1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 /* 22 * MUSTDO: 23 * - test ext4_ext_search_left() and ext4_ext_search_right() 24 * - search for metadata in few groups 25 * 26 * TODO v4: 27 * - normalization should take into account whether file is still open 28 * - discard preallocations if no free space left (policy?) 29 * - don't normalize tails 30 * - quota 31 * - reservation for superuser 32 * 33 * TODO v3: 34 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 35 * - track min/max extents in each group for better group selection 36 * - mb_mark_used() may allocate chunk right after splitting buddy 37 * - tree of groups sorted by number of free blocks 38 * - error handling 39 */ 40 41 /* 42 * The allocation request involve request for multiple number of blocks 43 * near to the goal(block) value specified. 44 * 45 * During initialization phase of the allocator we decide to use the 46 * group preallocation or inode preallocation depending on the size of 47 * the file. The size of the file could be the resulting file size we 48 * would have after allocation, or the current file size, which ever 49 * is larger. If the size is less than sbi->s_mb_stream_request we 50 * select to use the group preallocation. The default value of 51 * s_mb_stream_request is 16 blocks. This can also be tuned via 52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 53 * terms of number of blocks. 54 * 55 * The main motivation for having small file use group preallocation is to 56 * ensure that we have small files closer together on the disk. 57 * 58 * First stage the allocator looks at the inode prealloc list, 59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 60 * spaces for this particular inode. The inode prealloc space is 61 * represented as: 62 * 63 * pa_lstart -> the logical start block for this prealloc space 64 * pa_pstart -> the physical start block for this prealloc space 65 * pa_len -> length for this prealloc space (in clusters) 66 * pa_free -> free space available in this prealloc space (in clusters) 67 * 68 * The inode preallocation space is used looking at the _logical_ start 69 * block. If only the logical file block falls within the range of prealloc 70 * space we will consume the particular prealloc space. This makes sure that 71 * we have contiguous physical blocks representing the file blocks 72 * 73 * The important thing to be noted in case of inode prealloc space is that 74 * we don't modify the values associated to inode prealloc space except 75 * pa_free. 76 * 77 * If we are not able to find blocks in the inode prealloc space and if we 78 * have the group allocation flag set then we look at the locality group 79 * prealloc space. These are per CPU prealloc list represented as 80 * 81 * ext4_sb_info.s_locality_groups[smp_processor_id()] 82 * 83 * The reason for having a per cpu locality group is to reduce the contention 84 * between CPUs. It is possible to get scheduled at this point. 85 * 86 * The locality group prealloc space is used looking at whether we have 87 * enough free space (pa_free) within the prealloc space. 88 * 89 * If we can't allocate blocks via inode prealloc or/and locality group 90 * prealloc then we look at the buddy cache. The buddy cache is represented 91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 92 * mapped to the buddy and bitmap information regarding different 93 * groups. The buddy information is attached to buddy cache inode so that 94 * we can access them through the page cache. The information regarding 95 * each group is loaded via ext4_mb_load_buddy. The information involve 96 * block bitmap and buddy information. The information are stored in the 97 * inode as: 98 * 99 * { page } 100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 101 * 102 * 103 * one block each for bitmap and buddy information. So for each group we 104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 105 * blocksize) blocks. So it can have information regarding groups_per_page 106 * which is blocks_per_page/2 107 * 108 * The buddy cache inode is not stored on disk. The inode is thrown 109 * away when the filesystem is unmounted. 110 * 111 * We look for count number of blocks in the buddy cache. If we were able 112 * to locate that many free blocks we return with additional information 113 * regarding rest of the contiguous physical block available 114 * 115 * Before allocating blocks via buddy cache we normalize the request 116 * blocks. This ensure we ask for more blocks that we needed. The extra 117 * blocks that we get after allocation is added to the respective prealloc 118 * list. In case of inode preallocation we follow a list of heuristics 119 * based on file size. This can be found in ext4_mb_normalize_request. If 120 * we are doing a group prealloc we try to normalize the request to 121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 122 * dependent on the cluster size; for non-bigalloc file systems, it is 123 * 512 blocks. This can be tuned via 124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 125 * terms of number of blocks. If we have mounted the file system with -O 126 * stripe=<value> option the group prealloc request is normalized to the 127 * smallest multiple of the stripe value (sbi->s_stripe) which is 128 * greater than the default mb_group_prealloc. 129 * 130 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 131 * structures in two data structures: 132 * 133 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 134 * 135 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 136 * 137 * This is an array of lists where the index in the array represents the 138 * largest free order in the buddy bitmap of the participating group infos of 139 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 140 * number of buddy bitmap orders possible) number of lists. Group-infos are 141 * placed in appropriate lists. 142 * 143 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 144 * 145 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 146 * 147 * This is an array of lists where in the i-th list there are groups with 148 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 149 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 150 * Note that we don't bother with a special list for completely empty groups 151 * so we only have MB_NUM_ORDERS(sb) lists. 152 * 153 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 154 * structures to decide the order in which groups are to be traversed for 155 * fulfilling an allocation request. 156 * 157 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 158 * >= the order of the request. We directly look at the largest free order list 159 * in the data structure (1) above where largest_free_order = order of the 160 * request. If that list is empty, we look at remaining list in the increasing 161 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 162 * lookup in O(1) time. 163 * 164 * At CR_GOAL_LEN_FAST, we only consider groups where 165 * average fragment size > request size. So, we lookup a group which has average 166 * fragment size just above or equal to request size using our average fragment 167 * size group lists (data structure 2) in O(1) time. 168 * 169 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 170 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 171 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 172 * fragment size > goal length. So before falling to the slower 173 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 174 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 175 * enough average fragment size. This increases the chances of finding a 176 * suitable block group in O(1) time and results in faster allocation at the 177 * cost of reduced size of allocation. 178 * 179 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 180 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 181 * CR_GOAL_LEN_FAST phase. 182 * 183 * The regular allocator (using the buddy cache) supports a few tunables. 184 * 185 * /sys/fs/ext4/<partition>/mb_min_to_scan 186 * /sys/fs/ext4/<partition>/mb_max_to_scan 187 * /sys/fs/ext4/<partition>/mb_order2_req 188 * /sys/fs/ext4/<partition>/mb_linear_limit 189 * 190 * The regular allocator uses buddy scan only if the request len is power of 191 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 192 * value of s_mb_order2_reqs can be tuned via 193 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 194 * stripe size (sbi->s_stripe), we try to search for contiguous block in 195 * stripe size. This should result in better allocation on RAID setups. If 196 * not, we search in the specific group using bitmap for best extents. The 197 * tunable min_to_scan and max_to_scan control the behaviour here. 198 * min_to_scan indicate how long the mballoc __must__ look for a best 199 * extent and max_to_scan indicates how long the mballoc __can__ look for a 200 * best extent in the found extents. Searching for the blocks starts with 201 * the group specified as the goal value in allocation context via 202 * ac_g_ex. Each group is first checked based on the criteria whether it 203 * can be used for allocation. ext4_mb_good_group explains how the groups are 204 * checked. 205 * 206 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 207 * get traversed linearly. That may result in subsequent allocations being not 208 * close to each other. And so, the underlying device may get filled up in a 209 * non-linear fashion. While that may not matter on non-rotational devices, for 210 * rotational devices that may result in higher seek times. "mb_linear_limit" 211 * tells mballoc how many groups mballoc should search linearly before 212 * performing consulting above data structures for more efficient lookups. For 213 * non rotational devices, this value defaults to 0 and for rotational devices 214 * this is set to MB_DEFAULT_LINEAR_LIMIT. 215 * 216 * Both the prealloc space are getting populated as above. So for the first 217 * request we will hit the buddy cache which will result in this prealloc 218 * space getting filled. The prealloc space is then later used for the 219 * subsequent request. 220 */ 221 222 /* 223 * mballoc operates on the following data: 224 * - on-disk bitmap 225 * - in-core buddy (actually includes buddy and bitmap) 226 * - preallocation descriptors (PAs) 227 * 228 * there are two types of preallocations: 229 * - inode 230 * assiged to specific inode and can be used for this inode only. 231 * it describes part of inode's space preallocated to specific 232 * physical blocks. any block from that preallocated can be used 233 * independent. the descriptor just tracks number of blocks left 234 * unused. so, before taking some block from descriptor, one must 235 * make sure corresponded logical block isn't allocated yet. this 236 * also means that freeing any block within descriptor's range 237 * must discard all preallocated blocks. 238 * - locality group 239 * assigned to specific locality group which does not translate to 240 * permanent set of inodes: inode can join and leave group. space 241 * from this type of preallocation can be used for any inode. thus 242 * it's consumed from the beginning to the end. 243 * 244 * relation between them can be expressed as: 245 * in-core buddy = on-disk bitmap + preallocation descriptors 246 * 247 * this mean blocks mballoc considers used are: 248 * - allocated blocks (persistent) 249 * - preallocated blocks (non-persistent) 250 * 251 * consistency in mballoc world means that at any time a block is either 252 * free or used in ALL structures. notice: "any time" should not be read 253 * literally -- time is discrete and delimited by locks. 254 * 255 * to keep it simple, we don't use block numbers, instead we count number of 256 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 257 * 258 * all operations can be expressed as: 259 * - init buddy: buddy = on-disk + PAs 260 * - new PA: buddy += N; PA = N 261 * - use inode PA: on-disk += N; PA -= N 262 * - discard inode PA buddy -= on-disk - PA; PA = 0 263 * - use locality group PA on-disk += N; PA -= N 264 * - discard locality group PA buddy -= PA; PA = 0 265 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 266 * is used in real operation because we can't know actual used 267 * bits from PA, only from on-disk bitmap 268 * 269 * if we follow this strict logic, then all operations above should be atomic. 270 * given some of them can block, we'd have to use something like semaphores 271 * killing performance on high-end SMP hardware. let's try to relax it using 272 * the following knowledge: 273 * 1) if buddy is referenced, it's already initialized 274 * 2) while block is used in buddy and the buddy is referenced, 275 * nobody can re-allocate that block 276 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 277 * bit set and PA claims same block, it's OK. IOW, one can set bit in 278 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 279 * block 280 * 281 * so, now we're building a concurrency table: 282 * - init buddy vs. 283 * - new PA 284 * blocks for PA are allocated in the buddy, buddy must be referenced 285 * until PA is linked to allocation group to avoid concurrent buddy init 286 * - use inode PA 287 * we need to make sure that either on-disk bitmap or PA has uptodate data 288 * given (3) we care that PA-=N operation doesn't interfere with init 289 * - discard inode PA 290 * the simplest way would be to have buddy initialized by the discard 291 * - use locality group PA 292 * again PA-=N must be serialized with init 293 * - discard locality group PA 294 * the simplest way would be to have buddy initialized by the discard 295 * - new PA vs. 296 * - use inode PA 297 * i_data_sem serializes them 298 * - discard inode PA 299 * discard process must wait until PA isn't used by another process 300 * - use locality group PA 301 * some mutex should serialize them 302 * - discard locality group PA 303 * discard process must wait until PA isn't used by another process 304 * - use inode PA 305 * - use inode PA 306 * i_data_sem or another mutex should serializes them 307 * - discard inode PA 308 * discard process must wait until PA isn't used by another process 309 * - use locality group PA 310 * nothing wrong here -- they're different PAs covering different blocks 311 * - discard locality group PA 312 * discard process must wait until PA isn't used by another process 313 * 314 * now we're ready to make few consequences: 315 * - PA is referenced and while it is no discard is possible 316 * - PA is referenced until block isn't marked in on-disk bitmap 317 * - PA changes only after on-disk bitmap 318 * - discard must not compete with init. either init is done before 319 * any discard or they're serialized somehow 320 * - buddy init as sum of on-disk bitmap and PAs is done atomically 321 * 322 * a special case when we've used PA to emptiness. no need to modify buddy 323 * in this case, but we should care about concurrent init 324 * 325 */ 326 327 /* 328 * Logic in few words: 329 * 330 * - allocation: 331 * load group 332 * find blocks 333 * mark bits in on-disk bitmap 334 * release group 335 * 336 * - use preallocation: 337 * find proper PA (per-inode or group) 338 * load group 339 * mark bits in on-disk bitmap 340 * release group 341 * release PA 342 * 343 * - free: 344 * load group 345 * mark bits in on-disk bitmap 346 * release group 347 * 348 * - discard preallocations in group: 349 * mark PAs deleted 350 * move them onto local list 351 * load on-disk bitmap 352 * load group 353 * remove PA from object (inode or locality group) 354 * mark free blocks in-core 355 * 356 * - discard inode's preallocations: 357 */ 358 359 /* 360 * Locking rules 361 * 362 * Locks: 363 * - bitlock on a group (group) 364 * - object (inode/locality) (object) 365 * - per-pa lock (pa) 366 * - cr_power2_aligned lists lock (cr_power2_aligned) 367 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 368 * 369 * Paths: 370 * - new pa 371 * object 372 * group 373 * 374 * - find and use pa: 375 * pa 376 * 377 * - release consumed pa: 378 * pa 379 * group 380 * object 381 * 382 * - generate in-core bitmap: 383 * group 384 * pa 385 * 386 * - discard all for given object (inode, locality group): 387 * object 388 * pa 389 * group 390 * 391 * - discard all for given group: 392 * group 393 * pa 394 * group 395 * object 396 * 397 * - allocation path (ext4_mb_regular_allocator) 398 * group 399 * cr_power2_aligned/cr_goal_len_fast 400 */ 401 static struct kmem_cache *ext4_pspace_cachep; 402 static struct kmem_cache *ext4_ac_cachep; 403 static struct kmem_cache *ext4_free_data_cachep; 404 405 /* We create slab caches for groupinfo data structures based on the 406 * superblock block size. There will be one per mounted filesystem for 407 * each unique s_blocksize_bits */ 408 #define NR_GRPINFO_CACHES 8 409 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 410 411 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 412 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 413 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 414 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 415 }; 416 417 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 418 ext4_group_t group); 419 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 420 ext4_group_t group); 421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 422 423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 424 ext4_group_t group, enum criteria cr); 425 426 static int ext4_try_to_trim_range(struct super_block *sb, 427 struct ext4_buddy *e4b, ext4_grpblk_t start, 428 ext4_grpblk_t max, ext4_grpblk_t minblocks); 429 430 /* 431 * The algorithm using this percpu seq counter goes below: 432 * 1. We sample the percpu discard_pa_seq counter before trying for block 433 * allocation in ext4_mb_new_blocks(). 434 * 2. We increment this percpu discard_pa_seq counter when we either allocate 435 * or free these blocks i.e. while marking those blocks as used/free in 436 * mb_mark_used()/mb_free_blocks(). 437 * 3. We also increment this percpu seq counter when we successfully identify 438 * that the bb_prealloc_list is not empty and hence proceed for discarding 439 * of those PAs inside ext4_mb_discard_group_preallocations(). 440 * 441 * Now to make sure that the regular fast path of block allocation is not 442 * affected, as a small optimization we only sample the percpu seq counter 443 * on that cpu. Only when the block allocation fails and when freed blocks 444 * found were 0, that is when we sample percpu seq counter for all cpus using 445 * below function ext4_get_discard_pa_seq_sum(). This happens after making 446 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 447 */ 448 static DEFINE_PER_CPU(u64, discard_pa_seq); 449 static inline u64 ext4_get_discard_pa_seq_sum(void) 450 { 451 int __cpu; 452 u64 __seq = 0; 453 454 for_each_possible_cpu(__cpu) 455 __seq += per_cpu(discard_pa_seq, __cpu); 456 return __seq; 457 } 458 459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 460 { 461 #if BITS_PER_LONG == 64 462 *bit += ((unsigned long) addr & 7UL) << 3; 463 addr = (void *) ((unsigned long) addr & ~7UL); 464 #elif BITS_PER_LONG == 32 465 *bit += ((unsigned long) addr & 3UL) << 3; 466 addr = (void *) ((unsigned long) addr & ~3UL); 467 #else 468 #error "how many bits you are?!" 469 #endif 470 return addr; 471 } 472 473 static inline int mb_test_bit(int bit, void *addr) 474 { 475 /* 476 * ext4_test_bit on architecture like powerpc 477 * needs unsigned long aligned address 478 */ 479 addr = mb_correct_addr_and_bit(&bit, addr); 480 return ext4_test_bit(bit, addr); 481 } 482 483 static inline void mb_set_bit(int bit, void *addr) 484 { 485 addr = mb_correct_addr_and_bit(&bit, addr); 486 ext4_set_bit(bit, addr); 487 } 488 489 static inline void mb_clear_bit(int bit, void *addr) 490 { 491 addr = mb_correct_addr_and_bit(&bit, addr); 492 ext4_clear_bit(bit, addr); 493 } 494 495 static inline int mb_test_and_clear_bit(int bit, void *addr) 496 { 497 addr = mb_correct_addr_and_bit(&bit, addr); 498 return ext4_test_and_clear_bit(bit, addr); 499 } 500 501 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 502 { 503 int fix = 0, ret, tmpmax; 504 addr = mb_correct_addr_and_bit(&fix, addr); 505 tmpmax = max + fix; 506 start += fix; 507 508 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 509 if (ret > max) 510 return max; 511 return ret; 512 } 513 514 static inline int mb_find_next_bit(void *addr, int max, int start) 515 { 516 int fix = 0, ret, tmpmax; 517 addr = mb_correct_addr_and_bit(&fix, addr); 518 tmpmax = max + fix; 519 start += fix; 520 521 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 522 if (ret > max) 523 return max; 524 return ret; 525 } 526 527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 528 { 529 char *bb; 530 531 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 532 BUG_ON(max == NULL); 533 534 if (order > e4b->bd_blkbits + 1) { 535 *max = 0; 536 return NULL; 537 } 538 539 /* at order 0 we see each particular block */ 540 if (order == 0) { 541 *max = 1 << (e4b->bd_blkbits + 3); 542 return e4b->bd_bitmap; 543 } 544 545 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 546 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 547 548 return bb; 549 } 550 551 #ifdef DOUBLE_CHECK 552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 553 int first, int count) 554 { 555 int i; 556 struct super_block *sb = e4b->bd_sb; 557 558 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 559 return; 560 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 561 for (i = 0; i < count; i++) { 562 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 563 ext4_fsblk_t blocknr; 564 565 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 566 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 567 ext4_grp_locked_error(sb, e4b->bd_group, 568 inode ? inode->i_ino : 0, 569 blocknr, 570 "freeing block already freed " 571 "(bit %u)", 572 first + i); 573 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 574 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 575 } 576 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 577 } 578 } 579 580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 581 { 582 int i; 583 584 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 585 return; 586 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 587 for (i = 0; i < count; i++) { 588 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 589 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 590 } 591 } 592 593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 594 { 595 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 596 return; 597 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 598 unsigned char *b1, *b2; 599 int i; 600 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 601 b2 = (unsigned char *) bitmap; 602 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 603 if (b1[i] != b2[i]) { 604 ext4_msg(e4b->bd_sb, KERN_ERR, 605 "corruption in group %u " 606 "at byte %u(%u): %x in copy != %x " 607 "on disk/prealloc", 608 e4b->bd_group, i, i * 8, b1[i], b2[i]); 609 BUG(); 610 } 611 } 612 } 613 } 614 615 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 616 struct ext4_group_info *grp, ext4_group_t group) 617 { 618 struct buffer_head *bh; 619 620 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 621 if (!grp->bb_bitmap) 622 return; 623 624 bh = ext4_read_block_bitmap(sb, group); 625 if (IS_ERR_OR_NULL(bh)) { 626 kfree(grp->bb_bitmap); 627 grp->bb_bitmap = NULL; 628 return; 629 } 630 631 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 632 put_bh(bh); 633 } 634 635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 636 { 637 kfree(grp->bb_bitmap); 638 } 639 640 #else 641 static inline void mb_free_blocks_double(struct inode *inode, 642 struct ext4_buddy *e4b, int first, int count) 643 { 644 return; 645 } 646 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 647 int first, int count) 648 { 649 return; 650 } 651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 652 { 653 return; 654 } 655 656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 657 struct ext4_group_info *grp, ext4_group_t group) 658 { 659 return; 660 } 661 662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 663 { 664 return; 665 } 666 #endif 667 668 #ifdef AGGRESSIVE_CHECK 669 670 #define MB_CHECK_ASSERT(assert) \ 671 do { \ 672 if (!(assert)) { \ 673 printk(KERN_EMERG \ 674 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 675 function, file, line, # assert); \ 676 BUG(); \ 677 } \ 678 } while (0) 679 680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 681 const char *function, int line) 682 { 683 struct super_block *sb = e4b->bd_sb; 684 int order = e4b->bd_blkbits + 1; 685 int max; 686 int max2; 687 int i; 688 int j; 689 int k; 690 int count; 691 struct ext4_group_info *grp; 692 int fragments = 0; 693 int fstart; 694 struct list_head *cur; 695 void *buddy; 696 void *buddy2; 697 698 if (e4b->bd_info->bb_check_counter++ % 10) 699 return 0; 700 701 while (order > 1) { 702 buddy = mb_find_buddy(e4b, order, &max); 703 MB_CHECK_ASSERT(buddy); 704 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 705 MB_CHECK_ASSERT(buddy2); 706 MB_CHECK_ASSERT(buddy != buddy2); 707 MB_CHECK_ASSERT(max * 2 == max2); 708 709 count = 0; 710 for (i = 0; i < max; i++) { 711 712 if (mb_test_bit(i, buddy)) { 713 /* only single bit in buddy2 may be 0 */ 714 if (!mb_test_bit(i << 1, buddy2)) { 715 MB_CHECK_ASSERT( 716 mb_test_bit((i<<1)+1, buddy2)); 717 } 718 continue; 719 } 720 721 /* both bits in buddy2 must be 1 */ 722 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 723 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 724 725 for (j = 0; j < (1 << order); j++) { 726 k = (i * (1 << order)) + j; 727 MB_CHECK_ASSERT( 728 !mb_test_bit(k, e4b->bd_bitmap)); 729 } 730 count++; 731 } 732 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 733 order--; 734 } 735 736 fstart = -1; 737 buddy = mb_find_buddy(e4b, 0, &max); 738 for (i = 0; i < max; i++) { 739 if (!mb_test_bit(i, buddy)) { 740 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 741 if (fstart == -1) { 742 fragments++; 743 fstart = i; 744 } 745 continue; 746 } 747 fstart = -1; 748 /* check used bits only */ 749 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 750 buddy2 = mb_find_buddy(e4b, j, &max2); 751 k = i >> j; 752 MB_CHECK_ASSERT(k < max2); 753 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 754 } 755 } 756 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 757 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 758 759 grp = ext4_get_group_info(sb, e4b->bd_group); 760 if (!grp) 761 return NULL; 762 list_for_each(cur, &grp->bb_prealloc_list) { 763 ext4_group_t groupnr; 764 struct ext4_prealloc_space *pa; 765 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 766 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 767 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 768 for (i = 0; i < pa->pa_len; i++) 769 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 770 } 771 return 0; 772 } 773 #undef MB_CHECK_ASSERT 774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 775 __FILE__, __func__, __LINE__) 776 #else 777 #define mb_check_buddy(e4b) 778 #endif 779 780 /* 781 * Divide blocks started from @first with length @len into 782 * smaller chunks with power of 2 blocks. 783 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 784 * then increase bb_counters[] for corresponded chunk size. 785 */ 786 static void ext4_mb_mark_free_simple(struct super_block *sb, 787 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 788 struct ext4_group_info *grp) 789 { 790 struct ext4_sb_info *sbi = EXT4_SB(sb); 791 ext4_grpblk_t min; 792 ext4_grpblk_t max; 793 ext4_grpblk_t chunk; 794 unsigned int border; 795 796 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 797 798 border = 2 << sb->s_blocksize_bits; 799 800 while (len > 0) { 801 /* find how many blocks can be covered since this position */ 802 max = ffs(first | border) - 1; 803 804 /* find how many blocks of power 2 we need to mark */ 805 min = fls(len) - 1; 806 807 if (max < min) 808 min = max; 809 chunk = 1 << min; 810 811 /* mark multiblock chunks only */ 812 grp->bb_counters[min]++; 813 if (min > 0) 814 mb_clear_bit(first >> min, 815 buddy + sbi->s_mb_offsets[min]); 816 817 len -= chunk; 818 first += chunk; 819 } 820 } 821 822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 823 { 824 int order; 825 826 /* 827 * We don't bother with a special lists groups with only 1 block free 828 * extents and for completely empty groups. 829 */ 830 order = fls(len) - 2; 831 if (order < 0) 832 return 0; 833 if (order == MB_NUM_ORDERS(sb)) 834 order--; 835 return order; 836 } 837 838 /* Move group to appropriate avg_fragment_size list */ 839 static void 840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 841 { 842 struct ext4_sb_info *sbi = EXT4_SB(sb); 843 int new_order; 844 845 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 846 return; 847 848 new_order = mb_avg_fragment_size_order(sb, 849 grp->bb_free / grp->bb_fragments); 850 if (new_order == grp->bb_avg_fragment_size_order) 851 return; 852 853 if (grp->bb_avg_fragment_size_order != -1) { 854 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 855 grp->bb_avg_fragment_size_order]); 856 list_del(&grp->bb_avg_fragment_size_node); 857 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 858 grp->bb_avg_fragment_size_order]); 859 } 860 grp->bb_avg_fragment_size_order = new_order; 861 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 862 grp->bb_avg_fragment_size_order]); 863 list_add_tail(&grp->bb_avg_fragment_size_node, 864 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 865 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 866 grp->bb_avg_fragment_size_order]); 867 } 868 869 /* 870 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 871 * cr level needs an update. 872 */ 873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 874 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 875 { 876 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 877 struct ext4_group_info *iter, *grp; 878 int i; 879 880 if (ac->ac_status == AC_STATUS_FOUND) 881 return; 882 883 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 884 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 885 886 grp = NULL; 887 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 888 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 889 continue; 890 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 891 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 892 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 893 continue; 894 } 895 grp = NULL; 896 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 897 bb_largest_free_order_node) { 898 if (sbi->s_mb_stats) 899 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 900 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 901 grp = iter; 902 break; 903 } 904 } 905 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 906 if (grp) 907 break; 908 } 909 910 if (!grp) { 911 /* Increment cr and search again */ 912 *new_cr = CR_GOAL_LEN_FAST; 913 } else { 914 *group = grp->bb_group; 915 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 916 } 917 } 918 919 /* 920 * Find a suitable group of given order from the average fragments list. 921 */ 922 static struct ext4_group_info * 923 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 924 { 925 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 926 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 927 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 928 struct ext4_group_info *grp = NULL, *iter; 929 enum criteria cr = ac->ac_criteria; 930 931 if (list_empty(frag_list)) 932 return NULL; 933 read_lock(frag_list_lock); 934 if (list_empty(frag_list)) { 935 read_unlock(frag_list_lock); 936 return NULL; 937 } 938 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 939 if (sbi->s_mb_stats) 940 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 941 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 942 grp = iter; 943 break; 944 } 945 } 946 read_unlock(frag_list_lock); 947 return grp; 948 } 949 950 /* 951 * Choose next group by traversing average fragment size list of suitable 952 * order. Updates *new_cr if cr level needs an update. 953 */ 954 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 955 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 956 { 957 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 958 struct ext4_group_info *grp = NULL; 959 int i; 960 961 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 962 if (sbi->s_mb_stats) 963 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 964 } 965 966 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 967 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 968 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 969 if (grp) 970 break; 971 } 972 973 if (grp) { 974 *group = grp->bb_group; 975 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 976 } else { 977 *new_cr = CR_BEST_AVAIL_LEN; 978 } 979 } 980 981 /* 982 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 983 * order we have and proactively trim the goal request length to that order to 984 * find a suitable group faster. 985 * 986 * This optimizes allocation speed at the cost of slightly reduced 987 * preallocations. However, we make sure that we don't trim the request too 988 * much and fall to CR_GOAL_LEN_SLOW in that case. 989 */ 990 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 991 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 992 { 993 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 994 struct ext4_group_info *grp = NULL; 995 int i, order, min_order; 996 unsigned long num_stripe_clusters = 0; 997 998 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 999 if (sbi->s_mb_stats) 1000 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1001 } 1002 1003 /* 1004 * mb_avg_fragment_size_order() returns order in a way that makes 1005 * retrieving back the length using (1 << order) inaccurate. Hence, use 1006 * fls() instead since we need to know the actual length while modifying 1007 * goal length. 1008 */ 1009 order = fls(ac->ac_g_ex.fe_len) - 1; 1010 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1011 if (min_order < 0) 1012 min_order = 0; 1013 1014 if (sbi->s_stripe > 0) { 1015 /* 1016 * We are assuming that stripe size is always a multiple of 1017 * cluster ratio otherwise __ext4_fill_super exists early. 1018 */ 1019 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1020 if (1 << min_order < num_stripe_clusters) 1021 /* 1022 * We consider 1 order less because later we round 1023 * up the goal len to num_stripe_clusters 1024 */ 1025 min_order = fls(num_stripe_clusters) - 1; 1026 } 1027 1028 if (1 << min_order < ac->ac_o_ex.fe_len) 1029 min_order = fls(ac->ac_o_ex.fe_len); 1030 1031 for (i = order; i >= min_order; i--) { 1032 int frag_order; 1033 /* 1034 * Scale down goal len to make sure we find something 1035 * in the free fragments list. Basically, reduce 1036 * preallocations. 1037 */ 1038 ac->ac_g_ex.fe_len = 1 << i; 1039 1040 if (num_stripe_clusters > 0) { 1041 /* 1042 * Try to round up the adjusted goal length to 1043 * stripe size (in cluster units) multiple for 1044 * efficiency. 1045 */ 1046 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1047 num_stripe_clusters); 1048 } 1049 1050 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1051 ac->ac_g_ex.fe_len); 1052 1053 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1054 if (grp) 1055 break; 1056 } 1057 1058 if (grp) { 1059 *group = grp->bb_group; 1060 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1061 } else { 1062 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1063 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1064 *new_cr = CR_GOAL_LEN_SLOW; 1065 } 1066 } 1067 1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1069 { 1070 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1071 return 0; 1072 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1073 return 0; 1074 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1075 return 0; 1076 return 1; 1077 } 1078 1079 /* 1080 * Return next linear group for allocation. If linear traversal should not be 1081 * performed, this function just returns the same group 1082 */ 1083 static int 1084 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups) 1085 { 1086 if (!should_optimize_scan(ac)) 1087 goto inc_and_return; 1088 1089 if (ac->ac_groups_linear_remaining) { 1090 ac->ac_groups_linear_remaining--; 1091 goto inc_and_return; 1092 } 1093 1094 return group; 1095 inc_and_return: 1096 /* 1097 * Artificially restricted ngroups for non-extent 1098 * files makes group > ngroups possible on first loop. 1099 */ 1100 return group + 1 >= ngroups ? 0 : group + 1; 1101 } 1102 1103 /* 1104 * ext4_mb_choose_next_group: choose next group for allocation. 1105 * 1106 * @ac Allocation Context 1107 * @new_cr This is an output parameter. If the there is no good group 1108 * available at current CR level, this field is updated to indicate 1109 * the new cr level that should be used. 1110 * @group This is an input / output parameter. As an input it indicates the 1111 * next group that the allocator intends to use for allocation. As 1112 * output, this field indicates the next group that should be used as 1113 * determined by the optimization functions. 1114 * @ngroups Total number of groups 1115 */ 1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1117 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1118 { 1119 *new_cr = ac->ac_criteria; 1120 1121 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1122 *group = next_linear_group(ac, *group, ngroups); 1123 return; 1124 } 1125 1126 if (*new_cr == CR_POWER2_ALIGNED) { 1127 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1128 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1129 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1130 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1131 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1132 } else { 1133 /* 1134 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1135 * bb_free. But until that happens, we should never come here. 1136 */ 1137 WARN_ON(1); 1138 } 1139 } 1140 1141 /* 1142 * Cache the order of the largest free extent we have available in this block 1143 * group. 1144 */ 1145 static void 1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(sb); 1149 int i; 1150 1151 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1152 if (grp->bb_counters[i] > 0) 1153 break; 1154 /* No need to move between order lists? */ 1155 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1156 i == grp->bb_largest_free_order) { 1157 grp->bb_largest_free_order = i; 1158 return; 1159 } 1160 1161 if (grp->bb_largest_free_order >= 0) { 1162 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1163 grp->bb_largest_free_order]); 1164 list_del_init(&grp->bb_largest_free_order_node); 1165 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1166 grp->bb_largest_free_order]); 1167 } 1168 grp->bb_largest_free_order = i; 1169 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1170 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1171 grp->bb_largest_free_order]); 1172 list_add_tail(&grp->bb_largest_free_order_node, 1173 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1174 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1175 grp->bb_largest_free_order]); 1176 } 1177 } 1178 1179 static noinline_for_stack 1180 void ext4_mb_generate_buddy(struct super_block *sb, 1181 void *buddy, void *bitmap, ext4_group_t group, 1182 struct ext4_group_info *grp) 1183 { 1184 struct ext4_sb_info *sbi = EXT4_SB(sb); 1185 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1186 ext4_grpblk_t i = 0; 1187 ext4_grpblk_t first; 1188 ext4_grpblk_t len; 1189 unsigned free = 0; 1190 unsigned fragments = 0; 1191 unsigned long long period = get_cycles(); 1192 1193 /* initialize buddy from bitmap which is aggregation 1194 * of on-disk bitmap and preallocations */ 1195 i = mb_find_next_zero_bit(bitmap, max, 0); 1196 grp->bb_first_free = i; 1197 while (i < max) { 1198 fragments++; 1199 first = i; 1200 i = mb_find_next_bit(bitmap, max, i); 1201 len = i - first; 1202 free += len; 1203 if (len > 1) 1204 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1205 else 1206 grp->bb_counters[0]++; 1207 if (i < max) 1208 i = mb_find_next_zero_bit(bitmap, max, i); 1209 } 1210 grp->bb_fragments = fragments; 1211 1212 if (free != grp->bb_free) { 1213 ext4_grp_locked_error(sb, group, 0, 0, 1214 "block bitmap and bg descriptor " 1215 "inconsistent: %u vs %u free clusters", 1216 free, grp->bb_free); 1217 /* 1218 * If we intend to continue, we consider group descriptor 1219 * corrupt and update bb_free using bitmap value 1220 */ 1221 grp->bb_free = free; 1222 ext4_mark_group_bitmap_corrupted(sb, group, 1223 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1224 } 1225 mb_set_largest_free_order(sb, grp); 1226 mb_update_avg_fragment_size(sb, grp); 1227 1228 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1229 1230 period = get_cycles() - period; 1231 atomic_inc(&sbi->s_mb_buddies_generated); 1232 atomic64_add(period, &sbi->s_mb_generation_time); 1233 } 1234 1235 /* The buddy information is attached the buddy cache inode 1236 * for convenience. The information regarding each group 1237 * is loaded via ext4_mb_load_buddy. The information involve 1238 * block bitmap and buddy information. The information are 1239 * stored in the inode as 1240 * 1241 * { page } 1242 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1243 * 1244 * 1245 * one block each for bitmap and buddy information. 1246 * So for each group we take up 2 blocks. A page can 1247 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1248 * So it can have information regarding groups_per_page which 1249 * is blocks_per_page/2 1250 * 1251 * Locking note: This routine takes the block group lock of all groups 1252 * for this page; do not hold this lock when calling this routine! 1253 */ 1254 1255 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1256 { 1257 ext4_group_t ngroups; 1258 int blocksize; 1259 int blocks_per_page; 1260 int groups_per_page; 1261 int err = 0; 1262 int i; 1263 ext4_group_t first_group, group; 1264 int first_block; 1265 struct super_block *sb; 1266 struct buffer_head *bhs; 1267 struct buffer_head **bh = NULL; 1268 struct inode *inode; 1269 char *data; 1270 char *bitmap; 1271 struct ext4_group_info *grinfo; 1272 1273 inode = page->mapping->host; 1274 sb = inode->i_sb; 1275 ngroups = ext4_get_groups_count(sb); 1276 blocksize = i_blocksize(inode); 1277 blocks_per_page = PAGE_SIZE / blocksize; 1278 1279 mb_debug(sb, "init page %lu\n", page->index); 1280 1281 groups_per_page = blocks_per_page >> 1; 1282 if (groups_per_page == 0) 1283 groups_per_page = 1; 1284 1285 /* allocate buffer_heads to read bitmaps */ 1286 if (groups_per_page > 1) { 1287 i = sizeof(struct buffer_head *) * groups_per_page; 1288 bh = kzalloc(i, gfp); 1289 if (bh == NULL) 1290 return -ENOMEM; 1291 } else 1292 bh = &bhs; 1293 1294 first_group = page->index * blocks_per_page / 2; 1295 1296 /* read all groups the page covers into the cache */ 1297 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1298 if (group >= ngroups) 1299 break; 1300 1301 grinfo = ext4_get_group_info(sb, group); 1302 if (!grinfo) 1303 continue; 1304 /* 1305 * If page is uptodate then we came here after online resize 1306 * which added some new uninitialized group info structs, so 1307 * we must skip all initialized uptodate buddies on the page, 1308 * which may be currently in use by an allocating task. 1309 */ 1310 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1311 bh[i] = NULL; 1312 continue; 1313 } 1314 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1315 if (IS_ERR(bh[i])) { 1316 err = PTR_ERR(bh[i]); 1317 bh[i] = NULL; 1318 goto out; 1319 } 1320 mb_debug(sb, "read bitmap for group %u\n", group); 1321 } 1322 1323 /* wait for I/O completion */ 1324 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1325 int err2; 1326 1327 if (!bh[i]) 1328 continue; 1329 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1330 if (!err) 1331 err = err2; 1332 } 1333 1334 first_block = page->index * blocks_per_page; 1335 for (i = 0; i < blocks_per_page; i++) { 1336 group = (first_block + i) >> 1; 1337 if (group >= ngroups) 1338 break; 1339 1340 if (!bh[group - first_group]) 1341 /* skip initialized uptodate buddy */ 1342 continue; 1343 1344 if (!buffer_verified(bh[group - first_group])) 1345 /* Skip faulty bitmaps */ 1346 continue; 1347 err = 0; 1348 1349 /* 1350 * data carry information regarding this 1351 * particular group in the format specified 1352 * above 1353 * 1354 */ 1355 data = page_address(page) + (i * blocksize); 1356 bitmap = bh[group - first_group]->b_data; 1357 1358 /* 1359 * We place the buddy block and bitmap block 1360 * close together 1361 */ 1362 if ((first_block + i) & 1) { 1363 /* this is block of buddy */ 1364 BUG_ON(incore == NULL); 1365 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1366 group, page->index, i * blocksize); 1367 trace_ext4_mb_buddy_bitmap_load(sb, group); 1368 grinfo = ext4_get_group_info(sb, group); 1369 if (!grinfo) { 1370 err = -EFSCORRUPTED; 1371 goto out; 1372 } 1373 grinfo->bb_fragments = 0; 1374 memset(grinfo->bb_counters, 0, 1375 sizeof(*grinfo->bb_counters) * 1376 (MB_NUM_ORDERS(sb))); 1377 /* 1378 * incore got set to the group block bitmap below 1379 */ 1380 ext4_lock_group(sb, group); 1381 /* init the buddy */ 1382 memset(data, 0xff, blocksize); 1383 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1384 ext4_unlock_group(sb, group); 1385 incore = NULL; 1386 } else { 1387 /* this is block of bitmap */ 1388 BUG_ON(incore != NULL); 1389 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1390 group, page->index, i * blocksize); 1391 trace_ext4_mb_bitmap_load(sb, group); 1392 1393 /* see comments in ext4_mb_put_pa() */ 1394 ext4_lock_group(sb, group); 1395 memcpy(data, bitmap, blocksize); 1396 1397 /* mark all preallocated blks used in in-core bitmap */ 1398 ext4_mb_generate_from_pa(sb, data, group); 1399 ext4_mb_generate_from_freelist(sb, data, group); 1400 ext4_unlock_group(sb, group); 1401 1402 /* set incore so that the buddy information can be 1403 * generated using this 1404 */ 1405 incore = data; 1406 } 1407 } 1408 SetPageUptodate(page); 1409 1410 out: 1411 if (bh) { 1412 for (i = 0; i < groups_per_page; i++) 1413 brelse(bh[i]); 1414 if (bh != &bhs) 1415 kfree(bh); 1416 } 1417 return err; 1418 } 1419 1420 /* 1421 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1422 * on the same buddy page doesn't happen whild holding the buddy page lock. 1423 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1424 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1425 */ 1426 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1427 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1428 { 1429 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1430 int block, pnum, poff; 1431 int blocks_per_page; 1432 struct page *page; 1433 1434 e4b->bd_buddy_page = NULL; 1435 e4b->bd_bitmap_page = NULL; 1436 1437 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1438 /* 1439 * the buddy cache inode stores the block bitmap 1440 * and buddy information in consecutive blocks. 1441 * So for each group we need two blocks. 1442 */ 1443 block = group * 2; 1444 pnum = block / blocks_per_page; 1445 poff = block % blocks_per_page; 1446 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1447 if (!page) 1448 return -ENOMEM; 1449 BUG_ON(page->mapping != inode->i_mapping); 1450 e4b->bd_bitmap_page = page; 1451 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1452 1453 if (blocks_per_page >= 2) { 1454 /* buddy and bitmap are on the same page */ 1455 return 0; 1456 } 1457 1458 block++; 1459 pnum = block / blocks_per_page; 1460 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1461 if (!page) 1462 return -ENOMEM; 1463 BUG_ON(page->mapping != inode->i_mapping); 1464 e4b->bd_buddy_page = page; 1465 return 0; 1466 } 1467 1468 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1469 { 1470 if (e4b->bd_bitmap_page) { 1471 unlock_page(e4b->bd_bitmap_page); 1472 put_page(e4b->bd_bitmap_page); 1473 } 1474 if (e4b->bd_buddy_page) { 1475 unlock_page(e4b->bd_buddy_page); 1476 put_page(e4b->bd_buddy_page); 1477 } 1478 } 1479 1480 /* 1481 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1482 * block group lock of all groups for this page; do not hold the BG lock when 1483 * calling this routine! 1484 */ 1485 static noinline_for_stack 1486 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1487 { 1488 1489 struct ext4_group_info *this_grp; 1490 struct ext4_buddy e4b; 1491 struct page *page; 1492 int ret = 0; 1493 1494 might_sleep(); 1495 mb_debug(sb, "init group %u\n", group); 1496 this_grp = ext4_get_group_info(sb, group); 1497 if (!this_grp) 1498 return -EFSCORRUPTED; 1499 1500 /* 1501 * This ensures that we don't reinit the buddy cache 1502 * page which map to the group from which we are already 1503 * allocating. If we are looking at the buddy cache we would 1504 * have taken a reference using ext4_mb_load_buddy and that 1505 * would have pinned buddy page to page cache. 1506 * The call to ext4_mb_get_buddy_page_lock will mark the 1507 * page accessed. 1508 */ 1509 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1510 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1511 /* 1512 * somebody initialized the group 1513 * return without doing anything 1514 */ 1515 goto err; 1516 } 1517 1518 page = e4b.bd_bitmap_page; 1519 ret = ext4_mb_init_cache(page, NULL, gfp); 1520 if (ret) 1521 goto err; 1522 if (!PageUptodate(page)) { 1523 ret = -EIO; 1524 goto err; 1525 } 1526 1527 if (e4b.bd_buddy_page == NULL) { 1528 /* 1529 * If both the bitmap and buddy are in 1530 * the same page we don't need to force 1531 * init the buddy 1532 */ 1533 ret = 0; 1534 goto err; 1535 } 1536 /* init buddy cache */ 1537 page = e4b.bd_buddy_page; 1538 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1539 if (ret) 1540 goto err; 1541 if (!PageUptodate(page)) { 1542 ret = -EIO; 1543 goto err; 1544 } 1545 err: 1546 ext4_mb_put_buddy_page_lock(&e4b); 1547 return ret; 1548 } 1549 1550 /* 1551 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1552 * block group lock of all groups for this page; do not hold the BG lock when 1553 * calling this routine! 1554 */ 1555 static noinline_for_stack int 1556 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1557 struct ext4_buddy *e4b, gfp_t gfp) 1558 { 1559 int blocks_per_page; 1560 int block; 1561 int pnum; 1562 int poff; 1563 struct page *page; 1564 int ret; 1565 struct ext4_group_info *grp; 1566 struct ext4_sb_info *sbi = EXT4_SB(sb); 1567 struct inode *inode = sbi->s_buddy_cache; 1568 1569 might_sleep(); 1570 mb_debug(sb, "load group %u\n", group); 1571 1572 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1573 grp = ext4_get_group_info(sb, group); 1574 if (!grp) 1575 return -EFSCORRUPTED; 1576 1577 e4b->bd_blkbits = sb->s_blocksize_bits; 1578 e4b->bd_info = grp; 1579 e4b->bd_sb = sb; 1580 e4b->bd_group = group; 1581 e4b->bd_buddy_page = NULL; 1582 e4b->bd_bitmap_page = NULL; 1583 1584 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1585 /* 1586 * we need full data about the group 1587 * to make a good selection 1588 */ 1589 ret = ext4_mb_init_group(sb, group, gfp); 1590 if (ret) 1591 return ret; 1592 } 1593 1594 /* 1595 * the buddy cache inode stores the block bitmap 1596 * and buddy information in consecutive blocks. 1597 * So for each group we need two blocks. 1598 */ 1599 block = group * 2; 1600 pnum = block / blocks_per_page; 1601 poff = block % blocks_per_page; 1602 1603 /* we could use find_or_create_page(), but it locks page 1604 * what we'd like to avoid in fast path ... */ 1605 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1606 if (page == NULL || !PageUptodate(page)) { 1607 if (page) 1608 /* 1609 * drop the page reference and try 1610 * to get the page with lock. If we 1611 * are not uptodate that implies 1612 * somebody just created the page but 1613 * is yet to initialize the same. So 1614 * wait for it to initialize. 1615 */ 1616 put_page(page); 1617 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1618 if (page) { 1619 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1620 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1621 /* should never happen */ 1622 unlock_page(page); 1623 ret = -EINVAL; 1624 goto err; 1625 } 1626 if (!PageUptodate(page)) { 1627 ret = ext4_mb_init_cache(page, NULL, gfp); 1628 if (ret) { 1629 unlock_page(page); 1630 goto err; 1631 } 1632 mb_cmp_bitmaps(e4b, page_address(page) + 1633 (poff * sb->s_blocksize)); 1634 } 1635 unlock_page(page); 1636 } 1637 } 1638 if (page == NULL) { 1639 ret = -ENOMEM; 1640 goto err; 1641 } 1642 if (!PageUptodate(page)) { 1643 ret = -EIO; 1644 goto err; 1645 } 1646 1647 /* Pages marked accessed already */ 1648 e4b->bd_bitmap_page = page; 1649 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1650 1651 block++; 1652 pnum = block / blocks_per_page; 1653 poff = block % blocks_per_page; 1654 1655 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1656 if (page == NULL || !PageUptodate(page)) { 1657 if (page) 1658 put_page(page); 1659 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1660 if (page) { 1661 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1662 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1663 /* should never happen */ 1664 unlock_page(page); 1665 ret = -EINVAL; 1666 goto err; 1667 } 1668 if (!PageUptodate(page)) { 1669 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1670 gfp); 1671 if (ret) { 1672 unlock_page(page); 1673 goto err; 1674 } 1675 } 1676 unlock_page(page); 1677 } 1678 } 1679 if (page == NULL) { 1680 ret = -ENOMEM; 1681 goto err; 1682 } 1683 if (!PageUptodate(page)) { 1684 ret = -EIO; 1685 goto err; 1686 } 1687 1688 /* Pages marked accessed already */ 1689 e4b->bd_buddy_page = page; 1690 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1691 1692 return 0; 1693 1694 err: 1695 if (page) 1696 put_page(page); 1697 if (e4b->bd_bitmap_page) 1698 put_page(e4b->bd_bitmap_page); 1699 1700 e4b->bd_buddy = NULL; 1701 e4b->bd_bitmap = NULL; 1702 return ret; 1703 } 1704 1705 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1706 struct ext4_buddy *e4b) 1707 { 1708 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1709 } 1710 1711 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1712 { 1713 if (e4b->bd_bitmap_page) 1714 put_page(e4b->bd_bitmap_page); 1715 if (e4b->bd_buddy_page) 1716 put_page(e4b->bd_buddy_page); 1717 } 1718 1719 1720 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1721 { 1722 int order = 1, max; 1723 void *bb; 1724 1725 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1726 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1727 1728 while (order <= e4b->bd_blkbits + 1) { 1729 bb = mb_find_buddy(e4b, order, &max); 1730 if (!mb_test_bit(block >> order, bb)) { 1731 /* this block is part of buddy of order 'order' */ 1732 return order; 1733 } 1734 order++; 1735 } 1736 return 0; 1737 } 1738 1739 static void mb_clear_bits(void *bm, int cur, int len) 1740 { 1741 __u32 *addr; 1742 1743 len = cur + len; 1744 while (cur < len) { 1745 if ((cur & 31) == 0 && (len - cur) >= 32) { 1746 /* fast path: clear whole word at once */ 1747 addr = bm + (cur >> 3); 1748 *addr = 0; 1749 cur += 32; 1750 continue; 1751 } 1752 mb_clear_bit(cur, bm); 1753 cur++; 1754 } 1755 } 1756 1757 /* clear bits in given range 1758 * will return first found zero bit if any, -1 otherwise 1759 */ 1760 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1761 { 1762 __u32 *addr; 1763 int zero_bit = -1; 1764 1765 len = cur + len; 1766 while (cur < len) { 1767 if ((cur & 31) == 0 && (len - cur) >= 32) { 1768 /* fast path: clear whole word at once */ 1769 addr = bm + (cur >> 3); 1770 if (*addr != (__u32)(-1) && zero_bit == -1) 1771 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1772 *addr = 0; 1773 cur += 32; 1774 continue; 1775 } 1776 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1777 zero_bit = cur; 1778 cur++; 1779 } 1780 1781 return zero_bit; 1782 } 1783 1784 void mb_set_bits(void *bm, int cur, int len) 1785 { 1786 __u32 *addr; 1787 1788 len = cur + len; 1789 while (cur < len) { 1790 if ((cur & 31) == 0 && (len - cur) >= 32) { 1791 /* fast path: set whole word at once */ 1792 addr = bm + (cur >> 3); 1793 *addr = 0xffffffff; 1794 cur += 32; 1795 continue; 1796 } 1797 mb_set_bit(cur, bm); 1798 cur++; 1799 } 1800 } 1801 1802 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1803 { 1804 if (mb_test_bit(*bit + side, bitmap)) { 1805 mb_clear_bit(*bit, bitmap); 1806 (*bit) -= side; 1807 return 1; 1808 } 1809 else { 1810 (*bit) += side; 1811 mb_set_bit(*bit, bitmap); 1812 return -1; 1813 } 1814 } 1815 1816 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1817 { 1818 int max; 1819 int order = 1; 1820 void *buddy = mb_find_buddy(e4b, order, &max); 1821 1822 while (buddy) { 1823 void *buddy2; 1824 1825 /* Bits in range [first; last] are known to be set since 1826 * corresponding blocks were allocated. Bits in range 1827 * (first; last) will stay set because they form buddies on 1828 * upper layer. We just deal with borders if they don't 1829 * align with upper layer and then go up. 1830 * Releasing entire group is all about clearing 1831 * single bit of highest order buddy. 1832 */ 1833 1834 /* Example: 1835 * --------------------------------- 1836 * | 1 | 1 | 1 | 1 | 1837 * --------------------------------- 1838 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1839 * --------------------------------- 1840 * 0 1 2 3 4 5 6 7 1841 * \_____________________/ 1842 * 1843 * Neither [1] nor [6] is aligned to above layer. 1844 * Left neighbour [0] is free, so mark it busy, 1845 * decrease bb_counters and extend range to 1846 * [0; 6] 1847 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1848 * mark [6] free, increase bb_counters and shrink range to 1849 * [0; 5]. 1850 * Then shift range to [0; 2], go up and do the same. 1851 */ 1852 1853 1854 if (first & 1) 1855 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1856 if (!(last & 1)) 1857 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1858 if (first > last) 1859 break; 1860 order++; 1861 1862 buddy2 = mb_find_buddy(e4b, order, &max); 1863 if (!buddy2) { 1864 mb_clear_bits(buddy, first, last - first + 1); 1865 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1866 break; 1867 } 1868 first >>= 1; 1869 last >>= 1; 1870 buddy = buddy2; 1871 } 1872 } 1873 1874 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1875 int first, int count) 1876 { 1877 int left_is_free = 0; 1878 int right_is_free = 0; 1879 int block; 1880 int last = first + count - 1; 1881 struct super_block *sb = e4b->bd_sb; 1882 1883 if (WARN_ON(count == 0)) 1884 return; 1885 BUG_ON(last >= (sb->s_blocksize << 3)); 1886 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1887 /* Don't bother if the block group is corrupt. */ 1888 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1889 return; 1890 1891 mb_check_buddy(e4b); 1892 mb_free_blocks_double(inode, e4b, first, count); 1893 1894 this_cpu_inc(discard_pa_seq); 1895 e4b->bd_info->bb_free += count; 1896 if (first < e4b->bd_info->bb_first_free) 1897 e4b->bd_info->bb_first_free = first; 1898 1899 /* access memory sequentially: check left neighbour, 1900 * clear range and then check right neighbour 1901 */ 1902 if (first != 0) 1903 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1904 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1905 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1906 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1907 1908 if (unlikely(block != -1)) { 1909 struct ext4_sb_info *sbi = EXT4_SB(sb); 1910 ext4_fsblk_t blocknr; 1911 1912 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1913 blocknr += EXT4_C2B(sbi, block); 1914 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1915 ext4_grp_locked_error(sb, e4b->bd_group, 1916 inode ? inode->i_ino : 0, 1917 blocknr, 1918 "freeing already freed block (bit %u); block bitmap corrupt.", 1919 block); 1920 ext4_mark_group_bitmap_corrupted( 1921 sb, e4b->bd_group, 1922 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1923 } 1924 goto done; 1925 } 1926 1927 /* let's maintain fragments counter */ 1928 if (left_is_free && right_is_free) 1929 e4b->bd_info->bb_fragments--; 1930 else if (!left_is_free && !right_is_free) 1931 e4b->bd_info->bb_fragments++; 1932 1933 /* buddy[0] == bd_bitmap is a special case, so handle 1934 * it right away and let mb_buddy_mark_free stay free of 1935 * zero order checks. 1936 * Check if neighbours are to be coaleasced, 1937 * adjust bitmap bb_counters and borders appropriately. 1938 */ 1939 if (first & 1) { 1940 first += !left_is_free; 1941 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1942 } 1943 if (!(last & 1)) { 1944 last -= !right_is_free; 1945 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1946 } 1947 1948 if (first <= last) 1949 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1950 1951 done: 1952 mb_set_largest_free_order(sb, e4b->bd_info); 1953 mb_update_avg_fragment_size(sb, e4b->bd_info); 1954 mb_check_buddy(e4b); 1955 } 1956 1957 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1958 int needed, struct ext4_free_extent *ex) 1959 { 1960 int next = block; 1961 int max, order; 1962 void *buddy; 1963 1964 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1965 BUG_ON(ex == NULL); 1966 1967 buddy = mb_find_buddy(e4b, 0, &max); 1968 BUG_ON(buddy == NULL); 1969 BUG_ON(block >= max); 1970 if (mb_test_bit(block, buddy)) { 1971 ex->fe_len = 0; 1972 ex->fe_start = 0; 1973 ex->fe_group = 0; 1974 return 0; 1975 } 1976 1977 /* find actual order */ 1978 order = mb_find_order_for_block(e4b, block); 1979 block = block >> order; 1980 1981 ex->fe_len = 1 << order; 1982 ex->fe_start = block << order; 1983 ex->fe_group = e4b->bd_group; 1984 1985 /* calc difference from given start */ 1986 next = next - ex->fe_start; 1987 ex->fe_len -= next; 1988 ex->fe_start += next; 1989 1990 while (needed > ex->fe_len && 1991 mb_find_buddy(e4b, order, &max)) { 1992 1993 if (block + 1 >= max) 1994 break; 1995 1996 next = (block + 1) * (1 << order); 1997 if (mb_test_bit(next, e4b->bd_bitmap)) 1998 break; 1999 2000 order = mb_find_order_for_block(e4b, next); 2001 2002 block = next >> order; 2003 ex->fe_len += 1 << order; 2004 } 2005 2006 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2007 /* Should never happen! (but apparently sometimes does?!?) */ 2008 WARN_ON(1); 2009 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2010 "corruption or bug in mb_find_extent " 2011 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2012 block, order, needed, ex->fe_group, ex->fe_start, 2013 ex->fe_len, ex->fe_logical); 2014 ex->fe_len = 0; 2015 ex->fe_start = 0; 2016 ex->fe_group = 0; 2017 } 2018 return ex->fe_len; 2019 } 2020 2021 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2022 { 2023 int ord; 2024 int mlen = 0; 2025 int max = 0; 2026 int cur; 2027 int start = ex->fe_start; 2028 int len = ex->fe_len; 2029 unsigned ret = 0; 2030 int len0 = len; 2031 void *buddy; 2032 bool split = false; 2033 2034 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2035 BUG_ON(e4b->bd_group != ex->fe_group); 2036 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2037 mb_check_buddy(e4b); 2038 mb_mark_used_double(e4b, start, len); 2039 2040 this_cpu_inc(discard_pa_seq); 2041 e4b->bd_info->bb_free -= len; 2042 if (e4b->bd_info->bb_first_free == start) 2043 e4b->bd_info->bb_first_free += len; 2044 2045 /* let's maintain fragments counter */ 2046 if (start != 0) 2047 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2048 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2049 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2050 if (mlen && max) 2051 e4b->bd_info->bb_fragments++; 2052 else if (!mlen && !max) 2053 e4b->bd_info->bb_fragments--; 2054 2055 /* let's maintain buddy itself */ 2056 while (len) { 2057 if (!split) 2058 ord = mb_find_order_for_block(e4b, start); 2059 2060 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2061 /* the whole chunk may be allocated at once! */ 2062 mlen = 1 << ord; 2063 if (!split) 2064 buddy = mb_find_buddy(e4b, ord, &max); 2065 else 2066 split = false; 2067 BUG_ON((start >> ord) >= max); 2068 mb_set_bit(start >> ord, buddy); 2069 e4b->bd_info->bb_counters[ord]--; 2070 start += mlen; 2071 len -= mlen; 2072 BUG_ON(len < 0); 2073 continue; 2074 } 2075 2076 /* store for history */ 2077 if (ret == 0) 2078 ret = len | (ord << 16); 2079 2080 /* we have to split large buddy */ 2081 BUG_ON(ord <= 0); 2082 buddy = mb_find_buddy(e4b, ord, &max); 2083 mb_set_bit(start >> ord, buddy); 2084 e4b->bd_info->bb_counters[ord]--; 2085 2086 ord--; 2087 cur = (start >> ord) & ~1U; 2088 buddy = mb_find_buddy(e4b, ord, &max); 2089 mb_clear_bit(cur, buddy); 2090 mb_clear_bit(cur + 1, buddy); 2091 e4b->bd_info->bb_counters[ord]++; 2092 e4b->bd_info->bb_counters[ord]++; 2093 split = true; 2094 } 2095 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2096 2097 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2098 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2099 mb_check_buddy(e4b); 2100 2101 return ret; 2102 } 2103 2104 /* 2105 * Must be called under group lock! 2106 */ 2107 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2108 struct ext4_buddy *e4b) 2109 { 2110 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2111 int ret; 2112 2113 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2114 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2115 2116 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2117 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2118 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2119 2120 /* preallocation can change ac_b_ex, thus we store actually 2121 * allocated blocks for history */ 2122 ac->ac_f_ex = ac->ac_b_ex; 2123 2124 ac->ac_status = AC_STATUS_FOUND; 2125 ac->ac_tail = ret & 0xffff; 2126 ac->ac_buddy = ret >> 16; 2127 2128 /* 2129 * take the page reference. We want the page to be pinned 2130 * so that we don't get a ext4_mb_init_cache_call for this 2131 * group until we update the bitmap. That would mean we 2132 * double allocate blocks. The reference is dropped 2133 * in ext4_mb_release_context 2134 */ 2135 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2136 get_page(ac->ac_bitmap_page); 2137 ac->ac_buddy_page = e4b->bd_buddy_page; 2138 get_page(ac->ac_buddy_page); 2139 /* store last allocated for subsequent stream allocation */ 2140 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2141 spin_lock(&sbi->s_md_lock); 2142 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2143 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2144 spin_unlock(&sbi->s_md_lock); 2145 } 2146 /* 2147 * As we've just preallocated more space than 2148 * user requested originally, we store allocated 2149 * space in a special descriptor. 2150 */ 2151 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2152 ext4_mb_new_preallocation(ac); 2153 2154 } 2155 2156 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2157 struct ext4_buddy *e4b, 2158 int finish_group) 2159 { 2160 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2161 struct ext4_free_extent *bex = &ac->ac_b_ex; 2162 struct ext4_free_extent *gex = &ac->ac_g_ex; 2163 2164 if (ac->ac_status == AC_STATUS_FOUND) 2165 return; 2166 /* 2167 * We don't want to scan for a whole year 2168 */ 2169 if (ac->ac_found > sbi->s_mb_max_to_scan && 2170 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2171 ac->ac_status = AC_STATUS_BREAK; 2172 return; 2173 } 2174 2175 /* 2176 * Haven't found good chunk so far, let's continue 2177 */ 2178 if (bex->fe_len < gex->fe_len) 2179 return; 2180 2181 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2182 ext4_mb_use_best_found(ac, e4b); 2183 } 2184 2185 /* 2186 * The routine checks whether found extent is good enough. If it is, 2187 * then the extent gets marked used and flag is set to the context 2188 * to stop scanning. Otherwise, the extent is compared with the 2189 * previous found extent and if new one is better, then it's stored 2190 * in the context. Later, the best found extent will be used, if 2191 * mballoc can't find good enough extent. 2192 * 2193 * The algorithm used is roughly as follows: 2194 * 2195 * * If free extent found is exactly as big as goal, then 2196 * stop the scan and use it immediately 2197 * 2198 * * If free extent found is smaller than goal, then keep retrying 2199 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2200 * that stop scanning and use whatever we have. 2201 * 2202 * * If free extent found is bigger than goal, then keep retrying 2203 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2204 * stopping the scan and using the extent. 2205 * 2206 * 2207 * FIXME: real allocation policy is to be designed yet! 2208 */ 2209 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2210 struct ext4_free_extent *ex, 2211 struct ext4_buddy *e4b) 2212 { 2213 struct ext4_free_extent *bex = &ac->ac_b_ex; 2214 struct ext4_free_extent *gex = &ac->ac_g_ex; 2215 2216 BUG_ON(ex->fe_len <= 0); 2217 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2218 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2219 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2220 2221 ac->ac_found++; 2222 ac->ac_cX_found[ac->ac_criteria]++; 2223 2224 /* 2225 * The special case - take what you catch first 2226 */ 2227 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2228 *bex = *ex; 2229 ext4_mb_use_best_found(ac, e4b); 2230 return; 2231 } 2232 2233 /* 2234 * Let's check whether the chuck is good enough 2235 */ 2236 if (ex->fe_len == gex->fe_len) { 2237 *bex = *ex; 2238 ext4_mb_use_best_found(ac, e4b); 2239 return; 2240 } 2241 2242 /* 2243 * If this is first found extent, just store it in the context 2244 */ 2245 if (bex->fe_len == 0) { 2246 *bex = *ex; 2247 return; 2248 } 2249 2250 /* 2251 * If new found extent is better, store it in the context 2252 */ 2253 if (bex->fe_len < gex->fe_len) { 2254 /* if the request isn't satisfied, any found extent 2255 * larger than previous best one is better */ 2256 if (ex->fe_len > bex->fe_len) 2257 *bex = *ex; 2258 } else if (ex->fe_len > gex->fe_len) { 2259 /* if the request is satisfied, then we try to find 2260 * an extent that still satisfy the request, but is 2261 * smaller than previous one */ 2262 if (ex->fe_len < bex->fe_len) 2263 *bex = *ex; 2264 } 2265 2266 ext4_mb_check_limits(ac, e4b, 0); 2267 } 2268 2269 static noinline_for_stack 2270 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2271 struct ext4_buddy *e4b) 2272 { 2273 struct ext4_free_extent ex = ac->ac_b_ex; 2274 ext4_group_t group = ex.fe_group; 2275 int max; 2276 int err; 2277 2278 BUG_ON(ex.fe_len <= 0); 2279 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2280 if (err) 2281 return; 2282 2283 ext4_lock_group(ac->ac_sb, group); 2284 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2285 2286 if (max > 0) { 2287 ac->ac_b_ex = ex; 2288 ext4_mb_use_best_found(ac, e4b); 2289 } 2290 2291 ext4_unlock_group(ac->ac_sb, group); 2292 ext4_mb_unload_buddy(e4b); 2293 } 2294 2295 static noinline_for_stack 2296 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2297 struct ext4_buddy *e4b) 2298 { 2299 ext4_group_t group = ac->ac_g_ex.fe_group; 2300 int max; 2301 int err; 2302 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2303 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2304 struct ext4_free_extent ex; 2305 2306 if (!grp) 2307 return -EFSCORRUPTED; 2308 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2309 return 0; 2310 if (grp->bb_free == 0) 2311 return 0; 2312 2313 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2314 if (err) 2315 return err; 2316 2317 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2318 ext4_mb_unload_buddy(e4b); 2319 return 0; 2320 } 2321 2322 ext4_lock_group(ac->ac_sb, group); 2323 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2324 ac->ac_g_ex.fe_len, &ex); 2325 ex.fe_logical = 0xDEADFA11; /* debug value */ 2326 2327 if (max >= ac->ac_g_ex.fe_len && 2328 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2329 ext4_fsblk_t start; 2330 2331 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2332 /* use do_div to get remainder (would be 64-bit modulo) */ 2333 if (do_div(start, sbi->s_stripe) == 0) { 2334 ac->ac_found++; 2335 ac->ac_b_ex = ex; 2336 ext4_mb_use_best_found(ac, e4b); 2337 } 2338 } else if (max >= ac->ac_g_ex.fe_len) { 2339 BUG_ON(ex.fe_len <= 0); 2340 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2341 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2342 ac->ac_found++; 2343 ac->ac_b_ex = ex; 2344 ext4_mb_use_best_found(ac, e4b); 2345 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2346 /* Sometimes, caller may want to merge even small 2347 * number of blocks to an existing extent */ 2348 BUG_ON(ex.fe_len <= 0); 2349 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2350 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2351 ac->ac_found++; 2352 ac->ac_b_ex = ex; 2353 ext4_mb_use_best_found(ac, e4b); 2354 } 2355 ext4_unlock_group(ac->ac_sb, group); 2356 ext4_mb_unload_buddy(e4b); 2357 2358 return 0; 2359 } 2360 2361 /* 2362 * The routine scans buddy structures (not bitmap!) from given order 2363 * to max order and tries to find big enough chunk to satisfy the req 2364 */ 2365 static noinline_for_stack 2366 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2367 struct ext4_buddy *e4b) 2368 { 2369 struct super_block *sb = ac->ac_sb; 2370 struct ext4_group_info *grp = e4b->bd_info; 2371 void *buddy; 2372 int i; 2373 int k; 2374 int max; 2375 2376 BUG_ON(ac->ac_2order <= 0); 2377 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2378 if (grp->bb_counters[i] == 0) 2379 continue; 2380 2381 buddy = mb_find_buddy(e4b, i, &max); 2382 if (WARN_RATELIMIT(buddy == NULL, 2383 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2384 continue; 2385 2386 k = mb_find_next_zero_bit(buddy, max, 0); 2387 if (k >= max) { 2388 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2389 "%d free clusters of order %d. But found 0", 2390 grp->bb_counters[i], i); 2391 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2392 e4b->bd_group, 2393 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2394 break; 2395 } 2396 ac->ac_found++; 2397 ac->ac_cX_found[ac->ac_criteria]++; 2398 2399 ac->ac_b_ex.fe_len = 1 << i; 2400 ac->ac_b_ex.fe_start = k << i; 2401 ac->ac_b_ex.fe_group = e4b->bd_group; 2402 2403 ext4_mb_use_best_found(ac, e4b); 2404 2405 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2406 2407 if (EXT4_SB(sb)->s_mb_stats) 2408 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2409 2410 break; 2411 } 2412 } 2413 2414 /* 2415 * The routine scans the group and measures all found extents. 2416 * In order to optimize scanning, caller must pass number of 2417 * free blocks in the group, so the routine can know upper limit. 2418 */ 2419 static noinline_for_stack 2420 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2421 struct ext4_buddy *e4b) 2422 { 2423 struct super_block *sb = ac->ac_sb; 2424 void *bitmap = e4b->bd_bitmap; 2425 struct ext4_free_extent ex; 2426 int i, j, freelen; 2427 int free; 2428 2429 free = e4b->bd_info->bb_free; 2430 if (WARN_ON(free <= 0)) 2431 return; 2432 2433 i = e4b->bd_info->bb_first_free; 2434 2435 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2436 i = mb_find_next_zero_bit(bitmap, 2437 EXT4_CLUSTERS_PER_GROUP(sb), i); 2438 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2439 /* 2440 * IF we have corrupt bitmap, we won't find any 2441 * free blocks even though group info says we 2442 * have free blocks 2443 */ 2444 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2445 "%d free clusters as per " 2446 "group info. But bitmap says 0", 2447 free); 2448 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2449 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2450 break; 2451 } 2452 2453 if (ac->ac_criteria < CR_FAST) { 2454 /* 2455 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2456 * sure that this group will have a large enough 2457 * continuous free extent, so skip over the smaller free 2458 * extents 2459 */ 2460 j = mb_find_next_bit(bitmap, 2461 EXT4_CLUSTERS_PER_GROUP(sb), i); 2462 freelen = j - i; 2463 2464 if (freelen < ac->ac_g_ex.fe_len) { 2465 i = j; 2466 free -= freelen; 2467 continue; 2468 } 2469 } 2470 2471 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2472 if (WARN_ON(ex.fe_len <= 0)) 2473 break; 2474 if (free < ex.fe_len) { 2475 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2476 "%d free clusters as per " 2477 "group info. But got %d blocks", 2478 free, ex.fe_len); 2479 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2480 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2481 /* 2482 * The number of free blocks differs. This mostly 2483 * indicate that the bitmap is corrupt. So exit 2484 * without claiming the space. 2485 */ 2486 break; 2487 } 2488 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2489 ext4_mb_measure_extent(ac, &ex, e4b); 2490 2491 i += ex.fe_len; 2492 free -= ex.fe_len; 2493 } 2494 2495 ext4_mb_check_limits(ac, e4b, 1); 2496 } 2497 2498 /* 2499 * This is a special case for storages like raid5 2500 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2501 */ 2502 static noinline_for_stack 2503 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2504 struct ext4_buddy *e4b) 2505 { 2506 struct super_block *sb = ac->ac_sb; 2507 struct ext4_sb_info *sbi = EXT4_SB(sb); 2508 void *bitmap = e4b->bd_bitmap; 2509 struct ext4_free_extent ex; 2510 ext4_fsblk_t first_group_block; 2511 ext4_fsblk_t a; 2512 ext4_grpblk_t i, stripe; 2513 int max; 2514 2515 BUG_ON(sbi->s_stripe == 0); 2516 2517 /* find first stripe-aligned block in group */ 2518 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2519 2520 a = first_group_block + sbi->s_stripe - 1; 2521 do_div(a, sbi->s_stripe); 2522 i = (a * sbi->s_stripe) - first_group_block; 2523 2524 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2525 i = EXT4_B2C(sbi, i); 2526 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2527 if (!mb_test_bit(i, bitmap)) { 2528 max = mb_find_extent(e4b, i, stripe, &ex); 2529 if (max >= stripe) { 2530 ac->ac_found++; 2531 ac->ac_cX_found[ac->ac_criteria]++; 2532 ex.fe_logical = 0xDEADF00D; /* debug value */ 2533 ac->ac_b_ex = ex; 2534 ext4_mb_use_best_found(ac, e4b); 2535 break; 2536 } 2537 } 2538 i += stripe; 2539 } 2540 } 2541 2542 /* 2543 * This is also called BEFORE we load the buddy bitmap. 2544 * Returns either 1 or 0 indicating that the group is either suitable 2545 * for the allocation or not. 2546 */ 2547 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2548 ext4_group_t group, enum criteria cr) 2549 { 2550 ext4_grpblk_t free, fragments; 2551 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2552 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2553 2554 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2555 2556 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp) || !grp)) 2557 return false; 2558 2559 free = grp->bb_free; 2560 if (free == 0) 2561 return false; 2562 2563 fragments = grp->bb_fragments; 2564 if (fragments == 0) 2565 return false; 2566 2567 switch (cr) { 2568 case CR_POWER2_ALIGNED: 2569 BUG_ON(ac->ac_2order == 0); 2570 2571 /* Avoid using the first bg of a flexgroup for data files */ 2572 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2573 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2574 ((group % flex_size) == 0)) 2575 return false; 2576 2577 if (free < ac->ac_g_ex.fe_len) 2578 return false; 2579 2580 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2581 return true; 2582 2583 if (grp->bb_largest_free_order < ac->ac_2order) 2584 return false; 2585 2586 return true; 2587 case CR_GOAL_LEN_FAST: 2588 case CR_BEST_AVAIL_LEN: 2589 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2590 return true; 2591 break; 2592 case CR_GOAL_LEN_SLOW: 2593 if (free >= ac->ac_g_ex.fe_len) 2594 return true; 2595 break; 2596 case CR_ANY_FREE: 2597 return true; 2598 default: 2599 BUG(); 2600 } 2601 2602 return false; 2603 } 2604 2605 /* 2606 * This could return negative error code if something goes wrong 2607 * during ext4_mb_init_group(). This should not be called with 2608 * ext4_lock_group() held. 2609 * 2610 * Note: because we are conditionally operating with the group lock in 2611 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2612 * function using __acquire and __release. This means we need to be 2613 * super careful before messing with the error path handling via "goto 2614 * out"! 2615 */ 2616 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2617 ext4_group_t group, enum criteria cr) 2618 { 2619 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2620 struct super_block *sb = ac->ac_sb; 2621 struct ext4_sb_info *sbi = EXT4_SB(sb); 2622 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2623 ext4_grpblk_t free; 2624 int ret = 0; 2625 2626 if (!grp) 2627 return -EFSCORRUPTED; 2628 if (sbi->s_mb_stats) 2629 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2630 if (should_lock) { 2631 ext4_lock_group(sb, group); 2632 __release(ext4_group_lock_ptr(sb, group)); 2633 } 2634 free = grp->bb_free; 2635 if (free == 0) 2636 goto out; 2637 if (cr <= CR_FAST && free < ac->ac_g_ex.fe_len) 2638 goto out; 2639 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2640 goto out; 2641 if (should_lock) { 2642 __acquire(ext4_group_lock_ptr(sb, group)); 2643 ext4_unlock_group(sb, group); 2644 } 2645 2646 /* We only do this if the grp has never been initialized */ 2647 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2648 struct ext4_group_desc *gdp = 2649 ext4_get_group_desc(sb, group, NULL); 2650 int ret; 2651 2652 /* 2653 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2654 * search to find large good chunks almost for free. If buddy 2655 * data is not ready, then this optimization makes no sense. But 2656 * we never skip the first block group in a flex_bg, since this 2657 * gets used for metadata block allocation, and we want to make 2658 * sure we locate metadata blocks in the first block group in 2659 * the flex_bg if possible. 2660 */ 2661 if (cr < CR_FAST && 2662 (!sbi->s_log_groups_per_flex || 2663 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2664 !(ext4_has_group_desc_csum(sb) && 2665 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2666 return 0; 2667 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2668 if (ret) 2669 return ret; 2670 } 2671 2672 if (should_lock) { 2673 ext4_lock_group(sb, group); 2674 __release(ext4_group_lock_ptr(sb, group)); 2675 } 2676 ret = ext4_mb_good_group(ac, group, cr); 2677 out: 2678 if (should_lock) { 2679 __acquire(ext4_group_lock_ptr(sb, group)); 2680 ext4_unlock_group(sb, group); 2681 } 2682 return ret; 2683 } 2684 2685 /* 2686 * Start prefetching @nr block bitmaps starting at @group. 2687 * Return the next group which needs to be prefetched. 2688 */ 2689 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2690 unsigned int nr, int *cnt) 2691 { 2692 ext4_group_t ngroups = ext4_get_groups_count(sb); 2693 struct buffer_head *bh; 2694 struct blk_plug plug; 2695 2696 blk_start_plug(&plug); 2697 while (nr-- > 0) { 2698 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2699 NULL); 2700 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2701 2702 /* 2703 * Prefetch block groups with free blocks; but don't 2704 * bother if it is marked uninitialized on disk, since 2705 * it won't require I/O to read. Also only try to 2706 * prefetch once, so we avoid getblk() call, which can 2707 * be expensive. 2708 */ 2709 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2710 EXT4_MB_GRP_NEED_INIT(grp) && 2711 ext4_free_group_clusters(sb, gdp) > 0 ) { 2712 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2713 if (bh && !IS_ERR(bh)) { 2714 if (!buffer_uptodate(bh) && cnt) 2715 (*cnt)++; 2716 brelse(bh); 2717 } 2718 } 2719 if (++group >= ngroups) 2720 group = 0; 2721 } 2722 blk_finish_plug(&plug); 2723 return group; 2724 } 2725 2726 /* 2727 * Prefetching reads the block bitmap into the buffer cache; but we 2728 * need to make sure that the buddy bitmap in the page cache has been 2729 * initialized. Note that ext4_mb_init_group() will block if the I/O 2730 * is not yet completed, or indeed if it was not initiated by 2731 * ext4_mb_prefetch did not start the I/O. 2732 * 2733 * TODO: We should actually kick off the buddy bitmap setup in a work 2734 * queue when the buffer I/O is completed, so that we don't block 2735 * waiting for the block allocation bitmap read to finish when 2736 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2737 */ 2738 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2739 unsigned int nr) 2740 { 2741 struct ext4_group_desc *gdp; 2742 struct ext4_group_info *grp; 2743 2744 while (nr-- > 0) { 2745 if (!group) 2746 group = ext4_get_groups_count(sb); 2747 group--; 2748 gdp = ext4_get_group_desc(sb, group, NULL); 2749 grp = ext4_get_group_info(sb, group); 2750 2751 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2752 ext4_free_group_clusters(sb, gdp) > 0) { 2753 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2754 break; 2755 } 2756 } 2757 } 2758 2759 static noinline_for_stack int 2760 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2761 { 2762 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2763 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2764 int err = 0, first_err = 0; 2765 unsigned int nr = 0, prefetch_ios = 0; 2766 struct ext4_sb_info *sbi; 2767 struct super_block *sb; 2768 struct ext4_buddy e4b; 2769 int lost; 2770 2771 sb = ac->ac_sb; 2772 sbi = EXT4_SB(sb); 2773 ngroups = ext4_get_groups_count(sb); 2774 /* non-extent files are limited to low blocks/groups */ 2775 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2776 ngroups = sbi->s_blockfile_groups; 2777 2778 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2779 2780 /* first, try the goal */ 2781 err = ext4_mb_find_by_goal(ac, &e4b); 2782 if (err || ac->ac_status == AC_STATUS_FOUND) 2783 goto out; 2784 2785 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2786 goto out; 2787 2788 /* 2789 * ac->ac_2order is set only if the fe_len is a power of 2 2790 * if ac->ac_2order is set we also set criteria to 0 so that we 2791 * try exact allocation using buddy. 2792 */ 2793 i = fls(ac->ac_g_ex.fe_len); 2794 ac->ac_2order = 0; 2795 /* 2796 * We search using buddy data only if the order of the request 2797 * is greater than equal to the sbi_s_mb_order2_reqs 2798 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2799 * We also support searching for power-of-two requests only for 2800 * requests upto maximum buddy size we have constructed. 2801 */ 2802 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2803 /* 2804 * This should tell if fe_len is exactly power of 2 2805 */ 2806 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2807 ac->ac_2order = array_index_nospec(i - 1, 2808 MB_NUM_ORDERS(sb)); 2809 } 2810 2811 /* if stream allocation is enabled, use global goal */ 2812 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2813 /* TBD: may be hot point */ 2814 spin_lock(&sbi->s_md_lock); 2815 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2816 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2817 spin_unlock(&sbi->s_md_lock); 2818 } 2819 2820 /* 2821 * Let's just scan groups to find more-less suitable blocks We 2822 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2823 * aligned, in which case let's do that faster approach first. 2824 */ 2825 if (ac->ac_2order) 2826 cr = CR_POWER2_ALIGNED; 2827 repeat: 2828 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2829 ac->ac_criteria = cr; 2830 /* 2831 * searching for the right group start 2832 * from the goal value specified 2833 */ 2834 group = ac->ac_g_ex.fe_group; 2835 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2836 prefetch_grp = group; 2837 2838 for (i = 0, new_cr = cr; i < ngroups; i++, 2839 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2840 int ret = 0; 2841 2842 cond_resched(); 2843 if (new_cr != cr) { 2844 cr = new_cr; 2845 goto repeat; 2846 } 2847 2848 /* 2849 * Batch reads of the block allocation bitmaps 2850 * to get multiple READs in flight; limit 2851 * prefetching at cr=0/1, otherwise mballoc can 2852 * spend a lot of time loading imperfect groups 2853 */ 2854 if ((prefetch_grp == group) && 2855 (cr >= CR_FAST || 2856 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2857 nr = sbi->s_mb_prefetch; 2858 if (ext4_has_feature_flex_bg(sb)) { 2859 nr = 1 << sbi->s_log_groups_per_flex; 2860 nr -= group & (nr - 1); 2861 nr = min(nr, sbi->s_mb_prefetch); 2862 } 2863 prefetch_grp = ext4_mb_prefetch(sb, group, 2864 nr, &prefetch_ios); 2865 } 2866 2867 /* This now checks without needing the buddy page */ 2868 ret = ext4_mb_good_group_nolock(ac, group, cr); 2869 if (ret <= 0) { 2870 if (!first_err) 2871 first_err = ret; 2872 continue; 2873 } 2874 2875 err = ext4_mb_load_buddy(sb, group, &e4b); 2876 if (err) 2877 goto out; 2878 2879 ext4_lock_group(sb, group); 2880 2881 /* 2882 * We need to check again after locking the 2883 * block group 2884 */ 2885 ret = ext4_mb_good_group(ac, group, cr); 2886 if (ret == 0) { 2887 ext4_unlock_group(sb, group); 2888 ext4_mb_unload_buddy(&e4b); 2889 continue; 2890 } 2891 2892 ac->ac_groups_scanned++; 2893 if (cr == CR_POWER2_ALIGNED) 2894 ext4_mb_simple_scan_group(ac, &e4b); 2895 else if ((cr == CR_GOAL_LEN_FAST || 2896 cr == CR_BEST_AVAIL_LEN) && 2897 sbi->s_stripe && 2898 !(ac->ac_g_ex.fe_len % 2899 EXT4_B2C(sbi, sbi->s_stripe))) 2900 ext4_mb_scan_aligned(ac, &e4b); 2901 else 2902 ext4_mb_complex_scan_group(ac, &e4b); 2903 2904 ext4_unlock_group(sb, group); 2905 ext4_mb_unload_buddy(&e4b); 2906 2907 if (ac->ac_status != AC_STATUS_CONTINUE) 2908 break; 2909 } 2910 /* Processed all groups and haven't found blocks */ 2911 if (sbi->s_mb_stats && i == ngroups) 2912 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2913 2914 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2915 /* Reset goal length to original goal length before 2916 * falling into CR_GOAL_LEN_SLOW */ 2917 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2918 } 2919 2920 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2921 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2922 /* 2923 * We've been searching too long. Let's try to allocate 2924 * the best chunk we've found so far 2925 */ 2926 ext4_mb_try_best_found(ac, &e4b); 2927 if (ac->ac_status != AC_STATUS_FOUND) { 2928 /* 2929 * Someone more lucky has already allocated it. 2930 * The only thing we can do is just take first 2931 * found block(s) 2932 */ 2933 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2934 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2935 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2936 ac->ac_b_ex.fe_len, lost); 2937 2938 ac->ac_b_ex.fe_group = 0; 2939 ac->ac_b_ex.fe_start = 0; 2940 ac->ac_b_ex.fe_len = 0; 2941 ac->ac_status = AC_STATUS_CONTINUE; 2942 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2943 cr = CR_ANY_FREE; 2944 goto repeat; 2945 } 2946 } 2947 2948 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2949 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2950 out: 2951 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2952 err = first_err; 2953 2954 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2955 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2956 ac->ac_flags, cr, err); 2957 2958 if (nr) 2959 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2960 2961 return err; 2962 } 2963 2964 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2965 { 2966 struct super_block *sb = pde_data(file_inode(seq->file)); 2967 ext4_group_t group; 2968 2969 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2970 return NULL; 2971 group = *pos + 1; 2972 return (void *) ((unsigned long) group); 2973 } 2974 2975 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2976 { 2977 struct super_block *sb = pde_data(file_inode(seq->file)); 2978 ext4_group_t group; 2979 2980 ++*pos; 2981 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2982 return NULL; 2983 group = *pos + 1; 2984 return (void *) ((unsigned long) group); 2985 } 2986 2987 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2988 { 2989 struct super_block *sb = pde_data(file_inode(seq->file)); 2990 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2991 int i; 2992 int err, buddy_loaded = 0; 2993 struct ext4_buddy e4b; 2994 struct ext4_group_info *grinfo; 2995 unsigned char blocksize_bits = min_t(unsigned char, 2996 sb->s_blocksize_bits, 2997 EXT4_MAX_BLOCK_LOG_SIZE); 2998 struct sg { 2999 struct ext4_group_info info; 3000 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3001 } sg; 3002 3003 group--; 3004 if (group == 0) 3005 seq_puts(seq, "#group: free frags first [" 3006 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3007 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3008 3009 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3010 sizeof(struct ext4_group_info); 3011 3012 grinfo = ext4_get_group_info(sb, group); 3013 if (!grinfo) 3014 return 0; 3015 /* Load the group info in memory only if not already loaded. */ 3016 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3017 err = ext4_mb_load_buddy(sb, group, &e4b); 3018 if (err) { 3019 seq_printf(seq, "#%-5u: I/O error\n", group); 3020 return 0; 3021 } 3022 buddy_loaded = 1; 3023 } 3024 3025 memcpy(&sg, grinfo, i); 3026 3027 if (buddy_loaded) 3028 ext4_mb_unload_buddy(&e4b); 3029 3030 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3031 sg.info.bb_fragments, sg.info.bb_first_free); 3032 for (i = 0; i <= 13; i++) 3033 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3034 sg.info.bb_counters[i] : 0); 3035 seq_puts(seq, " ]\n"); 3036 3037 return 0; 3038 } 3039 3040 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3041 { 3042 } 3043 3044 const struct seq_operations ext4_mb_seq_groups_ops = { 3045 .start = ext4_mb_seq_groups_start, 3046 .next = ext4_mb_seq_groups_next, 3047 .stop = ext4_mb_seq_groups_stop, 3048 .show = ext4_mb_seq_groups_show, 3049 }; 3050 3051 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3052 { 3053 struct super_block *sb = seq->private; 3054 struct ext4_sb_info *sbi = EXT4_SB(sb); 3055 3056 seq_puts(seq, "mballoc:\n"); 3057 if (!sbi->s_mb_stats) { 3058 seq_puts(seq, "\tmb stats collection turned off.\n"); 3059 seq_puts( 3060 seq, 3061 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3062 return 0; 3063 } 3064 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3065 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3066 3067 seq_printf(seq, "\tgroups_scanned: %u\n", 3068 atomic_read(&sbi->s_bal_groups_scanned)); 3069 3070 /* CR_POWER2_ALIGNED stats */ 3071 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3072 seq_printf(seq, "\t\thits: %llu\n", 3073 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3074 seq_printf( 3075 seq, "\t\tgroups_considered: %llu\n", 3076 atomic64_read( 3077 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3078 seq_printf(seq, "\t\textents_scanned: %u\n", 3079 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3080 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3081 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3082 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3083 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3084 3085 /* CR_GOAL_LEN_FAST stats */ 3086 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3087 seq_printf(seq, "\t\thits: %llu\n", 3088 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3089 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3090 atomic64_read( 3091 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3092 seq_printf(seq, "\t\textents_scanned: %u\n", 3093 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3094 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3095 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3096 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3097 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3098 3099 /* CR_BEST_AVAIL_LEN stats */ 3100 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3101 seq_printf(seq, "\t\thits: %llu\n", 3102 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3103 seq_printf( 3104 seq, "\t\tgroups_considered: %llu\n", 3105 atomic64_read( 3106 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3107 seq_printf(seq, "\t\textents_scanned: %u\n", 3108 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3109 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3110 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3111 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3112 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3113 3114 /* CR_GOAL_LEN_SLOW stats */ 3115 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3116 seq_printf(seq, "\t\thits: %llu\n", 3117 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3118 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3119 atomic64_read( 3120 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3121 seq_printf(seq, "\t\textents_scanned: %u\n", 3122 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3123 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3124 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3125 3126 /* CR_ANY_FREE stats */ 3127 seq_puts(seq, "\tcr_any_free_stats:\n"); 3128 seq_printf(seq, "\t\thits: %llu\n", 3129 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3130 seq_printf( 3131 seq, "\t\tgroups_considered: %llu\n", 3132 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3133 seq_printf(seq, "\t\textents_scanned: %u\n", 3134 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3135 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3136 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3137 3138 /* Aggregates */ 3139 seq_printf(seq, "\textents_scanned: %u\n", 3140 atomic_read(&sbi->s_bal_ex_scanned)); 3141 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3142 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3143 atomic_read(&sbi->s_bal_len_goals)); 3144 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3145 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3146 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3147 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3148 atomic_read(&sbi->s_mb_buddies_generated), 3149 ext4_get_groups_count(sb)); 3150 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3151 atomic64_read(&sbi->s_mb_generation_time)); 3152 seq_printf(seq, "\tpreallocated: %u\n", 3153 atomic_read(&sbi->s_mb_preallocated)); 3154 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3155 return 0; 3156 } 3157 3158 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3159 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3160 { 3161 struct super_block *sb = pde_data(file_inode(seq->file)); 3162 unsigned long position; 3163 3164 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3165 return NULL; 3166 position = *pos + 1; 3167 return (void *) ((unsigned long) position); 3168 } 3169 3170 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3171 { 3172 struct super_block *sb = pde_data(file_inode(seq->file)); 3173 unsigned long position; 3174 3175 ++*pos; 3176 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3177 return NULL; 3178 position = *pos + 1; 3179 return (void *) ((unsigned long) position); 3180 } 3181 3182 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3183 { 3184 struct super_block *sb = pde_data(file_inode(seq->file)); 3185 struct ext4_sb_info *sbi = EXT4_SB(sb); 3186 unsigned long position = ((unsigned long) v); 3187 struct ext4_group_info *grp; 3188 unsigned int count; 3189 3190 position--; 3191 if (position >= MB_NUM_ORDERS(sb)) { 3192 position -= MB_NUM_ORDERS(sb); 3193 if (position == 0) 3194 seq_puts(seq, "avg_fragment_size_lists:\n"); 3195 3196 count = 0; 3197 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3198 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3199 bb_avg_fragment_size_node) 3200 count++; 3201 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3202 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3203 (unsigned int)position, count); 3204 return 0; 3205 } 3206 3207 if (position == 0) { 3208 seq_printf(seq, "optimize_scan: %d\n", 3209 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3210 seq_puts(seq, "max_free_order_lists:\n"); 3211 } 3212 count = 0; 3213 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3214 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3215 bb_largest_free_order_node) 3216 count++; 3217 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3218 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3219 (unsigned int)position, count); 3220 3221 return 0; 3222 } 3223 3224 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3225 { 3226 } 3227 3228 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3229 .start = ext4_mb_seq_structs_summary_start, 3230 .next = ext4_mb_seq_structs_summary_next, 3231 .stop = ext4_mb_seq_structs_summary_stop, 3232 .show = ext4_mb_seq_structs_summary_show, 3233 }; 3234 3235 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3236 { 3237 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3238 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3239 3240 BUG_ON(!cachep); 3241 return cachep; 3242 } 3243 3244 /* 3245 * Allocate the top-level s_group_info array for the specified number 3246 * of groups 3247 */ 3248 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3249 { 3250 struct ext4_sb_info *sbi = EXT4_SB(sb); 3251 unsigned size; 3252 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3253 3254 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3255 EXT4_DESC_PER_BLOCK_BITS(sb); 3256 if (size <= sbi->s_group_info_size) 3257 return 0; 3258 3259 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3260 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3261 if (!new_groupinfo) { 3262 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3263 return -ENOMEM; 3264 } 3265 rcu_read_lock(); 3266 old_groupinfo = rcu_dereference(sbi->s_group_info); 3267 if (old_groupinfo) 3268 memcpy(new_groupinfo, old_groupinfo, 3269 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3270 rcu_read_unlock(); 3271 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3272 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3273 if (old_groupinfo) 3274 ext4_kvfree_array_rcu(old_groupinfo); 3275 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3276 sbi->s_group_info_size); 3277 return 0; 3278 } 3279 3280 /* Create and initialize ext4_group_info data for the given group. */ 3281 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3282 struct ext4_group_desc *desc) 3283 { 3284 int i; 3285 int metalen = 0; 3286 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3287 struct ext4_sb_info *sbi = EXT4_SB(sb); 3288 struct ext4_group_info **meta_group_info; 3289 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3290 3291 /* 3292 * First check if this group is the first of a reserved block. 3293 * If it's true, we have to allocate a new table of pointers 3294 * to ext4_group_info structures 3295 */ 3296 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3297 metalen = sizeof(*meta_group_info) << 3298 EXT4_DESC_PER_BLOCK_BITS(sb); 3299 meta_group_info = kmalloc(metalen, GFP_NOFS); 3300 if (meta_group_info == NULL) { 3301 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3302 "for a buddy group"); 3303 return -ENOMEM; 3304 } 3305 rcu_read_lock(); 3306 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3307 rcu_read_unlock(); 3308 } 3309 3310 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3311 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3312 3313 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3314 if (meta_group_info[i] == NULL) { 3315 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3316 goto exit_group_info; 3317 } 3318 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3319 &(meta_group_info[i]->bb_state)); 3320 3321 /* 3322 * initialize bb_free to be able to skip 3323 * empty groups without initialization 3324 */ 3325 if (ext4_has_group_desc_csum(sb) && 3326 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3327 meta_group_info[i]->bb_free = 3328 ext4_free_clusters_after_init(sb, group, desc); 3329 } else { 3330 meta_group_info[i]->bb_free = 3331 ext4_free_group_clusters(sb, desc); 3332 } 3333 3334 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3335 init_rwsem(&meta_group_info[i]->alloc_sem); 3336 meta_group_info[i]->bb_free_root = RB_ROOT; 3337 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3338 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3339 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3340 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3341 meta_group_info[i]->bb_group = group; 3342 3343 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3344 return 0; 3345 3346 exit_group_info: 3347 /* If a meta_group_info table has been allocated, release it now */ 3348 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3349 struct ext4_group_info ***group_info; 3350 3351 rcu_read_lock(); 3352 group_info = rcu_dereference(sbi->s_group_info); 3353 kfree(group_info[idx]); 3354 group_info[idx] = NULL; 3355 rcu_read_unlock(); 3356 } 3357 return -ENOMEM; 3358 } /* ext4_mb_add_groupinfo */ 3359 3360 static int ext4_mb_init_backend(struct super_block *sb) 3361 { 3362 ext4_group_t ngroups = ext4_get_groups_count(sb); 3363 ext4_group_t i; 3364 struct ext4_sb_info *sbi = EXT4_SB(sb); 3365 int err; 3366 struct ext4_group_desc *desc; 3367 struct ext4_group_info ***group_info; 3368 struct kmem_cache *cachep; 3369 3370 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3371 if (err) 3372 return err; 3373 3374 sbi->s_buddy_cache = new_inode(sb); 3375 if (sbi->s_buddy_cache == NULL) { 3376 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3377 goto err_freesgi; 3378 } 3379 /* To avoid potentially colliding with an valid on-disk inode number, 3380 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3381 * not in the inode hash, so it should never be found by iget(), but 3382 * this will avoid confusion if it ever shows up during debugging. */ 3383 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3384 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3385 for (i = 0; i < ngroups; i++) { 3386 cond_resched(); 3387 desc = ext4_get_group_desc(sb, i, NULL); 3388 if (desc == NULL) { 3389 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3390 goto err_freebuddy; 3391 } 3392 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3393 goto err_freebuddy; 3394 } 3395 3396 if (ext4_has_feature_flex_bg(sb)) { 3397 /* a single flex group is supposed to be read by a single IO. 3398 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3399 * unsigned integer, so the maximum shift is 32. 3400 */ 3401 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3402 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3403 goto err_freebuddy; 3404 } 3405 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3406 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3407 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3408 } else { 3409 sbi->s_mb_prefetch = 32; 3410 } 3411 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3412 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3413 /* now many real IOs to prefetch within a single allocation at cr=0 3414 * given cr=0 is an CPU-related optimization we shouldn't try to 3415 * load too many groups, at some point we should start to use what 3416 * we've got in memory. 3417 * with an average random access time 5ms, it'd take a second to get 3418 * 200 groups (* N with flex_bg), so let's make this limit 4 3419 */ 3420 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3421 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3422 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3423 3424 return 0; 3425 3426 err_freebuddy: 3427 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3428 while (i-- > 0) { 3429 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3430 3431 if (grp) 3432 kmem_cache_free(cachep, grp); 3433 } 3434 i = sbi->s_group_info_size; 3435 rcu_read_lock(); 3436 group_info = rcu_dereference(sbi->s_group_info); 3437 while (i-- > 0) 3438 kfree(group_info[i]); 3439 rcu_read_unlock(); 3440 iput(sbi->s_buddy_cache); 3441 err_freesgi: 3442 rcu_read_lock(); 3443 kvfree(rcu_dereference(sbi->s_group_info)); 3444 rcu_read_unlock(); 3445 return -ENOMEM; 3446 } 3447 3448 static void ext4_groupinfo_destroy_slabs(void) 3449 { 3450 int i; 3451 3452 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3453 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3454 ext4_groupinfo_caches[i] = NULL; 3455 } 3456 } 3457 3458 static int ext4_groupinfo_create_slab(size_t size) 3459 { 3460 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3461 int slab_size; 3462 int blocksize_bits = order_base_2(size); 3463 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3464 struct kmem_cache *cachep; 3465 3466 if (cache_index >= NR_GRPINFO_CACHES) 3467 return -EINVAL; 3468 3469 if (unlikely(cache_index < 0)) 3470 cache_index = 0; 3471 3472 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3473 if (ext4_groupinfo_caches[cache_index]) { 3474 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3475 return 0; /* Already created */ 3476 } 3477 3478 slab_size = offsetof(struct ext4_group_info, 3479 bb_counters[blocksize_bits + 2]); 3480 3481 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3482 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3483 NULL); 3484 3485 ext4_groupinfo_caches[cache_index] = cachep; 3486 3487 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3488 if (!cachep) { 3489 printk(KERN_EMERG 3490 "EXT4-fs: no memory for groupinfo slab cache\n"); 3491 return -ENOMEM; 3492 } 3493 3494 return 0; 3495 } 3496 3497 static void ext4_discard_work(struct work_struct *work) 3498 { 3499 struct ext4_sb_info *sbi = container_of(work, 3500 struct ext4_sb_info, s_discard_work); 3501 struct super_block *sb = sbi->s_sb; 3502 struct ext4_free_data *fd, *nfd; 3503 struct ext4_buddy e4b; 3504 struct list_head discard_list; 3505 ext4_group_t grp, load_grp; 3506 int err = 0; 3507 3508 INIT_LIST_HEAD(&discard_list); 3509 spin_lock(&sbi->s_md_lock); 3510 list_splice_init(&sbi->s_discard_list, &discard_list); 3511 spin_unlock(&sbi->s_md_lock); 3512 3513 load_grp = UINT_MAX; 3514 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3515 /* 3516 * If filesystem is umounting or no memory or suffering 3517 * from no space, give up the discard 3518 */ 3519 if ((sb->s_flags & SB_ACTIVE) && !err && 3520 !atomic_read(&sbi->s_retry_alloc_pending)) { 3521 grp = fd->efd_group; 3522 if (grp != load_grp) { 3523 if (load_grp != UINT_MAX) 3524 ext4_mb_unload_buddy(&e4b); 3525 3526 err = ext4_mb_load_buddy(sb, grp, &e4b); 3527 if (err) { 3528 kmem_cache_free(ext4_free_data_cachep, fd); 3529 load_grp = UINT_MAX; 3530 continue; 3531 } else { 3532 load_grp = grp; 3533 } 3534 } 3535 3536 ext4_lock_group(sb, grp); 3537 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3538 fd->efd_start_cluster + fd->efd_count - 1, 1); 3539 ext4_unlock_group(sb, grp); 3540 } 3541 kmem_cache_free(ext4_free_data_cachep, fd); 3542 } 3543 3544 if (load_grp != UINT_MAX) 3545 ext4_mb_unload_buddy(&e4b); 3546 } 3547 3548 int ext4_mb_init(struct super_block *sb) 3549 { 3550 struct ext4_sb_info *sbi = EXT4_SB(sb); 3551 unsigned i, j; 3552 unsigned offset, offset_incr; 3553 unsigned max; 3554 int ret; 3555 3556 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3557 3558 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3559 if (sbi->s_mb_offsets == NULL) { 3560 ret = -ENOMEM; 3561 goto out; 3562 } 3563 3564 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3565 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3566 if (sbi->s_mb_maxs == NULL) { 3567 ret = -ENOMEM; 3568 goto out; 3569 } 3570 3571 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3572 if (ret < 0) 3573 goto out; 3574 3575 /* order 0 is regular bitmap */ 3576 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3577 sbi->s_mb_offsets[0] = 0; 3578 3579 i = 1; 3580 offset = 0; 3581 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3582 max = sb->s_blocksize << 2; 3583 do { 3584 sbi->s_mb_offsets[i] = offset; 3585 sbi->s_mb_maxs[i] = max; 3586 offset += offset_incr; 3587 offset_incr = offset_incr >> 1; 3588 max = max >> 1; 3589 i++; 3590 } while (i < MB_NUM_ORDERS(sb)); 3591 3592 sbi->s_mb_avg_fragment_size = 3593 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3594 GFP_KERNEL); 3595 if (!sbi->s_mb_avg_fragment_size) { 3596 ret = -ENOMEM; 3597 goto out; 3598 } 3599 sbi->s_mb_avg_fragment_size_locks = 3600 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3601 GFP_KERNEL); 3602 if (!sbi->s_mb_avg_fragment_size_locks) { 3603 ret = -ENOMEM; 3604 goto out; 3605 } 3606 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3607 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3608 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3609 } 3610 sbi->s_mb_largest_free_orders = 3611 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3612 GFP_KERNEL); 3613 if (!sbi->s_mb_largest_free_orders) { 3614 ret = -ENOMEM; 3615 goto out; 3616 } 3617 sbi->s_mb_largest_free_orders_locks = 3618 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3619 GFP_KERNEL); 3620 if (!sbi->s_mb_largest_free_orders_locks) { 3621 ret = -ENOMEM; 3622 goto out; 3623 } 3624 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3625 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3626 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3627 } 3628 3629 spin_lock_init(&sbi->s_md_lock); 3630 sbi->s_mb_free_pending = 0; 3631 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3632 INIT_LIST_HEAD(&sbi->s_discard_list); 3633 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3634 atomic_set(&sbi->s_retry_alloc_pending, 0); 3635 3636 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3637 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3638 sbi->s_mb_stats = MB_DEFAULT_STATS; 3639 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3640 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3641 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3642 3643 /* 3644 * The default group preallocation is 512, which for 4k block 3645 * sizes translates to 2 megabytes. However for bigalloc file 3646 * systems, this is probably too big (i.e, if the cluster size 3647 * is 1 megabyte, then group preallocation size becomes half a 3648 * gigabyte!). As a default, we will keep a two megabyte 3649 * group pralloc size for cluster sizes up to 64k, and after 3650 * that, we will force a minimum group preallocation size of 3651 * 32 clusters. This translates to 8 megs when the cluster 3652 * size is 256k, and 32 megs when the cluster size is 1 meg, 3653 * which seems reasonable as a default. 3654 */ 3655 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3656 sbi->s_cluster_bits, 32); 3657 /* 3658 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3659 * to the lowest multiple of s_stripe which is bigger than 3660 * the s_mb_group_prealloc as determined above. We want 3661 * the preallocation size to be an exact multiple of the 3662 * RAID stripe size so that preallocations don't fragment 3663 * the stripes. 3664 */ 3665 if (sbi->s_stripe > 1) { 3666 sbi->s_mb_group_prealloc = roundup( 3667 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3668 } 3669 3670 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3671 if (sbi->s_locality_groups == NULL) { 3672 ret = -ENOMEM; 3673 goto out; 3674 } 3675 for_each_possible_cpu(i) { 3676 struct ext4_locality_group *lg; 3677 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3678 mutex_init(&lg->lg_mutex); 3679 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3680 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3681 spin_lock_init(&lg->lg_prealloc_lock); 3682 } 3683 3684 if (bdev_nonrot(sb->s_bdev)) 3685 sbi->s_mb_max_linear_groups = 0; 3686 else 3687 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3688 /* init file for buddy data */ 3689 ret = ext4_mb_init_backend(sb); 3690 if (ret != 0) 3691 goto out_free_locality_groups; 3692 3693 return 0; 3694 3695 out_free_locality_groups: 3696 free_percpu(sbi->s_locality_groups); 3697 sbi->s_locality_groups = NULL; 3698 out: 3699 kfree(sbi->s_mb_avg_fragment_size); 3700 kfree(sbi->s_mb_avg_fragment_size_locks); 3701 kfree(sbi->s_mb_largest_free_orders); 3702 kfree(sbi->s_mb_largest_free_orders_locks); 3703 kfree(sbi->s_mb_offsets); 3704 sbi->s_mb_offsets = NULL; 3705 kfree(sbi->s_mb_maxs); 3706 sbi->s_mb_maxs = NULL; 3707 return ret; 3708 } 3709 3710 /* need to called with the ext4 group lock held */ 3711 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3712 { 3713 struct ext4_prealloc_space *pa; 3714 struct list_head *cur, *tmp; 3715 int count = 0; 3716 3717 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3718 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3719 list_del(&pa->pa_group_list); 3720 count++; 3721 kmem_cache_free(ext4_pspace_cachep, pa); 3722 } 3723 return count; 3724 } 3725 3726 int ext4_mb_release(struct super_block *sb) 3727 { 3728 ext4_group_t ngroups = ext4_get_groups_count(sb); 3729 ext4_group_t i; 3730 int num_meta_group_infos; 3731 struct ext4_group_info *grinfo, ***group_info; 3732 struct ext4_sb_info *sbi = EXT4_SB(sb); 3733 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3734 int count; 3735 3736 if (test_opt(sb, DISCARD)) { 3737 /* 3738 * wait the discard work to drain all of ext4_free_data 3739 */ 3740 flush_work(&sbi->s_discard_work); 3741 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3742 } 3743 3744 if (sbi->s_group_info) { 3745 for (i = 0; i < ngroups; i++) { 3746 cond_resched(); 3747 grinfo = ext4_get_group_info(sb, i); 3748 if (!grinfo) 3749 continue; 3750 mb_group_bb_bitmap_free(grinfo); 3751 ext4_lock_group(sb, i); 3752 count = ext4_mb_cleanup_pa(grinfo); 3753 if (count) 3754 mb_debug(sb, "mballoc: %d PAs left\n", 3755 count); 3756 ext4_unlock_group(sb, i); 3757 kmem_cache_free(cachep, grinfo); 3758 } 3759 num_meta_group_infos = (ngroups + 3760 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3761 EXT4_DESC_PER_BLOCK_BITS(sb); 3762 rcu_read_lock(); 3763 group_info = rcu_dereference(sbi->s_group_info); 3764 for (i = 0; i < num_meta_group_infos; i++) 3765 kfree(group_info[i]); 3766 kvfree(group_info); 3767 rcu_read_unlock(); 3768 } 3769 kfree(sbi->s_mb_avg_fragment_size); 3770 kfree(sbi->s_mb_avg_fragment_size_locks); 3771 kfree(sbi->s_mb_largest_free_orders); 3772 kfree(sbi->s_mb_largest_free_orders_locks); 3773 kfree(sbi->s_mb_offsets); 3774 kfree(sbi->s_mb_maxs); 3775 iput(sbi->s_buddy_cache); 3776 if (sbi->s_mb_stats) { 3777 ext4_msg(sb, KERN_INFO, 3778 "mballoc: %u blocks %u reqs (%u success)", 3779 atomic_read(&sbi->s_bal_allocated), 3780 atomic_read(&sbi->s_bal_reqs), 3781 atomic_read(&sbi->s_bal_success)); 3782 ext4_msg(sb, KERN_INFO, 3783 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3784 "%u 2^N hits, %u breaks, %u lost", 3785 atomic_read(&sbi->s_bal_ex_scanned), 3786 atomic_read(&sbi->s_bal_groups_scanned), 3787 atomic_read(&sbi->s_bal_goals), 3788 atomic_read(&sbi->s_bal_2orders), 3789 atomic_read(&sbi->s_bal_breaks), 3790 atomic_read(&sbi->s_mb_lost_chunks)); 3791 ext4_msg(sb, KERN_INFO, 3792 "mballoc: %u generated and it took %llu", 3793 atomic_read(&sbi->s_mb_buddies_generated), 3794 atomic64_read(&sbi->s_mb_generation_time)); 3795 ext4_msg(sb, KERN_INFO, 3796 "mballoc: %u preallocated, %u discarded", 3797 atomic_read(&sbi->s_mb_preallocated), 3798 atomic_read(&sbi->s_mb_discarded)); 3799 } 3800 3801 free_percpu(sbi->s_locality_groups); 3802 3803 return 0; 3804 } 3805 3806 static inline int ext4_issue_discard(struct super_block *sb, 3807 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3808 struct bio **biop) 3809 { 3810 ext4_fsblk_t discard_block; 3811 3812 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3813 ext4_group_first_block_no(sb, block_group)); 3814 count = EXT4_C2B(EXT4_SB(sb), count); 3815 trace_ext4_discard_blocks(sb, 3816 (unsigned long long) discard_block, count); 3817 if (biop) { 3818 return __blkdev_issue_discard(sb->s_bdev, 3819 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3820 (sector_t)count << (sb->s_blocksize_bits - 9), 3821 GFP_NOFS, biop); 3822 } else 3823 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3824 } 3825 3826 static void ext4_free_data_in_buddy(struct super_block *sb, 3827 struct ext4_free_data *entry) 3828 { 3829 struct ext4_buddy e4b; 3830 struct ext4_group_info *db; 3831 int err, count = 0; 3832 3833 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3834 entry->efd_count, entry->efd_group, entry); 3835 3836 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3837 /* we expect to find existing buddy because it's pinned */ 3838 BUG_ON(err != 0); 3839 3840 spin_lock(&EXT4_SB(sb)->s_md_lock); 3841 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3842 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3843 3844 db = e4b.bd_info; 3845 /* there are blocks to put in buddy to make them really free */ 3846 count += entry->efd_count; 3847 ext4_lock_group(sb, entry->efd_group); 3848 /* Take it out of per group rb tree */ 3849 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3850 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3851 3852 /* 3853 * Clear the trimmed flag for the group so that the next 3854 * ext4_trim_fs can trim it. 3855 * If the volume is mounted with -o discard, online discard 3856 * is supported and the free blocks will be trimmed online. 3857 */ 3858 if (!test_opt(sb, DISCARD)) 3859 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3860 3861 if (!db->bb_free_root.rb_node) { 3862 /* No more items in the per group rb tree 3863 * balance refcounts from ext4_mb_free_metadata() 3864 */ 3865 put_page(e4b.bd_buddy_page); 3866 put_page(e4b.bd_bitmap_page); 3867 } 3868 ext4_unlock_group(sb, entry->efd_group); 3869 ext4_mb_unload_buddy(&e4b); 3870 3871 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3872 } 3873 3874 /* 3875 * This function is called by the jbd2 layer once the commit has finished, 3876 * so we know we can free the blocks that were released with that commit. 3877 */ 3878 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3879 { 3880 struct ext4_sb_info *sbi = EXT4_SB(sb); 3881 struct ext4_free_data *entry, *tmp; 3882 struct list_head freed_data_list; 3883 struct list_head *cut_pos = NULL; 3884 bool wake; 3885 3886 INIT_LIST_HEAD(&freed_data_list); 3887 3888 spin_lock(&sbi->s_md_lock); 3889 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3890 if (entry->efd_tid != commit_tid) 3891 break; 3892 cut_pos = &entry->efd_list; 3893 } 3894 if (cut_pos) 3895 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3896 cut_pos); 3897 spin_unlock(&sbi->s_md_lock); 3898 3899 list_for_each_entry(entry, &freed_data_list, efd_list) 3900 ext4_free_data_in_buddy(sb, entry); 3901 3902 if (test_opt(sb, DISCARD)) { 3903 spin_lock(&sbi->s_md_lock); 3904 wake = list_empty(&sbi->s_discard_list); 3905 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3906 spin_unlock(&sbi->s_md_lock); 3907 if (wake) 3908 queue_work(system_unbound_wq, &sbi->s_discard_work); 3909 } else { 3910 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3911 kmem_cache_free(ext4_free_data_cachep, entry); 3912 } 3913 } 3914 3915 int __init ext4_init_mballoc(void) 3916 { 3917 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3918 SLAB_RECLAIM_ACCOUNT); 3919 if (ext4_pspace_cachep == NULL) 3920 goto out; 3921 3922 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3923 SLAB_RECLAIM_ACCOUNT); 3924 if (ext4_ac_cachep == NULL) 3925 goto out_pa_free; 3926 3927 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3928 SLAB_RECLAIM_ACCOUNT); 3929 if (ext4_free_data_cachep == NULL) 3930 goto out_ac_free; 3931 3932 return 0; 3933 3934 out_ac_free: 3935 kmem_cache_destroy(ext4_ac_cachep); 3936 out_pa_free: 3937 kmem_cache_destroy(ext4_pspace_cachep); 3938 out: 3939 return -ENOMEM; 3940 } 3941 3942 void ext4_exit_mballoc(void) 3943 { 3944 /* 3945 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3946 * before destroying the slab cache. 3947 */ 3948 rcu_barrier(); 3949 kmem_cache_destroy(ext4_pspace_cachep); 3950 kmem_cache_destroy(ext4_ac_cachep); 3951 kmem_cache_destroy(ext4_free_data_cachep); 3952 ext4_groupinfo_destroy_slabs(); 3953 } 3954 3955 3956 /* 3957 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3958 * Returns 0 if success or error code 3959 */ 3960 static noinline_for_stack int 3961 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3962 handle_t *handle, unsigned int reserv_clstrs) 3963 { 3964 struct buffer_head *bitmap_bh = NULL; 3965 struct ext4_group_desc *gdp; 3966 struct buffer_head *gdp_bh; 3967 struct ext4_sb_info *sbi; 3968 struct super_block *sb; 3969 ext4_fsblk_t block; 3970 int err, len; 3971 3972 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3973 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3974 3975 sb = ac->ac_sb; 3976 sbi = EXT4_SB(sb); 3977 3978 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3979 if (IS_ERR(bitmap_bh)) { 3980 return PTR_ERR(bitmap_bh); 3981 } 3982 3983 BUFFER_TRACE(bitmap_bh, "getting write access"); 3984 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 3985 EXT4_JTR_NONE); 3986 if (err) 3987 goto out_err; 3988 3989 err = -EIO; 3990 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3991 if (!gdp) 3992 goto out_err; 3993 3994 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3995 ext4_free_group_clusters(sb, gdp)); 3996 3997 BUFFER_TRACE(gdp_bh, "get_write_access"); 3998 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 3999 if (err) 4000 goto out_err; 4001 4002 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4003 4004 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4005 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4006 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4007 "fs metadata", block, block+len); 4008 /* File system mounted not to panic on error 4009 * Fix the bitmap and return EFSCORRUPTED 4010 * We leak some of the blocks here. 4011 */ 4012 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4013 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4014 ac->ac_b_ex.fe_len); 4015 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4016 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4017 if (!err) 4018 err = -EFSCORRUPTED; 4019 goto out_err; 4020 } 4021 4022 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4023 #ifdef AGGRESSIVE_CHECK 4024 { 4025 int i; 4026 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 4027 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 4028 bitmap_bh->b_data)); 4029 } 4030 } 4031 #endif 4032 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4033 ac->ac_b_ex.fe_len); 4034 if (ext4_has_group_desc_csum(sb) && 4035 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4036 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4037 ext4_free_group_clusters_set(sb, gdp, 4038 ext4_free_clusters_after_init(sb, 4039 ac->ac_b_ex.fe_group, gdp)); 4040 } 4041 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 4042 ext4_free_group_clusters_set(sb, gdp, len); 4043 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4044 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 4045 4046 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4047 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4048 /* 4049 * Now reduce the dirty block count also. Should not go negative 4050 */ 4051 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4052 /* release all the reserved blocks if non delalloc */ 4053 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4054 reserv_clstrs); 4055 4056 if (sbi->s_log_groups_per_flex) { 4057 ext4_group_t flex_group = ext4_flex_group(sbi, 4058 ac->ac_b_ex.fe_group); 4059 atomic64_sub(ac->ac_b_ex.fe_len, 4060 &sbi_array_rcu_deref(sbi, s_flex_groups, 4061 flex_group)->free_clusters); 4062 } 4063 4064 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4065 if (err) 4066 goto out_err; 4067 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4068 4069 out_err: 4070 brelse(bitmap_bh); 4071 return err; 4072 } 4073 4074 /* 4075 * Idempotent helper for Ext4 fast commit replay path to set the state of 4076 * blocks in bitmaps and update counters. 4077 */ 4078 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4079 int len, int state) 4080 { 4081 struct buffer_head *bitmap_bh = NULL; 4082 struct ext4_group_desc *gdp; 4083 struct buffer_head *gdp_bh; 4084 struct ext4_sb_info *sbi = EXT4_SB(sb); 4085 ext4_group_t group; 4086 ext4_grpblk_t blkoff; 4087 int i, err; 4088 int already; 4089 unsigned int clen, clen_changed, thisgrp_len; 4090 4091 while (len > 0) { 4092 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4093 4094 /* 4095 * Check to see if we are freeing blocks across a group 4096 * boundary. 4097 * In case of flex_bg, this can happen that (block, len) may 4098 * span across more than one group. In that case we need to 4099 * get the corresponding group metadata to work with. 4100 * For this we have goto again loop. 4101 */ 4102 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4103 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4104 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4105 4106 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4107 ext4_error(sb, "Marking blocks in system zone - " 4108 "Block = %llu, len = %u", 4109 block, thisgrp_len); 4110 bitmap_bh = NULL; 4111 break; 4112 } 4113 4114 bitmap_bh = ext4_read_block_bitmap(sb, group); 4115 if (IS_ERR(bitmap_bh)) { 4116 err = PTR_ERR(bitmap_bh); 4117 bitmap_bh = NULL; 4118 break; 4119 } 4120 4121 err = -EIO; 4122 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4123 if (!gdp) 4124 break; 4125 4126 ext4_lock_group(sb, group); 4127 already = 0; 4128 for (i = 0; i < clen; i++) 4129 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4130 !state) 4131 already++; 4132 4133 clen_changed = clen - already; 4134 if (state) 4135 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 4136 else 4137 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 4138 if (ext4_has_group_desc_csum(sb) && 4139 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4140 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4141 ext4_free_group_clusters_set(sb, gdp, 4142 ext4_free_clusters_after_init(sb, group, gdp)); 4143 } 4144 if (state) 4145 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 4146 else 4147 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 4148 4149 ext4_free_group_clusters_set(sb, gdp, clen); 4150 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4151 ext4_group_desc_csum_set(sb, group, gdp); 4152 4153 ext4_unlock_group(sb, group); 4154 4155 if (sbi->s_log_groups_per_flex) { 4156 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4157 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4158 s_flex_groups, flex_group); 4159 4160 if (state) 4161 atomic64_sub(clen_changed, &fg->free_clusters); 4162 else 4163 atomic64_add(clen_changed, &fg->free_clusters); 4164 4165 } 4166 4167 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 4168 if (err) 4169 break; 4170 sync_dirty_buffer(bitmap_bh); 4171 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 4172 sync_dirty_buffer(gdp_bh); 4173 if (err) 4174 break; 4175 4176 block += thisgrp_len; 4177 len -= thisgrp_len; 4178 brelse(bitmap_bh); 4179 BUG_ON(len < 0); 4180 } 4181 4182 if (err) 4183 brelse(bitmap_bh); 4184 } 4185 4186 /* 4187 * here we normalize request for locality group 4188 * Group request are normalized to s_mb_group_prealloc, which goes to 4189 * s_strip if we set the same via mount option. 4190 * s_mb_group_prealloc can be configured via 4191 * /sys/fs/ext4/<partition>/mb_group_prealloc 4192 * 4193 * XXX: should we try to preallocate more than the group has now? 4194 */ 4195 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4196 { 4197 struct super_block *sb = ac->ac_sb; 4198 struct ext4_locality_group *lg = ac->ac_lg; 4199 4200 BUG_ON(lg == NULL); 4201 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4202 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4203 } 4204 4205 /* 4206 * This function returns the next element to look at during inode 4207 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4208 * (ei->i_prealloc_lock) 4209 * 4210 * new_start The start of the range we want to compare 4211 * cur_start The existing start that we are comparing against 4212 * node The node of the rb_tree 4213 */ 4214 static inline struct rb_node* 4215 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4216 { 4217 if (new_start < cur_start) 4218 return node->rb_left; 4219 else 4220 return node->rb_right; 4221 } 4222 4223 static inline void 4224 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4225 ext4_lblk_t start, ext4_lblk_t end) 4226 { 4227 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4228 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4229 struct ext4_prealloc_space *tmp_pa; 4230 ext4_lblk_t tmp_pa_start, tmp_pa_end; 4231 struct rb_node *iter; 4232 4233 read_lock(&ei->i_prealloc_lock); 4234 for (iter = ei->i_prealloc_node.rb_node; iter; 4235 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4236 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4237 pa_node.inode_node); 4238 tmp_pa_start = tmp_pa->pa_lstart; 4239 tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len); 4240 4241 spin_lock(&tmp_pa->pa_lock); 4242 if (tmp_pa->pa_deleted == 0) 4243 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4244 spin_unlock(&tmp_pa->pa_lock); 4245 } 4246 read_unlock(&ei->i_prealloc_lock); 4247 } 4248 4249 /* 4250 * Given an allocation context "ac" and a range "start", "end", check 4251 * and adjust boundaries if the range overlaps with any of the existing 4252 * preallocatoins stored in the corresponding inode of the allocation context. 4253 * 4254 * Parameters: 4255 * ac allocation context 4256 * start start of the new range 4257 * end end of the new range 4258 */ 4259 static inline void 4260 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4261 ext4_lblk_t *start, ext4_lblk_t *end) 4262 { 4263 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4264 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4265 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4266 struct rb_node *iter; 4267 ext4_lblk_t new_start, new_end; 4268 ext4_lblk_t tmp_pa_start, tmp_pa_end, left_pa_end = -1, right_pa_start = -1; 4269 4270 new_start = *start; 4271 new_end = *end; 4272 4273 /* 4274 * Adjust the normalized range so that it doesn't overlap with any 4275 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4276 * so it doesn't change underneath us. 4277 */ 4278 read_lock(&ei->i_prealloc_lock); 4279 4280 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4281 for (iter = ei->i_prealloc_node.rb_node; iter; 4282 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4283 tmp_pa_start, iter)) { 4284 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4285 pa_node.inode_node); 4286 tmp_pa_start = tmp_pa->pa_lstart; 4287 tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len); 4288 4289 /* PA must not overlap original request */ 4290 spin_lock(&tmp_pa->pa_lock); 4291 if (tmp_pa->pa_deleted == 0) 4292 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4293 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4294 spin_unlock(&tmp_pa->pa_lock); 4295 } 4296 4297 /* 4298 * Step 2: check if the found PA is left or right neighbor and 4299 * get the other neighbor 4300 */ 4301 if (tmp_pa) { 4302 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4303 struct rb_node *tmp; 4304 4305 left_pa = tmp_pa; 4306 tmp = rb_next(&left_pa->pa_node.inode_node); 4307 if (tmp) { 4308 right_pa = rb_entry(tmp, 4309 struct ext4_prealloc_space, 4310 pa_node.inode_node); 4311 } 4312 } else { 4313 struct rb_node *tmp; 4314 4315 right_pa = tmp_pa; 4316 tmp = rb_prev(&right_pa->pa_node.inode_node); 4317 if (tmp) { 4318 left_pa = rb_entry(tmp, 4319 struct ext4_prealloc_space, 4320 pa_node.inode_node); 4321 } 4322 } 4323 } 4324 4325 /* Step 3: get the non deleted neighbors */ 4326 if (left_pa) { 4327 for (iter = &left_pa->pa_node.inode_node;; 4328 iter = rb_prev(iter)) { 4329 if (!iter) { 4330 left_pa = NULL; 4331 break; 4332 } 4333 4334 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4335 pa_node.inode_node); 4336 left_pa = tmp_pa; 4337 spin_lock(&tmp_pa->pa_lock); 4338 if (tmp_pa->pa_deleted == 0) { 4339 spin_unlock(&tmp_pa->pa_lock); 4340 break; 4341 } 4342 spin_unlock(&tmp_pa->pa_lock); 4343 } 4344 } 4345 4346 if (right_pa) { 4347 for (iter = &right_pa->pa_node.inode_node;; 4348 iter = rb_next(iter)) { 4349 if (!iter) { 4350 right_pa = NULL; 4351 break; 4352 } 4353 4354 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4355 pa_node.inode_node); 4356 right_pa = tmp_pa; 4357 spin_lock(&tmp_pa->pa_lock); 4358 if (tmp_pa->pa_deleted == 0) { 4359 spin_unlock(&tmp_pa->pa_lock); 4360 break; 4361 } 4362 spin_unlock(&tmp_pa->pa_lock); 4363 } 4364 } 4365 4366 if (left_pa) { 4367 left_pa_end = 4368 left_pa->pa_lstart + EXT4_C2B(sbi, left_pa->pa_len); 4369 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4370 } 4371 4372 if (right_pa) { 4373 right_pa_start = right_pa->pa_lstart; 4374 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4375 } 4376 4377 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4378 if (left_pa) { 4379 if (left_pa_end > new_start) 4380 new_start = left_pa_end; 4381 } 4382 4383 if (right_pa) { 4384 if (right_pa_start < new_end) 4385 new_end = right_pa_start; 4386 } 4387 read_unlock(&ei->i_prealloc_lock); 4388 4389 /* XXX: extra loop to check we really don't overlap preallocations */ 4390 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4391 4392 *start = new_start; 4393 *end = new_end; 4394 } 4395 4396 /* 4397 * Normalization means making request better in terms of 4398 * size and alignment 4399 */ 4400 static noinline_for_stack void 4401 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4402 struct ext4_allocation_request *ar) 4403 { 4404 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4405 struct ext4_super_block *es = sbi->s_es; 4406 int bsbits, max; 4407 ext4_lblk_t end; 4408 loff_t size, start_off; 4409 loff_t orig_size __maybe_unused; 4410 ext4_lblk_t start; 4411 4412 /* do normalize only data requests, metadata requests 4413 do not need preallocation */ 4414 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4415 return; 4416 4417 /* sometime caller may want exact blocks */ 4418 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4419 return; 4420 4421 /* caller may indicate that preallocation isn't 4422 * required (it's a tail, for example) */ 4423 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4424 return; 4425 4426 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4427 ext4_mb_normalize_group_request(ac); 4428 return ; 4429 } 4430 4431 bsbits = ac->ac_sb->s_blocksize_bits; 4432 4433 /* first, let's learn actual file size 4434 * given current request is allocated */ 4435 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4436 size = size << bsbits; 4437 if (size < i_size_read(ac->ac_inode)) 4438 size = i_size_read(ac->ac_inode); 4439 orig_size = size; 4440 4441 /* max size of free chunks */ 4442 max = 2 << bsbits; 4443 4444 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4445 (req <= (size) || max <= (chunk_size)) 4446 4447 /* first, try to predict filesize */ 4448 /* XXX: should this table be tunable? */ 4449 start_off = 0; 4450 if (size <= 16 * 1024) { 4451 size = 16 * 1024; 4452 } else if (size <= 32 * 1024) { 4453 size = 32 * 1024; 4454 } else if (size <= 64 * 1024) { 4455 size = 64 * 1024; 4456 } else if (size <= 128 * 1024) { 4457 size = 128 * 1024; 4458 } else if (size <= 256 * 1024) { 4459 size = 256 * 1024; 4460 } else if (size <= 512 * 1024) { 4461 size = 512 * 1024; 4462 } else if (size <= 1024 * 1024) { 4463 size = 1024 * 1024; 4464 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4465 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4466 (21 - bsbits)) << 21; 4467 size = 2 * 1024 * 1024; 4468 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4469 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4470 (22 - bsbits)) << 22; 4471 size = 4 * 1024 * 1024; 4472 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4473 (8<<20)>>bsbits, max, 8 * 1024)) { 4474 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4475 (23 - bsbits)) << 23; 4476 size = 8 * 1024 * 1024; 4477 } else { 4478 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4479 size = (loff_t) EXT4_C2B(sbi, 4480 ac->ac_o_ex.fe_len) << bsbits; 4481 } 4482 size = size >> bsbits; 4483 start = start_off >> bsbits; 4484 4485 /* 4486 * For tiny groups (smaller than 8MB) the chosen allocation 4487 * alignment may be larger than group size. Make sure the 4488 * alignment does not move allocation to a different group which 4489 * makes mballoc fail assertions later. 4490 */ 4491 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4492 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4493 4494 /* don't cover already allocated blocks in selected range */ 4495 if (ar->pleft && start <= ar->lleft) { 4496 size -= ar->lleft + 1 - start; 4497 start = ar->lleft + 1; 4498 } 4499 if (ar->pright && start + size - 1 >= ar->lright) 4500 size -= start + size - ar->lright; 4501 4502 /* 4503 * Trim allocation request for filesystems with artificially small 4504 * groups. 4505 */ 4506 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4507 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4508 4509 end = start + size; 4510 4511 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4512 4513 size = end - start; 4514 4515 /* 4516 * In this function "start" and "size" are normalized for better 4517 * alignment and length such that we could preallocate more blocks. 4518 * This normalization is done such that original request of 4519 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4520 * "size" boundaries. 4521 * (Note fe_len can be relaxed since FS block allocation API does not 4522 * provide gurantee on number of contiguous blocks allocation since that 4523 * depends upon free space left, etc). 4524 * In case of inode pa, later we use the allocated blocks 4525 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4526 * range of goal/best blocks [start, size] to put it at the 4527 * ac_o_ex.fe_logical extent of this inode. 4528 * (See ext4_mb_use_inode_pa() for more details) 4529 */ 4530 if (start + size <= ac->ac_o_ex.fe_logical || 4531 start > ac->ac_o_ex.fe_logical) { 4532 ext4_msg(ac->ac_sb, KERN_ERR, 4533 "start %lu, size %lu, fe_logical %lu", 4534 (unsigned long) start, (unsigned long) size, 4535 (unsigned long) ac->ac_o_ex.fe_logical); 4536 BUG(); 4537 } 4538 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4539 4540 /* now prepare goal request */ 4541 4542 /* XXX: is it better to align blocks WRT to logical 4543 * placement or satisfy big request as is */ 4544 ac->ac_g_ex.fe_logical = start; 4545 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4546 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4547 4548 /* define goal start in order to merge */ 4549 if (ar->pright && (ar->lright == (start + size)) && 4550 ar->pright >= size && 4551 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4552 /* merge to the right */ 4553 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4554 &ac->ac_g_ex.fe_group, 4555 &ac->ac_g_ex.fe_start); 4556 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4557 } 4558 if (ar->pleft && (ar->lleft + 1 == start) && 4559 ar->pleft + 1 < ext4_blocks_count(es)) { 4560 /* merge to the left */ 4561 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4562 &ac->ac_g_ex.fe_group, 4563 &ac->ac_g_ex.fe_start); 4564 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4565 } 4566 4567 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4568 orig_size, start); 4569 } 4570 4571 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4572 { 4573 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4574 4575 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4576 atomic_inc(&sbi->s_bal_reqs); 4577 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4578 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4579 atomic_inc(&sbi->s_bal_success); 4580 4581 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4582 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4583 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4584 } 4585 4586 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4587 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4588 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4589 atomic_inc(&sbi->s_bal_goals); 4590 /* did we allocate as much as normalizer originally wanted? */ 4591 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4592 atomic_inc(&sbi->s_bal_len_goals); 4593 4594 if (ac->ac_found > sbi->s_mb_max_to_scan) 4595 atomic_inc(&sbi->s_bal_breaks); 4596 } 4597 4598 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4599 trace_ext4_mballoc_alloc(ac); 4600 else 4601 trace_ext4_mballoc_prealloc(ac); 4602 } 4603 4604 /* 4605 * Called on failure; free up any blocks from the inode PA for this 4606 * context. We don't need this for MB_GROUP_PA because we only change 4607 * pa_free in ext4_mb_release_context(), but on failure, we've already 4608 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4609 */ 4610 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4611 { 4612 struct ext4_prealloc_space *pa = ac->ac_pa; 4613 struct ext4_buddy e4b; 4614 int err; 4615 4616 if (pa == NULL) { 4617 if (ac->ac_f_ex.fe_len == 0) 4618 return; 4619 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4620 if (WARN_RATELIMIT(err, 4621 "ext4: mb_load_buddy failed (%d)", err)) 4622 /* 4623 * This should never happen since we pin the 4624 * pages in the ext4_allocation_context so 4625 * ext4_mb_load_buddy() should never fail. 4626 */ 4627 return; 4628 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4629 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4630 ac->ac_f_ex.fe_len); 4631 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4632 ext4_mb_unload_buddy(&e4b); 4633 return; 4634 } 4635 if (pa->pa_type == MB_INODE_PA) { 4636 spin_lock(&pa->pa_lock); 4637 pa->pa_free += ac->ac_b_ex.fe_len; 4638 spin_unlock(&pa->pa_lock); 4639 } 4640 } 4641 4642 /* 4643 * use blocks preallocated to inode 4644 */ 4645 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4646 struct ext4_prealloc_space *pa) 4647 { 4648 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4649 ext4_fsblk_t start; 4650 ext4_fsblk_t end; 4651 int len; 4652 4653 /* found preallocated blocks, use them */ 4654 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4655 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4656 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4657 len = EXT4_NUM_B2C(sbi, end - start); 4658 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4659 &ac->ac_b_ex.fe_start); 4660 ac->ac_b_ex.fe_len = len; 4661 ac->ac_status = AC_STATUS_FOUND; 4662 ac->ac_pa = pa; 4663 4664 BUG_ON(start < pa->pa_pstart); 4665 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4666 BUG_ON(pa->pa_free < len); 4667 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4668 pa->pa_free -= len; 4669 4670 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4671 } 4672 4673 /* 4674 * use blocks preallocated to locality group 4675 */ 4676 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4677 struct ext4_prealloc_space *pa) 4678 { 4679 unsigned int len = ac->ac_o_ex.fe_len; 4680 4681 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4682 &ac->ac_b_ex.fe_group, 4683 &ac->ac_b_ex.fe_start); 4684 ac->ac_b_ex.fe_len = len; 4685 ac->ac_status = AC_STATUS_FOUND; 4686 ac->ac_pa = pa; 4687 4688 /* we don't correct pa_pstart or pa_len here to avoid 4689 * possible race when the group is being loaded concurrently 4690 * instead we correct pa later, after blocks are marked 4691 * in on-disk bitmap -- see ext4_mb_release_context() 4692 * Other CPUs are prevented from allocating from this pa by lg_mutex 4693 */ 4694 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4695 pa->pa_lstart, len, pa); 4696 } 4697 4698 /* 4699 * Return the prealloc space that have minimal distance 4700 * from the goal block. @cpa is the prealloc 4701 * space that is having currently known minimal distance 4702 * from the goal block. 4703 */ 4704 static struct ext4_prealloc_space * 4705 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4706 struct ext4_prealloc_space *pa, 4707 struct ext4_prealloc_space *cpa) 4708 { 4709 ext4_fsblk_t cur_distance, new_distance; 4710 4711 if (cpa == NULL) { 4712 atomic_inc(&pa->pa_count); 4713 return pa; 4714 } 4715 cur_distance = abs(goal_block - cpa->pa_pstart); 4716 new_distance = abs(goal_block - pa->pa_pstart); 4717 4718 if (cur_distance <= new_distance) 4719 return cpa; 4720 4721 /* drop the previous reference */ 4722 atomic_dec(&cpa->pa_count); 4723 atomic_inc(&pa->pa_count); 4724 return pa; 4725 } 4726 4727 /* 4728 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4729 */ 4730 static bool 4731 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4732 struct ext4_prealloc_space *pa) 4733 { 4734 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4735 ext4_fsblk_t start; 4736 4737 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4738 return true; 4739 4740 /* 4741 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4742 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4743 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4744 * consistent with ext4_mb_find_by_goal. 4745 */ 4746 start = pa->pa_pstart + 4747 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4748 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4749 return false; 4750 4751 if (ac->ac_g_ex.fe_len > pa->pa_len - 4752 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4753 return false; 4754 4755 return true; 4756 } 4757 4758 /* 4759 * search goal blocks in preallocated space 4760 */ 4761 static noinline_for_stack bool 4762 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4763 { 4764 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4765 int order, i; 4766 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4767 struct ext4_locality_group *lg; 4768 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4769 loff_t tmp_pa_end; 4770 struct rb_node *iter; 4771 ext4_fsblk_t goal_block; 4772 4773 /* only data can be preallocated */ 4774 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4775 return false; 4776 4777 /* 4778 * first, try per-file preallocation by searching the inode pa rbtree. 4779 * 4780 * Here, we can't do a direct traversal of the tree because 4781 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4782 * deleted and that can cause direct traversal to skip some entries. 4783 */ 4784 read_lock(&ei->i_prealloc_lock); 4785 4786 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4787 goto try_group_pa; 4788 } 4789 4790 /* 4791 * Step 1: Find a pa with logical start immediately adjacent to the 4792 * original logical start. This could be on the left or right. 4793 * 4794 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4795 */ 4796 for (iter = ei->i_prealloc_node.rb_node; iter; 4797 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4798 tmp_pa->pa_lstart, iter)) { 4799 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4800 pa_node.inode_node); 4801 } 4802 4803 /* 4804 * Step 2: The adjacent pa might be to the right of logical start, find 4805 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4806 * logical start is towards the left of original request's logical start 4807 */ 4808 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4809 struct rb_node *tmp; 4810 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4811 4812 if (tmp) { 4813 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4814 pa_node.inode_node); 4815 } else { 4816 /* 4817 * If there is no adjacent pa to the left then finding 4818 * an overlapping pa is not possible hence stop searching 4819 * inode pa tree 4820 */ 4821 goto try_group_pa; 4822 } 4823 } 4824 4825 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4826 4827 /* 4828 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4829 * the first non deleted adjacent pa. After this step we should have a 4830 * valid tmp_pa which is guaranteed to be non deleted. 4831 */ 4832 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4833 if (!iter) { 4834 /* 4835 * no non deleted left adjacent pa, so stop searching 4836 * inode pa tree 4837 */ 4838 goto try_group_pa; 4839 } 4840 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4841 pa_node.inode_node); 4842 spin_lock(&tmp_pa->pa_lock); 4843 if (tmp_pa->pa_deleted == 0) { 4844 /* 4845 * We will keep holding the pa_lock from 4846 * this point on because we don't want group discard 4847 * to delete this pa underneath us. Since group 4848 * discard is anyways an ENOSPC operation it 4849 * should be okay for it to wait a few more cycles. 4850 */ 4851 break; 4852 } else { 4853 spin_unlock(&tmp_pa->pa_lock); 4854 } 4855 } 4856 4857 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4858 BUG_ON(tmp_pa->pa_deleted == 1); 4859 4860 /* 4861 * Step 4: We now have the non deleted left adjacent pa. Only this 4862 * pa can possibly satisfy the request hence check if it overlaps 4863 * original logical start and stop searching if it doesn't. 4864 */ 4865 tmp_pa_end = (loff_t)tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len); 4866 4867 if (ac->ac_o_ex.fe_logical >= tmp_pa_end) { 4868 spin_unlock(&tmp_pa->pa_lock); 4869 goto try_group_pa; 4870 } 4871 4872 /* non-extent files can't have physical blocks past 2^32 */ 4873 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4874 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4875 EXT4_MAX_BLOCK_FILE_PHYS)) { 4876 /* 4877 * Since PAs don't overlap, we won't find any other PA to 4878 * satisfy this. 4879 */ 4880 spin_unlock(&tmp_pa->pa_lock); 4881 goto try_group_pa; 4882 } 4883 4884 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4885 atomic_inc(&tmp_pa->pa_count); 4886 ext4_mb_use_inode_pa(ac, tmp_pa); 4887 spin_unlock(&tmp_pa->pa_lock); 4888 read_unlock(&ei->i_prealloc_lock); 4889 return true; 4890 } else { 4891 /* 4892 * We found a valid overlapping pa but couldn't use it because 4893 * it had no free blocks. This should ideally never happen 4894 * because: 4895 * 4896 * 1. When a new inode pa is added to rbtree it must have 4897 * pa_free > 0 since otherwise we won't actually need 4898 * preallocation. 4899 * 4900 * 2. An inode pa that is in the rbtree can only have it's 4901 * pa_free become zero when another thread calls: 4902 * ext4_mb_new_blocks 4903 * ext4_mb_use_preallocated 4904 * ext4_mb_use_inode_pa 4905 * 4906 * 3. Further, after the above calls make pa_free == 0, we will 4907 * immediately remove it from the rbtree in: 4908 * ext4_mb_new_blocks 4909 * ext4_mb_release_context 4910 * ext4_mb_put_pa 4911 * 4912 * 4. Since the pa_free becoming 0 and pa_free getting removed 4913 * from tree both happen in ext4_mb_new_blocks, which is always 4914 * called with i_data_sem held for data allocations, we can be 4915 * sure that another process will never see a pa in rbtree with 4916 * pa_free == 0. 4917 */ 4918 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4919 } 4920 spin_unlock(&tmp_pa->pa_lock); 4921 try_group_pa: 4922 read_unlock(&ei->i_prealloc_lock); 4923 4924 /* can we use group allocation? */ 4925 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4926 return false; 4927 4928 /* inode may have no locality group for some reason */ 4929 lg = ac->ac_lg; 4930 if (lg == NULL) 4931 return false; 4932 order = fls(ac->ac_o_ex.fe_len) - 1; 4933 if (order > PREALLOC_TB_SIZE - 1) 4934 /* The max size of hash table is PREALLOC_TB_SIZE */ 4935 order = PREALLOC_TB_SIZE - 1; 4936 4937 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4938 /* 4939 * search for the prealloc space that is having 4940 * minimal distance from the goal block. 4941 */ 4942 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4943 rcu_read_lock(); 4944 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4945 pa_node.lg_list) { 4946 spin_lock(&tmp_pa->pa_lock); 4947 if (tmp_pa->pa_deleted == 0 && 4948 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4949 4950 cpa = ext4_mb_check_group_pa(goal_block, 4951 tmp_pa, cpa); 4952 } 4953 spin_unlock(&tmp_pa->pa_lock); 4954 } 4955 rcu_read_unlock(); 4956 } 4957 if (cpa) { 4958 ext4_mb_use_group_pa(ac, cpa); 4959 return true; 4960 } 4961 return false; 4962 } 4963 4964 /* 4965 * the function goes through all block freed in the group 4966 * but not yet committed and marks them used in in-core bitmap. 4967 * buddy must be generated from this bitmap 4968 * Need to be called with the ext4 group lock held 4969 */ 4970 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 4971 ext4_group_t group) 4972 { 4973 struct rb_node *n; 4974 struct ext4_group_info *grp; 4975 struct ext4_free_data *entry; 4976 4977 grp = ext4_get_group_info(sb, group); 4978 if (!grp) 4979 return; 4980 n = rb_first(&(grp->bb_free_root)); 4981 4982 while (n) { 4983 entry = rb_entry(n, struct ext4_free_data, efd_node); 4984 mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 4985 n = rb_next(n); 4986 } 4987 return; 4988 } 4989 4990 /* 4991 * the function goes through all preallocation in this group and marks them 4992 * used in in-core bitmap. buddy must be generated from this bitmap 4993 * Need to be called with ext4 group lock held 4994 */ 4995 static noinline_for_stack 4996 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4997 ext4_group_t group) 4998 { 4999 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5000 struct ext4_prealloc_space *pa; 5001 struct list_head *cur; 5002 ext4_group_t groupnr; 5003 ext4_grpblk_t start; 5004 int preallocated = 0; 5005 int len; 5006 5007 if (!grp) 5008 return; 5009 5010 /* all form of preallocation discards first load group, 5011 * so the only competing code is preallocation use. 5012 * we don't need any locking here 5013 * notice we do NOT ignore preallocations with pa_deleted 5014 * otherwise we could leave used blocks available for 5015 * allocation in buddy when concurrent ext4_mb_put_pa() 5016 * is dropping preallocation 5017 */ 5018 list_for_each(cur, &grp->bb_prealloc_list) { 5019 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5020 spin_lock(&pa->pa_lock); 5021 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5022 &groupnr, &start); 5023 len = pa->pa_len; 5024 spin_unlock(&pa->pa_lock); 5025 if (unlikely(len == 0)) 5026 continue; 5027 BUG_ON(groupnr != group); 5028 mb_set_bits(bitmap, start, len); 5029 preallocated += len; 5030 } 5031 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5032 } 5033 5034 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5035 struct ext4_prealloc_space *pa) 5036 { 5037 struct ext4_inode_info *ei; 5038 5039 if (pa->pa_deleted) { 5040 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5041 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5042 pa->pa_len); 5043 return; 5044 } 5045 5046 pa->pa_deleted = 1; 5047 5048 if (pa->pa_type == MB_INODE_PA) { 5049 ei = EXT4_I(pa->pa_inode); 5050 atomic_dec(&ei->i_prealloc_active); 5051 } 5052 } 5053 5054 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5055 { 5056 BUG_ON(!pa); 5057 BUG_ON(atomic_read(&pa->pa_count)); 5058 BUG_ON(pa->pa_deleted == 0); 5059 kmem_cache_free(ext4_pspace_cachep, pa); 5060 } 5061 5062 static void ext4_mb_pa_callback(struct rcu_head *head) 5063 { 5064 struct ext4_prealloc_space *pa; 5065 5066 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5067 ext4_mb_pa_free(pa); 5068 } 5069 5070 /* 5071 * drops a reference to preallocated space descriptor 5072 * if this was the last reference and the space is consumed 5073 */ 5074 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5075 struct super_block *sb, struct ext4_prealloc_space *pa) 5076 { 5077 ext4_group_t grp; 5078 ext4_fsblk_t grp_blk; 5079 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5080 5081 /* in this short window concurrent discard can set pa_deleted */ 5082 spin_lock(&pa->pa_lock); 5083 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5084 spin_unlock(&pa->pa_lock); 5085 return; 5086 } 5087 5088 if (pa->pa_deleted == 1) { 5089 spin_unlock(&pa->pa_lock); 5090 return; 5091 } 5092 5093 ext4_mb_mark_pa_deleted(sb, pa); 5094 spin_unlock(&pa->pa_lock); 5095 5096 grp_blk = pa->pa_pstart; 5097 /* 5098 * If doing group-based preallocation, pa_pstart may be in the 5099 * next group when pa is used up 5100 */ 5101 if (pa->pa_type == MB_GROUP_PA) 5102 grp_blk--; 5103 5104 grp = ext4_get_group_number(sb, grp_blk); 5105 5106 /* 5107 * possible race: 5108 * 5109 * P1 (buddy init) P2 (regular allocation) 5110 * find block B in PA 5111 * copy on-disk bitmap to buddy 5112 * mark B in on-disk bitmap 5113 * drop PA from group 5114 * mark all PAs in buddy 5115 * 5116 * thus, P1 initializes buddy with B available. to prevent this 5117 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5118 * against that pair 5119 */ 5120 ext4_lock_group(sb, grp); 5121 list_del(&pa->pa_group_list); 5122 ext4_unlock_group(sb, grp); 5123 5124 if (pa->pa_type == MB_INODE_PA) { 5125 write_lock(pa->pa_node_lock.inode_lock); 5126 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5127 write_unlock(pa->pa_node_lock.inode_lock); 5128 ext4_mb_pa_free(pa); 5129 } else { 5130 spin_lock(pa->pa_node_lock.lg_lock); 5131 list_del_rcu(&pa->pa_node.lg_list); 5132 spin_unlock(pa->pa_node_lock.lg_lock); 5133 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5134 } 5135 } 5136 5137 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5138 { 5139 struct rb_node **iter = &root->rb_node, *parent = NULL; 5140 struct ext4_prealloc_space *iter_pa, *new_pa; 5141 ext4_lblk_t iter_start, new_start; 5142 5143 while (*iter) { 5144 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5145 pa_node.inode_node); 5146 new_pa = rb_entry(new, struct ext4_prealloc_space, 5147 pa_node.inode_node); 5148 iter_start = iter_pa->pa_lstart; 5149 new_start = new_pa->pa_lstart; 5150 5151 parent = *iter; 5152 if (new_start < iter_start) 5153 iter = &((*iter)->rb_left); 5154 else 5155 iter = &((*iter)->rb_right); 5156 } 5157 5158 rb_link_node(new, parent, iter); 5159 rb_insert_color(new, root); 5160 } 5161 5162 /* 5163 * creates new preallocated space for given inode 5164 */ 5165 static noinline_for_stack void 5166 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5167 { 5168 struct super_block *sb = ac->ac_sb; 5169 struct ext4_sb_info *sbi = EXT4_SB(sb); 5170 struct ext4_prealloc_space *pa; 5171 struct ext4_group_info *grp; 5172 struct ext4_inode_info *ei; 5173 5174 /* preallocate only when found space is larger then requested */ 5175 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5176 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5177 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5178 BUG_ON(ac->ac_pa == NULL); 5179 5180 pa = ac->ac_pa; 5181 5182 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5183 int new_bex_start; 5184 int new_bex_end; 5185 5186 /* we can't allocate as much as normalizer wants. 5187 * so, found space must get proper lstart 5188 * to cover original request */ 5189 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5190 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5191 5192 /* 5193 * Use the below logic for adjusting best extent as it keeps 5194 * fragmentation in check while ensuring logical range of best 5195 * extent doesn't overflow out of goal extent: 5196 * 5197 * 1. Check if best ex can be kept at end of goal (before 5198 * cr_best_avail trimmed it) and still cover original start 5199 * 2. Else, check if best ex can be kept at start of goal and 5200 * still cover original start 5201 * 3. Else, keep the best ex at start of original request. 5202 */ 5203 new_bex_end = ac->ac_g_ex.fe_logical + 5204 EXT4_C2B(sbi, ac->ac_orig_goal_len); 5205 new_bex_start = new_bex_end - EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5206 if (ac->ac_o_ex.fe_logical >= new_bex_start) 5207 goto adjust_bex; 5208 5209 new_bex_start = ac->ac_g_ex.fe_logical; 5210 new_bex_end = 5211 new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5212 if (ac->ac_o_ex.fe_logical < new_bex_end) 5213 goto adjust_bex; 5214 5215 new_bex_start = ac->ac_o_ex.fe_logical; 5216 new_bex_end = 5217 new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5218 5219 adjust_bex: 5220 ac->ac_b_ex.fe_logical = new_bex_start; 5221 5222 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5223 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 5224 BUG_ON(new_bex_end > (ac->ac_g_ex.fe_logical + 5225 EXT4_C2B(sbi, ac->ac_orig_goal_len))); 5226 } 5227 5228 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5229 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5230 pa->pa_len = ac->ac_b_ex.fe_len; 5231 pa->pa_free = pa->pa_len; 5232 spin_lock_init(&pa->pa_lock); 5233 INIT_LIST_HEAD(&pa->pa_group_list); 5234 pa->pa_deleted = 0; 5235 pa->pa_type = MB_INODE_PA; 5236 5237 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5238 pa->pa_len, pa->pa_lstart); 5239 trace_ext4_mb_new_inode_pa(ac, pa); 5240 5241 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5242 ext4_mb_use_inode_pa(ac, pa); 5243 5244 ei = EXT4_I(ac->ac_inode); 5245 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5246 if (!grp) 5247 return; 5248 5249 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5250 pa->pa_inode = ac->ac_inode; 5251 5252 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5253 5254 write_lock(pa->pa_node_lock.inode_lock); 5255 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5256 write_unlock(pa->pa_node_lock.inode_lock); 5257 atomic_inc(&ei->i_prealloc_active); 5258 } 5259 5260 /* 5261 * creates new preallocated space for locality group inodes belongs to 5262 */ 5263 static noinline_for_stack void 5264 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5265 { 5266 struct super_block *sb = ac->ac_sb; 5267 struct ext4_locality_group *lg; 5268 struct ext4_prealloc_space *pa; 5269 struct ext4_group_info *grp; 5270 5271 /* preallocate only when found space is larger then requested */ 5272 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5273 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5274 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5275 BUG_ON(ac->ac_pa == NULL); 5276 5277 pa = ac->ac_pa; 5278 5279 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5280 pa->pa_lstart = pa->pa_pstart; 5281 pa->pa_len = ac->ac_b_ex.fe_len; 5282 pa->pa_free = pa->pa_len; 5283 spin_lock_init(&pa->pa_lock); 5284 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5285 INIT_LIST_HEAD(&pa->pa_group_list); 5286 pa->pa_deleted = 0; 5287 pa->pa_type = MB_GROUP_PA; 5288 5289 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5290 pa->pa_len, pa->pa_lstart); 5291 trace_ext4_mb_new_group_pa(ac, pa); 5292 5293 ext4_mb_use_group_pa(ac, pa); 5294 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5295 5296 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5297 if (!grp) 5298 return; 5299 lg = ac->ac_lg; 5300 BUG_ON(lg == NULL); 5301 5302 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5303 pa->pa_inode = NULL; 5304 5305 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5306 5307 /* 5308 * We will later add the new pa to the right bucket 5309 * after updating the pa_free in ext4_mb_release_context 5310 */ 5311 } 5312 5313 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5314 { 5315 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5316 ext4_mb_new_group_pa(ac); 5317 else 5318 ext4_mb_new_inode_pa(ac); 5319 } 5320 5321 /* 5322 * finds all unused blocks in on-disk bitmap, frees them in 5323 * in-core bitmap and buddy. 5324 * @pa must be unlinked from inode and group lists, so that 5325 * nobody else can find/use it. 5326 * the caller MUST hold group/inode locks. 5327 * TODO: optimize the case when there are no in-core structures yet 5328 */ 5329 static noinline_for_stack int 5330 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5331 struct ext4_prealloc_space *pa) 5332 { 5333 struct super_block *sb = e4b->bd_sb; 5334 struct ext4_sb_info *sbi = EXT4_SB(sb); 5335 unsigned int end; 5336 unsigned int next; 5337 ext4_group_t group; 5338 ext4_grpblk_t bit; 5339 unsigned long long grp_blk_start; 5340 int free = 0; 5341 5342 BUG_ON(pa->pa_deleted == 0); 5343 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5344 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5345 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5346 end = bit + pa->pa_len; 5347 5348 while (bit < end) { 5349 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5350 if (bit >= end) 5351 break; 5352 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5353 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5354 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5355 (unsigned) next - bit, (unsigned) group); 5356 free += next - bit; 5357 5358 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5359 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5360 EXT4_C2B(sbi, bit)), 5361 next - bit); 5362 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5363 bit = next + 1; 5364 } 5365 if (free != pa->pa_free) { 5366 ext4_msg(e4b->bd_sb, KERN_CRIT, 5367 "pa %p: logic %lu, phys. %lu, len %d", 5368 pa, (unsigned long) pa->pa_lstart, 5369 (unsigned long) pa->pa_pstart, 5370 pa->pa_len); 5371 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5372 free, pa->pa_free); 5373 /* 5374 * pa is already deleted so we use the value obtained 5375 * from the bitmap and continue. 5376 */ 5377 } 5378 atomic_add(free, &sbi->s_mb_discarded); 5379 5380 return 0; 5381 } 5382 5383 static noinline_for_stack int 5384 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5385 struct ext4_prealloc_space *pa) 5386 { 5387 struct super_block *sb = e4b->bd_sb; 5388 ext4_group_t group; 5389 ext4_grpblk_t bit; 5390 5391 trace_ext4_mb_release_group_pa(sb, pa); 5392 BUG_ON(pa->pa_deleted == 0); 5393 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5394 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5395 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5396 e4b->bd_group, group, pa->pa_pstart); 5397 return 0; 5398 } 5399 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5400 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5401 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5402 5403 return 0; 5404 } 5405 5406 /* 5407 * releases all preallocations in given group 5408 * 5409 * first, we need to decide discard policy: 5410 * - when do we discard 5411 * 1) ENOSPC 5412 * - how many do we discard 5413 * 1) how many requested 5414 */ 5415 static noinline_for_stack int 5416 ext4_mb_discard_group_preallocations(struct super_block *sb, 5417 ext4_group_t group, int *busy) 5418 { 5419 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5420 struct buffer_head *bitmap_bh = NULL; 5421 struct ext4_prealloc_space *pa, *tmp; 5422 struct list_head list; 5423 struct ext4_buddy e4b; 5424 struct ext4_inode_info *ei; 5425 int err; 5426 int free = 0; 5427 5428 if (!grp) 5429 return 0; 5430 mb_debug(sb, "discard preallocation for group %u\n", group); 5431 if (list_empty(&grp->bb_prealloc_list)) 5432 goto out_dbg; 5433 5434 bitmap_bh = ext4_read_block_bitmap(sb, group); 5435 if (IS_ERR(bitmap_bh)) { 5436 err = PTR_ERR(bitmap_bh); 5437 ext4_error_err(sb, -err, 5438 "Error %d reading block bitmap for %u", 5439 err, group); 5440 goto out_dbg; 5441 } 5442 5443 err = ext4_mb_load_buddy(sb, group, &e4b); 5444 if (err) { 5445 ext4_warning(sb, "Error %d loading buddy information for %u", 5446 err, group); 5447 put_bh(bitmap_bh); 5448 goto out_dbg; 5449 } 5450 5451 INIT_LIST_HEAD(&list); 5452 ext4_lock_group(sb, group); 5453 list_for_each_entry_safe(pa, tmp, 5454 &grp->bb_prealloc_list, pa_group_list) { 5455 spin_lock(&pa->pa_lock); 5456 if (atomic_read(&pa->pa_count)) { 5457 spin_unlock(&pa->pa_lock); 5458 *busy = 1; 5459 continue; 5460 } 5461 if (pa->pa_deleted) { 5462 spin_unlock(&pa->pa_lock); 5463 continue; 5464 } 5465 5466 /* seems this one can be freed ... */ 5467 ext4_mb_mark_pa_deleted(sb, pa); 5468 5469 if (!free) 5470 this_cpu_inc(discard_pa_seq); 5471 5472 /* we can trust pa_free ... */ 5473 free += pa->pa_free; 5474 5475 spin_unlock(&pa->pa_lock); 5476 5477 list_del(&pa->pa_group_list); 5478 list_add(&pa->u.pa_tmp_list, &list); 5479 } 5480 5481 /* now free all selected PAs */ 5482 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5483 5484 /* remove from object (inode or locality group) */ 5485 if (pa->pa_type == MB_GROUP_PA) { 5486 spin_lock(pa->pa_node_lock.lg_lock); 5487 list_del_rcu(&pa->pa_node.lg_list); 5488 spin_unlock(pa->pa_node_lock.lg_lock); 5489 } else { 5490 write_lock(pa->pa_node_lock.inode_lock); 5491 ei = EXT4_I(pa->pa_inode); 5492 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5493 write_unlock(pa->pa_node_lock.inode_lock); 5494 } 5495 5496 list_del(&pa->u.pa_tmp_list); 5497 5498 if (pa->pa_type == MB_GROUP_PA) { 5499 ext4_mb_release_group_pa(&e4b, pa); 5500 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5501 } else { 5502 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5503 ext4_mb_pa_free(pa); 5504 } 5505 } 5506 5507 ext4_unlock_group(sb, group); 5508 ext4_mb_unload_buddy(&e4b); 5509 put_bh(bitmap_bh); 5510 out_dbg: 5511 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5512 free, group, grp->bb_free); 5513 return free; 5514 } 5515 5516 /* 5517 * releases all non-used preallocated blocks for given inode 5518 * 5519 * It's important to discard preallocations under i_data_sem 5520 * We don't want another block to be served from the prealloc 5521 * space when we are discarding the inode prealloc space. 5522 * 5523 * FIXME!! Make sure it is valid at all the call sites 5524 */ 5525 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5526 { 5527 struct ext4_inode_info *ei = EXT4_I(inode); 5528 struct super_block *sb = inode->i_sb; 5529 struct buffer_head *bitmap_bh = NULL; 5530 struct ext4_prealloc_space *pa, *tmp; 5531 ext4_group_t group = 0; 5532 struct list_head list; 5533 struct ext4_buddy e4b; 5534 struct rb_node *iter; 5535 int err; 5536 5537 if (!S_ISREG(inode->i_mode)) { 5538 return; 5539 } 5540 5541 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5542 return; 5543 5544 mb_debug(sb, "discard preallocation for inode %lu\n", 5545 inode->i_ino); 5546 trace_ext4_discard_preallocations(inode, 5547 atomic_read(&ei->i_prealloc_active), needed); 5548 5549 INIT_LIST_HEAD(&list); 5550 5551 if (needed == 0) 5552 needed = UINT_MAX; 5553 5554 repeat: 5555 /* first, collect all pa's in the inode */ 5556 write_lock(&ei->i_prealloc_lock); 5557 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5558 iter = rb_next(iter)) { 5559 pa = rb_entry(iter, struct ext4_prealloc_space, 5560 pa_node.inode_node); 5561 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5562 5563 spin_lock(&pa->pa_lock); 5564 if (atomic_read(&pa->pa_count)) { 5565 /* this shouldn't happen often - nobody should 5566 * use preallocation while we're discarding it */ 5567 spin_unlock(&pa->pa_lock); 5568 write_unlock(&ei->i_prealloc_lock); 5569 ext4_msg(sb, KERN_ERR, 5570 "uh-oh! used pa while discarding"); 5571 WARN_ON(1); 5572 schedule_timeout_uninterruptible(HZ); 5573 goto repeat; 5574 5575 } 5576 if (pa->pa_deleted == 0) { 5577 ext4_mb_mark_pa_deleted(sb, pa); 5578 spin_unlock(&pa->pa_lock); 5579 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5580 list_add(&pa->u.pa_tmp_list, &list); 5581 needed--; 5582 continue; 5583 } 5584 5585 /* someone is deleting pa right now */ 5586 spin_unlock(&pa->pa_lock); 5587 write_unlock(&ei->i_prealloc_lock); 5588 5589 /* we have to wait here because pa_deleted 5590 * doesn't mean pa is already unlinked from 5591 * the list. as we might be called from 5592 * ->clear_inode() the inode will get freed 5593 * and concurrent thread which is unlinking 5594 * pa from inode's list may access already 5595 * freed memory, bad-bad-bad */ 5596 5597 /* XXX: if this happens too often, we can 5598 * add a flag to force wait only in case 5599 * of ->clear_inode(), but not in case of 5600 * regular truncate */ 5601 schedule_timeout_uninterruptible(HZ); 5602 goto repeat; 5603 } 5604 write_unlock(&ei->i_prealloc_lock); 5605 5606 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5607 BUG_ON(pa->pa_type != MB_INODE_PA); 5608 group = ext4_get_group_number(sb, pa->pa_pstart); 5609 5610 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5611 GFP_NOFS|__GFP_NOFAIL); 5612 if (err) { 5613 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5614 err, group); 5615 continue; 5616 } 5617 5618 bitmap_bh = ext4_read_block_bitmap(sb, group); 5619 if (IS_ERR(bitmap_bh)) { 5620 err = PTR_ERR(bitmap_bh); 5621 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5622 err, group); 5623 ext4_mb_unload_buddy(&e4b); 5624 continue; 5625 } 5626 5627 ext4_lock_group(sb, group); 5628 list_del(&pa->pa_group_list); 5629 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5630 ext4_unlock_group(sb, group); 5631 5632 ext4_mb_unload_buddy(&e4b); 5633 put_bh(bitmap_bh); 5634 5635 list_del(&pa->u.pa_tmp_list); 5636 ext4_mb_pa_free(pa); 5637 } 5638 } 5639 5640 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5641 { 5642 struct ext4_prealloc_space *pa; 5643 5644 BUG_ON(ext4_pspace_cachep == NULL); 5645 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5646 if (!pa) 5647 return -ENOMEM; 5648 atomic_set(&pa->pa_count, 1); 5649 ac->ac_pa = pa; 5650 return 0; 5651 } 5652 5653 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5654 { 5655 struct ext4_prealloc_space *pa = ac->ac_pa; 5656 5657 BUG_ON(!pa); 5658 ac->ac_pa = NULL; 5659 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5660 /* 5661 * current function is only called due to an error or due to 5662 * len of found blocks < len of requested blocks hence the PA has not 5663 * been added to grp->bb_prealloc_list. So we don't need to lock it 5664 */ 5665 pa->pa_deleted = 1; 5666 ext4_mb_pa_free(pa); 5667 } 5668 5669 #ifdef CONFIG_EXT4_DEBUG 5670 static inline void ext4_mb_show_pa(struct super_block *sb) 5671 { 5672 ext4_group_t i, ngroups; 5673 5674 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5675 return; 5676 5677 ngroups = ext4_get_groups_count(sb); 5678 mb_debug(sb, "groups: "); 5679 for (i = 0; i < ngroups; i++) { 5680 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5681 struct ext4_prealloc_space *pa; 5682 ext4_grpblk_t start; 5683 struct list_head *cur; 5684 5685 if (!grp) 5686 continue; 5687 ext4_lock_group(sb, i); 5688 list_for_each(cur, &grp->bb_prealloc_list) { 5689 pa = list_entry(cur, struct ext4_prealloc_space, 5690 pa_group_list); 5691 spin_lock(&pa->pa_lock); 5692 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5693 NULL, &start); 5694 spin_unlock(&pa->pa_lock); 5695 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5696 pa->pa_len); 5697 } 5698 ext4_unlock_group(sb, i); 5699 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5700 grp->bb_fragments); 5701 } 5702 } 5703 5704 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5705 { 5706 struct super_block *sb = ac->ac_sb; 5707 5708 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5709 return; 5710 5711 mb_debug(sb, "Can't allocate:" 5712 " Allocation context details:"); 5713 mb_debug(sb, "status %u flags 0x%x", 5714 ac->ac_status, ac->ac_flags); 5715 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5716 "goal %lu/%lu/%lu@%lu, " 5717 "best %lu/%lu/%lu@%lu cr %d", 5718 (unsigned long)ac->ac_o_ex.fe_group, 5719 (unsigned long)ac->ac_o_ex.fe_start, 5720 (unsigned long)ac->ac_o_ex.fe_len, 5721 (unsigned long)ac->ac_o_ex.fe_logical, 5722 (unsigned long)ac->ac_g_ex.fe_group, 5723 (unsigned long)ac->ac_g_ex.fe_start, 5724 (unsigned long)ac->ac_g_ex.fe_len, 5725 (unsigned long)ac->ac_g_ex.fe_logical, 5726 (unsigned long)ac->ac_b_ex.fe_group, 5727 (unsigned long)ac->ac_b_ex.fe_start, 5728 (unsigned long)ac->ac_b_ex.fe_len, 5729 (unsigned long)ac->ac_b_ex.fe_logical, 5730 (int)ac->ac_criteria); 5731 mb_debug(sb, "%u found", ac->ac_found); 5732 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5733 if (ac->ac_pa) 5734 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5735 "group pa" : "inode pa"); 5736 ext4_mb_show_pa(sb); 5737 } 5738 #else 5739 static inline void ext4_mb_show_pa(struct super_block *sb) 5740 { 5741 return; 5742 } 5743 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5744 { 5745 ext4_mb_show_pa(ac->ac_sb); 5746 return; 5747 } 5748 #endif 5749 5750 /* 5751 * We use locality group preallocation for small size file. The size of the 5752 * file is determined by the current size or the resulting size after 5753 * allocation which ever is larger 5754 * 5755 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5756 */ 5757 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5758 { 5759 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5760 int bsbits = ac->ac_sb->s_blocksize_bits; 5761 loff_t size, isize; 5762 bool inode_pa_eligible, group_pa_eligible; 5763 5764 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5765 return; 5766 5767 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5768 return; 5769 5770 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5771 inode_pa_eligible = true; 5772 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 5773 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5774 >> bsbits; 5775 5776 /* No point in using inode preallocation for closed files */ 5777 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5778 !inode_is_open_for_write(ac->ac_inode)) 5779 inode_pa_eligible = false; 5780 5781 size = max(size, isize); 5782 /* Don't use group allocation for large files */ 5783 if (size > sbi->s_mb_stream_request) 5784 group_pa_eligible = false; 5785 5786 if (!group_pa_eligible) { 5787 if (inode_pa_eligible) 5788 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5789 else 5790 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5791 return; 5792 } 5793 5794 BUG_ON(ac->ac_lg != NULL); 5795 /* 5796 * locality group prealloc space are per cpu. The reason for having 5797 * per cpu locality group is to reduce the contention between block 5798 * request from multiple CPUs. 5799 */ 5800 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5801 5802 /* we're going to use group allocation */ 5803 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5804 5805 /* serialize all allocations in the group */ 5806 mutex_lock(&ac->ac_lg->lg_mutex); 5807 } 5808 5809 static noinline_for_stack void 5810 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5811 struct ext4_allocation_request *ar) 5812 { 5813 struct super_block *sb = ar->inode->i_sb; 5814 struct ext4_sb_info *sbi = EXT4_SB(sb); 5815 struct ext4_super_block *es = sbi->s_es; 5816 ext4_group_t group; 5817 unsigned int len; 5818 ext4_fsblk_t goal; 5819 ext4_grpblk_t block; 5820 5821 /* we can't allocate > group size */ 5822 len = ar->len; 5823 5824 /* just a dirty hack to filter too big requests */ 5825 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5826 len = EXT4_CLUSTERS_PER_GROUP(sb); 5827 5828 /* start searching from the goal */ 5829 goal = ar->goal; 5830 if (goal < le32_to_cpu(es->s_first_data_block) || 5831 goal >= ext4_blocks_count(es)) 5832 goal = le32_to_cpu(es->s_first_data_block); 5833 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5834 5835 /* set up allocation goals */ 5836 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5837 ac->ac_status = AC_STATUS_CONTINUE; 5838 ac->ac_sb = sb; 5839 ac->ac_inode = ar->inode; 5840 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5841 ac->ac_o_ex.fe_group = group; 5842 ac->ac_o_ex.fe_start = block; 5843 ac->ac_o_ex.fe_len = len; 5844 ac->ac_g_ex = ac->ac_o_ex; 5845 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5846 ac->ac_flags = ar->flags; 5847 5848 /* we have to define context: we'll work with a file or 5849 * locality group. this is a policy, actually */ 5850 ext4_mb_group_or_file(ac); 5851 5852 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5853 "left: %u/%u, right %u/%u to %swritable\n", 5854 (unsigned) ar->len, (unsigned) ar->logical, 5855 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5856 (unsigned) ar->lleft, (unsigned) ar->pleft, 5857 (unsigned) ar->lright, (unsigned) ar->pright, 5858 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5859 } 5860 5861 static noinline_for_stack void 5862 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5863 struct ext4_locality_group *lg, 5864 int order, int total_entries) 5865 { 5866 ext4_group_t group = 0; 5867 struct ext4_buddy e4b; 5868 struct list_head discard_list; 5869 struct ext4_prealloc_space *pa, *tmp; 5870 5871 mb_debug(sb, "discard locality group preallocation\n"); 5872 5873 INIT_LIST_HEAD(&discard_list); 5874 5875 spin_lock(&lg->lg_prealloc_lock); 5876 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5877 pa_node.lg_list, 5878 lockdep_is_held(&lg->lg_prealloc_lock)) { 5879 spin_lock(&pa->pa_lock); 5880 if (atomic_read(&pa->pa_count)) { 5881 /* 5882 * This is the pa that we just used 5883 * for block allocation. So don't 5884 * free that 5885 */ 5886 spin_unlock(&pa->pa_lock); 5887 continue; 5888 } 5889 if (pa->pa_deleted) { 5890 spin_unlock(&pa->pa_lock); 5891 continue; 5892 } 5893 /* only lg prealloc space */ 5894 BUG_ON(pa->pa_type != MB_GROUP_PA); 5895 5896 /* seems this one can be freed ... */ 5897 ext4_mb_mark_pa_deleted(sb, pa); 5898 spin_unlock(&pa->pa_lock); 5899 5900 list_del_rcu(&pa->pa_node.lg_list); 5901 list_add(&pa->u.pa_tmp_list, &discard_list); 5902 5903 total_entries--; 5904 if (total_entries <= 5) { 5905 /* 5906 * we want to keep only 5 entries 5907 * allowing it to grow to 8. This 5908 * mak sure we don't call discard 5909 * soon for this list. 5910 */ 5911 break; 5912 } 5913 } 5914 spin_unlock(&lg->lg_prealloc_lock); 5915 5916 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5917 int err; 5918 5919 group = ext4_get_group_number(sb, pa->pa_pstart); 5920 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5921 GFP_NOFS|__GFP_NOFAIL); 5922 if (err) { 5923 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5924 err, group); 5925 continue; 5926 } 5927 ext4_lock_group(sb, group); 5928 list_del(&pa->pa_group_list); 5929 ext4_mb_release_group_pa(&e4b, pa); 5930 ext4_unlock_group(sb, group); 5931 5932 ext4_mb_unload_buddy(&e4b); 5933 list_del(&pa->u.pa_tmp_list); 5934 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5935 } 5936 } 5937 5938 /* 5939 * We have incremented pa_count. So it cannot be freed at this 5940 * point. Also we hold lg_mutex. So no parallel allocation is 5941 * possible from this lg. That means pa_free cannot be updated. 5942 * 5943 * A parallel ext4_mb_discard_group_preallocations is possible. 5944 * which can cause the lg_prealloc_list to be updated. 5945 */ 5946 5947 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5948 { 5949 int order, added = 0, lg_prealloc_count = 1; 5950 struct super_block *sb = ac->ac_sb; 5951 struct ext4_locality_group *lg = ac->ac_lg; 5952 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5953 5954 order = fls(pa->pa_free) - 1; 5955 if (order > PREALLOC_TB_SIZE - 1) 5956 /* The max size of hash table is PREALLOC_TB_SIZE */ 5957 order = PREALLOC_TB_SIZE - 1; 5958 /* Add the prealloc space to lg */ 5959 spin_lock(&lg->lg_prealloc_lock); 5960 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5961 pa_node.lg_list, 5962 lockdep_is_held(&lg->lg_prealloc_lock)) { 5963 spin_lock(&tmp_pa->pa_lock); 5964 if (tmp_pa->pa_deleted) { 5965 spin_unlock(&tmp_pa->pa_lock); 5966 continue; 5967 } 5968 if (!added && pa->pa_free < tmp_pa->pa_free) { 5969 /* Add to the tail of the previous entry */ 5970 list_add_tail_rcu(&pa->pa_node.lg_list, 5971 &tmp_pa->pa_node.lg_list); 5972 added = 1; 5973 /* 5974 * we want to count the total 5975 * number of entries in the list 5976 */ 5977 } 5978 spin_unlock(&tmp_pa->pa_lock); 5979 lg_prealloc_count++; 5980 } 5981 if (!added) 5982 list_add_tail_rcu(&pa->pa_node.lg_list, 5983 &lg->lg_prealloc_list[order]); 5984 spin_unlock(&lg->lg_prealloc_lock); 5985 5986 /* Now trim the list to be not more than 8 elements */ 5987 if (lg_prealloc_count > 8) { 5988 ext4_mb_discard_lg_preallocations(sb, lg, 5989 order, lg_prealloc_count); 5990 return; 5991 } 5992 return ; 5993 } 5994 5995 /* 5996 * release all resource we used in allocation 5997 */ 5998 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5999 { 6000 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 6001 struct ext4_prealloc_space *pa = ac->ac_pa; 6002 if (pa) { 6003 if (pa->pa_type == MB_GROUP_PA) { 6004 /* see comment in ext4_mb_use_group_pa() */ 6005 spin_lock(&pa->pa_lock); 6006 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6007 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6008 pa->pa_free -= ac->ac_b_ex.fe_len; 6009 pa->pa_len -= ac->ac_b_ex.fe_len; 6010 spin_unlock(&pa->pa_lock); 6011 6012 /* 6013 * We want to add the pa to the right bucket. 6014 * Remove it from the list and while adding 6015 * make sure the list to which we are adding 6016 * doesn't grow big. 6017 */ 6018 if (likely(pa->pa_free)) { 6019 spin_lock(pa->pa_node_lock.lg_lock); 6020 list_del_rcu(&pa->pa_node.lg_list); 6021 spin_unlock(pa->pa_node_lock.lg_lock); 6022 ext4_mb_add_n_trim(ac); 6023 } 6024 } 6025 6026 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6027 } 6028 if (ac->ac_bitmap_page) 6029 put_page(ac->ac_bitmap_page); 6030 if (ac->ac_buddy_page) 6031 put_page(ac->ac_buddy_page); 6032 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6033 mutex_unlock(&ac->ac_lg->lg_mutex); 6034 ext4_mb_collect_stats(ac); 6035 return 0; 6036 } 6037 6038 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6039 { 6040 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6041 int ret; 6042 int freed = 0, busy = 0; 6043 int retry = 0; 6044 6045 trace_ext4_mb_discard_preallocations(sb, needed); 6046 6047 if (needed == 0) 6048 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6049 repeat: 6050 for (i = 0; i < ngroups && needed > 0; i++) { 6051 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6052 freed += ret; 6053 needed -= ret; 6054 cond_resched(); 6055 } 6056 6057 if (needed > 0 && busy && ++retry < 3) { 6058 busy = 0; 6059 goto repeat; 6060 } 6061 6062 return freed; 6063 } 6064 6065 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6066 struct ext4_allocation_context *ac, u64 *seq) 6067 { 6068 int freed; 6069 u64 seq_retry = 0; 6070 bool ret = false; 6071 6072 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6073 if (freed) { 6074 ret = true; 6075 goto out_dbg; 6076 } 6077 seq_retry = ext4_get_discard_pa_seq_sum(); 6078 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6079 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6080 *seq = seq_retry; 6081 ret = true; 6082 } 6083 6084 out_dbg: 6085 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6086 return ret; 6087 } 6088 6089 /* 6090 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6091 * linearly starting at the goal block and also excludes the blocks which 6092 * are going to be in use after fast commit replay. 6093 */ 6094 static ext4_fsblk_t 6095 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6096 { 6097 struct buffer_head *bitmap_bh; 6098 struct super_block *sb = ar->inode->i_sb; 6099 struct ext4_sb_info *sbi = EXT4_SB(sb); 6100 ext4_group_t group, nr; 6101 ext4_grpblk_t blkoff; 6102 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6103 ext4_grpblk_t i = 0; 6104 ext4_fsblk_t goal, block; 6105 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 6106 6107 goal = ar->goal; 6108 if (goal < le32_to_cpu(es->s_first_data_block) || 6109 goal >= ext4_blocks_count(es)) 6110 goal = le32_to_cpu(es->s_first_data_block); 6111 6112 ar->len = 0; 6113 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6114 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6115 bitmap_bh = ext4_read_block_bitmap(sb, group); 6116 if (IS_ERR(bitmap_bh)) { 6117 *errp = PTR_ERR(bitmap_bh); 6118 pr_warn("Failed to read block bitmap\n"); 6119 return 0; 6120 } 6121 6122 while (1) { 6123 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6124 blkoff); 6125 if (i >= max) 6126 break; 6127 if (ext4_fc_replay_check_excluded(sb, 6128 ext4_group_first_block_no(sb, group) + 6129 EXT4_C2B(sbi, i))) { 6130 blkoff = i + 1; 6131 } else 6132 break; 6133 } 6134 brelse(bitmap_bh); 6135 if (i < max) 6136 break; 6137 6138 if (++group >= ext4_get_groups_count(sb)) 6139 group = 0; 6140 6141 blkoff = 0; 6142 } 6143 6144 if (i >= max) { 6145 *errp = -ENOSPC; 6146 return 0; 6147 } 6148 6149 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6150 ext4_mb_mark_bb(sb, block, 1, 1); 6151 ar->len = 1; 6152 6153 return block; 6154 } 6155 6156 /* 6157 * Main entry point into mballoc to allocate blocks 6158 * it tries to use preallocation first, then falls back 6159 * to usual allocation 6160 */ 6161 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6162 struct ext4_allocation_request *ar, int *errp) 6163 { 6164 struct ext4_allocation_context *ac = NULL; 6165 struct ext4_sb_info *sbi; 6166 struct super_block *sb; 6167 ext4_fsblk_t block = 0; 6168 unsigned int inquota = 0; 6169 unsigned int reserv_clstrs = 0; 6170 int retries = 0; 6171 u64 seq; 6172 6173 might_sleep(); 6174 sb = ar->inode->i_sb; 6175 sbi = EXT4_SB(sb); 6176 6177 trace_ext4_request_blocks(ar); 6178 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6179 return ext4_mb_new_blocks_simple(ar, errp); 6180 6181 /* Allow to use superuser reservation for quota file */ 6182 if (ext4_is_quota_file(ar->inode)) 6183 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6184 6185 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6186 /* Without delayed allocation we need to verify 6187 * there is enough free blocks to do block allocation 6188 * and verify allocation doesn't exceed the quota limits. 6189 */ 6190 while (ar->len && 6191 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6192 6193 /* let others to free the space */ 6194 cond_resched(); 6195 ar->len = ar->len >> 1; 6196 } 6197 if (!ar->len) { 6198 ext4_mb_show_pa(sb); 6199 *errp = -ENOSPC; 6200 return 0; 6201 } 6202 reserv_clstrs = ar->len; 6203 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6204 dquot_alloc_block_nofail(ar->inode, 6205 EXT4_C2B(sbi, ar->len)); 6206 } else { 6207 while (ar->len && 6208 dquot_alloc_block(ar->inode, 6209 EXT4_C2B(sbi, ar->len))) { 6210 6211 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6212 ar->len--; 6213 } 6214 } 6215 inquota = ar->len; 6216 if (ar->len == 0) { 6217 *errp = -EDQUOT; 6218 goto out; 6219 } 6220 } 6221 6222 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6223 if (!ac) { 6224 ar->len = 0; 6225 *errp = -ENOMEM; 6226 goto out; 6227 } 6228 6229 ext4_mb_initialize_context(ac, ar); 6230 6231 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6232 seq = this_cpu_read(discard_pa_seq); 6233 if (!ext4_mb_use_preallocated(ac)) { 6234 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6235 ext4_mb_normalize_request(ac, ar); 6236 6237 *errp = ext4_mb_pa_alloc(ac); 6238 if (*errp) 6239 goto errout; 6240 repeat: 6241 /* allocate space in core */ 6242 *errp = ext4_mb_regular_allocator(ac); 6243 /* 6244 * pa allocated above is added to grp->bb_prealloc_list only 6245 * when we were able to allocate some block i.e. when 6246 * ac->ac_status == AC_STATUS_FOUND. 6247 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6248 * So we have to free this pa here itself. 6249 */ 6250 if (*errp) { 6251 ext4_mb_pa_put_free(ac); 6252 ext4_discard_allocated_blocks(ac); 6253 goto errout; 6254 } 6255 if (ac->ac_status == AC_STATUS_FOUND && 6256 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6257 ext4_mb_pa_put_free(ac); 6258 } 6259 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6260 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6261 if (*errp) { 6262 ext4_discard_allocated_blocks(ac); 6263 goto errout; 6264 } else { 6265 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6266 ar->len = ac->ac_b_ex.fe_len; 6267 } 6268 } else { 6269 if (++retries < 3 && 6270 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6271 goto repeat; 6272 /* 6273 * If block allocation fails then the pa allocated above 6274 * needs to be freed here itself. 6275 */ 6276 ext4_mb_pa_put_free(ac); 6277 *errp = -ENOSPC; 6278 } 6279 6280 if (*errp) { 6281 errout: 6282 ac->ac_b_ex.fe_len = 0; 6283 ar->len = 0; 6284 ext4_mb_show_ac(ac); 6285 } 6286 ext4_mb_release_context(ac); 6287 kmem_cache_free(ext4_ac_cachep, ac); 6288 out: 6289 if (inquota && ar->len < inquota) 6290 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6291 if (!ar->len) { 6292 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6293 /* release all the reserved blocks if non delalloc */ 6294 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6295 reserv_clstrs); 6296 } 6297 6298 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6299 6300 return block; 6301 } 6302 6303 /* 6304 * We can merge two free data extents only if the physical blocks 6305 * are contiguous, AND the extents were freed by the same transaction, 6306 * AND the blocks are associated with the same group. 6307 */ 6308 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6309 struct ext4_free_data *entry, 6310 struct ext4_free_data *new_entry, 6311 struct rb_root *entry_rb_root) 6312 { 6313 if ((entry->efd_tid != new_entry->efd_tid) || 6314 (entry->efd_group != new_entry->efd_group)) 6315 return; 6316 if (entry->efd_start_cluster + entry->efd_count == 6317 new_entry->efd_start_cluster) { 6318 new_entry->efd_start_cluster = entry->efd_start_cluster; 6319 new_entry->efd_count += entry->efd_count; 6320 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6321 entry->efd_start_cluster) { 6322 new_entry->efd_count += entry->efd_count; 6323 } else 6324 return; 6325 spin_lock(&sbi->s_md_lock); 6326 list_del(&entry->efd_list); 6327 spin_unlock(&sbi->s_md_lock); 6328 rb_erase(&entry->efd_node, entry_rb_root); 6329 kmem_cache_free(ext4_free_data_cachep, entry); 6330 } 6331 6332 static noinline_for_stack void 6333 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6334 struct ext4_free_data *new_entry) 6335 { 6336 ext4_group_t group = e4b->bd_group; 6337 ext4_grpblk_t cluster; 6338 ext4_grpblk_t clusters = new_entry->efd_count; 6339 struct ext4_free_data *entry; 6340 struct ext4_group_info *db = e4b->bd_info; 6341 struct super_block *sb = e4b->bd_sb; 6342 struct ext4_sb_info *sbi = EXT4_SB(sb); 6343 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6344 struct rb_node *parent = NULL, *new_node; 6345 6346 BUG_ON(!ext4_handle_valid(handle)); 6347 BUG_ON(e4b->bd_bitmap_page == NULL); 6348 BUG_ON(e4b->bd_buddy_page == NULL); 6349 6350 new_node = &new_entry->efd_node; 6351 cluster = new_entry->efd_start_cluster; 6352 6353 if (!*n) { 6354 /* first free block exent. We need to 6355 protect buddy cache from being freed, 6356 * otherwise we'll refresh it from 6357 * on-disk bitmap and lose not-yet-available 6358 * blocks */ 6359 get_page(e4b->bd_buddy_page); 6360 get_page(e4b->bd_bitmap_page); 6361 } 6362 while (*n) { 6363 parent = *n; 6364 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6365 if (cluster < entry->efd_start_cluster) 6366 n = &(*n)->rb_left; 6367 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6368 n = &(*n)->rb_right; 6369 else { 6370 ext4_grp_locked_error(sb, group, 0, 6371 ext4_group_first_block_no(sb, group) + 6372 EXT4_C2B(sbi, cluster), 6373 "Block already on to-be-freed list"); 6374 kmem_cache_free(ext4_free_data_cachep, new_entry); 6375 return; 6376 } 6377 } 6378 6379 rb_link_node(new_node, parent, n); 6380 rb_insert_color(new_node, &db->bb_free_root); 6381 6382 /* Now try to see the extent can be merged to left and right */ 6383 node = rb_prev(new_node); 6384 if (node) { 6385 entry = rb_entry(node, struct ext4_free_data, efd_node); 6386 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6387 &(db->bb_free_root)); 6388 } 6389 6390 node = rb_next(new_node); 6391 if (node) { 6392 entry = rb_entry(node, struct ext4_free_data, efd_node); 6393 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6394 &(db->bb_free_root)); 6395 } 6396 6397 spin_lock(&sbi->s_md_lock); 6398 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 6399 sbi->s_mb_free_pending += clusters; 6400 spin_unlock(&sbi->s_md_lock); 6401 } 6402 6403 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6404 unsigned long count) 6405 { 6406 struct buffer_head *bitmap_bh; 6407 struct super_block *sb = inode->i_sb; 6408 struct ext4_group_desc *gdp; 6409 struct buffer_head *gdp_bh; 6410 ext4_group_t group; 6411 ext4_grpblk_t blkoff; 6412 int already_freed = 0, err, i; 6413 6414 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6415 bitmap_bh = ext4_read_block_bitmap(sb, group); 6416 if (IS_ERR(bitmap_bh)) { 6417 pr_warn("Failed to read block bitmap\n"); 6418 return; 6419 } 6420 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 6421 if (!gdp) 6422 goto err_out; 6423 6424 for (i = 0; i < count; i++) { 6425 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 6426 already_freed++; 6427 } 6428 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 6429 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 6430 if (err) 6431 goto err_out; 6432 ext4_free_group_clusters_set( 6433 sb, gdp, ext4_free_group_clusters(sb, gdp) + 6434 count - already_freed); 6435 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6436 ext4_group_desc_csum_set(sb, group, gdp); 6437 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 6438 sync_dirty_buffer(bitmap_bh); 6439 sync_dirty_buffer(gdp_bh); 6440 6441 err_out: 6442 brelse(bitmap_bh); 6443 } 6444 6445 /** 6446 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6447 * Used by ext4_free_blocks() 6448 * @handle: handle for this transaction 6449 * @inode: inode 6450 * @block: starting physical block to be freed 6451 * @count: number of blocks to be freed 6452 * @flags: flags used by ext4_free_blocks 6453 */ 6454 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6455 ext4_fsblk_t block, unsigned long count, 6456 int flags) 6457 { 6458 struct buffer_head *bitmap_bh = NULL; 6459 struct super_block *sb = inode->i_sb; 6460 struct ext4_group_desc *gdp; 6461 struct ext4_group_info *grp; 6462 unsigned int overflow; 6463 ext4_grpblk_t bit; 6464 struct buffer_head *gd_bh; 6465 ext4_group_t block_group; 6466 struct ext4_sb_info *sbi; 6467 struct ext4_buddy e4b; 6468 unsigned int count_clusters; 6469 int err = 0; 6470 int ret; 6471 6472 sbi = EXT4_SB(sb); 6473 6474 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6475 !ext4_inode_block_valid(inode, block, count)) { 6476 ext4_error(sb, "Freeing blocks in system zone - " 6477 "Block = %llu, count = %lu", block, count); 6478 /* err = 0. ext4_std_error should be a no op */ 6479 goto error_return; 6480 } 6481 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6482 6483 do_more: 6484 overflow = 0; 6485 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6486 6487 grp = ext4_get_group_info(sb, block_group); 6488 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6489 return; 6490 6491 /* 6492 * Check to see if we are freeing blocks across a group 6493 * boundary. 6494 */ 6495 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6496 overflow = EXT4_C2B(sbi, bit) + count - 6497 EXT4_BLOCKS_PER_GROUP(sb); 6498 count -= overflow; 6499 /* The range changed so it's no longer validated */ 6500 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6501 } 6502 count_clusters = EXT4_NUM_B2C(sbi, count); 6503 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6504 if (IS_ERR(bitmap_bh)) { 6505 err = PTR_ERR(bitmap_bh); 6506 bitmap_bh = NULL; 6507 goto error_return; 6508 } 6509 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 6510 if (!gdp) { 6511 err = -EIO; 6512 goto error_return; 6513 } 6514 6515 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6516 !ext4_inode_block_valid(inode, block, count)) { 6517 ext4_error(sb, "Freeing blocks in system zone - " 6518 "Block = %llu, count = %lu", block, count); 6519 /* err = 0. ext4_std_error should be a no op */ 6520 goto error_return; 6521 } 6522 6523 BUFFER_TRACE(bitmap_bh, "getting write access"); 6524 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6525 EXT4_JTR_NONE); 6526 if (err) 6527 goto error_return; 6528 6529 /* 6530 * We are about to modify some metadata. Call the journal APIs 6531 * to unshare ->b_data if a currently-committing transaction is 6532 * using it 6533 */ 6534 BUFFER_TRACE(gd_bh, "get_write_access"); 6535 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6536 if (err) 6537 goto error_return; 6538 #ifdef AGGRESSIVE_CHECK 6539 { 6540 int i; 6541 for (i = 0; i < count_clusters; i++) 6542 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6543 } 6544 #endif 6545 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6546 6547 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6548 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6549 GFP_NOFS|__GFP_NOFAIL); 6550 if (err) 6551 goto error_return; 6552 6553 /* 6554 * We need to make sure we don't reuse the freed block until after the 6555 * transaction is committed. We make an exception if the inode is to be 6556 * written in writeback mode since writeback mode has weak data 6557 * consistency guarantees. 6558 */ 6559 if (ext4_handle_valid(handle) && 6560 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6561 !ext4_should_writeback_data(inode))) { 6562 struct ext4_free_data *new_entry; 6563 /* 6564 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6565 * to fail. 6566 */ 6567 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6568 GFP_NOFS|__GFP_NOFAIL); 6569 new_entry->efd_start_cluster = bit; 6570 new_entry->efd_group = block_group; 6571 new_entry->efd_count = count_clusters; 6572 new_entry->efd_tid = handle->h_transaction->t_tid; 6573 6574 ext4_lock_group(sb, block_group); 6575 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6576 ext4_mb_free_metadata(handle, &e4b, new_entry); 6577 } else { 6578 /* need to update group_info->bb_free and bitmap 6579 * with group lock held. generate_buddy look at 6580 * them with group lock_held 6581 */ 6582 if (test_opt(sb, DISCARD)) { 6583 err = ext4_issue_discard(sb, block_group, bit, 6584 count_clusters, NULL); 6585 if (err && err != -EOPNOTSUPP) 6586 ext4_msg(sb, KERN_WARNING, "discard request in" 6587 " group:%u block:%d count:%lu failed" 6588 " with %d", block_group, bit, count, 6589 err); 6590 } else 6591 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6592 6593 ext4_lock_group(sb, block_group); 6594 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6595 mb_free_blocks(inode, &e4b, bit, count_clusters); 6596 } 6597 6598 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6599 ext4_free_group_clusters_set(sb, gdp, ret); 6600 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6601 ext4_group_desc_csum_set(sb, block_group, gdp); 6602 ext4_unlock_group(sb, block_group); 6603 6604 if (sbi->s_log_groups_per_flex) { 6605 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6606 atomic64_add(count_clusters, 6607 &sbi_array_rcu_deref(sbi, s_flex_groups, 6608 flex_group)->free_clusters); 6609 } 6610 6611 /* 6612 * on a bigalloc file system, defer the s_freeclusters_counter 6613 * update to the caller (ext4_remove_space and friends) so they 6614 * can determine if a cluster freed here should be rereserved 6615 */ 6616 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6617 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6618 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6619 percpu_counter_add(&sbi->s_freeclusters_counter, 6620 count_clusters); 6621 } 6622 6623 ext4_mb_unload_buddy(&e4b); 6624 6625 /* We dirtied the bitmap block */ 6626 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6627 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6628 6629 /* And the group descriptor block */ 6630 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6631 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6632 if (!err) 6633 err = ret; 6634 6635 if (overflow && !err) { 6636 block += count; 6637 count = overflow; 6638 put_bh(bitmap_bh); 6639 /* The range changed so it's no longer validated */ 6640 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6641 goto do_more; 6642 } 6643 error_return: 6644 brelse(bitmap_bh); 6645 ext4_std_error(sb, err); 6646 return; 6647 } 6648 6649 /** 6650 * ext4_free_blocks() -- Free given blocks and update quota 6651 * @handle: handle for this transaction 6652 * @inode: inode 6653 * @bh: optional buffer of the block to be freed 6654 * @block: starting physical block to be freed 6655 * @count: number of blocks to be freed 6656 * @flags: flags used by ext4_free_blocks 6657 */ 6658 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6659 struct buffer_head *bh, ext4_fsblk_t block, 6660 unsigned long count, int flags) 6661 { 6662 struct super_block *sb = inode->i_sb; 6663 unsigned int overflow; 6664 struct ext4_sb_info *sbi; 6665 6666 sbi = EXT4_SB(sb); 6667 6668 if (bh) { 6669 if (block) 6670 BUG_ON(block != bh->b_blocknr); 6671 else 6672 block = bh->b_blocknr; 6673 } 6674 6675 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6676 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6677 return; 6678 } 6679 6680 might_sleep(); 6681 6682 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6683 !ext4_inode_block_valid(inode, block, count)) { 6684 ext4_error(sb, "Freeing blocks not in datazone - " 6685 "block = %llu, count = %lu", block, count); 6686 return; 6687 } 6688 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6689 6690 ext4_debug("freeing block %llu\n", block); 6691 trace_ext4_free_blocks(inode, block, count, flags); 6692 6693 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6694 BUG_ON(count > 1); 6695 6696 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6697 inode, bh, block); 6698 } 6699 6700 /* 6701 * If the extent to be freed does not begin on a cluster 6702 * boundary, we need to deal with partial clusters at the 6703 * beginning and end of the extent. Normally we will free 6704 * blocks at the beginning or the end unless we are explicitly 6705 * requested to avoid doing so. 6706 */ 6707 overflow = EXT4_PBLK_COFF(sbi, block); 6708 if (overflow) { 6709 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6710 overflow = sbi->s_cluster_ratio - overflow; 6711 block += overflow; 6712 if (count > overflow) 6713 count -= overflow; 6714 else 6715 return; 6716 } else { 6717 block -= overflow; 6718 count += overflow; 6719 } 6720 /* The range changed so it's no longer validated */ 6721 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6722 } 6723 overflow = EXT4_LBLK_COFF(sbi, count); 6724 if (overflow) { 6725 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6726 if (count > overflow) 6727 count -= overflow; 6728 else 6729 return; 6730 } else 6731 count += sbi->s_cluster_ratio - overflow; 6732 /* The range changed so it's no longer validated */ 6733 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6734 } 6735 6736 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6737 int i; 6738 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6739 6740 for (i = 0; i < count; i++) { 6741 cond_resched(); 6742 if (is_metadata) 6743 bh = sb_find_get_block(inode->i_sb, block + i); 6744 ext4_forget(handle, is_metadata, inode, bh, block + i); 6745 } 6746 } 6747 6748 ext4_mb_clear_bb(handle, inode, block, count, flags); 6749 return; 6750 } 6751 6752 /** 6753 * ext4_group_add_blocks() -- Add given blocks to an existing group 6754 * @handle: handle to this transaction 6755 * @sb: super block 6756 * @block: start physical block to add to the block group 6757 * @count: number of blocks to free 6758 * 6759 * This marks the blocks as free in the bitmap and buddy. 6760 */ 6761 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6762 ext4_fsblk_t block, unsigned long count) 6763 { 6764 struct buffer_head *bitmap_bh = NULL; 6765 struct buffer_head *gd_bh; 6766 ext4_group_t block_group; 6767 ext4_grpblk_t bit; 6768 unsigned int i; 6769 struct ext4_group_desc *desc; 6770 struct ext4_sb_info *sbi = EXT4_SB(sb); 6771 struct ext4_buddy e4b; 6772 int err = 0, ret, free_clusters_count; 6773 ext4_grpblk_t clusters_freed; 6774 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6775 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6776 unsigned long cluster_count = last_cluster - first_cluster + 1; 6777 6778 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6779 6780 if (count == 0) 6781 return 0; 6782 6783 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6784 /* 6785 * Check to see if we are freeing blocks across a group 6786 * boundary. 6787 */ 6788 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6789 ext4_warning(sb, "too many blocks added to group %u", 6790 block_group); 6791 err = -EINVAL; 6792 goto error_return; 6793 } 6794 6795 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6796 if (IS_ERR(bitmap_bh)) { 6797 err = PTR_ERR(bitmap_bh); 6798 bitmap_bh = NULL; 6799 goto error_return; 6800 } 6801 6802 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6803 if (!desc) { 6804 err = -EIO; 6805 goto error_return; 6806 } 6807 6808 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6809 ext4_error(sb, "Adding blocks in system zones - " 6810 "Block = %llu, count = %lu", 6811 block, count); 6812 err = -EINVAL; 6813 goto error_return; 6814 } 6815 6816 BUFFER_TRACE(bitmap_bh, "getting write access"); 6817 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6818 EXT4_JTR_NONE); 6819 if (err) 6820 goto error_return; 6821 6822 /* 6823 * We are about to modify some metadata. Call the journal APIs 6824 * to unshare ->b_data if a currently-committing transaction is 6825 * using it 6826 */ 6827 BUFFER_TRACE(gd_bh, "get_write_access"); 6828 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6829 if (err) 6830 goto error_return; 6831 6832 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6833 BUFFER_TRACE(bitmap_bh, "clear bit"); 6834 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6835 ext4_error(sb, "bit already cleared for block %llu", 6836 (ext4_fsblk_t)(block + i)); 6837 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6838 } else { 6839 clusters_freed++; 6840 } 6841 } 6842 6843 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6844 if (err) 6845 goto error_return; 6846 6847 /* 6848 * need to update group_info->bb_free and bitmap 6849 * with group lock held. generate_buddy look at 6850 * them with group lock_held 6851 */ 6852 ext4_lock_group(sb, block_group); 6853 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6854 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6855 free_clusters_count = clusters_freed + 6856 ext4_free_group_clusters(sb, desc); 6857 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6858 ext4_block_bitmap_csum_set(sb, desc, bitmap_bh); 6859 ext4_group_desc_csum_set(sb, block_group, desc); 6860 ext4_unlock_group(sb, block_group); 6861 percpu_counter_add(&sbi->s_freeclusters_counter, 6862 clusters_freed); 6863 6864 if (sbi->s_log_groups_per_flex) { 6865 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6866 atomic64_add(clusters_freed, 6867 &sbi_array_rcu_deref(sbi, s_flex_groups, 6868 flex_group)->free_clusters); 6869 } 6870 6871 ext4_mb_unload_buddy(&e4b); 6872 6873 /* We dirtied the bitmap block */ 6874 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6875 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6876 6877 /* And the group descriptor block */ 6878 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6879 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6880 if (!err) 6881 err = ret; 6882 6883 error_return: 6884 brelse(bitmap_bh); 6885 ext4_std_error(sb, err); 6886 return err; 6887 } 6888 6889 /** 6890 * ext4_trim_extent -- function to TRIM one single free extent in the group 6891 * @sb: super block for the file system 6892 * @start: starting block of the free extent in the alloc. group 6893 * @count: number of blocks to TRIM 6894 * @e4b: ext4 buddy for the group 6895 * 6896 * Trim "count" blocks starting at "start" in the "group". To assure that no 6897 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6898 * be called with under the group lock. 6899 */ 6900 static int ext4_trim_extent(struct super_block *sb, 6901 int start, int count, struct ext4_buddy *e4b) 6902 __releases(bitlock) 6903 __acquires(bitlock) 6904 { 6905 struct ext4_free_extent ex; 6906 ext4_group_t group = e4b->bd_group; 6907 int ret = 0; 6908 6909 trace_ext4_trim_extent(sb, group, start, count); 6910 6911 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6912 6913 ex.fe_start = start; 6914 ex.fe_group = group; 6915 ex.fe_len = count; 6916 6917 /* 6918 * Mark blocks used, so no one can reuse them while 6919 * being trimmed. 6920 */ 6921 mb_mark_used(e4b, &ex); 6922 ext4_unlock_group(sb, group); 6923 ret = ext4_issue_discard(sb, group, start, count, NULL); 6924 ext4_lock_group(sb, group); 6925 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6926 return ret; 6927 } 6928 6929 static int ext4_try_to_trim_range(struct super_block *sb, 6930 struct ext4_buddy *e4b, ext4_grpblk_t start, 6931 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6932 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6933 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6934 { 6935 ext4_grpblk_t next, count, free_count; 6936 void *bitmap; 6937 6938 bitmap = e4b->bd_bitmap; 6939 start = (e4b->bd_info->bb_first_free > start) ? 6940 e4b->bd_info->bb_first_free : start; 6941 count = 0; 6942 free_count = 0; 6943 6944 while (start <= max) { 6945 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6946 if (start > max) 6947 break; 6948 next = mb_find_next_bit(bitmap, max + 1, start); 6949 6950 if ((next - start) >= minblocks) { 6951 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6952 6953 if (ret && ret != -EOPNOTSUPP) 6954 break; 6955 count += next - start; 6956 } 6957 free_count += next - start; 6958 start = next + 1; 6959 6960 if (fatal_signal_pending(current)) { 6961 count = -ERESTARTSYS; 6962 break; 6963 } 6964 6965 if (need_resched()) { 6966 ext4_unlock_group(sb, e4b->bd_group); 6967 cond_resched(); 6968 ext4_lock_group(sb, e4b->bd_group); 6969 } 6970 6971 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6972 break; 6973 } 6974 6975 return count; 6976 } 6977 6978 /** 6979 * ext4_trim_all_free -- function to trim all free space in alloc. group 6980 * @sb: super block for file system 6981 * @group: group to be trimmed 6982 * @start: first group block to examine 6983 * @max: last group block to examine 6984 * @minblocks: minimum extent block count 6985 * @set_trimmed: set the trimmed flag if at least one block is trimmed 6986 * 6987 * ext4_trim_all_free walks through group's block bitmap searching for free 6988 * extents. When the free extent is found, mark it as used in group buddy 6989 * bitmap. Then issue a TRIM command on this extent and free the extent in 6990 * the group buddy bitmap. 6991 */ 6992 static ext4_grpblk_t 6993 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6994 ext4_grpblk_t start, ext4_grpblk_t max, 6995 ext4_grpblk_t minblocks, bool set_trimmed) 6996 { 6997 struct ext4_buddy e4b; 6998 int ret; 6999 7000 trace_ext4_trim_all_free(sb, group, start, max); 7001 7002 ret = ext4_mb_load_buddy(sb, group, &e4b); 7003 if (ret) { 7004 ext4_warning(sb, "Error %d loading buddy information for %u", 7005 ret, group); 7006 return ret; 7007 } 7008 7009 ext4_lock_group(sb, group); 7010 7011 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 7012 minblocks < EXT4_SB(sb)->s_last_trim_minblks) { 7013 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 7014 if (ret >= 0 && set_trimmed) 7015 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 7016 } else { 7017 ret = 0; 7018 } 7019 7020 ext4_unlock_group(sb, group); 7021 ext4_mb_unload_buddy(&e4b); 7022 7023 ext4_debug("trimmed %d blocks in the group %d\n", 7024 ret, group); 7025 7026 return ret; 7027 } 7028 7029 /** 7030 * ext4_trim_fs() -- trim ioctl handle function 7031 * @sb: superblock for filesystem 7032 * @range: fstrim_range structure 7033 * 7034 * start: First Byte to trim 7035 * len: number of Bytes to trim from start 7036 * minlen: minimum extent length in Bytes 7037 * ext4_trim_fs goes through all allocation groups containing Bytes from 7038 * start to start+len. For each such a group ext4_trim_all_free function 7039 * is invoked to trim all free space. 7040 */ 7041 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7042 { 7043 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7044 struct ext4_group_info *grp; 7045 ext4_group_t group, first_group, last_group; 7046 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7047 uint64_t start, end, minlen, trimmed = 0; 7048 ext4_fsblk_t first_data_blk = 7049 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7050 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7051 bool whole_group, eof = false; 7052 int ret = 0; 7053 7054 start = range->start >> sb->s_blocksize_bits; 7055 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7056 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7057 range->minlen >> sb->s_blocksize_bits); 7058 7059 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7060 start >= max_blks || 7061 range->len < sb->s_blocksize) 7062 return -EINVAL; 7063 /* No point to try to trim less than discard granularity */ 7064 if (range->minlen < discard_granularity) { 7065 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7066 discard_granularity >> sb->s_blocksize_bits); 7067 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7068 goto out; 7069 } 7070 if (end >= max_blks - 1) { 7071 end = max_blks - 1; 7072 eof = true; 7073 } 7074 if (end <= first_data_blk) 7075 goto out; 7076 if (start < first_data_blk) 7077 start = first_data_blk; 7078 7079 /* Determine first and last group to examine based on start and end */ 7080 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7081 &first_group, &first_cluster); 7082 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7083 &last_group, &last_cluster); 7084 7085 /* end now represents the last cluster to discard in this group */ 7086 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7087 whole_group = true; 7088 7089 for (group = first_group; group <= last_group; group++) { 7090 grp = ext4_get_group_info(sb, group); 7091 if (!grp) 7092 continue; 7093 /* We only do this if the grp has never been initialized */ 7094 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7095 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7096 if (ret) 7097 break; 7098 } 7099 7100 /* 7101 * For all the groups except the last one, last cluster will 7102 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7103 * change it for the last group, note that last_cluster is 7104 * already computed earlier by ext4_get_group_no_and_offset() 7105 */ 7106 if (group == last_group) { 7107 end = last_cluster; 7108 whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7109 } 7110 if (grp->bb_free >= minlen) { 7111 cnt = ext4_trim_all_free(sb, group, first_cluster, 7112 end, minlen, whole_group); 7113 if (cnt < 0) { 7114 ret = cnt; 7115 break; 7116 } 7117 trimmed += cnt; 7118 } 7119 7120 /* 7121 * For every group except the first one, we are sure 7122 * that the first cluster to discard will be cluster #0. 7123 */ 7124 first_cluster = 0; 7125 } 7126 7127 if (!ret) 7128 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7129 7130 out: 7131 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7132 return ret; 7133 } 7134 7135 /* Iterate all the free extents in the group. */ 7136 int 7137 ext4_mballoc_query_range( 7138 struct super_block *sb, 7139 ext4_group_t group, 7140 ext4_grpblk_t start, 7141 ext4_grpblk_t end, 7142 ext4_mballoc_query_range_fn formatter, 7143 void *priv) 7144 { 7145 void *bitmap; 7146 ext4_grpblk_t next; 7147 struct ext4_buddy e4b; 7148 int error; 7149 7150 error = ext4_mb_load_buddy(sb, group, &e4b); 7151 if (error) 7152 return error; 7153 bitmap = e4b.bd_bitmap; 7154 7155 ext4_lock_group(sb, group); 7156 7157 start = (e4b.bd_info->bb_first_free > start) ? 7158 e4b.bd_info->bb_first_free : start; 7159 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7160 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7161 7162 while (start <= end) { 7163 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7164 if (start > end) 7165 break; 7166 next = mb_find_next_bit(bitmap, end + 1, start); 7167 7168 ext4_unlock_group(sb, group); 7169 error = formatter(sb, group, start, next - start, priv); 7170 if (error) 7171 goto out_unload; 7172 ext4_lock_group(sb, group); 7173 7174 start = next + 1; 7175 } 7176 7177 ext4_unlock_group(sb, group); 7178 out_unload: 7179 ext4_mb_unload_buddy(&e4b); 7180 7181 return error; 7182 } 7183