xref: /openbmc/linux/fs/ext4/mballoc.c (revision fd589a8f)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <trace/events/ext4.h>
27 
28 /*
29  * MUSTDO:
30  *   - test ext4_ext_search_left() and ext4_ext_search_right()
31  *   - search for metadata in few groups
32  *
33  * TODO v4:
34  *   - normalization should take into account whether file is still open
35  *   - discard preallocations if no free space left (policy?)
36  *   - don't normalize tails
37  *   - quota
38  *   - reservation for superuser
39  *
40  * TODO v3:
41  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
42  *   - track min/max extents in each group for better group selection
43  *   - mb_mark_used() may allocate chunk right after splitting buddy
44  *   - tree of groups sorted by number of free blocks
45  *   - error handling
46  */
47 
48 /*
49  * The allocation request involve request for multiple number of blocks
50  * near to the goal(block) value specified.
51  *
52  * During initialization phase of the allocator we decide to use the
53  * group preallocation or inode preallocation depending on the size of
54  * the file. The size of the file could be the resulting file size we
55  * would have after allocation, or the current file size, which ever
56  * is larger. If the size is less than sbi->s_mb_stream_request we
57  * select to use the group preallocation. The default value of
58  * s_mb_stream_request is 16 blocks. This can also be tuned via
59  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60  * terms of number of blocks.
61  *
62  * The main motivation for having small file use group preallocation is to
63  * ensure that we have small files closer together on the disk.
64  *
65  * First stage the allocator looks at the inode prealloc list,
66  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67  * spaces for this particular inode. The inode prealloc space is
68  * represented as:
69  *
70  * pa_lstart -> the logical start block for this prealloc space
71  * pa_pstart -> the physical start block for this prealloc space
72  * pa_len    -> lenght for this prealloc space
73  * pa_free   ->  free space available in this prealloc space
74  *
75  * The inode preallocation space is used looking at the _logical_ start
76  * block. If only the logical file block falls within the range of prealloc
77  * space we will consume the particular prealloc space. This make sure that
78  * that the we have contiguous physical blocks representing the file blocks
79  *
80  * The important thing to be noted in case of inode prealloc space is that
81  * we don't modify the values associated to inode prealloc space except
82  * pa_free.
83  *
84  * If we are not able to find blocks in the inode prealloc space and if we
85  * have the group allocation flag set then we look at the locality group
86  * prealloc space. These are per CPU prealloc list repreasented as
87  *
88  * ext4_sb_info.s_locality_groups[smp_processor_id()]
89  *
90  * The reason for having a per cpu locality group is to reduce the contention
91  * between CPUs. It is possible to get scheduled at this point.
92  *
93  * The locality group prealloc space is used looking at whether we have
94  * enough free space (pa_free) withing the prealloc space.
95  *
96  * If we can't allocate blocks via inode prealloc or/and locality group
97  * prealloc then we look at the buddy cache. The buddy cache is represented
98  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99  * mapped to the buddy and bitmap information regarding different
100  * groups. The buddy information is attached to buddy cache inode so that
101  * we can access them through the page cache. The information regarding
102  * each group is loaded via ext4_mb_load_buddy.  The information involve
103  * block bitmap and buddy information. The information are stored in the
104  * inode as:
105  *
106  *  {                        page                        }
107  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
108  *
109  *
110  * one block each for bitmap and buddy information.  So for each group we
111  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
112  * blocksize) blocks.  So it can have information regarding groups_per_page
113  * which is blocks_per_page/2
114  *
115  * The buddy cache inode is not stored on disk. The inode is thrown
116  * away when the filesystem is unmounted.
117  *
118  * We look for count number of blocks in the buddy cache. If we were able
119  * to locate that many free blocks we return with additional information
120  * regarding rest of the contiguous physical block available
121  *
122  * Before allocating blocks via buddy cache we normalize the request
123  * blocks. This ensure we ask for more blocks that we needed. The extra
124  * blocks that we get after allocation is added to the respective prealloc
125  * list. In case of inode preallocation we follow a list of heuristics
126  * based on file size. This can be found in ext4_mb_normalize_request. If
127  * we are doing a group prealloc we try to normalize the request to
128  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
129  * 512 blocks. This can be tuned via
130  * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
131  * terms of number of blocks. If we have mounted the file system with -O
132  * stripe=<value> option the group prealloc request is normalized to the
133  * stripe value (sbi->s_stripe)
134  *
135  * The regular allocator(using the buddy cache) supports few tunables.
136  *
137  * /sys/fs/ext4/<partition>/mb_min_to_scan
138  * /sys/fs/ext4/<partition>/mb_max_to_scan
139  * /sys/fs/ext4/<partition>/mb_order2_req
140  *
141  * The regular allocator uses buddy scan only if the request len is power of
142  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
143  * value of s_mb_order2_reqs can be tuned via
144  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
145  * stripe size (sbi->s_stripe), we try to search for contigous block in
146  * stripe size. This should result in better allocation on RAID setups. If
147  * not, we search in the specific group using bitmap for best extents. The
148  * tunable min_to_scan and max_to_scan control the behaviour here.
149  * min_to_scan indicate how long the mballoc __must__ look for a best
150  * extent and max_to_scan indicates how long the mballoc __can__ look for a
151  * best extent in the found extents. Searching for the blocks starts with
152  * the group specified as the goal value in allocation context via
153  * ac_g_ex. Each group is first checked based on the criteria whether it
154  * can used for allocation. ext4_mb_good_group explains how the groups are
155  * checked.
156  *
157  * Both the prealloc space are getting populated as above. So for the first
158  * request we will hit the buddy cache which will result in this prealloc
159  * space getting filled. The prealloc space is then later used for the
160  * subsequent request.
161  */
162 
163 /*
164  * mballoc operates on the following data:
165  *  - on-disk bitmap
166  *  - in-core buddy (actually includes buddy and bitmap)
167  *  - preallocation descriptors (PAs)
168  *
169  * there are two types of preallocations:
170  *  - inode
171  *    assiged to specific inode and can be used for this inode only.
172  *    it describes part of inode's space preallocated to specific
173  *    physical blocks. any block from that preallocated can be used
174  *    independent. the descriptor just tracks number of blocks left
175  *    unused. so, before taking some block from descriptor, one must
176  *    make sure corresponded logical block isn't allocated yet. this
177  *    also means that freeing any block within descriptor's range
178  *    must discard all preallocated blocks.
179  *  - locality group
180  *    assigned to specific locality group which does not translate to
181  *    permanent set of inodes: inode can join and leave group. space
182  *    from this type of preallocation can be used for any inode. thus
183  *    it's consumed from the beginning to the end.
184  *
185  * relation between them can be expressed as:
186  *    in-core buddy = on-disk bitmap + preallocation descriptors
187  *
188  * this mean blocks mballoc considers used are:
189  *  - allocated blocks (persistent)
190  *  - preallocated blocks (non-persistent)
191  *
192  * consistency in mballoc world means that at any time a block is either
193  * free or used in ALL structures. notice: "any time" should not be read
194  * literally -- time is discrete and delimited by locks.
195  *
196  *  to keep it simple, we don't use block numbers, instead we count number of
197  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
198  *
199  * all operations can be expressed as:
200  *  - init buddy:			buddy = on-disk + PAs
201  *  - new PA:				buddy += N; PA = N
202  *  - use inode PA:			on-disk += N; PA -= N
203  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
204  *  - use locality group PA		on-disk += N; PA -= N
205  *  - discard locality group PA		buddy -= PA; PA = 0
206  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
207  *        is used in real operation because we can't know actual used
208  *        bits from PA, only from on-disk bitmap
209  *
210  * if we follow this strict logic, then all operations above should be atomic.
211  * given some of them can block, we'd have to use something like semaphores
212  * killing performance on high-end SMP hardware. let's try to relax it using
213  * the following knowledge:
214  *  1) if buddy is referenced, it's already initialized
215  *  2) while block is used in buddy and the buddy is referenced,
216  *     nobody can re-allocate that block
217  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
218  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
219  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
220  *     block
221  *
222  * so, now we're building a concurrency table:
223  *  - init buddy vs.
224  *    - new PA
225  *      blocks for PA are allocated in the buddy, buddy must be referenced
226  *      until PA is linked to allocation group to avoid concurrent buddy init
227  *    - use inode PA
228  *      we need to make sure that either on-disk bitmap or PA has uptodate data
229  *      given (3) we care that PA-=N operation doesn't interfere with init
230  *    - discard inode PA
231  *      the simplest way would be to have buddy initialized by the discard
232  *    - use locality group PA
233  *      again PA-=N must be serialized with init
234  *    - discard locality group PA
235  *      the simplest way would be to have buddy initialized by the discard
236  *  - new PA vs.
237  *    - use inode PA
238  *      i_data_sem serializes them
239  *    - discard inode PA
240  *      discard process must wait until PA isn't used by another process
241  *    - use locality group PA
242  *      some mutex should serialize them
243  *    - discard locality group PA
244  *      discard process must wait until PA isn't used by another process
245  *  - use inode PA
246  *    - use inode PA
247  *      i_data_sem or another mutex should serializes them
248  *    - discard inode PA
249  *      discard process must wait until PA isn't used by another process
250  *    - use locality group PA
251  *      nothing wrong here -- they're different PAs covering different blocks
252  *    - discard locality group PA
253  *      discard process must wait until PA isn't used by another process
254  *
255  * now we're ready to make few consequences:
256  *  - PA is referenced and while it is no discard is possible
257  *  - PA is referenced until block isn't marked in on-disk bitmap
258  *  - PA changes only after on-disk bitmap
259  *  - discard must not compete with init. either init is done before
260  *    any discard or they're serialized somehow
261  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
262  *
263  * a special case when we've used PA to emptiness. no need to modify buddy
264  * in this case, but we should care about concurrent init
265  *
266  */
267 
268  /*
269  * Logic in few words:
270  *
271  *  - allocation:
272  *    load group
273  *    find blocks
274  *    mark bits in on-disk bitmap
275  *    release group
276  *
277  *  - use preallocation:
278  *    find proper PA (per-inode or group)
279  *    load group
280  *    mark bits in on-disk bitmap
281  *    release group
282  *    release PA
283  *
284  *  - free:
285  *    load group
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - discard preallocations in group:
290  *    mark PAs deleted
291  *    move them onto local list
292  *    load on-disk bitmap
293  *    load group
294  *    remove PA from object (inode or locality group)
295  *    mark free blocks in-core
296  *
297  *  - discard inode's preallocations:
298  */
299 
300 /*
301  * Locking rules
302  *
303  * Locks:
304  *  - bitlock on a group	(group)
305  *  - object (inode/locality)	(object)
306  *  - per-pa lock		(pa)
307  *
308  * Paths:
309  *  - new pa
310  *    object
311  *    group
312  *
313  *  - find and use pa:
314  *    pa
315  *
316  *  - release consumed pa:
317  *    pa
318  *    group
319  *    object
320  *
321  *  - generate in-core bitmap:
322  *    group
323  *        pa
324  *
325  *  - discard all for given object (inode, locality group):
326  *    object
327  *        pa
328  *    group
329  *
330  *  - discard all for given group:
331  *    group
332  *        pa
333  *    group
334  *        object
335  *
336  */
337 static struct kmem_cache *ext4_pspace_cachep;
338 static struct kmem_cache *ext4_ac_cachep;
339 static struct kmem_cache *ext4_free_ext_cachep;
340 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
341 					ext4_group_t group);
342 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
343 						ext4_group_t group);
344 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
345 
346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
347 {
348 #if BITS_PER_LONG == 64
349 	*bit += ((unsigned long) addr & 7UL) << 3;
350 	addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352 	*bit += ((unsigned long) addr & 3UL) << 3;
353 	addr = (void *) ((unsigned long) addr & ~3UL);
354 #else
355 #error "how many bits you are?!"
356 #endif
357 	return addr;
358 }
359 
360 static inline int mb_test_bit(int bit, void *addr)
361 {
362 	/*
363 	 * ext4_test_bit on architecture like powerpc
364 	 * needs unsigned long aligned address
365 	 */
366 	addr = mb_correct_addr_and_bit(&bit, addr);
367 	return ext4_test_bit(bit, addr);
368 }
369 
370 static inline void mb_set_bit(int bit, void *addr)
371 {
372 	addr = mb_correct_addr_and_bit(&bit, addr);
373 	ext4_set_bit(bit, addr);
374 }
375 
376 static inline void mb_clear_bit(int bit, void *addr)
377 {
378 	addr = mb_correct_addr_and_bit(&bit, addr);
379 	ext4_clear_bit(bit, addr);
380 }
381 
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 {
384 	int fix = 0, ret, tmpmax;
385 	addr = mb_correct_addr_and_bit(&fix, addr);
386 	tmpmax = max + fix;
387 	start += fix;
388 
389 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390 	if (ret > max)
391 		return max;
392 	return ret;
393 }
394 
395 static inline int mb_find_next_bit(void *addr, int max, int start)
396 {
397 	int fix = 0, ret, tmpmax;
398 	addr = mb_correct_addr_and_bit(&fix, addr);
399 	tmpmax = max + fix;
400 	start += fix;
401 
402 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403 	if (ret > max)
404 		return max;
405 	return ret;
406 }
407 
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 {
410 	char *bb;
411 
412 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413 	BUG_ON(max == NULL);
414 
415 	if (order > e4b->bd_blkbits + 1) {
416 		*max = 0;
417 		return NULL;
418 	}
419 
420 	/* at order 0 we see each particular block */
421 	*max = 1 << (e4b->bd_blkbits + 3);
422 	if (order == 0)
423 		return EXT4_MB_BITMAP(e4b);
424 
425 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427 
428 	return bb;
429 }
430 
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433 			   int first, int count)
434 {
435 	int i;
436 	struct super_block *sb = e4b->bd_sb;
437 
438 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439 		return;
440 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
441 	for (i = 0; i < count; i++) {
442 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443 			ext4_fsblk_t blocknr;
444 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445 			blocknr += first + i;
446 			blocknr +=
447 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448 			ext4_grp_locked_error(sb, e4b->bd_group,
449 				   __func__, "double-free of inode"
450 				   " %lu's block %llu(bit %u in group %u)",
451 				   inode ? inode->i_ino : 0, blocknr,
452 				   first + i, e4b->bd_group);
453 		}
454 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455 	}
456 }
457 
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460 	int i;
461 
462 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463 		return;
464 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
465 	for (i = 0; i < count; i++) {
466 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468 	}
469 }
470 
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474 		unsigned char *b1, *b2;
475 		int i;
476 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477 		b2 = (unsigned char *) bitmap;
478 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479 			if (b1[i] != b2[i]) {
480 				printk(KERN_ERR "corruption in group %u "
481 				       "at byte %u(%u): %x in copy != %x "
482 				       "on disk/prealloc\n",
483 				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
484 				BUG();
485 			}
486 		}
487 	}
488 }
489 
490 #else
491 static inline void mb_free_blocks_double(struct inode *inode,
492 				struct ext4_buddy *e4b, int first, int count)
493 {
494 	return;
495 }
496 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
497 						int first, int count)
498 {
499 	return;
500 }
501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
502 {
503 	return;
504 }
505 #endif
506 
507 #ifdef AGGRESSIVE_CHECK
508 
509 #define MB_CHECK_ASSERT(assert)						\
510 do {									\
511 	if (!(assert)) {						\
512 		printk(KERN_EMERG					\
513 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
514 			function, file, line, # assert);		\
515 		BUG();							\
516 	}								\
517 } while (0)
518 
519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
520 				const char *function, int line)
521 {
522 	struct super_block *sb = e4b->bd_sb;
523 	int order = e4b->bd_blkbits + 1;
524 	int max;
525 	int max2;
526 	int i;
527 	int j;
528 	int k;
529 	int count;
530 	struct ext4_group_info *grp;
531 	int fragments = 0;
532 	int fstart;
533 	struct list_head *cur;
534 	void *buddy;
535 	void *buddy2;
536 
537 	{
538 		static int mb_check_counter;
539 		if (mb_check_counter++ % 100 != 0)
540 			return 0;
541 	}
542 
543 	while (order > 1) {
544 		buddy = mb_find_buddy(e4b, order, &max);
545 		MB_CHECK_ASSERT(buddy);
546 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
547 		MB_CHECK_ASSERT(buddy2);
548 		MB_CHECK_ASSERT(buddy != buddy2);
549 		MB_CHECK_ASSERT(max * 2 == max2);
550 
551 		count = 0;
552 		for (i = 0; i < max; i++) {
553 
554 			if (mb_test_bit(i, buddy)) {
555 				/* only single bit in buddy2 may be 1 */
556 				if (!mb_test_bit(i << 1, buddy2)) {
557 					MB_CHECK_ASSERT(
558 						mb_test_bit((i<<1)+1, buddy2));
559 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
560 					MB_CHECK_ASSERT(
561 						mb_test_bit(i << 1, buddy2));
562 				}
563 				continue;
564 			}
565 
566 			/* both bits in buddy2 must be 0 */
567 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
568 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
569 
570 			for (j = 0; j < (1 << order); j++) {
571 				k = (i * (1 << order)) + j;
572 				MB_CHECK_ASSERT(
573 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
574 			}
575 			count++;
576 		}
577 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
578 		order--;
579 	}
580 
581 	fstart = -1;
582 	buddy = mb_find_buddy(e4b, 0, &max);
583 	for (i = 0; i < max; i++) {
584 		if (!mb_test_bit(i, buddy)) {
585 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
586 			if (fstart == -1) {
587 				fragments++;
588 				fstart = i;
589 			}
590 			continue;
591 		}
592 		fstart = -1;
593 		/* check used bits only */
594 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
595 			buddy2 = mb_find_buddy(e4b, j, &max2);
596 			k = i >> j;
597 			MB_CHECK_ASSERT(k < max2);
598 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
599 		}
600 	}
601 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
602 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
603 
604 	grp = ext4_get_group_info(sb, e4b->bd_group);
605 	buddy = mb_find_buddy(e4b, 0, &max);
606 	list_for_each(cur, &grp->bb_prealloc_list) {
607 		ext4_group_t groupnr;
608 		struct ext4_prealloc_space *pa;
609 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
610 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
611 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
612 		for (i = 0; i < pa->pa_len; i++)
613 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
614 	}
615 	return 0;
616 }
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
619 					__FILE__, __func__, __LINE__)
620 #else
621 #define mb_check_buddy(e4b)
622 #endif
623 
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block *sb,
626 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
627 					struct ext4_group_info *grp)
628 {
629 	struct ext4_sb_info *sbi = EXT4_SB(sb);
630 	ext4_grpblk_t min;
631 	ext4_grpblk_t max;
632 	ext4_grpblk_t chunk;
633 	unsigned short border;
634 
635 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
636 
637 	border = 2 << sb->s_blocksize_bits;
638 
639 	while (len > 0) {
640 		/* find how many blocks can be covered since this position */
641 		max = ffs(first | border) - 1;
642 
643 		/* find how many blocks of power 2 we need to mark */
644 		min = fls(len) - 1;
645 
646 		if (max < min)
647 			min = max;
648 		chunk = 1 << min;
649 
650 		/* mark multiblock chunks only */
651 		grp->bb_counters[min]++;
652 		if (min > 0)
653 			mb_clear_bit(first >> min,
654 				     buddy + sbi->s_mb_offsets[min]);
655 
656 		len -= chunk;
657 		first += chunk;
658 	}
659 }
660 
661 static noinline_for_stack
662 void ext4_mb_generate_buddy(struct super_block *sb,
663 				void *buddy, void *bitmap, ext4_group_t group)
664 {
665 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
666 	ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
667 	ext4_grpblk_t i = 0;
668 	ext4_grpblk_t first;
669 	ext4_grpblk_t len;
670 	unsigned free = 0;
671 	unsigned fragments = 0;
672 	unsigned long long period = get_cycles();
673 
674 	/* initialize buddy from bitmap which is aggregation
675 	 * of on-disk bitmap and preallocations */
676 	i = mb_find_next_zero_bit(bitmap, max, 0);
677 	grp->bb_first_free = i;
678 	while (i < max) {
679 		fragments++;
680 		first = i;
681 		i = mb_find_next_bit(bitmap, max, i);
682 		len = i - first;
683 		free += len;
684 		if (len > 1)
685 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
686 		else
687 			grp->bb_counters[0]++;
688 		if (i < max)
689 			i = mb_find_next_zero_bit(bitmap, max, i);
690 	}
691 	grp->bb_fragments = fragments;
692 
693 	if (free != grp->bb_free) {
694 		ext4_grp_locked_error(sb, group,  __func__,
695 			"EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
696 			group, free, grp->bb_free);
697 		/*
698 		 * If we intent to continue, we consider group descritor
699 		 * corrupt and update bb_free using bitmap value
700 		 */
701 		grp->bb_free = free;
702 	}
703 
704 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
705 
706 	period = get_cycles() - period;
707 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
708 	EXT4_SB(sb)->s_mb_buddies_generated++;
709 	EXT4_SB(sb)->s_mb_generation_time += period;
710 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
711 }
712 
713 /* The buddy information is attached the buddy cache inode
714  * for convenience. The information regarding each group
715  * is loaded via ext4_mb_load_buddy. The information involve
716  * block bitmap and buddy information. The information are
717  * stored in the inode as
718  *
719  * {                        page                        }
720  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
721  *
722  *
723  * one block each for bitmap and buddy information.
724  * So for each group we take up 2 blocks. A page can
725  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
726  * So it can have information regarding groups_per_page which
727  * is blocks_per_page/2
728  */
729 
730 static int ext4_mb_init_cache(struct page *page, char *incore)
731 {
732 	ext4_group_t ngroups;
733 	int blocksize;
734 	int blocks_per_page;
735 	int groups_per_page;
736 	int err = 0;
737 	int i;
738 	ext4_group_t first_group;
739 	int first_block;
740 	struct super_block *sb;
741 	struct buffer_head *bhs;
742 	struct buffer_head **bh;
743 	struct inode *inode;
744 	char *data;
745 	char *bitmap;
746 
747 	mb_debug(1, "init page %lu\n", page->index);
748 
749 	inode = page->mapping->host;
750 	sb = inode->i_sb;
751 	ngroups = ext4_get_groups_count(sb);
752 	blocksize = 1 << inode->i_blkbits;
753 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
754 
755 	groups_per_page = blocks_per_page >> 1;
756 	if (groups_per_page == 0)
757 		groups_per_page = 1;
758 
759 	/* allocate buffer_heads to read bitmaps */
760 	if (groups_per_page > 1) {
761 		err = -ENOMEM;
762 		i = sizeof(struct buffer_head *) * groups_per_page;
763 		bh = kzalloc(i, GFP_NOFS);
764 		if (bh == NULL)
765 			goto out;
766 	} else
767 		bh = &bhs;
768 
769 	first_group = page->index * blocks_per_page / 2;
770 
771 	/* read all groups the page covers into the cache */
772 	for (i = 0; i < groups_per_page; i++) {
773 		struct ext4_group_desc *desc;
774 
775 		if (first_group + i >= ngroups)
776 			break;
777 
778 		err = -EIO;
779 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
780 		if (desc == NULL)
781 			goto out;
782 
783 		err = -ENOMEM;
784 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
785 		if (bh[i] == NULL)
786 			goto out;
787 
788 		if (bitmap_uptodate(bh[i]))
789 			continue;
790 
791 		lock_buffer(bh[i]);
792 		if (bitmap_uptodate(bh[i])) {
793 			unlock_buffer(bh[i]);
794 			continue;
795 		}
796 		ext4_lock_group(sb, first_group + i);
797 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
798 			ext4_init_block_bitmap(sb, bh[i],
799 						first_group + i, desc);
800 			set_bitmap_uptodate(bh[i]);
801 			set_buffer_uptodate(bh[i]);
802 			ext4_unlock_group(sb, first_group + i);
803 			unlock_buffer(bh[i]);
804 			continue;
805 		}
806 		ext4_unlock_group(sb, first_group + i);
807 		if (buffer_uptodate(bh[i])) {
808 			/*
809 			 * if not uninit if bh is uptodate,
810 			 * bitmap is also uptodate
811 			 */
812 			set_bitmap_uptodate(bh[i]);
813 			unlock_buffer(bh[i]);
814 			continue;
815 		}
816 		get_bh(bh[i]);
817 		/*
818 		 * submit the buffer_head for read. We can
819 		 * safely mark the bitmap as uptodate now.
820 		 * We do it here so the bitmap uptodate bit
821 		 * get set with buffer lock held.
822 		 */
823 		set_bitmap_uptodate(bh[i]);
824 		bh[i]->b_end_io = end_buffer_read_sync;
825 		submit_bh(READ, bh[i]);
826 		mb_debug(1, "read bitmap for group %u\n", first_group + i);
827 	}
828 
829 	/* wait for I/O completion */
830 	for (i = 0; i < groups_per_page && bh[i]; i++)
831 		wait_on_buffer(bh[i]);
832 
833 	err = -EIO;
834 	for (i = 0; i < groups_per_page && bh[i]; i++)
835 		if (!buffer_uptodate(bh[i]))
836 			goto out;
837 
838 	err = 0;
839 	first_block = page->index * blocks_per_page;
840 	/* init the page  */
841 	memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
842 	for (i = 0; i < blocks_per_page; i++) {
843 		int group;
844 		struct ext4_group_info *grinfo;
845 
846 		group = (first_block + i) >> 1;
847 		if (group >= ngroups)
848 			break;
849 
850 		/*
851 		 * data carry information regarding this
852 		 * particular group in the format specified
853 		 * above
854 		 *
855 		 */
856 		data = page_address(page) + (i * blocksize);
857 		bitmap = bh[group - first_group]->b_data;
858 
859 		/*
860 		 * We place the buddy block and bitmap block
861 		 * close together
862 		 */
863 		if ((first_block + i) & 1) {
864 			/* this is block of buddy */
865 			BUG_ON(incore == NULL);
866 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
867 				group, page->index, i * blocksize);
868 			grinfo = ext4_get_group_info(sb, group);
869 			grinfo->bb_fragments = 0;
870 			memset(grinfo->bb_counters, 0,
871 			       sizeof(*grinfo->bb_counters) *
872 				(sb->s_blocksize_bits+2));
873 			/*
874 			 * incore got set to the group block bitmap below
875 			 */
876 			ext4_lock_group(sb, group);
877 			ext4_mb_generate_buddy(sb, data, incore, group);
878 			ext4_unlock_group(sb, group);
879 			incore = NULL;
880 		} else {
881 			/* this is block of bitmap */
882 			BUG_ON(incore != NULL);
883 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
884 				group, page->index, i * blocksize);
885 
886 			/* see comments in ext4_mb_put_pa() */
887 			ext4_lock_group(sb, group);
888 			memcpy(data, bitmap, blocksize);
889 
890 			/* mark all preallocated blks used in in-core bitmap */
891 			ext4_mb_generate_from_pa(sb, data, group);
892 			ext4_mb_generate_from_freelist(sb, data, group);
893 			ext4_unlock_group(sb, group);
894 
895 			/* set incore so that the buddy information can be
896 			 * generated using this
897 			 */
898 			incore = data;
899 		}
900 	}
901 	SetPageUptodate(page);
902 
903 out:
904 	if (bh) {
905 		for (i = 0; i < groups_per_page && bh[i]; i++)
906 			brelse(bh[i]);
907 		if (bh != &bhs)
908 			kfree(bh);
909 	}
910 	return err;
911 }
912 
913 static noinline_for_stack
914 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
915 {
916 
917 	int ret = 0;
918 	void *bitmap;
919 	int blocks_per_page;
920 	int block, pnum, poff;
921 	int num_grp_locked = 0;
922 	struct ext4_group_info *this_grp;
923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
924 	struct inode *inode = sbi->s_buddy_cache;
925 	struct page *page = NULL, *bitmap_page = NULL;
926 
927 	mb_debug(1, "init group %u\n", group);
928 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
929 	this_grp = ext4_get_group_info(sb, group);
930 	/*
931 	 * This ensures that we don't reinit the buddy cache
932 	 * page which map to the group from which we are already
933 	 * allocating. If we are looking at the buddy cache we would
934 	 * have taken a reference using ext4_mb_load_buddy and that
935 	 * would have taken the alloc_sem lock.
936 	 */
937 	num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
938 	if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
939 		/*
940 		 * somebody initialized the group
941 		 * return without doing anything
942 		 */
943 		ret = 0;
944 		goto err;
945 	}
946 	/*
947 	 * the buddy cache inode stores the block bitmap
948 	 * and buddy information in consecutive blocks.
949 	 * So for each group we need two blocks.
950 	 */
951 	block = group * 2;
952 	pnum = block / blocks_per_page;
953 	poff = block % blocks_per_page;
954 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
955 	if (page) {
956 		BUG_ON(page->mapping != inode->i_mapping);
957 		ret = ext4_mb_init_cache(page, NULL);
958 		if (ret) {
959 			unlock_page(page);
960 			goto err;
961 		}
962 		unlock_page(page);
963 	}
964 	if (page == NULL || !PageUptodate(page)) {
965 		ret = -EIO;
966 		goto err;
967 	}
968 	mark_page_accessed(page);
969 	bitmap_page = page;
970 	bitmap = page_address(page) + (poff * sb->s_blocksize);
971 
972 	/* init buddy cache */
973 	block++;
974 	pnum = block / blocks_per_page;
975 	poff = block % blocks_per_page;
976 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
977 	if (page == bitmap_page) {
978 		/*
979 		 * If both the bitmap and buddy are in
980 		 * the same page we don't need to force
981 		 * init the buddy
982 		 */
983 		unlock_page(page);
984 	} else if (page) {
985 		BUG_ON(page->mapping != inode->i_mapping);
986 		ret = ext4_mb_init_cache(page, bitmap);
987 		if (ret) {
988 			unlock_page(page);
989 			goto err;
990 		}
991 		unlock_page(page);
992 	}
993 	if (page == NULL || !PageUptodate(page)) {
994 		ret = -EIO;
995 		goto err;
996 	}
997 	mark_page_accessed(page);
998 err:
999 	ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1000 	if (bitmap_page)
1001 		page_cache_release(bitmap_page);
1002 	if (page)
1003 		page_cache_release(page);
1004 	return ret;
1005 }
1006 
1007 static noinline_for_stack int
1008 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1009 					struct ext4_buddy *e4b)
1010 {
1011 	int blocks_per_page;
1012 	int block;
1013 	int pnum;
1014 	int poff;
1015 	struct page *page;
1016 	int ret;
1017 	struct ext4_group_info *grp;
1018 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1019 	struct inode *inode = sbi->s_buddy_cache;
1020 
1021 	mb_debug(1, "load group %u\n", group);
1022 
1023 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1024 	grp = ext4_get_group_info(sb, group);
1025 
1026 	e4b->bd_blkbits = sb->s_blocksize_bits;
1027 	e4b->bd_info = ext4_get_group_info(sb, group);
1028 	e4b->bd_sb = sb;
1029 	e4b->bd_group = group;
1030 	e4b->bd_buddy_page = NULL;
1031 	e4b->bd_bitmap_page = NULL;
1032 	e4b->alloc_semp = &grp->alloc_sem;
1033 
1034 	/* Take the read lock on the group alloc
1035 	 * sem. This would make sure a parallel
1036 	 * ext4_mb_init_group happening on other
1037 	 * groups mapped by the page is blocked
1038 	 * till we are done with allocation
1039 	 */
1040 repeat_load_buddy:
1041 	down_read(e4b->alloc_semp);
1042 
1043 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1044 		/* we need to check for group need init flag
1045 		 * with alloc_semp held so that we can be sure
1046 		 * that new blocks didn't get added to the group
1047 		 * when we are loading the buddy cache
1048 		 */
1049 		up_read(e4b->alloc_semp);
1050 		/*
1051 		 * we need full data about the group
1052 		 * to make a good selection
1053 		 */
1054 		ret = ext4_mb_init_group(sb, group);
1055 		if (ret)
1056 			return ret;
1057 		goto repeat_load_buddy;
1058 	}
1059 
1060 	/*
1061 	 * the buddy cache inode stores the block bitmap
1062 	 * and buddy information in consecutive blocks.
1063 	 * So for each group we need two blocks.
1064 	 */
1065 	block = group * 2;
1066 	pnum = block / blocks_per_page;
1067 	poff = block % blocks_per_page;
1068 
1069 	/* we could use find_or_create_page(), but it locks page
1070 	 * what we'd like to avoid in fast path ... */
1071 	page = find_get_page(inode->i_mapping, pnum);
1072 	if (page == NULL || !PageUptodate(page)) {
1073 		if (page)
1074 			/*
1075 			 * drop the page reference and try
1076 			 * to get the page with lock. If we
1077 			 * are not uptodate that implies
1078 			 * somebody just created the page but
1079 			 * is yet to initialize the same. So
1080 			 * wait for it to initialize.
1081 			 */
1082 			page_cache_release(page);
1083 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1084 		if (page) {
1085 			BUG_ON(page->mapping != inode->i_mapping);
1086 			if (!PageUptodate(page)) {
1087 				ret = ext4_mb_init_cache(page, NULL);
1088 				if (ret) {
1089 					unlock_page(page);
1090 					goto err;
1091 				}
1092 				mb_cmp_bitmaps(e4b, page_address(page) +
1093 					       (poff * sb->s_blocksize));
1094 			}
1095 			unlock_page(page);
1096 		}
1097 	}
1098 	if (page == NULL || !PageUptodate(page)) {
1099 		ret = -EIO;
1100 		goto err;
1101 	}
1102 	e4b->bd_bitmap_page = page;
1103 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1104 	mark_page_accessed(page);
1105 
1106 	block++;
1107 	pnum = block / blocks_per_page;
1108 	poff = block % blocks_per_page;
1109 
1110 	page = find_get_page(inode->i_mapping, pnum);
1111 	if (page == NULL || !PageUptodate(page)) {
1112 		if (page)
1113 			page_cache_release(page);
1114 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1115 		if (page) {
1116 			BUG_ON(page->mapping != inode->i_mapping);
1117 			if (!PageUptodate(page)) {
1118 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1119 				if (ret) {
1120 					unlock_page(page);
1121 					goto err;
1122 				}
1123 			}
1124 			unlock_page(page);
1125 		}
1126 	}
1127 	if (page == NULL || !PageUptodate(page)) {
1128 		ret = -EIO;
1129 		goto err;
1130 	}
1131 	e4b->bd_buddy_page = page;
1132 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1133 	mark_page_accessed(page);
1134 
1135 	BUG_ON(e4b->bd_bitmap_page == NULL);
1136 	BUG_ON(e4b->bd_buddy_page == NULL);
1137 
1138 	return 0;
1139 
1140 err:
1141 	if (e4b->bd_bitmap_page)
1142 		page_cache_release(e4b->bd_bitmap_page);
1143 	if (e4b->bd_buddy_page)
1144 		page_cache_release(e4b->bd_buddy_page);
1145 	e4b->bd_buddy = NULL;
1146 	e4b->bd_bitmap = NULL;
1147 
1148 	/* Done with the buddy cache */
1149 	up_read(e4b->alloc_semp);
1150 	return ret;
1151 }
1152 
1153 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1154 {
1155 	if (e4b->bd_bitmap_page)
1156 		page_cache_release(e4b->bd_bitmap_page);
1157 	if (e4b->bd_buddy_page)
1158 		page_cache_release(e4b->bd_buddy_page);
1159 	/* Done with the buddy cache */
1160 	if (e4b->alloc_semp)
1161 		up_read(e4b->alloc_semp);
1162 }
1163 
1164 
1165 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1166 {
1167 	int order = 1;
1168 	void *bb;
1169 
1170 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1171 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1172 
1173 	bb = EXT4_MB_BUDDY(e4b);
1174 	while (order <= e4b->bd_blkbits + 1) {
1175 		block = block >> 1;
1176 		if (!mb_test_bit(block, bb)) {
1177 			/* this block is part of buddy of order 'order' */
1178 			return order;
1179 		}
1180 		bb += 1 << (e4b->bd_blkbits - order);
1181 		order++;
1182 	}
1183 	return 0;
1184 }
1185 
1186 static void mb_clear_bits(void *bm, int cur, int len)
1187 {
1188 	__u32 *addr;
1189 
1190 	len = cur + len;
1191 	while (cur < len) {
1192 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1193 			/* fast path: clear whole word at once */
1194 			addr = bm + (cur >> 3);
1195 			*addr = 0;
1196 			cur += 32;
1197 			continue;
1198 		}
1199 		mb_clear_bit(cur, bm);
1200 		cur++;
1201 	}
1202 }
1203 
1204 static void mb_set_bits(void *bm, int cur, int len)
1205 {
1206 	__u32 *addr;
1207 
1208 	len = cur + len;
1209 	while (cur < len) {
1210 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1211 			/* fast path: set whole word at once */
1212 			addr = bm + (cur >> 3);
1213 			*addr = 0xffffffff;
1214 			cur += 32;
1215 			continue;
1216 		}
1217 		mb_set_bit(cur, bm);
1218 		cur++;
1219 	}
1220 }
1221 
1222 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1223 			  int first, int count)
1224 {
1225 	int block = 0;
1226 	int max = 0;
1227 	int order;
1228 	void *buddy;
1229 	void *buddy2;
1230 	struct super_block *sb = e4b->bd_sb;
1231 
1232 	BUG_ON(first + count > (sb->s_blocksize << 3));
1233 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1234 	mb_check_buddy(e4b);
1235 	mb_free_blocks_double(inode, e4b, first, count);
1236 
1237 	e4b->bd_info->bb_free += count;
1238 	if (first < e4b->bd_info->bb_first_free)
1239 		e4b->bd_info->bb_first_free = first;
1240 
1241 	/* let's maintain fragments counter */
1242 	if (first != 0)
1243 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1244 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1245 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1246 	if (block && max)
1247 		e4b->bd_info->bb_fragments--;
1248 	else if (!block && !max)
1249 		e4b->bd_info->bb_fragments++;
1250 
1251 	/* let's maintain buddy itself */
1252 	while (count-- > 0) {
1253 		block = first++;
1254 		order = 0;
1255 
1256 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1257 			ext4_fsblk_t blocknr;
1258 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1259 			blocknr += block;
1260 			blocknr +=
1261 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1262 			ext4_grp_locked_error(sb, e4b->bd_group,
1263 				   __func__, "double-free of inode"
1264 				   " %lu's block %llu(bit %u in group %u)",
1265 				   inode ? inode->i_ino : 0, blocknr, block,
1266 				   e4b->bd_group);
1267 		}
1268 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1269 		e4b->bd_info->bb_counters[order]++;
1270 
1271 		/* start of the buddy */
1272 		buddy = mb_find_buddy(e4b, order, &max);
1273 
1274 		do {
1275 			block &= ~1UL;
1276 			if (mb_test_bit(block, buddy) ||
1277 					mb_test_bit(block + 1, buddy))
1278 				break;
1279 
1280 			/* both the buddies are free, try to coalesce them */
1281 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1282 
1283 			if (!buddy2)
1284 				break;
1285 
1286 			if (order > 0) {
1287 				/* for special purposes, we don't set
1288 				 * free bits in bitmap */
1289 				mb_set_bit(block, buddy);
1290 				mb_set_bit(block + 1, buddy);
1291 			}
1292 			e4b->bd_info->bb_counters[order]--;
1293 			e4b->bd_info->bb_counters[order]--;
1294 
1295 			block = block >> 1;
1296 			order++;
1297 			e4b->bd_info->bb_counters[order]++;
1298 
1299 			mb_clear_bit(block, buddy2);
1300 			buddy = buddy2;
1301 		} while (1);
1302 	}
1303 	mb_check_buddy(e4b);
1304 }
1305 
1306 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1307 				int needed, struct ext4_free_extent *ex)
1308 {
1309 	int next = block;
1310 	int max;
1311 	int ord;
1312 	void *buddy;
1313 
1314 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1315 	BUG_ON(ex == NULL);
1316 
1317 	buddy = mb_find_buddy(e4b, order, &max);
1318 	BUG_ON(buddy == NULL);
1319 	BUG_ON(block >= max);
1320 	if (mb_test_bit(block, buddy)) {
1321 		ex->fe_len = 0;
1322 		ex->fe_start = 0;
1323 		ex->fe_group = 0;
1324 		return 0;
1325 	}
1326 
1327 	/* FIXME dorp order completely ? */
1328 	if (likely(order == 0)) {
1329 		/* find actual order */
1330 		order = mb_find_order_for_block(e4b, block);
1331 		block = block >> order;
1332 	}
1333 
1334 	ex->fe_len = 1 << order;
1335 	ex->fe_start = block << order;
1336 	ex->fe_group = e4b->bd_group;
1337 
1338 	/* calc difference from given start */
1339 	next = next - ex->fe_start;
1340 	ex->fe_len -= next;
1341 	ex->fe_start += next;
1342 
1343 	while (needed > ex->fe_len &&
1344 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1345 
1346 		if (block + 1 >= max)
1347 			break;
1348 
1349 		next = (block + 1) * (1 << order);
1350 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1351 			break;
1352 
1353 		ord = mb_find_order_for_block(e4b, next);
1354 
1355 		order = ord;
1356 		block = next >> order;
1357 		ex->fe_len += 1 << order;
1358 	}
1359 
1360 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1361 	return ex->fe_len;
1362 }
1363 
1364 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1365 {
1366 	int ord;
1367 	int mlen = 0;
1368 	int max = 0;
1369 	int cur;
1370 	int start = ex->fe_start;
1371 	int len = ex->fe_len;
1372 	unsigned ret = 0;
1373 	int len0 = len;
1374 	void *buddy;
1375 
1376 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1377 	BUG_ON(e4b->bd_group != ex->fe_group);
1378 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1379 	mb_check_buddy(e4b);
1380 	mb_mark_used_double(e4b, start, len);
1381 
1382 	e4b->bd_info->bb_free -= len;
1383 	if (e4b->bd_info->bb_first_free == start)
1384 		e4b->bd_info->bb_first_free += len;
1385 
1386 	/* let's maintain fragments counter */
1387 	if (start != 0)
1388 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1389 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1390 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1391 	if (mlen && max)
1392 		e4b->bd_info->bb_fragments++;
1393 	else if (!mlen && !max)
1394 		e4b->bd_info->bb_fragments--;
1395 
1396 	/* let's maintain buddy itself */
1397 	while (len) {
1398 		ord = mb_find_order_for_block(e4b, start);
1399 
1400 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1401 			/* the whole chunk may be allocated at once! */
1402 			mlen = 1 << ord;
1403 			buddy = mb_find_buddy(e4b, ord, &max);
1404 			BUG_ON((start >> ord) >= max);
1405 			mb_set_bit(start >> ord, buddy);
1406 			e4b->bd_info->bb_counters[ord]--;
1407 			start += mlen;
1408 			len -= mlen;
1409 			BUG_ON(len < 0);
1410 			continue;
1411 		}
1412 
1413 		/* store for history */
1414 		if (ret == 0)
1415 			ret = len | (ord << 16);
1416 
1417 		/* we have to split large buddy */
1418 		BUG_ON(ord <= 0);
1419 		buddy = mb_find_buddy(e4b, ord, &max);
1420 		mb_set_bit(start >> ord, buddy);
1421 		e4b->bd_info->bb_counters[ord]--;
1422 
1423 		ord--;
1424 		cur = (start >> ord) & ~1U;
1425 		buddy = mb_find_buddy(e4b, ord, &max);
1426 		mb_clear_bit(cur, buddy);
1427 		mb_clear_bit(cur + 1, buddy);
1428 		e4b->bd_info->bb_counters[ord]++;
1429 		e4b->bd_info->bb_counters[ord]++;
1430 	}
1431 
1432 	mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1433 	mb_check_buddy(e4b);
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * Must be called under group lock!
1440  */
1441 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1442 					struct ext4_buddy *e4b)
1443 {
1444 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1445 	int ret;
1446 
1447 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1448 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1449 
1450 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1451 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1452 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1453 
1454 	/* preallocation can change ac_b_ex, thus we store actually
1455 	 * allocated blocks for history */
1456 	ac->ac_f_ex = ac->ac_b_ex;
1457 
1458 	ac->ac_status = AC_STATUS_FOUND;
1459 	ac->ac_tail = ret & 0xffff;
1460 	ac->ac_buddy = ret >> 16;
1461 
1462 	/*
1463 	 * take the page reference. We want the page to be pinned
1464 	 * so that we don't get a ext4_mb_init_cache_call for this
1465 	 * group until we update the bitmap. That would mean we
1466 	 * double allocate blocks. The reference is dropped
1467 	 * in ext4_mb_release_context
1468 	 */
1469 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1470 	get_page(ac->ac_bitmap_page);
1471 	ac->ac_buddy_page = e4b->bd_buddy_page;
1472 	get_page(ac->ac_buddy_page);
1473 	/* on allocation we use ac to track the held semaphore */
1474 	ac->alloc_semp =  e4b->alloc_semp;
1475 	e4b->alloc_semp = NULL;
1476 	/* store last allocated for subsequent stream allocation */
1477 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1478 		spin_lock(&sbi->s_md_lock);
1479 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1480 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1481 		spin_unlock(&sbi->s_md_lock);
1482 	}
1483 }
1484 
1485 /*
1486  * regular allocator, for general purposes allocation
1487  */
1488 
1489 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1490 					struct ext4_buddy *e4b,
1491 					int finish_group)
1492 {
1493 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1494 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1495 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1496 	struct ext4_free_extent ex;
1497 	int max;
1498 
1499 	if (ac->ac_status == AC_STATUS_FOUND)
1500 		return;
1501 	/*
1502 	 * We don't want to scan for a whole year
1503 	 */
1504 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1505 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1506 		ac->ac_status = AC_STATUS_BREAK;
1507 		return;
1508 	}
1509 
1510 	/*
1511 	 * Haven't found good chunk so far, let's continue
1512 	 */
1513 	if (bex->fe_len < gex->fe_len)
1514 		return;
1515 
1516 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1517 			&& bex->fe_group == e4b->bd_group) {
1518 		/* recheck chunk's availability - we don't know
1519 		 * when it was found (within this lock-unlock
1520 		 * period or not) */
1521 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1522 		if (max >= gex->fe_len) {
1523 			ext4_mb_use_best_found(ac, e4b);
1524 			return;
1525 		}
1526 	}
1527 }
1528 
1529 /*
1530  * The routine checks whether found extent is good enough. If it is,
1531  * then the extent gets marked used and flag is set to the context
1532  * to stop scanning. Otherwise, the extent is compared with the
1533  * previous found extent and if new one is better, then it's stored
1534  * in the context. Later, the best found extent will be used, if
1535  * mballoc can't find good enough extent.
1536  *
1537  * FIXME: real allocation policy is to be designed yet!
1538  */
1539 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1540 					struct ext4_free_extent *ex,
1541 					struct ext4_buddy *e4b)
1542 {
1543 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1544 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1545 
1546 	BUG_ON(ex->fe_len <= 0);
1547 	BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1548 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1549 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1550 
1551 	ac->ac_found++;
1552 
1553 	/*
1554 	 * The special case - take what you catch first
1555 	 */
1556 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1557 		*bex = *ex;
1558 		ext4_mb_use_best_found(ac, e4b);
1559 		return;
1560 	}
1561 
1562 	/*
1563 	 * Let's check whether the chuck is good enough
1564 	 */
1565 	if (ex->fe_len == gex->fe_len) {
1566 		*bex = *ex;
1567 		ext4_mb_use_best_found(ac, e4b);
1568 		return;
1569 	}
1570 
1571 	/*
1572 	 * If this is first found extent, just store it in the context
1573 	 */
1574 	if (bex->fe_len == 0) {
1575 		*bex = *ex;
1576 		return;
1577 	}
1578 
1579 	/*
1580 	 * If new found extent is better, store it in the context
1581 	 */
1582 	if (bex->fe_len < gex->fe_len) {
1583 		/* if the request isn't satisfied, any found extent
1584 		 * larger than previous best one is better */
1585 		if (ex->fe_len > bex->fe_len)
1586 			*bex = *ex;
1587 	} else if (ex->fe_len > gex->fe_len) {
1588 		/* if the request is satisfied, then we try to find
1589 		 * an extent that still satisfy the request, but is
1590 		 * smaller than previous one */
1591 		if (ex->fe_len < bex->fe_len)
1592 			*bex = *ex;
1593 	}
1594 
1595 	ext4_mb_check_limits(ac, e4b, 0);
1596 }
1597 
1598 static noinline_for_stack
1599 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1600 					struct ext4_buddy *e4b)
1601 {
1602 	struct ext4_free_extent ex = ac->ac_b_ex;
1603 	ext4_group_t group = ex.fe_group;
1604 	int max;
1605 	int err;
1606 
1607 	BUG_ON(ex.fe_len <= 0);
1608 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1609 	if (err)
1610 		return err;
1611 
1612 	ext4_lock_group(ac->ac_sb, group);
1613 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1614 
1615 	if (max > 0) {
1616 		ac->ac_b_ex = ex;
1617 		ext4_mb_use_best_found(ac, e4b);
1618 	}
1619 
1620 	ext4_unlock_group(ac->ac_sb, group);
1621 	ext4_mb_release_desc(e4b);
1622 
1623 	return 0;
1624 }
1625 
1626 static noinline_for_stack
1627 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1628 				struct ext4_buddy *e4b)
1629 {
1630 	ext4_group_t group = ac->ac_g_ex.fe_group;
1631 	int max;
1632 	int err;
1633 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1634 	struct ext4_super_block *es = sbi->s_es;
1635 	struct ext4_free_extent ex;
1636 
1637 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1638 		return 0;
1639 
1640 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1641 	if (err)
1642 		return err;
1643 
1644 	ext4_lock_group(ac->ac_sb, group);
1645 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1646 			     ac->ac_g_ex.fe_len, &ex);
1647 
1648 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1649 		ext4_fsblk_t start;
1650 
1651 		start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1652 			ex.fe_start + le32_to_cpu(es->s_first_data_block);
1653 		/* use do_div to get remainder (would be 64-bit modulo) */
1654 		if (do_div(start, sbi->s_stripe) == 0) {
1655 			ac->ac_found++;
1656 			ac->ac_b_ex = ex;
1657 			ext4_mb_use_best_found(ac, e4b);
1658 		}
1659 	} else if (max >= ac->ac_g_ex.fe_len) {
1660 		BUG_ON(ex.fe_len <= 0);
1661 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1662 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1663 		ac->ac_found++;
1664 		ac->ac_b_ex = ex;
1665 		ext4_mb_use_best_found(ac, e4b);
1666 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1667 		/* Sometimes, caller may want to merge even small
1668 		 * number of blocks to an existing extent */
1669 		BUG_ON(ex.fe_len <= 0);
1670 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1671 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1672 		ac->ac_found++;
1673 		ac->ac_b_ex = ex;
1674 		ext4_mb_use_best_found(ac, e4b);
1675 	}
1676 	ext4_unlock_group(ac->ac_sb, group);
1677 	ext4_mb_release_desc(e4b);
1678 
1679 	return 0;
1680 }
1681 
1682 /*
1683  * The routine scans buddy structures (not bitmap!) from given order
1684  * to max order and tries to find big enough chunk to satisfy the req
1685  */
1686 static noinline_for_stack
1687 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1688 					struct ext4_buddy *e4b)
1689 {
1690 	struct super_block *sb = ac->ac_sb;
1691 	struct ext4_group_info *grp = e4b->bd_info;
1692 	void *buddy;
1693 	int i;
1694 	int k;
1695 	int max;
1696 
1697 	BUG_ON(ac->ac_2order <= 0);
1698 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1699 		if (grp->bb_counters[i] == 0)
1700 			continue;
1701 
1702 		buddy = mb_find_buddy(e4b, i, &max);
1703 		BUG_ON(buddy == NULL);
1704 
1705 		k = mb_find_next_zero_bit(buddy, max, 0);
1706 		BUG_ON(k >= max);
1707 
1708 		ac->ac_found++;
1709 
1710 		ac->ac_b_ex.fe_len = 1 << i;
1711 		ac->ac_b_ex.fe_start = k << i;
1712 		ac->ac_b_ex.fe_group = e4b->bd_group;
1713 
1714 		ext4_mb_use_best_found(ac, e4b);
1715 
1716 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1717 
1718 		if (EXT4_SB(sb)->s_mb_stats)
1719 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1720 
1721 		break;
1722 	}
1723 }
1724 
1725 /*
1726  * The routine scans the group and measures all found extents.
1727  * In order to optimize scanning, caller must pass number of
1728  * free blocks in the group, so the routine can know upper limit.
1729  */
1730 static noinline_for_stack
1731 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1732 					struct ext4_buddy *e4b)
1733 {
1734 	struct super_block *sb = ac->ac_sb;
1735 	void *bitmap = EXT4_MB_BITMAP(e4b);
1736 	struct ext4_free_extent ex;
1737 	int i;
1738 	int free;
1739 
1740 	free = e4b->bd_info->bb_free;
1741 	BUG_ON(free <= 0);
1742 
1743 	i = e4b->bd_info->bb_first_free;
1744 
1745 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1746 		i = mb_find_next_zero_bit(bitmap,
1747 						EXT4_BLOCKS_PER_GROUP(sb), i);
1748 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1749 			/*
1750 			 * IF we have corrupt bitmap, we won't find any
1751 			 * free blocks even though group info says we
1752 			 * we have free blocks
1753 			 */
1754 			ext4_grp_locked_error(sb, e4b->bd_group,
1755 					__func__, "%d free blocks as per "
1756 					"group info. But bitmap says 0",
1757 					free);
1758 			break;
1759 		}
1760 
1761 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1762 		BUG_ON(ex.fe_len <= 0);
1763 		if (free < ex.fe_len) {
1764 			ext4_grp_locked_error(sb, e4b->bd_group,
1765 					__func__, "%d free blocks as per "
1766 					"group info. But got %d blocks",
1767 					free, ex.fe_len);
1768 			/*
1769 			 * The number of free blocks differs. This mostly
1770 			 * indicate that the bitmap is corrupt. So exit
1771 			 * without claiming the space.
1772 			 */
1773 			break;
1774 		}
1775 
1776 		ext4_mb_measure_extent(ac, &ex, e4b);
1777 
1778 		i += ex.fe_len;
1779 		free -= ex.fe_len;
1780 	}
1781 
1782 	ext4_mb_check_limits(ac, e4b, 1);
1783 }
1784 
1785 /*
1786  * This is a special case for storages like raid5
1787  * we try to find stripe-aligned chunks for stripe-size requests
1788  * XXX should do so at least for multiples of stripe size as well
1789  */
1790 static noinline_for_stack
1791 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1792 				 struct ext4_buddy *e4b)
1793 {
1794 	struct super_block *sb = ac->ac_sb;
1795 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1796 	void *bitmap = EXT4_MB_BITMAP(e4b);
1797 	struct ext4_free_extent ex;
1798 	ext4_fsblk_t first_group_block;
1799 	ext4_fsblk_t a;
1800 	ext4_grpblk_t i;
1801 	int max;
1802 
1803 	BUG_ON(sbi->s_stripe == 0);
1804 
1805 	/* find first stripe-aligned block in group */
1806 	first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1807 		+ le32_to_cpu(sbi->s_es->s_first_data_block);
1808 	a = first_group_block + sbi->s_stripe - 1;
1809 	do_div(a, sbi->s_stripe);
1810 	i = (a * sbi->s_stripe) - first_group_block;
1811 
1812 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1813 		if (!mb_test_bit(i, bitmap)) {
1814 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1815 			if (max >= sbi->s_stripe) {
1816 				ac->ac_found++;
1817 				ac->ac_b_ex = ex;
1818 				ext4_mb_use_best_found(ac, e4b);
1819 				break;
1820 			}
1821 		}
1822 		i += sbi->s_stripe;
1823 	}
1824 }
1825 
1826 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1827 				ext4_group_t group, int cr)
1828 {
1829 	unsigned free, fragments;
1830 	unsigned i, bits;
1831 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1832 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1833 
1834 	BUG_ON(cr < 0 || cr >= 4);
1835 	BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1836 
1837 	free = grp->bb_free;
1838 	fragments = grp->bb_fragments;
1839 	if (free == 0)
1840 		return 0;
1841 	if (fragments == 0)
1842 		return 0;
1843 
1844 	switch (cr) {
1845 	case 0:
1846 		BUG_ON(ac->ac_2order == 0);
1847 
1848 		/* Avoid using the first bg of a flexgroup for data files */
1849 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1850 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1851 		    ((group % flex_size) == 0))
1852 			return 0;
1853 
1854 		bits = ac->ac_sb->s_blocksize_bits + 1;
1855 		for (i = ac->ac_2order; i <= bits; i++)
1856 			if (grp->bb_counters[i] > 0)
1857 				return 1;
1858 		break;
1859 	case 1:
1860 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1861 			return 1;
1862 		break;
1863 	case 2:
1864 		if (free >= ac->ac_g_ex.fe_len)
1865 			return 1;
1866 		break;
1867 	case 3:
1868 		return 1;
1869 	default:
1870 		BUG();
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 /*
1877  * lock the group_info alloc_sem of all the groups
1878  * belonging to the same buddy cache page. This
1879  * make sure other parallel operation on the buddy
1880  * cache doesn't happen  whild holding the buddy cache
1881  * lock
1882  */
1883 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1884 {
1885 	int i;
1886 	int block, pnum;
1887 	int blocks_per_page;
1888 	int groups_per_page;
1889 	ext4_group_t ngroups = ext4_get_groups_count(sb);
1890 	ext4_group_t first_group;
1891 	struct ext4_group_info *grp;
1892 
1893 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1894 	/*
1895 	 * the buddy cache inode stores the block bitmap
1896 	 * and buddy information in consecutive blocks.
1897 	 * So for each group we need two blocks.
1898 	 */
1899 	block = group * 2;
1900 	pnum = block / blocks_per_page;
1901 	first_group = pnum * blocks_per_page / 2;
1902 
1903 	groups_per_page = blocks_per_page >> 1;
1904 	if (groups_per_page == 0)
1905 		groups_per_page = 1;
1906 	/* read all groups the page covers into the cache */
1907 	for (i = 0; i < groups_per_page; i++) {
1908 
1909 		if ((first_group + i) >= ngroups)
1910 			break;
1911 		grp = ext4_get_group_info(sb, first_group + i);
1912 		/* take all groups write allocation
1913 		 * semaphore. This make sure there is
1914 		 * no block allocation going on in any
1915 		 * of that groups
1916 		 */
1917 		down_write_nested(&grp->alloc_sem, i);
1918 	}
1919 	return i;
1920 }
1921 
1922 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1923 					ext4_group_t group, int locked_group)
1924 {
1925 	int i;
1926 	int block, pnum;
1927 	int blocks_per_page;
1928 	ext4_group_t first_group;
1929 	struct ext4_group_info *grp;
1930 
1931 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1932 	/*
1933 	 * the buddy cache inode stores the block bitmap
1934 	 * and buddy information in consecutive blocks.
1935 	 * So for each group we need two blocks.
1936 	 */
1937 	block = group * 2;
1938 	pnum = block / blocks_per_page;
1939 	first_group = pnum * blocks_per_page / 2;
1940 	/* release locks on all the groups */
1941 	for (i = 0; i < locked_group; i++) {
1942 
1943 		grp = ext4_get_group_info(sb, first_group + i);
1944 		/* take all groups write allocation
1945 		 * semaphore. This make sure there is
1946 		 * no block allocation going on in any
1947 		 * of that groups
1948 		 */
1949 		up_write(&grp->alloc_sem);
1950 	}
1951 
1952 }
1953 
1954 static noinline_for_stack int
1955 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1956 {
1957 	ext4_group_t ngroups, group, i;
1958 	int cr;
1959 	int err = 0;
1960 	int bsbits;
1961 	struct ext4_sb_info *sbi;
1962 	struct super_block *sb;
1963 	struct ext4_buddy e4b;
1964 
1965 	sb = ac->ac_sb;
1966 	sbi = EXT4_SB(sb);
1967 	ngroups = ext4_get_groups_count(sb);
1968 	/* non-extent files are limited to low blocks/groups */
1969 	if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL))
1970 		ngroups = sbi->s_blockfile_groups;
1971 
1972 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1973 
1974 	/* first, try the goal */
1975 	err = ext4_mb_find_by_goal(ac, &e4b);
1976 	if (err || ac->ac_status == AC_STATUS_FOUND)
1977 		goto out;
1978 
1979 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1980 		goto out;
1981 
1982 	/*
1983 	 * ac->ac2_order is set only if the fe_len is a power of 2
1984 	 * if ac2_order is set we also set criteria to 0 so that we
1985 	 * try exact allocation using buddy.
1986 	 */
1987 	i = fls(ac->ac_g_ex.fe_len);
1988 	ac->ac_2order = 0;
1989 	/*
1990 	 * We search using buddy data only if the order of the request
1991 	 * is greater than equal to the sbi_s_mb_order2_reqs
1992 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1993 	 */
1994 	if (i >= sbi->s_mb_order2_reqs) {
1995 		/*
1996 		 * This should tell if fe_len is exactly power of 2
1997 		 */
1998 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1999 			ac->ac_2order = i - 1;
2000 	}
2001 
2002 	bsbits = ac->ac_sb->s_blocksize_bits;
2003 
2004 	/* if stream allocation is enabled, use global goal */
2005 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2006 		/* TBD: may be hot point */
2007 		spin_lock(&sbi->s_md_lock);
2008 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2009 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2010 		spin_unlock(&sbi->s_md_lock);
2011 	}
2012 
2013 	/* Let's just scan groups to find more-less suitable blocks */
2014 	cr = ac->ac_2order ? 0 : 1;
2015 	/*
2016 	 * cr == 0 try to get exact allocation,
2017 	 * cr == 3  try to get anything
2018 	 */
2019 repeat:
2020 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2021 		ac->ac_criteria = cr;
2022 		/*
2023 		 * searching for the right group start
2024 		 * from the goal value specified
2025 		 */
2026 		group = ac->ac_g_ex.fe_group;
2027 
2028 		for (i = 0; i < ngroups; group++, i++) {
2029 			struct ext4_group_info *grp;
2030 			struct ext4_group_desc *desc;
2031 
2032 			if (group == ngroups)
2033 				group = 0;
2034 
2035 			/* quick check to skip empty groups */
2036 			grp = ext4_get_group_info(sb, group);
2037 			if (grp->bb_free == 0)
2038 				continue;
2039 
2040 			err = ext4_mb_load_buddy(sb, group, &e4b);
2041 			if (err)
2042 				goto out;
2043 
2044 			ext4_lock_group(sb, group);
2045 			if (!ext4_mb_good_group(ac, group, cr)) {
2046 				/* someone did allocation from this group */
2047 				ext4_unlock_group(sb, group);
2048 				ext4_mb_release_desc(&e4b);
2049 				continue;
2050 			}
2051 
2052 			ac->ac_groups_scanned++;
2053 			desc = ext4_get_group_desc(sb, group, NULL);
2054 			if (cr == 0)
2055 				ext4_mb_simple_scan_group(ac, &e4b);
2056 			else if (cr == 1 &&
2057 					ac->ac_g_ex.fe_len == sbi->s_stripe)
2058 				ext4_mb_scan_aligned(ac, &e4b);
2059 			else
2060 				ext4_mb_complex_scan_group(ac, &e4b);
2061 
2062 			ext4_unlock_group(sb, group);
2063 			ext4_mb_release_desc(&e4b);
2064 
2065 			if (ac->ac_status != AC_STATUS_CONTINUE)
2066 				break;
2067 		}
2068 	}
2069 
2070 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2071 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2072 		/*
2073 		 * We've been searching too long. Let's try to allocate
2074 		 * the best chunk we've found so far
2075 		 */
2076 
2077 		ext4_mb_try_best_found(ac, &e4b);
2078 		if (ac->ac_status != AC_STATUS_FOUND) {
2079 			/*
2080 			 * Someone more lucky has already allocated it.
2081 			 * The only thing we can do is just take first
2082 			 * found block(s)
2083 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2084 			 */
2085 			ac->ac_b_ex.fe_group = 0;
2086 			ac->ac_b_ex.fe_start = 0;
2087 			ac->ac_b_ex.fe_len = 0;
2088 			ac->ac_status = AC_STATUS_CONTINUE;
2089 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2090 			cr = 3;
2091 			atomic_inc(&sbi->s_mb_lost_chunks);
2092 			goto repeat;
2093 		}
2094 	}
2095 out:
2096 	return err;
2097 }
2098 
2099 #ifdef EXT4_MB_HISTORY
2100 struct ext4_mb_proc_session {
2101 	struct ext4_mb_history *history;
2102 	struct super_block *sb;
2103 	int start;
2104 	int max;
2105 };
2106 
2107 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
2108 					struct ext4_mb_history *hs,
2109 					int first)
2110 {
2111 	if (hs == s->history + s->max)
2112 		hs = s->history;
2113 	if (!first && hs == s->history + s->start)
2114 		return NULL;
2115 	while (hs->orig.fe_len == 0) {
2116 		hs++;
2117 		if (hs == s->history + s->max)
2118 			hs = s->history;
2119 		if (hs == s->history + s->start)
2120 			return NULL;
2121 	}
2122 	return hs;
2123 }
2124 
2125 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
2126 {
2127 	struct ext4_mb_proc_session *s = seq->private;
2128 	struct ext4_mb_history *hs;
2129 	int l = *pos;
2130 
2131 	if (l == 0)
2132 		return SEQ_START_TOKEN;
2133 	hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2134 	if (!hs)
2135 		return NULL;
2136 	while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
2137 	return hs;
2138 }
2139 
2140 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
2141 				      loff_t *pos)
2142 {
2143 	struct ext4_mb_proc_session *s = seq->private;
2144 	struct ext4_mb_history *hs = v;
2145 
2146 	++*pos;
2147 	if (v == SEQ_START_TOKEN)
2148 		return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
2149 	else
2150 		return ext4_mb_history_skip_empty(s, ++hs, 0);
2151 }
2152 
2153 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
2154 {
2155 	char buf[25], buf2[25], buf3[25], *fmt;
2156 	struct ext4_mb_history *hs = v;
2157 
2158 	if (v == SEQ_START_TOKEN) {
2159 		seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
2160 				"%-5s %-2s %-6s %-5s %-5s %-6s\n",
2161 			  "pid", "inode", "original", "goal", "result", "found",
2162 			   "grps", "cr", "flags", "merge", "tail", "broken");
2163 		return 0;
2164 	}
2165 
2166 	if (hs->op == EXT4_MB_HISTORY_ALLOC) {
2167 		fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
2168 			"0x%04x %-5s %-5u %-6u\n";
2169 		sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2170 			hs->result.fe_start, hs->result.fe_len,
2171 			hs->result.fe_logical);
2172 		sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2173 			hs->orig.fe_start, hs->orig.fe_len,
2174 			hs->orig.fe_logical);
2175 		sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group,
2176 			hs->goal.fe_start, hs->goal.fe_len,
2177 			hs->goal.fe_logical);
2178 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
2179 				hs->found, hs->groups, hs->cr, hs->flags,
2180 				hs->merged ? "M" : "", hs->tail,
2181 				hs->buddy ? 1 << hs->buddy : 0);
2182 	} else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
2183 		fmt = "%-5u %-8u %-23s %-23s %-23s\n";
2184 		sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group,
2185 			hs->result.fe_start, hs->result.fe_len,
2186 			hs->result.fe_logical);
2187 		sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group,
2188 			hs->orig.fe_start, hs->orig.fe_len,
2189 			hs->orig.fe_logical);
2190 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
2191 	} else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
2192 		sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2193 			hs->result.fe_start, hs->result.fe_len);
2194 		seq_printf(seq, "%-5u %-8u %-23s discard\n",
2195 				hs->pid, hs->ino, buf2);
2196 	} else if (hs->op == EXT4_MB_HISTORY_FREE) {
2197 		sprintf(buf2, "%u/%d/%u", hs->result.fe_group,
2198 			hs->result.fe_start, hs->result.fe_len);
2199 		seq_printf(seq, "%-5u %-8u %-23s free\n",
2200 				hs->pid, hs->ino, buf2);
2201 	}
2202 	return 0;
2203 }
2204 
2205 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
2206 {
2207 }
2208 
2209 static const struct seq_operations ext4_mb_seq_history_ops = {
2210 	.start  = ext4_mb_seq_history_start,
2211 	.next   = ext4_mb_seq_history_next,
2212 	.stop   = ext4_mb_seq_history_stop,
2213 	.show   = ext4_mb_seq_history_show,
2214 };
2215 
2216 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
2217 {
2218 	struct super_block *sb = PDE(inode)->data;
2219 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2220 	struct ext4_mb_proc_session *s;
2221 	int rc;
2222 	int size;
2223 
2224 	if (unlikely(sbi->s_mb_history == NULL))
2225 		return -ENOMEM;
2226 	s = kmalloc(sizeof(*s), GFP_KERNEL);
2227 	if (s == NULL)
2228 		return -ENOMEM;
2229 	s->sb = sb;
2230 	size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
2231 	s->history = kmalloc(size, GFP_KERNEL);
2232 	if (s->history == NULL) {
2233 		kfree(s);
2234 		return -ENOMEM;
2235 	}
2236 
2237 	spin_lock(&sbi->s_mb_history_lock);
2238 	memcpy(s->history, sbi->s_mb_history, size);
2239 	s->max = sbi->s_mb_history_max;
2240 	s->start = sbi->s_mb_history_cur % s->max;
2241 	spin_unlock(&sbi->s_mb_history_lock);
2242 
2243 	rc = seq_open(file, &ext4_mb_seq_history_ops);
2244 	if (rc == 0) {
2245 		struct seq_file *m = (struct seq_file *)file->private_data;
2246 		m->private = s;
2247 	} else {
2248 		kfree(s->history);
2249 		kfree(s);
2250 	}
2251 	return rc;
2252 
2253 }
2254 
2255 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2256 {
2257 	struct seq_file *seq = (struct seq_file *)file->private_data;
2258 	struct ext4_mb_proc_session *s = seq->private;
2259 	kfree(s->history);
2260 	kfree(s);
2261 	return seq_release(inode, file);
2262 }
2263 
2264 static ssize_t ext4_mb_seq_history_write(struct file *file,
2265 				const char __user *buffer,
2266 				size_t count, loff_t *ppos)
2267 {
2268 	struct seq_file *seq = (struct seq_file *)file->private_data;
2269 	struct ext4_mb_proc_session *s = seq->private;
2270 	struct super_block *sb = s->sb;
2271 	char str[32];
2272 	int value;
2273 
2274 	if (count >= sizeof(str)) {
2275 		printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2276 				"mb_history", (int)sizeof(str));
2277 		return -EOVERFLOW;
2278 	}
2279 
2280 	if (copy_from_user(str, buffer, count))
2281 		return -EFAULT;
2282 
2283 	value = simple_strtol(str, NULL, 0);
2284 	if (value < 0)
2285 		return -ERANGE;
2286 	EXT4_SB(sb)->s_mb_history_filter = value;
2287 
2288 	return count;
2289 }
2290 
2291 static const struct file_operations ext4_mb_seq_history_fops = {
2292 	.owner		= THIS_MODULE,
2293 	.open		= ext4_mb_seq_history_open,
2294 	.read		= seq_read,
2295 	.write		= ext4_mb_seq_history_write,
2296 	.llseek		= seq_lseek,
2297 	.release	= ext4_mb_seq_history_release,
2298 };
2299 
2300 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2301 {
2302 	struct super_block *sb = seq->private;
2303 	ext4_group_t group;
2304 
2305 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2306 		return NULL;
2307 	group = *pos + 1;
2308 	return (void *) ((unsigned long) group);
2309 }
2310 
2311 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2312 {
2313 	struct super_block *sb = seq->private;
2314 	ext4_group_t group;
2315 
2316 	++*pos;
2317 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2318 		return NULL;
2319 	group = *pos + 1;
2320 	return (void *) ((unsigned long) group);
2321 }
2322 
2323 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2324 {
2325 	struct super_block *sb = seq->private;
2326 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2327 	int i;
2328 	int err;
2329 	struct ext4_buddy e4b;
2330 	struct sg {
2331 		struct ext4_group_info info;
2332 		ext4_grpblk_t counters[16];
2333 	} sg;
2334 
2335 	group--;
2336 	if (group == 0)
2337 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2338 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2339 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2340 			   "group", "free", "frags", "first",
2341 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2342 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2343 
2344 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2345 		sizeof(struct ext4_group_info);
2346 	err = ext4_mb_load_buddy(sb, group, &e4b);
2347 	if (err) {
2348 		seq_printf(seq, "#%-5u: I/O error\n", group);
2349 		return 0;
2350 	}
2351 	ext4_lock_group(sb, group);
2352 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2353 	ext4_unlock_group(sb, group);
2354 	ext4_mb_release_desc(&e4b);
2355 
2356 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2357 			sg.info.bb_fragments, sg.info.bb_first_free);
2358 	for (i = 0; i <= 13; i++)
2359 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2360 				sg.info.bb_counters[i] : 0);
2361 	seq_printf(seq, " ]\n");
2362 
2363 	return 0;
2364 }
2365 
2366 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2367 {
2368 }
2369 
2370 static const struct seq_operations ext4_mb_seq_groups_ops = {
2371 	.start  = ext4_mb_seq_groups_start,
2372 	.next   = ext4_mb_seq_groups_next,
2373 	.stop   = ext4_mb_seq_groups_stop,
2374 	.show   = ext4_mb_seq_groups_show,
2375 };
2376 
2377 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2378 {
2379 	struct super_block *sb = PDE(inode)->data;
2380 	int rc;
2381 
2382 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2383 	if (rc == 0) {
2384 		struct seq_file *m = (struct seq_file *)file->private_data;
2385 		m->private = sb;
2386 	}
2387 	return rc;
2388 
2389 }
2390 
2391 static const struct file_operations ext4_mb_seq_groups_fops = {
2392 	.owner		= THIS_MODULE,
2393 	.open		= ext4_mb_seq_groups_open,
2394 	.read		= seq_read,
2395 	.llseek		= seq_lseek,
2396 	.release	= seq_release,
2397 };
2398 
2399 static void ext4_mb_history_release(struct super_block *sb)
2400 {
2401 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2402 
2403 	if (sbi->s_proc != NULL) {
2404 		remove_proc_entry("mb_groups", sbi->s_proc);
2405 		if (sbi->s_mb_history_max)
2406 			remove_proc_entry("mb_history", sbi->s_proc);
2407 	}
2408 	kfree(sbi->s_mb_history);
2409 }
2410 
2411 static void ext4_mb_history_init(struct super_block *sb)
2412 {
2413 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2414 	int i;
2415 
2416 	if (sbi->s_proc != NULL) {
2417 		if (sbi->s_mb_history_max)
2418 			proc_create_data("mb_history", S_IRUGO, sbi->s_proc,
2419 					 &ext4_mb_seq_history_fops, sb);
2420 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2421 				 &ext4_mb_seq_groups_fops, sb);
2422 	}
2423 
2424 	sbi->s_mb_history_cur = 0;
2425 	spin_lock_init(&sbi->s_mb_history_lock);
2426 	i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2427 	sbi->s_mb_history = i ? kzalloc(i, GFP_KERNEL) : NULL;
2428 	/* if we can't allocate history, then we simple won't use it */
2429 }
2430 
2431 static noinline_for_stack void
2432 ext4_mb_store_history(struct ext4_allocation_context *ac)
2433 {
2434 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2435 	struct ext4_mb_history h;
2436 
2437 	if (sbi->s_mb_history == NULL)
2438 		return;
2439 
2440 	if (!(ac->ac_op & sbi->s_mb_history_filter))
2441 		return;
2442 
2443 	h.op = ac->ac_op;
2444 	h.pid = current->pid;
2445 	h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2446 	h.orig = ac->ac_o_ex;
2447 	h.result = ac->ac_b_ex;
2448 	h.flags = ac->ac_flags;
2449 	h.found = ac->ac_found;
2450 	h.groups = ac->ac_groups_scanned;
2451 	h.cr = ac->ac_criteria;
2452 	h.tail = ac->ac_tail;
2453 	h.buddy = ac->ac_buddy;
2454 	h.merged = 0;
2455 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2456 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2457 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2458 			h.merged = 1;
2459 		h.goal = ac->ac_g_ex;
2460 		h.result = ac->ac_f_ex;
2461 	}
2462 
2463 	spin_lock(&sbi->s_mb_history_lock);
2464 	memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2465 	if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2466 		sbi->s_mb_history_cur = 0;
2467 	spin_unlock(&sbi->s_mb_history_lock);
2468 }
2469 
2470 #else
2471 #define ext4_mb_history_release(sb)
2472 #define ext4_mb_history_init(sb)
2473 #endif
2474 
2475 
2476 /* Create and initialize ext4_group_info data for the given group. */
2477 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2478 			  struct ext4_group_desc *desc)
2479 {
2480 	int i, len;
2481 	int metalen = 0;
2482 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2483 	struct ext4_group_info **meta_group_info;
2484 
2485 	/*
2486 	 * First check if this group is the first of a reserved block.
2487 	 * If it's true, we have to allocate a new table of pointers
2488 	 * to ext4_group_info structures
2489 	 */
2490 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2491 		metalen = sizeof(*meta_group_info) <<
2492 			EXT4_DESC_PER_BLOCK_BITS(sb);
2493 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2494 		if (meta_group_info == NULL) {
2495 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2496 			       "buddy group\n");
2497 			goto exit_meta_group_info;
2498 		}
2499 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2500 			meta_group_info;
2501 	}
2502 
2503 	/*
2504 	 * calculate needed size. if change bb_counters size,
2505 	 * don't forget about ext4_mb_generate_buddy()
2506 	 */
2507 	len = offsetof(typeof(**meta_group_info),
2508 		       bb_counters[sb->s_blocksize_bits + 2]);
2509 
2510 	meta_group_info =
2511 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2512 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2513 
2514 	meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2515 	if (meta_group_info[i] == NULL) {
2516 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2517 		goto exit_group_info;
2518 	}
2519 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2520 		&(meta_group_info[i]->bb_state));
2521 
2522 	/*
2523 	 * initialize bb_free to be able to skip
2524 	 * empty groups without initialization
2525 	 */
2526 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2527 		meta_group_info[i]->bb_free =
2528 			ext4_free_blocks_after_init(sb, group, desc);
2529 	} else {
2530 		meta_group_info[i]->bb_free =
2531 			ext4_free_blks_count(sb, desc);
2532 	}
2533 
2534 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2535 	init_rwsem(&meta_group_info[i]->alloc_sem);
2536 	meta_group_info[i]->bb_free_root.rb_node = NULL;
2537 
2538 #ifdef DOUBLE_CHECK
2539 	{
2540 		struct buffer_head *bh;
2541 		meta_group_info[i]->bb_bitmap =
2542 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2543 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2544 		bh = ext4_read_block_bitmap(sb, group);
2545 		BUG_ON(bh == NULL);
2546 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2547 			sb->s_blocksize);
2548 		put_bh(bh);
2549 	}
2550 #endif
2551 
2552 	return 0;
2553 
2554 exit_group_info:
2555 	/* If a meta_group_info table has been allocated, release it now */
2556 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2557 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2558 exit_meta_group_info:
2559 	return -ENOMEM;
2560 } /* ext4_mb_add_groupinfo */
2561 
2562 static int ext4_mb_init_backend(struct super_block *sb)
2563 {
2564 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2565 	ext4_group_t i;
2566 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2567 	struct ext4_super_block *es = sbi->s_es;
2568 	int num_meta_group_infos;
2569 	int num_meta_group_infos_max;
2570 	int array_size;
2571 	struct ext4_group_desc *desc;
2572 
2573 	/* This is the number of blocks used by GDT */
2574 	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2575 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2576 
2577 	/*
2578 	 * This is the total number of blocks used by GDT including
2579 	 * the number of reserved blocks for GDT.
2580 	 * The s_group_info array is allocated with this value
2581 	 * to allow a clean online resize without a complex
2582 	 * manipulation of pointer.
2583 	 * The drawback is the unused memory when no resize
2584 	 * occurs but it's very low in terms of pages
2585 	 * (see comments below)
2586 	 * Need to handle this properly when META_BG resizing is allowed
2587 	 */
2588 	num_meta_group_infos_max = num_meta_group_infos +
2589 				le16_to_cpu(es->s_reserved_gdt_blocks);
2590 
2591 	/*
2592 	 * array_size is the size of s_group_info array. We round it
2593 	 * to the next power of two because this approximation is done
2594 	 * internally by kmalloc so we can have some more memory
2595 	 * for free here (e.g. may be used for META_BG resize).
2596 	 */
2597 	array_size = 1;
2598 	while (array_size < sizeof(*sbi->s_group_info) *
2599 	       num_meta_group_infos_max)
2600 		array_size = array_size << 1;
2601 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2602 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2603 	 * So a two level scheme suffices for now. */
2604 	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2605 	if (sbi->s_group_info == NULL) {
2606 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2607 		return -ENOMEM;
2608 	}
2609 	sbi->s_buddy_cache = new_inode(sb);
2610 	if (sbi->s_buddy_cache == NULL) {
2611 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2612 		goto err_freesgi;
2613 	}
2614 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2615 	for (i = 0; i < ngroups; i++) {
2616 		desc = ext4_get_group_desc(sb, i, NULL);
2617 		if (desc == NULL) {
2618 			printk(KERN_ERR
2619 				"EXT4-fs: can't read descriptor %u\n", i);
2620 			goto err_freebuddy;
2621 		}
2622 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2623 			goto err_freebuddy;
2624 	}
2625 
2626 	return 0;
2627 
2628 err_freebuddy:
2629 	while (i-- > 0)
2630 		kfree(ext4_get_group_info(sb, i));
2631 	i = num_meta_group_infos;
2632 	while (i-- > 0)
2633 		kfree(sbi->s_group_info[i]);
2634 	iput(sbi->s_buddy_cache);
2635 err_freesgi:
2636 	kfree(sbi->s_group_info);
2637 	return -ENOMEM;
2638 }
2639 
2640 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2641 {
2642 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2643 	unsigned i, j;
2644 	unsigned offset;
2645 	unsigned max;
2646 	int ret;
2647 
2648 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2649 
2650 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2651 	if (sbi->s_mb_offsets == NULL) {
2652 		return -ENOMEM;
2653 	}
2654 
2655 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2656 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2657 	if (sbi->s_mb_maxs == NULL) {
2658 		kfree(sbi->s_mb_offsets);
2659 		return -ENOMEM;
2660 	}
2661 
2662 	/* order 0 is regular bitmap */
2663 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2664 	sbi->s_mb_offsets[0] = 0;
2665 
2666 	i = 1;
2667 	offset = 0;
2668 	max = sb->s_blocksize << 2;
2669 	do {
2670 		sbi->s_mb_offsets[i] = offset;
2671 		sbi->s_mb_maxs[i] = max;
2672 		offset += 1 << (sb->s_blocksize_bits - i);
2673 		max = max >> 1;
2674 		i++;
2675 	} while (i <= sb->s_blocksize_bits + 1);
2676 
2677 	/* init file for buddy data */
2678 	ret = ext4_mb_init_backend(sb);
2679 	if (ret != 0) {
2680 		kfree(sbi->s_mb_offsets);
2681 		kfree(sbi->s_mb_maxs);
2682 		return ret;
2683 	}
2684 
2685 	spin_lock_init(&sbi->s_md_lock);
2686 	spin_lock_init(&sbi->s_bal_lock);
2687 
2688 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2689 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2690 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2691 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2692 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2693 	sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2694 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2695 
2696 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2697 	if (sbi->s_locality_groups == NULL) {
2698 		kfree(sbi->s_mb_offsets);
2699 		kfree(sbi->s_mb_maxs);
2700 		return -ENOMEM;
2701 	}
2702 	for_each_possible_cpu(i) {
2703 		struct ext4_locality_group *lg;
2704 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2705 		mutex_init(&lg->lg_mutex);
2706 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2707 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2708 		spin_lock_init(&lg->lg_prealloc_lock);
2709 	}
2710 
2711 	ext4_mb_history_init(sb);
2712 
2713 	if (sbi->s_journal)
2714 		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2715 
2716 	printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2717 	return 0;
2718 }
2719 
2720 /* need to called with the ext4 group lock held */
2721 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2722 {
2723 	struct ext4_prealloc_space *pa;
2724 	struct list_head *cur, *tmp;
2725 	int count = 0;
2726 
2727 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2728 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2729 		list_del(&pa->pa_group_list);
2730 		count++;
2731 		kmem_cache_free(ext4_pspace_cachep, pa);
2732 	}
2733 	if (count)
2734 		mb_debug(1, "mballoc: %u PAs left\n", count);
2735 
2736 }
2737 
2738 int ext4_mb_release(struct super_block *sb)
2739 {
2740 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2741 	ext4_group_t i;
2742 	int num_meta_group_infos;
2743 	struct ext4_group_info *grinfo;
2744 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2745 
2746 	if (sbi->s_group_info) {
2747 		for (i = 0; i < ngroups; i++) {
2748 			grinfo = ext4_get_group_info(sb, i);
2749 #ifdef DOUBLE_CHECK
2750 			kfree(grinfo->bb_bitmap);
2751 #endif
2752 			ext4_lock_group(sb, i);
2753 			ext4_mb_cleanup_pa(grinfo);
2754 			ext4_unlock_group(sb, i);
2755 			kfree(grinfo);
2756 		}
2757 		num_meta_group_infos = (ngroups +
2758 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2759 			EXT4_DESC_PER_BLOCK_BITS(sb);
2760 		for (i = 0; i < num_meta_group_infos; i++)
2761 			kfree(sbi->s_group_info[i]);
2762 		kfree(sbi->s_group_info);
2763 	}
2764 	kfree(sbi->s_mb_offsets);
2765 	kfree(sbi->s_mb_maxs);
2766 	if (sbi->s_buddy_cache)
2767 		iput(sbi->s_buddy_cache);
2768 	if (sbi->s_mb_stats) {
2769 		printk(KERN_INFO
2770 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2771 				atomic_read(&sbi->s_bal_allocated),
2772 				atomic_read(&sbi->s_bal_reqs),
2773 				atomic_read(&sbi->s_bal_success));
2774 		printk(KERN_INFO
2775 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2776 				"%u 2^N hits, %u breaks, %u lost\n",
2777 				atomic_read(&sbi->s_bal_ex_scanned),
2778 				atomic_read(&sbi->s_bal_goals),
2779 				atomic_read(&sbi->s_bal_2orders),
2780 				atomic_read(&sbi->s_bal_breaks),
2781 				atomic_read(&sbi->s_mb_lost_chunks));
2782 		printk(KERN_INFO
2783 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2784 				sbi->s_mb_buddies_generated++,
2785 				sbi->s_mb_generation_time);
2786 		printk(KERN_INFO
2787 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2788 				atomic_read(&sbi->s_mb_preallocated),
2789 				atomic_read(&sbi->s_mb_discarded));
2790 	}
2791 
2792 	free_percpu(sbi->s_locality_groups);
2793 	ext4_mb_history_release(sb);
2794 
2795 	return 0;
2796 }
2797 
2798 /*
2799  * This function is called by the jbd2 layer once the commit has finished,
2800  * so we know we can free the blocks that were released with that commit.
2801  */
2802 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2803 {
2804 	struct super_block *sb = journal->j_private;
2805 	struct ext4_buddy e4b;
2806 	struct ext4_group_info *db;
2807 	int err, count = 0, count2 = 0;
2808 	struct ext4_free_data *entry;
2809 	ext4_fsblk_t discard_block;
2810 	struct list_head *l, *ltmp;
2811 
2812 	list_for_each_safe(l, ltmp, &txn->t_private_list) {
2813 		entry = list_entry(l, struct ext4_free_data, list);
2814 
2815 		mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2816 			 entry->count, entry->group, entry);
2817 
2818 		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2819 		/* we expect to find existing buddy because it's pinned */
2820 		BUG_ON(err != 0);
2821 
2822 		db = e4b.bd_info;
2823 		/* there are blocks to put in buddy to make them really free */
2824 		count += entry->count;
2825 		count2++;
2826 		ext4_lock_group(sb, entry->group);
2827 		/* Take it out of per group rb tree */
2828 		rb_erase(&entry->node, &(db->bb_free_root));
2829 		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2830 
2831 		if (!db->bb_free_root.rb_node) {
2832 			/* No more items in the per group rb tree
2833 			 * balance refcounts from ext4_mb_free_metadata()
2834 			 */
2835 			page_cache_release(e4b.bd_buddy_page);
2836 			page_cache_release(e4b.bd_bitmap_page);
2837 		}
2838 		ext4_unlock_group(sb, entry->group);
2839 		discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb)
2840 			+ entry->start_blk
2841 			+ le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
2842 		trace_ext4_discard_blocks(sb, (unsigned long long)discard_block,
2843 					  entry->count);
2844 		sb_issue_discard(sb, discard_block, entry->count);
2845 
2846 		kmem_cache_free(ext4_free_ext_cachep, entry);
2847 		ext4_mb_release_desc(&e4b);
2848 	}
2849 
2850 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2851 }
2852 
2853 #ifdef CONFIG_EXT4_DEBUG
2854 u8 mb_enable_debug __read_mostly;
2855 
2856 static struct dentry *debugfs_dir;
2857 static struct dentry *debugfs_debug;
2858 
2859 static void __init ext4_create_debugfs_entry(void)
2860 {
2861 	debugfs_dir = debugfs_create_dir("ext4", NULL);
2862 	if (debugfs_dir)
2863 		debugfs_debug = debugfs_create_u8("mballoc-debug",
2864 						  S_IRUGO | S_IWUSR,
2865 						  debugfs_dir,
2866 						  &mb_enable_debug);
2867 }
2868 
2869 static void ext4_remove_debugfs_entry(void)
2870 {
2871 	debugfs_remove(debugfs_debug);
2872 	debugfs_remove(debugfs_dir);
2873 }
2874 
2875 #else
2876 
2877 static void __init ext4_create_debugfs_entry(void)
2878 {
2879 }
2880 
2881 static void ext4_remove_debugfs_entry(void)
2882 {
2883 }
2884 
2885 #endif
2886 
2887 int __init init_ext4_mballoc(void)
2888 {
2889 	ext4_pspace_cachep =
2890 		kmem_cache_create("ext4_prealloc_space",
2891 				     sizeof(struct ext4_prealloc_space),
2892 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2893 	if (ext4_pspace_cachep == NULL)
2894 		return -ENOMEM;
2895 
2896 	ext4_ac_cachep =
2897 		kmem_cache_create("ext4_alloc_context",
2898 				     sizeof(struct ext4_allocation_context),
2899 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2900 	if (ext4_ac_cachep == NULL) {
2901 		kmem_cache_destroy(ext4_pspace_cachep);
2902 		return -ENOMEM;
2903 	}
2904 
2905 	ext4_free_ext_cachep =
2906 		kmem_cache_create("ext4_free_block_extents",
2907 				     sizeof(struct ext4_free_data),
2908 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2909 	if (ext4_free_ext_cachep == NULL) {
2910 		kmem_cache_destroy(ext4_pspace_cachep);
2911 		kmem_cache_destroy(ext4_ac_cachep);
2912 		return -ENOMEM;
2913 	}
2914 	ext4_create_debugfs_entry();
2915 	return 0;
2916 }
2917 
2918 void exit_ext4_mballoc(void)
2919 {
2920 	/*
2921 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2922 	 * before destroying the slab cache.
2923 	 */
2924 	rcu_barrier();
2925 	kmem_cache_destroy(ext4_pspace_cachep);
2926 	kmem_cache_destroy(ext4_ac_cachep);
2927 	kmem_cache_destroy(ext4_free_ext_cachep);
2928 	ext4_remove_debugfs_entry();
2929 }
2930 
2931 
2932 /*
2933  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2934  * Returns 0 if success or error code
2935  */
2936 static noinline_for_stack int
2937 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2938 				handle_t *handle, unsigned int reserv_blks)
2939 {
2940 	struct buffer_head *bitmap_bh = NULL;
2941 	struct ext4_super_block *es;
2942 	struct ext4_group_desc *gdp;
2943 	struct buffer_head *gdp_bh;
2944 	struct ext4_sb_info *sbi;
2945 	struct super_block *sb;
2946 	ext4_fsblk_t block;
2947 	int err, len;
2948 
2949 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2950 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2951 
2952 	sb = ac->ac_sb;
2953 	sbi = EXT4_SB(sb);
2954 	es = sbi->s_es;
2955 
2956 
2957 	err = -EIO;
2958 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2959 	if (!bitmap_bh)
2960 		goto out_err;
2961 
2962 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2963 	if (err)
2964 		goto out_err;
2965 
2966 	err = -EIO;
2967 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2968 	if (!gdp)
2969 		goto out_err;
2970 
2971 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2972 			ext4_free_blks_count(sb, gdp));
2973 
2974 	err = ext4_journal_get_write_access(handle, gdp_bh);
2975 	if (err)
2976 		goto out_err;
2977 
2978 	block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2979 		+ ac->ac_b_ex.fe_start
2980 		+ le32_to_cpu(es->s_first_data_block);
2981 
2982 	len = ac->ac_b_ex.fe_len;
2983 	if (!ext4_data_block_valid(sbi, block, len)) {
2984 		ext4_error(sb, __func__,
2985 			   "Allocating blocks %llu-%llu which overlap "
2986 			   "fs metadata\n", block, block+len);
2987 		/* File system mounted not to panic on error
2988 		 * Fix the bitmap and repeat the block allocation
2989 		 * We leak some of the blocks here.
2990 		 */
2991 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2992 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2993 			    ac->ac_b_ex.fe_len);
2994 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2995 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2996 		if (!err)
2997 			err = -EAGAIN;
2998 		goto out_err;
2999 	}
3000 
3001 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3002 #ifdef AGGRESSIVE_CHECK
3003 	{
3004 		int i;
3005 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3006 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3007 						bitmap_bh->b_data));
3008 		}
3009 	}
3010 #endif
3011 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
3012 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3013 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3014 		ext4_free_blks_set(sb, gdp,
3015 					ext4_free_blocks_after_init(sb,
3016 					ac->ac_b_ex.fe_group, gdp));
3017 	}
3018 	len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
3019 	ext4_free_blks_set(sb, gdp, len);
3020 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
3021 
3022 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3023 	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
3024 	/*
3025 	 * Now reduce the dirty block count also. Should not go negative
3026 	 */
3027 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3028 		/* release all the reserved blocks if non delalloc */
3029 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
3030 	else {
3031 		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
3032 						ac->ac_b_ex.fe_len);
3033 		/* convert reserved quota blocks to real quota blocks */
3034 		vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len);
3035 	}
3036 
3037 	if (sbi->s_log_groups_per_flex) {
3038 		ext4_group_t flex_group = ext4_flex_group(sbi,
3039 							  ac->ac_b_ex.fe_group);
3040 		atomic_sub(ac->ac_b_ex.fe_len,
3041 			   &sbi->s_flex_groups[flex_group].free_blocks);
3042 	}
3043 
3044 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3045 	if (err)
3046 		goto out_err;
3047 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3048 
3049 out_err:
3050 	sb->s_dirt = 1;
3051 	brelse(bitmap_bh);
3052 	return err;
3053 }
3054 
3055 /*
3056  * here we normalize request for locality group
3057  * Group request are normalized to s_strip size if we set the same via mount
3058  * option. If not we set it to s_mb_group_prealloc which can be configured via
3059  * /sys/fs/ext4/<partition>/mb_group_prealloc
3060  *
3061  * XXX: should we try to preallocate more than the group has now?
3062  */
3063 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3064 {
3065 	struct super_block *sb = ac->ac_sb;
3066 	struct ext4_locality_group *lg = ac->ac_lg;
3067 
3068 	BUG_ON(lg == NULL);
3069 	if (EXT4_SB(sb)->s_stripe)
3070 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3071 	else
3072 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3073 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3074 		current->pid, ac->ac_g_ex.fe_len);
3075 }
3076 
3077 /*
3078  * Normalization means making request better in terms of
3079  * size and alignment
3080  */
3081 static noinline_for_stack void
3082 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3083 				struct ext4_allocation_request *ar)
3084 {
3085 	int bsbits, max;
3086 	ext4_lblk_t end;
3087 	loff_t size, orig_size, start_off;
3088 	ext4_lblk_t start, orig_start;
3089 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3090 	struct ext4_prealloc_space *pa;
3091 
3092 	/* do normalize only data requests, metadata requests
3093 	   do not need preallocation */
3094 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3095 		return;
3096 
3097 	/* sometime caller may want exact blocks */
3098 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3099 		return;
3100 
3101 	/* caller may indicate that preallocation isn't
3102 	 * required (it's a tail, for example) */
3103 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3104 		return;
3105 
3106 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3107 		ext4_mb_normalize_group_request(ac);
3108 		return ;
3109 	}
3110 
3111 	bsbits = ac->ac_sb->s_blocksize_bits;
3112 
3113 	/* first, let's learn actual file size
3114 	 * given current request is allocated */
3115 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3116 	size = size << bsbits;
3117 	if (size < i_size_read(ac->ac_inode))
3118 		size = i_size_read(ac->ac_inode);
3119 
3120 	/* max size of free chunks */
3121 	max = 2 << bsbits;
3122 
3123 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3124 		(req <= (size) || max <= (chunk_size))
3125 
3126 	/* first, try to predict filesize */
3127 	/* XXX: should this table be tunable? */
3128 	start_off = 0;
3129 	if (size <= 16 * 1024) {
3130 		size = 16 * 1024;
3131 	} else if (size <= 32 * 1024) {
3132 		size = 32 * 1024;
3133 	} else if (size <= 64 * 1024) {
3134 		size = 64 * 1024;
3135 	} else if (size <= 128 * 1024) {
3136 		size = 128 * 1024;
3137 	} else if (size <= 256 * 1024) {
3138 		size = 256 * 1024;
3139 	} else if (size <= 512 * 1024) {
3140 		size = 512 * 1024;
3141 	} else if (size <= 1024 * 1024) {
3142 		size = 1024 * 1024;
3143 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3144 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3145 						(21 - bsbits)) << 21;
3146 		size = 2 * 1024 * 1024;
3147 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3148 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3149 							(22 - bsbits)) << 22;
3150 		size = 4 * 1024 * 1024;
3151 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3152 					(8<<20)>>bsbits, max, 8 * 1024)) {
3153 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3154 							(23 - bsbits)) << 23;
3155 		size = 8 * 1024 * 1024;
3156 	} else {
3157 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3158 		size	  = ac->ac_o_ex.fe_len << bsbits;
3159 	}
3160 	orig_size = size = size >> bsbits;
3161 	orig_start = start = start_off >> bsbits;
3162 
3163 	/* don't cover already allocated blocks in selected range */
3164 	if (ar->pleft && start <= ar->lleft) {
3165 		size -= ar->lleft + 1 - start;
3166 		start = ar->lleft + 1;
3167 	}
3168 	if (ar->pright && start + size - 1 >= ar->lright)
3169 		size -= start + size - ar->lright;
3170 
3171 	end = start + size;
3172 
3173 	/* check we don't cross already preallocated blocks */
3174 	rcu_read_lock();
3175 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3176 		ext4_lblk_t pa_end;
3177 
3178 		if (pa->pa_deleted)
3179 			continue;
3180 		spin_lock(&pa->pa_lock);
3181 		if (pa->pa_deleted) {
3182 			spin_unlock(&pa->pa_lock);
3183 			continue;
3184 		}
3185 
3186 		pa_end = pa->pa_lstart + pa->pa_len;
3187 
3188 		/* PA must not overlap original request */
3189 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3190 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3191 
3192 		/* skip PAs this normalized request doesn't overlap with */
3193 		if (pa->pa_lstart >= end || pa_end <= start) {
3194 			spin_unlock(&pa->pa_lock);
3195 			continue;
3196 		}
3197 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3198 
3199 		/* adjust start or end to be adjacent to this pa */
3200 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3201 			BUG_ON(pa_end < start);
3202 			start = pa_end;
3203 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3204 			BUG_ON(pa->pa_lstart > end);
3205 			end = pa->pa_lstart;
3206 		}
3207 		spin_unlock(&pa->pa_lock);
3208 	}
3209 	rcu_read_unlock();
3210 	size = end - start;
3211 
3212 	/* XXX: extra loop to check we really don't overlap preallocations */
3213 	rcu_read_lock();
3214 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3215 		ext4_lblk_t pa_end;
3216 		spin_lock(&pa->pa_lock);
3217 		if (pa->pa_deleted == 0) {
3218 			pa_end = pa->pa_lstart + pa->pa_len;
3219 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3220 		}
3221 		spin_unlock(&pa->pa_lock);
3222 	}
3223 	rcu_read_unlock();
3224 
3225 	if (start + size <= ac->ac_o_ex.fe_logical &&
3226 			start > ac->ac_o_ex.fe_logical) {
3227 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3228 			(unsigned long) start, (unsigned long) size,
3229 			(unsigned long) ac->ac_o_ex.fe_logical);
3230 	}
3231 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3232 			start > ac->ac_o_ex.fe_logical);
3233 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3234 
3235 	/* now prepare goal request */
3236 
3237 	/* XXX: is it better to align blocks WRT to logical
3238 	 * placement or satisfy big request as is */
3239 	ac->ac_g_ex.fe_logical = start;
3240 	ac->ac_g_ex.fe_len = size;
3241 
3242 	/* define goal start in order to merge */
3243 	if (ar->pright && (ar->lright == (start + size))) {
3244 		/* merge to the right */
3245 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3246 						&ac->ac_f_ex.fe_group,
3247 						&ac->ac_f_ex.fe_start);
3248 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3249 	}
3250 	if (ar->pleft && (ar->lleft + 1 == start)) {
3251 		/* merge to the left */
3252 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3253 						&ac->ac_f_ex.fe_group,
3254 						&ac->ac_f_ex.fe_start);
3255 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3256 	}
3257 
3258 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3259 		(unsigned) orig_size, (unsigned) start);
3260 }
3261 
3262 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3263 {
3264 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3265 
3266 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3267 		atomic_inc(&sbi->s_bal_reqs);
3268 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3269 		if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3270 			atomic_inc(&sbi->s_bal_success);
3271 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3272 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3273 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3274 			atomic_inc(&sbi->s_bal_goals);
3275 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3276 			atomic_inc(&sbi->s_bal_breaks);
3277 	}
3278 
3279 	ext4_mb_store_history(ac);
3280 }
3281 
3282 /*
3283  * use blocks preallocated to inode
3284  */
3285 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3286 				struct ext4_prealloc_space *pa)
3287 {
3288 	ext4_fsblk_t start;
3289 	ext4_fsblk_t end;
3290 	int len;
3291 
3292 	/* found preallocated blocks, use them */
3293 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3294 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3295 	len = end - start;
3296 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3297 					&ac->ac_b_ex.fe_start);
3298 	ac->ac_b_ex.fe_len = len;
3299 	ac->ac_status = AC_STATUS_FOUND;
3300 	ac->ac_pa = pa;
3301 
3302 	BUG_ON(start < pa->pa_pstart);
3303 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3304 	BUG_ON(pa->pa_free < len);
3305 	pa->pa_free -= len;
3306 
3307 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3308 }
3309 
3310 /*
3311  * use blocks preallocated to locality group
3312  */
3313 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3314 				struct ext4_prealloc_space *pa)
3315 {
3316 	unsigned int len = ac->ac_o_ex.fe_len;
3317 
3318 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3319 					&ac->ac_b_ex.fe_group,
3320 					&ac->ac_b_ex.fe_start);
3321 	ac->ac_b_ex.fe_len = len;
3322 	ac->ac_status = AC_STATUS_FOUND;
3323 	ac->ac_pa = pa;
3324 
3325 	/* we don't correct pa_pstart or pa_plen here to avoid
3326 	 * possible race when the group is being loaded concurrently
3327 	 * instead we correct pa later, after blocks are marked
3328 	 * in on-disk bitmap -- see ext4_mb_release_context()
3329 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3330 	 */
3331 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3332 }
3333 
3334 /*
3335  * Return the prealloc space that have minimal distance
3336  * from the goal block. @cpa is the prealloc
3337  * space that is having currently known minimal distance
3338  * from the goal block.
3339  */
3340 static struct ext4_prealloc_space *
3341 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3342 			struct ext4_prealloc_space *pa,
3343 			struct ext4_prealloc_space *cpa)
3344 {
3345 	ext4_fsblk_t cur_distance, new_distance;
3346 
3347 	if (cpa == NULL) {
3348 		atomic_inc(&pa->pa_count);
3349 		return pa;
3350 	}
3351 	cur_distance = abs(goal_block - cpa->pa_pstart);
3352 	new_distance = abs(goal_block - pa->pa_pstart);
3353 
3354 	if (cur_distance < new_distance)
3355 		return cpa;
3356 
3357 	/* drop the previous reference */
3358 	atomic_dec(&cpa->pa_count);
3359 	atomic_inc(&pa->pa_count);
3360 	return pa;
3361 }
3362 
3363 /*
3364  * search goal blocks in preallocated space
3365  */
3366 static noinline_for_stack int
3367 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3368 {
3369 	int order, i;
3370 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3371 	struct ext4_locality_group *lg;
3372 	struct ext4_prealloc_space *pa, *cpa = NULL;
3373 	ext4_fsblk_t goal_block;
3374 
3375 	/* only data can be preallocated */
3376 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3377 		return 0;
3378 
3379 	/* first, try per-file preallocation */
3380 	rcu_read_lock();
3381 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3382 
3383 		/* all fields in this condition don't change,
3384 		 * so we can skip locking for them */
3385 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3386 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3387 			continue;
3388 
3389 		/* non-extent files can't have physical blocks past 2^32 */
3390 		if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL) &&
3391 			pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3392 			continue;
3393 
3394 		/* found preallocated blocks, use them */
3395 		spin_lock(&pa->pa_lock);
3396 		if (pa->pa_deleted == 0 && pa->pa_free) {
3397 			atomic_inc(&pa->pa_count);
3398 			ext4_mb_use_inode_pa(ac, pa);
3399 			spin_unlock(&pa->pa_lock);
3400 			ac->ac_criteria = 10;
3401 			rcu_read_unlock();
3402 			return 1;
3403 		}
3404 		spin_unlock(&pa->pa_lock);
3405 	}
3406 	rcu_read_unlock();
3407 
3408 	/* can we use group allocation? */
3409 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3410 		return 0;
3411 
3412 	/* inode may have no locality group for some reason */
3413 	lg = ac->ac_lg;
3414 	if (lg == NULL)
3415 		return 0;
3416 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3417 	if (order > PREALLOC_TB_SIZE - 1)
3418 		/* The max size of hash table is PREALLOC_TB_SIZE */
3419 		order = PREALLOC_TB_SIZE - 1;
3420 
3421 	goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3422 		     ac->ac_g_ex.fe_start +
3423 		     le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3424 	/*
3425 	 * search for the prealloc space that is having
3426 	 * minimal distance from the goal block.
3427 	 */
3428 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3429 		rcu_read_lock();
3430 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3431 					pa_inode_list) {
3432 			spin_lock(&pa->pa_lock);
3433 			if (pa->pa_deleted == 0 &&
3434 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3435 
3436 				cpa = ext4_mb_check_group_pa(goal_block,
3437 								pa, cpa);
3438 			}
3439 			spin_unlock(&pa->pa_lock);
3440 		}
3441 		rcu_read_unlock();
3442 	}
3443 	if (cpa) {
3444 		ext4_mb_use_group_pa(ac, cpa);
3445 		ac->ac_criteria = 20;
3446 		return 1;
3447 	}
3448 	return 0;
3449 }
3450 
3451 /*
3452  * the function goes through all block freed in the group
3453  * but not yet committed and marks them used in in-core bitmap.
3454  * buddy must be generated from this bitmap
3455  * Need to be called with the ext4 group lock held
3456  */
3457 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3458 						ext4_group_t group)
3459 {
3460 	struct rb_node *n;
3461 	struct ext4_group_info *grp;
3462 	struct ext4_free_data *entry;
3463 
3464 	grp = ext4_get_group_info(sb, group);
3465 	n = rb_first(&(grp->bb_free_root));
3466 
3467 	while (n) {
3468 		entry = rb_entry(n, struct ext4_free_data, node);
3469 		mb_set_bits(bitmap, entry->start_blk, entry->count);
3470 		n = rb_next(n);
3471 	}
3472 	return;
3473 }
3474 
3475 /*
3476  * the function goes through all preallocation in this group and marks them
3477  * used in in-core bitmap. buddy must be generated from this bitmap
3478  * Need to be called with ext4 group lock held
3479  */
3480 static noinline_for_stack
3481 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3482 					ext4_group_t group)
3483 {
3484 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3485 	struct ext4_prealloc_space *pa;
3486 	struct list_head *cur;
3487 	ext4_group_t groupnr;
3488 	ext4_grpblk_t start;
3489 	int preallocated = 0;
3490 	int count = 0;
3491 	int len;
3492 
3493 	/* all form of preallocation discards first load group,
3494 	 * so the only competing code is preallocation use.
3495 	 * we don't need any locking here
3496 	 * notice we do NOT ignore preallocations with pa_deleted
3497 	 * otherwise we could leave used blocks available for
3498 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3499 	 * is dropping preallocation
3500 	 */
3501 	list_for_each(cur, &grp->bb_prealloc_list) {
3502 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3503 		spin_lock(&pa->pa_lock);
3504 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3505 					     &groupnr, &start);
3506 		len = pa->pa_len;
3507 		spin_unlock(&pa->pa_lock);
3508 		if (unlikely(len == 0))
3509 			continue;
3510 		BUG_ON(groupnr != group);
3511 		mb_set_bits(bitmap, start, len);
3512 		preallocated += len;
3513 		count++;
3514 	}
3515 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3516 }
3517 
3518 static void ext4_mb_pa_callback(struct rcu_head *head)
3519 {
3520 	struct ext4_prealloc_space *pa;
3521 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3522 	kmem_cache_free(ext4_pspace_cachep, pa);
3523 }
3524 
3525 /*
3526  * drops a reference to preallocated space descriptor
3527  * if this was the last reference and the space is consumed
3528  */
3529 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3530 			struct super_block *sb, struct ext4_prealloc_space *pa)
3531 {
3532 	ext4_group_t grp;
3533 	ext4_fsblk_t grp_blk;
3534 
3535 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3536 		return;
3537 
3538 	/* in this short window concurrent discard can set pa_deleted */
3539 	spin_lock(&pa->pa_lock);
3540 	if (pa->pa_deleted == 1) {
3541 		spin_unlock(&pa->pa_lock);
3542 		return;
3543 	}
3544 
3545 	pa->pa_deleted = 1;
3546 	spin_unlock(&pa->pa_lock);
3547 
3548 	grp_blk = pa->pa_pstart;
3549 	/*
3550 	 * If doing group-based preallocation, pa_pstart may be in the
3551 	 * next group when pa is used up
3552 	 */
3553 	if (pa->pa_type == MB_GROUP_PA)
3554 		grp_blk--;
3555 
3556 	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3557 
3558 	/*
3559 	 * possible race:
3560 	 *
3561 	 *  P1 (buddy init)			P2 (regular allocation)
3562 	 *					find block B in PA
3563 	 *  copy on-disk bitmap to buddy
3564 	 *  					mark B in on-disk bitmap
3565 	 *					drop PA from group
3566 	 *  mark all PAs in buddy
3567 	 *
3568 	 * thus, P1 initializes buddy with B available. to prevent this
3569 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3570 	 * against that pair
3571 	 */
3572 	ext4_lock_group(sb, grp);
3573 	list_del(&pa->pa_group_list);
3574 	ext4_unlock_group(sb, grp);
3575 
3576 	spin_lock(pa->pa_obj_lock);
3577 	list_del_rcu(&pa->pa_inode_list);
3578 	spin_unlock(pa->pa_obj_lock);
3579 
3580 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3581 }
3582 
3583 /*
3584  * creates new preallocated space for given inode
3585  */
3586 static noinline_for_stack int
3587 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3588 {
3589 	struct super_block *sb = ac->ac_sb;
3590 	struct ext4_prealloc_space *pa;
3591 	struct ext4_group_info *grp;
3592 	struct ext4_inode_info *ei;
3593 
3594 	/* preallocate only when found space is larger then requested */
3595 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3596 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3597 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3598 
3599 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3600 	if (pa == NULL)
3601 		return -ENOMEM;
3602 
3603 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3604 		int winl;
3605 		int wins;
3606 		int win;
3607 		int offs;
3608 
3609 		/* we can't allocate as much as normalizer wants.
3610 		 * so, found space must get proper lstart
3611 		 * to cover original request */
3612 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3613 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3614 
3615 		/* we're limited by original request in that
3616 		 * logical block must be covered any way
3617 		 * winl is window we can move our chunk within */
3618 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3619 
3620 		/* also, we should cover whole original request */
3621 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3622 
3623 		/* the smallest one defines real window */
3624 		win = min(winl, wins);
3625 
3626 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3627 		if (offs && offs < win)
3628 			win = offs;
3629 
3630 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3631 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3632 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3633 	}
3634 
3635 	/* preallocation can change ac_b_ex, thus we store actually
3636 	 * allocated blocks for history */
3637 	ac->ac_f_ex = ac->ac_b_ex;
3638 
3639 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3640 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3641 	pa->pa_len = ac->ac_b_ex.fe_len;
3642 	pa->pa_free = pa->pa_len;
3643 	atomic_set(&pa->pa_count, 1);
3644 	spin_lock_init(&pa->pa_lock);
3645 	INIT_LIST_HEAD(&pa->pa_inode_list);
3646 	INIT_LIST_HEAD(&pa->pa_group_list);
3647 	pa->pa_deleted = 0;
3648 	pa->pa_type = MB_INODE_PA;
3649 
3650 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3651 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3652 	trace_ext4_mb_new_inode_pa(ac, pa);
3653 
3654 	ext4_mb_use_inode_pa(ac, pa);
3655 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3656 
3657 	ei = EXT4_I(ac->ac_inode);
3658 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3659 
3660 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3661 	pa->pa_inode = ac->ac_inode;
3662 
3663 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3664 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3665 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3666 
3667 	spin_lock(pa->pa_obj_lock);
3668 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3669 	spin_unlock(pa->pa_obj_lock);
3670 
3671 	return 0;
3672 }
3673 
3674 /*
3675  * creates new preallocated space for locality group inodes belongs to
3676  */
3677 static noinline_for_stack int
3678 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3679 {
3680 	struct super_block *sb = ac->ac_sb;
3681 	struct ext4_locality_group *lg;
3682 	struct ext4_prealloc_space *pa;
3683 	struct ext4_group_info *grp;
3684 
3685 	/* preallocate only when found space is larger then requested */
3686 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3687 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3688 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3689 
3690 	BUG_ON(ext4_pspace_cachep == NULL);
3691 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3692 	if (pa == NULL)
3693 		return -ENOMEM;
3694 
3695 	/* preallocation can change ac_b_ex, thus we store actually
3696 	 * allocated blocks for history */
3697 	ac->ac_f_ex = ac->ac_b_ex;
3698 
3699 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3700 	pa->pa_lstart = pa->pa_pstart;
3701 	pa->pa_len = ac->ac_b_ex.fe_len;
3702 	pa->pa_free = pa->pa_len;
3703 	atomic_set(&pa->pa_count, 1);
3704 	spin_lock_init(&pa->pa_lock);
3705 	INIT_LIST_HEAD(&pa->pa_inode_list);
3706 	INIT_LIST_HEAD(&pa->pa_group_list);
3707 	pa->pa_deleted = 0;
3708 	pa->pa_type = MB_GROUP_PA;
3709 
3710 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3711 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3712 	trace_ext4_mb_new_group_pa(ac, pa);
3713 
3714 	ext4_mb_use_group_pa(ac, pa);
3715 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3716 
3717 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3718 	lg = ac->ac_lg;
3719 	BUG_ON(lg == NULL);
3720 
3721 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3722 	pa->pa_inode = NULL;
3723 
3724 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3725 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3726 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3727 
3728 	/*
3729 	 * We will later add the new pa to the right bucket
3730 	 * after updating the pa_free in ext4_mb_release_context
3731 	 */
3732 	return 0;
3733 }
3734 
3735 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3736 {
3737 	int err;
3738 
3739 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3740 		err = ext4_mb_new_group_pa(ac);
3741 	else
3742 		err = ext4_mb_new_inode_pa(ac);
3743 	return err;
3744 }
3745 
3746 /*
3747  * finds all unused blocks in on-disk bitmap, frees them in
3748  * in-core bitmap and buddy.
3749  * @pa must be unlinked from inode and group lists, so that
3750  * nobody else can find/use it.
3751  * the caller MUST hold group/inode locks.
3752  * TODO: optimize the case when there are no in-core structures yet
3753  */
3754 static noinline_for_stack int
3755 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3756 			struct ext4_prealloc_space *pa,
3757 			struct ext4_allocation_context *ac)
3758 {
3759 	struct super_block *sb = e4b->bd_sb;
3760 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3761 	unsigned int end;
3762 	unsigned int next;
3763 	ext4_group_t group;
3764 	ext4_grpblk_t bit;
3765 	unsigned long long grp_blk_start;
3766 	sector_t start;
3767 	int err = 0;
3768 	int free = 0;
3769 
3770 	BUG_ON(pa->pa_deleted == 0);
3771 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3772 	grp_blk_start = pa->pa_pstart - bit;
3773 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3774 	end = bit + pa->pa_len;
3775 
3776 	if (ac) {
3777 		ac->ac_sb = sb;
3778 		ac->ac_inode = pa->pa_inode;
3779 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3780 	}
3781 
3782 	while (bit < end) {
3783 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3784 		if (bit >= end)
3785 			break;
3786 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3787 		start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3788 				le32_to_cpu(sbi->s_es->s_first_data_block);
3789 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3790 				(unsigned) start, (unsigned) next - bit,
3791 				(unsigned) group);
3792 		free += next - bit;
3793 
3794 		if (ac) {
3795 			ac->ac_b_ex.fe_group = group;
3796 			ac->ac_b_ex.fe_start = bit;
3797 			ac->ac_b_ex.fe_len = next - bit;
3798 			ac->ac_b_ex.fe_logical = 0;
3799 			ext4_mb_store_history(ac);
3800 		}
3801 
3802 		trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3803 					       next - bit);
3804 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3805 		bit = next + 1;
3806 	}
3807 	if (free != pa->pa_free) {
3808 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3809 			pa, (unsigned long) pa->pa_lstart,
3810 			(unsigned long) pa->pa_pstart,
3811 			(unsigned long) pa->pa_len);
3812 		ext4_grp_locked_error(sb, group,
3813 					__func__, "free %u, pa_free %u",
3814 					free, pa->pa_free);
3815 		/*
3816 		 * pa is already deleted so we use the value obtained
3817 		 * from the bitmap and continue.
3818 		 */
3819 	}
3820 	atomic_add(free, &sbi->s_mb_discarded);
3821 
3822 	return err;
3823 }
3824 
3825 static noinline_for_stack int
3826 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3827 				struct ext4_prealloc_space *pa,
3828 				struct ext4_allocation_context *ac)
3829 {
3830 	struct super_block *sb = e4b->bd_sb;
3831 	ext4_group_t group;
3832 	ext4_grpblk_t bit;
3833 
3834 	if (ac)
3835 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3836 
3837 	trace_ext4_mb_release_group_pa(ac, pa);
3838 	BUG_ON(pa->pa_deleted == 0);
3839 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3840 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3841 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3842 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3843 
3844 	if (ac) {
3845 		ac->ac_sb = sb;
3846 		ac->ac_inode = NULL;
3847 		ac->ac_b_ex.fe_group = group;
3848 		ac->ac_b_ex.fe_start = bit;
3849 		ac->ac_b_ex.fe_len = pa->pa_len;
3850 		ac->ac_b_ex.fe_logical = 0;
3851 		ext4_mb_store_history(ac);
3852 	}
3853 
3854 	return 0;
3855 }
3856 
3857 /*
3858  * releases all preallocations in given group
3859  *
3860  * first, we need to decide discard policy:
3861  * - when do we discard
3862  *   1) ENOSPC
3863  * - how many do we discard
3864  *   1) how many requested
3865  */
3866 static noinline_for_stack int
3867 ext4_mb_discard_group_preallocations(struct super_block *sb,
3868 					ext4_group_t group, int needed)
3869 {
3870 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3871 	struct buffer_head *bitmap_bh = NULL;
3872 	struct ext4_prealloc_space *pa, *tmp;
3873 	struct ext4_allocation_context *ac;
3874 	struct list_head list;
3875 	struct ext4_buddy e4b;
3876 	int err;
3877 	int busy = 0;
3878 	int free = 0;
3879 
3880 	mb_debug(1, "discard preallocation for group %u\n", group);
3881 
3882 	if (list_empty(&grp->bb_prealloc_list))
3883 		return 0;
3884 
3885 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3886 	if (bitmap_bh == NULL) {
3887 		ext4_error(sb, __func__, "Error in reading block "
3888 				"bitmap for %u", group);
3889 		return 0;
3890 	}
3891 
3892 	err = ext4_mb_load_buddy(sb, group, &e4b);
3893 	if (err) {
3894 		ext4_error(sb, __func__, "Error in loading buddy "
3895 				"information for %u", group);
3896 		put_bh(bitmap_bh);
3897 		return 0;
3898 	}
3899 
3900 	if (needed == 0)
3901 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3902 
3903 	INIT_LIST_HEAD(&list);
3904 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3905 	if (ac)
3906 		ac->ac_sb = sb;
3907 repeat:
3908 	ext4_lock_group(sb, group);
3909 	list_for_each_entry_safe(pa, tmp,
3910 				&grp->bb_prealloc_list, pa_group_list) {
3911 		spin_lock(&pa->pa_lock);
3912 		if (atomic_read(&pa->pa_count)) {
3913 			spin_unlock(&pa->pa_lock);
3914 			busy = 1;
3915 			continue;
3916 		}
3917 		if (pa->pa_deleted) {
3918 			spin_unlock(&pa->pa_lock);
3919 			continue;
3920 		}
3921 
3922 		/* seems this one can be freed ... */
3923 		pa->pa_deleted = 1;
3924 
3925 		/* we can trust pa_free ... */
3926 		free += pa->pa_free;
3927 
3928 		spin_unlock(&pa->pa_lock);
3929 
3930 		list_del(&pa->pa_group_list);
3931 		list_add(&pa->u.pa_tmp_list, &list);
3932 	}
3933 
3934 	/* if we still need more blocks and some PAs were used, try again */
3935 	if (free < needed && busy) {
3936 		busy = 0;
3937 		ext4_unlock_group(sb, group);
3938 		/*
3939 		 * Yield the CPU here so that we don't get soft lockup
3940 		 * in non preempt case.
3941 		 */
3942 		yield();
3943 		goto repeat;
3944 	}
3945 
3946 	/* found anything to free? */
3947 	if (list_empty(&list)) {
3948 		BUG_ON(free != 0);
3949 		goto out;
3950 	}
3951 
3952 	/* now free all selected PAs */
3953 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3954 
3955 		/* remove from object (inode or locality group) */
3956 		spin_lock(pa->pa_obj_lock);
3957 		list_del_rcu(&pa->pa_inode_list);
3958 		spin_unlock(pa->pa_obj_lock);
3959 
3960 		if (pa->pa_type == MB_GROUP_PA)
3961 			ext4_mb_release_group_pa(&e4b, pa, ac);
3962 		else
3963 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3964 
3965 		list_del(&pa->u.pa_tmp_list);
3966 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3967 	}
3968 
3969 out:
3970 	ext4_unlock_group(sb, group);
3971 	if (ac)
3972 		kmem_cache_free(ext4_ac_cachep, ac);
3973 	ext4_mb_release_desc(&e4b);
3974 	put_bh(bitmap_bh);
3975 	return free;
3976 }
3977 
3978 /*
3979  * releases all non-used preallocated blocks for given inode
3980  *
3981  * It's important to discard preallocations under i_data_sem
3982  * We don't want another block to be served from the prealloc
3983  * space when we are discarding the inode prealloc space.
3984  *
3985  * FIXME!! Make sure it is valid at all the call sites
3986  */
3987 void ext4_discard_preallocations(struct inode *inode)
3988 {
3989 	struct ext4_inode_info *ei = EXT4_I(inode);
3990 	struct super_block *sb = inode->i_sb;
3991 	struct buffer_head *bitmap_bh = NULL;
3992 	struct ext4_prealloc_space *pa, *tmp;
3993 	struct ext4_allocation_context *ac;
3994 	ext4_group_t group = 0;
3995 	struct list_head list;
3996 	struct ext4_buddy e4b;
3997 	int err;
3998 
3999 	if (!S_ISREG(inode->i_mode)) {
4000 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4001 		return;
4002 	}
4003 
4004 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4005 	trace_ext4_discard_preallocations(inode);
4006 
4007 	INIT_LIST_HEAD(&list);
4008 
4009 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4010 	if (ac) {
4011 		ac->ac_sb = sb;
4012 		ac->ac_inode = inode;
4013 	}
4014 repeat:
4015 	/* first, collect all pa's in the inode */
4016 	spin_lock(&ei->i_prealloc_lock);
4017 	while (!list_empty(&ei->i_prealloc_list)) {
4018 		pa = list_entry(ei->i_prealloc_list.next,
4019 				struct ext4_prealloc_space, pa_inode_list);
4020 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4021 		spin_lock(&pa->pa_lock);
4022 		if (atomic_read(&pa->pa_count)) {
4023 			/* this shouldn't happen often - nobody should
4024 			 * use preallocation while we're discarding it */
4025 			spin_unlock(&pa->pa_lock);
4026 			spin_unlock(&ei->i_prealloc_lock);
4027 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
4028 			WARN_ON(1);
4029 			schedule_timeout_uninterruptible(HZ);
4030 			goto repeat;
4031 
4032 		}
4033 		if (pa->pa_deleted == 0) {
4034 			pa->pa_deleted = 1;
4035 			spin_unlock(&pa->pa_lock);
4036 			list_del_rcu(&pa->pa_inode_list);
4037 			list_add(&pa->u.pa_tmp_list, &list);
4038 			continue;
4039 		}
4040 
4041 		/* someone is deleting pa right now */
4042 		spin_unlock(&pa->pa_lock);
4043 		spin_unlock(&ei->i_prealloc_lock);
4044 
4045 		/* we have to wait here because pa_deleted
4046 		 * doesn't mean pa is already unlinked from
4047 		 * the list. as we might be called from
4048 		 * ->clear_inode() the inode will get freed
4049 		 * and concurrent thread which is unlinking
4050 		 * pa from inode's list may access already
4051 		 * freed memory, bad-bad-bad */
4052 
4053 		/* XXX: if this happens too often, we can
4054 		 * add a flag to force wait only in case
4055 		 * of ->clear_inode(), but not in case of
4056 		 * regular truncate */
4057 		schedule_timeout_uninterruptible(HZ);
4058 		goto repeat;
4059 	}
4060 	spin_unlock(&ei->i_prealloc_lock);
4061 
4062 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4063 		BUG_ON(pa->pa_type != MB_INODE_PA);
4064 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4065 
4066 		err = ext4_mb_load_buddy(sb, group, &e4b);
4067 		if (err) {
4068 			ext4_error(sb, __func__, "Error in loading buddy "
4069 					"information for %u", group);
4070 			continue;
4071 		}
4072 
4073 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4074 		if (bitmap_bh == NULL) {
4075 			ext4_error(sb, __func__, "Error in reading block "
4076 					"bitmap for %u", group);
4077 			ext4_mb_release_desc(&e4b);
4078 			continue;
4079 		}
4080 
4081 		ext4_lock_group(sb, group);
4082 		list_del(&pa->pa_group_list);
4083 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
4084 		ext4_unlock_group(sb, group);
4085 
4086 		ext4_mb_release_desc(&e4b);
4087 		put_bh(bitmap_bh);
4088 
4089 		list_del(&pa->u.pa_tmp_list);
4090 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4091 	}
4092 	if (ac)
4093 		kmem_cache_free(ext4_ac_cachep, ac);
4094 }
4095 
4096 /*
4097  * finds all preallocated spaces and return blocks being freed to them
4098  * if preallocated space becomes full (no block is used from the space)
4099  * then the function frees space in buddy
4100  * XXX: at the moment, truncate (which is the only way to free blocks)
4101  * discards all preallocations
4102  */
4103 static void ext4_mb_return_to_preallocation(struct inode *inode,
4104 					struct ext4_buddy *e4b,
4105 					sector_t block, int count)
4106 {
4107 	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4108 }
4109 #ifdef CONFIG_EXT4_DEBUG
4110 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4111 {
4112 	struct super_block *sb = ac->ac_sb;
4113 	ext4_group_t ngroups, i;
4114 
4115 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
4116 			" Allocation context details:\n");
4117 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4118 			ac->ac_status, ac->ac_flags);
4119 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4120 			"best %lu/%lu/%lu@%lu cr %d\n",
4121 			(unsigned long)ac->ac_o_ex.fe_group,
4122 			(unsigned long)ac->ac_o_ex.fe_start,
4123 			(unsigned long)ac->ac_o_ex.fe_len,
4124 			(unsigned long)ac->ac_o_ex.fe_logical,
4125 			(unsigned long)ac->ac_g_ex.fe_group,
4126 			(unsigned long)ac->ac_g_ex.fe_start,
4127 			(unsigned long)ac->ac_g_ex.fe_len,
4128 			(unsigned long)ac->ac_g_ex.fe_logical,
4129 			(unsigned long)ac->ac_b_ex.fe_group,
4130 			(unsigned long)ac->ac_b_ex.fe_start,
4131 			(unsigned long)ac->ac_b_ex.fe_len,
4132 			(unsigned long)ac->ac_b_ex.fe_logical,
4133 			(int)ac->ac_criteria);
4134 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4135 		ac->ac_found);
4136 	printk(KERN_ERR "EXT4-fs: groups: \n");
4137 	ngroups = ext4_get_groups_count(sb);
4138 	for (i = 0; i < ngroups; i++) {
4139 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4140 		struct ext4_prealloc_space *pa;
4141 		ext4_grpblk_t start;
4142 		struct list_head *cur;
4143 		ext4_lock_group(sb, i);
4144 		list_for_each(cur, &grp->bb_prealloc_list) {
4145 			pa = list_entry(cur, struct ext4_prealloc_space,
4146 					pa_group_list);
4147 			spin_lock(&pa->pa_lock);
4148 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4149 						     NULL, &start);
4150 			spin_unlock(&pa->pa_lock);
4151 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4152 			       start, pa->pa_len);
4153 		}
4154 		ext4_unlock_group(sb, i);
4155 
4156 		if (grp->bb_free == 0)
4157 			continue;
4158 		printk(KERN_ERR "%u: %d/%d \n",
4159 		       i, grp->bb_free, grp->bb_fragments);
4160 	}
4161 	printk(KERN_ERR "\n");
4162 }
4163 #else
4164 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4165 {
4166 	return;
4167 }
4168 #endif
4169 
4170 /*
4171  * We use locality group preallocation for small size file. The size of the
4172  * file is determined by the current size or the resulting size after
4173  * allocation which ever is larger
4174  *
4175  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4176  */
4177 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4178 {
4179 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4180 	int bsbits = ac->ac_sb->s_blocksize_bits;
4181 	loff_t size, isize;
4182 
4183 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4184 		return;
4185 
4186 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4187 		return;
4188 
4189 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4190 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4191 		>> bsbits;
4192 	size = max(size, isize);
4193 
4194 	if ((size == isize) &&
4195 	    !ext4_fs_is_busy(sbi) &&
4196 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4197 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4198 		return;
4199 	}
4200 
4201 	/* don't use group allocation for large files */
4202 	if (size >= sbi->s_mb_stream_request) {
4203 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4204 		return;
4205 	}
4206 
4207 	BUG_ON(ac->ac_lg != NULL);
4208 	/*
4209 	 * locality group prealloc space are per cpu. The reason for having
4210 	 * per cpu locality group is to reduce the contention between block
4211 	 * request from multiple CPUs.
4212 	 */
4213 	ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id());
4214 
4215 	/* we're going to use group allocation */
4216 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4217 
4218 	/* serialize all allocations in the group */
4219 	mutex_lock(&ac->ac_lg->lg_mutex);
4220 }
4221 
4222 static noinline_for_stack int
4223 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4224 				struct ext4_allocation_request *ar)
4225 {
4226 	struct super_block *sb = ar->inode->i_sb;
4227 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4228 	struct ext4_super_block *es = sbi->s_es;
4229 	ext4_group_t group;
4230 	unsigned int len;
4231 	ext4_fsblk_t goal;
4232 	ext4_grpblk_t block;
4233 
4234 	/* we can't allocate > group size */
4235 	len = ar->len;
4236 
4237 	/* just a dirty hack to filter too big requests  */
4238 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4239 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4240 
4241 	/* start searching from the goal */
4242 	goal = ar->goal;
4243 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4244 			goal >= ext4_blocks_count(es))
4245 		goal = le32_to_cpu(es->s_first_data_block);
4246 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4247 
4248 	/* set up allocation goals */
4249 	memset(ac, 0, sizeof(struct ext4_allocation_context));
4250 	ac->ac_b_ex.fe_logical = ar->logical;
4251 	ac->ac_status = AC_STATUS_CONTINUE;
4252 	ac->ac_sb = sb;
4253 	ac->ac_inode = ar->inode;
4254 	ac->ac_o_ex.fe_logical = ar->logical;
4255 	ac->ac_o_ex.fe_group = group;
4256 	ac->ac_o_ex.fe_start = block;
4257 	ac->ac_o_ex.fe_len = len;
4258 	ac->ac_g_ex.fe_logical = ar->logical;
4259 	ac->ac_g_ex.fe_group = group;
4260 	ac->ac_g_ex.fe_start = block;
4261 	ac->ac_g_ex.fe_len = len;
4262 	ac->ac_flags = ar->flags;
4263 
4264 	/* we have to define context: we'll we work with a file or
4265 	 * locality group. this is a policy, actually */
4266 	ext4_mb_group_or_file(ac);
4267 
4268 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4269 			"left: %u/%u, right %u/%u to %swritable\n",
4270 			(unsigned) ar->len, (unsigned) ar->logical,
4271 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4272 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4273 			(unsigned) ar->lright, (unsigned) ar->pright,
4274 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4275 	return 0;
4276 
4277 }
4278 
4279 static noinline_for_stack void
4280 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4281 					struct ext4_locality_group *lg,
4282 					int order, int total_entries)
4283 {
4284 	ext4_group_t group = 0;
4285 	struct ext4_buddy e4b;
4286 	struct list_head discard_list;
4287 	struct ext4_prealloc_space *pa, *tmp;
4288 	struct ext4_allocation_context *ac;
4289 
4290 	mb_debug(1, "discard locality group preallocation\n");
4291 
4292 	INIT_LIST_HEAD(&discard_list);
4293 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4294 	if (ac)
4295 		ac->ac_sb = sb;
4296 
4297 	spin_lock(&lg->lg_prealloc_lock);
4298 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4299 						pa_inode_list) {
4300 		spin_lock(&pa->pa_lock);
4301 		if (atomic_read(&pa->pa_count)) {
4302 			/*
4303 			 * This is the pa that we just used
4304 			 * for block allocation. So don't
4305 			 * free that
4306 			 */
4307 			spin_unlock(&pa->pa_lock);
4308 			continue;
4309 		}
4310 		if (pa->pa_deleted) {
4311 			spin_unlock(&pa->pa_lock);
4312 			continue;
4313 		}
4314 		/* only lg prealloc space */
4315 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4316 
4317 		/* seems this one can be freed ... */
4318 		pa->pa_deleted = 1;
4319 		spin_unlock(&pa->pa_lock);
4320 
4321 		list_del_rcu(&pa->pa_inode_list);
4322 		list_add(&pa->u.pa_tmp_list, &discard_list);
4323 
4324 		total_entries--;
4325 		if (total_entries <= 5) {
4326 			/*
4327 			 * we want to keep only 5 entries
4328 			 * allowing it to grow to 8. This
4329 			 * mak sure we don't call discard
4330 			 * soon for this list.
4331 			 */
4332 			break;
4333 		}
4334 	}
4335 	spin_unlock(&lg->lg_prealloc_lock);
4336 
4337 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4338 
4339 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4340 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4341 			ext4_error(sb, __func__, "Error in loading buddy "
4342 					"information for %u", group);
4343 			continue;
4344 		}
4345 		ext4_lock_group(sb, group);
4346 		list_del(&pa->pa_group_list);
4347 		ext4_mb_release_group_pa(&e4b, pa, ac);
4348 		ext4_unlock_group(sb, group);
4349 
4350 		ext4_mb_release_desc(&e4b);
4351 		list_del(&pa->u.pa_tmp_list);
4352 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4353 	}
4354 	if (ac)
4355 		kmem_cache_free(ext4_ac_cachep, ac);
4356 }
4357 
4358 /*
4359  * We have incremented pa_count. So it cannot be freed at this
4360  * point. Also we hold lg_mutex. So no parallel allocation is
4361  * possible from this lg. That means pa_free cannot be updated.
4362  *
4363  * A parallel ext4_mb_discard_group_preallocations is possible.
4364  * which can cause the lg_prealloc_list to be updated.
4365  */
4366 
4367 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4368 {
4369 	int order, added = 0, lg_prealloc_count = 1;
4370 	struct super_block *sb = ac->ac_sb;
4371 	struct ext4_locality_group *lg = ac->ac_lg;
4372 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4373 
4374 	order = fls(pa->pa_free) - 1;
4375 	if (order > PREALLOC_TB_SIZE - 1)
4376 		/* The max size of hash table is PREALLOC_TB_SIZE */
4377 		order = PREALLOC_TB_SIZE - 1;
4378 	/* Add the prealloc space to lg */
4379 	rcu_read_lock();
4380 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4381 						pa_inode_list) {
4382 		spin_lock(&tmp_pa->pa_lock);
4383 		if (tmp_pa->pa_deleted) {
4384 			spin_unlock(&tmp_pa->pa_lock);
4385 			continue;
4386 		}
4387 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4388 			/* Add to the tail of the previous entry */
4389 			list_add_tail_rcu(&pa->pa_inode_list,
4390 						&tmp_pa->pa_inode_list);
4391 			added = 1;
4392 			/*
4393 			 * we want to count the total
4394 			 * number of entries in the list
4395 			 */
4396 		}
4397 		spin_unlock(&tmp_pa->pa_lock);
4398 		lg_prealloc_count++;
4399 	}
4400 	if (!added)
4401 		list_add_tail_rcu(&pa->pa_inode_list,
4402 					&lg->lg_prealloc_list[order]);
4403 	rcu_read_unlock();
4404 
4405 	/* Now trim the list to be not more than 8 elements */
4406 	if (lg_prealloc_count > 8) {
4407 		ext4_mb_discard_lg_preallocations(sb, lg,
4408 						order, lg_prealloc_count);
4409 		return;
4410 	}
4411 	return ;
4412 }
4413 
4414 /*
4415  * release all resource we used in allocation
4416  */
4417 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4418 {
4419 	struct ext4_prealloc_space *pa = ac->ac_pa;
4420 	if (pa) {
4421 		if (pa->pa_type == MB_GROUP_PA) {
4422 			/* see comment in ext4_mb_use_group_pa() */
4423 			spin_lock(&pa->pa_lock);
4424 			pa->pa_pstart += ac->ac_b_ex.fe_len;
4425 			pa->pa_lstart += ac->ac_b_ex.fe_len;
4426 			pa->pa_free -= ac->ac_b_ex.fe_len;
4427 			pa->pa_len -= ac->ac_b_ex.fe_len;
4428 			spin_unlock(&pa->pa_lock);
4429 		}
4430 	}
4431 	if (ac->alloc_semp)
4432 		up_read(ac->alloc_semp);
4433 	if (pa) {
4434 		/*
4435 		 * We want to add the pa to the right bucket.
4436 		 * Remove it from the list and while adding
4437 		 * make sure the list to which we are adding
4438 		 * doesn't grow big.  We need to release
4439 		 * alloc_semp before calling ext4_mb_add_n_trim()
4440 		 */
4441 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4442 			spin_lock(pa->pa_obj_lock);
4443 			list_del_rcu(&pa->pa_inode_list);
4444 			spin_unlock(pa->pa_obj_lock);
4445 			ext4_mb_add_n_trim(ac);
4446 		}
4447 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4448 	}
4449 	if (ac->ac_bitmap_page)
4450 		page_cache_release(ac->ac_bitmap_page);
4451 	if (ac->ac_buddy_page)
4452 		page_cache_release(ac->ac_buddy_page);
4453 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4454 		mutex_unlock(&ac->ac_lg->lg_mutex);
4455 	ext4_mb_collect_stats(ac);
4456 	return 0;
4457 }
4458 
4459 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4460 {
4461 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4462 	int ret;
4463 	int freed = 0;
4464 
4465 	trace_ext4_mb_discard_preallocations(sb, needed);
4466 	for (i = 0; i < ngroups && needed > 0; i++) {
4467 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4468 		freed += ret;
4469 		needed -= ret;
4470 	}
4471 
4472 	return freed;
4473 }
4474 
4475 /*
4476  * Main entry point into mballoc to allocate blocks
4477  * it tries to use preallocation first, then falls back
4478  * to usual allocation
4479  */
4480 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4481 				 struct ext4_allocation_request *ar, int *errp)
4482 {
4483 	int freed;
4484 	struct ext4_allocation_context *ac = NULL;
4485 	struct ext4_sb_info *sbi;
4486 	struct super_block *sb;
4487 	ext4_fsblk_t block = 0;
4488 	unsigned int inquota = 0;
4489 	unsigned int reserv_blks = 0;
4490 
4491 	sb = ar->inode->i_sb;
4492 	sbi = EXT4_SB(sb);
4493 
4494 	trace_ext4_request_blocks(ar);
4495 
4496 	/*
4497 	 * For delayed allocation, we could skip the ENOSPC and
4498 	 * EDQUOT check, as blocks and quotas have been already
4499 	 * reserved when data being copied into pagecache.
4500 	 */
4501 	if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4502 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4503 	else {
4504 		/* Without delayed allocation we need to verify
4505 		 * there is enough free blocks to do block allocation
4506 		 * and verify allocation doesn't exceed the quota limits.
4507 		 */
4508 		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4509 			/* let others to free the space */
4510 			yield();
4511 			ar->len = ar->len >> 1;
4512 		}
4513 		if (!ar->len) {
4514 			*errp = -ENOSPC;
4515 			return 0;
4516 		}
4517 		reserv_blks = ar->len;
4518 		while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4519 			ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4520 			ar->len--;
4521 		}
4522 		inquota = ar->len;
4523 		if (ar->len == 0) {
4524 			*errp = -EDQUOT;
4525 			goto out3;
4526 		}
4527 	}
4528 
4529 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4530 	if (!ac) {
4531 		ar->len = 0;
4532 		*errp = -ENOMEM;
4533 		goto out1;
4534 	}
4535 
4536 	*errp = ext4_mb_initialize_context(ac, ar);
4537 	if (*errp) {
4538 		ar->len = 0;
4539 		goto out2;
4540 	}
4541 
4542 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4543 	if (!ext4_mb_use_preallocated(ac)) {
4544 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4545 		ext4_mb_normalize_request(ac, ar);
4546 repeat:
4547 		/* allocate space in core */
4548 		ext4_mb_regular_allocator(ac);
4549 
4550 		/* as we've just preallocated more space than
4551 		 * user requested orinally, we store allocated
4552 		 * space in a special descriptor */
4553 		if (ac->ac_status == AC_STATUS_FOUND &&
4554 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4555 			ext4_mb_new_preallocation(ac);
4556 	}
4557 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4558 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4559 		if (*errp ==  -EAGAIN) {
4560 			/*
4561 			 * drop the reference that we took
4562 			 * in ext4_mb_use_best_found
4563 			 */
4564 			ext4_mb_release_context(ac);
4565 			ac->ac_b_ex.fe_group = 0;
4566 			ac->ac_b_ex.fe_start = 0;
4567 			ac->ac_b_ex.fe_len = 0;
4568 			ac->ac_status = AC_STATUS_CONTINUE;
4569 			goto repeat;
4570 		} else if (*errp) {
4571 			ac->ac_b_ex.fe_len = 0;
4572 			ar->len = 0;
4573 			ext4_mb_show_ac(ac);
4574 		} else {
4575 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4576 			ar->len = ac->ac_b_ex.fe_len;
4577 		}
4578 	} else {
4579 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4580 		if (freed)
4581 			goto repeat;
4582 		*errp = -ENOSPC;
4583 		ac->ac_b_ex.fe_len = 0;
4584 		ar->len = 0;
4585 		ext4_mb_show_ac(ac);
4586 	}
4587 
4588 	ext4_mb_release_context(ac);
4589 
4590 out2:
4591 	kmem_cache_free(ext4_ac_cachep, ac);
4592 out1:
4593 	if (inquota && ar->len < inquota)
4594 		vfs_dq_free_block(ar->inode, inquota - ar->len);
4595 out3:
4596 	if (!ar->len) {
4597 		if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4598 			/* release all the reserved blocks if non delalloc */
4599 			percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4600 						reserv_blks);
4601 	}
4602 
4603 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4604 
4605 	return block;
4606 }
4607 
4608 /*
4609  * We can merge two free data extents only if the physical blocks
4610  * are contiguous, AND the extents were freed by the same transaction,
4611  * AND the blocks are associated with the same group.
4612  */
4613 static int can_merge(struct ext4_free_data *entry1,
4614 			struct ext4_free_data *entry2)
4615 {
4616 	if ((entry1->t_tid == entry2->t_tid) &&
4617 	    (entry1->group == entry2->group) &&
4618 	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
4619 		return 1;
4620 	return 0;
4621 }
4622 
4623 static noinline_for_stack int
4624 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4625 		      struct ext4_free_data *new_entry)
4626 {
4627 	ext4_grpblk_t block;
4628 	struct ext4_free_data *entry;
4629 	struct ext4_group_info *db = e4b->bd_info;
4630 	struct super_block *sb = e4b->bd_sb;
4631 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4632 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4633 	struct rb_node *parent = NULL, *new_node;
4634 
4635 	BUG_ON(!ext4_handle_valid(handle));
4636 	BUG_ON(e4b->bd_bitmap_page == NULL);
4637 	BUG_ON(e4b->bd_buddy_page == NULL);
4638 
4639 	new_node = &new_entry->node;
4640 	block = new_entry->start_blk;
4641 
4642 	if (!*n) {
4643 		/* first free block exent. We need to
4644 		   protect buddy cache from being freed,
4645 		 * otherwise we'll refresh it from
4646 		 * on-disk bitmap and lose not-yet-available
4647 		 * blocks */
4648 		page_cache_get(e4b->bd_buddy_page);
4649 		page_cache_get(e4b->bd_bitmap_page);
4650 	}
4651 	while (*n) {
4652 		parent = *n;
4653 		entry = rb_entry(parent, struct ext4_free_data, node);
4654 		if (block < entry->start_blk)
4655 			n = &(*n)->rb_left;
4656 		else if (block >= (entry->start_blk + entry->count))
4657 			n = &(*n)->rb_right;
4658 		else {
4659 			ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4660 					"Double free of blocks %d (%d %d)",
4661 					block, entry->start_blk, entry->count);
4662 			return 0;
4663 		}
4664 	}
4665 
4666 	rb_link_node(new_node, parent, n);
4667 	rb_insert_color(new_node, &db->bb_free_root);
4668 
4669 	/* Now try to see the extent can be merged to left and right */
4670 	node = rb_prev(new_node);
4671 	if (node) {
4672 		entry = rb_entry(node, struct ext4_free_data, node);
4673 		if (can_merge(entry, new_entry)) {
4674 			new_entry->start_blk = entry->start_blk;
4675 			new_entry->count += entry->count;
4676 			rb_erase(node, &(db->bb_free_root));
4677 			spin_lock(&sbi->s_md_lock);
4678 			list_del(&entry->list);
4679 			spin_unlock(&sbi->s_md_lock);
4680 			kmem_cache_free(ext4_free_ext_cachep, entry);
4681 		}
4682 	}
4683 
4684 	node = rb_next(new_node);
4685 	if (node) {
4686 		entry = rb_entry(node, struct ext4_free_data, node);
4687 		if (can_merge(new_entry, entry)) {
4688 			new_entry->count += entry->count;
4689 			rb_erase(node, &(db->bb_free_root));
4690 			spin_lock(&sbi->s_md_lock);
4691 			list_del(&entry->list);
4692 			spin_unlock(&sbi->s_md_lock);
4693 			kmem_cache_free(ext4_free_ext_cachep, entry);
4694 		}
4695 	}
4696 	/* Add the extent to transaction's private list */
4697 	spin_lock(&sbi->s_md_lock);
4698 	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4699 	spin_unlock(&sbi->s_md_lock);
4700 	return 0;
4701 }
4702 
4703 /*
4704  * Main entry point into mballoc to free blocks
4705  */
4706 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4707 			ext4_fsblk_t block, unsigned long count,
4708 			int metadata, unsigned long *freed)
4709 {
4710 	struct buffer_head *bitmap_bh = NULL;
4711 	struct super_block *sb = inode->i_sb;
4712 	struct ext4_allocation_context *ac = NULL;
4713 	struct ext4_group_desc *gdp;
4714 	struct ext4_super_block *es;
4715 	unsigned int overflow;
4716 	ext4_grpblk_t bit;
4717 	struct buffer_head *gd_bh;
4718 	ext4_group_t block_group;
4719 	struct ext4_sb_info *sbi;
4720 	struct ext4_buddy e4b;
4721 	int err = 0;
4722 	int ret;
4723 
4724 	*freed = 0;
4725 
4726 	sbi = EXT4_SB(sb);
4727 	es = EXT4_SB(sb)->s_es;
4728 	if (block < le32_to_cpu(es->s_first_data_block) ||
4729 	    block + count < block ||
4730 	    block + count > ext4_blocks_count(es)) {
4731 		ext4_error(sb, __func__,
4732 			    "Freeing blocks not in datazone - "
4733 			    "block = %llu, count = %lu", block, count);
4734 		goto error_return;
4735 	}
4736 
4737 	ext4_debug("freeing block %llu\n", block);
4738 	trace_ext4_free_blocks(inode, block, count, metadata);
4739 
4740 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4741 	if (ac) {
4742 		ac->ac_op = EXT4_MB_HISTORY_FREE;
4743 		ac->ac_inode = inode;
4744 		ac->ac_sb = sb;
4745 	}
4746 
4747 do_more:
4748 	overflow = 0;
4749 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4750 
4751 	/*
4752 	 * Check to see if we are freeing blocks across a group
4753 	 * boundary.
4754 	 */
4755 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4756 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4757 		count -= overflow;
4758 	}
4759 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4760 	if (!bitmap_bh) {
4761 		err = -EIO;
4762 		goto error_return;
4763 	}
4764 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4765 	if (!gdp) {
4766 		err = -EIO;
4767 		goto error_return;
4768 	}
4769 
4770 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4771 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4772 	    in_range(block, ext4_inode_table(sb, gdp),
4773 		      EXT4_SB(sb)->s_itb_per_group) ||
4774 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4775 		      EXT4_SB(sb)->s_itb_per_group)) {
4776 
4777 		ext4_error(sb, __func__,
4778 			   "Freeing blocks in system zone - "
4779 			   "Block = %llu, count = %lu", block, count);
4780 		/* err = 0. ext4_std_error should be a no op */
4781 		goto error_return;
4782 	}
4783 
4784 	BUFFER_TRACE(bitmap_bh, "getting write access");
4785 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4786 	if (err)
4787 		goto error_return;
4788 
4789 	/*
4790 	 * We are about to modify some metadata.  Call the journal APIs
4791 	 * to unshare ->b_data if a currently-committing transaction is
4792 	 * using it
4793 	 */
4794 	BUFFER_TRACE(gd_bh, "get_write_access");
4795 	err = ext4_journal_get_write_access(handle, gd_bh);
4796 	if (err)
4797 		goto error_return;
4798 #ifdef AGGRESSIVE_CHECK
4799 	{
4800 		int i;
4801 		for (i = 0; i < count; i++)
4802 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4803 	}
4804 #endif
4805 	if (ac) {
4806 		ac->ac_b_ex.fe_group = block_group;
4807 		ac->ac_b_ex.fe_start = bit;
4808 		ac->ac_b_ex.fe_len = count;
4809 		ext4_mb_store_history(ac);
4810 	}
4811 
4812 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4813 	if (err)
4814 		goto error_return;
4815 	if (metadata && ext4_handle_valid(handle)) {
4816 		struct ext4_free_data *new_entry;
4817 		/*
4818 		 * blocks being freed are metadata. these blocks shouldn't
4819 		 * be used until this transaction is committed
4820 		 */
4821 		new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4822 		new_entry->start_blk = bit;
4823 		new_entry->group  = block_group;
4824 		new_entry->count = count;
4825 		new_entry->t_tid = handle->h_transaction->t_tid;
4826 
4827 		ext4_lock_group(sb, block_group);
4828 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4829 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4830 	} else {
4831 		/* need to update group_info->bb_free and bitmap
4832 		 * with group lock held. generate_buddy look at
4833 		 * them with group lock_held
4834 		 */
4835 		ext4_lock_group(sb, block_group);
4836 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4837 		mb_free_blocks(inode, &e4b, bit, count);
4838 		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4839 	}
4840 
4841 	ret = ext4_free_blks_count(sb, gdp) + count;
4842 	ext4_free_blks_set(sb, gdp, ret);
4843 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4844 	ext4_unlock_group(sb, block_group);
4845 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
4846 
4847 	if (sbi->s_log_groups_per_flex) {
4848 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4849 		atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4850 	}
4851 
4852 	ext4_mb_release_desc(&e4b);
4853 
4854 	*freed += count;
4855 
4856 	/* We dirtied the bitmap block */
4857 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4858 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4859 
4860 	/* And the group descriptor block */
4861 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4862 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4863 	if (!err)
4864 		err = ret;
4865 
4866 	if (overflow && !err) {
4867 		block += count;
4868 		count = overflow;
4869 		put_bh(bitmap_bh);
4870 		goto do_more;
4871 	}
4872 	sb->s_dirt = 1;
4873 error_return:
4874 	brelse(bitmap_bh);
4875 	ext4_std_error(sb, err);
4876 	if (ac)
4877 		kmem_cache_free(ext4_ac_cachep, ac);
4878 	return;
4879 }
4880