1 /* 2 * linux/fs/ext4/namei.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/namei.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 * Directory entry file type support and forward compatibility hooks 18 * for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998 19 * Hash Tree Directory indexing (c) 20 * Daniel Phillips, 2001 21 * Hash Tree Directory indexing porting 22 * Christopher Li, 2002 23 * Hash Tree Directory indexing cleanup 24 * Theodore Ts'o, 2002 25 */ 26 27 #include <linux/fs.h> 28 #include <linux/pagemap.h> 29 #include <linux/time.h> 30 #include <linux/fcntl.h> 31 #include <linux/stat.h> 32 #include <linux/string.h> 33 #include <linux/quotaops.h> 34 #include <linux/buffer_head.h> 35 #include <linux/bio.h> 36 #include "ext4.h" 37 #include "ext4_jbd2.h" 38 39 #include "xattr.h" 40 #include "acl.h" 41 42 #include <trace/events/ext4.h> 43 /* 44 * define how far ahead to read directories while searching them. 45 */ 46 #define NAMEI_RA_CHUNKS 2 47 #define NAMEI_RA_BLOCKS 4 48 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS) 49 50 static struct buffer_head *ext4_append(handle_t *handle, 51 struct inode *inode, 52 ext4_lblk_t *block) 53 { 54 struct buffer_head *bh; 55 int err; 56 57 if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb && 58 ((inode->i_size >> 10) >= 59 EXT4_SB(inode->i_sb)->s_max_dir_size_kb))) 60 return ERR_PTR(-ENOSPC); 61 62 *block = inode->i_size >> inode->i_sb->s_blocksize_bits; 63 64 bh = ext4_bread(handle, inode, *block, EXT4_GET_BLOCKS_CREATE); 65 if (IS_ERR(bh)) 66 return bh; 67 inode->i_size += inode->i_sb->s_blocksize; 68 EXT4_I(inode)->i_disksize = inode->i_size; 69 BUFFER_TRACE(bh, "get_write_access"); 70 err = ext4_journal_get_write_access(handle, bh); 71 if (err) { 72 brelse(bh); 73 ext4_std_error(inode->i_sb, err); 74 return ERR_PTR(err); 75 } 76 return bh; 77 } 78 79 static int ext4_dx_csum_verify(struct inode *inode, 80 struct ext4_dir_entry *dirent); 81 82 typedef enum { 83 EITHER, INDEX, DIRENT 84 } dirblock_type_t; 85 86 #define ext4_read_dirblock(inode, block, type) \ 87 __ext4_read_dirblock((inode), (block), (type), __func__, __LINE__) 88 89 static struct buffer_head *__ext4_read_dirblock(struct inode *inode, 90 ext4_lblk_t block, 91 dirblock_type_t type, 92 const char *func, 93 unsigned int line) 94 { 95 struct buffer_head *bh; 96 struct ext4_dir_entry *dirent; 97 int is_dx_block = 0; 98 99 bh = ext4_bread(NULL, inode, block, 0); 100 if (IS_ERR(bh)) { 101 __ext4_warning(inode->i_sb, func, line, 102 "inode #%lu: lblock %lu: comm %s: " 103 "error %ld reading directory block", 104 inode->i_ino, (unsigned long)block, 105 current->comm, PTR_ERR(bh)); 106 107 return bh; 108 } 109 if (!bh) { 110 ext4_error_inode(inode, func, line, block, 111 "Directory hole found"); 112 return ERR_PTR(-EFSCORRUPTED); 113 } 114 dirent = (struct ext4_dir_entry *) bh->b_data; 115 /* Determine whether or not we have an index block */ 116 if (is_dx(inode)) { 117 if (block == 0) 118 is_dx_block = 1; 119 else if (ext4_rec_len_from_disk(dirent->rec_len, 120 inode->i_sb->s_blocksize) == 121 inode->i_sb->s_blocksize) 122 is_dx_block = 1; 123 } 124 if (!is_dx_block && type == INDEX) { 125 ext4_error_inode(inode, func, line, block, 126 "directory leaf block found instead of index block"); 127 return ERR_PTR(-EFSCORRUPTED); 128 } 129 if (!ext4_has_metadata_csum(inode->i_sb) || 130 buffer_verified(bh)) 131 return bh; 132 133 /* 134 * An empty leaf block can get mistaken for a index block; for 135 * this reason, we can only check the index checksum when the 136 * caller is sure it should be an index block. 137 */ 138 if (is_dx_block && type == INDEX) { 139 if (ext4_dx_csum_verify(inode, dirent)) 140 set_buffer_verified(bh); 141 else { 142 ext4_error_inode(inode, func, line, block, 143 "Directory index failed checksum"); 144 brelse(bh); 145 return ERR_PTR(-EFSBADCRC); 146 } 147 } 148 if (!is_dx_block) { 149 if (ext4_dirent_csum_verify(inode, dirent)) 150 set_buffer_verified(bh); 151 else { 152 ext4_error_inode(inode, func, line, block, 153 "Directory block failed checksum"); 154 brelse(bh); 155 return ERR_PTR(-EFSBADCRC); 156 } 157 } 158 return bh; 159 } 160 161 #ifndef assert 162 #define assert(test) J_ASSERT(test) 163 #endif 164 165 #ifdef DX_DEBUG 166 #define dxtrace(command) command 167 #else 168 #define dxtrace(command) 169 #endif 170 171 struct fake_dirent 172 { 173 __le32 inode; 174 __le16 rec_len; 175 u8 name_len; 176 u8 file_type; 177 }; 178 179 struct dx_countlimit 180 { 181 __le16 limit; 182 __le16 count; 183 }; 184 185 struct dx_entry 186 { 187 __le32 hash; 188 __le32 block; 189 }; 190 191 /* 192 * dx_root_info is laid out so that if it should somehow get overlaid by a 193 * dirent the two low bits of the hash version will be zero. Therefore, the 194 * hash version mod 4 should never be 0. Sincerely, the paranoia department. 195 */ 196 197 struct dx_root 198 { 199 struct fake_dirent dot; 200 char dot_name[4]; 201 struct fake_dirent dotdot; 202 char dotdot_name[4]; 203 struct dx_root_info 204 { 205 __le32 reserved_zero; 206 u8 hash_version; 207 u8 info_length; /* 8 */ 208 u8 indirect_levels; 209 u8 unused_flags; 210 } 211 info; 212 struct dx_entry entries[0]; 213 }; 214 215 struct dx_node 216 { 217 struct fake_dirent fake; 218 struct dx_entry entries[0]; 219 }; 220 221 222 struct dx_frame 223 { 224 struct buffer_head *bh; 225 struct dx_entry *entries; 226 struct dx_entry *at; 227 }; 228 229 struct dx_map_entry 230 { 231 u32 hash; 232 u16 offs; 233 u16 size; 234 }; 235 236 /* 237 * This goes at the end of each htree block. 238 */ 239 struct dx_tail { 240 u32 dt_reserved; 241 __le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */ 242 }; 243 244 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry); 245 static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value); 246 static inline unsigned dx_get_hash(struct dx_entry *entry); 247 static void dx_set_hash(struct dx_entry *entry, unsigned value); 248 static unsigned dx_get_count(struct dx_entry *entries); 249 static unsigned dx_get_limit(struct dx_entry *entries); 250 static void dx_set_count(struct dx_entry *entries, unsigned value); 251 static void dx_set_limit(struct dx_entry *entries, unsigned value); 252 static unsigned dx_root_limit(struct inode *dir, unsigned infosize); 253 static unsigned dx_node_limit(struct inode *dir); 254 static struct dx_frame *dx_probe(struct ext4_filename *fname, 255 struct inode *dir, 256 struct dx_hash_info *hinfo, 257 struct dx_frame *frame); 258 static void dx_release(struct dx_frame *frames); 259 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 260 unsigned blocksize, struct dx_hash_info *hinfo, 261 struct dx_map_entry map[]); 262 static void dx_sort_map(struct dx_map_entry *map, unsigned count); 263 static struct ext4_dir_entry_2 *dx_move_dirents(char *from, char *to, 264 struct dx_map_entry *offsets, int count, unsigned blocksize); 265 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize); 266 static void dx_insert_block(struct dx_frame *frame, 267 u32 hash, ext4_lblk_t block); 268 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 269 struct dx_frame *frame, 270 struct dx_frame *frames, 271 __u32 *start_hash); 272 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 273 struct ext4_filename *fname, 274 struct ext4_dir_entry_2 **res_dir); 275 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 276 struct inode *dir, struct inode *inode); 277 278 /* checksumming functions */ 279 void initialize_dirent_tail(struct ext4_dir_entry_tail *t, 280 unsigned int blocksize) 281 { 282 memset(t, 0, sizeof(struct ext4_dir_entry_tail)); 283 t->det_rec_len = ext4_rec_len_to_disk( 284 sizeof(struct ext4_dir_entry_tail), blocksize); 285 t->det_reserved_ft = EXT4_FT_DIR_CSUM; 286 } 287 288 /* Walk through a dirent block to find a checksum "dirent" at the tail */ 289 static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode, 290 struct ext4_dir_entry *de) 291 { 292 struct ext4_dir_entry_tail *t; 293 294 #ifdef PARANOID 295 struct ext4_dir_entry *d, *top; 296 297 d = de; 298 top = (struct ext4_dir_entry *)(((void *)de) + 299 (EXT4_BLOCK_SIZE(inode->i_sb) - 300 sizeof(struct ext4_dir_entry_tail))); 301 while (d < top && d->rec_len) 302 d = (struct ext4_dir_entry *)(((void *)d) + 303 le16_to_cpu(d->rec_len)); 304 305 if (d != top) 306 return NULL; 307 308 t = (struct ext4_dir_entry_tail *)d; 309 #else 310 t = EXT4_DIRENT_TAIL(de, EXT4_BLOCK_SIZE(inode->i_sb)); 311 #endif 312 313 if (t->det_reserved_zero1 || 314 le16_to_cpu(t->det_rec_len) != sizeof(struct ext4_dir_entry_tail) || 315 t->det_reserved_zero2 || 316 t->det_reserved_ft != EXT4_FT_DIR_CSUM) 317 return NULL; 318 319 return t; 320 } 321 322 static __le32 ext4_dirent_csum(struct inode *inode, 323 struct ext4_dir_entry *dirent, int size) 324 { 325 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 326 struct ext4_inode_info *ei = EXT4_I(inode); 327 __u32 csum; 328 329 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 330 return cpu_to_le32(csum); 331 } 332 333 #define warn_no_space_for_csum(inode) \ 334 __warn_no_space_for_csum((inode), __func__, __LINE__) 335 336 static void __warn_no_space_for_csum(struct inode *inode, const char *func, 337 unsigned int line) 338 { 339 __ext4_warning_inode(inode, func, line, 340 "No space for directory leaf checksum. Please run e2fsck -D."); 341 } 342 343 int ext4_dirent_csum_verify(struct inode *inode, struct ext4_dir_entry *dirent) 344 { 345 struct ext4_dir_entry_tail *t; 346 347 if (!ext4_has_metadata_csum(inode->i_sb)) 348 return 1; 349 350 t = get_dirent_tail(inode, dirent); 351 if (!t) { 352 warn_no_space_for_csum(inode); 353 return 0; 354 } 355 356 if (t->det_checksum != ext4_dirent_csum(inode, dirent, 357 (void *)t - (void *)dirent)) 358 return 0; 359 360 return 1; 361 } 362 363 static void ext4_dirent_csum_set(struct inode *inode, 364 struct ext4_dir_entry *dirent) 365 { 366 struct ext4_dir_entry_tail *t; 367 368 if (!ext4_has_metadata_csum(inode->i_sb)) 369 return; 370 371 t = get_dirent_tail(inode, dirent); 372 if (!t) { 373 warn_no_space_for_csum(inode); 374 return; 375 } 376 377 t->det_checksum = ext4_dirent_csum(inode, dirent, 378 (void *)t - (void *)dirent); 379 } 380 381 int ext4_handle_dirty_dirent_node(handle_t *handle, 382 struct inode *inode, 383 struct buffer_head *bh) 384 { 385 ext4_dirent_csum_set(inode, (struct ext4_dir_entry *)bh->b_data); 386 return ext4_handle_dirty_metadata(handle, inode, bh); 387 } 388 389 static struct dx_countlimit *get_dx_countlimit(struct inode *inode, 390 struct ext4_dir_entry *dirent, 391 int *offset) 392 { 393 struct ext4_dir_entry *dp; 394 struct dx_root_info *root; 395 int count_offset; 396 397 if (le16_to_cpu(dirent->rec_len) == EXT4_BLOCK_SIZE(inode->i_sb)) 398 count_offset = 8; 399 else if (le16_to_cpu(dirent->rec_len) == 12) { 400 dp = (struct ext4_dir_entry *)(((void *)dirent) + 12); 401 if (le16_to_cpu(dp->rec_len) != 402 EXT4_BLOCK_SIZE(inode->i_sb) - 12) 403 return NULL; 404 root = (struct dx_root_info *)(((void *)dp + 12)); 405 if (root->reserved_zero || 406 root->info_length != sizeof(struct dx_root_info)) 407 return NULL; 408 count_offset = 32; 409 } else 410 return NULL; 411 412 if (offset) 413 *offset = count_offset; 414 return (struct dx_countlimit *)(((void *)dirent) + count_offset); 415 } 416 417 static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent, 418 int count_offset, int count, struct dx_tail *t) 419 { 420 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 421 struct ext4_inode_info *ei = EXT4_I(inode); 422 __u32 csum; 423 int size; 424 __u32 dummy_csum = 0; 425 int offset = offsetof(struct dx_tail, dt_checksum); 426 427 size = count_offset + (count * sizeof(struct dx_entry)); 428 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size); 429 csum = ext4_chksum(sbi, csum, (__u8 *)t, offset); 430 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, sizeof(dummy_csum)); 431 432 return cpu_to_le32(csum); 433 } 434 435 static int ext4_dx_csum_verify(struct inode *inode, 436 struct ext4_dir_entry *dirent) 437 { 438 struct dx_countlimit *c; 439 struct dx_tail *t; 440 int count_offset, limit, count; 441 442 if (!ext4_has_metadata_csum(inode->i_sb)) 443 return 1; 444 445 c = get_dx_countlimit(inode, dirent, &count_offset); 446 if (!c) { 447 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 448 return 0; 449 } 450 limit = le16_to_cpu(c->limit); 451 count = le16_to_cpu(c->count); 452 if (count_offset + (limit * sizeof(struct dx_entry)) > 453 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 454 warn_no_space_for_csum(inode); 455 return 0; 456 } 457 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 458 459 if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset, 460 count, t)) 461 return 0; 462 return 1; 463 } 464 465 static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent) 466 { 467 struct dx_countlimit *c; 468 struct dx_tail *t; 469 int count_offset, limit, count; 470 471 if (!ext4_has_metadata_csum(inode->i_sb)) 472 return; 473 474 c = get_dx_countlimit(inode, dirent, &count_offset); 475 if (!c) { 476 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D."); 477 return; 478 } 479 limit = le16_to_cpu(c->limit); 480 count = le16_to_cpu(c->count); 481 if (count_offset + (limit * sizeof(struct dx_entry)) > 482 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) { 483 warn_no_space_for_csum(inode); 484 return; 485 } 486 t = (struct dx_tail *)(((struct dx_entry *)c) + limit); 487 488 t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t); 489 } 490 491 static inline int ext4_handle_dirty_dx_node(handle_t *handle, 492 struct inode *inode, 493 struct buffer_head *bh) 494 { 495 ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data); 496 return ext4_handle_dirty_metadata(handle, inode, bh); 497 } 498 499 /* 500 * p is at least 6 bytes before the end of page 501 */ 502 static inline struct ext4_dir_entry_2 * 503 ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize) 504 { 505 return (struct ext4_dir_entry_2 *)((char *)p + 506 ext4_rec_len_from_disk(p->rec_len, blocksize)); 507 } 508 509 /* 510 * Future: use high four bits of block for coalesce-on-delete flags 511 * Mask them off for now. 512 */ 513 514 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry) 515 { 516 return le32_to_cpu(entry->block) & 0x00ffffff; 517 } 518 519 static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value) 520 { 521 entry->block = cpu_to_le32(value); 522 } 523 524 static inline unsigned dx_get_hash(struct dx_entry *entry) 525 { 526 return le32_to_cpu(entry->hash); 527 } 528 529 static inline void dx_set_hash(struct dx_entry *entry, unsigned value) 530 { 531 entry->hash = cpu_to_le32(value); 532 } 533 534 static inline unsigned dx_get_count(struct dx_entry *entries) 535 { 536 return le16_to_cpu(((struct dx_countlimit *) entries)->count); 537 } 538 539 static inline unsigned dx_get_limit(struct dx_entry *entries) 540 { 541 return le16_to_cpu(((struct dx_countlimit *) entries)->limit); 542 } 543 544 static inline void dx_set_count(struct dx_entry *entries, unsigned value) 545 { 546 ((struct dx_countlimit *) entries)->count = cpu_to_le16(value); 547 } 548 549 static inline void dx_set_limit(struct dx_entry *entries, unsigned value) 550 { 551 ((struct dx_countlimit *) entries)->limit = cpu_to_le16(value); 552 } 553 554 static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize) 555 { 556 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(1) - 557 EXT4_DIR_REC_LEN(2) - infosize; 558 559 if (ext4_has_metadata_csum(dir->i_sb)) 560 entry_space -= sizeof(struct dx_tail); 561 return entry_space / sizeof(struct dx_entry); 562 } 563 564 static inline unsigned dx_node_limit(struct inode *dir) 565 { 566 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(0); 567 568 if (ext4_has_metadata_csum(dir->i_sb)) 569 entry_space -= sizeof(struct dx_tail); 570 return entry_space / sizeof(struct dx_entry); 571 } 572 573 /* 574 * Debug 575 */ 576 #ifdef DX_DEBUG 577 static void dx_show_index(char * label, struct dx_entry *entries) 578 { 579 int i, n = dx_get_count (entries); 580 printk(KERN_DEBUG "%s index", label); 581 for (i = 0; i < n; i++) { 582 printk(KERN_CONT " %x->%lu", 583 i ? dx_get_hash(entries + i) : 0, 584 (unsigned long)dx_get_block(entries + i)); 585 } 586 printk(KERN_CONT "\n"); 587 } 588 589 struct stats 590 { 591 unsigned names; 592 unsigned space; 593 unsigned bcount; 594 }; 595 596 static struct stats dx_show_leaf(struct inode *dir, 597 struct dx_hash_info *hinfo, 598 struct ext4_dir_entry_2 *de, 599 int size, int show_names) 600 { 601 unsigned names = 0, space = 0; 602 char *base = (char *) de; 603 struct dx_hash_info h = *hinfo; 604 605 printk("names: "); 606 while ((char *) de < base + size) 607 { 608 if (de->inode) 609 { 610 if (show_names) 611 { 612 #ifdef CONFIG_EXT4_FS_ENCRYPTION 613 int len; 614 char *name; 615 struct fscrypt_str fname_crypto_str = 616 FSTR_INIT(NULL, 0); 617 int res = 0; 618 619 name = de->name; 620 len = de->name_len; 621 if (ext4_encrypted_inode(dir)) 622 res = fscrypt_get_encryption_info(dir); 623 if (res) { 624 printk(KERN_WARNING "Error setting up" 625 " fname crypto: %d\n", res); 626 } 627 if (!fscrypt_has_encryption_key(dir)) { 628 /* Directory is not encrypted */ 629 ext4fs_dirhash(de->name, 630 de->name_len, &h); 631 printk("%*.s:(U)%x.%u ", len, 632 name, h.hash, 633 (unsigned) ((char *) de 634 - base)); 635 } else { 636 struct fscrypt_str de_name = 637 FSTR_INIT(name, len); 638 639 /* Directory is encrypted */ 640 res = fscrypt_fname_alloc_buffer( 641 dir, len, 642 &fname_crypto_str); 643 if (res) 644 printk(KERN_WARNING "Error " 645 "allocating crypto " 646 "buffer--skipping " 647 "crypto\n"); 648 res = fscrypt_fname_disk_to_usr(dir, 649 0, 0, &de_name, 650 &fname_crypto_str); 651 if (res) { 652 printk(KERN_WARNING "Error " 653 "converting filename " 654 "from disk to usr" 655 "\n"); 656 name = "??"; 657 len = 2; 658 } else { 659 name = fname_crypto_str.name; 660 len = fname_crypto_str.len; 661 } 662 ext4fs_dirhash(de->name, de->name_len, 663 &h); 664 printk("%*.s:(E)%x.%u ", len, name, 665 h.hash, (unsigned) ((char *) de 666 - base)); 667 fscrypt_fname_free_buffer( 668 &fname_crypto_str); 669 } 670 #else 671 int len = de->name_len; 672 char *name = de->name; 673 ext4fs_dirhash(de->name, de->name_len, &h); 674 printk("%*.s:%x.%u ", len, name, h.hash, 675 (unsigned) ((char *) de - base)); 676 #endif 677 } 678 space += EXT4_DIR_REC_LEN(de->name_len); 679 names++; 680 } 681 de = ext4_next_entry(de, size); 682 } 683 printk(KERN_CONT "(%i)\n", names); 684 return (struct stats) { names, space, 1 }; 685 } 686 687 struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir, 688 struct dx_entry *entries, int levels) 689 { 690 unsigned blocksize = dir->i_sb->s_blocksize; 691 unsigned count = dx_get_count(entries), names = 0, space = 0, i; 692 unsigned bcount = 0; 693 struct buffer_head *bh; 694 printk("%i indexed blocks...\n", count); 695 for (i = 0; i < count; i++, entries++) 696 { 697 ext4_lblk_t block = dx_get_block(entries); 698 ext4_lblk_t hash = i ? dx_get_hash(entries): 0; 699 u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash; 700 struct stats stats; 701 printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range); 702 bh = ext4_bread(NULL,dir, block, 0); 703 if (!bh || IS_ERR(bh)) 704 continue; 705 stats = levels? 706 dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1): 707 dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) 708 bh->b_data, blocksize, 0); 709 names += stats.names; 710 space += stats.space; 711 bcount += stats.bcount; 712 brelse(bh); 713 } 714 if (bcount) 715 printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n", 716 levels ? "" : " ", names, space/bcount, 717 (space/bcount)*100/blocksize); 718 return (struct stats) { names, space, bcount}; 719 } 720 #endif /* DX_DEBUG */ 721 722 /* 723 * Probe for a directory leaf block to search. 724 * 725 * dx_probe can return ERR_BAD_DX_DIR, which means there was a format 726 * error in the directory index, and the caller should fall back to 727 * searching the directory normally. The callers of dx_probe **MUST** 728 * check for this error code, and make sure it never gets reflected 729 * back to userspace. 730 */ 731 static struct dx_frame * 732 dx_probe(struct ext4_filename *fname, struct inode *dir, 733 struct dx_hash_info *hinfo, struct dx_frame *frame_in) 734 { 735 unsigned count, indirect; 736 struct dx_entry *at, *entries, *p, *q, *m; 737 struct dx_root *root; 738 struct dx_frame *frame = frame_in; 739 struct dx_frame *ret_err = ERR_PTR(ERR_BAD_DX_DIR); 740 u32 hash; 741 742 frame->bh = ext4_read_dirblock(dir, 0, INDEX); 743 if (IS_ERR(frame->bh)) 744 return (struct dx_frame *) frame->bh; 745 746 root = (struct dx_root *) frame->bh->b_data; 747 if (root->info.hash_version != DX_HASH_TEA && 748 root->info.hash_version != DX_HASH_HALF_MD4 && 749 root->info.hash_version != DX_HASH_LEGACY) { 750 ext4_warning_inode(dir, "Unrecognised inode hash code %u", 751 root->info.hash_version); 752 goto fail; 753 } 754 if (fname) 755 hinfo = &fname->hinfo; 756 hinfo->hash_version = root->info.hash_version; 757 if (hinfo->hash_version <= DX_HASH_TEA) 758 hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 759 hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed; 760 if (fname && fname_name(fname)) 761 ext4fs_dirhash(fname_name(fname), fname_len(fname), hinfo); 762 hash = hinfo->hash; 763 764 if (root->info.unused_flags & 1) { 765 ext4_warning_inode(dir, "Unimplemented hash flags: %#06x", 766 root->info.unused_flags); 767 goto fail; 768 } 769 770 indirect = root->info.indirect_levels; 771 if (indirect > 1) { 772 ext4_warning_inode(dir, "Unimplemented hash depth: %#06x", 773 root->info.indirect_levels); 774 goto fail; 775 } 776 777 entries = (struct dx_entry *)(((char *)&root->info) + 778 root->info.info_length); 779 780 if (dx_get_limit(entries) != dx_root_limit(dir, 781 root->info.info_length)) { 782 ext4_warning_inode(dir, "dx entry: limit %u != root limit %u", 783 dx_get_limit(entries), 784 dx_root_limit(dir, root->info.info_length)); 785 goto fail; 786 } 787 788 dxtrace(printk("Look up %x", hash)); 789 while (1) { 790 count = dx_get_count(entries); 791 if (!count || count > dx_get_limit(entries)) { 792 ext4_warning_inode(dir, 793 "dx entry: count %u beyond limit %u", 794 count, dx_get_limit(entries)); 795 goto fail; 796 } 797 798 p = entries + 1; 799 q = entries + count - 1; 800 while (p <= q) { 801 m = p + (q - p) / 2; 802 dxtrace(printk(KERN_CONT ".")); 803 if (dx_get_hash(m) > hash) 804 q = m - 1; 805 else 806 p = m + 1; 807 } 808 809 if (0) { // linear search cross check 810 unsigned n = count - 1; 811 at = entries; 812 while (n--) 813 { 814 dxtrace(printk(KERN_CONT ",")); 815 if (dx_get_hash(++at) > hash) 816 { 817 at--; 818 break; 819 } 820 } 821 assert (at == p - 1); 822 } 823 824 at = p - 1; 825 dxtrace(printk(KERN_CONT " %x->%u\n", 826 at == entries ? 0 : dx_get_hash(at), 827 dx_get_block(at))); 828 frame->entries = entries; 829 frame->at = at; 830 if (!indirect--) 831 return frame; 832 frame++; 833 frame->bh = ext4_read_dirblock(dir, dx_get_block(at), INDEX); 834 if (IS_ERR(frame->bh)) { 835 ret_err = (struct dx_frame *) frame->bh; 836 frame->bh = NULL; 837 goto fail; 838 } 839 entries = ((struct dx_node *) frame->bh->b_data)->entries; 840 841 if (dx_get_limit(entries) != dx_node_limit(dir)) { 842 ext4_warning_inode(dir, 843 "dx entry: limit %u != node limit %u", 844 dx_get_limit(entries), dx_node_limit(dir)); 845 goto fail; 846 } 847 } 848 fail: 849 while (frame >= frame_in) { 850 brelse(frame->bh); 851 frame--; 852 } 853 854 if (ret_err == ERR_PTR(ERR_BAD_DX_DIR)) 855 ext4_warning_inode(dir, 856 "Corrupt directory, running e2fsck is recommended"); 857 return ret_err; 858 } 859 860 static void dx_release(struct dx_frame *frames) 861 { 862 if (frames[0].bh == NULL) 863 return; 864 865 if (((struct dx_root *)frames[0].bh->b_data)->info.indirect_levels) 866 brelse(frames[1].bh); 867 brelse(frames[0].bh); 868 } 869 870 /* 871 * This function increments the frame pointer to search the next leaf 872 * block, and reads in the necessary intervening nodes if the search 873 * should be necessary. Whether or not the search is necessary is 874 * controlled by the hash parameter. If the hash value is even, then 875 * the search is only continued if the next block starts with that 876 * hash value. This is used if we are searching for a specific file. 877 * 878 * If the hash value is HASH_NB_ALWAYS, then always go to the next block. 879 * 880 * This function returns 1 if the caller should continue to search, 881 * or 0 if it should not. If there is an error reading one of the 882 * index blocks, it will a negative error code. 883 * 884 * If start_hash is non-null, it will be filled in with the starting 885 * hash of the next page. 886 */ 887 static int ext4_htree_next_block(struct inode *dir, __u32 hash, 888 struct dx_frame *frame, 889 struct dx_frame *frames, 890 __u32 *start_hash) 891 { 892 struct dx_frame *p; 893 struct buffer_head *bh; 894 int num_frames = 0; 895 __u32 bhash; 896 897 p = frame; 898 /* 899 * Find the next leaf page by incrementing the frame pointer. 900 * If we run out of entries in the interior node, loop around and 901 * increment pointer in the parent node. When we break out of 902 * this loop, num_frames indicates the number of interior 903 * nodes need to be read. 904 */ 905 while (1) { 906 if (++(p->at) < p->entries + dx_get_count(p->entries)) 907 break; 908 if (p == frames) 909 return 0; 910 num_frames++; 911 p--; 912 } 913 914 /* 915 * If the hash is 1, then continue only if the next page has a 916 * continuation hash of any value. This is used for readdir 917 * handling. Otherwise, check to see if the hash matches the 918 * desired contiuation hash. If it doesn't, return since 919 * there's no point to read in the successive index pages. 920 */ 921 bhash = dx_get_hash(p->at); 922 if (start_hash) 923 *start_hash = bhash; 924 if ((hash & 1) == 0) { 925 if ((bhash & ~1) != hash) 926 return 0; 927 } 928 /* 929 * If the hash is HASH_NB_ALWAYS, we always go to the next 930 * block so no check is necessary 931 */ 932 while (num_frames--) { 933 bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX); 934 if (IS_ERR(bh)) 935 return PTR_ERR(bh); 936 p++; 937 brelse(p->bh); 938 p->bh = bh; 939 p->at = p->entries = ((struct dx_node *) bh->b_data)->entries; 940 } 941 return 1; 942 } 943 944 945 /* 946 * This function fills a red-black tree with information from a 947 * directory block. It returns the number directory entries loaded 948 * into the tree. If there is an error it is returned in err. 949 */ 950 static int htree_dirblock_to_tree(struct file *dir_file, 951 struct inode *dir, ext4_lblk_t block, 952 struct dx_hash_info *hinfo, 953 __u32 start_hash, __u32 start_minor_hash) 954 { 955 struct buffer_head *bh; 956 struct ext4_dir_entry_2 *de, *top; 957 int err = 0, count = 0; 958 struct fscrypt_str fname_crypto_str = FSTR_INIT(NULL, 0), tmp_str; 959 960 dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n", 961 (unsigned long)block)); 962 bh = ext4_read_dirblock(dir, block, DIRENT); 963 if (IS_ERR(bh)) 964 return PTR_ERR(bh); 965 966 de = (struct ext4_dir_entry_2 *) bh->b_data; 967 top = (struct ext4_dir_entry_2 *) ((char *) de + 968 dir->i_sb->s_blocksize - 969 EXT4_DIR_REC_LEN(0)); 970 #ifdef CONFIG_EXT4_FS_ENCRYPTION 971 /* Check if the directory is encrypted */ 972 if (ext4_encrypted_inode(dir)) { 973 err = fscrypt_get_encryption_info(dir); 974 if (err < 0) { 975 brelse(bh); 976 return err; 977 } 978 err = fscrypt_fname_alloc_buffer(dir, EXT4_NAME_LEN, 979 &fname_crypto_str); 980 if (err < 0) { 981 brelse(bh); 982 return err; 983 } 984 } 985 #endif 986 for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) { 987 if (ext4_check_dir_entry(dir, NULL, de, bh, 988 bh->b_data, bh->b_size, 989 (block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb)) 990 + ((char *)de - bh->b_data))) { 991 /* silently ignore the rest of the block */ 992 break; 993 } 994 ext4fs_dirhash(de->name, de->name_len, hinfo); 995 if ((hinfo->hash < start_hash) || 996 ((hinfo->hash == start_hash) && 997 (hinfo->minor_hash < start_minor_hash))) 998 continue; 999 if (de->inode == 0) 1000 continue; 1001 if (!ext4_encrypted_inode(dir)) { 1002 tmp_str.name = de->name; 1003 tmp_str.len = de->name_len; 1004 err = ext4_htree_store_dirent(dir_file, 1005 hinfo->hash, hinfo->minor_hash, de, 1006 &tmp_str); 1007 } else { 1008 int save_len = fname_crypto_str.len; 1009 struct fscrypt_str de_name = FSTR_INIT(de->name, 1010 de->name_len); 1011 1012 /* Directory is encrypted */ 1013 err = fscrypt_fname_disk_to_usr(dir, hinfo->hash, 1014 hinfo->minor_hash, &de_name, 1015 &fname_crypto_str); 1016 if (err) { 1017 count = err; 1018 goto errout; 1019 } 1020 err = ext4_htree_store_dirent(dir_file, 1021 hinfo->hash, hinfo->minor_hash, de, 1022 &fname_crypto_str); 1023 fname_crypto_str.len = save_len; 1024 } 1025 if (err != 0) { 1026 count = err; 1027 goto errout; 1028 } 1029 count++; 1030 } 1031 errout: 1032 brelse(bh); 1033 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1034 fscrypt_fname_free_buffer(&fname_crypto_str); 1035 #endif 1036 return count; 1037 } 1038 1039 1040 /* 1041 * This function fills a red-black tree with information from a 1042 * directory. We start scanning the directory in hash order, starting 1043 * at start_hash and start_minor_hash. 1044 * 1045 * This function returns the number of entries inserted into the tree, 1046 * or a negative error code. 1047 */ 1048 int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash, 1049 __u32 start_minor_hash, __u32 *next_hash) 1050 { 1051 struct dx_hash_info hinfo; 1052 struct ext4_dir_entry_2 *de; 1053 struct dx_frame frames[2], *frame; 1054 struct inode *dir; 1055 ext4_lblk_t block; 1056 int count = 0; 1057 int ret, err; 1058 __u32 hashval; 1059 struct fscrypt_str tmp_str; 1060 1061 dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n", 1062 start_hash, start_minor_hash)); 1063 dir = file_inode(dir_file); 1064 if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) { 1065 hinfo.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version; 1066 if (hinfo.hash_version <= DX_HASH_TEA) 1067 hinfo.hash_version += 1068 EXT4_SB(dir->i_sb)->s_hash_unsigned; 1069 hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 1070 if (ext4_has_inline_data(dir)) { 1071 int has_inline_data = 1; 1072 count = htree_inlinedir_to_tree(dir_file, dir, 0, 1073 &hinfo, start_hash, 1074 start_minor_hash, 1075 &has_inline_data); 1076 if (has_inline_data) { 1077 *next_hash = ~0; 1078 return count; 1079 } 1080 } 1081 count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo, 1082 start_hash, start_minor_hash); 1083 *next_hash = ~0; 1084 return count; 1085 } 1086 hinfo.hash = start_hash; 1087 hinfo.minor_hash = 0; 1088 frame = dx_probe(NULL, dir, &hinfo, frames); 1089 if (IS_ERR(frame)) 1090 return PTR_ERR(frame); 1091 1092 /* Add '.' and '..' from the htree header */ 1093 if (!start_hash && !start_minor_hash) { 1094 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1095 tmp_str.name = de->name; 1096 tmp_str.len = de->name_len; 1097 err = ext4_htree_store_dirent(dir_file, 0, 0, 1098 de, &tmp_str); 1099 if (err != 0) 1100 goto errout; 1101 count++; 1102 } 1103 if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) { 1104 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data; 1105 de = ext4_next_entry(de, dir->i_sb->s_blocksize); 1106 tmp_str.name = de->name; 1107 tmp_str.len = de->name_len; 1108 err = ext4_htree_store_dirent(dir_file, 2, 0, 1109 de, &tmp_str); 1110 if (err != 0) 1111 goto errout; 1112 count++; 1113 } 1114 1115 while (1) { 1116 if (fatal_signal_pending(current)) { 1117 err = -ERESTARTSYS; 1118 goto errout; 1119 } 1120 cond_resched(); 1121 block = dx_get_block(frame->at); 1122 ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo, 1123 start_hash, start_minor_hash); 1124 if (ret < 0) { 1125 err = ret; 1126 goto errout; 1127 } 1128 count += ret; 1129 hashval = ~0; 1130 ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS, 1131 frame, frames, &hashval); 1132 *next_hash = hashval; 1133 if (ret < 0) { 1134 err = ret; 1135 goto errout; 1136 } 1137 /* 1138 * Stop if: (a) there are no more entries, or 1139 * (b) we have inserted at least one entry and the 1140 * next hash value is not a continuation 1141 */ 1142 if ((ret == 0) || 1143 (count && ((hashval & 1) == 0))) 1144 break; 1145 } 1146 dx_release(frames); 1147 dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, " 1148 "next hash: %x\n", count, *next_hash)); 1149 return count; 1150 errout: 1151 dx_release(frames); 1152 return (err); 1153 } 1154 1155 static inline int search_dirblock(struct buffer_head *bh, 1156 struct inode *dir, 1157 struct ext4_filename *fname, 1158 const struct qstr *d_name, 1159 unsigned int offset, 1160 struct ext4_dir_entry_2 **res_dir) 1161 { 1162 return ext4_search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir, 1163 fname, d_name, offset, res_dir); 1164 } 1165 1166 /* 1167 * Directory block splitting, compacting 1168 */ 1169 1170 /* 1171 * Create map of hash values, offsets, and sizes, stored at end of block. 1172 * Returns number of entries mapped. 1173 */ 1174 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de, 1175 unsigned blocksize, struct dx_hash_info *hinfo, 1176 struct dx_map_entry *map_tail) 1177 { 1178 int count = 0; 1179 char *base = (char *) de; 1180 struct dx_hash_info h = *hinfo; 1181 1182 while ((char *) de < base + blocksize) { 1183 if (de->name_len && de->inode) { 1184 ext4fs_dirhash(de->name, de->name_len, &h); 1185 map_tail--; 1186 map_tail->hash = h.hash; 1187 map_tail->offs = ((char *) de - base)>>2; 1188 map_tail->size = le16_to_cpu(de->rec_len); 1189 count++; 1190 cond_resched(); 1191 } 1192 /* XXX: do we need to check rec_len == 0 case? -Chris */ 1193 de = ext4_next_entry(de, blocksize); 1194 } 1195 return count; 1196 } 1197 1198 /* Sort map by hash value */ 1199 static void dx_sort_map (struct dx_map_entry *map, unsigned count) 1200 { 1201 struct dx_map_entry *p, *q, *top = map + count - 1; 1202 int more; 1203 /* Combsort until bubble sort doesn't suck */ 1204 while (count > 2) { 1205 count = count*10/13; 1206 if (count - 9 < 2) /* 9, 10 -> 11 */ 1207 count = 11; 1208 for (p = top, q = p - count; q >= map; p--, q--) 1209 if (p->hash < q->hash) 1210 swap(*p, *q); 1211 } 1212 /* Garden variety bubble sort */ 1213 do { 1214 more = 0; 1215 q = top; 1216 while (q-- > map) { 1217 if (q[1].hash >= q[0].hash) 1218 continue; 1219 swap(*(q+1), *q); 1220 more = 1; 1221 } 1222 } while(more); 1223 } 1224 1225 static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block) 1226 { 1227 struct dx_entry *entries = frame->entries; 1228 struct dx_entry *old = frame->at, *new = old + 1; 1229 int count = dx_get_count(entries); 1230 1231 assert(count < dx_get_limit(entries)); 1232 assert(old < entries + count); 1233 memmove(new + 1, new, (char *)(entries + count) - (char *)(new)); 1234 dx_set_hash(new, hash); 1235 dx_set_block(new, block); 1236 dx_set_count(entries, count + 1); 1237 } 1238 1239 /* 1240 * NOTE! unlike strncmp, ext4_match returns 1 for success, 0 for failure. 1241 * 1242 * `len <= EXT4_NAME_LEN' is guaranteed by caller. 1243 * `de != NULL' is guaranteed by caller. 1244 */ 1245 static inline int ext4_match(struct ext4_filename *fname, 1246 struct ext4_dir_entry_2 *de) 1247 { 1248 const void *name = fname_name(fname); 1249 u32 len = fname_len(fname); 1250 1251 if (!de->inode) 1252 return 0; 1253 1254 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1255 if (unlikely(!name)) { 1256 if (fname->usr_fname->name[0] == '_') { 1257 int ret; 1258 if (de->name_len < 16) 1259 return 0; 1260 ret = memcmp(de->name + de->name_len - 16, 1261 fname->crypto_buf.name + 8, 16); 1262 return (ret == 0) ? 1 : 0; 1263 } 1264 name = fname->crypto_buf.name; 1265 len = fname->crypto_buf.len; 1266 } 1267 #endif 1268 if (de->name_len != len) 1269 return 0; 1270 return (memcmp(de->name, name, len) == 0) ? 1 : 0; 1271 } 1272 1273 /* 1274 * Returns 0 if not found, -1 on failure, and 1 on success 1275 */ 1276 int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size, 1277 struct inode *dir, struct ext4_filename *fname, 1278 const struct qstr *d_name, 1279 unsigned int offset, struct ext4_dir_entry_2 **res_dir) 1280 { 1281 struct ext4_dir_entry_2 * de; 1282 char * dlimit; 1283 int de_len; 1284 int res; 1285 1286 de = (struct ext4_dir_entry_2 *)search_buf; 1287 dlimit = search_buf + buf_size; 1288 while ((char *) de < dlimit) { 1289 /* this code is executed quadratically often */ 1290 /* do minimal checking `by hand' */ 1291 if ((char *) de + de->name_len <= dlimit) { 1292 res = ext4_match(fname, de); 1293 if (res < 0) { 1294 res = -1; 1295 goto return_result; 1296 } 1297 if (res > 0) { 1298 /* found a match - just to be sure, do 1299 * a full check */ 1300 if (ext4_check_dir_entry(dir, NULL, de, bh, 1301 bh->b_data, 1302 bh->b_size, offset)) { 1303 res = -1; 1304 goto return_result; 1305 } 1306 *res_dir = de; 1307 res = 1; 1308 goto return_result; 1309 } 1310 1311 } 1312 /* prevent looping on a bad block */ 1313 de_len = ext4_rec_len_from_disk(de->rec_len, 1314 dir->i_sb->s_blocksize); 1315 if (de_len <= 0) { 1316 res = -1; 1317 goto return_result; 1318 } 1319 offset += de_len; 1320 de = (struct ext4_dir_entry_2 *) ((char *) de + de_len); 1321 } 1322 1323 res = 0; 1324 return_result: 1325 return res; 1326 } 1327 1328 static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block, 1329 struct ext4_dir_entry *de) 1330 { 1331 struct super_block *sb = dir->i_sb; 1332 1333 if (!is_dx(dir)) 1334 return 0; 1335 if (block == 0) 1336 return 1; 1337 if (de->inode == 0 && 1338 ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) == 1339 sb->s_blocksize) 1340 return 1; 1341 return 0; 1342 } 1343 1344 /* 1345 * ext4_find_entry() 1346 * 1347 * finds an entry in the specified directory with the wanted name. It 1348 * returns the cache buffer in which the entry was found, and the entry 1349 * itself (as a parameter - res_dir). It does NOT read the inode of the 1350 * entry - you'll have to do that yourself if you want to. 1351 * 1352 * The returned buffer_head has ->b_count elevated. The caller is expected 1353 * to brelse() it when appropriate. 1354 */ 1355 static struct buffer_head * ext4_find_entry (struct inode *dir, 1356 const struct qstr *d_name, 1357 struct ext4_dir_entry_2 **res_dir, 1358 int *inlined) 1359 { 1360 struct super_block *sb; 1361 struct buffer_head *bh_use[NAMEI_RA_SIZE]; 1362 struct buffer_head *bh, *ret = NULL; 1363 ext4_lblk_t start, block, b; 1364 const u8 *name = d_name->name; 1365 int ra_max = 0; /* Number of bh's in the readahead 1366 buffer, bh_use[] */ 1367 int ra_ptr = 0; /* Current index into readahead 1368 buffer */ 1369 int num = 0; 1370 ext4_lblk_t nblocks; 1371 int i, namelen, retval; 1372 struct ext4_filename fname; 1373 1374 *res_dir = NULL; 1375 sb = dir->i_sb; 1376 namelen = d_name->len; 1377 if (namelen > EXT4_NAME_LEN) 1378 return NULL; 1379 1380 retval = ext4_fname_setup_filename(dir, d_name, 1, &fname); 1381 if (retval == -ENOENT) 1382 return NULL; 1383 if (retval) 1384 return ERR_PTR(retval); 1385 1386 if (ext4_has_inline_data(dir)) { 1387 int has_inline_data = 1; 1388 ret = ext4_find_inline_entry(dir, &fname, d_name, res_dir, 1389 &has_inline_data); 1390 if (has_inline_data) { 1391 if (inlined) 1392 *inlined = 1; 1393 goto cleanup_and_exit; 1394 } 1395 } 1396 1397 if ((namelen <= 2) && (name[0] == '.') && 1398 (name[1] == '.' || name[1] == '\0')) { 1399 /* 1400 * "." or ".." will only be in the first block 1401 * NFS may look up ".."; "." should be handled by the VFS 1402 */ 1403 block = start = 0; 1404 nblocks = 1; 1405 goto restart; 1406 } 1407 if (is_dx(dir)) { 1408 ret = ext4_dx_find_entry(dir, &fname, res_dir); 1409 /* 1410 * On success, or if the error was file not found, 1411 * return. Otherwise, fall back to doing a search the 1412 * old fashioned way. 1413 */ 1414 if (!IS_ERR(ret) || PTR_ERR(ret) != ERR_BAD_DX_DIR) 1415 goto cleanup_and_exit; 1416 dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, " 1417 "falling back\n")); 1418 } 1419 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1420 start = EXT4_I(dir)->i_dir_start_lookup; 1421 if (start >= nblocks) 1422 start = 0; 1423 block = start; 1424 restart: 1425 do { 1426 /* 1427 * We deal with the read-ahead logic here. 1428 */ 1429 if (ra_ptr >= ra_max) { 1430 /* Refill the readahead buffer */ 1431 ra_ptr = 0; 1432 b = block; 1433 for (ra_max = 0; ra_max < NAMEI_RA_SIZE; ra_max++) { 1434 /* 1435 * Terminate if we reach the end of the 1436 * directory and must wrap, or if our 1437 * search has finished at this block. 1438 */ 1439 if (b >= nblocks || (num && block == start)) { 1440 bh_use[ra_max] = NULL; 1441 break; 1442 } 1443 num++; 1444 bh = ext4_getblk(NULL, dir, b++, 0); 1445 if (IS_ERR(bh)) { 1446 if (ra_max == 0) { 1447 ret = bh; 1448 goto cleanup_and_exit; 1449 } 1450 break; 1451 } 1452 bh_use[ra_max] = bh; 1453 if (bh) 1454 ll_rw_block(REQ_OP_READ, 1455 REQ_META | REQ_PRIO, 1456 1, &bh); 1457 } 1458 } 1459 if ((bh = bh_use[ra_ptr++]) == NULL) 1460 goto next; 1461 wait_on_buffer(bh); 1462 if (!buffer_uptodate(bh)) { 1463 /* read error, skip block & hope for the best */ 1464 EXT4_ERROR_INODE(dir, "reading directory lblock %lu", 1465 (unsigned long) block); 1466 brelse(bh); 1467 goto next; 1468 } 1469 if (!buffer_verified(bh) && 1470 !is_dx_internal_node(dir, block, 1471 (struct ext4_dir_entry *)bh->b_data) && 1472 !ext4_dirent_csum_verify(dir, 1473 (struct ext4_dir_entry *)bh->b_data)) { 1474 EXT4_ERROR_INODE(dir, "checksumming directory " 1475 "block %lu", (unsigned long)block); 1476 brelse(bh); 1477 goto next; 1478 } 1479 set_buffer_verified(bh); 1480 i = search_dirblock(bh, dir, &fname, d_name, 1481 block << EXT4_BLOCK_SIZE_BITS(sb), res_dir); 1482 if (i == 1) { 1483 EXT4_I(dir)->i_dir_start_lookup = block; 1484 ret = bh; 1485 goto cleanup_and_exit; 1486 } else { 1487 brelse(bh); 1488 if (i < 0) 1489 goto cleanup_and_exit; 1490 } 1491 next: 1492 if (++block >= nblocks) 1493 block = 0; 1494 } while (block != start); 1495 1496 /* 1497 * If the directory has grown while we were searching, then 1498 * search the last part of the directory before giving up. 1499 */ 1500 block = nblocks; 1501 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb); 1502 if (block < nblocks) { 1503 start = 0; 1504 goto restart; 1505 } 1506 1507 cleanup_and_exit: 1508 /* Clean up the read-ahead blocks */ 1509 for (; ra_ptr < ra_max; ra_ptr++) 1510 brelse(bh_use[ra_ptr]); 1511 ext4_fname_free_filename(&fname); 1512 return ret; 1513 } 1514 1515 static struct buffer_head * ext4_dx_find_entry(struct inode *dir, 1516 struct ext4_filename *fname, 1517 struct ext4_dir_entry_2 **res_dir) 1518 { 1519 struct super_block * sb = dir->i_sb; 1520 struct dx_frame frames[2], *frame; 1521 const struct qstr *d_name = fname->usr_fname; 1522 struct buffer_head *bh; 1523 ext4_lblk_t block; 1524 int retval; 1525 1526 #ifdef CONFIG_EXT4_FS_ENCRYPTION 1527 *res_dir = NULL; 1528 #endif 1529 frame = dx_probe(fname, dir, NULL, frames); 1530 if (IS_ERR(frame)) 1531 return (struct buffer_head *) frame; 1532 do { 1533 block = dx_get_block(frame->at); 1534 bh = ext4_read_dirblock(dir, block, DIRENT); 1535 if (IS_ERR(bh)) 1536 goto errout; 1537 1538 retval = search_dirblock(bh, dir, fname, d_name, 1539 block << EXT4_BLOCK_SIZE_BITS(sb), 1540 res_dir); 1541 if (retval == 1) 1542 goto success; 1543 brelse(bh); 1544 if (retval == -1) { 1545 bh = ERR_PTR(ERR_BAD_DX_DIR); 1546 goto errout; 1547 } 1548 1549 /* Check to see if we should continue to search */ 1550 retval = ext4_htree_next_block(dir, fname->hinfo.hash, frame, 1551 frames, NULL); 1552 if (retval < 0) { 1553 ext4_warning_inode(dir, 1554 "error %d reading directory index block", 1555 retval); 1556 bh = ERR_PTR(retval); 1557 goto errout; 1558 } 1559 } while (retval == 1); 1560 1561 bh = NULL; 1562 errout: 1563 dxtrace(printk(KERN_DEBUG "%s not found\n", d_name->name)); 1564 success: 1565 dx_release(frames); 1566 return bh; 1567 } 1568 1569 static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1570 { 1571 struct inode *inode; 1572 struct ext4_dir_entry_2 *de; 1573 struct buffer_head *bh; 1574 1575 if (ext4_encrypted_inode(dir)) { 1576 int res = fscrypt_get_encryption_info(dir); 1577 1578 /* 1579 * DCACHE_ENCRYPTED_WITH_KEY is set if the dentry is 1580 * created while the directory was encrypted and we 1581 * have access to the key. 1582 */ 1583 if (fscrypt_has_encryption_key(dir)) 1584 fscrypt_set_encrypted_dentry(dentry); 1585 fscrypt_set_d_op(dentry); 1586 if (res && res != -ENOKEY) 1587 return ERR_PTR(res); 1588 } 1589 1590 if (dentry->d_name.len > EXT4_NAME_LEN) 1591 return ERR_PTR(-ENAMETOOLONG); 1592 1593 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 1594 if (IS_ERR(bh)) 1595 return (struct dentry *) bh; 1596 inode = NULL; 1597 if (bh) { 1598 __u32 ino = le32_to_cpu(de->inode); 1599 brelse(bh); 1600 if (!ext4_valid_inum(dir->i_sb, ino)) { 1601 EXT4_ERROR_INODE(dir, "bad inode number: %u", ino); 1602 return ERR_PTR(-EFSCORRUPTED); 1603 } 1604 if (unlikely(ino == dir->i_ino)) { 1605 EXT4_ERROR_INODE(dir, "'%pd' linked to parent dir", 1606 dentry); 1607 return ERR_PTR(-EFSCORRUPTED); 1608 } 1609 inode = ext4_iget_normal(dir->i_sb, ino); 1610 if (inode == ERR_PTR(-ESTALE)) { 1611 EXT4_ERROR_INODE(dir, 1612 "deleted inode referenced: %u", 1613 ino); 1614 return ERR_PTR(-EFSCORRUPTED); 1615 } 1616 if (!IS_ERR(inode) && ext4_encrypted_inode(dir) && 1617 (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) && 1618 !fscrypt_has_permitted_context(dir, inode)) { 1619 int nokey = ext4_encrypted_inode(inode) && 1620 !fscrypt_has_encryption_key(inode); 1621 if (nokey) { 1622 iput(inode); 1623 return ERR_PTR(-ENOKEY); 1624 } 1625 ext4_warning(inode->i_sb, 1626 "Inconsistent encryption contexts: %lu/%lu", 1627 (unsigned long) dir->i_ino, 1628 (unsigned long) inode->i_ino); 1629 iput(inode); 1630 return ERR_PTR(-EPERM); 1631 } 1632 } 1633 return d_splice_alias(inode, dentry); 1634 } 1635 1636 1637 struct dentry *ext4_get_parent(struct dentry *child) 1638 { 1639 __u32 ino; 1640 static const struct qstr dotdot = QSTR_INIT("..", 2); 1641 struct ext4_dir_entry_2 * de; 1642 struct buffer_head *bh; 1643 1644 bh = ext4_find_entry(d_inode(child), &dotdot, &de, NULL); 1645 if (IS_ERR(bh)) 1646 return (struct dentry *) bh; 1647 if (!bh) 1648 return ERR_PTR(-ENOENT); 1649 ino = le32_to_cpu(de->inode); 1650 brelse(bh); 1651 1652 if (!ext4_valid_inum(child->d_sb, ino)) { 1653 EXT4_ERROR_INODE(d_inode(child), 1654 "bad parent inode number: %u", ino); 1655 return ERR_PTR(-EFSCORRUPTED); 1656 } 1657 1658 return d_obtain_alias(ext4_iget_normal(child->d_sb, ino)); 1659 } 1660 1661 /* 1662 * Move count entries from end of map between two memory locations. 1663 * Returns pointer to last entry moved. 1664 */ 1665 static struct ext4_dir_entry_2 * 1666 dx_move_dirents(char *from, char *to, struct dx_map_entry *map, int count, 1667 unsigned blocksize) 1668 { 1669 unsigned rec_len = 0; 1670 1671 while (count--) { 1672 struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *) 1673 (from + (map->offs<<2)); 1674 rec_len = EXT4_DIR_REC_LEN(de->name_len); 1675 memcpy (to, de, rec_len); 1676 ((struct ext4_dir_entry_2 *) to)->rec_len = 1677 ext4_rec_len_to_disk(rec_len, blocksize); 1678 de->inode = 0; 1679 map++; 1680 to += rec_len; 1681 } 1682 return (struct ext4_dir_entry_2 *) (to - rec_len); 1683 } 1684 1685 /* 1686 * Compact each dir entry in the range to the minimal rec_len. 1687 * Returns pointer to last entry in range. 1688 */ 1689 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize) 1690 { 1691 struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base; 1692 unsigned rec_len = 0; 1693 1694 prev = to = de; 1695 while ((char*)de < base + blocksize) { 1696 next = ext4_next_entry(de, blocksize); 1697 if (de->inode && de->name_len) { 1698 rec_len = EXT4_DIR_REC_LEN(de->name_len); 1699 if (de > to) 1700 memmove(to, de, rec_len); 1701 to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize); 1702 prev = to; 1703 to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len); 1704 } 1705 de = next; 1706 } 1707 return prev; 1708 } 1709 1710 /* 1711 * Split a full leaf block to make room for a new dir entry. 1712 * Allocate a new block, and move entries so that they are approx. equally full. 1713 * Returns pointer to de in block into which the new entry will be inserted. 1714 */ 1715 static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir, 1716 struct buffer_head **bh,struct dx_frame *frame, 1717 struct dx_hash_info *hinfo) 1718 { 1719 unsigned blocksize = dir->i_sb->s_blocksize; 1720 unsigned count, continued; 1721 struct buffer_head *bh2; 1722 ext4_lblk_t newblock; 1723 u32 hash2; 1724 struct dx_map_entry *map; 1725 char *data1 = (*bh)->b_data, *data2; 1726 unsigned split, move, size; 1727 struct ext4_dir_entry_2 *de = NULL, *de2; 1728 struct ext4_dir_entry_tail *t; 1729 int csum_size = 0; 1730 int err = 0, i; 1731 1732 if (ext4_has_metadata_csum(dir->i_sb)) 1733 csum_size = sizeof(struct ext4_dir_entry_tail); 1734 1735 bh2 = ext4_append(handle, dir, &newblock); 1736 if (IS_ERR(bh2)) { 1737 brelse(*bh); 1738 *bh = NULL; 1739 return (struct ext4_dir_entry_2 *) bh2; 1740 } 1741 1742 BUFFER_TRACE(*bh, "get_write_access"); 1743 err = ext4_journal_get_write_access(handle, *bh); 1744 if (err) 1745 goto journal_error; 1746 1747 BUFFER_TRACE(frame->bh, "get_write_access"); 1748 err = ext4_journal_get_write_access(handle, frame->bh); 1749 if (err) 1750 goto journal_error; 1751 1752 data2 = bh2->b_data; 1753 1754 /* create map in the end of data2 block */ 1755 map = (struct dx_map_entry *) (data2 + blocksize); 1756 count = dx_make_map(dir, (struct ext4_dir_entry_2 *) data1, 1757 blocksize, hinfo, map); 1758 map -= count; 1759 dx_sort_map(map, count); 1760 /* Split the existing block in the middle, size-wise */ 1761 size = 0; 1762 move = 0; 1763 for (i = count-1; i >= 0; i--) { 1764 /* is more than half of this entry in 2nd half of the block? */ 1765 if (size + map[i].size/2 > blocksize/2) 1766 break; 1767 size += map[i].size; 1768 move++; 1769 } 1770 /* map index at which we will split */ 1771 split = count - move; 1772 hash2 = map[split].hash; 1773 continued = hash2 == map[split - 1].hash; 1774 dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n", 1775 (unsigned long)dx_get_block(frame->at), 1776 hash2, split, count-split)); 1777 1778 /* Fancy dance to stay within two buffers */ 1779 de2 = dx_move_dirents(data1, data2, map + split, count - split, 1780 blocksize); 1781 de = dx_pack_dirents(data1, blocksize); 1782 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) - 1783 (char *) de, 1784 blocksize); 1785 de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) - 1786 (char *) de2, 1787 blocksize); 1788 if (csum_size) { 1789 t = EXT4_DIRENT_TAIL(data2, blocksize); 1790 initialize_dirent_tail(t, blocksize); 1791 1792 t = EXT4_DIRENT_TAIL(data1, blocksize); 1793 initialize_dirent_tail(t, blocksize); 1794 } 1795 1796 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data1, 1797 blocksize, 1)); 1798 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data2, 1799 blocksize, 1)); 1800 1801 /* Which block gets the new entry? */ 1802 if (hinfo->hash >= hash2) { 1803 swap(*bh, bh2); 1804 de = de2; 1805 } 1806 dx_insert_block(frame, hash2 + continued, newblock); 1807 err = ext4_handle_dirty_dirent_node(handle, dir, bh2); 1808 if (err) 1809 goto journal_error; 1810 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 1811 if (err) 1812 goto journal_error; 1813 brelse(bh2); 1814 dxtrace(dx_show_index("frame", frame->entries)); 1815 return de; 1816 1817 journal_error: 1818 brelse(*bh); 1819 brelse(bh2); 1820 *bh = NULL; 1821 ext4_std_error(dir->i_sb, err); 1822 return ERR_PTR(err); 1823 } 1824 1825 int ext4_find_dest_de(struct inode *dir, struct inode *inode, 1826 struct buffer_head *bh, 1827 void *buf, int buf_size, 1828 struct ext4_filename *fname, 1829 struct ext4_dir_entry_2 **dest_de) 1830 { 1831 struct ext4_dir_entry_2 *de; 1832 unsigned short reclen = EXT4_DIR_REC_LEN(fname_len(fname)); 1833 int nlen, rlen; 1834 unsigned int offset = 0; 1835 char *top; 1836 int res; 1837 1838 de = (struct ext4_dir_entry_2 *)buf; 1839 top = buf + buf_size - reclen; 1840 while ((char *) de <= top) { 1841 if (ext4_check_dir_entry(dir, NULL, de, bh, 1842 buf, buf_size, offset)) { 1843 res = -EFSCORRUPTED; 1844 goto return_result; 1845 } 1846 /* Provide crypto context and crypto buffer to ext4 match */ 1847 res = ext4_match(fname, de); 1848 if (res < 0) 1849 goto return_result; 1850 if (res > 0) { 1851 res = -EEXIST; 1852 goto return_result; 1853 } 1854 nlen = EXT4_DIR_REC_LEN(de->name_len); 1855 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 1856 if ((de->inode ? rlen - nlen : rlen) >= reclen) 1857 break; 1858 de = (struct ext4_dir_entry_2 *)((char *)de + rlen); 1859 offset += rlen; 1860 } 1861 1862 if ((char *) de > top) 1863 res = -ENOSPC; 1864 else { 1865 *dest_de = de; 1866 res = 0; 1867 } 1868 return_result: 1869 return res; 1870 } 1871 1872 int ext4_insert_dentry(struct inode *dir, 1873 struct inode *inode, 1874 struct ext4_dir_entry_2 *de, 1875 int buf_size, 1876 struct ext4_filename *fname) 1877 { 1878 1879 int nlen, rlen; 1880 1881 nlen = EXT4_DIR_REC_LEN(de->name_len); 1882 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size); 1883 if (de->inode) { 1884 struct ext4_dir_entry_2 *de1 = 1885 (struct ext4_dir_entry_2 *)((char *)de + nlen); 1886 de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size); 1887 de->rec_len = ext4_rec_len_to_disk(nlen, buf_size); 1888 de = de1; 1889 } 1890 de->file_type = EXT4_FT_UNKNOWN; 1891 de->inode = cpu_to_le32(inode->i_ino); 1892 ext4_set_de_type(inode->i_sb, de, inode->i_mode); 1893 de->name_len = fname_len(fname); 1894 memcpy(de->name, fname_name(fname), fname_len(fname)); 1895 return 0; 1896 } 1897 1898 /* 1899 * Add a new entry into a directory (leaf) block. If de is non-NULL, 1900 * it points to a directory entry which is guaranteed to be large 1901 * enough for new directory entry. If de is NULL, then 1902 * add_dirent_to_buf will attempt search the directory block for 1903 * space. It will return -ENOSPC if no space is available, and -EIO 1904 * and -EEXIST if directory entry already exists. 1905 */ 1906 static int add_dirent_to_buf(handle_t *handle, struct ext4_filename *fname, 1907 struct inode *dir, 1908 struct inode *inode, struct ext4_dir_entry_2 *de, 1909 struct buffer_head *bh) 1910 { 1911 unsigned int blocksize = dir->i_sb->s_blocksize; 1912 int csum_size = 0; 1913 int err; 1914 1915 if (ext4_has_metadata_csum(inode->i_sb)) 1916 csum_size = sizeof(struct ext4_dir_entry_tail); 1917 1918 if (!de) { 1919 err = ext4_find_dest_de(dir, inode, bh, bh->b_data, 1920 blocksize - csum_size, fname, &de); 1921 if (err) 1922 return err; 1923 } 1924 BUFFER_TRACE(bh, "get_write_access"); 1925 err = ext4_journal_get_write_access(handle, bh); 1926 if (err) { 1927 ext4_std_error(dir->i_sb, err); 1928 return err; 1929 } 1930 1931 /* By now the buffer is marked for journaling. Due to crypto operations, 1932 * the following function call may fail */ 1933 err = ext4_insert_dentry(dir, inode, de, blocksize, fname); 1934 if (err < 0) 1935 return err; 1936 1937 /* 1938 * XXX shouldn't update any times until successful 1939 * completion of syscall, but too many callers depend 1940 * on this. 1941 * 1942 * XXX similarly, too many callers depend on 1943 * ext4_new_inode() setting the times, but error 1944 * recovery deletes the inode, so the worst that can 1945 * happen is that the times are slightly out of date 1946 * and/or different from the directory change time. 1947 */ 1948 dir->i_mtime = dir->i_ctime = current_time(dir); 1949 ext4_update_dx_flag(dir); 1950 dir->i_version++; 1951 ext4_mark_inode_dirty(handle, dir); 1952 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 1953 err = ext4_handle_dirty_dirent_node(handle, dir, bh); 1954 if (err) 1955 ext4_std_error(dir->i_sb, err); 1956 return 0; 1957 } 1958 1959 /* 1960 * This converts a one block unindexed directory to a 3 block indexed 1961 * directory, and adds the dentry to the indexed directory. 1962 */ 1963 static int make_indexed_dir(handle_t *handle, struct ext4_filename *fname, 1964 struct inode *dir, 1965 struct inode *inode, struct buffer_head *bh) 1966 { 1967 struct buffer_head *bh2; 1968 struct dx_root *root; 1969 struct dx_frame frames[2], *frame; 1970 struct dx_entry *entries; 1971 struct ext4_dir_entry_2 *de, *de2; 1972 struct ext4_dir_entry_tail *t; 1973 char *data1, *top; 1974 unsigned len; 1975 int retval; 1976 unsigned blocksize; 1977 ext4_lblk_t block; 1978 struct fake_dirent *fde; 1979 int csum_size = 0; 1980 1981 if (ext4_has_metadata_csum(inode->i_sb)) 1982 csum_size = sizeof(struct ext4_dir_entry_tail); 1983 1984 blocksize = dir->i_sb->s_blocksize; 1985 dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino)); 1986 BUFFER_TRACE(bh, "get_write_access"); 1987 retval = ext4_journal_get_write_access(handle, bh); 1988 if (retval) { 1989 ext4_std_error(dir->i_sb, retval); 1990 brelse(bh); 1991 return retval; 1992 } 1993 root = (struct dx_root *) bh->b_data; 1994 1995 /* The 0th block becomes the root, move the dirents out */ 1996 fde = &root->dotdot; 1997 de = (struct ext4_dir_entry_2 *)((char *)fde + 1998 ext4_rec_len_from_disk(fde->rec_len, blocksize)); 1999 if ((char *) de >= (((char *) root) + blocksize)) { 2000 EXT4_ERROR_INODE(dir, "invalid rec_len for '..'"); 2001 brelse(bh); 2002 return -EFSCORRUPTED; 2003 } 2004 len = ((char *) root) + (blocksize - csum_size) - (char *) de; 2005 2006 /* Allocate new block for the 0th block's dirents */ 2007 bh2 = ext4_append(handle, dir, &block); 2008 if (IS_ERR(bh2)) { 2009 brelse(bh); 2010 return PTR_ERR(bh2); 2011 } 2012 ext4_set_inode_flag(dir, EXT4_INODE_INDEX); 2013 data1 = bh2->b_data; 2014 2015 memcpy (data1, de, len); 2016 de = (struct ext4_dir_entry_2 *) data1; 2017 top = data1 + len; 2018 while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top) 2019 de = de2; 2020 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) - 2021 (char *) de, 2022 blocksize); 2023 2024 if (csum_size) { 2025 t = EXT4_DIRENT_TAIL(data1, blocksize); 2026 initialize_dirent_tail(t, blocksize); 2027 } 2028 2029 /* Initialize the root; the dot dirents already exist */ 2030 de = (struct ext4_dir_entry_2 *) (&root->dotdot); 2031 de->rec_len = ext4_rec_len_to_disk(blocksize - EXT4_DIR_REC_LEN(2), 2032 blocksize); 2033 memset (&root->info, 0, sizeof(root->info)); 2034 root->info.info_length = sizeof(root->info); 2035 root->info.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version; 2036 entries = root->entries; 2037 dx_set_block(entries, 1); 2038 dx_set_count(entries, 1); 2039 dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info))); 2040 2041 /* Initialize as for dx_probe */ 2042 fname->hinfo.hash_version = root->info.hash_version; 2043 if (fname->hinfo.hash_version <= DX_HASH_TEA) 2044 fname->hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned; 2045 fname->hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed; 2046 ext4fs_dirhash(fname_name(fname), fname_len(fname), &fname->hinfo); 2047 2048 memset(frames, 0, sizeof(frames)); 2049 frame = frames; 2050 frame->entries = entries; 2051 frame->at = entries; 2052 frame->bh = bh; 2053 2054 retval = ext4_handle_dirty_dx_node(handle, dir, frame->bh); 2055 if (retval) 2056 goto out_frames; 2057 retval = ext4_handle_dirty_dirent_node(handle, dir, bh2); 2058 if (retval) 2059 goto out_frames; 2060 2061 de = do_split(handle,dir, &bh2, frame, &fname->hinfo); 2062 if (IS_ERR(de)) { 2063 retval = PTR_ERR(de); 2064 goto out_frames; 2065 } 2066 2067 retval = add_dirent_to_buf(handle, fname, dir, inode, de, bh2); 2068 out_frames: 2069 /* 2070 * Even if the block split failed, we have to properly write 2071 * out all the changes we did so far. Otherwise we can end up 2072 * with corrupted filesystem. 2073 */ 2074 if (retval) 2075 ext4_mark_inode_dirty(handle, dir); 2076 dx_release(frames); 2077 brelse(bh2); 2078 return retval; 2079 } 2080 2081 /* 2082 * ext4_add_entry() 2083 * 2084 * adds a file entry to the specified directory, using the same 2085 * semantics as ext4_find_entry(). It returns NULL if it failed. 2086 * 2087 * NOTE!! The inode part of 'de' is left at 0 - which means you 2088 * may not sleep between calling this and putting something into 2089 * the entry, as someone else might have used it while you slept. 2090 */ 2091 static int ext4_add_entry(handle_t *handle, struct dentry *dentry, 2092 struct inode *inode) 2093 { 2094 struct inode *dir = d_inode(dentry->d_parent); 2095 struct buffer_head *bh = NULL; 2096 struct ext4_dir_entry_2 *de; 2097 struct ext4_dir_entry_tail *t; 2098 struct super_block *sb; 2099 struct ext4_filename fname; 2100 int retval; 2101 int dx_fallback=0; 2102 unsigned blocksize; 2103 ext4_lblk_t block, blocks; 2104 int csum_size = 0; 2105 2106 if (ext4_has_metadata_csum(inode->i_sb)) 2107 csum_size = sizeof(struct ext4_dir_entry_tail); 2108 2109 sb = dir->i_sb; 2110 blocksize = sb->s_blocksize; 2111 if (!dentry->d_name.len) 2112 return -EINVAL; 2113 2114 retval = ext4_fname_setup_filename(dir, &dentry->d_name, 0, &fname); 2115 if (retval) 2116 return retval; 2117 2118 if (ext4_has_inline_data(dir)) { 2119 retval = ext4_try_add_inline_entry(handle, &fname, dir, inode); 2120 if (retval < 0) 2121 goto out; 2122 if (retval == 1) { 2123 retval = 0; 2124 goto out; 2125 } 2126 } 2127 2128 if (is_dx(dir)) { 2129 retval = ext4_dx_add_entry(handle, &fname, dir, inode); 2130 if (!retval || (retval != ERR_BAD_DX_DIR)) 2131 goto out; 2132 ext4_clear_inode_flag(dir, EXT4_INODE_INDEX); 2133 dx_fallback++; 2134 ext4_mark_inode_dirty(handle, dir); 2135 } 2136 blocks = dir->i_size >> sb->s_blocksize_bits; 2137 for (block = 0; block < blocks; block++) { 2138 bh = ext4_read_dirblock(dir, block, DIRENT); 2139 if (IS_ERR(bh)) { 2140 retval = PTR_ERR(bh); 2141 bh = NULL; 2142 goto out; 2143 } 2144 retval = add_dirent_to_buf(handle, &fname, dir, inode, 2145 NULL, bh); 2146 if (retval != -ENOSPC) 2147 goto out; 2148 2149 if (blocks == 1 && !dx_fallback && 2150 ext4_has_feature_dir_index(sb)) { 2151 retval = make_indexed_dir(handle, &fname, dir, 2152 inode, bh); 2153 bh = NULL; /* make_indexed_dir releases bh */ 2154 goto out; 2155 } 2156 brelse(bh); 2157 } 2158 bh = ext4_append(handle, dir, &block); 2159 if (IS_ERR(bh)) { 2160 retval = PTR_ERR(bh); 2161 bh = NULL; 2162 goto out; 2163 } 2164 de = (struct ext4_dir_entry_2 *) bh->b_data; 2165 de->inode = 0; 2166 de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize); 2167 2168 if (csum_size) { 2169 t = EXT4_DIRENT_TAIL(bh->b_data, blocksize); 2170 initialize_dirent_tail(t, blocksize); 2171 } 2172 2173 retval = add_dirent_to_buf(handle, &fname, dir, inode, de, bh); 2174 out: 2175 ext4_fname_free_filename(&fname); 2176 brelse(bh); 2177 if (retval == 0) 2178 ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY); 2179 return retval; 2180 } 2181 2182 /* 2183 * Returns 0 for success, or a negative error value 2184 */ 2185 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname, 2186 struct inode *dir, struct inode *inode) 2187 { 2188 struct dx_frame frames[2], *frame; 2189 struct dx_entry *entries, *at; 2190 struct buffer_head *bh; 2191 struct super_block *sb = dir->i_sb; 2192 struct ext4_dir_entry_2 *de; 2193 int err; 2194 2195 frame = dx_probe(fname, dir, NULL, frames); 2196 if (IS_ERR(frame)) 2197 return PTR_ERR(frame); 2198 entries = frame->entries; 2199 at = frame->at; 2200 bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT); 2201 if (IS_ERR(bh)) { 2202 err = PTR_ERR(bh); 2203 bh = NULL; 2204 goto cleanup; 2205 } 2206 2207 BUFFER_TRACE(bh, "get_write_access"); 2208 err = ext4_journal_get_write_access(handle, bh); 2209 if (err) 2210 goto journal_error; 2211 2212 err = add_dirent_to_buf(handle, fname, dir, inode, NULL, bh); 2213 if (err != -ENOSPC) 2214 goto cleanup; 2215 2216 /* Block full, should compress but for now just split */ 2217 dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n", 2218 dx_get_count(entries), dx_get_limit(entries))); 2219 /* Need to split index? */ 2220 if (dx_get_count(entries) == dx_get_limit(entries)) { 2221 ext4_lblk_t newblock; 2222 unsigned icount = dx_get_count(entries); 2223 int levels = frame - frames; 2224 struct dx_entry *entries2; 2225 struct dx_node *node2; 2226 struct buffer_head *bh2; 2227 2228 if (levels && (dx_get_count(frames->entries) == 2229 dx_get_limit(frames->entries))) { 2230 ext4_warning_inode(dir, "Directory index full!"); 2231 err = -ENOSPC; 2232 goto cleanup; 2233 } 2234 bh2 = ext4_append(handle, dir, &newblock); 2235 if (IS_ERR(bh2)) { 2236 err = PTR_ERR(bh2); 2237 goto cleanup; 2238 } 2239 node2 = (struct dx_node *)(bh2->b_data); 2240 entries2 = node2->entries; 2241 memset(&node2->fake, 0, sizeof(struct fake_dirent)); 2242 node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize, 2243 sb->s_blocksize); 2244 BUFFER_TRACE(frame->bh, "get_write_access"); 2245 err = ext4_journal_get_write_access(handle, frame->bh); 2246 if (err) 2247 goto journal_error; 2248 if (levels) { 2249 unsigned icount1 = icount/2, icount2 = icount - icount1; 2250 unsigned hash2 = dx_get_hash(entries + icount1); 2251 dxtrace(printk(KERN_DEBUG "Split index %i/%i\n", 2252 icount1, icount2)); 2253 2254 BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */ 2255 err = ext4_journal_get_write_access(handle, 2256 frames[0].bh); 2257 if (err) 2258 goto journal_error; 2259 2260 memcpy((char *) entries2, (char *) (entries + icount1), 2261 icount2 * sizeof(struct dx_entry)); 2262 dx_set_count(entries, icount1); 2263 dx_set_count(entries2, icount2); 2264 dx_set_limit(entries2, dx_node_limit(dir)); 2265 2266 /* Which index block gets the new entry? */ 2267 if (at - entries >= icount1) { 2268 frame->at = at = at - entries - icount1 + entries2; 2269 frame->entries = entries = entries2; 2270 swap(frame->bh, bh2); 2271 } 2272 dx_insert_block(frames + 0, hash2, newblock); 2273 dxtrace(dx_show_index("node", frames[1].entries)); 2274 dxtrace(dx_show_index("node", 2275 ((struct dx_node *) bh2->b_data)->entries)); 2276 err = ext4_handle_dirty_dx_node(handle, dir, bh2); 2277 if (err) 2278 goto journal_error; 2279 brelse (bh2); 2280 } else { 2281 dxtrace(printk(KERN_DEBUG 2282 "Creating second level index...\n")); 2283 memcpy((char *) entries2, (char *) entries, 2284 icount * sizeof(struct dx_entry)); 2285 dx_set_limit(entries2, dx_node_limit(dir)); 2286 2287 /* Set up root */ 2288 dx_set_count(entries, 1); 2289 dx_set_block(entries + 0, newblock); 2290 ((struct dx_root *) frames[0].bh->b_data)->info.indirect_levels = 1; 2291 2292 /* Add new access path frame */ 2293 frame = frames + 1; 2294 frame->at = at = at - entries + entries2; 2295 frame->entries = entries = entries2; 2296 frame->bh = bh2; 2297 err = ext4_journal_get_write_access(handle, 2298 frame->bh); 2299 if (err) 2300 goto journal_error; 2301 } 2302 err = ext4_handle_dirty_dx_node(handle, dir, frames[0].bh); 2303 if (err) { 2304 ext4_std_error(inode->i_sb, err); 2305 goto cleanup; 2306 } 2307 } 2308 de = do_split(handle, dir, &bh, frame, &fname->hinfo); 2309 if (IS_ERR(de)) { 2310 err = PTR_ERR(de); 2311 goto cleanup; 2312 } 2313 err = add_dirent_to_buf(handle, fname, dir, inode, de, bh); 2314 goto cleanup; 2315 2316 journal_error: 2317 ext4_std_error(dir->i_sb, err); 2318 cleanup: 2319 brelse(bh); 2320 dx_release(frames); 2321 return err; 2322 } 2323 2324 /* 2325 * ext4_generic_delete_entry deletes a directory entry by merging it 2326 * with the previous entry 2327 */ 2328 int ext4_generic_delete_entry(handle_t *handle, 2329 struct inode *dir, 2330 struct ext4_dir_entry_2 *de_del, 2331 struct buffer_head *bh, 2332 void *entry_buf, 2333 int buf_size, 2334 int csum_size) 2335 { 2336 struct ext4_dir_entry_2 *de, *pde; 2337 unsigned int blocksize = dir->i_sb->s_blocksize; 2338 int i; 2339 2340 i = 0; 2341 pde = NULL; 2342 de = (struct ext4_dir_entry_2 *)entry_buf; 2343 while (i < buf_size - csum_size) { 2344 if (ext4_check_dir_entry(dir, NULL, de, bh, 2345 bh->b_data, bh->b_size, i)) 2346 return -EFSCORRUPTED; 2347 if (de == de_del) { 2348 if (pde) 2349 pde->rec_len = ext4_rec_len_to_disk( 2350 ext4_rec_len_from_disk(pde->rec_len, 2351 blocksize) + 2352 ext4_rec_len_from_disk(de->rec_len, 2353 blocksize), 2354 blocksize); 2355 else 2356 de->inode = 0; 2357 dir->i_version++; 2358 return 0; 2359 } 2360 i += ext4_rec_len_from_disk(de->rec_len, blocksize); 2361 pde = de; 2362 de = ext4_next_entry(de, blocksize); 2363 } 2364 return -ENOENT; 2365 } 2366 2367 static int ext4_delete_entry(handle_t *handle, 2368 struct inode *dir, 2369 struct ext4_dir_entry_2 *de_del, 2370 struct buffer_head *bh) 2371 { 2372 int err, csum_size = 0; 2373 2374 if (ext4_has_inline_data(dir)) { 2375 int has_inline_data = 1; 2376 err = ext4_delete_inline_entry(handle, dir, de_del, bh, 2377 &has_inline_data); 2378 if (has_inline_data) 2379 return err; 2380 } 2381 2382 if (ext4_has_metadata_csum(dir->i_sb)) 2383 csum_size = sizeof(struct ext4_dir_entry_tail); 2384 2385 BUFFER_TRACE(bh, "get_write_access"); 2386 err = ext4_journal_get_write_access(handle, bh); 2387 if (unlikely(err)) 2388 goto out; 2389 2390 err = ext4_generic_delete_entry(handle, dir, de_del, 2391 bh, bh->b_data, 2392 dir->i_sb->s_blocksize, csum_size); 2393 if (err) 2394 goto out; 2395 2396 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 2397 err = ext4_handle_dirty_dirent_node(handle, dir, bh); 2398 if (unlikely(err)) 2399 goto out; 2400 2401 return 0; 2402 out: 2403 if (err != -ENOENT) 2404 ext4_std_error(dir->i_sb, err); 2405 return err; 2406 } 2407 2408 /* 2409 * DIR_NLINK feature is set if 1) nlinks > EXT4_LINK_MAX or 2) nlinks == 2, 2410 * since this indicates that nlinks count was previously 1. 2411 */ 2412 static void ext4_inc_count(handle_t *handle, struct inode *inode) 2413 { 2414 inc_nlink(inode); 2415 if (is_dx(inode) && inode->i_nlink > 1) { 2416 /* limit is 16-bit i_links_count */ 2417 if (inode->i_nlink >= EXT4_LINK_MAX || inode->i_nlink == 2) { 2418 set_nlink(inode, 1); 2419 ext4_set_feature_dir_nlink(inode->i_sb); 2420 } 2421 } 2422 } 2423 2424 /* 2425 * If a directory had nlink == 1, then we should let it be 1. This indicates 2426 * directory has >EXT4_LINK_MAX subdirs. 2427 */ 2428 static void ext4_dec_count(handle_t *handle, struct inode *inode) 2429 { 2430 if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2) 2431 drop_nlink(inode); 2432 } 2433 2434 2435 static int ext4_add_nondir(handle_t *handle, 2436 struct dentry *dentry, struct inode *inode) 2437 { 2438 int err = ext4_add_entry(handle, dentry, inode); 2439 if (!err) { 2440 ext4_mark_inode_dirty(handle, inode); 2441 unlock_new_inode(inode); 2442 d_instantiate(dentry, inode); 2443 return 0; 2444 } 2445 drop_nlink(inode); 2446 unlock_new_inode(inode); 2447 iput(inode); 2448 return err; 2449 } 2450 2451 /* 2452 * By the time this is called, we already have created 2453 * the directory cache entry for the new file, but it 2454 * is so far negative - it has no inode. 2455 * 2456 * If the create succeeds, we fill in the inode information 2457 * with d_instantiate(). 2458 */ 2459 static int ext4_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2460 bool excl) 2461 { 2462 handle_t *handle; 2463 struct inode *inode; 2464 int err, credits, retries = 0; 2465 2466 err = dquot_initialize(dir); 2467 if (err) 2468 return err; 2469 2470 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2471 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2472 retry: 2473 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0, 2474 NULL, EXT4_HT_DIR, credits); 2475 handle = ext4_journal_current_handle(); 2476 err = PTR_ERR(inode); 2477 if (!IS_ERR(inode)) { 2478 inode->i_op = &ext4_file_inode_operations; 2479 inode->i_fop = &ext4_file_operations; 2480 ext4_set_aops(inode); 2481 err = ext4_add_nondir(handle, dentry, inode); 2482 if (!err && IS_DIRSYNC(dir)) 2483 ext4_handle_sync(handle); 2484 } 2485 if (handle) 2486 ext4_journal_stop(handle); 2487 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2488 goto retry; 2489 return err; 2490 } 2491 2492 static int ext4_mknod(struct inode *dir, struct dentry *dentry, 2493 umode_t mode, dev_t rdev) 2494 { 2495 handle_t *handle; 2496 struct inode *inode; 2497 int err, credits, retries = 0; 2498 2499 err = dquot_initialize(dir); 2500 if (err) 2501 return err; 2502 2503 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2504 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2505 retry: 2506 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0, 2507 NULL, EXT4_HT_DIR, credits); 2508 handle = ext4_journal_current_handle(); 2509 err = PTR_ERR(inode); 2510 if (!IS_ERR(inode)) { 2511 init_special_inode(inode, inode->i_mode, rdev); 2512 inode->i_op = &ext4_special_inode_operations; 2513 err = ext4_add_nondir(handle, dentry, inode); 2514 if (!err && IS_DIRSYNC(dir)) 2515 ext4_handle_sync(handle); 2516 } 2517 if (handle) 2518 ext4_journal_stop(handle); 2519 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2520 goto retry; 2521 return err; 2522 } 2523 2524 static int ext4_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2525 { 2526 handle_t *handle; 2527 struct inode *inode; 2528 int err, retries = 0; 2529 2530 err = dquot_initialize(dir); 2531 if (err) 2532 return err; 2533 2534 retry: 2535 inode = ext4_new_inode_start_handle(dir, mode, 2536 NULL, 0, NULL, 2537 EXT4_HT_DIR, 2538 EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 2539 4 + EXT4_XATTR_TRANS_BLOCKS); 2540 handle = ext4_journal_current_handle(); 2541 err = PTR_ERR(inode); 2542 if (!IS_ERR(inode)) { 2543 inode->i_op = &ext4_file_inode_operations; 2544 inode->i_fop = &ext4_file_operations; 2545 ext4_set_aops(inode); 2546 d_tmpfile(dentry, inode); 2547 err = ext4_orphan_add(handle, inode); 2548 if (err) 2549 goto err_unlock_inode; 2550 mark_inode_dirty(inode); 2551 unlock_new_inode(inode); 2552 } 2553 if (handle) 2554 ext4_journal_stop(handle); 2555 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2556 goto retry; 2557 return err; 2558 err_unlock_inode: 2559 ext4_journal_stop(handle); 2560 unlock_new_inode(inode); 2561 return err; 2562 } 2563 2564 struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode, 2565 struct ext4_dir_entry_2 *de, 2566 int blocksize, int csum_size, 2567 unsigned int parent_ino, int dotdot_real_len) 2568 { 2569 de->inode = cpu_to_le32(inode->i_ino); 2570 de->name_len = 1; 2571 de->rec_len = ext4_rec_len_to_disk(EXT4_DIR_REC_LEN(de->name_len), 2572 blocksize); 2573 strcpy(de->name, "."); 2574 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2575 2576 de = ext4_next_entry(de, blocksize); 2577 de->inode = cpu_to_le32(parent_ino); 2578 de->name_len = 2; 2579 if (!dotdot_real_len) 2580 de->rec_len = ext4_rec_len_to_disk(blocksize - 2581 (csum_size + EXT4_DIR_REC_LEN(1)), 2582 blocksize); 2583 else 2584 de->rec_len = ext4_rec_len_to_disk( 2585 EXT4_DIR_REC_LEN(de->name_len), blocksize); 2586 strcpy(de->name, ".."); 2587 ext4_set_de_type(inode->i_sb, de, S_IFDIR); 2588 2589 return ext4_next_entry(de, blocksize); 2590 } 2591 2592 static int ext4_init_new_dir(handle_t *handle, struct inode *dir, 2593 struct inode *inode) 2594 { 2595 struct buffer_head *dir_block = NULL; 2596 struct ext4_dir_entry_2 *de; 2597 struct ext4_dir_entry_tail *t; 2598 ext4_lblk_t block = 0; 2599 unsigned int blocksize = dir->i_sb->s_blocksize; 2600 int csum_size = 0; 2601 int err; 2602 2603 if (ext4_has_metadata_csum(dir->i_sb)) 2604 csum_size = sizeof(struct ext4_dir_entry_tail); 2605 2606 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2607 err = ext4_try_create_inline_dir(handle, dir, inode); 2608 if (err < 0 && err != -ENOSPC) 2609 goto out; 2610 if (!err) 2611 goto out; 2612 } 2613 2614 inode->i_size = 0; 2615 dir_block = ext4_append(handle, inode, &block); 2616 if (IS_ERR(dir_block)) 2617 return PTR_ERR(dir_block); 2618 de = (struct ext4_dir_entry_2 *)dir_block->b_data; 2619 ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0); 2620 set_nlink(inode, 2); 2621 if (csum_size) { 2622 t = EXT4_DIRENT_TAIL(dir_block->b_data, blocksize); 2623 initialize_dirent_tail(t, blocksize); 2624 } 2625 2626 BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata"); 2627 err = ext4_handle_dirty_dirent_node(handle, inode, dir_block); 2628 if (err) 2629 goto out; 2630 set_buffer_verified(dir_block); 2631 out: 2632 brelse(dir_block); 2633 return err; 2634 } 2635 2636 static int ext4_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2637 { 2638 handle_t *handle; 2639 struct inode *inode; 2640 int err, credits, retries = 0; 2641 2642 if (EXT4_DIR_LINK_MAX(dir)) 2643 return -EMLINK; 2644 2645 err = dquot_initialize(dir); 2646 if (err) 2647 return err; 2648 2649 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 2650 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3); 2651 retry: 2652 inode = ext4_new_inode_start_handle(dir, S_IFDIR | mode, 2653 &dentry->d_name, 2654 0, NULL, EXT4_HT_DIR, credits); 2655 handle = ext4_journal_current_handle(); 2656 err = PTR_ERR(inode); 2657 if (IS_ERR(inode)) 2658 goto out_stop; 2659 2660 inode->i_op = &ext4_dir_inode_operations; 2661 inode->i_fop = &ext4_dir_operations; 2662 err = ext4_init_new_dir(handle, dir, inode); 2663 if (err) 2664 goto out_clear_inode; 2665 err = ext4_mark_inode_dirty(handle, inode); 2666 if (!err) 2667 err = ext4_add_entry(handle, dentry, inode); 2668 if (err) { 2669 out_clear_inode: 2670 clear_nlink(inode); 2671 unlock_new_inode(inode); 2672 ext4_mark_inode_dirty(handle, inode); 2673 iput(inode); 2674 goto out_stop; 2675 } 2676 ext4_inc_count(handle, dir); 2677 ext4_update_dx_flag(dir); 2678 err = ext4_mark_inode_dirty(handle, dir); 2679 if (err) 2680 goto out_clear_inode; 2681 unlock_new_inode(inode); 2682 d_instantiate(dentry, inode); 2683 if (IS_DIRSYNC(dir)) 2684 ext4_handle_sync(handle); 2685 2686 out_stop: 2687 if (handle) 2688 ext4_journal_stop(handle); 2689 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 2690 goto retry; 2691 return err; 2692 } 2693 2694 /* 2695 * routine to check that the specified directory is empty (for rmdir) 2696 */ 2697 bool ext4_empty_dir(struct inode *inode) 2698 { 2699 unsigned int offset; 2700 struct buffer_head *bh; 2701 struct ext4_dir_entry_2 *de, *de1; 2702 struct super_block *sb; 2703 2704 if (ext4_has_inline_data(inode)) { 2705 int has_inline_data = 1; 2706 int ret; 2707 2708 ret = empty_inline_dir(inode, &has_inline_data); 2709 if (has_inline_data) 2710 return ret; 2711 } 2712 2713 sb = inode->i_sb; 2714 if (inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)) { 2715 EXT4_ERROR_INODE(inode, "invalid size"); 2716 return true; 2717 } 2718 bh = ext4_read_dirblock(inode, 0, EITHER); 2719 if (IS_ERR(bh)) 2720 return true; 2721 2722 de = (struct ext4_dir_entry_2 *) bh->b_data; 2723 de1 = ext4_next_entry(de, sb->s_blocksize); 2724 if (le32_to_cpu(de->inode) != inode->i_ino || 2725 le32_to_cpu(de1->inode) == 0 || 2726 strcmp(".", de->name) || strcmp("..", de1->name)) { 2727 ext4_warning_inode(inode, "directory missing '.' and/or '..'"); 2728 brelse(bh); 2729 return true; 2730 } 2731 offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) + 2732 ext4_rec_len_from_disk(de1->rec_len, sb->s_blocksize); 2733 de = ext4_next_entry(de1, sb->s_blocksize); 2734 while (offset < inode->i_size) { 2735 if ((void *) de >= (void *) (bh->b_data+sb->s_blocksize)) { 2736 unsigned int lblock; 2737 brelse(bh); 2738 lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb); 2739 bh = ext4_read_dirblock(inode, lblock, EITHER); 2740 if (IS_ERR(bh)) 2741 return true; 2742 de = (struct ext4_dir_entry_2 *) bh->b_data; 2743 } 2744 if (ext4_check_dir_entry(inode, NULL, de, bh, 2745 bh->b_data, bh->b_size, offset)) { 2746 de = (struct ext4_dir_entry_2 *)(bh->b_data + 2747 sb->s_blocksize); 2748 offset = (offset | (sb->s_blocksize - 1)) + 1; 2749 continue; 2750 } 2751 if (le32_to_cpu(de->inode)) { 2752 brelse(bh); 2753 return false; 2754 } 2755 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize); 2756 de = ext4_next_entry(de, sb->s_blocksize); 2757 } 2758 brelse(bh); 2759 return true; 2760 } 2761 2762 /* 2763 * ext4_orphan_add() links an unlinked or truncated inode into a list of 2764 * such inodes, starting at the superblock, in case we crash before the 2765 * file is closed/deleted, or in case the inode truncate spans multiple 2766 * transactions and the last transaction is not recovered after a crash. 2767 * 2768 * At filesystem recovery time, we walk this list deleting unlinked 2769 * inodes and truncating linked inodes in ext4_orphan_cleanup(). 2770 * 2771 * Orphan list manipulation functions must be called under i_mutex unless 2772 * we are just creating the inode or deleting it. 2773 */ 2774 int ext4_orphan_add(handle_t *handle, struct inode *inode) 2775 { 2776 struct super_block *sb = inode->i_sb; 2777 struct ext4_sb_info *sbi = EXT4_SB(sb); 2778 struct ext4_iloc iloc; 2779 int err = 0, rc; 2780 bool dirty = false; 2781 2782 if (!sbi->s_journal || is_bad_inode(inode)) 2783 return 0; 2784 2785 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 2786 !inode_is_locked(inode)); 2787 /* 2788 * Exit early if inode already is on orphan list. This is a big speedup 2789 * since we don't have to contend on the global s_orphan_lock. 2790 */ 2791 if (!list_empty(&EXT4_I(inode)->i_orphan)) 2792 return 0; 2793 2794 /* 2795 * Orphan handling is only valid for files with data blocks 2796 * being truncated, or files being unlinked. Note that we either 2797 * hold i_mutex, or the inode can not be referenced from outside, 2798 * so i_nlink should not be bumped due to race 2799 */ 2800 J_ASSERT((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 2801 S_ISLNK(inode->i_mode)) || inode->i_nlink == 0); 2802 2803 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 2804 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 2805 if (err) 2806 goto out; 2807 2808 err = ext4_reserve_inode_write(handle, inode, &iloc); 2809 if (err) 2810 goto out; 2811 2812 mutex_lock(&sbi->s_orphan_lock); 2813 /* 2814 * Due to previous errors inode may be already a part of on-disk 2815 * orphan list. If so skip on-disk list modification. 2816 */ 2817 if (!NEXT_ORPHAN(inode) || NEXT_ORPHAN(inode) > 2818 (le32_to_cpu(sbi->s_es->s_inodes_count))) { 2819 /* Insert this inode at the head of the on-disk orphan list */ 2820 NEXT_ORPHAN(inode) = le32_to_cpu(sbi->s_es->s_last_orphan); 2821 sbi->s_es->s_last_orphan = cpu_to_le32(inode->i_ino); 2822 dirty = true; 2823 } 2824 list_add(&EXT4_I(inode)->i_orphan, &sbi->s_orphan); 2825 mutex_unlock(&sbi->s_orphan_lock); 2826 2827 if (dirty) { 2828 err = ext4_handle_dirty_super(handle, sb); 2829 rc = ext4_mark_iloc_dirty(handle, inode, &iloc); 2830 if (!err) 2831 err = rc; 2832 if (err) { 2833 /* 2834 * We have to remove inode from in-memory list if 2835 * addition to on disk orphan list failed. Stray orphan 2836 * list entries can cause panics at unmount time. 2837 */ 2838 mutex_lock(&sbi->s_orphan_lock); 2839 list_del_init(&EXT4_I(inode)->i_orphan); 2840 mutex_unlock(&sbi->s_orphan_lock); 2841 } 2842 } 2843 jbd_debug(4, "superblock will point to %lu\n", inode->i_ino); 2844 jbd_debug(4, "orphan inode %lu will point to %d\n", 2845 inode->i_ino, NEXT_ORPHAN(inode)); 2846 out: 2847 ext4_std_error(sb, err); 2848 return err; 2849 } 2850 2851 /* 2852 * ext4_orphan_del() removes an unlinked or truncated inode from the list 2853 * of such inodes stored on disk, because it is finally being cleaned up. 2854 */ 2855 int ext4_orphan_del(handle_t *handle, struct inode *inode) 2856 { 2857 struct list_head *prev; 2858 struct ext4_inode_info *ei = EXT4_I(inode); 2859 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 2860 __u32 ino_next; 2861 struct ext4_iloc iloc; 2862 int err = 0; 2863 2864 if (!sbi->s_journal && !(sbi->s_mount_state & EXT4_ORPHAN_FS)) 2865 return 0; 2866 2867 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) && 2868 !inode_is_locked(inode)); 2869 /* Do this quick check before taking global s_orphan_lock. */ 2870 if (list_empty(&ei->i_orphan)) 2871 return 0; 2872 2873 if (handle) { 2874 /* Grab inode buffer early before taking global s_orphan_lock */ 2875 err = ext4_reserve_inode_write(handle, inode, &iloc); 2876 } 2877 2878 mutex_lock(&sbi->s_orphan_lock); 2879 jbd_debug(4, "remove inode %lu from orphan list\n", inode->i_ino); 2880 2881 prev = ei->i_orphan.prev; 2882 list_del_init(&ei->i_orphan); 2883 2884 /* If we're on an error path, we may not have a valid 2885 * transaction handle with which to update the orphan list on 2886 * disk, but we still need to remove the inode from the linked 2887 * list in memory. */ 2888 if (!handle || err) { 2889 mutex_unlock(&sbi->s_orphan_lock); 2890 goto out_err; 2891 } 2892 2893 ino_next = NEXT_ORPHAN(inode); 2894 if (prev == &sbi->s_orphan) { 2895 jbd_debug(4, "superblock will point to %u\n", ino_next); 2896 BUFFER_TRACE(sbi->s_sbh, "get_write_access"); 2897 err = ext4_journal_get_write_access(handle, sbi->s_sbh); 2898 if (err) { 2899 mutex_unlock(&sbi->s_orphan_lock); 2900 goto out_brelse; 2901 } 2902 sbi->s_es->s_last_orphan = cpu_to_le32(ino_next); 2903 mutex_unlock(&sbi->s_orphan_lock); 2904 err = ext4_handle_dirty_super(handle, inode->i_sb); 2905 } else { 2906 struct ext4_iloc iloc2; 2907 struct inode *i_prev = 2908 &list_entry(prev, struct ext4_inode_info, i_orphan)->vfs_inode; 2909 2910 jbd_debug(4, "orphan inode %lu will point to %u\n", 2911 i_prev->i_ino, ino_next); 2912 err = ext4_reserve_inode_write(handle, i_prev, &iloc2); 2913 if (err) { 2914 mutex_unlock(&sbi->s_orphan_lock); 2915 goto out_brelse; 2916 } 2917 NEXT_ORPHAN(i_prev) = ino_next; 2918 err = ext4_mark_iloc_dirty(handle, i_prev, &iloc2); 2919 mutex_unlock(&sbi->s_orphan_lock); 2920 } 2921 if (err) 2922 goto out_brelse; 2923 NEXT_ORPHAN(inode) = 0; 2924 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 2925 out_err: 2926 ext4_std_error(inode->i_sb, err); 2927 return err; 2928 2929 out_brelse: 2930 brelse(iloc.bh); 2931 goto out_err; 2932 } 2933 2934 static int ext4_rmdir(struct inode *dir, struct dentry *dentry) 2935 { 2936 int retval; 2937 struct inode *inode; 2938 struct buffer_head *bh; 2939 struct ext4_dir_entry_2 *de; 2940 handle_t *handle = NULL; 2941 2942 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 2943 return -EIO; 2944 2945 /* Initialize quotas before so that eventual writes go in 2946 * separate transaction */ 2947 retval = dquot_initialize(dir); 2948 if (retval) 2949 return retval; 2950 retval = dquot_initialize(d_inode(dentry)); 2951 if (retval) 2952 return retval; 2953 2954 retval = -ENOENT; 2955 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 2956 if (IS_ERR(bh)) 2957 return PTR_ERR(bh); 2958 if (!bh) 2959 goto end_rmdir; 2960 2961 inode = d_inode(dentry); 2962 2963 retval = -EFSCORRUPTED; 2964 if (le32_to_cpu(de->inode) != inode->i_ino) 2965 goto end_rmdir; 2966 2967 retval = -ENOTEMPTY; 2968 if (!ext4_empty_dir(inode)) 2969 goto end_rmdir; 2970 2971 handle = ext4_journal_start(dir, EXT4_HT_DIR, 2972 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 2973 if (IS_ERR(handle)) { 2974 retval = PTR_ERR(handle); 2975 handle = NULL; 2976 goto end_rmdir; 2977 } 2978 2979 if (IS_DIRSYNC(dir)) 2980 ext4_handle_sync(handle); 2981 2982 retval = ext4_delete_entry(handle, dir, de, bh); 2983 if (retval) 2984 goto end_rmdir; 2985 if (!EXT4_DIR_LINK_EMPTY(inode)) 2986 ext4_warning_inode(inode, 2987 "empty directory '%.*s' has too many links (%u)", 2988 dentry->d_name.len, dentry->d_name.name, 2989 inode->i_nlink); 2990 inode->i_version++; 2991 clear_nlink(inode); 2992 /* There's no need to set i_disksize: the fact that i_nlink is 2993 * zero will ensure that the right thing happens during any 2994 * recovery. */ 2995 inode->i_size = 0; 2996 ext4_orphan_add(handle, inode); 2997 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2998 ext4_mark_inode_dirty(handle, inode); 2999 ext4_dec_count(handle, dir); 3000 ext4_update_dx_flag(dir); 3001 ext4_mark_inode_dirty(handle, dir); 3002 3003 end_rmdir: 3004 brelse(bh); 3005 if (handle) 3006 ext4_journal_stop(handle); 3007 return retval; 3008 } 3009 3010 static int ext4_unlink(struct inode *dir, struct dentry *dentry) 3011 { 3012 int retval; 3013 struct inode *inode; 3014 struct buffer_head *bh; 3015 struct ext4_dir_entry_2 *de; 3016 handle_t *handle = NULL; 3017 3018 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 3019 return -EIO; 3020 3021 trace_ext4_unlink_enter(dir, dentry); 3022 /* Initialize quotas before so that eventual writes go 3023 * in separate transaction */ 3024 retval = dquot_initialize(dir); 3025 if (retval) 3026 return retval; 3027 retval = dquot_initialize(d_inode(dentry)); 3028 if (retval) 3029 return retval; 3030 3031 retval = -ENOENT; 3032 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL); 3033 if (IS_ERR(bh)) 3034 return PTR_ERR(bh); 3035 if (!bh) 3036 goto end_unlink; 3037 3038 inode = d_inode(dentry); 3039 3040 retval = -EFSCORRUPTED; 3041 if (le32_to_cpu(de->inode) != inode->i_ino) 3042 goto end_unlink; 3043 3044 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3045 EXT4_DATA_TRANS_BLOCKS(dir->i_sb)); 3046 if (IS_ERR(handle)) { 3047 retval = PTR_ERR(handle); 3048 handle = NULL; 3049 goto end_unlink; 3050 } 3051 3052 if (IS_DIRSYNC(dir)) 3053 ext4_handle_sync(handle); 3054 3055 if (inode->i_nlink == 0) { 3056 ext4_warning_inode(inode, "Deleting file '%.*s' with no links", 3057 dentry->d_name.len, dentry->d_name.name); 3058 set_nlink(inode, 1); 3059 } 3060 retval = ext4_delete_entry(handle, dir, de, bh); 3061 if (retval) 3062 goto end_unlink; 3063 dir->i_ctime = dir->i_mtime = current_time(dir); 3064 ext4_update_dx_flag(dir); 3065 ext4_mark_inode_dirty(handle, dir); 3066 drop_nlink(inode); 3067 if (!inode->i_nlink) 3068 ext4_orphan_add(handle, inode); 3069 inode->i_ctime = current_time(inode); 3070 ext4_mark_inode_dirty(handle, inode); 3071 3072 end_unlink: 3073 brelse(bh); 3074 if (handle) 3075 ext4_journal_stop(handle); 3076 trace_ext4_unlink_exit(dentry, retval); 3077 return retval; 3078 } 3079 3080 static int ext4_symlink(struct inode *dir, 3081 struct dentry *dentry, const char *symname) 3082 { 3083 handle_t *handle; 3084 struct inode *inode; 3085 int err, len = strlen(symname); 3086 int credits; 3087 bool encryption_required; 3088 struct fscrypt_str disk_link; 3089 struct fscrypt_symlink_data *sd = NULL; 3090 3091 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb)))) 3092 return -EIO; 3093 3094 disk_link.len = len + 1; 3095 disk_link.name = (char *) symname; 3096 3097 encryption_required = (ext4_encrypted_inode(dir) || 3098 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))); 3099 if (encryption_required) { 3100 err = fscrypt_get_encryption_info(dir); 3101 if (err) 3102 return err; 3103 if (!fscrypt_has_encryption_key(dir)) 3104 return -ENOKEY; 3105 disk_link.len = (fscrypt_fname_encrypted_size(dir, len) + 3106 sizeof(struct fscrypt_symlink_data)); 3107 sd = kzalloc(disk_link.len, GFP_KERNEL); 3108 if (!sd) 3109 return -ENOMEM; 3110 } 3111 3112 if (disk_link.len > dir->i_sb->s_blocksize) { 3113 err = -ENAMETOOLONG; 3114 goto err_free_sd; 3115 } 3116 3117 err = dquot_initialize(dir); 3118 if (err) 3119 goto err_free_sd; 3120 3121 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3122 /* 3123 * For non-fast symlinks, we just allocate inode and put it on 3124 * orphan list in the first transaction => we need bitmap, 3125 * group descriptor, sb, inode block, quota blocks, and 3126 * possibly selinux xattr blocks. 3127 */ 3128 credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) + 3129 EXT4_XATTR_TRANS_BLOCKS; 3130 } else { 3131 /* 3132 * Fast symlink. We have to add entry to directory 3133 * (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS), 3134 * allocate new inode (bitmap, group descriptor, inode block, 3135 * quota blocks, sb is already counted in previous macros). 3136 */ 3137 credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3138 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3; 3139 } 3140 3141 inode = ext4_new_inode_start_handle(dir, S_IFLNK|S_IRWXUGO, 3142 &dentry->d_name, 0, NULL, 3143 EXT4_HT_DIR, credits); 3144 handle = ext4_journal_current_handle(); 3145 if (IS_ERR(inode)) { 3146 if (handle) 3147 ext4_journal_stop(handle); 3148 err = PTR_ERR(inode); 3149 goto err_free_sd; 3150 } 3151 3152 if (encryption_required) { 3153 struct qstr istr; 3154 struct fscrypt_str ostr = 3155 FSTR_INIT(sd->encrypted_path, disk_link.len); 3156 3157 istr.name = (const unsigned char *) symname; 3158 istr.len = len; 3159 err = fscrypt_fname_usr_to_disk(inode, &istr, &ostr); 3160 if (err) 3161 goto err_drop_inode; 3162 sd->len = cpu_to_le16(ostr.len); 3163 disk_link.name = (char *) sd; 3164 inode->i_op = &ext4_encrypted_symlink_inode_operations; 3165 } 3166 3167 if ((disk_link.len > EXT4_N_BLOCKS * 4)) { 3168 if (!encryption_required) 3169 inode->i_op = &ext4_symlink_inode_operations; 3170 inode_nohighmem(inode); 3171 ext4_set_aops(inode); 3172 /* 3173 * We cannot call page_symlink() with transaction started 3174 * because it calls into ext4_write_begin() which can wait 3175 * for transaction commit if we are running out of space 3176 * and thus we deadlock. So we have to stop transaction now 3177 * and restart it when symlink contents is written. 3178 * 3179 * To keep fs consistent in case of crash, we have to put inode 3180 * to orphan list in the mean time. 3181 */ 3182 drop_nlink(inode); 3183 err = ext4_orphan_add(handle, inode); 3184 ext4_journal_stop(handle); 3185 handle = NULL; 3186 if (err) 3187 goto err_drop_inode; 3188 err = __page_symlink(inode, disk_link.name, disk_link.len, 1); 3189 if (err) 3190 goto err_drop_inode; 3191 /* 3192 * Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS 3193 * + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified 3194 */ 3195 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3196 EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3197 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1); 3198 if (IS_ERR(handle)) { 3199 err = PTR_ERR(handle); 3200 handle = NULL; 3201 goto err_drop_inode; 3202 } 3203 set_nlink(inode, 1); 3204 err = ext4_orphan_del(handle, inode); 3205 if (err) 3206 goto err_drop_inode; 3207 } else { 3208 /* clear the extent format for fast symlink */ 3209 ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS); 3210 if (!encryption_required) { 3211 inode->i_op = &ext4_fast_symlink_inode_operations; 3212 inode->i_link = (char *)&EXT4_I(inode)->i_data; 3213 } 3214 memcpy((char *)&EXT4_I(inode)->i_data, disk_link.name, 3215 disk_link.len); 3216 inode->i_size = disk_link.len - 1; 3217 } 3218 EXT4_I(inode)->i_disksize = inode->i_size; 3219 err = ext4_add_nondir(handle, dentry, inode); 3220 if (!err && IS_DIRSYNC(dir)) 3221 ext4_handle_sync(handle); 3222 3223 if (handle) 3224 ext4_journal_stop(handle); 3225 kfree(sd); 3226 return err; 3227 err_drop_inode: 3228 if (handle) 3229 ext4_journal_stop(handle); 3230 clear_nlink(inode); 3231 unlock_new_inode(inode); 3232 iput(inode); 3233 err_free_sd: 3234 kfree(sd); 3235 return err; 3236 } 3237 3238 static int ext4_link(struct dentry *old_dentry, 3239 struct inode *dir, struct dentry *dentry) 3240 { 3241 handle_t *handle; 3242 struct inode *inode = d_inode(old_dentry); 3243 int err, retries = 0; 3244 3245 if (inode->i_nlink >= EXT4_LINK_MAX) 3246 return -EMLINK; 3247 if (ext4_encrypted_inode(dir) && 3248 !fscrypt_has_permitted_context(dir, inode)) 3249 return -EPERM; 3250 3251 if ((ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) && 3252 (!projid_eq(EXT4_I(dir)->i_projid, 3253 EXT4_I(old_dentry->d_inode)->i_projid))) 3254 return -EXDEV; 3255 3256 err = dquot_initialize(dir); 3257 if (err) 3258 return err; 3259 3260 retry: 3261 handle = ext4_journal_start(dir, EXT4_HT_DIR, 3262 (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) + 3263 EXT4_INDEX_EXTRA_TRANS_BLOCKS) + 1); 3264 if (IS_ERR(handle)) 3265 return PTR_ERR(handle); 3266 3267 if (IS_DIRSYNC(dir)) 3268 ext4_handle_sync(handle); 3269 3270 inode->i_ctime = current_time(inode); 3271 ext4_inc_count(handle, inode); 3272 ihold(inode); 3273 3274 err = ext4_add_entry(handle, dentry, inode); 3275 if (!err) { 3276 ext4_mark_inode_dirty(handle, inode); 3277 /* this can happen only for tmpfile being 3278 * linked the first time 3279 */ 3280 if (inode->i_nlink == 1) 3281 ext4_orphan_del(handle, inode); 3282 d_instantiate(dentry, inode); 3283 } else { 3284 drop_nlink(inode); 3285 iput(inode); 3286 } 3287 ext4_journal_stop(handle); 3288 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries)) 3289 goto retry; 3290 return err; 3291 } 3292 3293 3294 /* 3295 * Try to find buffer head where contains the parent block. 3296 * It should be the inode block if it is inlined or the 1st block 3297 * if it is a normal dir. 3298 */ 3299 static struct buffer_head *ext4_get_first_dir_block(handle_t *handle, 3300 struct inode *inode, 3301 int *retval, 3302 struct ext4_dir_entry_2 **parent_de, 3303 int *inlined) 3304 { 3305 struct buffer_head *bh; 3306 3307 if (!ext4_has_inline_data(inode)) { 3308 bh = ext4_read_dirblock(inode, 0, EITHER); 3309 if (IS_ERR(bh)) { 3310 *retval = PTR_ERR(bh); 3311 return NULL; 3312 } 3313 *parent_de = ext4_next_entry( 3314 (struct ext4_dir_entry_2 *)bh->b_data, 3315 inode->i_sb->s_blocksize); 3316 return bh; 3317 } 3318 3319 *inlined = 1; 3320 return ext4_get_first_inline_block(inode, parent_de, retval); 3321 } 3322 3323 struct ext4_renament { 3324 struct inode *dir; 3325 struct dentry *dentry; 3326 struct inode *inode; 3327 bool is_dir; 3328 int dir_nlink_delta; 3329 3330 /* entry for "dentry" */ 3331 struct buffer_head *bh; 3332 struct ext4_dir_entry_2 *de; 3333 int inlined; 3334 3335 /* entry for ".." in inode if it's a directory */ 3336 struct buffer_head *dir_bh; 3337 struct ext4_dir_entry_2 *parent_de; 3338 int dir_inlined; 3339 }; 3340 3341 static int ext4_rename_dir_prepare(handle_t *handle, struct ext4_renament *ent) 3342 { 3343 int retval; 3344 3345 ent->dir_bh = ext4_get_first_dir_block(handle, ent->inode, 3346 &retval, &ent->parent_de, 3347 &ent->dir_inlined); 3348 if (!ent->dir_bh) 3349 return retval; 3350 if (le32_to_cpu(ent->parent_de->inode) != ent->dir->i_ino) 3351 return -EFSCORRUPTED; 3352 BUFFER_TRACE(ent->dir_bh, "get_write_access"); 3353 return ext4_journal_get_write_access(handle, ent->dir_bh); 3354 } 3355 3356 static int ext4_rename_dir_finish(handle_t *handle, struct ext4_renament *ent, 3357 unsigned dir_ino) 3358 { 3359 int retval; 3360 3361 ent->parent_de->inode = cpu_to_le32(dir_ino); 3362 BUFFER_TRACE(ent->dir_bh, "call ext4_handle_dirty_metadata"); 3363 if (!ent->dir_inlined) { 3364 if (is_dx(ent->inode)) { 3365 retval = ext4_handle_dirty_dx_node(handle, 3366 ent->inode, 3367 ent->dir_bh); 3368 } else { 3369 retval = ext4_handle_dirty_dirent_node(handle, 3370 ent->inode, 3371 ent->dir_bh); 3372 } 3373 } else { 3374 retval = ext4_mark_inode_dirty(handle, ent->inode); 3375 } 3376 if (retval) { 3377 ext4_std_error(ent->dir->i_sb, retval); 3378 return retval; 3379 } 3380 return 0; 3381 } 3382 3383 static int ext4_setent(handle_t *handle, struct ext4_renament *ent, 3384 unsigned ino, unsigned file_type) 3385 { 3386 int retval; 3387 3388 BUFFER_TRACE(ent->bh, "get write access"); 3389 retval = ext4_journal_get_write_access(handle, ent->bh); 3390 if (retval) 3391 return retval; 3392 ent->de->inode = cpu_to_le32(ino); 3393 if (ext4_has_feature_filetype(ent->dir->i_sb)) 3394 ent->de->file_type = file_type; 3395 ent->dir->i_version++; 3396 ent->dir->i_ctime = ent->dir->i_mtime = 3397 current_time(ent->dir); 3398 ext4_mark_inode_dirty(handle, ent->dir); 3399 BUFFER_TRACE(ent->bh, "call ext4_handle_dirty_metadata"); 3400 if (!ent->inlined) { 3401 retval = ext4_handle_dirty_dirent_node(handle, 3402 ent->dir, ent->bh); 3403 if (unlikely(retval)) { 3404 ext4_std_error(ent->dir->i_sb, retval); 3405 return retval; 3406 } 3407 } 3408 brelse(ent->bh); 3409 ent->bh = NULL; 3410 3411 return 0; 3412 } 3413 3414 static int ext4_find_delete_entry(handle_t *handle, struct inode *dir, 3415 const struct qstr *d_name) 3416 { 3417 int retval = -ENOENT; 3418 struct buffer_head *bh; 3419 struct ext4_dir_entry_2 *de; 3420 3421 bh = ext4_find_entry(dir, d_name, &de, NULL); 3422 if (IS_ERR(bh)) 3423 return PTR_ERR(bh); 3424 if (bh) { 3425 retval = ext4_delete_entry(handle, dir, de, bh); 3426 brelse(bh); 3427 } 3428 return retval; 3429 } 3430 3431 static void ext4_rename_delete(handle_t *handle, struct ext4_renament *ent, 3432 int force_reread) 3433 { 3434 int retval; 3435 /* 3436 * ent->de could have moved from under us during htree split, so make 3437 * sure that we are deleting the right entry. We might also be pointing 3438 * to a stale entry in the unused part of ent->bh so just checking inum 3439 * and the name isn't enough. 3440 */ 3441 if (le32_to_cpu(ent->de->inode) != ent->inode->i_ino || 3442 ent->de->name_len != ent->dentry->d_name.len || 3443 strncmp(ent->de->name, ent->dentry->d_name.name, 3444 ent->de->name_len) || 3445 force_reread) { 3446 retval = ext4_find_delete_entry(handle, ent->dir, 3447 &ent->dentry->d_name); 3448 } else { 3449 retval = ext4_delete_entry(handle, ent->dir, ent->de, ent->bh); 3450 if (retval == -ENOENT) { 3451 retval = ext4_find_delete_entry(handle, ent->dir, 3452 &ent->dentry->d_name); 3453 } 3454 } 3455 3456 if (retval) { 3457 ext4_warning_inode(ent->dir, 3458 "Deleting old file: nlink %d, error=%d", 3459 ent->dir->i_nlink, retval); 3460 } 3461 } 3462 3463 static void ext4_update_dir_count(handle_t *handle, struct ext4_renament *ent) 3464 { 3465 if (ent->dir_nlink_delta) { 3466 if (ent->dir_nlink_delta == -1) 3467 ext4_dec_count(handle, ent->dir); 3468 else 3469 ext4_inc_count(handle, ent->dir); 3470 ext4_mark_inode_dirty(handle, ent->dir); 3471 } 3472 } 3473 3474 static struct inode *ext4_whiteout_for_rename(struct ext4_renament *ent, 3475 int credits, handle_t **h) 3476 { 3477 struct inode *wh; 3478 handle_t *handle; 3479 int retries = 0; 3480 3481 /* 3482 * for inode block, sb block, group summaries, 3483 * and inode bitmap 3484 */ 3485 credits += (EXT4_MAXQUOTAS_TRANS_BLOCKS(ent->dir->i_sb) + 3486 EXT4_XATTR_TRANS_BLOCKS + 4); 3487 retry: 3488 wh = ext4_new_inode_start_handle(ent->dir, S_IFCHR | WHITEOUT_MODE, 3489 &ent->dentry->d_name, 0, NULL, 3490 EXT4_HT_DIR, credits); 3491 3492 handle = ext4_journal_current_handle(); 3493 if (IS_ERR(wh)) { 3494 if (handle) 3495 ext4_journal_stop(handle); 3496 if (PTR_ERR(wh) == -ENOSPC && 3497 ext4_should_retry_alloc(ent->dir->i_sb, &retries)) 3498 goto retry; 3499 } else { 3500 *h = handle; 3501 init_special_inode(wh, wh->i_mode, WHITEOUT_DEV); 3502 wh->i_op = &ext4_special_inode_operations; 3503 } 3504 return wh; 3505 } 3506 3507 /* 3508 * Anybody can rename anything with this: the permission checks are left to the 3509 * higher-level routines. 3510 * 3511 * n.b. old_{dentry,inode) refers to the source dentry/inode 3512 * while new_{dentry,inode) refers to the destination dentry/inode 3513 * This comes from rename(const char *oldpath, const char *newpath) 3514 */ 3515 static int ext4_rename(struct inode *old_dir, struct dentry *old_dentry, 3516 struct inode *new_dir, struct dentry *new_dentry, 3517 unsigned int flags) 3518 { 3519 handle_t *handle = NULL; 3520 struct ext4_renament old = { 3521 .dir = old_dir, 3522 .dentry = old_dentry, 3523 .inode = d_inode(old_dentry), 3524 }; 3525 struct ext4_renament new = { 3526 .dir = new_dir, 3527 .dentry = new_dentry, 3528 .inode = d_inode(new_dentry), 3529 }; 3530 int force_reread; 3531 int retval; 3532 struct inode *whiteout = NULL; 3533 int credits; 3534 u8 old_file_type; 3535 3536 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT)) && 3537 (!projid_eq(EXT4_I(new_dir)->i_projid, 3538 EXT4_I(old_dentry->d_inode)->i_projid))) 3539 return -EXDEV; 3540 3541 if ((ext4_encrypted_inode(old_dir) && 3542 !fscrypt_has_encryption_key(old_dir)) || 3543 (ext4_encrypted_inode(new_dir) && 3544 !fscrypt_has_encryption_key(new_dir))) 3545 return -ENOKEY; 3546 3547 retval = dquot_initialize(old.dir); 3548 if (retval) 3549 return retval; 3550 retval = dquot_initialize(new.dir); 3551 if (retval) 3552 return retval; 3553 3554 /* Initialize quotas before so that eventual writes go 3555 * in separate transaction */ 3556 if (new.inode) { 3557 retval = dquot_initialize(new.inode); 3558 if (retval) 3559 return retval; 3560 } 3561 3562 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de, NULL); 3563 if (IS_ERR(old.bh)) 3564 return PTR_ERR(old.bh); 3565 /* 3566 * Check for inode number is _not_ due to possible IO errors. 3567 * We might rmdir the source, keep it as pwd of some process 3568 * and merrily kill the link to whatever was created under the 3569 * same name. Goodbye sticky bit ;-< 3570 */ 3571 retval = -ENOENT; 3572 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 3573 goto end_rename; 3574 3575 if ((old.dir != new.dir) && 3576 ext4_encrypted_inode(new.dir) && 3577 !fscrypt_has_permitted_context(new.dir, old.inode)) { 3578 retval = -EPERM; 3579 goto end_rename; 3580 } 3581 3582 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 3583 &new.de, &new.inlined); 3584 if (IS_ERR(new.bh)) { 3585 retval = PTR_ERR(new.bh); 3586 new.bh = NULL; 3587 goto end_rename; 3588 } 3589 if (new.bh) { 3590 if (!new.inode) { 3591 brelse(new.bh); 3592 new.bh = NULL; 3593 } 3594 } 3595 if (new.inode && !test_opt(new.dir->i_sb, NO_AUTO_DA_ALLOC)) 3596 ext4_alloc_da_blocks(old.inode); 3597 3598 credits = (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 3599 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2); 3600 if (!(flags & RENAME_WHITEOUT)) { 3601 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, credits); 3602 if (IS_ERR(handle)) { 3603 retval = PTR_ERR(handle); 3604 handle = NULL; 3605 goto end_rename; 3606 } 3607 } else { 3608 whiteout = ext4_whiteout_for_rename(&old, credits, &handle); 3609 if (IS_ERR(whiteout)) { 3610 retval = PTR_ERR(whiteout); 3611 whiteout = NULL; 3612 goto end_rename; 3613 } 3614 } 3615 3616 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 3617 ext4_handle_sync(handle); 3618 3619 if (S_ISDIR(old.inode->i_mode)) { 3620 if (new.inode) { 3621 retval = -ENOTEMPTY; 3622 if (!ext4_empty_dir(new.inode)) 3623 goto end_rename; 3624 } else { 3625 retval = -EMLINK; 3626 if (new.dir != old.dir && EXT4_DIR_LINK_MAX(new.dir)) 3627 goto end_rename; 3628 } 3629 retval = ext4_rename_dir_prepare(handle, &old); 3630 if (retval) 3631 goto end_rename; 3632 } 3633 /* 3634 * If we're renaming a file within an inline_data dir and adding or 3635 * setting the new dirent causes a conversion from inline_data to 3636 * extents/blockmap, we need to force the dirent delete code to 3637 * re-read the directory, or else we end up trying to delete a dirent 3638 * from what is now the extent tree root (or a block map). 3639 */ 3640 force_reread = (new.dir->i_ino == old.dir->i_ino && 3641 ext4_test_inode_flag(new.dir, EXT4_INODE_INLINE_DATA)); 3642 3643 old_file_type = old.de->file_type; 3644 if (whiteout) { 3645 /* 3646 * Do this before adding a new entry, so the old entry is sure 3647 * to be still pointing to the valid old entry. 3648 */ 3649 retval = ext4_setent(handle, &old, whiteout->i_ino, 3650 EXT4_FT_CHRDEV); 3651 if (retval) 3652 goto end_rename; 3653 ext4_mark_inode_dirty(handle, whiteout); 3654 } 3655 if (!new.bh) { 3656 retval = ext4_add_entry(handle, new.dentry, old.inode); 3657 if (retval) 3658 goto end_rename; 3659 } else { 3660 retval = ext4_setent(handle, &new, 3661 old.inode->i_ino, old_file_type); 3662 if (retval) 3663 goto end_rename; 3664 } 3665 if (force_reread) 3666 force_reread = !ext4_test_inode_flag(new.dir, 3667 EXT4_INODE_INLINE_DATA); 3668 3669 /* 3670 * Like most other Unix systems, set the ctime for inodes on a 3671 * rename. 3672 */ 3673 old.inode->i_ctime = current_time(old.inode); 3674 ext4_mark_inode_dirty(handle, old.inode); 3675 3676 if (!whiteout) { 3677 /* 3678 * ok, that's it 3679 */ 3680 ext4_rename_delete(handle, &old, force_reread); 3681 } 3682 3683 if (new.inode) { 3684 ext4_dec_count(handle, new.inode); 3685 new.inode->i_ctime = current_time(new.inode); 3686 } 3687 old.dir->i_ctime = old.dir->i_mtime = current_time(old.dir); 3688 ext4_update_dx_flag(old.dir); 3689 if (old.dir_bh) { 3690 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 3691 if (retval) 3692 goto end_rename; 3693 3694 ext4_dec_count(handle, old.dir); 3695 if (new.inode) { 3696 /* checked ext4_empty_dir above, can't have another 3697 * parent, ext4_dec_count() won't work for many-linked 3698 * dirs */ 3699 clear_nlink(new.inode); 3700 } else { 3701 ext4_inc_count(handle, new.dir); 3702 ext4_update_dx_flag(new.dir); 3703 ext4_mark_inode_dirty(handle, new.dir); 3704 } 3705 } 3706 ext4_mark_inode_dirty(handle, old.dir); 3707 if (new.inode) { 3708 ext4_mark_inode_dirty(handle, new.inode); 3709 if (!new.inode->i_nlink) 3710 ext4_orphan_add(handle, new.inode); 3711 } 3712 retval = 0; 3713 3714 end_rename: 3715 brelse(old.dir_bh); 3716 brelse(old.bh); 3717 brelse(new.bh); 3718 if (whiteout) { 3719 if (retval) 3720 drop_nlink(whiteout); 3721 unlock_new_inode(whiteout); 3722 iput(whiteout); 3723 } 3724 if (handle) 3725 ext4_journal_stop(handle); 3726 return retval; 3727 } 3728 3729 static int ext4_cross_rename(struct inode *old_dir, struct dentry *old_dentry, 3730 struct inode *new_dir, struct dentry *new_dentry) 3731 { 3732 handle_t *handle = NULL; 3733 struct ext4_renament old = { 3734 .dir = old_dir, 3735 .dentry = old_dentry, 3736 .inode = d_inode(old_dentry), 3737 }; 3738 struct ext4_renament new = { 3739 .dir = new_dir, 3740 .dentry = new_dentry, 3741 .inode = d_inode(new_dentry), 3742 }; 3743 u8 new_file_type; 3744 int retval; 3745 struct timespec ctime; 3746 3747 if ((ext4_encrypted_inode(old_dir) && 3748 !fscrypt_has_encryption_key(old_dir)) || 3749 (ext4_encrypted_inode(new_dir) && 3750 !fscrypt_has_encryption_key(new_dir))) 3751 return -ENOKEY; 3752 3753 if ((ext4_encrypted_inode(old_dir) || 3754 ext4_encrypted_inode(new_dir)) && 3755 (old_dir != new_dir) && 3756 (!fscrypt_has_permitted_context(new_dir, old.inode) || 3757 !fscrypt_has_permitted_context(old_dir, new.inode))) 3758 return -EPERM; 3759 3760 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT) && 3761 !projid_eq(EXT4_I(new_dir)->i_projid, 3762 EXT4_I(old_dentry->d_inode)->i_projid)) || 3763 (ext4_test_inode_flag(old_dir, EXT4_INODE_PROJINHERIT) && 3764 !projid_eq(EXT4_I(old_dir)->i_projid, 3765 EXT4_I(new_dentry->d_inode)->i_projid))) 3766 return -EXDEV; 3767 3768 retval = dquot_initialize(old.dir); 3769 if (retval) 3770 return retval; 3771 retval = dquot_initialize(new.dir); 3772 if (retval) 3773 return retval; 3774 3775 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, 3776 &old.de, &old.inlined); 3777 if (IS_ERR(old.bh)) 3778 return PTR_ERR(old.bh); 3779 /* 3780 * Check for inode number is _not_ due to possible IO errors. 3781 * We might rmdir the source, keep it as pwd of some process 3782 * and merrily kill the link to whatever was created under the 3783 * same name. Goodbye sticky bit ;-< 3784 */ 3785 retval = -ENOENT; 3786 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino) 3787 goto end_rename; 3788 3789 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name, 3790 &new.de, &new.inlined); 3791 if (IS_ERR(new.bh)) { 3792 retval = PTR_ERR(new.bh); 3793 new.bh = NULL; 3794 goto end_rename; 3795 } 3796 3797 /* RENAME_EXCHANGE case: old *and* new must both exist */ 3798 if (!new.bh || le32_to_cpu(new.de->inode) != new.inode->i_ino) 3799 goto end_rename; 3800 3801 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, 3802 (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) + 3803 2 * EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2)); 3804 if (IS_ERR(handle)) { 3805 retval = PTR_ERR(handle); 3806 handle = NULL; 3807 goto end_rename; 3808 } 3809 3810 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir)) 3811 ext4_handle_sync(handle); 3812 3813 if (S_ISDIR(old.inode->i_mode)) { 3814 old.is_dir = true; 3815 retval = ext4_rename_dir_prepare(handle, &old); 3816 if (retval) 3817 goto end_rename; 3818 } 3819 if (S_ISDIR(new.inode->i_mode)) { 3820 new.is_dir = true; 3821 retval = ext4_rename_dir_prepare(handle, &new); 3822 if (retval) 3823 goto end_rename; 3824 } 3825 3826 /* 3827 * Other than the special case of overwriting a directory, parents' 3828 * nlink only needs to be modified if this is a cross directory rename. 3829 */ 3830 if (old.dir != new.dir && old.is_dir != new.is_dir) { 3831 old.dir_nlink_delta = old.is_dir ? -1 : 1; 3832 new.dir_nlink_delta = -old.dir_nlink_delta; 3833 retval = -EMLINK; 3834 if ((old.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(old.dir)) || 3835 (new.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(new.dir))) 3836 goto end_rename; 3837 } 3838 3839 new_file_type = new.de->file_type; 3840 retval = ext4_setent(handle, &new, old.inode->i_ino, old.de->file_type); 3841 if (retval) 3842 goto end_rename; 3843 3844 retval = ext4_setent(handle, &old, new.inode->i_ino, new_file_type); 3845 if (retval) 3846 goto end_rename; 3847 3848 /* 3849 * Like most other Unix systems, set the ctime for inodes on a 3850 * rename. 3851 */ 3852 ctime = current_time(old.inode); 3853 old.inode->i_ctime = ctime; 3854 new.inode->i_ctime = ctime; 3855 ext4_mark_inode_dirty(handle, old.inode); 3856 ext4_mark_inode_dirty(handle, new.inode); 3857 3858 if (old.dir_bh) { 3859 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino); 3860 if (retval) 3861 goto end_rename; 3862 } 3863 if (new.dir_bh) { 3864 retval = ext4_rename_dir_finish(handle, &new, old.dir->i_ino); 3865 if (retval) 3866 goto end_rename; 3867 } 3868 ext4_update_dir_count(handle, &old); 3869 ext4_update_dir_count(handle, &new); 3870 retval = 0; 3871 3872 end_rename: 3873 brelse(old.dir_bh); 3874 brelse(new.dir_bh); 3875 brelse(old.bh); 3876 brelse(new.bh); 3877 if (handle) 3878 ext4_journal_stop(handle); 3879 return retval; 3880 } 3881 3882 static int ext4_rename2(struct inode *old_dir, struct dentry *old_dentry, 3883 struct inode *new_dir, struct dentry *new_dentry, 3884 unsigned int flags) 3885 { 3886 if (unlikely(ext4_forced_shutdown(EXT4_SB(old_dir->i_sb)))) 3887 return -EIO; 3888 3889 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3890 return -EINVAL; 3891 3892 if (flags & RENAME_EXCHANGE) { 3893 return ext4_cross_rename(old_dir, old_dentry, 3894 new_dir, new_dentry); 3895 } 3896 3897 return ext4_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 3898 } 3899 3900 /* 3901 * directories can handle most operations... 3902 */ 3903 const struct inode_operations ext4_dir_inode_operations = { 3904 .create = ext4_create, 3905 .lookup = ext4_lookup, 3906 .link = ext4_link, 3907 .unlink = ext4_unlink, 3908 .symlink = ext4_symlink, 3909 .mkdir = ext4_mkdir, 3910 .rmdir = ext4_rmdir, 3911 .mknod = ext4_mknod, 3912 .tmpfile = ext4_tmpfile, 3913 .rename = ext4_rename2, 3914 .setattr = ext4_setattr, 3915 .listxattr = ext4_listxattr, 3916 .get_acl = ext4_get_acl, 3917 .set_acl = ext4_set_acl, 3918 .fiemap = ext4_fiemap, 3919 }; 3920 3921 const struct inode_operations ext4_special_inode_operations = { 3922 .setattr = ext4_setattr, 3923 .listxattr = ext4_listxattr, 3924 .get_acl = ext4_get_acl, 3925 .set_acl = ext4_set_acl, 3926 }; 3927