 195 struct fake_dirent 196 { 197 __le32 inode; 198 __le16 rec_len; 199 u8 name_len; 200 u8 file_type; 201 }; 202 203 struct dx_countlimit 204 { 205 __le16 limit; 206 __le16 count; 207 }; 208 209 struct dx_entry 210 { 211 __le32 hash; 212 __le32 block; 213 }; 214 215 /* 216 * dx_root_info is laid out so that if it should somehow get overlaid by a 217 * dirent the two low bits of the hash version will be zero. Therefore, the 218 * hash version mod 4 should never be 0. Sincerely, the paranoia department. 219 */ 220 221 struct dx_root 222 { 223 struct fake_dirent dot; 224 char dot_name[4]; 225 struct fake_dirent dotdot; 226 char dotdot_name[4]; 227 struct dx_root_info 228 { 229 __le32 reserved_zero; 230 u8 hash_version; 231 u8 info_length; /* 8 */ 232 u8 indirect_levels; 233 u8 unused_flags; 234 } 235 info; 236 struct dx_entry entries[]; 237 }; 238 239 struct dx_node 240 { 241 struct fake_dirent fake; 242 struct dx_entry entries[]; 243 }; 244 245 246 struct dx_frame 247 { 248 struct buffer_head *bh; 249 struct dx_entry *entries; 250 struct dx_entry *at; 251 }; 252 253 struct dx_map_entry 254 { 255 u32 hash; 256 u16 offs; 257 u16 size; 258 }; 259 260 /* 261 * This goes at the end of each htree block. 262 */ 263 struct dx_tail { 264 u32 dt_reserved; 265 __le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */ 266 }; 267 268 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry); 269 static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value); 270 static inline unsigned dx_get_hash(struct dx_entry *entry); 271 static void dx_set_hash(struct dx_entry *entry, unsigned value); 272 static unsigned dx_get_count(struct dx_entry *entries); 273 static unsigned dx_get_limit(struct dx_entry *entries); 274 static void dx_set_count(struct dx_entry *entries, unsigned value); 275 static void dx_set_limit(struct dx_entry *entries, unsigned value); 276 static unsigned dx_root_limit(struct inode *dir, unsigned infosize); 277 static unsigned dx_node_limit(struct inode *dir); 278 static struct dx_frame *dx_probe(struct ext4_filename *fname, 279 struct inode *dir, 280 struct dx_hash_info *hinfo, 281 struct dx_frame *frame); 282 static void dx_release(struct dx_frame *frames); 283 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 284 unsigned blocksize, struct dx_hash_info *hinfo, 285 struct dx_map_entry map[]); 286 static void dx_sort_map(struct dx_map_entry *map, unsigned count); 287 static struct ext4_dir_entry_2 *dx_move_dirents(char *from, char *to, 288 struct dx_map_entry *offsets, int count, unsigned blocksize); 289 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize); 290 static void dx_insert_block(struct dx_frame *frame, 291 u32 hash, ext4_lblk_t block); 292 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 293 struct dx_frame *frame, 294 struct dx_frame *frames, 295 __u32 *start_hash); 296 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 297 struct ext4_filename *fname, 298 struct ext4_dir_entry_2 **res_dir); 299 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 300 struct inode *dir, struct inode *inode); 301 302 /* checksumming functions */ 303 void ext4_initialize_dirent_tail(struct buffer_head *bh, 304 unsigned int blocksize) 305 { 306 struct ext4_dir_entry_tail *t = EXT4_DIRENT_TAIL(bh->b_data, blocksize); 307 308 memset(t, 0, sizeof(struct ext4_dir_entry_tail)); 309 t->det_rec_len = ext4_rec_len_to_disk( 310 sizeof(struct ext4_dir_entry_tail), blocksize); 311 t->det_reserved_ft = EXT4_FT_DIR_CSUM; 312 } 313 314 /* Walk through a dirent block to find a checksum "dirent" at the tail */ 315 static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode, 316 struct buffer_head *bh) 317 { 318 struct ext4_dir_entry_tail *t; 319 320 #ifdef PARANOID 321 struct ext4_dir_entry *d, *top; 322 323 d = (struct ext4_dir_entry *)bh->b_data; 324 top = (struct ext4_dir_entry *)(bh->b_data + 325 (EXT4_BLOCK_SIZE(inode->i_sb) - 326 sizeof(struct ext4_dir_entry_tail))); 327 while (d < top && d->rec_len) 328 d = (struct ext4_dir_entry *)(((void *)d) + 329 le16_to_cpu(d->rec_len)); 330 331 if (d != top) 332 return NULL; 333 334 t = (struct ext4_dir_entry_tail *)d; 335 #else 336 t = EXT4_DIRENT_TAIL(bh->b_data, EXT4_BLOCK_SIZE(inode->i_sb)); 337 #endif 338 339 if (t->det_reserved_zero1 || 340 le16_to_cpu(t->det_rec_len) != sizeof(struct ext4_dir_entry_tail) || 341 t->det_reserved_zero2 || 342 t->det_reserved_ft != EXT4_FT_DIR_CSUM) 343 return NULL; 344 345 return t; 346 } 347 348 static __le32 ext4_dirblock_csum(struct inode *inode, void *dirent, int size) 349 { 350 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 351 struct ext4_inode_info *ei = EXT4_I(inode); 352 __u32 csum; 353 354 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 355 return cpu_to_le32(csum); 356 } 357 358 #define warn_no_space_for_csum(inode) \ 359 __warn_no_space_for_csum((inode), __func__, __LINE__) 360 361 static void __warn_no_space_for_csum(struct inode *inode, const char *func, 362 unsigned int line) 363 { 364 __ext4_warning_inode(inode, func, line, 365 "No space for directory leaf checksum. Please run e2fsck -D."); 366 } 367 368 int ext4_dirblock_csum_verify(struct inode *inode, struct buffer_head *bh) 369 { 370 struct ext4_dir_entry_tail *t; 371 372 if (!ext4_has_metadata_csum(inode->i_sb)) 373 return 1; 374 375 t = get_dirent_tail(inode, bh); 376 if (!t) { 377 warn_no_space_for_csum(inode); 378 return 0; 379 } 380 381 if (t->det_checksum != ext4_dirblock_csum(inode, bh->b_data, 382 (char *)t - bh->b_data)) 383 return 0; 384 385 return 1; 386 } 387 388 static void ext4_dirblock_csum_set(struct inode *inode, 389 struct buffer_head *bh) 390 { 391 struct ext4_dir_entry_tail *t; 392 393 if (!ext4_has_metadata_csum(inode->i_sb)) 394 return; 395 396 t = get_dirent_tail(inode, bh); 397 if (!t) { 398 warn_no_space_for_csum(inode); 399 return; 400 } 401 402 t->det_checksum = ext4_dirblock_csum(inode, bh->b_data, 403 (char *)t - bh->b_data); 404 } 405 406 int ext4_handle_dirty_dirblock(handle_t *handle, 407 struct inode *inode, 408 struct buffer_head *bh) 409 { 410 ext4_dirblock_csum_set(inode, bh); 411 return ext4_handle_dirty_metadata(handle, inode, bh); 412 } 413 414 static struct dx_countlimit *get_dx_countlimit(struct inode *inode, 415 struct ext4_dir_entry *dirent, 416 int *offset) 417 { 418 struct ext4_dir_entry *dp; 419 struct dx_root_info *root; 420 int count_offset; 421 422 if (le16_to_cpu(dirent->rec_len) == EXT4_BLOCK_SIZE(inode->i_sb)) 423 count_offset = 8; 424 else if (le16_to_cpu(dirent->rec_len) == 12) { 425 dp = (struct ext4_dir_entry *)(((void *)dirent) + 12); 426 if (le16_to_cpu(dp->rec_len) != 427 EXT4_BLOCK_SIZE(inode->i_sb) - 12) 428 return NULL; 429 root = (struct dx_root_info *)(((void *)dp + 12)); 430 if (root->reserved_zero || 431 root->info_length != sizeof(struct dx_root_info)) 432 return NULL; 433 count_offset = 32; 434 } else 435 return NULL; 436 437 if (offset) 438 *offset = count_offset; 439 return (struct dx_countlimit *)(((void *)dirent) + count_offset); 440 } 441 442 static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent, 443 int count_offset, int count, struct dx_tail *t) 444 { 445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 446 struct ext4_inode_info *ei = EXT4_I(inode); 447 __u32 csum; 448 int size; 449 __u32 dummy_csum = 0; 450 int offset = offsetof(struct dx_tail, dt_checksum); 451 452 size = count_offset + (count * sizeof(struct dx_entry)); 453 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 454 csum = ext4_chksum(sbi, csum, (__u8 *)t, offset); 455 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, sizeof(dummy_csum)); 456 457 return cpu_to_le32(csum); 458 } 459 460 static int ext4_dx_csum_verify(struct inode *inode, 461 struct ext4_dir_entry *dirent) 462 { 463 struct dx_countlimit *c; 464 struct dx_tail *t; 465 int count_offset, limit, count; 466 467 if (!ext4_has_metadata_csum(inode->i_sb)) 468 return 1; 469 470 c = get_dx_countlimit(inode, dirent, &count_offset); 471 if (!c) { 472 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 473 return 0; 474 } 475 limit = le16_to_cpu(c->limit); 476 count = le16_to_cpu(c->count); 477 if (count_offset + (limit * sizeof(struct dx_entry)) > 478 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 479 warn_no_space_for_csum(inode); 480 return 0; 481 } 482 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 483 484 if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset, 485 count, t)) 486 return 0; 487 return 1; 488 } 489 490 static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent) 491 { 492 struct dx_countlimit *c; 493 struct dx_tail *t; 494 int count_offset, limit, count; 495 496 if (!ext4_has_metadata_csum(inode->i_sb)) 497 return; 498 499 c = get_dx_countlimit(inode, dirent, &count_offset); 500 if (!c) { 501 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 502 return; 503 } 504 limit = le16_to_cpu(c->limit); 505 count = le16_to_cpu(c->count); 506 if (count_offset + (limit * sizeof(struct dx_entry)) > 507 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 508 warn_no_space_for_csum(inode); 509 return; 510 } 511 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 512 513 t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t); 514 } 515 516 static inline int ext4_handle_dirty_dx_node(handle_t *handle, 517 struct inode *inode, 518 struct buffer_head *bh) 519 { 520 ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data); 521 return ext4_handle_dirty_metadata(handle, inode, bh); 522 } 523 524 /* 525 * p is at least 6 bytes before the end of page 526 */ 527 static inline struct ext4_dir_entry_2 * 528 ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize) 529 { 530 return (struct ext4_dir_entry_2 *)((char *)p + 531 ext4_rec_len_from_disk(p->rec_len, blocksize)); 532 } 533 534 /* 535 * Future: use high four bits of block for coalesce-on-delete flags 536 * Mask them off for now. 537 */ 538 539 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry) 540 { 541 return le32_to_cpu(entry->block) & 0x0fffffff; 542 } 543 544 static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value) 545 { 546 entry->block = cpu_to_le32(value); 547 } 548 549 static inline unsigned dx_get_hash(struct dx_entry *entry) 550 { 551 return le32_to_cpu(entry->hash); 552 } 553 554 static inline void dx_set_hash(struct dx_entry *entry, unsigned value) 555 { 556 entry->hash = cpu_to_le32(value); 557 } 558 559 static inline unsigned dx_get_count(struct dx_entry *entries) 560 { 561 return le16_to_cpu(((struct dx_countlimit *) entries)->count); 562 } 563 564 static inline unsigned dx_get_limit(struct dx_entry *entries) 565 { 566 return le16_to_cpu(((struct dx_countlimit *) entries)->limit); 567 } 568 569 static inline void dx_set_count(struct dx_entry *entries, unsigned value) 570 { 571 ((struct dx_countlimit *) entries)->count = cpu_to_le16(value); 572 } 573 574 static inline void dx_set_limit(struct dx_entry *entries, unsigned value) 575 { 576 ((struct dx_countlimit *) entries)->limit = cpu_to_le16(value); 577 } 578 579 static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize) 580 { 581 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(1) - 582 EXT4_DIR_REC_LEN(2) - infosize; 583 584 if (ext4_has_metadata_csum(dir->i_sb)) 585 entry_space -= sizeof(struct dx_tail); 586 return entry_space / sizeof(struct dx_entry); 587 } 588 589 static inline unsigned dx_node_limit(struct inode *dir) 590 { 591 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(0); 592 593 if (ext4_has_metadata_csum(dir->i_sb)) 594 entry_space -= sizeof(struct dx_tail); 595 return entry_space / sizeof(struct dx_entry); 596 } 597 598 /* 599 * Debug 600 */ 601 #ifdef DX_DEBUG 602 static void dx_show_index(char * label, struct dx_entry *entries) 603 { 604 int i, n = dx_get_count (entries); 605 printk(KERN_DEBUG "%s index", label); 606 for (i = 0; i < n; i++) { 607 printk(KERN_CONT " %x->%lu", 608 i ? dx_get_hash(entries + i) : 0, 609 (unsigned long)dx_get_block(entries + i)); 610 } 611 printk(KERN_CONT "\n"); 612 } 613 614 struct stats 615 { 616 unsigned names; 617 unsigned space; 618 unsigned bcount; 619 }; 620 621 static struct stats dx_show_leaf(struct inode *dir, 622 struct dx_hash_info *hinfo, 623 struct ext4_dir_entry_2 *de, 624 int size, int show_names) 625 { 626 unsigned names = 0, space = 0; 627 char *base = (char *) de; 628 struct dx_hash_info h = *hinfo; 629 630 printk("names: "); 631 while ((char *) de < base + size) 632 { 633 if (de->inode) 634 { 635 if (show_names) 636 { 637 #ifdef CONFIG_FS_ENCRYPTION 638 int len; 639 char *name; 640 struct fscrypt_str fname_crypto_str = 641 FSTR_INIT(NULL, 0); 642 int res = 0; 643 644 name = de->name; 645 len = de->name_len; 646 if (IS_ENCRYPTED(dir)) 647 res = fscrypt_get_encryption_info(dir); 648 if (res) { 649 printk(KERN_WARNING "Error setting up" 650 " fname crypto: %d\n", res); 651 } 652 if (!fscrypt_has_encryption_key(dir)) { 653 /* Directory is not encrypted */ 654 ext4fs_dirhash(dir, de->name, 655 de->name_len, &h); 656 printk("%*.s:(U)%x.%u ", len, 657 name, h.hash, 658 (unsigned) ((char *) de 659 - base)); 660 } else { 661 struct fscrypt_str de_name = 662 FSTR_INIT(name, len); 663 664 /* Directory is encrypted */ 665 res = fscrypt_fname_alloc_buffer( 666 dir, len, 667 &fname_crypto_str); 668 if (res) 669 printk(KERN_WARNING "Error " 670 "allocating crypto " 671 "buffer--skipping " 672 "crypto\n"); 673 res = fscrypt_fname_disk_to_usr(dir, 674 0, 0, &de_name, 675 &fname_crypto_str); 676 if (res) { 677 printk(KERN_WARNING "Error " 678 "converting filename " 679 "from disk to usr" 680 "\n"); 681 name = "??"; 682 len = 2; 683 } else { 684 name = fname_crypto_str.name; 685 len = fname_crypto_str.len; 686 } 687 ext4fs_dirhash(dir, de->name, 688 de->name_len, &h); 689 printk("%*.s:(E)%x.%u ", len, name, 690 h.hash, (unsigned) ((char *) de 691 - base)); 692 fscrypt_fname_free_buffer( 693 &fname_crypto_str); 694 } 695 #else 696 int len = de->name_len; 697 char *name = de->name; 698 ext4fs_dirhash(dir, de->name, de->name_len, &h); 699 printk("%*.s:%x.%u ", len, name, h.hash, 700 (unsigned) ((char *) de - base)); 701 #endif 702 } 703 space += EXT4_DIR_REC_LEN(de->name_len); 704 names++; 705 } 706 de = ext4_next_entry(de, size); 707 } 708 printk(KERN_CONT "(%i)\n", names); 709 return (struct stats) { names, space, 1 }; 710 } 711 712 struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir, 713 struct dx_entry *entries, int levels) 714 { 715 unsigned blocksize = dir->i_sb->s_blocksize; 716 unsigned count = dx_get_count(entries), names = 0, space = 0, i; 717 unsigned bcount = 0; 718 struct buffer_head *bh; 719 printk("%i indexed blocks...\n", count); 720 for (i = 0; i < count; i++, entries++) 721 { 722 ext4_lblk_t block = dx_get_block(entries); 723 ext4_lblk_t hash = i ? dx_get_hash(entries): 0; 724 u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash; 725 struct stats stats; 726 printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range); 727 bh = ext4_bread(NULL,dir, block, 0); 728 if (!bh || IS_ERR(bh)) 729 continue; 730 stats = levels? 731 dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1): 732 dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) 733 bh->b_data, blocksize, 0); 734 names += stats.names; 735 space += stats.space; 736 bcount += stats.bcount; 737 brelse(bh); 738 } 739 if (bcount) 740 printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n", 741 levels ? "" : " ", names, space/bcount, 742 (space/bcount)*100/blocksize); 743 return (struct stats) { names, space, bcount}; 744 } 745 #endif /* DX_DEBUG */ 746 747 /* 748 * Probe for a directory leaf block to search. 749 * 750 * dx_probe can return ERR_BAD_DX_DIR, which means there was a format 751 * error in the directory index, and the caller should fall back to 752 * searching the directory normally. The callers of dx_probe **MUST** 753 * check for this error code, and make sure it never gets reflected 754 * back to userspace. 755 */ 756 static struct dx_frame * 757 dx_probe(struct ext4_filename *fname, struct inode *dir, 758 struct dx_hash_info *hinfo, struct dx_frame *frame_in) 759 { 760 unsigned count, indirect; 761 struct dx_entry *at, *entries, *p, *q, *m; 762 struct dx_root *root; 763 struct dx_frame *frame = frame_in; 764 struct dx_frame *ret_err = ERR_PTR(ERR_BAD_DX_DIR); 765 u32 hash; 766 767 memset(frame_in, 0, EXT4_HTREE_LEVEL * sizeof(frame_in[0])); 768 frame->bh = ext4_read_dirblock(dir, 0, INDEX); 769 if (IS_ERR(frame->bh)) 770 return (struct dx_frame *) frame->bh; 771 772 root = (struct dx_root *) frame->bh->b_data; 773 if (root->info.hash_version != DX_HASH_TEA && 774 root->info.hash_version != DX_HASH_HALF_MD4 && 775 root->info.hash_version != DX_HASH_LEGACY) { 776 ext4_warning_inode(dir, "Unrecognised inode hash code %u", 777 root->info.hash_version); 778 goto fail; 779 } 780 if (fname) 781 hinfo = &fname->hinfo; 782 hinfo->hash_version = root->info.hash_version; 783 if (hinfo->hash_version <= DX_HASH_TEA) 784 hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 785 hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed; 786 if (fname && fname_name(fname)) 787 ext4fs_dirhash(dir, fname_name(fname), fname_len(fname), hinfo); 788 hash = hinfo->hash; 789 790 if (root->info.unused_flags & 1) { 791 ext4_warning_inode(dir, "Unimplemented hash flags: %#06x", 792 root->info.unused_flags); 793 goto fail; 794 } 795 796 indirect = root->info.indirect_levels; 797 if (indirect >= ext4_dir_htree_level(dir->i_sb)) { 798 ext4_warning(dir->i_sb, 799 "Directory (ino: %lu) htree depth %#06x exceed" 800 "supported value", dir->i_ino, 801 ext4_dir_htree_level(dir->i_sb)); 802 if (ext4_dir_htree_level(dir->i_sb) < EXT4_HTREE_LEVEL) { 803 ext4_warning(dir->i_sb, "Enable large directory " 804 "feature to access it"); 805 } 806 goto fail; 807 } 808 809 entries = (struct dx_entry *)(((char *)&root->info) + 810 root->info.info_length); 811 812 if (dx_get_limit(entries) != dx_root_limit(dir, 813 root->info.info_length)) { 814 ext4_warning_inode(dir, "dx entry: limit %u != root limit %u", 815 dx_get_limit(entries), 816 dx_root_limit(dir, root->info.info_length)); 817 goto fail; 818 } 819 820 dxtrace(printk("Look up %x", hash)); 821 while (1) { 822 count = dx_get_count(entries); 823 if (!count || count > dx_get_limit(entries)) { 824 ext4_warning_inode(dir, 825 "dx entry: count %u beyond limit %u", 826 count, dx_get_limit(entries)); 827 goto fail; 828 } 829 830 p = entries + 1; 831 q = entries + count - 1; 832 while (p <= q) { 833 m = p + (q - p) / 2; 834 dxtrace(printk(KERN_CONT ".")); 835 if (dx_get_hash(m) > hash) 836 q = m - 1; 837 else 838 p = m + 1; 839 } 840 841 if (0) { // linear search cross check 842 unsigned n = count - 1; 843 at = entries; 844 while (n--) 845 { 846 dxtrace(printk(KERN_CONT ",")); 847 if (dx_get_hash(++at) > hash) 848 { 849 at--; 850 break; 851 } 852 } 853 assert (at == p - 1); 854 } 855 856 at = p - 1; 857 dxtrace(printk(KERN_CONT " %x->%u\n", 858 at == entries ? 0 : dx_get_hash(at), 859 dx_get_block(at))); 860 frame->entries = entries; 861 frame->at = at; 862 if (!indirect--) 863 return frame; 864 frame++; 865 frame->bh = ext4_read_dirblock(dir, dx_get_block(at), INDEX); 866 if (IS_ERR(frame->bh)) { 867 ret_err = (struct dx_frame *) frame->bh; 868 frame->bh = NULL; 869 goto fail; 870 } 871 entries = ((struct dx_node *) frame->bh->b_data)->entries; 872 873 if (dx_get_limit(entries) != dx_node_limit(dir)) { 874 ext4_warning_inode(dir, 875 "dx entry: limit %u != node limit %u", 876 dx_get_limit(entries), dx_node_limit(dir)); 877 goto fail; 878 } 879 } 880 fail: 881 while (frame >= frame_in) { 882 brelse(frame->bh); 883 frame--; 884 } 885 886 if (ret_err == ERR_PTR(ERR_BAD_DX_DIR)) 887 ext4_warning_inode(dir, 888 "Corrupt directory, running e2fsck is recommended"); 889 return ret_err; 890 } 891 892 static void dx_release(struct dx_frame *frames) 893 { 894 struct dx_root_info *info; 895 int i; 896 unsigned int indirect_levels; 897 898 if (frames[0].bh == NULL) 899 return; 900 901 info = &((struct dx_root *)frames[0].bh->b_data)->info; 902 /* save local copy, "info" may be freed after brelse() */ 903 indirect_levels = info->indirect_levels; 904 for (i = 0; i <= indirect_levels; i++) { 905 if (frames[i].bh == NULL) 906 break; 907 brelse(frames[i].bh); 908 frames[i].bh = NULL; 909 } 910 } 911 912 /* 913 * This function increments the frame pointer to search the next leaf 914 * block, and reads in the necessary intervening nodes if the search 915 * should be necessary. Whether or not the search is necessary is 916 * controlled by the hash parameter. If the hash value is even, then 917 * the search is only continued if the next block starts with that 918 * hash value. This is used if we are searching for a specific file. 919 * 920 * If the hash value is HASH_NB_ALWAYS, then always go to the next block. 921 * 922 * This function returns 1 if the caller should continue to search, 923 * or 0 if it should not. If there is an error reading one of the 924 * index blocks, it will a negative error code. 925 * 926 * If start_hash is non-null, it will be filled in with the starting 927 * hash of the next page. 928 */ 929 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 930 struct dx_frame *frame, 931 struct dx_frame *frames, 932 __u32 *start_hash) 933 { 934 struct dx_frame *p; 935 struct buffer_head *bh; 936 int num_frames = 0; 937 __u32 bhash; 938 939 p = frame; 940 /* 941 * Find the next leaf page by incrementing the frame pointer. 942 * If we run out of entries in the interior node, loop around and 943 * increment pointer in the parent node. When we break out of 944 * this loop, num_frames indicates the number of interior 945 * nodes need to be read. 946 */ 947 while (1) { 948 if (++(p->at) < p->entries + dx_get_count(p->entries)) 949 break; 950 if (p == frames) 951 return 0; 952 num_frames++; 953 p--; 954 } 955 956 /* 957 * If the hash is 1, then continue only if the next page has a 958 * continuation hash of any value. This is used for readdir 959 * handling. Otherwise, check to see if the hash matches the 960 * desired contiuation hash. If it doesn't, return since 961 * there's no point to read in the successive index pages. 962 */ 963 bhash = dx_get_hash(p->at); 964 if (start_hash) 965 *start_hash = bhash; 966 if ((hash & 1) == 0) { 967 if ((bhash & ~1) != hash) 968 return 0; 969 } 970 /* 971 * If the hash is HASH_NB_ALWAYS, we always go to the next 972 * block so no check is necessary 973 */ 974 while (num_frames--) { 975 bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX); 976 if (IS_ERR(bh)) 977 return PTR_ERR(bh); 978 p++; 979 brelse(p->bh); 980 p->bh = bh; 981 p->at = p->entries = ((struct dx_node *) bh->b_data)->entries; 982 } 983 return 1; 984 } 985 986 987 /* 988 * This function fills a red-black tree with information from a 989 * directory block. It returns the number directory entries loaded 990 * into the tree. If there is an error it is returned in err. 991 */ 992 static int htree_dirblock_to_tree(struct file *dir_file, 993 struct inode *dir, ext4_lblk_t block, 994 struct dx_hash_info *hinfo, 995 __u32 start_hash, __u32 start_minor_hash) 996 { 997 struct buffer_head *bh; 998 struct ext4_dir_entry_2 *de, *top; 999 int err = 0, count = 0; 1000 struct fscrypt_str fname_crypto_str = FSTR_INIT(NULL, 0), tmp_str; 1001 1002 dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n", 1003 (unsigned long)block)); 1004 bh = ext4_read_dirblock(dir, block, DIRENT_HTREE); 1005 if (IS_ERR(bh)) 1006 return PTR_ERR(bh); 1007 1008 de = (struct ext4_dir_entry_2 *) bh->b_data; 1009 top = (struct ext4_dir_entry_2 *) ((char *) de + 1010 dir->i_sb->s_blocksize - 1011 EXT4_DIR_REC_LEN(0)); 1012 /* Check if the directory is encrypted */ 1013 if (IS_ENCRYPTED(dir)) { 1014 err = fscrypt_get_encryption_info(dir); 1015 if (err < 0) { 1016 brelse(bh); 1017 return err; 1018 } 1019 err = fscrypt_fname_alloc_buffer(dir, EXT4_NAME_LEN, 1020 &fname_crypto_str); 1021 if (err < 0) { 1022 brelse(bh); 1023 return err; 1024 } 1025 } 1026 1027 for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) { 1028 if (ext4_check_dir_entry(dir, NULL, de, bh, 1029 bh->b_data, bh->b_size, 1030 (block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb)) 1031 + ((char *)de - bh->b_data))) { 1032 /* silently ignore the rest of the block */ 1033 break; 1034 } 1035 ext4fs_dirhash(dir, de->name, de->name_len, hinfo); 1036 if ((hinfo->hash < start_hash) || 1037 ((hinfo->hash == start_hash) && 1038 (hinfo->minor_hash < start_minor_hash))) 1039 continue; 1040 if (de->inode == 0) 1041 continue; 1042 if (!IS_ENCRYPTED(dir)) { 1043 tmp_str.name = de->name; 1044 tmp_str.len = de->name_len; 1045 err = ext4_htree_store_dirent(dir_file, 1046 hinfo->hash, hinfo->minor_hash, de, 1047 &tmp_str); 1048 } else { 1049 int save_len = fname_crypto_str.len; 1050 struct fscrypt_str de_name = FSTR_INIT(de->name, 1051 de->name_len); 1052 1053 /* Directory is encrypted */ 1054 err = fscrypt_fname_disk_to_usr(dir, hinfo->hash, 1055 hinfo->minor_hash, &de_name, 1056 &fname_crypto_str); 1057 if (err) { 1058 count = err; 1059 goto errout; 1060 } 1061 err = ext4_htree_store_dirent(dir_file, 1062 hinfo->hash, hinfo->minor_hash, de, 1063 &fname_crypto_str); 1064 fname_crypto_str.len = save_len; 1065 } 1066 if (err != 0) { 1067 count = err; 1068 goto errout; 1069 } 1070 count++; 1071 } 1072 errout: 1073 brelse(bh); 1074 fscrypt_fname_free_buffer(&fname_crypto_str); 1075 return count; 1076 } 1077 1078 1079 /* 1080 * This function fills a red-black tree with information from a 1081 * directory. We start scanning the directory in hash order, starting 1082 * at start_hash and start_minor_hash. 1083 * 1084 * This function returns the number of entries inserted into the tree, 1085 * or a negative error code. 1086 */ 1087 int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash, 1088 __u32 start_minor_hash, __u32 *next_hash) 1089 { 1090 struct dx_hash_info hinfo; 1091 struct ext4_dir_entry_2 *de; 1092 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame; 1093 struct inode *dir; 1094 ext4_lblk_t block; 1095 int count = 0; 1096 int ret, err; 1097 __u32 hashval; 1098 struct fscrypt_str tmp_str; 1099 1100 dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n", 1101 start_hash, start_minor_hash)); 1102 dir = file_inode(dir_file); 1103 if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) { 1104 hinfo.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version; 1105 if (hinfo.hash_version <= DX_HASH_TEA) 1106 hinfo.hash_version += 1107 EXT4_SB(dir->i_sb)->s_hash_unsigned; 1108 hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 1109 if (ext4_has_inline_data(dir)) { 1110 int has_inline_data = 1; 1111 count = ext4_inlinedir_to_tree(dir_file, dir, 0, 1112 &hinfo, start_hash, 1113 start_minor_hash, 1114 &has_inline_data); 1115 if (has_inline_data) { 1116 *next_hash = ~0; 1117 return count; 1118 } 1119 } 1120 count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo, 1121 start_hash, start_minor_hash); 1122 *next_hash = ~0; 1123 return count; 1124 } 1125 hinfo.hash = start_hash; 1126 hinfo.minor_hash = 0; 1127 frame = dx_probe(NULL, dir, &hinfo, frames); 1128 if (IS_ERR(frame)) 1129 return PTR_ERR(frame); 1130 1131 /* Add '.' and '..' from the htree header */ 1132 if (!start_hash && !start_minor_hash) { 1133 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1134 tmp_str.name = de->name; 1135 tmp_str.len = de->name_len; 1136 err = ext4_htree_store_dirent(dir_file, 0, 0, 1137 de, &tmp_str); 1138 if (err != 0) 1139 goto errout; 1140 count++; 1141 } 1142 if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) { 1143 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1144 de = ext4_next_entry(de, dir->i_sb->s_blocksize); 1145 tmp_str.name = de->name; 1146 tmp_str.len = de->name_len; 1147 err = ext4_htree_store_dirent(dir_file, 2, 0, 1148 de, &tmp_str); 1149 if (err != 0) 1150 goto errout; 1151 count++; 1152 } 1153 1154 while (1) { 1155 if (fatal_signal_pending(current)) { 1156 err = -ERESTARTSYS; 1157 goto errout; 1158 } 1159 cond_resched(); 1160 block = dx_get_block(frame->at); 1161 ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo, 1162 start_hash, start_minor_hash); 1163 if (ret < 0) { 1164 err = ret; 1165 goto errout; 1166 } 1167 count += ret; 1168 hashval = ~0; 1169 ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS, 1170 frame, frames, &hashval); 1171 *next_hash = hashval; 1172 if (ret < 0) { 1173 err = ret; 1174 goto errout; 1175 } 1176 /* 1177 * Stop if: (a) there are no more entries, or 1178 * (b) we have inserted at least one entry and the 1179 * next hash value is not a continuation 1180 */ 1181 if ((ret == 0) || 1182 (count && ((hashval & 1) == 0))) 1183 break; 1184 } 1185 dx_release(frames); 1186 dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, " 1187 "next hash: %x\n", count, *next_hash)); 1188 return count; 1189 errout: 1190 dx_release(frames); 1191 return (err); 1192 } 1193 1194 static inline int search_dirblock(struct buffer_head *bh, 1195 struct inode *dir, 1196 struct ext4_filename *fname, 1197 unsigned int offset, 1198 struct ext4_dir_entry_2 **res_dir) 1199 { 1200 return ext4_search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir, 1201 fname, offset, res_dir); 1202 } 1203 1204 /* 1205 * Directory block splitting, compacting 1206 */ 1207 1208 /* 1209 * Create map of hash values, offsets, and sizes, stored at end of block. 1210 * Returns number of entries mapped. 1211 */ 1212 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 1213 unsigned blocksize, struct dx_hash_info *hinfo, 1214 struct dx_map_entry *map_tail) 1215 { 1216 int count = 0; 1217 char *base = (char *) de; 1218 struct dx_hash_info h = *hinfo; 1219 1220 while ((char *) de < base + blocksize) { 1221 if (de->name_len && de->inode) { 1222 ext4fs_dirhash(dir, de->name, de->name_len, &h); 1223 map_tail--; 1224 map_tail->hash = h.hash; 1225 map_tail->offs = ((char *) de - base)>>2; 1226 map_tail->size = le16_to_cpu(de->rec_len); 1227 count++; 1228 cond_resched(); 1229 } 1230 /* XXX: do we need to check rec_len == 0 case? -Chris */ 1231 de = ext4_next_entry(de, blocksize); 1232 } 1233 return count; 1234 } 1235 1236 /* Sort map by hash value */ 1237 static void dx_sort_map (struct dx_map_entry *map, unsigned count) 1238 { 1239 struct dx_map_entry *p, *q, *top = map + count - 1; 1240 int more; 1241 /* Combsort until bubble sort doesn't suck */ 1242 while (count > 2) { 1243 count = count*10/13; 1244 if (count - 9 < 2) /* 9, 10 -> 11 */ 1245 count = 11; 1246 for (p = top, q = p - count; q >= map; p--, q--) 1247 if (p->hash < q->hash) 1248 swap(*p, *q); 1249 } 1250 /* Garden variety bubble sort */ 1251 do { 1252 more = 0; 1253 q = top; 1254 while (q-- > map) { 1255 if (q[1].hash >= q[0].hash) 1256 continue; 1257 swap(*(q+1), *q); 1258 more = 1; 1259 } 1260 } while(more); 1261 } 1262 1263 static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block) 1264 { 1265 struct dx_entry *entries = frame->entries; 1266 struct dx_entry *old = frame->at, *new = old + 1; 1267 int count = dx_get_count(entries); 1268 1269 assert(count < dx_get_limit(entries)); 1270 assert(old < entries + count); 1271 memmove(new + 1, new, (char *)(entries + count) - (char *)(new)); 1272 dx_set_hash(new, hash); 1273 dx_set_block(new, block); 1274 dx_set_count(entries, count + 1); 1275 } 1276 1277 #ifdef CONFIG_UNICODE 1278 /* 1279 * Test whether a case-insensitive directory entry matches the filename 1280 * being searched for. If quick is set, assume the name being looked up 1281 * is already in the casefolded form. 1282 * 1283 * Returns: 0 if the directory entry matches, more than 0 if it 1284 * doesn't match or less than zero on error. 1285 */ 1286 int ext4_ci_compare(const struct inode *parent, const struct qstr *name, 1287 const struct qstr *entry, bool quick) 1288 { 1289 const struct ext4_sb_info *sbi = EXT4_SB(parent->i_sb); 1290 const struct unicode_map *um = sbi->s_encoding; 1291 int ret; 1292 1293 if (quick) 1294 ret = utf8_strncasecmp_folded(um, name, entry); 1295 else 1296 ret = utf8_strncasecmp(um, name, entry); 1297 1298 if (ret < 0) { 1299 /* Handle invalid character sequence as either an error 1300 * or as an opaque byte sequence. 1301 */ 1302 if (ext4_has_strict_mode(sbi)) 1303 return -EINVAL; 1304 1305 if (name->len != entry->len) 1306 return 1; 1307 1308 return !!memcmp(name->name, entry->name, name->len); 1309 } 1310 1311 return ret; 1312 } 1313 1314 void ext4_fname_setup_ci_filename(struct inode *dir, const struct qstr *iname, 1315 struct fscrypt_str *cf_name) 1316 { 1317 int len; 1318 1319 if (!IS_CASEFOLDED(dir) || !EXT4_SB(dir->i_sb)->s_encoding) { 1320 cf_name->name = NULL; 1321 return; 1322 } 1323 1324 cf_name->name = kmalloc(EXT4_NAME_LEN, GFP_NOFS); 1325 if (!cf_name->name) 1326 return; 1327 1328 len = utf8_casefold(EXT4_SB(dir->i_sb)->s_encoding, 1329 iname, cf_name->name, 1330 EXT4_NAME_LEN); 1331 if (len <= 0) { 1332 kfree(cf_name->name); 1333 cf_name->name = NULL; 1334 return; 1335 } 1336 cf_name->len = (unsigned) len; 1337 1338 } 1339 #endif 1340 1341 /* 1342 * Test whether a directory entry matches the filename being searched for. 1343 * 1344 * Return: %true if the directory entry matches, otherwise %false. 1345 */ 1346 static inline bool ext4_match(const struct inode *parent, 1347 const struct ext4_filename *fname, 1348 const struct ext4_dir_entry_2 *de) 1349 { 1350 struct fscrypt_name f; 1351 #ifdef CONFIG_UNICODE 1352 const struct qstr entry = {.name = de->name, .len = de->name_len}; 1353 #endif 1354 1355 if (!de->inode) 1356 return false; 1357 1358 f.usr_fname = fname->usr_fname; 1359 f.disk_name = fname->disk_name; 1360 #ifdef CONFIG_FS_ENCRYPTION 1361 f.crypto_buf = fname->crypto_buf; 1362 #endif 1363 1364 #ifdef CONFIG_UNICODE 1365 if (EXT4_SB(parent->i_sb)->s_encoding && IS_CASEFOLDED(parent)) { 1366 if (fname->cf_name.name) { 1367 struct qstr cf = {.name = fname->cf_name.name, 1368 .len = fname->cf_name.len}; 1369 return !ext4_ci_compare(parent, &cf, &entry, true); 1370 } 1371 return !ext4_ci_compare(parent, fname->usr_fname, &entry, 1372 false); 1373 } 1374 #endif 1375 1376 return fscrypt_match_name(&f, de->name, de->name_len); 1377 } 1378 1379 /* 1380 * Returns 0 if not found, -1 on failure, and 1 on success 1381 */ 1382 int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size, 1383 struct inode *dir, struct ext4_filename *fname, 1384 unsigned int offset, struct ext4_dir_entry_2 **res_dir) 1385 { 1386 struct ext4_dir_entry_2 * de; 1387 char * dlimit; 1388 int de_len; 1389 1390 de = (struct ext4_dir_entry_2 *)search_buf; 1391 dlimit = search_buf + buf_size; 1392 while ((char *) de < dlimit) { 1393 /* this code is executed quadratically often */ 1394 /* do minimal checking `by hand' */ 1395 if ((char *) de + de->name_len <= dlimit && 1396 ext4_match(dir, fname, de)) { 1397 /* found a match - just to be sure, do 1398 * a full check */ 1399 if (ext4_check_dir_entry(dir, NULL, de, bh, search_buf, 1400 buf_size, offset)) 1401 return -1; 1402 *res_dir = de; 1403 return 1; 1404 } 1405 /* prevent looping on a bad block */ 1406 de_len = ext4_rec_len_from_disk(de->rec_len, 1407 dir->i_sb->s_blocksize); 1408 if (de_len <= 0) 1409 return -1; 1410 offset += de_len; 1411 de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); 1412 } 1413 return 0; 1414 } 1415 1416 static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block, 1417 struct ext4_dir_entry *de) 1418 { 1419 struct super_block *sb = dir->i_sb; 1420 1421 if (!is_dx(dir)) 1422 return 0; 1423 if (block == 0) 1424 return 1; 1425 if (de->inode == 0 && 1426 ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) == 1427 sb->s_blocksize) 1428 return 1; 1429 return 0; 1430 } 1431 1432 /* 1433 * __ext4_find_entry() 1434 * 1435 * finds an entry in the specified directory with the wanted name. It 1436 * returns the cache buffer in which the entry was found, and the entry 1437 * itself (as a parameter - res_dir). It does NOT read the inode of the 1438 * entry - you'll have to do that yourself if you want to. 1439 * 1440 * The returned buffer_head has ->b_count elevated. The caller is expected 1441 * to brelse() it when appropriate. 1442 */ 1443 static struct buffer_head *__ext4_find_entry(struct inode *dir, 1444 struct ext4_filename *fname, 1445 struct ext4_dir_entry_2 **res_dir, 1446 int *inlined) 1447 { 1448 struct super_block *sb; 1449 struct buffer_head *bh_use[NAMEI_RA_SIZE]; 1450 struct buffer_head *bh, *ret = NULL; 1451 ext4_lblk_t start, block; 1452 const u8 *name = fname->usr_fname->name; 1453 size_t ra_max = 0; /* Number of bh's in the readahead 1454 buffer, bh_use[] */ 1455 size_t ra_ptr = 0; /* Current index into readahead 1456 buffer */ 1457 ext4_lblk_t nblocks; 1458 int i, namelen, retval; 1459 1460 *res_dir = NULL; 1461 sb = dir->i_sb; 1462 namelen = fname->usr_fname->len; 1463 if (namelen > EXT4_NAME_LEN) 1464 return NULL; 1465 1466 if (ext4_has_inline_data(dir)) { 1467 int has_inline_data = 1; 1468 ret = ext4_find_inline_entry(dir, fname, res_dir, 1469 &has_inline_data); 1470 if (has_inline_data) { 1471 if (inlined) 1472 *inlined = 1; 1473 goto cleanup_and_exit; 1474 } 1475 } 1476 1477 if ((namelen <= 2) && (name[0] == '.') && 1478 (name[1] == '.' || name[1] == '\0')) { 1479 /* 1480 * "." or ".." will only be in the first block 1481 * NFS may look up ".."; "." should be handled by the VFS 1482 */ 1483 block = start = 0; 1484 nblocks = 1; 1485 goto restart; 1486 } 1487 if (is_dx(dir)) { 1488 ret = ext4_dx_find_entry(dir, fname, res_dir); 1489 /* 1490 * On success, or if the error was file not found, 1491 * return. Otherwise, fall back to doing a search the 1492 * old fashioned way. 1493 */ 1494 if (!IS_ERR(ret) || PTR_ERR(ret) != ERR_BAD_DX_DIR) 1495 goto cleanup_and_exit; 1496 dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, " 1497 "falling back\n")); 1498 ret = NULL; 1499 } 1500 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1501 if (!nblocks) { 1502 ret = NULL; 1503 goto cleanup_and_exit; 1504 } 1505 start = EXT4_I(dir)->i_dir_start_lookup; 1506 if (start >= nblocks) 1507 start = 0; 1508 block = start; 1509 restart: 1510 do { 1511 /* 1512 * We deal with the read-ahead logic here. 1513 */ 1514 cond_resched(); 1515 if (ra_ptr >= ra_max) { 1516 /* Refill the readahead buffer */ 1517 ra_ptr = 0; 1518 if (block < start) 1519 ra_max = start - block; 1520 else 1521 ra_max = nblocks - block; 1522 ra_max = min(ra_max, ARRAY_SIZE(bh_use)); 1523 retval = ext4_bread_batch(dir, block, ra_max, 1524 false /* wait */, bh_use); 1525 if (retval) { 1526 ret = ERR_PTR(retval); 1527 ra_max = 0; 1528 goto cleanup_and_exit; 1529 } 1530 } 1531 if ((bh = bh_use[ra_ptr++]) == NULL) 1532 goto next; 1533 wait_on_buffer(bh); 1534 if (!buffer_uptodate(bh)) { 1535 EXT4_ERROR_INODE_ERR(dir, EIO, 1536 "reading directory lblock %lu", 1537 (unsigned long) block); 1538 brelse(bh); 1539 ret = ERR_PTR(-EIO); 1540 goto cleanup_and_exit; 1541 } 1542 if (!buffer_verified(bh) && 1543 !is_dx_internal_node(dir, block, 1544 (struct ext4_dir_entry *)bh->b_data) && 1545 !ext4_dirblock_csum_verify(dir, bh)) { 1546 EXT4_ERROR_INODE_ERR(dir, EFSBADCRC, 1547 "checksumming directory " 1548 "block %lu", (unsigned long)block); 1549 brelse(bh); 1550 ret = ERR_PTR(-EFSBADCRC); 1551 goto cleanup_and_exit; 1552 } 1553 set_buffer_verified(bh); 1554 i = search_dirblock(bh, dir, fname, 1555 block << EXT4_BLOCK_SIZE_BITS(sb), res_dir); 1556 if (i == 1) { 1557 EXT4_I(dir)->i_dir_start_lookup = block; 1558 ret = bh; 1559 goto cleanup_and_exit; 1560 } else { 1561 brelse(bh); 1562 if (i < 0) 1563 goto cleanup_and_exit; 1564 } 1565 next: 1566 if (++block >= nblocks) 1567 block = 0; 1568 } while (block != start); 1569 1570 /* 1571 * If the directory has grown while we were searching, then 1572 * search the last part of the directory before giving up. 1573 */ 1574 block = nblocks; 1575 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1576 if (block < nblocks) { 1577 start = 0; 1578 goto restart; 1579 } 1580 1581 cleanup_and_exit: 1582 /* Clean up the read-ahead blocks */ 1583 for (; ra_ptr < ra_max; ra_ptr++) 1584 brelse(bh_use[ra_ptr]); 1585 return ret; 1586 } 1587 1588 static struct buffer_head *ext4_find_entry(struct inode *dir, 1589 const struct qstr *d_name, 1590 struct ext4_dir_entry_2 **res_dir, 1591 int *inlined) 1592 { 1593 int err; 1594 struct ext4_filename fname; 1595 struct buffer_head *bh; 1596 1597 err = ext4_fname_setup_filename(dir, d_name, 1, &fname); 1598 if (err == -ENOENT) 1599 return NULL; 1600 if (err) 1601 return ERR_PTR(err); 1602 1603 bh = __ext4_find_entry(dir, &fname, res_dir, inlined); 1604 1605 ext4_fname_free_filename(&fname); 1606 return bh; 1607 } 1608 1609 static struct buffer_head *ext4_lookup_entry(struct inode *dir, 1610 struct dentry *dentry, 1611 struct ext4_dir_entry_2 **res_dir) 1612 { 1613 int err; 1614 struct ext4_filename fname; 1615 struct buffer_head *bh; 1616 1617 err = ext4_fname_prepare_lookup(dir, dentry, &fname); 1618 if (err == -ENOENT) 1619 return NULL; 1620 if (err) 1621 return ERR_PTR(err); 1622 1623 bh = __ext4_find_entry(dir, &fname, res_dir, NULL); 1624 1625 ext4_fname_free_filename(&fname); 1626 return bh; 1627 } 1628 1629 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 1630 struct ext4_filename *fname, 1631 struct ext4_dir_entry_2 **res_dir) 1632 { 1633 struct super_block * sb = dir->i_sb; 1634 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame; 1635 struct buffer_head *bh; 1636 ext4_lblk_t block; 1637 int retval; 1638 1639 #ifdef CONFIG_FS_ENCRYPTION 1640 *res_dir = NULL; 1641 #endif 1642 frame = dx_probe(fname, dir, NULL, frames); 1643 if (IS_ERR(frame)) 1644 return (struct buffer_head *) frame; 1645 do { 1646 block = dx_get_block(frame->at); 1647 bh = ext4_read_dirblock(dir, block, DIRENT_HTREE); 1648 if (IS_ERR(bh)) 1649 goto errout; 1650 1651 retval = search_dirblock(bh, dir, fname, 1652 block << EXT4_BLOCK_SIZE_BITS(sb), 1653 res_dir); 1654 if (retval == 1) 1655 goto success; 1656 brelse(bh); 1657 if (retval == -1) { 1658 bh = ERR_PTR(ERR_BAD_DX_DIR); 1659 goto errout; 1660 } 1661 1662 /* Check to see if we should continue to search */ 1663 retval = ext4_htree_next_block(dir, fname->hinfo.hash, frame, 1664 frames, NULL); 1665 if (retval < 0) { 1666 ext4_warning_inode(dir, 1667 "error %d reading directory index block", 1668 retval); 1669 bh = ERR_PTR(retval); 1670 goto errout; 1671 } 1672 } while (retval == 1); 1673 1674 bh = NULL; 1675 errout: 1676 dxtrace(printk(KERN_DEBUG "%s not found\n", fname->usr_fname->name)); 1677 success: 1678 dx_release(frames); 1679 return bh; 1680 } 1681 1682 static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1683 { 1684 struct inode *inode; 1685 struct ext4_dir_entry_2 *de; 1686 struct buffer_head *bh; 1687 1688 if (dentry->d_name.len > EXT4_NAME_LEN) 1689 return ERR_PTR(-ENAMETOOLONG); 1690 1691 bh = ext4_lookup_entry(dir, dentry, &de); 1692 if (IS_ERR(bh)) 1693 return ERR_CAST(bh); 1694 inode = NULL; 1695 if (bh) { 1696 __u32 ino = le32_to_cpu(de->inode); 1697 brelse(bh); 1698 if (!ext4_valid_inum(dir->i_sb, ino)) { 1699 EXT4_ERROR_INODE(dir, "bad inode number: %u", ino); 1700 return ERR_PTR(-EFSCORRUPTED); 1701 } 1702 if (unlikely(ino == dir->i_ino)) { 1703 EXT4_ERROR_INODE(dir, "'%pd' linked to parent dir", 1704 dentry); 1705 return ERR_PTR(-EFSCORRUPTED); 1706 } 1707 inode = ext4_iget(dir->i_sb, ino, EXT4_IGET_NORMAL); 1708 if (inode == ERR_PTR(-ESTALE)) { 1709 EXT4_ERROR_INODE(dir, 1710 "deleted inode referenced: %u", 1711 ino); 1712 return ERR_PTR(-EFSCORRUPTED); 1713 } 1714 if (!IS_ERR(inode) && IS_ENCRYPTED(dir) && 1715 (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) && 1716 !fscrypt_has_permitted_context(dir, inode)) { 1717 ext4_warning(inode->i_sb, 1718 "Inconsistent encryption contexts: %lu/%lu", 1719 dir->i_ino, inode->i_ino); 1720 iput(inode); 1721 return ERR_PTR(-EPERM); 1722 } 1723 } 1724 1725 #ifdef CONFIG_UNICODE 1726 if (!inode && IS_CASEFOLDED(dir)) { 1727 /* Eventually we want to call d_add_ci(dentry, NULL) 1728 * for negative dentries in the encoding case as 1729 * well. For now, prevent the negative dentry 1730 * from being cached. 1731 */ 1732 return NULL; 1733 } 1734 #endif 1735 return d_splice_alias(inode, dentry); 1736 } 1737 1738 1739 struct dentry *ext4_get_parent(struct dentry *child) 1740 { 1741 __u32 ino; 1742 static const struct qstr dotdot = QSTR_INIT("..", 2); 1743 struct ext4_dir_entry_2 * de; 1744 struct buffer_head *bh; 1745 1746 bh = ext4_find_entry(d_inode(child), &dotdot, &de, NULL); 1747 if (IS_ERR(bh)) 1748 return ERR_CAST(bh); 1749 if (!bh) 1750 return ERR_PTR(-ENOENT); 1751 ino = le32_to_cpu(de->inode); 1752 brelse(bh); 1753 1754 if (!ext4_valid_inum(child->d_sb, ino)) { 1755 EXT4_ERROR_INODE(d_inode(child), 1756 "bad parent inode number: %u", ino); 1757 return ERR_PTR(-EFSCORRUPTED); 1758 } 1759 1760 return d_obtain_alias(ext4_iget(child->d_sb, ino, EXT4_IGET_NORMAL)); 1761 } 1762 1763 /* 1764 * Move count entries from end of map between two memory locations. 1765 * Returns pointer to last entry moved. 1766 */ 1767 static struct ext4_dir_entry_2 * 1768 dx_move_dirents(char *from, char *to, struct dx_map_entry *map, int count, 1769 unsigned blocksize) 1770 { 1771 unsigned rec_len = 0; 1772 1773 while (count--) { 1774 struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *) 1775 (from + (map->offs<<2)); 1776 rec_len = EXT4_DIR_REC_LEN(de->name_len); 1777 memcpy (to, de, rec_len); 1778 ((struct ext4_dir_entry_2 *) to)->rec_len = 1779 ext4_rec_len_to_disk(rec_len, blocksize); 1780 de->inode = 0; 1781 map++; 1782 to += rec_len; 1783 } 1784 return (struct ext4_dir_entry_2 *) (to - rec_len); 1785 } 1786 1787 /* 1788 * Compact each dir entry in the range to the minimal rec_len. 1789 * Returns pointer to last entry in range. 1790 */ 1791 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize) 1792 { 1793 struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base; 1794 unsigned rec_len = 0; 1795 1796 prev = to = de; 1797 while ((char*)de < base + blocksize) { 1798 next = ext4_next_entry(de, blocksize); 1799 if (de->inode && de->name_len) { 1800 rec_len = EXT4_DIR_REC_LEN(de->name_len); 1801 if (de > to) 1802 memmove(to, de, rec_len); 1803 to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize); 1804 prev = to; 1805 to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len); 1806 } 1807 de = next; 1808 } 1809 return prev; 1810 } 1811 1812 /* 1813 * Split a full leaf block to make room for a new dir entry. 1814 * Allocate a new block, and move entries so that they are approx. equally full. 1815 * Returns pointer to de in block into which the new entry will be inserted. 1816 */ 1817 static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir, 1818 struct buffer_head **bh,struct dx_frame *frame, 1819 struct dx_hash_info *hinfo) 1820 { 1821 unsigned blocksize = dir->i_sb->s_blocksize; 1822 unsigned count, continued; 1823 struct buffer_head *bh2; 1824 ext4_lblk_t newblock; 1825 u32 hash2; 1826 struct dx_map_entry *map; 1827 char *data1 = (*bh)->b_data, *data2; 1828 unsigned split, move, size; 1829 struct ext4_dir_entry_2 *de = NULL, *de2; 1830 int csum_size = 0; 1831 int err = 0, i; 1832 1833 if (ext4_has_metadata_csum(dir->i_sb)) 1834 csum_size = sizeof(struct ext4_dir_entry_tail); 1835 1836 bh2 = ext4_append(handle, dir, &newblock); 1837 if (IS_ERR(bh2)) { 1838 brelse(*bh); 1839 *bh = NULL; 1840 return (struct ext4_dir_entry_2 *) bh2; 1841 } 1842 1843 BUFFER_TRACE(*bh, "get_write_access"); 1844 err = ext4_journal_get_write_access(handle, *bh); 1845 if (err) 1846 goto journal_error; 1847 1848 BUFFER_TRACE(frame->bh, "get_write_access"); 1849 err = ext4_journal_get_write_access(handle, frame->bh); 1850 if (err) 1851 goto journal_error; 1852 1853 data2 = bh2->b_data; 1854 1855 /* create map in the end of data2 block */ 1856 map = (struct dx_map_entry *) (data2 + blocksize); 1857 count = dx_make_map(dir, (struct ext4_dir_entry_2 *) data1, 1858 blocksize, hinfo, map); 1859 map -= count; 1860 dx_sort_map(map, count); 1861 /* Ensure that neither split block is over half full */ 1862 size = 0; 1863 move = 0; 1864 for (i = count-1; i >= 0; i--) { 1865 /* is more than half of this entry in 2nd half of the block? */ 1866 if (size + map[i].size/2 > blocksize/2) 1867 break; 1868 size += map[i].size; 1869 move++; 1870 } 1871 /* 1872 * map index at which we will split 1873 * 1874 * If the sum of active entries didn't exceed half the block size, just 1875 * split it in half by count; each resulting block will have at least 1876 * half the space free. 1877 */ 1878 if (i > 0) 1879 split = count - move; 1880 else 1881 split = count/2; 1882 1883 hash2 = map[split].hash; 1884 continued = hash2 == map[split - 1].hash; 1885 dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n", 1886 (unsigned long)dx_get_block(frame->at), 1887 hash2, split, count-split)); 1888 1889 /* Fancy dance to stay within two buffers */ 1890 de2 = dx_move_dirents(data1, data2, map + split, count - split, 1891 blocksize); 1892 de = dx_pack_dirents(data1, blocksize); 1893 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) - 1894 (char *) de, 1895 blocksize); 1896 de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) - 1897 (char *) de2, 1898 blocksize); 1899 if (csum_size) { 1900 ext4_initialize_dirent_tail(*bh, blocksize); 1901 ext4_initialize_dirent_tail(bh2, blocksize); 1902 } 1903 1904 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data1, 1905 blocksize, 1)); 1906 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data2, 1907 blocksize, 1)); 1908 1909 /* Which block gets the new entry? */ 1910 if (hinfo->hash >= hash2) { 1911 swap(*bh, bh2); 1912 de = de2; 1913 } 1914 dx_insert_block(frame, hash2 + continued, newblock); 1915 err = ext4_handle_dirty_dirblock(handle, dir, bh2); 1916 if (err) 1917 goto journal_error; 1918 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 1919 if (err) 1920 goto journal_error; 1921 brelse(bh2); 1922 dxtrace(dx_show_index("frame", frame->entries)); 1923 return de; 1924 1925 journal_error: 1926 brelse(*bh); 1927 brelse(bh2); 1928 *bh = NULL; 1929 ext4_std_error(dir->i_sb, err); 1930 return ERR_PTR(err); 1931 } 1932 1933 int ext4_find_dest_de(struct inode *dir, struct inode *inode, 1934 struct buffer_head *bh, 1935 void *buf, int buf_size, 1936 struct ext4_filename *fname, 1937 struct ext4_dir_entry_2 **dest_de) 1938 { 1939 struct ext4_dir_entry_2 *de; 1940 unsigned short reclen = EXT4_DIR_REC_LEN(fname_len(fname)); 1941 int nlen, rlen; 1942 unsigned int offset = 0; 1943 char *top; 1944 1945 de = (struct ext4_dir_entry_2 *)buf; 1946 top = buf + buf_size - reclen; 1947 while ((char *) de <= top) { 1948 if (ext4_check_dir_entry(dir, NULL, de, bh, 1949 buf, buf_size, offset)) 1950 return -EFSCORRUPTED; 1951 if (ext4_match(dir, fname, de)) 1952 return -EEXIST; 1953 nlen = EXT4_DIR_REC_LEN(de->name_len); 1954 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 1955 if ((de->inode ? rlen - nlen : rlen) >= reclen) 1956 break; 1957 de = (struct ext4_dir_entry_2 *)((char *)de + rlen); 1958 offset += rlen; 1959 } 1960 if ((char *) de > top) 1961 return -ENOSPC; 1962 1963 *dest_de = de; 1964 return 0; 1965 } 1966 1967 void ext4_insert_dentry(struct inode *inode, 1968 struct ext4_dir_entry_2 *de, 1969 int buf_size, 1970 struct ext4_filename *fname) 1971 { 1972 1973 int nlen, rlen; 1974 1975 nlen = EXT4_DIR_REC_LEN(de->name_len); 1976 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 1977 if (de->inode) { 1978 struct ext4_dir_entry_2 *de1 = 1979 (struct ext4_dir_entry_2 *)((char *)de + nlen); 1980 de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size); 1981 de->rec_len = ext4_rec_len_to_disk(nlen, buf_size); 1982 de = de1; 1983 } 1984 de->file_type = EXT4_FT_UNKNOWN; 1985 de->inode = cpu_to_le32(inode->i_ino); 1986 ext4_set_de_type(inode->i_sb, de, inode->i_mode); 1987 de->name_len = fname_len(fname); 1988 memcpy(de->name, fname_name(fname), fname_len(fname)); 1989 } 1990 1991 /* 1992 * Add a new entry into a directory (leaf) block. If de is non-NULL, 1993 * it points to a directory entry which is guaranteed to be large 1994 * enough for new directory entry. If de is NULL, then 1995 * add_dirent_to_buf will attempt search the directory block for 1996 * space. It will return -ENOSPC if no space is available, and -EIO 1997 * and -EEXIST if directory entry already exists. 1998 */ 1999 static int add_dirent_to_buf(handle_t *handle, struct ext4_filename *fname, 2000 struct inode *dir, 2001 struct inode *inode, struct ext4_dir_entry_2 *de, 2002 struct buffer_head *bh) 2003 { 2004 unsigned int blocksize = dir->i_sb->s_blocksize; 2005 int csum_size = 0; 2006 int err, err2; 2007 2008 if (ext4_has_metadata_csum(inode->i_sb)) 2009 csum_size = sizeof(struct ext4_dir_entry_tail); 2010 2011 if (!de) { 2012 err = ext4_find_dest_de(dir, inode, bh, bh->b_data, 2013 blocksize - csum_size, fname, &de); 2014 if (err) 2015 return err; 2016 } 2017 BUFFER_TRACE(bh, "get_write_access"); 2018 err = ext4_journal_get_write_access(handle, bh); 2019 if (err) { 2020 ext4_std_error(dir->i_sb, err); 2021 return err; 2022 } 2023 2024 /* By now the buffer is marked for journaling */ 2025 ext4_insert_dentry(inode, de, blocksize, fname); 2026 2027 /* 2028 * XXX shouldn't update any times until successful 2029 * completion of syscall, but too many callers depend 2030 * on this. 2031 * 2032 * XXX similarly, too many callers depend on 2033 * ext4_new_inode() setting the times, but error 2034 * recovery deletes the inode, so the worst that can 2035 * happen is that the times are slightly out of date 2036 * and/or different from the directory change time. 2037 */ 2038 dir->i_mtime = dir->i_ctime = current_time(dir); 2039 ext4_update_dx_flag(dir); 2040 inode_inc_iversion(dir); 2041 err2 = ext4_mark_inode_dirty(handle, dir); 2042 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 2043 err = ext4_handle_dirty_dirblock(handle, dir, bh); 2044 if (err) 2045 ext4_std_error(dir->i_sb, err); 2046 return err ? err : err2; 2047 } 2048 2049 /* 2050 * This converts a one block unindexed directory to a 3 block indexed 2051 * directory, and adds the dentry to the indexed directory. 2052 */ 2053 static int make_indexed_dir(handle_t *handle, struct ext4_filename *fname, 2054 struct inode *dir, 2055 struct inode *inode, struct buffer_head *bh) 2056 { 2057 struct buffer_head *bh2; 2058 struct dx_root *root; 2059 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame; 2060 struct dx_entry *entries; 2061 struct ext4_dir_entry_2 *de, *de2; 2062 char *data2, *top; 2063 unsigned len; 2064 int retval; 2065 unsigned blocksize; 2066 ext4_lblk_t block; 2067 struct fake_dirent *fde; 2068 int csum_size = 0; 2069 2070 if (ext4_has_metadata_csum(inode->i_sb)) 2071 csum_size = sizeof(struct ext4_dir_entry_tail); 2072 2073 blocksize = dir->i_sb->s_blocksize; 2074 dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino)); 2075 BUFFER_TRACE(bh, "get_write_access"); 2076 retval = ext4_journal_get_write_access(handle, bh); 2077 if (retval) { 2078 ext4_std_error(dir->i_sb, retval); 2079 brelse(bh); 2080 return retval; 2081 } 2082 root = (struct dx_root *) bh->b_data; 2083 2084 /* The 0th block becomes the root, move the dirents out */ 2085 fde = &root->dotdot; 2086 de = (struct ext4_dir_entry_2 *)((char *)fde + 2087 ext4_rec_len_from_disk(fde->rec_len, blocksize)); 2088 if ((char *) de >= (((char *) root) + blocksize)) { 2089 EXT4_ERROR_INODE(dir, "invalid rec_len for '..'"); 2090 brelse(bh); 2091 return -EFSCORRUPTED; 2092 } 2093 len = ((char *) root) + (blocksize - csum_size) - (char *) de; 2094 2095 /* Allocate new block for the 0th block's dirents */ 2096 bh2 = ext4_append(handle, dir, &block); 2097 if (IS_ERR(bh2)) { 2098 brelse(bh); 2099 return PTR_ERR(bh2); 2100 } 2101 ext4_set_inode_flag(dir, EXT4_INODE_INDEX); 2102 data2 = bh2->b_data; 2103 2104 memcpy(data2, de, len); 2105 de = (struct ext4_dir_entry_2 *) data2; 2106 top = data2 + len; 2107 while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top) 2108 de = de2; 2109 de->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) - 2110 (char *) de, blocksize); 2111 2112 if (csum_size) 2113 ext4_initialize_dirent_tail(bh2, blocksize); 2114 2115 /* Initialize the root; the dot dirents already exist */ 2116 de = (struct ext4_dir_entry_2 *) (&root->dotdot); 2117 de->rec_len = ext4_rec_len_to_disk(blocksize - EXT4_DIR_REC_LEN(2), 2118 blocksize); 2119 memset (&root->info, 0, sizeof(root->info)); 2120 root->info.info_length = sizeof(root->info); 2121 root->info.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version; 2122 entries = root->entries; 2123 dx_set_block(entries, 1); 2124 dx_set_count(entries, 1); 2125 dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info))); 2126 2127 /* Initialize as for dx_probe */ 2128 fname->hinfo.hash_version = root->info.hash_version; 2129 if (fname->hinfo.hash_version <= DX_HASH_TEA) 2130 fname->hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 2131 fname->hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 2132 ext4fs_dirhash(dir, fname_name(fname), fname_len(fname), &fname->hinfo); 2133 2134 memset(frames, 0, sizeof(frames)); 2135 frame = frames; 2136 frame->entries = entries; 2137 frame->at = entries; 2138 frame->bh = bh; 2139 2140 retval = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 2141 if (retval) 2142 goto out_frames; 2143 retval = ext4_handle_dirty_dirblock(handle, dir, bh2); 2144 if (retval) 2145 goto out_frames; 2146 2147 de = do_split(handle,dir, &bh2, frame, &fname->hinfo); 2148 if (IS_ERR(de)) { 2149 retval = PTR_ERR(de); 2150 goto out_frames; 2151 } 2152 2153 retval = add_dirent_to_buf(handle, fname, dir, inode, de, bh2); 2154 out_frames: 2155 /* 2156 * Even if the block split failed, we have to properly write 2157 * out all the changes we did so far. Otherwise we can end up 2158 * with corrupted filesystem. 2159 */ 2160 if (retval) 2161 ext4_mark_inode_dirty(handle, dir); 2162 dx_release(frames); 2163 brelse(bh2); 2164 return retval; 2165 } 2166 2167 /* 2168 * ext4_add_entry() 2169 * 2170 * adds a file entry to the specified directory, using the same 2171 * semantics as ext4_find_entry(). It returns NULL if it failed. 2172 * 2173 * NOTE!! The inode part of 'de' is left at 0 - which means you 2174 * may not sleep between calling this and putting something into 2175 * the entry, as someone else might have used it while you slept. 2176 */ 2177 static int ext4_add_entry(handle_t *handle, struct dentry *dentry, 2178 struct inode *inode) 2179 { 2180 struct inode *dir = d_inode(dentry->d_parent); 2181 struct buffer_head *bh = NULL; 2182 struct ext4_dir_entry_2 *de; 2183 struct super_block *sb; 2184 #ifdef CONFIG_UNICODE 2185 struct ext4_sb_info *sbi; 2186 #endif 2187 struct ext4_filename fname; 2188 int retval; 2189 int dx_fallback=0; 2190 unsigned blocksize; 2191 ext4_lblk_t block, blocks; 2192 int csum_size = 0; 2193 2194 if (ext4_has_metadata_csum(inode->i_sb)) 2195 csum_size = sizeof(struct ext4_dir_entry_tail); 2196 2197 sb = dir->i_sb; 2198 blocksize = sb->s_blocksize; 2199 if (!dentry->d_name.len) 2200 return -EINVAL; 2201 2202 #ifdef CONFIG_UNICODE 2203 sbi = EXT4_SB(sb); 2204 if (ext4_has_strict_mode(sbi) && IS_CASEFOLDED(dir) && 2205 sbi->s_encoding && utf8_validate(sbi->s_encoding, &dentry->d_name)) 2206 return -EINVAL; 2207 #endif 2208 2209 retval = ext4_fname_setup_filename(dir, &dentry->d_name, 0, &fname); 2210 if (retval) 2211 return retval; 2212 2213 if (ext4_has_inline_data(dir)) { 2214 retval = ext4_try_add_inline_entry(handle, &fname, dir, inode); 2215 if (retval < 0) 2216 goto out; 2217 if (retval == 1) { 2218 retval = 0; 2219 goto out; 2220 } 2221 } 2222 2223 if (is_dx(dir)) { 2224 retval = ext4_dx_add_entry(handle, &fname, dir, inode); 2225 if (!retval || (retval != ERR_BAD_DX_DIR)) 2226 goto out; 2227 /* Can we just ignore htree data? */ 2228 if (ext4_has_metadata_csum(sb)) { 2229 EXT4_ERROR_INODE(dir, 2230 "Directory has corrupted htree index."); 2231 retval = -EFSCORRUPTED; 2232 goto out; 2233 } 2234 ext4_clear_inode_flag(dir, EXT4_INODE_INDEX); 2235 dx_fallback++; 2236 retval = ext4_mark_inode_dirty(handle, dir); 2237 if (unlikely(retval)) 2238 goto out; 2239 } 2240 blocks = dir->i_size >> sb->s_blocksize_bits; 2241 for (block = 0; block < blocks; block++) { 2242 bh = ext4_read_dirblock(dir, block, DIRENT); 2243 if (bh == NULL) { 2244 bh = ext4_bread(handle, dir, block, 2245 EXT4_GET_BLOCKS_CREATE); 2246 goto add_to_new_block; 2247 } 2248 if (IS_ERR(bh)) { 2249 retval = PTR_ERR(bh); 2250 bh = NULL; 2251 goto out; 2252 } 2253 retval = add_dirent_to_buf(handle, &fname, dir, inode, 2254 NULL, bh); 2255 if (retval != -ENOSPC) 2256 goto out; 2257 2258 if (blocks == 1 && !dx_fallback && 2259 ext4_has_feature_dir_index(sb)) { 2260 retval = make_indexed_dir(handle, &fname, dir, 2261 inode, bh); 2262 bh = NULL; /* make_indexed_dir releases bh */ 2263 goto out; 2264 } 2265 brelse(bh); 2266 } 2267 bh = ext4_append(handle, dir, &block); 2268 add_to_new_block: 2269 if (IS_ERR(bh)) { 2270 retval = PTR_ERR(bh); 2271 bh = NULL; 2272 goto out; 2273 } 2274 de = (struct ext4_dir_entry_2 *) bh->b_data; 2275 de->inode = 0; 2276 de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize); 2277 2278 if (csum_size) 2279 ext4_initialize_dirent_tail(bh, blocksize); 2280 2281 retval = add_dirent_to_buf(handle, &fname, dir, inode, de, bh); 2282 out: 2283 ext4_fname_free_filename(&fname); 2284 brelse(bh); 2285 if (retval == 0) 2286 ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY); 2287 return retval; 2288 } 2289 2290 /* 2291 * Returns 0 for success, or a negative error value 2292 */ 2293 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 2294 struct inode *dir, struct inode *inode) 2295 { 2296 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame; 2297 struct dx_entry *entries, *at; 2298 struct buffer_head *bh; 2299 struct super_block *sb = dir->i_sb; 2300 struct ext4_dir_entry_2 *de; 2301 int restart; 2302 int err; 2303 2304 again: 2305 restart = 0; 2306 frame = dx_probe(fname, dir, NULL, frames); 2307 if (IS_ERR(frame)) 2308 return PTR_ERR(frame); 2309 entries = frame->entries; 2310 at = frame->at; 2311 bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT_HTREE); 2312 if (IS_ERR(bh)) { 2313 err = PTR_ERR(bh); 2314 bh = NULL; 2315 goto cleanup; 2316 } 2317 2318 BUFFER_TRACE(bh, "get_write_access"); 2319 err = ext4_journal_get_write_access(handle, bh); 2320 if (err) 2321 goto journal_error; 2322 2323 err = add_dirent_to_buf(handle, fname, dir, inode, NULL, bh); 2324 if (err != -ENOSPC) 2325 goto cleanup; 2326 2327 err = 0; 2328 /* Block full, should compress but for now just split */ 2329 dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n", 2330 dx_get_count(entries), dx_get_limit(entries))); 2331 /* Need to split index? */ 2332 if (dx_get_count(entries) == dx_get_limit(entries)) { 2333 ext4_lblk_t newblock; 2334 int levels = frame - frames + 1; 2335 unsigned int icount; 2336 int add_level = 1; 2337 struct dx_entry *entries2; 2338 struct dx_node *node2; 2339 struct buffer_head *bh2; 2340 2341 while (frame > frames) { 2342 if (dx_get_count((frame - 1)->entries) < 2343 dx_get_limit((frame - 1)->entries)) { 2344 add_level = 0; 2345 break; 2346 } 2347 frame--; /* split higher index block */ 2348 at = frame->at; 2349 entries = frame->entries; 2350 restart = 1; 2351 } 2352 if (add_level && levels == ext4_dir_htree_level(sb)) { 2353 ext4_warning(sb, "Directory (ino: %lu) index full, " 2354 "reach max htree level :%d", 2355 dir->i_ino, levels); 2356 if (ext4_dir_htree_level(sb) < EXT4_HTREE_LEVEL) { 2357 ext4_warning(sb, "Large directory feature is " 2358 "not enabled on this " 2359 "filesystem"); 2360 } 2361 err = -ENOSPC; 2362 goto cleanup; 2363 } 2364 icount = dx_get_count(entries); 2365 bh2 = ext4_append(handle, dir, &newblock); 2366 if (IS_ERR(bh2)) { 2367 err = PTR_ERR(bh2); 2368 goto cleanup; 2369 } 2370 node2 = (struct dx_node *)(bh2->b_data); 2371 entries2 = node2->entries; 2372 memset(&node2->fake, 0, sizeof(struct fake_dirent)); 2373 node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize, 2374 sb->s_blocksize); 2375 BUFFER_TRACE(frame->bh, "get_write_access"); 2376 err = ext4_journal_get_write_access(handle, frame->bh); 2377 if (err) 2378 goto journal_error; 2379 if (!add_level) { 2380 unsigned icount1 = icount/2, icount2 = icount - icount1; 2381 unsigned hash2 = dx_get_hash(entries + icount1); 2382 dxtrace(printk(KERN_DEBUG "Split index %i/%i\n", 2383 icount1, icount2)); 2384 2385 BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */ 2386 err = ext4_journal_get_write_access(handle, 2387 (frame - 1)->bh); 2388 if (err) 2389 goto journal_error; 2390 2391 memcpy((char *) entries2, (char *) (entries + icount1), 2392 icount2 * sizeof(struct dx_entry)); 2393 dx_set_count(entries, icount1); 2394 dx_set_count(entries2, icount2); 2395 dx_set_limit(entries2, dx_node_limit(dir)); 2396 2397 /* Which index block gets the new entry? */ 2398 if (at - entries >= icount1) { 2399 frame->at = at = at - entries - icount1 + entries2; 2400 frame->entries = entries = entries2; 2401 swap(frame->bh, bh2); 2402 } 2403 dx_insert_block((frame - 1), hash2, newblock); 2404 dxtrace(dx_show_index("node", frame->entries)); 2405 dxtrace(dx_show_index("node", 2406 ((struct dx_node *) bh2->b_data)->entries)); 2407 err = ext4_handle_dirty_dx_node(handle, dir, bh2); 2408 if (err) 2409 goto journal_error; 2410 brelse (bh2); 2411 err = ext4_handle_dirty_dx_node(handle, dir, 2412 (frame - 1)->bh); 2413 if (err) 2414 goto journal_error; 2415 if (restart) { 2416 err = ext4_handle_dirty_dx_node(handle, dir, 2417 frame->bh); 2418 goto journal_error; 2419 } 2420 } else { 2421 struct dx_root *dxroot; 2422 memcpy((char *) entries2, (char *) entries, 2423 icount * sizeof(struct dx_entry)); 2424 dx_set_limit(entries2, dx_node_limit(dir)); 2425 2426 /* Set up root */ 2427 dx_set_count(entries, 1); 2428 dx_set_block(entries + 0, newblock); 2429 dxroot = (struct dx_root *)frames[0].bh->b_data; 2430 dxroot->info.indirect_levels += 1; 2431 dxtrace(printk(KERN_DEBUG 2432 "Creating %d level index...\n", 2433 dxroot->info.indirect_levels)); 2434 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 2435 if (err) 2436 goto journal_error; 2437 err = ext4_handle_dirty_dx_node(handle, dir, bh2); 2438 brelse(bh2); 2439 restart = 1; 2440 goto journal_error; 2441 } 2442 } 2443 de = do_split(handle, dir, &bh, frame, &fname->hinfo); 2444 if (IS_ERR(de)) { 2445 err = PTR_ERR(de); 2446 goto cleanup; 2447 } 2448 err = add_dirent_to_buf(handle, fname, dir, inode, de, bh); 2449 goto cleanup; 2450 2451 journal_error: 2452 ext4_std_error(dir->i_sb, err); /* this is a no-op if err == 0 */ 2453 cleanup: 2454 brelse(bh); 2455 dx_release(frames); 2456 /* @restart is true means htree-path has been changed, we need to 2457 * repeat dx_probe() to find out valid htree-path 2458 */ 2459 if (restart && err == 0) 2460 goto again; 2461 return err; 2462 } 2463 2464 /* 2465 * ext4_generic_delete_entry deletes a directory entry by merging it 2466 * with the previous entry 2467 */ 2468 int ext4_generic_delete_entry(struct inode *dir, 2469 struct ext4_dir_entry_2 *de_del, 2470 struct buffer_head *bh, 2471 void *entry_buf, 2472 int buf_size, 2473 int csum_size) 2474 { 2475 struct ext4_dir_entry_2 *de, *pde; 2476 unsigned int blocksize = dir->i_sb->s_blocksize; 2477 int i; 2478 2479 i = 0; 2480 pde = NULL; 2481 de = (struct ext4_dir_entry_2 *)entry_buf; 2482 while (i < buf_size - csum_size) { 2483 if (ext4_check_dir_entry(dir, NULL, de, bh, 2484 entry_buf, buf_size, i)) 2485 return -EFSCORRUPTED; 2486 if (de == de_del) { 2487 if (pde) 2488 pde->rec_len = ext4_rec_len_to_disk( 2489 ext4_rec_len_from_disk(pde->rec_len, 2490 blocksize) + 2491 ext4_rec_len_from_disk(de->rec_len, 2492 blocksize), 2493 blocksize); 2494 else 2495 de->inode = 0; 2496 inode_inc_iversion(dir); 2497 return 0; 2498 } 2499 i += ext4_rec_len_from_disk(de->rec_len, blocksize); 2500 pde = de; 2501 de = ext4_next_entry(de, blocksize); 2502 } 2503 return -ENOENT; 2504 } 2505 2506 static int ext4_delete_entry(handle_t *handle, 2507 struct inode *dir, 2508 struct ext4_dir_entry_2 *de_del, 2509 struct buffer_head *bh) 2510 { 2511 int err, csum_size = 0; 2512 2513 if (ext4_has_inline_data(dir)) { 2514 int has_inline_data = 1; 2515 err = ext4_delete_inline_entry(handle, dir, de_del, bh, 2516 &has_inline_data); 2517 if (has_inline_data) 2518 return err; 2519 } 2520 2521 if (ext4_has_metadata_csum(dir->i_sb)) 2522 csum_size = sizeof(struct ext4_dir_entry_tail); 2523 2524 BUFFER_TRACE(bh, "get_write_access"); 2525 err = ext4_journal_get_write_access(handle, bh); 2526 if (unlikely(err)) 2527 goto out; 2528 2529 err = ext4_generic_delete_entry(dir, de_del, bh, bh->b_data, 2530 dir->i_sb->s_blocksize, csum_size); 2531 if (err) 2532 goto out; 2533 2534 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 2535 err = ext4_handle_dirty_dirblock(handle, dir, bh); 2536 if (unlikely(err)) 2537 goto out; 2538 2539 return 0; 2540 out: 2541 if (err != -ENOENT) 2542 ext4_std_error(dir->i_sb, err); 2543 return err; 2544 } 2545 2546 /* 2547 * Set directory link count to 1 if nlinks > EXT4_LINK_MAX, or if nlinks == 2 2548 * since this indicates that nlinks count was previously 1 to avoid overflowing 2549 * the 16-bit i_links_count field on disk. Directories with i_nlink == 1 mean 2550 * that subdirectory link counts are not being maintained accurately. 2551 * 2552 * The caller has already checked for i_nlink overflow in case the DIR_LINK 2553 * feature is not enabled and returned -EMLINK. The is_dx() check is a proxy 2554 * for checking S_ISDIR(inode) (since the INODE_INDEX feature will not be set 2555 * on regular files) and to avoid creating huge/slow non-HTREE directories. 2556 */ 2557 static void ext4_inc_count(handle_t *handle, struct inode *inode) 2558 { 2559 inc_nlink(inode); 2560 if (is_dx(inode) && 2561 (inode->i_nlink > EXT4_LINK_MAX || inode->i_nlink == 2)) 2562 set_nlink(inode, 1); 2563 } 2564 2565 /* 2566 * If a directory had nlink == 1, then we should let it be 1. This indicates 2567 * directory has >EXT4_LINK_MAX subdirs. 2568 */ 2569 static void ext4_dec_count(handle_t *handle, struct inode *inode) 2570 { 2571 if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2) 2572 drop_nlink(inode); 2573 } 2574 2575 2576 /* 2577 * Add non-directory inode to a directory. On success, the inode reference is 2578 * consumed by dentry is instantiation. This is also indicated by clearing of 2579 * *inodep pointer. On failure, the caller is responsible for dropping the 2580 * inode reference in the safe context. 2581 */ 2582 static int ext4_add_nondir(handle_t *handle, 2583 struct dentry *dentry, struct inode **inodep) 2584 { 2585 struct inode *dir = d_inode(dentry->d_parent); 2586 struct inode *inode = *inodep; 2587 int err = ext4_add_entry(handle, dentry, inode); 2588 if (!err) { 2589 err = ext4_mark_inode_dirty(handle, inode); 2590 if (IS_DIRSYNC(dir)) 2591 ext4_handle_sync(handle); 2592 d_instantiate_new(dentry, inode); 2593 *inodep = NULL; 2594 return err; 2595 } 2596 drop_nlink(inode); 2597 ext4_orphan_add(handle, inode); 2598 unlock_new_inode(inode); 2599 return err; 2600 } 2601 2602 /* 2603 * By the time this is called, we already have created 2604 * the directory cache entry for the new file, but it 2605 * is so far negative - it has no inode. 2606 * 2607 * If the create succeeds, we fill in the inode information 2608 * with d_instantiate(). 2609 */ 2610 static int ext4_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2611 bool excl) 2612 { 2613 handle_t *handle; 2614 struct inode *inode; 2615 int err, credits, retries = 0; 2616 2617 err = dquot_initialize(dir); 2618 if (err) 2619 return err; 2620 2621 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2622 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2623 retry: 2624 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0, 2625 NULL, EXT4_HT_DIR, credits); 2626 handle = ext4_journal_current_handle(); 2627 err = PTR_ERR(inode); 2628 if (!IS_ERR(inode)) { 2629 inode->i_op = &ext4_file_inode_operations; 2630 inode->i_fop = &ext4_file_operations; 2631 ext4_set_aops(inode); 2632 err = ext4_add_nondir(handle, dentry, &inode); 2633 } 2634 if (handle) 2635 ext4_journal_stop(handle); 2636 if (!IS_ERR_OR_NULL(inode)) 2637 iput(inode); 2638 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2639 goto retry; 2640 return err; 2641 } 2642 2643 static int ext4_mknod(struct inode *dir, struct dentry *dentry, 2644 umode_t mode, dev_t rdev) 2645 { 2646 handle_t *handle; 2647 struct inode *inode; 2648 int err, credits, retries = 0; 2649 2650 err = dquot_initialize(dir); 2651 if (err) 2652 return err; 2653 2654 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2655 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2656 retry: 2657 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0, 2658 NULL, EXT4_HT_DIR, credits); 2659 handle = ext4_journal_current_handle(); 2660 err = PTR_ERR(inode); 2661 if (!IS_ERR(inode)) { 2662 init_special_inode(inode, inode->i_mode, rdev); 2663 inode->i_op = &ext4_special_inode_operations; 2664 err = ext4_add_nondir(handle, dentry, &inode); 2665 } 2666 if (handle) 2667 ext4_journal_stop(handle); 2668 if (!IS_ERR_OR_NULL(inode)) 2669 iput(inode); 2670 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2671 goto retry; 2672 return err; 2673 } 2674 2675 static int ext4_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2676 { 2677 handle_t *handle; 2678 struct inode *inode; 2679 int err, retries = 0; 2680 2681 err = dquot_initialize(dir); 2682 if (err) 2683 return err; 2684 2685 retry: 2686 inode = ext4_new_inode_start_handle(dir, mode, 2687 NULL, 0, NULL, 2688 EXT4_HT_DIR, 2689 EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 2690 4 + EXT4_XATTR_TRANS_BLOCKS); 2691 handle = ext4_journal_current_handle(); 2692 err = PTR_ERR(inode); 2693 if (!IS_ERR(inode)) { 2694 inode->i_op = &ext4_file_inode_operations; 2695 inode->i_fop = &ext4_file_operations; 2696 ext4_set_aops(inode); 2697 d_tmpfile(dentry, inode); 2698 err = ext4_orphan_add(handle, inode); 2699 if (err) 2700 goto err_unlock_inode; 2701 mark_inode_dirty(inode); 2702 unlock_new_inode(inode); 2703 } 2704 if (handle) 2705 ext4_journal_stop(handle); 2706 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2707 goto retry; 2708 return err; 2709 err_unlock_inode: 2710 ext4_journal_stop(handle); 2711 unlock_new_inode(inode); 2712 return err; 2713 } 2714 2715 struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode, 2716 struct ext4_dir_entry_2 *de, 2717 int blocksize, int csum_size, 2718 unsigned int parent_ino, int dotdot_real_len) 2719 { 2720 de->inode = cpu_to_le32(inode->i_ino); 2721 de->name_len = 1; 2722 de->rec_len = ext4_rec_len_to_disk(EXT4_DIR_REC_LEN(de->name_len), 2723 blocksize); 2724 strcpy(de->name, "."); 2725 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2726 2727 de = ext4_next_entry(de, blocksize); 2728 de->inode = cpu_to_le32(parent_ino); 2729 de->name_len = 2; 2730 if (!dotdot_real_len) 2731 de->rec_len = ext4_rec_len_to_disk(blocksize - 2732 (csum_size + EXT4_DIR_REC_LEN(1)), 2733 blocksize); 2734 else 2735 de->rec_len = ext4_rec_len_to_disk( 2736 EXT4_DIR_REC_LEN(de->name_len), blocksize); 2737 strcpy(de->name, ".."); 2738 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2739 2740 return ext4_next_entry(de, blocksize); 2741 } 2742 2743 static int ext4_init_new_dir(handle_t *handle, struct inode *dir, 2744 struct inode *inode) 2745 { 2746 struct buffer_head *dir_block = NULL; 2747 struct ext4_dir_entry_2 *de; 2748 ext4_lblk_t block = 0; 2749 unsigned int blocksize = dir->i_sb->s_blocksize; 2750 int csum_size = 0; 2751 int err; 2752 2753 if (ext4_has_metadata_csum(dir->i_sb)) 2754 csum_size = sizeof(struct ext4_dir_entry_tail); 2755 2756 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2757 err = ext4_try_create_inline_dir(handle, dir, inode); 2758 if (err < 0 && err != -ENOSPC) 2759 goto out; 2760 if (!err) 2761 goto out; 2762 } 2763 2764 inode->i_size = 0; 2765 dir_block = ext4_append(handle, inode, &block); 2766 if (IS_ERR(dir_block)) 2767 return PTR_ERR(dir_block); 2768 de = (struct ext4_dir_entry_2 *)dir_block->b_data; 2769 ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0); 2770 set_nlink(inode, 2); 2771 if (csum_size) 2772 ext4_initialize_dirent_tail(dir_block, blocksize); 2773 2774 BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata"); 2775 err = ext4_handle_dirty_dirblock(handle, inode, dir_block); 2776 if (err) 2777 goto out; 2778 set_buffer_verified(dir_block); 2779 out: 2780 brelse(dir_block); 2781 return err; 2782 } 2783 2784 static int ext4_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2785 { 2786 handle_t *handle; 2787 struct inode *inode; 2788 int err, err2 = 0, credits, retries = 0; 2789 2790 if (EXT4_DIR_LINK_MAX(dir)) 2791 return -EMLINK; 2792 2793 err = dquot_initialize(dir); 2794 if (err) 2795 return err; 2796 2797 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2798 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2799 retry: 2800 inode = ext4_new_inode_start_handle(dir, S_IFDIR | mode, 2801 &dentry->d_name, 2802 0, NULL, EXT4_HT_DIR, credits); 2803 handle = ext4_journal_current_handle(); 2804 err = PTR_ERR(inode); 2805 if (IS_ERR(inode)) 2806 goto out_stop; 2807 2808 inode->i_op = &ext4_dir_inode_operations; 2809 inode->i_fop = &ext4_dir_operations; 2810 err = ext4_init_new_dir(handle, dir, inode); 2811 if (err) 2812 goto out_clear_inode; 2813 err = ext4_mark_inode_dirty(handle, inode); 2814 if (!err) 2815 err = ext4_add_entry(handle, dentry, inode); 2816 if (err) { 2817 out_clear_inode: 2818 clear_nlink(inode); 2819 ext4_orphan_add(handle, inode); 2820 unlock_new_inode(inode); 2821 err2 = ext4_mark_inode_dirty(handle, inode); 2822 if (unlikely(err2)) 2823 err = err2; 2824 ext4_journal_stop(handle); 2825 iput(inode); 2826 goto out_retry; 2827 } 2828 ext4_inc_count(handle, dir); 2829 ext4_update_dx_flag(dir); 2830 err = ext4_mark_inode_dirty(handle, dir); 2831 if (err) 2832 goto out_clear_inode; 2833 d_instantiate_new(dentry, inode); 2834 if (IS_DIRSYNC(dir)) 2835 ext4_handle_sync(handle); 2836 2837 out_stop: 2838 if (handle) 2839 ext4_journal_stop(handle); 2840 out_retry: 2841 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2842 goto retry; 2843 return err; 2844 } 2845 2846 /* 2847 * routine to check that the specified directory is empty (for rmdir) 2848 */ 2849 bool ext4_empty_dir(struct inode *inode) 2850 { 2851 unsigned int offset; 2852 struct buffer_head *bh; 2853 struct ext4_dir_entry_2 *de; 2854 struct super_block *sb; 2855 2856 if (ext4_has_inline_data(inode)) { 2857 int has_inline_data = 1; 2858 int ret; 2859 2860 ret = empty_inline_dir(inode, &has_inline_data); 2861 if (has_inline_data) 2862 return ret; 2863 } 2864 2865 sb = inode->i_sb; 2866 if (inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)) { 2867 EXT4_ERROR_INODE(inode, "invalid size"); 2868 return true; 2869 } 2870 /* The first directory block must not be a hole, 2871 * so treat it as DIRENT_HTREE 2872 */ 2873 bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE); 2874 if (IS_ERR(bh)) 2875 return true; 2876 2877 de = (struct ext4_dir_entry_2 *) bh->b_data; 2878 if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data, bh->b_size, 2879 0) || 2880 le32_to_cpu(de->inode) != inode->i_ino || strcmp(".", de->name)) { 2881 ext4_warning_inode(inode, "directory missing '.'"); 2882 brelse(bh); 2883 return true; 2884 } 2885 offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize); 2886 de = ext4_next_entry(de, sb->s_blocksize); 2887 if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data, bh->b_size, 2888 offset) || 2889 le32_to_cpu(de->inode) == 0 || strcmp("..", de->name)) { 2890 ext4_warning_inode(inode, "directory missing '..'"); 2891 brelse(bh); 2892 return true; 2893 } 2894 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize); 2895 while (offset < inode->i_size) { 2896 if (!(offset & (sb->s_blocksize - 1))) { 2897 unsigned int lblock; 2898 brelse(bh); 2899 lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb); 2900 bh = ext4_read_dirblock(inode, lblock, EITHER); 2901 if (bh == NULL) { 2902 offset += sb->s_blocksize; 2903 continue; 2904 } 2905 if (IS_ERR(bh)) 2906 return true; 2907 } 2908 de = (struct ext4_dir_entry_2 *) (bh->b_data + 2909 (offset & (sb->s_blocksize - 1))); 2910 if (ext4_check_dir_entry(inode, NULL, de, bh, 2911 bh->b_data, bh->b_size, offset)) { 2912 offset = (offset | (sb->s_blocksize - 1)) + 1; 2913 continue; 2914 } 2915 if (le32_to_cpu(de->inode)) { 2916 brelse(bh); 2917 return false; 2918 } 2919 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize); 2920 } 2921 brelse(bh); 2922 return true; 2923 } 2924 2925 /* 2926 * ext4_orphan_add() links an unlinked or truncated inode into a list of 2927 * such inodes, starting at the superblock, in case we crash before the 2928 * file is closed/deleted, or in case the inode truncate spans multiple 2929 * transactions and the last transaction is not recovered after a crash. 2930 * 2931 * At filesystem recovery time, we walk this list deleting unlinked 2932 * inodes and truncating linked inodes in ext4_orphan_cleanup(). 2933 * 2934 * Orphan list manipulation functions must be called under i_mutex unless 2935 * we are just creating the inode or deleting it. 2936 */ 2937 int ext4_orphan_add(handle_t *handle, struct inode *inode) 2938 { 2939 struct super_block *sb = inode->i_sb; 2940 struct ext4_sb_info *sbi = EXT4_SB(sb); 2941 struct ext4_iloc iloc; 2942 int err = 0, rc; 2943 bool dirty = false; 2944 2945 if (!sbi->s_journal || is_bad_inode(inode)) 2946 return 0; 2947 2948 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 2949 !inode_is_locked(inode)); 2950 /* 2951 * Exit early if inode already is on orphan list. This is a big speedup 2952 * since we don't have to contend on the global s_orphan_lock. 2953 */ 2954 if (!list_empty(&EXT4_I(inode)->i_orphan)) 2955 return 0; 2956 2957 /* 2958 * Orphan handling is only valid for files with data blocks 2959 * being truncated, or files being unlinked. Note that we either 2960 * hold i_mutex, or the inode can not be referenced from outside, 2961 * so i_nlink should not be bumped due to race 2962 */ 2963 J_ASSERT((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2964 S_ISLNK(inode->i_mode)) || inode->i_nlink == 0); 2965 2966 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 2967 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 2968 if (err) 2969 goto out; 2970 2971 err = ext4_reserve_inode_write(handle, inode, &iloc); 2972 if (err) 2973 goto out; 2974 2975 mutex_lock(&sbi->s_orphan_lock); 2976 /* 2977 * Due to previous errors inode may be already a part of on-disk 2978 * orphan list. If so skip on-disk list modification. 2979 */ 2980 if (!NEXT_ORPHAN(inode) || NEXT_ORPHAN(inode) > 2981 (le32_to_cpu(sbi->s_es->s_inodes_count))) { 2982 /* Insert this inode at the head of the on-disk orphan list */ 2983 NEXT_ORPHAN(inode) = le32_to_cpu(sbi->s_es->s_last_orphan); 2984 sbi->s_es->s_last_orphan = cpu_to_le32(inode->i_ino); 2985 dirty = true; 2986 } 2987 list_add(&EXT4_I(inode)->i_orphan, &sbi->s_orphan); 2988 mutex_unlock(&sbi->s_orphan_lock); 2989 2990 if (dirty) { 2991 err = ext4_handle_dirty_super(handle, sb); 2992 rc = ext4_mark_iloc_dirty(handle, inode, &iloc); 2993 if (!err) 2994 err = rc; 2995 if (err) { 2996 /* 2997 * We have to remove inode from in-memory list if 2998 * addition to on disk orphan list failed. Stray orphan 2999 * list entries can cause panics at unmount time. 3000 */ 3001 mutex_lock(&sbi->s_orphan_lock); 3002 list_del_init(&EXT4_I(inode)->i_orphan); 3003 mutex_unlock(&sbi->s_orphan_lock); 3004 } 3005 } else 3006 brelse(iloc.bh); 3007 3008 jbd_debug(4, "superblock will point to %lu\n", inode->i_ino); 3009 jbd_debug(4, "orphan inode %lu will point to %d\n", 3010 inode->i_ino, NEXT_ORPHAN(inode)); 3011 out: 3012 ext4_std_error(sb, err); 3013 return err; 3014 } 3015 3016 /* 3017 * ext4_orphan_del() removes an unlinked or truncated inode from the list 3018 * of such inodes stored on disk, because it is finally being cleaned up. 3019 */ 3020 int ext4_orphan_del(handle_t *handle, struct inode *inode) 3021 { 3022 struct list_head *prev; 3023 struct ext4_inode_info *ei = EXT4_I(inode); 3024 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3025 __u32 ino_next; 3026 struct ext4_iloc iloc; 3027 int err = 0; 3028 3029 if (!sbi->s_journal && !(sbi->s_mount_state & EXT4_ORPHAN_FS)) 3030 return 0; 3031 3032 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 3033 !inode_is_locked(inode)); 3034 /* Do this quick check before taking global s_orphan_lock. */ 3035 if (list_empty(&ei->i_orphan)) 3036 return 0; 3037 3038 if (handle) { 3039 /* Grab inode buffer early before taking global s_orphan_lock */ 3040 err = ext4_reserve_inode_write(handle, inode, &iloc); 3041 } 3042 3043 mutex_lock(&sbi->s_orphan_lock); 3044 jbd_debug(4, "remove inode %lu from orphan list\n", inode->i_ino); 3045 3046 prev = ei->i_orphan.prev; 3047 list_del_init(&ei->i_orphan); 3048 3049 /* If we're on an error path, we may not have a valid 3050 * transaction handle with which to update the orphan list on 3051 * disk, but we still need to remove the inode from the linked 3052 * list in memory. */ 3053 if (!handle || err) { 3054 mutex_unlock(&sbi->s_orphan_lock); 3055 goto out_err; 3056 } 3057 3058 ino_next = NEXT_ORPHAN(inode); 3059 if (prev == &sbi->s_orphan) { 3060 jbd_debug(4, "superblock will point to %u\n", ino_next); 3061 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 3062 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 3063 if (err) { 3064 mutex_unlock(&sbi->s_orphan_lock); 3065 goto out_brelse; 3066 } 3067 sbi->s_es->s_last_orphan = cpu_to_le32(ino_next); 3068 mutex_unlock(&sbi->s_orphan_lock); 3069 err = ext4_handle_dirty_super(handle, inode->i_sb); 3070 } else { 3071 struct ext4_iloc iloc2; 3072 struct inode *i_prev = 3073 &list_entry(prev, struct ext4_inode_info, i_orphan)->vfs_inode; 3074 3075 jbd_debug(4, "orphan inode %lu will point to %u\n", 3076 i_prev->i_ino, ino_next); 3077 err = ext4_reserve_inode_write(handle, i_prev, &iloc2); 3078 if (err) { 3079 mutex_unlock(&sbi->s_orphan_lock); 3080 goto out_brelse; 3081 } 3082 NEXT_ORPHAN(i_prev) = ino_next; 3083 err = ext4_mark_iloc_dirty(handle, i_prev, &iloc2); 3084 mutex_unlock(&sbi->s_orphan_lock); 3085 } 3086 if (err) 3087 goto out_brelse; 3088 NEXT_ORPHAN(inode) = 0; 3089 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 3090 out_err: 3091 ext4_std_error(inode->i_sb, err); 3092 return err; 3093 3094 out_brelse: 3095 brelse(iloc.bh); 3096 goto out_err; 3097 } 3098 3099 static int ext4_rmdir(struct inode *dir, struct dentry *dentry) 3100 { 3101 int retval; 3102 struct inode *inode; 3103 struct buffer_head *bh; 3104 struct ext4_dir_entry_2 *de; 3105 handle_t *handle = NULL; 3106 3107 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 3108 return -EIO; 3109 3110 /* Initialize quotas before so that eventual writes go in 3111 * separate transaction */ 3112 retval = dquot_initialize(dir); 3113 if (retval) 3114 return retval; 3115 retval = dquot_initialize(d_inode(dentry)); 3116 if (retval) 3117 return retval; 3118 3119 retval = -ENOENT; 3120 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 3121 if (IS_ERR(bh)) 3122 return PTR_ERR(bh); 3123 if (!bh) 3124 goto end_rmdir; 3125 3126 inode = d_inode(dentry); 3127 3128 retval = -EFSCORRUPTED; 3129 if (le32_to_cpu(de->inode) != inode->i_ino) 3130 goto end_rmdir; 3131 3132 retval = -ENOTEMPTY; 3133 if (!ext4_empty_dir(inode)) 3134 goto end_rmdir; 3135 3136 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3137 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 3138 if (IS_ERR(handle)) { 3139 retval = PTR_ERR(handle); 3140 handle = NULL; 3141 goto end_rmdir; 3142 } 3143 3144 if (IS_DIRSYNC(dir)) 3145 ext4_handle_sync(handle); 3146 3147 retval = ext4_delete_entry(handle, dir, de, bh); 3148 if (retval) 3149 goto end_rmdir; 3150 if (!EXT4_DIR_LINK_EMPTY(inode)) 3151 ext4_warning_inode(inode, 3152 "empty directory '%.*s' has too many links (%u)", 3153 dentry->d_name.len, dentry->d_name.name, 3154 inode->i_nlink); 3155 inode_inc_iversion(inode); 3156 clear_nlink(inode); 3157 /* There's no need to set i_disksize: the fact that i_nlink is 3158 * zero will ensure that the right thing happens during any 3159 * recovery. */ 3160 inode->i_size = 0; 3161 ext4_orphan_add(handle, inode); 3162 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3163 retval = ext4_mark_inode_dirty(handle, inode); 3164 if (retval) 3165 goto end_rmdir; 3166 ext4_dec_count(handle, dir); 3167 ext4_update_dx_flag(dir); 3168 retval = ext4_mark_inode_dirty(handle, dir); 3169 3170 #ifdef CONFIG_UNICODE 3171 /* VFS negative dentries are incompatible with Encoding and 3172 * Case-insensitiveness. Eventually we'll want avoid 3173 * invalidating the dentries here, alongside with returning the 3174 * negative dentries at ext4_lookup(), when it is better 3175 * supported by the VFS for the CI case. 3176 */ 3177 if (IS_CASEFOLDED(dir)) 3178 d_invalidate(dentry); 3179 #endif 3180 3181 end_rmdir: 3182 brelse(bh); 3183 if (handle) 3184 ext4_journal_stop(handle); 3185 return retval; 3186 } 3187 3188 static int ext4_unlink(struct inode *dir, struct dentry *dentry) 3189 { 3190 int retval; 3191 struct inode *inode; 3192 struct buffer_head *bh; 3193 struct ext4_dir_entry_2 *de; 3194 handle_t *handle = NULL; 3195 3196 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 3197 return -EIO; 3198 3199 trace_ext4_unlink_enter(dir, dentry); 3200 /* Initialize quotas before so that eventual writes go 3201 * in separate transaction */ 3202 retval = dquot_initialize(dir); 3203 if (retval) 3204 goto out_trace; 3205 retval = dquot_initialize(d_inode(dentry)); 3206 if (retval) 3207 goto out_trace; 3208 3209 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 3210 if (IS_ERR(bh)) { 3211 retval = PTR_ERR(bh); 3212 goto out_trace; 3213 } 3214 if (!bh) { 3215 retval = -ENOENT; 3216 goto out_trace; 3217 } 3218 3219 inode = d_inode(dentry); 3220 3221 if (le32_to_cpu(de->inode) != inode->i_ino) { 3222 retval = -EFSCORRUPTED; 3223 goto out_bh; 3224 } 3225 3226 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3227 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 3228 if (IS_ERR(handle)) { 3229 retval = PTR_ERR(handle); 3230 goto out_bh; 3231 } 3232 3233 if (IS_DIRSYNC(dir)) 3234 ext4_handle_sync(handle); 3235 3236 retval = ext4_delete_entry(handle, dir, de, bh); 3237 if (retval) 3238 goto out_handle; 3239 dir->i_ctime = dir->i_mtime = current_time(dir); 3240 ext4_update_dx_flag(dir); 3241 retval = ext4_mark_inode_dirty(handle, dir); 3242 if (retval) 3243 goto out_handle; 3244 if (inode->i_nlink == 0) 3245 ext4_warning_inode(inode, "Deleting file '%.*s' with no links", 3246 dentry->d_name.len, dentry->d_name.name); 3247 else 3248 drop_nlink(inode); 3249 if (!inode->i_nlink) 3250 ext4_orphan_add(handle, inode); 3251 inode->i_ctime = current_time(inode); 3252 retval = ext4_mark_inode_dirty(handle, inode); 3253 3254 #ifdef CONFIG_UNICODE 3255 /* VFS negative dentries are incompatible with Encoding and 3256 * Case-insensitiveness. Eventually we'll want avoid 3257 * invalidating the dentries here, alongside with returning the 3258 * negative dentries at ext4_lookup(), when it is better 3259 * supported by the VFS for the CI case. 3260 */ 3261 if (IS_CASEFOLDED(dir)) 3262 d_invalidate(dentry); 3263 #endif 3264 3265 out_handle: 3266 ext4_journal_stop(handle); 3267 out_bh: 3268 brelse(bh); 3269 out_trace: 3270 trace_ext4_unlink_exit(dentry, retval); 3271 return retval; 3272 } 3273 3274 static int ext4_symlink(struct inode *dir, 3275 struct dentry *dentry, const char *symname) 3276 { 3277 handle_t *handle; 3278 struct inode *inode; 3279 int err, len = strlen(symname); 3280 int credits; 3281 struct fscrypt_str disk_link; 3282 3283 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 3284 return -EIO; 3285 3286 err = fscrypt_prepare_symlink(dir, symname, len, dir->i_sb->s_blocksize, 3287 &disk_link); 3288 if (err) 3289 return err; 3290 3291 err = dquot_initialize(dir); 3292 if (err) 3293 return err; 3294 3295 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3296 /* 3297 * For non-fast symlinks, we just allocate inode and put it on 3298 * orphan list in the first transaction => we need bitmap, 3299 * group descriptor, sb, inode block, quota blocks, and 3300 * possibly selinux xattr blocks. 3301 */ 3302 credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 3303 EXT4_XATTR_TRANS_BLOCKS; 3304 } else { 3305 /* 3306 * Fast symlink. We have to add entry to directory 3307 * (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS), 3308 * allocate new inode (bitmap, group descriptor, inode block, 3309 * quota blocks, sb is already counted in previous macros). 3310 */ 3311 credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3312 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3; 3313 } 3314 3315 inode = ext4_new_inode_start_handle(dir, S_IFLNK|S_IRWXUGO, 3316 &dentry->d_name, 0, NULL, 3317 EXT4_HT_DIR, credits); 3318 handle = ext4_journal_current_handle(); 3319 if (IS_ERR(inode)) { 3320 if (handle) 3321 ext4_journal_stop(handle); 3322 return PTR_ERR(inode); 3323 } 3324 3325 if (IS_ENCRYPTED(inode)) { 3326 err = fscrypt_encrypt_symlink(inode, symname, len, &disk_link); 3327 if (err) 3328 goto err_drop_inode; 3329 inode->i_op = &ext4_encrypted_symlink_inode_operations; 3330 } 3331 3332 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3333 if (!IS_ENCRYPTED(inode)) 3334 inode->i_op = &ext4_symlink_inode_operations; 3335 inode_nohighmem(inode); 3336 ext4_set_aops(inode); 3337 /* 3338 * We cannot call page_symlink() with transaction started 3339 * because it calls into ext4_write_begin() which can wait 3340 * for transaction commit if we are running out of space 3341 * and thus we deadlock. So we have to stop transaction now 3342 * and restart it when symlink contents is written. 3343 * 3344 * To keep fs consistent in case of crash, we have to put inode 3345 * to orphan list in the mean time. 3346 */ 3347 drop_nlink(inode); 3348 err = ext4_orphan_add(handle, inode); 3349 ext4_journal_stop(handle); 3350 handle = NULL; 3351 if (err) 3352 goto err_drop_inode; 3353 err = __page_symlink(inode, disk_link.name, disk_link.len, 1); 3354 if (err) 3355 goto err_drop_inode; 3356 /* 3357 * Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS 3358 * + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified 3359 */ 3360 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3361 EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3362 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1); 3363 if (IS_ERR(handle)) { 3364 err = PTR_ERR(handle); 3365 handle = NULL; 3366 goto err_drop_inode; 3367 } 3368 set_nlink(inode, 1); 3369 err = ext4_orphan_del(handle, inode); 3370 if (err) 3371 goto err_drop_inode; 3372 } else { 3373 /* clear the extent format for fast symlink */ 3374 ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS); 3375 if (!IS_ENCRYPTED(inode)) { 3376 inode->i_op = &ext4_fast_symlink_inode_operations; 3377 inode->i_link = (char *)&EXT4_I(inode)->i_data; 3378 } 3379 memcpy((char *)&EXT4_I(inode)->i_data, disk_link.name, 3380 disk_link.len); 3381 inode->i_size = disk_link.len - 1; 3382 } 3383 EXT4_I(inode)->i_disksize = inode->i_size; 3384 err = ext4_add_nondir(handle, dentry, &inode); 3385 if (handle) 3386 ext4_journal_stop(handle); 3387 if (inode) 3388 iput(inode); 3389 goto out_free_encrypted_link; 3390 3391 err_drop_inode: 3392 if (handle) 3393 ext4_journal_stop(handle); 3394 clear_nlink(inode); 3395 unlock_new_inode(inode); 3396 iput(inode); 3397 out_free_encrypted_link: 3398 if (disk_link.name != (unsigned char *)symname) 3399 kfree(disk_link.name); 3400 return err; 3401 } 3402 3403 static int ext4_link(struct dentry *old_dentry, 3404 struct inode *dir, struct dentry *dentry) 3405 { 3406 handle_t *handle; 3407 struct inode *inode = d_inode(old_dentry); 3408 int err, retries = 0; 3409 3410 if (inode->i_nlink >= EXT4_LINK_MAX) 3411 return -EMLINK; 3412 3413 err = fscrypt_prepare_link(old_dentry, dir, dentry); 3414 if (err) 3415 return err; 3416 3417 if ((ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) && 3418 (!projid_eq(EXT4_I(dir)->i_projid, 3419 EXT4_I(old_dentry->d_inode)->i_projid))) 3420 return -EXDEV; 3421 3422 err = dquot_initialize(dir); 3423 if (err) 3424 return err; 3425 3426 retry: 3427 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3428 (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3429 EXT4_INDEX_EXTRA_TRANS_BLOCKS) + 1); 3430 if (IS_ERR(handle)) 3431 return PTR_ERR(handle); 3432 3433 if (IS_DIRSYNC(dir)) 3434 ext4_handle_sync(handle); 3435 3436 inode->i_ctime = current_time(inode); 3437 ext4_inc_count(handle, inode); 3438 ihold(inode); 3439 3440 err = ext4_add_entry(handle, dentry, inode); 3441 if (!err) { 3442 err = ext4_mark_inode_dirty(handle, inode); 3443 /* this can happen only for tmpfile being 3444 * linked the first time 3445 */ 3446 if (inode->i_nlink == 1) 3447 ext4_orphan_del(handle, inode); 3448 d_instantiate(dentry, inode); 3449 } else { 3450 drop_nlink(inode); 3451 iput(inode); 3452 } 3453 ext4_journal_stop(handle); 3454 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 3455 goto retry; 3456 return err; 3457 } 3458 3459 3460 /* 3461 * Try to find buffer head where contains the parent block. 3462 * It should be the inode block if it is inlined or the 1st block 3463 * if it is a normal dir. 3464 */ 3465 static struct buffer_head *ext4_get_first_dir_block(handle_t *handle, 3466 struct inode *inode, 3467 int *retval, 3468 struct ext4_dir_entry_2 **parent_de, 3469 int *inlined) 3470 { 3471 struct buffer_head *bh; 3472 3473 if (!ext4_has_inline_data(inode)) { 3474 /* The first directory block must not be a hole, so 3475 * treat it as DIRENT_HTREE 3476 */ 3477 bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE); 3478 if (IS_ERR(bh)) { 3479 *retval = PTR_ERR(bh); 3480 return NULL; 3481 } 3482 *parent_de = ext4_next_entry( 3483 (struct ext4_dir_entry_2 *)bh->b_data, 3484 inode->i_sb->s_blocksize); 3485 return bh; 3486 } 3487 3488 *inlined = 1; 3489 return ext4_get_first_inline_block(inode, parent_de, retval); 3490 } 3491 3492 struct ext4_renament { 3493 struct inode *dir; 3494 struct dentry *dentry; 3495 struct inode *inode; 3496 bool is_dir; 3497 int dir_nlink_delta; 3498 3499 /* entry for "dentry" */ 3500 struct buffer_head *bh; 3501 struct ext4_dir_entry_2 *de; 3502 int inlined; 3503 3504 /* entry for ".." in inode if it's a directory */ 3505 struct buffer_head *dir_bh; 3506 struct ext4_dir_entry_2 *parent_de; 3507 int dir_inlined; 3508 }; 3509 3510 static int ext4_rename_dir_prepare(handle_t *handle, struct ext4_renament *ent) 3511 { 3512 int retval; 3513 3514 ent->dir_bh = ext4_get_first_dir_block(handle, ent->inode, 3515 &retval, &ent->parent_de, 3516 &ent->dir_inlined); 3517 if (!ent->dir_bh) 3518 return retval; 3519 if (le32_to_cpu(ent->parent_de->inode) != ent->dir->i_ino) 3520 return -EFSCORRUPTED; 3521 BUFFER_TRACE(ent->dir_bh, "get_write_access"); 3522 return ext4_journal_get_write_access(handle, ent->dir_bh); 3523 } 3524 3525 static int ext4_rename_dir_finish(handle_t *handle, struct ext4_renament *ent, 3526 unsigned dir_ino) 3527 { 3528 int retval; 3529 3530 ent->parent_de->inode = cpu_to_le32(dir_ino); 3531 BUFFER_TRACE(ent->dir_bh, "call ext4_handle_dirty_metadata"); 3532 if (!ent->dir_inlined) { 3533 if (is_dx(ent->inode)) { 3534 retval = ext4_handle_dirty_dx_node(handle, 3535 ent->inode, 3536 ent->dir_bh); 3537 } else { 3538 retval = ext4_handle_dirty_dirblock(handle, ent->inode, 3539 ent->dir_bh); 3540 } 3541 } else { 3542 retval = ext4_mark_inode_dirty(handle, ent->inode); 3543 } 3544 if (retval) { 3545 ext4_std_error(ent->dir->i_sb, retval); 3546 return retval; 3547 } 3548 return 0; 3549 } 3550 3551 static int ext4_setent(handle_t *handle, struct ext4_renament *ent, 3552 unsigned ino, unsigned file_type) 3553 { 3554 int retval, retval2; 3555 3556 BUFFER_TRACE(ent->bh, "get write access"); 3557 retval = ext4_journal_get_write_access(handle, ent->bh); 3558 if (retval) 3559 return retval; 3560 ent->de->inode = cpu_to_le32(ino); 3561 if (ext4_has_feature_filetype(ent->dir->i_sb)) 3562 ent->de->file_type = file_type; 3563 inode_inc_iversion(ent->dir); 3564 ent->dir->i_ctime = ent->dir->i_mtime = 3565 current_time(ent->dir); 3566 retval = ext4_mark_inode_dirty(handle, ent->dir); 3567 BUFFER_TRACE(ent->bh, "call ext4_handle_dirty_metadata"); 3568 if (!ent->inlined) { 3569 retval2 = ext4_handle_dirty_dirblock(handle, ent->dir, ent->bh); 3570 if (unlikely(retval2)) { 3571 ext4_std_error(ent->dir->i_sb, retval2); 3572 return retval2; 3573 } 3574 } 3575 brelse(ent->bh); 3576 ent->bh = NULL; 3577 3578 return retval; 3579 } 3580 3581 static int ext4_find_delete_entry(handle_t *handle, struct inode *dir, 3582 const struct qstr *d_name) 3583 { 3584 int retval = -ENOENT; 3585 struct buffer_head *bh; 3586 struct ext4_dir_entry_2 *de; 3587 3588 bh = ext4_find_entry(dir, d_name, &de, NULL); 3589 if (IS_ERR(bh)) 3590 return PTR_ERR(bh); 3591 if (bh) { 3592 retval = ext4_delete_entry(handle, dir, de, bh); 3593 brelse(bh); 3594 } 3595 return retval; 3596 } 3597 3598 static void ext4_rename_delete(handle_t *handle, struct ext4_renament *ent, 3599 int force_reread) 3600 { 3601 int retval; 3602 /* 3603 * ent->de could have moved from under us during htree split, so make 3604 * sure that we are deleting the right entry. We might also be pointing 3605 * to a stale entry in the unused part of ent->bh so just checking inum 3606 * and the name isn't enough. 3607 */ 3608 if (le32_to_cpu(ent->de->inode) != ent->inode->i_ino || 3609 ent->de->name_len != ent->dentry->d_name.len || 3610 strncmp(ent->de->name, ent->dentry->d_name.name, 3611 ent->de->name_len) || 3612 force_reread) { 3613 retval = ext4_find_delete_entry(handle, ent->dir, 3614 &ent->dentry->d_name); 3615 } else { 3616 retval = ext4_delete_entry(handle, ent->dir, ent->de, ent->bh); 3617 if (retval == -ENOENT) { 3618 retval = ext4_find_delete_entry(handle, ent->dir, 3619 &ent->dentry->d_name); 3620 } 3621 } 3622 3623 if (retval) { 3624 ext4_warning_inode(ent->dir, 3625 "Deleting old file: nlink %d, error=%d", 3626 ent->dir->i_nlink, retval); 3627 } 3628 } 3629 3630 static void ext4_update_dir_count(handle_t *handle, struct ext4_renament *ent) 3631 { 3632 if (ent->dir_nlink_delta) { 3633 if (ent->dir_nlink_delta == -1) 3634 ext4_dec_count(handle, ent->dir); 3635 else 3636 ext4_inc_count(handle, ent->dir); 3637 ext4_mark_inode_dirty(handle, ent->dir); 3638 } 3639 } 3640 3641 static struct inode *ext4_whiteout_for_rename(struct ext4_renament *ent, 3642 int credits, handle_t **h) 3643 { 3644 struct inode *wh; 3645 handle_t *handle; 3646 int retries = 0; 3647 3648 /* 3649 * for inode block, sb block, group summaries, 3650 * and inode bitmap 3651 */ 3652 credits += (EXT4_MAXQUOTAS_TRANS_BLOCKS(ent->dir->i_sb) + 3653 EXT4_XATTR_TRANS_BLOCKS + 4); 3654 retry: 3655 wh = ext4_new_inode_start_handle(ent->dir, S_IFCHR | WHITEOUT_MODE, 3656 &ent->dentry->d_name, 0, NULL, 3657 EXT4_HT_DIR, credits); 3658 3659 handle = ext4_journal_current_handle(); 3660 if (IS_ERR(wh)) { 3661 if (handle) 3662 ext4_journal_stop(handle); 3663 if (PTR_ERR(wh) == -ENOSPC && 3664 ext4_should_retry_alloc(ent->dir->i_sb, &retries)) 3665 goto retry; 3666 } else { 3667 *h = handle; 3668 init_special_inode(wh, wh->i_mode, WHITEOUT_DEV); 3669 wh->i_op = &ext4_special_inode_operations; 3670 } 3671 return wh; 3672 } 3673 3674 /* 3675 * Anybody can rename anything with this: the permission checks are left to the 3676 * higher-level routines. 3677 * 3678 * n.b. old_{dentry,inode) refers to the source dentry/inode 3679 * while new_{dentry,inode) refers to the destination dentry/inode 3680 * This comes from rename(const char *oldpath, const char *newpath) 3681 */ 3682 static int ext4_rename(struct inode *old_dir, struct dentry *old_dentry, 3683 struct inode *new_dir, struct dentry *new_dentry, 3684 unsigned int flags) 3685 { 3686 handle_t *handle = NULL; 3687 struct ext4_renament old = { 3688 .dir = old_dir, 3689 .dentry = old_dentry, 3690 .inode = d_inode(old_dentry), 3691 }; 3692 struct ext4_renament new = { 3693 .dir = new_dir, 3694 .dentry = new_dentry, 3695 .inode = d_inode(new_dentry), 3696 }; 3697 int force_reread; 3698 int retval; 3699 struct inode *whiteout = NULL; 3700 int credits; 3701 u8 old_file_type; 3702 3703 if (new.inode && new.inode->i_nlink == 0) { 3704 EXT4_ERROR_INODE(new.inode, 3705 "target of rename is already freed"); 3706 return -EFSCORRUPTED; 3707 } 3708 3709 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT)) && 3710 (!projid_eq(EXT4_I(new_dir)->i_projid, 3711 EXT4_I(old_dentry->d_inode)->i_projid))) 3712 return -EXDEV; 3713 3714 retval = dquot_initialize(old.dir); 3715 if (retval) 3716 return retval; 3717 retval = dquot_initialize(new.dir); 3718 if (retval) 3719 return retval; 3720 3721 /* Initialize quotas before so that eventual writes go 3722 * in separate transaction */ 3723 if (new.inode) { 3724 retval = dquot_initialize(new.inode); 3725 if (retval) 3726 return retval; 3727 } 3728 3729 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de, NULL); 3730 if (IS_ERR(old.bh)) 3731 return PTR_ERR(old.bh); 3732 /* 3733 * Check for inode number is _not_ due to possible IO errors. 3734 * We might rmdir the source, keep it as pwd of some process 3735 * and merrily kill the link to whatever was created under the 3736 * same name. Goodbye sticky bit ;-< 3737 */ 3738 retval = -ENOENT; 3739 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 3740 goto end_rename; 3741 3742 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 3743 &new.de, &new.inlined); 3744 if (IS_ERR(new.bh)) { 3745 retval = PTR_ERR(new.bh); 3746 new.bh = NULL; 3747 goto end_rename; 3748 } 3749 if (new.bh) { 3750 if (!new.inode) { 3751 brelse(new.bh); 3752 new.bh = NULL; 3753 } 3754 } 3755 if (new.inode && !test_opt(new.dir->i_sb, NO_AUTO_DA_ALLOC)) 3756 ext4_alloc_da_blocks(old.inode); 3757 3758 credits = (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 3759 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2); 3760 if (!(flags & RENAME_WHITEOUT)) { 3761 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, credits); 3762 if (IS_ERR(handle)) { 3763 retval = PTR_ERR(handle); 3764 handle = NULL; 3765 goto end_rename; 3766 } 3767 } else { 3768 whiteout = ext4_whiteout_for_rename(&old, credits, &handle); 3769 if (IS_ERR(whiteout)) { 3770 retval = PTR_ERR(whiteout); 3771 whiteout = NULL; 3772 goto end_rename; 3773 } 3774 } 3775 3776 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 3777 ext4_handle_sync(handle); 3778 3779 if (S_ISDIR(old.inode->i_mode)) { 3780 if (new.inode) { 3781 retval = -ENOTEMPTY; 3782 if (!ext4_empty_dir(new.inode)) 3783 goto end_rename; 3784 } else { 3785 retval = -EMLINK; 3786 if (new.dir != old.dir && EXT4_DIR_LINK_MAX(new.dir)) 3787 goto end_rename; 3788 } 3789 retval = ext4_rename_dir_prepare(handle, &old); 3790 if (retval) 3791 goto end_rename; 3792 } 3793 /* 3794 * If we're renaming a file within an inline_data dir and adding or 3795 * setting the new dirent causes a conversion from inline_data to 3796 * extents/blockmap, we need to force the dirent delete code to 3797 * re-read the directory, or else we end up trying to delete a dirent 3798 * from what is now the extent tree root (or a block map). 3799 */ 3800 force_reread = (new.dir->i_ino == old.dir->i_ino && 3801 ext4_test_inode_flag(new.dir, EXT4_INODE_INLINE_DATA)); 3802 3803 old_file_type = old.de->file_type; 3804 if (whiteout) { 3805 /* 3806 * Do this before adding a new entry, so the old entry is sure 3807 * to be still pointing to the valid old entry. 3808 */ 3809 retval = ext4_setent(handle, &old, whiteout->i_ino, 3810 EXT4_FT_CHRDEV); 3811 if (retval) 3812 goto end_rename; 3813 retval = ext4_mark_inode_dirty(handle, whiteout); 3814 if (unlikely(retval)) 3815 goto end_rename; 3816 } 3817 if (!new.bh) { 3818 retval = ext4_add_entry(handle, new.dentry, old.inode); 3819 if (retval) 3820 goto end_rename; 3821 } else { 3822 retval = ext4_setent(handle, &new, 3823 old.inode->i_ino, old_file_type); 3824 if (retval) 3825 goto end_rename; 3826 } 3827 if (force_reread) 3828 force_reread = !ext4_test_inode_flag(new.dir, 3829 EXT4_INODE_INLINE_DATA); 3830 3831 /* 3832 * Like most other Unix systems, set the ctime for inodes on a 3833 * rename. 3834 */ 3835 old.inode->i_ctime = current_time(old.inode); 3836 retval = ext4_mark_inode_dirty(handle, old.inode); 3837 if (unlikely(retval)) 3838 goto end_rename; 3839 3840 if (!whiteout) { 3841 /* 3842 * ok, that's it 3843 */ 3844 ext4_rename_delete(handle, &old, force_reread); 3845 } 3846 3847 if (new.inode) { 3848 ext4_dec_count(handle, new.inode); 3849 new.inode->i_ctime = current_time(new.inode); 3850 } 3851 old.dir->i_ctime = old.dir->i_mtime = current_time(old.dir); 3852 ext4_update_dx_flag(old.dir); 3853 if (old.dir_bh) { 3854 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 3855 if (retval) 3856 goto end_rename; 3857 3858 ext4_dec_count(handle, old.dir); 3859 if (new.inode) { 3860 /* checked ext4_empty_dir above, can't have another 3861 * parent, ext4_dec_count() won't work for many-linked 3862 * dirs */ 3863 clear_nlink(new.inode); 3864 } else { 3865 ext4_inc_count(handle, new.dir); 3866 ext4_update_dx_flag(new.dir); 3867 retval = ext4_mark_inode_dirty(handle, new.dir); 3868 if (unlikely(retval)) 3869 goto end_rename; 3870 } 3871 } 3872 retval = ext4_mark_inode_dirty(handle, old.dir); 3873 if (unlikely(retval)) 3874 goto end_rename; 3875 if (new.inode) { 3876 retval = ext4_mark_inode_dirty(handle, new.inode); 3877 if (unlikely(retval)) 3878 goto end_rename; 3879 if (!new.inode->i_nlink) 3880 ext4_orphan_add(handle, new.inode); 3881 } 3882 retval = 0; 3883 3884 end_rename: 3885 brelse(old.dir_bh); 3886 brelse(old.bh); 3887 brelse(new.bh); 3888 if (whiteout) { 3889 if (retval) 3890 drop_nlink(whiteout); 3891 unlock_new_inode(whiteout); 3892 iput(whiteout); 3893 } 3894 if (handle) 3895 ext4_journal_stop(handle); 3896 return retval; 3897 } 3898 3899 static int ext4_cross_rename(struct inode *old_dir, struct dentry *old_dentry, 3900 struct inode *new_dir, struct dentry *new_dentry) 3901 { 3902 handle_t *handle = NULL; 3903 struct ext4_renament old = { 3904 .dir = old_dir, 3905 .dentry = old_dentry, 3906 .inode = d_inode(old_dentry), 3907 }; 3908 struct ext4_renament new = { 3909 .dir = new_dir, 3910 .dentry = new_dentry, 3911 .inode = d_inode(new_dentry), 3912 }; 3913 u8 new_file_type; 3914 int retval; 3915 struct timespec64 ctime; 3916 3917 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT) && 3918 !projid_eq(EXT4_I(new_dir)->i_projid, 3919 EXT4_I(old_dentry->d_inode)->i_projid)) || 3920 (ext4_test_inode_flag(old_dir, EXT4_INODE_PROJINHERIT) && 3921 !projid_eq(EXT4_I(old_dir)->i_projid, 3922 EXT4_I(new_dentry->d_inode)->i_projid))) 3923 return -EXDEV; 3924 3925 retval = dquot_initialize(old.dir); 3926 if (retval) 3927 return retval; 3928 retval = dquot_initialize(new.dir); 3929 if (retval) 3930 return retval; 3931 3932 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, 3933 &old.de, &old.inlined); 3934 if (IS_ERR(old.bh)) 3935 return PTR_ERR(old.bh); 3936 /* 3937 * Check for inode number is _not_ due to possible IO errors. 3938 * We might rmdir the source, keep it as pwd of some process 3939 * and merrily kill the link to whatever was created under the 3940 * same name. Goodbye sticky bit ;-< 3941 */ 3942 retval = -ENOENT; 3943 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 3944 goto end_rename; 3945 3946 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 3947 &new.de, &new.inlined); 3948 if (IS_ERR(new.bh)) { 3949 retval = PTR_ERR(new.bh); 3950 new.bh = NULL; 3951 goto end_rename; 3952 } 3953 3954 /* RENAME_EXCHANGE case: old *and* new must both exist */ 3955 if (!new.bh || le32_to_cpu(new.de->inode) != new.inode->i_ino) 3956 goto end_rename; 3957 3958 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, 3959 (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 3960 2 * EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2)); 3961 if (IS_ERR(handle)) { 3962 retval = PTR_ERR(handle); 3963 handle = NULL; 3964 goto end_rename; 3965 } 3966 3967 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 3968 ext4_handle_sync(handle); 3969 3970 if (S_ISDIR(old.inode->i_mode)) { 3971 old.is_dir = true; 3972 retval = ext4_rename_dir_prepare(handle, &old); 3973 if (retval) 3974 goto end_rename; 3975 } 3976 if (S_ISDIR(new.inode->i_mode)) { 3977 new.is_dir = true; 3978 retval = ext4_rename_dir_prepare(handle, &new); 3979 if (retval) 3980 goto end_rename; 3981 } 3982 3983 /* 3984 * Other than the special case of overwriting a directory, parents' 3985 * nlink only needs to be modified if this is a cross directory rename. 3986 */ 3987 if (old.dir != new.dir && old.is_dir != new.is_dir) { 3988 old.dir_nlink_delta = old.is_dir ? -1 : 1; 3989 new.dir_nlink_delta = -old.dir_nlink_delta; 3990 retval = -EMLINK; 3991 if ((old.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(old.dir)) || 3992 (new.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(new.dir))) 3993 goto end_rename; 3994 } 3995 3996 new_file_type = new.de->file_type; 3997 retval = ext4_setent(handle, &new, old.inode->i_ino, old.de->file_type); 3998 if (retval) 3999 goto end_rename; 4000 4001 retval = ext4_setent(handle, &old, new.inode->i_ino, new_file_type); 4002 if (retval) 4003 goto end_rename; 4004 4005 /* 4006 * Like most other Unix systems, set the ctime for inodes on a 4007 * rename. 4008 */ 4009 ctime = current_time(old.inode); 4010 old.inode->i_ctime = ctime; 4011 new.inode->i_ctime = ctime; 4012 retval = ext4_mark_inode_dirty(handle, old.inode); 4013 if (unlikely(retval)) 4014 goto end_rename; 4015 retval = ext4_mark_inode_dirty(handle, new.inode); 4016 if (unlikely(retval)) 4017 goto end_rename; 4018 4019 if (old.dir_bh) { 4020 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 4021 if (retval) 4022 goto end_rename; 4023 } 4024 if (new.dir_bh) { 4025 retval = ext4_rename_dir_finish(handle, &new, old.dir->i_ino); 4026 if (retval) 4027 goto end_rename; 4028 } 4029 ext4_update_dir_count(handle, &old); 4030 ext4_update_dir_count(handle, &new); 4031 retval = 0; 4032 4033 end_rename: 4034 brelse(old.dir_bh); 4035 brelse(new.dir_bh); 4036 brelse(old.bh); 4037 brelse(new.bh); 4038 if (handle) 4039 ext4_journal_stop(handle); 4040 return retval; 4041 } 4042 4043 static int ext4_rename2(struct inode *old_dir, struct dentry *old_dentry, 4044 struct inode *new_dir, struct dentry *new_dentry, 4045 unsigned int flags) 4046 { 4047 int err; 4048 4049 if (unlikely(ext4_forced_shutdown(EXT4_SB(old_dir->i_sb)))) 4050 return -EIO; 4051 4052 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4053 return -EINVAL; 4054 4055 err = fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry, 4056 flags); 4057 if (err) 4058 return err; 4059 4060 if (flags & RENAME_EXCHANGE) { 4061 return ext4_cross_rename(old_dir, old_dentry, 4062 new_dir, new_dentry); 4063 } 4064 4065 return ext4_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 4066 } 4067 4068 /* 4069 * directories can handle most operations... 4070 */ 4071 const struct inode_operations ext4_dir_inode_operations = { 4072 .create = ext4_create, 4073 .lookup = ext4_lookup, 4074 .link = ext4_link, 4075 .unlink = ext4_unlink, 4076 .symlink = ext4_symlink, 4077 .mkdir = ext4_mkdir, 4078 .rmdir = ext4_rmdir, 4079 .mknod = ext4_mknod, 4080 .tmpfile = ext4_tmpfile, 4081 .rename = ext4_rename2, 4082 .setattr = ext4_setattr, 4083 .getattr = ext4_getattr, 4084 .listxattr = ext4_listxattr, 4085 .get_acl = ext4_get_acl, 4086 .set_acl = ext4_set_acl, 4087 .fiemap = ext4_fiemap, 4088 }; 4089 4090 const struct inode_operations ext4_special_inode_operations = { 4091 .setattr = ext4_setattr, 4092 .getattr = ext4_getattr, 4093 .listxattr = ext4_listxattr, 4094 .get_acl = ext4_get_acl, 4095 .set_acl = ext4_set_acl, 4096 }; 4097