xref: /openbmc/linux/fs/ext4/mballoc.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * the smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * The regular allocator (using the buddy cache) supports a few tunables.
131  *
132  * /sys/fs/ext4/<partition>/mb_min_to_scan
133  * /sys/fs/ext4/<partition>/mb_max_to_scan
134  * /sys/fs/ext4/<partition>/mb_order2_req
135  *
136  * The regular allocator uses buddy scan only if the request len is power of
137  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138  * value of s_mb_order2_reqs can be tuned via
139  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
140  * stripe size (sbi->s_stripe), we try to search for contiguous block in
141  * stripe size. This should result in better allocation on RAID setups. If
142  * not, we search in the specific group using bitmap for best extents. The
143  * tunable min_to_scan and max_to_scan control the behaviour here.
144  * min_to_scan indicate how long the mballoc __must__ look for a best
145  * extent and max_to_scan indicates how long the mballoc __can__ look for a
146  * best extent in the found extents. Searching for the blocks starts with
147  * the group specified as the goal value in allocation context via
148  * ac_g_ex. Each group is first checked based on the criteria whether it
149  * can be used for allocation. ext4_mb_good_group explains how the groups are
150  * checked.
151  *
152  * Both the prealloc space are getting populated as above. So for the first
153  * request we will hit the buddy cache which will result in this prealloc
154  * space getting filled. The prealloc space is then later used for the
155  * subsequent request.
156  */
157 
158 /*
159  * mballoc operates on the following data:
160  *  - on-disk bitmap
161  *  - in-core buddy (actually includes buddy and bitmap)
162  *  - preallocation descriptors (PAs)
163  *
164  * there are two types of preallocations:
165  *  - inode
166  *    assiged to specific inode and can be used for this inode only.
167  *    it describes part of inode's space preallocated to specific
168  *    physical blocks. any block from that preallocated can be used
169  *    independent. the descriptor just tracks number of blocks left
170  *    unused. so, before taking some block from descriptor, one must
171  *    make sure corresponded logical block isn't allocated yet. this
172  *    also means that freeing any block within descriptor's range
173  *    must discard all preallocated blocks.
174  *  - locality group
175  *    assigned to specific locality group which does not translate to
176  *    permanent set of inodes: inode can join and leave group. space
177  *    from this type of preallocation can be used for any inode. thus
178  *    it's consumed from the beginning to the end.
179  *
180  * relation between them can be expressed as:
181  *    in-core buddy = on-disk bitmap + preallocation descriptors
182  *
183  * this mean blocks mballoc considers used are:
184  *  - allocated blocks (persistent)
185  *  - preallocated blocks (non-persistent)
186  *
187  * consistency in mballoc world means that at any time a block is either
188  * free or used in ALL structures. notice: "any time" should not be read
189  * literally -- time is discrete and delimited by locks.
190  *
191  *  to keep it simple, we don't use block numbers, instead we count number of
192  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
193  *
194  * all operations can be expressed as:
195  *  - init buddy:			buddy = on-disk + PAs
196  *  - new PA:				buddy += N; PA = N
197  *  - use inode PA:			on-disk += N; PA -= N
198  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
199  *  - use locality group PA		on-disk += N; PA -= N
200  *  - discard locality group PA		buddy -= PA; PA = 0
201  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202  *        is used in real operation because we can't know actual used
203  *        bits from PA, only from on-disk bitmap
204  *
205  * if we follow this strict logic, then all operations above should be atomic.
206  * given some of them can block, we'd have to use something like semaphores
207  * killing performance on high-end SMP hardware. let's try to relax it using
208  * the following knowledge:
209  *  1) if buddy is referenced, it's already initialized
210  *  2) while block is used in buddy and the buddy is referenced,
211  *     nobody can re-allocate that block
212  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
214  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
215  *     block
216  *
217  * so, now we're building a concurrency table:
218  *  - init buddy vs.
219  *    - new PA
220  *      blocks for PA are allocated in the buddy, buddy must be referenced
221  *      until PA is linked to allocation group to avoid concurrent buddy init
222  *    - use inode PA
223  *      we need to make sure that either on-disk bitmap or PA has uptodate data
224  *      given (3) we care that PA-=N operation doesn't interfere with init
225  *    - discard inode PA
226  *      the simplest way would be to have buddy initialized by the discard
227  *    - use locality group PA
228  *      again PA-=N must be serialized with init
229  *    - discard locality group PA
230  *      the simplest way would be to have buddy initialized by the discard
231  *  - new PA vs.
232  *    - use inode PA
233  *      i_data_sem serializes them
234  *    - discard inode PA
235  *      discard process must wait until PA isn't used by another process
236  *    - use locality group PA
237  *      some mutex should serialize them
238  *    - discard locality group PA
239  *      discard process must wait until PA isn't used by another process
240  *  - use inode PA
241  *    - use inode PA
242  *      i_data_sem or another mutex should serializes them
243  *    - discard inode PA
244  *      discard process must wait until PA isn't used by another process
245  *    - use locality group PA
246  *      nothing wrong here -- they're different PAs covering different blocks
247  *    - discard locality group PA
248  *      discard process must wait until PA isn't used by another process
249  *
250  * now we're ready to make few consequences:
251  *  - PA is referenced and while it is no discard is possible
252  *  - PA is referenced until block isn't marked in on-disk bitmap
253  *  - PA changes only after on-disk bitmap
254  *  - discard must not compete with init. either init is done before
255  *    any discard or they're serialized somehow
256  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
257  *
258  * a special case when we've used PA to emptiness. no need to modify buddy
259  * in this case, but we should care about concurrent init
260  *
261  */
262 
263  /*
264  * Logic in few words:
265  *
266  *  - allocation:
267  *    load group
268  *    find blocks
269  *    mark bits in on-disk bitmap
270  *    release group
271  *
272  *  - use preallocation:
273  *    find proper PA (per-inode or group)
274  *    load group
275  *    mark bits in on-disk bitmap
276  *    release group
277  *    release PA
278  *
279  *  - free:
280  *    load group
281  *    mark bits in on-disk bitmap
282  *    release group
283  *
284  *  - discard preallocations in group:
285  *    mark PAs deleted
286  *    move them onto local list
287  *    load on-disk bitmap
288  *    load group
289  *    remove PA from object (inode or locality group)
290  *    mark free blocks in-core
291  *
292  *  - discard inode's preallocations:
293  */
294 
295 /*
296  * Locking rules
297  *
298  * Locks:
299  *  - bitlock on a group	(group)
300  *  - object (inode/locality)	(object)
301  *  - per-pa lock		(pa)
302  *
303  * Paths:
304  *  - new pa
305  *    object
306  *    group
307  *
308  *  - find and use pa:
309  *    pa
310  *
311  *  - release consumed pa:
312  *    pa
313  *    group
314  *    object
315  *
316  *  - generate in-core bitmap:
317  *    group
318  *        pa
319  *
320  *  - discard all for given object (inode, locality group):
321  *    object
322  *        pa
323  *    group
324  *
325  *  - discard all for given group:
326  *    group
327  *        pa
328  *    group
329  *        object
330  *
331  */
332 static struct kmem_cache *ext4_pspace_cachep;
333 static struct kmem_cache *ext4_ac_cachep;
334 static struct kmem_cache *ext4_free_data_cachep;
335 
336 /* We create slab caches for groupinfo data structures based on the
337  * superblock block size.  There will be one per mounted filesystem for
338  * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
341 
342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
343 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
346 };
347 
348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
349 					ext4_group_t group);
350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
351 						ext4_group_t group);
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
353 
354 /*
355  * The algorithm using this percpu seq counter goes below:
356  * 1. We sample the percpu discard_pa_seq counter before trying for block
357  *    allocation in ext4_mb_new_blocks().
358  * 2. We increment this percpu discard_pa_seq counter when we either allocate
359  *    or free these blocks i.e. while marking those blocks as used/free in
360  *    mb_mark_used()/mb_free_blocks().
361  * 3. We also increment this percpu seq counter when we successfully identify
362  *    that the bb_prealloc_list is not empty and hence proceed for discarding
363  *    of those PAs inside ext4_mb_discard_group_preallocations().
364  *
365  * Now to make sure that the regular fast path of block allocation is not
366  * affected, as a small optimization we only sample the percpu seq counter
367  * on that cpu. Only when the block allocation fails and when freed blocks
368  * found were 0, that is when we sample percpu seq counter for all cpus using
369  * below function ext4_get_discard_pa_seq_sum(). This happens after making
370  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
371  */
372 static DEFINE_PER_CPU(u64, discard_pa_seq);
373 static inline u64 ext4_get_discard_pa_seq_sum(void)
374 {
375 	int __cpu;
376 	u64 __seq = 0;
377 
378 	for_each_possible_cpu(__cpu)
379 		__seq += per_cpu(discard_pa_seq, __cpu);
380 	return __seq;
381 }
382 
383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
384 {
385 #if BITS_PER_LONG == 64
386 	*bit += ((unsigned long) addr & 7UL) << 3;
387 	addr = (void *) ((unsigned long) addr & ~7UL);
388 #elif BITS_PER_LONG == 32
389 	*bit += ((unsigned long) addr & 3UL) << 3;
390 	addr = (void *) ((unsigned long) addr & ~3UL);
391 #else
392 #error "how many bits you are?!"
393 #endif
394 	return addr;
395 }
396 
397 static inline int mb_test_bit(int bit, void *addr)
398 {
399 	/*
400 	 * ext4_test_bit on architecture like powerpc
401 	 * needs unsigned long aligned address
402 	 */
403 	addr = mb_correct_addr_and_bit(&bit, addr);
404 	return ext4_test_bit(bit, addr);
405 }
406 
407 static inline void mb_set_bit(int bit, void *addr)
408 {
409 	addr = mb_correct_addr_and_bit(&bit, addr);
410 	ext4_set_bit(bit, addr);
411 }
412 
413 static inline void mb_clear_bit(int bit, void *addr)
414 {
415 	addr = mb_correct_addr_and_bit(&bit, addr);
416 	ext4_clear_bit(bit, addr);
417 }
418 
419 static inline int mb_test_and_clear_bit(int bit, void *addr)
420 {
421 	addr = mb_correct_addr_and_bit(&bit, addr);
422 	return ext4_test_and_clear_bit(bit, addr);
423 }
424 
425 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
426 {
427 	int fix = 0, ret, tmpmax;
428 	addr = mb_correct_addr_and_bit(&fix, addr);
429 	tmpmax = max + fix;
430 	start += fix;
431 
432 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
433 	if (ret > max)
434 		return max;
435 	return ret;
436 }
437 
438 static inline int mb_find_next_bit(void *addr, int max, int start)
439 {
440 	int fix = 0, ret, tmpmax;
441 	addr = mb_correct_addr_and_bit(&fix, addr);
442 	tmpmax = max + fix;
443 	start += fix;
444 
445 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
446 	if (ret > max)
447 		return max;
448 	return ret;
449 }
450 
451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
452 {
453 	char *bb;
454 
455 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
456 	BUG_ON(max == NULL);
457 
458 	if (order > e4b->bd_blkbits + 1) {
459 		*max = 0;
460 		return NULL;
461 	}
462 
463 	/* at order 0 we see each particular block */
464 	if (order == 0) {
465 		*max = 1 << (e4b->bd_blkbits + 3);
466 		return e4b->bd_bitmap;
467 	}
468 
469 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
470 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
471 
472 	return bb;
473 }
474 
475 #ifdef DOUBLE_CHECK
476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
477 			   int first, int count)
478 {
479 	int i;
480 	struct super_block *sb = e4b->bd_sb;
481 
482 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 		return;
484 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
485 	for (i = 0; i < count; i++) {
486 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
487 			ext4_fsblk_t blocknr;
488 
489 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
490 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
491 			ext4_grp_locked_error(sb, e4b->bd_group,
492 					      inode ? inode->i_ino : 0,
493 					      blocknr,
494 					      "freeing block already freed "
495 					      "(bit %u)",
496 					      first + i);
497 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
498 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
499 		}
500 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
505 {
506 	int i;
507 
508 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
509 		return;
510 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
511 	for (i = 0; i < count; i++) {
512 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
513 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
514 	}
515 }
516 
517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
518 {
519 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
520 		return;
521 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
522 		unsigned char *b1, *b2;
523 		int i;
524 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
525 		b2 = (unsigned char *) bitmap;
526 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
527 			if (b1[i] != b2[i]) {
528 				ext4_msg(e4b->bd_sb, KERN_ERR,
529 					 "corruption in group %u "
530 					 "at byte %u(%u): %x in copy != %x "
531 					 "on disk/prealloc",
532 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
533 				BUG();
534 			}
535 		}
536 	}
537 }
538 
539 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
540 			struct ext4_group_info *grp, ext4_group_t group)
541 {
542 	struct buffer_head *bh;
543 
544 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
545 	if (!grp->bb_bitmap)
546 		return;
547 
548 	bh = ext4_read_block_bitmap(sb, group);
549 	if (IS_ERR_OR_NULL(bh)) {
550 		kfree(grp->bb_bitmap);
551 		grp->bb_bitmap = NULL;
552 		return;
553 	}
554 
555 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
556 	put_bh(bh);
557 }
558 
559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
560 {
561 	kfree(grp->bb_bitmap);
562 }
563 
564 #else
565 static inline void mb_free_blocks_double(struct inode *inode,
566 				struct ext4_buddy *e4b, int first, int count)
567 {
568 	return;
569 }
570 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
571 						int first, int count)
572 {
573 	return;
574 }
575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
576 {
577 	return;
578 }
579 
580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
581 			struct ext4_group_info *grp, ext4_group_t group)
582 {
583 	return;
584 }
585 
586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
587 {
588 	return;
589 }
590 #endif
591 
592 #ifdef AGGRESSIVE_CHECK
593 
594 #define MB_CHECK_ASSERT(assert)						\
595 do {									\
596 	if (!(assert)) {						\
597 		printk(KERN_EMERG					\
598 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
599 			function, file, line, # assert);		\
600 		BUG();							\
601 	}								\
602 } while (0)
603 
604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
605 				const char *function, int line)
606 {
607 	struct super_block *sb = e4b->bd_sb;
608 	int order = e4b->bd_blkbits + 1;
609 	int max;
610 	int max2;
611 	int i;
612 	int j;
613 	int k;
614 	int count;
615 	struct ext4_group_info *grp;
616 	int fragments = 0;
617 	int fstart;
618 	struct list_head *cur;
619 	void *buddy;
620 	void *buddy2;
621 
622 	{
623 		static int mb_check_counter;
624 		if (mb_check_counter++ % 100 != 0)
625 			return 0;
626 	}
627 
628 	while (order > 1) {
629 		buddy = mb_find_buddy(e4b, order, &max);
630 		MB_CHECK_ASSERT(buddy);
631 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
632 		MB_CHECK_ASSERT(buddy2);
633 		MB_CHECK_ASSERT(buddy != buddy2);
634 		MB_CHECK_ASSERT(max * 2 == max2);
635 
636 		count = 0;
637 		for (i = 0; i < max; i++) {
638 
639 			if (mb_test_bit(i, buddy)) {
640 				/* only single bit in buddy2 may be 1 */
641 				if (!mb_test_bit(i << 1, buddy2)) {
642 					MB_CHECK_ASSERT(
643 						mb_test_bit((i<<1)+1, buddy2));
644 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
645 					MB_CHECK_ASSERT(
646 						mb_test_bit(i << 1, buddy2));
647 				}
648 				continue;
649 			}
650 
651 			/* both bits in buddy2 must be 1 */
652 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
653 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
654 
655 			for (j = 0; j < (1 << order); j++) {
656 				k = (i * (1 << order)) + j;
657 				MB_CHECK_ASSERT(
658 					!mb_test_bit(k, e4b->bd_bitmap));
659 			}
660 			count++;
661 		}
662 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
663 		order--;
664 	}
665 
666 	fstart = -1;
667 	buddy = mb_find_buddy(e4b, 0, &max);
668 	for (i = 0; i < max; i++) {
669 		if (!mb_test_bit(i, buddy)) {
670 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
671 			if (fstart == -1) {
672 				fragments++;
673 				fstart = i;
674 			}
675 			continue;
676 		}
677 		fstart = -1;
678 		/* check used bits only */
679 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
680 			buddy2 = mb_find_buddy(e4b, j, &max2);
681 			k = i >> j;
682 			MB_CHECK_ASSERT(k < max2);
683 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
684 		}
685 	}
686 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
687 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
688 
689 	grp = ext4_get_group_info(sb, e4b->bd_group);
690 	list_for_each(cur, &grp->bb_prealloc_list) {
691 		ext4_group_t groupnr;
692 		struct ext4_prealloc_space *pa;
693 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
694 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
695 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
696 		for (i = 0; i < pa->pa_len; i++)
697 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
698 	}
699 	return 0;
700 }
701 #undef MB_CHECK_ASSERT
702 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
703 					__FILE__, __func__, __LINE__)
704 #else
705 #define mb_check_buddy(e4b)
706 #endif
707 
708 /*
709  * Divide blocks started from @first with length @len into
710  * smaller chunks with power of 2 blocks.
711  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
712  * then increase bb_counters[] for corresponded chunk size.
713  */
714 static void ext4_mb_mark_free_simple(struct super_block *sb,
715 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
716 					struct ext4_group_info *grp)
717 {
718 	struct ext4_sb_info *sbi = EXT4_SB(sb);
719 	ext4_grpblk_t min;
720 	ext4_grpblk_t max;
721 	ext4_grpblk_t chunk;
722 	unsigned int border;
723 
724 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
725 
726 	border = 2 << sb->s_blocksize_bits;
727 
728 	while (len > 0) {
729 		/* find how many blocks can be covered since this position */
730 		max = ffs(first | border) - 1;
731 
732 		/* find how many blocks of power 2 we need to mark */
733 		min = fls(len) - 1;
734 
735 		if (max < min)
736 			min = max;
737 		chunk = 1 << min;
738 
739 		/* mark multiblock chunks only */
740 		grp->bb_counters[min]++;
741 		if (min > 0)
742 			mb_clear_bit(first >> min,
743 				     buddy + sbi->s_mb_offsets[min]);
744 
745 		len -= chunk;
746 		first += chunk;
747 	}
748 }
749 
750 /*
751  * Cache the order of the largest free extent we have available in this block
752  * group.
753  */
754 static void
755 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
756 {
757 	int i;
758 	int bits;
759 
760 	grp->bb_largest_free_order = -1; /* uninit */
761 
762 	bits = sb->s_blocksize_bits + 1;
763 	for (i = bits; i >= 0; i--) {
764 		if (grp->bb_counters[i] > 0) {
765 			grp->bb_largest_free_order = i;
766 			break;
767 		}
768 	}
769 }
770 
771 static noinline_for_stack
772 void ext4_mb_generate_buddy(struct super_block *sb,
773 				void *buddy, void *bitmap, ext4_group_t group)
774 {
775 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
776 	struct ext4_sb_info *sbi = EXT4_SB(sb);
777 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
778 	ext4_grpblk_t i = 0;
779 	ext4_grpblk_t first;
780 	ext4_grpblk_t len;
781 	unsigned free = 0;
782 	unsigned fragments = 0;
783 	unsigned long long period = get_cycles();
784 
785 	/* initialize buddy from bitmap which is aggregation
786 	 * of on-disk bitmap and preallocations */
787 	i = mb_find_next_zero_bit(bitmap, max, 0);
788 	grp->bb_first_free = i;
789 	while (i < max) {
790 		fragments++;
791 		first = i;
792 		i = mb_find_next_bit(bitmap, max, i);
793 		len = i - first;
794 		free += len;
795 		if (len > 1)
796 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
797 		else
798 			grp->bb_counters[0]++;
799 		if (i < max)
800 			i = mb_find_next_zero_bit(bitmap, max, i);
801 	}
802 	grp->bb_fragments = fragments;
803 
804 	if (free != grp->bb_free) {
805 		ext4_grp_locked_error(sb, group, 0, 0,
806 				      "block bitmap and bg descriptor "
807 				      "inconsistent: %u vs %u free clusters",
808 				      free, grp->bb_free);
809 		/*
810 		 * If we intend to continue, we consider group descriptor
811 		 * corrupt and update bb_free using bitmap value
812 		 */
813 		grp->bb_free = free;
814 		ext4_mark_group_bitmap_corrupted(sb, group,
815 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
816 	}
817 	mb_set_largest_free_order(sb, grp);
818 
819 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
820 
821 	period = get_cycles() - period;
822 	spin_lock(&sbi->s_bal_lock);
823 	sbi->s_mb_buddies_generated++;
824 	sbi->s_mb_generation_time += period;
825 	spin_unlock(&sbi->s_bal_lock);
826 }
827 
828 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
829 {
830 	int count;
831 	int order = 1;
832 	void *buddy;
833 
834 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
835 		ext4_set_bits(buddy, 0, count);
836 	}
837 	e4b->bd_info->bb_fragments = 0;
838 	memset(e4b->bd_info->bb_counters, 0,
839 		sizeof(*e4b->bd_info->bb_counters) *
840 		(e4b->bd_sb->s_blocksize_bits + 2));
841 
842 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
843 		e4b->bd_bitmap, e4b->bd_group);
844 }
845 
846 /* The buddy information is attached the buddy cache inode
847  * for convenience. The information regarding each group
848  * is loaded via ext4_mb_load_buddy. The information involve
849  * block bitmap and buddy information. The information are
850  * stored in the inode as
851  *
852  * {                        page                        }
853  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
854  *
855  *
856  * one block each for bitmap and buddy information.
857  * So for each group we take up 2 blocks. A page can
858  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
859  * So it can have information regarding groups_per_page which
860  * is blocks_per_page/2
861  *
862  * Locking note:  This routine takes the block group lock of all groups
863  * for this page; do not hold this lock when calling this routine!
864  */
865 
866 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
867 {
868 	ext4_group_t ngroups;
869 	int blocksize;
870 	int blocks_per_page;
871 	int groups_per_page;
872 	int err = 0;
873 	int i;
874 	ext4_group_t first_group, group;
875 	int first_block;
876 	struct super_block *sb;
877 	struct buffer_head *bhs;
878 	struct buffer_head **bh = NULL;
879 	struct inode *inode;
880 	char *data;
881 	char *bitmap;
882 	struct ext4_group_info *grinfo;
883 
884 	inode = page->mapping->host;
885 	sb = inode->i_sb;
886 	ngroups = ext4_get_groups_count(sb);
887 	blocksize = i_blocksize(inode);
888 	blocks_per_page = PAGE_SIZE / blocksize;
889 
890 	mb_debug(sb, "init page %lu\n", page->index);
891 
892 	groups_per_page = blocks_per_page >> 1;
893 	if (groups_per_page == 0)
894 		groups_per_page = 1;
895 
896 	/* allocate buffer_heads to read bitmaps */
897 	if (groups_per_page > 1) {
898 		i = sizeof(struct buffer_head *) * groups_per_page;
899 		bh = kzalloc(i, gfp);
900 		if (bh == NULL) {
901 			err = -ENOMEM;
902 			goto out;
903 		}
904 	} else
905 		bh = &bhs;
906 
907 	first_group = page->index * blocks_per_page / 2;
908 
909 	/* read all groups the page covers into the cache */
910 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
911 		if (group >= ngroups)
912 			break;
913 
914 		grinfo = ext4_get_group_info(sb, group);
915 		/*
916 		 * If page is uptodate then we came here after online resize
917 		 * which added some new uninitialized group info structs, so
918 		 * we must skip all initialized uptodate buddies on the page,
919 		 * which may be currently in use by an allocating task.
920 		 */
921 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
922 			bh[i] = NULL;
923 			continue;
924 		}
925 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
926 		if (IS_ERR(bh[i])) {
927 			err = PTR_ERR(bh[i]);
928 			bh[i] = NULL;
929 			goto out;
930 		}
931 		mb_debug(sb, "read bitmap for group %u\n", group);
932 	}
933 
934 	/* wait for I/O completion */
935 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
936 		int err2;
937 
938 		if (!bh[i])
939 			continue;
940 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
941 		if (!err)
942 			err = err2;
943 	}
944 
945 	first_block = page->index * blocks_per_page;
946 	for (i = 0; i < blocks_per_page; i++) {
947 		group = (first_block + i) >> 1;
948 		if (group >= ngroups)
949 			break;
950 
951 		if (!bh[group - first_group])
952 			/* skip initialized uptodate buddy */
953 			continue;
954 
955 		if (!buffer_verified(bh[group - first_group]))
956 			/* Skip faulty bitmaps */
957 			continue;
958 		err = 0;
959 
960 		/*
961 		 * data carry information regarding this
962 		 * particular group in the format specified
963 		 * above
964 		 *
965 		 */
966 		data = page_address(page) + (i * blocksize);
967 		bitmap = bh[group - first_group]->b_data;
968 
969 		/*
970 		 * We place the buddy block and bitmap block
971 		 * close together
972 		 */
973 		if ((first_block + i) & 1) {
974 			/* this is block of buddy */
975 			BUG_ON(incore == NULL);
976 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
977 				group, page->index, i * blocksize);
978 			trace_ext4_mb_buddy_bitmap_load(sb, group);
979 			grinfo = ext4_get_group_info(sb, group);
980 			grinfo->bb_fragments = 0;
981 			memset(grinfo->bb_counters, 0,
982 			       sizeof(*grinfo->bb_counters) *
983 				(sb->s_blocksize_bits+2));
984 			/*
985 			 * incore got set to the group block bitmap below
986 			 */
987 			ext4_lock_group(sb, group);
988 			/* init the buddy */
989 			memset(data, 0xff, blocksize);
990 			ext4_mb_generate_buddy(sb, data, incore, group);
991 			ext4_unlock_group(sb, group);
992 			incore = NULL;
993 		} else {
994 			/* this is block of bitmap */
995 			BUG_ON(incore != NULL);
996 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
997 				group, page->index, i * blocksize);
998 			trace_ext4_mb_bitmap_load(sb, group);
999 
1000 			/* see comments in ext4_mb_put_pa() */
1001 			ext4_lock_group(sb, group);
1002 			memcpy(data, bitmap, blocksize);
1003 
1004 			/* mark all preallocated blks used in in-core bitmap */
1005 			ext4_mb_generate_from_pa(sb, data, group);
1006 			ext4_mb_generate_from_freelist(sb, data, group);
1007 			ext4_unlock_group(sb, group);
1008 
1009 			/* set incore so that the buddy information can be
1010 			 * generated using this
1011 			 */
1012 			incore = data;
1013 		}
1014 	}
1015 	SetPageUptodate(page);
1016 
1017 out:
1018 	if (bh) {
1019 		for (i = 0; i < groups_per_page; i++)
1020 			brelse(bh[i]);
1021 		if (bh != &bhs)
1022 			kfree(bh);
1023 	}
1024 	return err;
1025 }
1026 
1027 /*
1028  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1029  * on the same buddy page doesn't happen whild holding the buddy page lock.
1030  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1031  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1032  */
1033 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1034 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1035 {
1036 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1037 	int block, pnum, poff;
1038 	int blocks_per_page;
1039 	struct page *page;
1040 
1041 	e4b->bd_buddy_page = NULL;
1042 	e4b->bd_bitmap_page = NULL;
1043 
1044 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1045 	/*
1046 	 * the buddy cache inode stores the block bitmap
1047 	 * and buddy information in consecutive blocks.
1048 	 * So for each group we need two blocks.
1049 	 */
1050 	block = group * 2;
1051 	pnum = block / blocks_per_page;
1052 	poff = block % blocks_per_page;
1053 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1054 	if (!page)
1055 		return -ENOMEM;
1056 	BUG_ON(page->mapping != inode->i_mapping);
1057 	e4b->bd_bitmap_page = page;
1058 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1059 
1060 	if (blocks_per_page >= 2) {
1061 		/* buddy and bitmap are on the same page */
1062 		return 0;
1063 	}
1064 
1065 	block++;
1066 	pnum = block / blocks_per_page;
1067 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1068 	if (!page)
1069 		return -ENOMEM;
1070 	BUG_ON(page->mapping != inode->i_mapping);
1071 	e4b->bd_buddy_page = page;
1072 	return 0;
1073 }
1074 
1075 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1076 {
1077 	if (e4b->bd_bitmap_page) {
1078 		unlock_page(e4b->bd_bitmap_page);
1079 		put_page(e4b->bd_bitmap_page);
1080 	}
1081 	if (e4b->bd_buddy_page) {
1082 		unlock_page(e4b->bd_buddy_page);
1083 		put_page(e4b->bd_buddy_page);
1084 	}
1085 }
1086 
1087 /*
1088  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1089  * block group lock of all groups for this page; do not hold the BG lock when
1090  * calling this routine!
1091  */
1092 static noinline_for_stack
1093 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1094 {
1095 
1096 	struct ext4_group_info *this_grp;
1097 	struct ext4_buddy e4b;
1098 	struct page *page;
1099 	int ret = 0;
1100 
1101 	might_sleep();
1102 	mb_debug(sb, "init group %u\n", group);
1103 	this_grp = ext4_get_group_info(sb, group);
1104 	/*
1105 	 * This ensures that we don't reinit the buddy cache
1106 	 * page which map to the group from which we are already
1107 	 * allocating. If we are looking at the buddy cache we would
1108 	 * have taken a reference using ext4_mb_load_buddy and that
1109 	 * would have pinned buddy page to page cache.
1110 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1111 	 * page accessed.
1112 	 */
1113 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1114 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1115 		/*
1116 		 * somebody initialized the group
1117 		 * return without doing anything
1118 		 */
1119 		goto err;
1120 	}
1121 
1122 	page = e4b.bd_bitmap_page;
1123 	ret = ext4_mb_init_cache(page, NULL, gfp);
1124 	if (ret)
1125 		goto err;
1126 	if (!PageUptodate(page)) {
1127 		ret = -EIO;
1128 		goto err;
1129 	}
1130 
1131 	if (e4b.bd_buddy_page == NULL) {
1132 		/*
1133 		 * If both the bitmap and buddy are in
1134 		 * the same page we don't need to force
1135 		 * init the buddy
1136 		 */
1137 		ret = 0;
1138 		goto err;
1139 	}
1140 	/* init buddy cache */
1141 	page = e4b.bd_buddy_page;
1142 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1143 	if (ret)
1144 		goto err;
1145 	if (!PageUptodate(page)) {
1146 		ret = -EIO;
1147 		goto err;
1148 	}
1149 err:
1150 	ext4_mb_put_buddy_page_lock(&e4b);
1151 	return ret;
1152 }
1153 
1154 /*
1155  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1156  * block group lock of all groups for this page; do not hold the BG lock when
1157  * calling this routine!
1158  */
1159 static noinline_for_stack int
1160 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1161 		       struct ext4_buddy *e4b, gfp_t gfp)
1162 {
1163 	int blocks_per_page;
1164 	int block;
1165 	int pnum;
1166 	int poff;
1167 	struct page *page;
1168 	int ret;
1169 	struct ext4_group_info *grp;
1170 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1171 	struct inode *inode = sbi->s_buddy_cache;
1172 
1173 	might_sleep();
1174 	mb_debug(sb, "load group %u\n", group);
1175 
1176 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1177 	grp = ext4_get_group_info(sb, group);
1178 
1179 	e4b->bd_blkbits = sb->s_blocksize_bits;
1180 	e4b->bd_info = grp;
1181 	e4b->bd_sb = sb;
1182 	e4b->bd_group = group;
1183 	e4b->bd_buddy_page = NULL;
1184 	e4b->bd_bitmap_page = NULL;
1185 
1186 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1187 		/*
1188 		 * we need full data about the group
1189 		 * to make a good selection
1190 		 */
1191 		ret = ext4_mb_init_group(sb, group, gfp);
1192 		if (ret)
1193 			return ret;
1194 	}
1195 
1196 	/*
1197 	 * the buddy cache inode stores the block bitmap
1198 	 * and buddy information in consecutive blocks.
1199 	 * So for each group we need two blocks.
1200 	 */
1201 	block = group * 2;
1202 	pnum = block / blocks_per_page;
1203 	poff = block % blocks_per_page;
1204 
1205 	/* we could use find_or_create_page(), but it locks page
1206 	 * what we'd like to avoid in fast path ... */
1207 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1208 	if (page == NULL || !PageUptodate(page)) {
1209 		if (page)
1210 			/*
1211 			 * drop the page reference and try
1212 			 * to get the page with lock. If we
1213 			 * are not uptodate that implies
1214 			 * somebody just created the page but
1215 			 * is yet to initialize the same. So
1216 			 * wait for it to initialize.
1217 			 */
1218 			put_page(page);
1219 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1220 		if (page) {
1221 			BUG_ON(page->mapping != inode->i_mapping);
1222 			if (!PageUptodate(page)) {
1223 				ret = ext4_mb_init_cache(page, NULL, gfp);
1224 				if (ret) {
1225 					unlock_page(page);
1226 					goto err;
1227 				}
1228 				mb_cmp_bitmaps(e4b, page_address(page) +
1229 					       (poff * sb->s_blocksize));
1230 			}
1231 			unlock_page(page);
1232 		}
1233 	}
1234 	if (page == NULL) {
1235 		ret = -ENOMEM;
1236 		goto err;
1237 	}
1238 	if (!PageUptodate(page)) {
1239 		ret = -EIO;
1240 		goto err;
1241 	}
1242 
1243 	/* Pages marked accessed already */
1244 	e4b->bd_bitmap_page = page;
1245 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1246 
1247 	block++;
1248 	pnum = block / blocks_per_page;
1249 	poff = block % blocks_per_page;
1250 
1251 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1252 	if (page == NULL || !PageUptodate(page)) {
1253 		if (page)
1254 			put_page(page);
1255 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1256 		if (page) {
1257 			BUG_ON(page->mapping != inode->i_mapping);
1258 			if (!PageUptodate(page)) {
1259 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1260 							 gfp);
1261 				if (ret) {
1262 					unlock_page(page);
1263 					goto err;
1264 				}
1265 			}
1266 			unlock_page(page);
1267 		}
1268 	}
1269 	if (page == NULL) {
1270 		ret = -ENOMEM;
1271 		goto err;
1272 	}
1273 	if (!PageUptodate(page)) {
1274 		ret = -EIO;
1275 		goto err;
1276 	}
1277 
1278 	/* Pages marked accessed already */
1279 	e4b->bd_buddy_page = page;
1280 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1281 
1282 	return 0;
1283 
1284 err:
1285 	if (page)
1286 		put_page(page);
1287 	if (e4b->bd_bitmap_page)
1288 		put_page(e4b->bd_bitmap_page);
1289 	if (e4b->bd_buddy_page)
1290 		put_page(e4b->bd_buddy_page);
1291 	e4b->bd_buddy = NULL;
1292 	e4b->bd_bitmap = NULL;
1293 	return ret;
1294 }
1295 
1296 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1297 			      struct ext4_buddy *e4b)
1298 {
1299 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1300 }
1301 
1302 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1303 {
1304 	if (e4b->bd_bitmap_page)
1305 		put_page(e4b->bd_bitmap_page);
1306 	if (e4b->bd_buddy_page)
1307 		put_page(e4b->bd_buddy_page);
1308 }
1309 
1310 
1311 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1312 {
1313 	int order = 1;
1314 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1315 	void *bb;
1316 
1317 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1318 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1319 
1320 	bb = e4b->bd_buddy;
1321 	while (order <= e4b->bd_blkbits + 1) {
1322 		block = block >> 1;
1323 		if (!mb_test_bit(block, bb)) {
1324 			/* this block is part of buddy of order 'order' */
1325 			return order;
1326 		}
1327 		bb += bb_incr;
1328 		bb_incr >>= 1;
1329 		order++;
1330 	}
1331 	return 0;
1332 }
1333 
1334 static void mb_clear_bits(void *bm, int cur, int len)
1335 {
1336 	__u32 *addr;
1337 
1338 	len = cur + len;
1339 	while (cur < len) {
1340 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1341 			/* fast path: clear whole word at once */
1342 			addr = bm + (cur >> 3);
1343 			*addr = 0;
1344 			cur += 32;
1345 			continue;
1346 		}
1347 		mb_clear_bit(cur, bm);
1348 		cur++;
1349 	}
1350 }
1351 
1352 /* clear bits in given range
1353  * will return first found zero bit if any, -1 otherwise
1354  */
1355 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1356 {
1357 	__u32 *addr;
1358 	int zero_bit = -1;
1359 
1360 	len = cur + len;
1361 	while (cur < len) {
1362 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1363 			/* fast path: clear whole word at once */
1364 			addr = bm + (cur >> 3);
1365 			if (*addr != (__u32)(-1) && zero_bit == -1)
1366 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1367 			*addr = 0;
1368 			cur += 32;
1369 			continue;
1370 		}
1371 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1372 			zero_bit = cur;
1373 		cur++;
1374 	}
1375 
1376 	return zero_bit;
1377 }
1378 
1379 void ext4_set_bits(void *bm, int cur, int len)
1380 {
1381 	__u32 *addr;
1382 
1383 	len = cur + len;
1384 	while (cur < len) {
1385 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1386 			/* fast path: set whole word at once */
1387 			addr = bm + (cur >> 3);
1388 			*addr = 0xffffffff;
1389 			cur += 32;
1390 			continue;
1391 		}
1392 		mb_set_bit(cur, bm);
1393 		cur++;
1394 	}
1395 }
1396 
1397 /*
1398  * _________________________________________________________________ */
1399 
1400 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1401 {
1402 	if (mb_test_bit(*bit + side, bitmap)) {
1403 		mb_clear_bit(*bit, bitmap);
1404 		(*bit) -= side;
1405 		return 1;
1406 	}
1407 	else {
1408 		(*bit) += side;
1409 		mb_set_bit(*bit, bitmap);
1410 		return -1;
1411 	}
1412 }
1413 
1414 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1415 {
1416 	int max;
1417 	int order = 1;
1418 	void *buddy = mb_find_buddy(e4b, order, &max);
1419 
1420 	while (buddy) {
1421 		void *buddy2;
1422 
1423 		/* Bits in range [first; last] are known to be set since
1424 		 * corresponding blocks were allocated. Bits in range
1425 		 * (first; last) will stay set because they form buddies on
1426 		 * upper layer. We just deal with borders if they don't
1427 		 * align with upper layer and then go up.
1428 		 * Releasing entire group is all about clearing
1429 		 * single bit of highest order buddy.
1430 		 */
1431 
1432 		/* Example:
1433 		 * ---------------------------------
1434 		 * |   1   |   1   |   1   |   1   |
1435 		 * ---------------------------------
1436 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1437 		 * ---------------------------------
1438 		 *   0   1   2   3   4   5   6   7
1439 		 *      \_____________________/
1440 		 *
1441 		 * Neither [1] nor [6] is aligned to above layer.
1442 		 * Left neighbour [0] is free, so mark it busy,
1443 		 * decrease bb_counters and extend range to
1444 		 * [0; 6]
1445 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1446 		 * mark [6] free, increase bb_counters and shrink range to
1447 		 * [0; 5].
1448 		 * Then shift range to [0; 2], go up and do the same.
1449 		 */
1450 
1451 
1452 		if (first & 1)
1453 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1454 		if (!(last & 1))
1455 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1456 		if (first > last)
1457 			break;
1458 		order++;
1459 
1460 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1461 			mb_clear_bits(buddy, first, last - first + 1);
1462 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1463 			break;
1464 		}
1465 		first >>= 1;
1466 		last >>= 1;
1467 		buddy = buddy2;
1468 	}
1469 }
1470 
1471 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1472 			   int first, int count)
1473 {
1474 	int left_is_free = 0;
1475 	int right_is_free = 0;
1476 	int block;
1477 	int last = first + count - 1;
1478 	struct super_block *sb = e4b->bd_sb;
1479 
1480 	if (WARN_ON(count == 0))
1481 		return;
1482 	BUG_ON(last >= (sb->s_blocksize << 3));
1483 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1484 	/* Don't bother if the block group is corrupt. */
1485 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1486 		return;
1487 
1488 	mb_check_buddy(e4b);
1489 	mb_free_blocks_double(inode, e4b, first, count);
1490 
1491 	this_cpu_inc(discard_pa_seq);
1492 	e4b->bd_info->bb_free += count;
1493 	if (first < e4b->bd_info->bb_first_free)
1494 		e4b->bd_info->bb_first_free = first;
1495 
1496 	/* access memory sequentially: check left neighbour,
1497 	 * clear range and then check right neighbour
1498 	 */
1499 	if (first != 0)
1500 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1501 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1502 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1503 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1504 
1505 	if (unlikely(block != -1)) {
1506 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1507 		ext4_fsblk_t blocknr;
1508 
1509 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1510 		blocknr += EXT4_C2B(sbi, block);
1511 		ext4_grp_locked_error(sb, e4b->bd_group,
1512 				      inode ? inode->i_ino : 0,
1513 				      blocknr,
1514 				      "freeing already freed block "
1515 				      "(bit %u); block bitmap corrupt.",
1516 				      block);
1517 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1518 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1519 		mb_regenerate_buddy(e4b);
1520 		goto done;
1521 	}
1522 
1523 	/* let's maintain fragments counter */
1524 	if (left_is_free && right_is_free)
1525 		e4b->bd_info->bb_fragments--;
1526 	else if (!left_is_free && !right_is_free)
1527 		e4b->bd_info->bb_fragments++;
1528 
1529 	/* buddy[0] == bd_bitmap is a special case, so handle
1530 	 * it right away and let mb_buddy_mark_free stay free of
1531 	 * zero order checks.
1532 	 * Check if neighbours are to be coaleasced,
1533 	 * adjust bitmap bb_counters and borders appropriately.
1534 	 */
1535 	if (first & 1) {
1536 		first += !left_is_free;
1537 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1538 	}
1539 	if (!(last & 1)) {
1540 		last -= !right_is_free;
1541 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1542 	}
1543 
1544 	if (first <= last)
1545 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1546 
1547 done:
1548 	mb_set_largest_free_order(sb, e4b->bd_info);
1549 	mb_check_buddy(e4b);
1550 }
1551 
1552 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1553 				int needed, struct ext4_free_extent *ex)
1554 {
1555 	int next = block;
1556 	int max, order;
1557 	void *buddy;
1558 
1559 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1560 	BUG_ON(ex == NULL);
1561 
1562 	buddy = mb_find_buddy(e4b, 0, &max);
1563 	BUG_ON(buddy == NULL);
1564 	BUG_ON(block >= max);
1565 	if (mb_test_bit(block, buddy)) {
1566 		ex->fe_len = 0;
1567 		ex->fe_start = 0;
1568 		ex->fe_group = 0;
1569 		return 0;
1570 	}
1571 
1572 	/* find actual order */
1573 	order = mb_find_order_for_block(e4b, block);
1574 	block = block >> order;
1575 
1576 	ex->fe_len = 1 << order;
1577 	ex->fe_start = block << order;
1578 	ex->fe_group = e4b->bd_group;
1579 
1580 	/* calc difference from given start */
1581 	next = next - ex->fe_start;
1582 	ex->fe_len -= next;
1583 	ex->fe_start += next;
1584 
1585 	while (needed > ex->fe_len &&
1586 	       mb_find_buddy(e4b, order, &max)) {
1587 
1588 		if (block + 1 >= max)
1589 			break;
1590 
1591 		next = (block + 1) * (1 << order);
1592 		if (mb_test_bit(next, e4b->bd_bitmap))
1593 			break;
1594 
1595 		order = mb_find_order_for_block(e4b, next);
1596 
1597 		block = next >> order;
1598 		ex->fe_len += 1 << order;
1599 	}
1600 
1601 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1602 		/* Should never happen! (but apparently sometimes does?!?) */
1603 		WARN_ON(1);
1604 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1605 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1606 			   block, order, needed, ex->fe_group, ex->fe_start,
1607 			   ex->fe_len, ex->fe_logical);
1608 		ex->fe_len = 0;
1609 		ex->fe_start = 0;
1610 		ex->fe_group = 0;
1611 	}
1612 	return ex->fe_len;
1613 }
1614 
1615 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1616 {
1617 	int ord;
1618 	int mlen = 0;
1619 	int max = 0;
1620 	int cur;
1621 	int start = ex->fe_start;
1622 	int len = ex->fe_len;
1623 	unsigned ret = 0;
1624 	int len0 = len;
1625 	void *buddy;
1626 
1627 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1628 	BUG_ON(e4b->bd_group != ex->fe_group);
1629 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1630 	mb_check_buddy(e4b);
1631 	mb_mark_used_double(e4b, start, len);
1632 
1633 	this_cpu_inc(discard_pa_seq);
1634 	e4b->bd_info->bb_free -= len;
1635 	if (e4b->bd_info->bb_first_free == start)
1636 		e4b->bd_info->bb_first_free += len;
1637 
1638 	/* let's maintain fragments counter */
1639 	if (start != 0)
1640 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1641 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1642 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1643 	if (mlen && max)
1644 		e4b->bd_info->bb_fragments++;
1645 	else if (!mlen && !max)
1646 		e4b->bd_info->bb_fragments--;
1647 
1648 	/* let's maintain buddy itself */
1649 	while (len) {
1650 		ord = mb_find_order_for_block(e4b, start);
1651 
1652 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1653 			/* the whole chunk may be allocated at once! */
1654 			mlen = 1 << ord;
1655 			buddy = mb_find_buddy(e4b, ord, &max);
1656 			BUG_ON((start >> ord) >= max);
1657 			mb_set_bit(start >> ord, buddy);
1658 			e4b->bd_info->bb_counters[ord]--;
1659 			start += mlen;
1660 			len -= mlen;
1661 			BUG_ON(len < 0);
1662 			continue;
1663 		}
1664 
1665 		/* store for history */
1666 		if (ret == 0)
1667 			ret = len | (ord << 16);
1668 
1669 		/* we have to split large buddy */
1670 		BUG_ON(ord <= 0);
1671 		buddy = mb_find_buddy(e4b, ord, &max);
1672 		mb_set_bit(start >> ord, buddy);
1673 		e4b->bd_info->bb_counters[ord]--;
1674 
1675 		ord--;
1676 		cur = (start >> ord) & ~1U;
1677 		buddy = mb_find_buddy(e4b, ord, &max);
1678 		mb_clear_bit(cur, buddy);
1679 		mb_clear_bit(cur + 1, buddy);
1680 		e4b->bd_info->bb_counters[ord]++;
1681 		e4b->bd_info->bb_counters[ord]++;
1682 	}
1683 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1684 
1685 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1686 	mb_check_buddy(e4b);
1687 
1688 	return ret;
1689 }
1690 
1691 /*
1692  * Must be called under group lock!
1693  */
1694 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1695 					struct ext4_buddy *e4b)
1696 {
1697 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1698 	int ret;
1699 
1700 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1701 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1702 
1703 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1704 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1705 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1706 
1707 	/* preallocation can change ac_b_ex, thus we store actually
1708 	 * allocated blocks for history */
1709 	ac->ac_f_ex = ac->ac_b_ex;
1710 
1711 	ac->ac_status = AC_STATUS_FOUND;
1712 	ac->ac_tail = ret & 0xffff;
1713 	ac->ac_buddy = ret >> 16;
1714 
1715 	/*
1716 	 * take the page reference. We want the page to be pinned
1717 	 * so that we don't get a ext4_mb_init_cache_call for this
1718 	 * group until we update the bitmap. That would mean we
1719 	 * double allocate blocks. The reference is dropped
1720 	 * in ext4_mb_release_context
1721 	 */
1722 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1723 	get_page(ac->ac_bitmap_page);
1724 	ac->ac_buddy_page = e4b->bd_buddy_page;
1725 	get_page(ac->ac_buddy_page);
1726 	/* store last allocated for subsequent stream allocation */
1727 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1728 		spin_lock(&sbi->s_md_lock);
1729 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1730 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1731 		spin_unlock(&sbi->s_md_lock);
1732 	}
1733 	/*
1734 	 * As we've just preallocated more space than
1735 	 * user requested originally, we store allocated
1736 	 * space in a special descriptor.
1737 	 */
1738 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
1739 		ext4_mb_new_preallocation(ac);
1740 
1741 }
1742 
1743 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1744 					struct ext4_buddy *e4b,
1745 					int finish_group)
1746 {
1747 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1748 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1749 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1750 	struct ext4_free_extent ex;
1751 	int max;
1752 
1753 	if (ac->ac_status == AC_STATUS_FOUND)
1754 		return;
1755 	/*
1756 	 * We don't want to scan for a whole year
1757 	 */
1758 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1759 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1760 		ac->ac_status = AC_STATUS_BREAK;
1761 		return;
1762 	}
1763 
1764 	/*
1765 	 * Haven't found good chunk so far, let's continue
1766 	 */
1767 	if (bex->fe_len < gex->fe_len)
1768 		return;
1769 
1770 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1771 			&& bex->fe_group == e4b->bd_group) {
1772 		/* recheck chunk's availability - we don't know
1773 		 * when it was found (within this lock-unlock
1774 		 * period or not) */
1775 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1776 		if (max >= gex->fe_len) {
1777 			ext4_mb_use_best_found(ac, e4b);
1778 			return;
1779 		}
1780 	}
1781 }
1782 
1783 /*
1784  * The routine checks whether found extent is good enough. If it is,
1785  * then the extent gets marked used and flag is set to the context
1786  * to stop scanning. Otherwise, the extent is compared with the
1787  * previous found extent and if new one is better, then it's stored
1788  * in the context. Later, the best found extent will be used, if
1789  * mballoc can't find good enough extent.
1790  *
1791  * FIXME: real allocation policy is to be designed yet!
1792  */
1793 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1794 					struct ext4_free_extent *ex,
1795 					struct ext4_buddy *e4b)
1796 {
1797 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1798 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1799 
1800 	BUG_ON(ex->fe_len <= 0);
1801 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1802 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1803 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1804 
1805 	ac->ac_found++;
1806 
1807 	/*
1808 	 * The special case - take what you catch first
1809 	 */
1810 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1811 		*bex = *ex;
1812 		ext4_mb_use_best_found(ac, e4b);
1813 		return;
1814 	}
1815 
1816 	/*
1817 	 * Let's check whether the chuck is good enough
1818 	 */
1819 	if (ex->fe_len == gex->fe_len) {
1820 		*bex = *ex;
1821 		ext4_mb_use_best_found(ac, e4b);
1822 		return;
1823 	}
1824 
1825 	/*
1826 	 * If this is first found extent, just store it in the context
1827 	 */
1828 	if (bex->fe_len == 0) {
1829 		*bex = *ex;
1830 		return;
1831 	}
1832 
1833 	/*
1834 	 * If new found extent is better, store it in the context
1835 	 */
1836 	if (bex->fe_len < gex->fe_len) {
1837 		/* if the request isn't satisfied, any found extent
1838 		 * larger than previous best one is better */
1839 		if (ex->fe_len > bex->fe_len)
1840 			*bex = *ex;
1841 	} else if (ex->fe_len > gex->fe_len) {
1842 		/* if the request is satisfied, then we try to find
1843 		 * an extent that still satisfy the request, but is
1844 		 * smaller than previous one */
1845 		if (ex->fe_len < bex->fe_len)
1846 			*bex = *ex;
1847 	}
1848 
1849 	ext4_mb_check_limits(ac, e4b, 0);
1850 }
1851 
1852 static noinline_for_stack
1853 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1854 					struct ext4_buddy *e4b)
1855 {
1856 	struct ext4_free_extent ex = ac->ac_b_ex;
1857 	ext4_group_t group = ex.fe_group;
1858 	int max;
1859 	int err;
1860 
1861 	BUG_ON(ex.fe_len <= 0);
1862 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1863 	if (err)
1864 		return err;
1865 
1866 	ext4_lock_group(ac->ac_sb, group);
1867 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1868 
1869 	if (max > 0) {
1870 		ac->ac_b_ex = ex;
1871 		ext4_mb_use_best_found(ac, e4b);
1872 	}
1873 
1874 	ext4_unlock_group(ac->ac_sb, group);
1875 	ext4_mb_unload_buddy(e4b);
1876 
1877 	return 0;
1878 }
1879 
1880 static noinline_for_stack
1881 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1882 				struct ext4_buddy *e4b)
1883 {
1884 	ext4_group_t group = ac->ac_g_ex.fe_group;
1885 	int max;
1886 	int err;
1887 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1888 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1889 	struct ext4_free_extent ex;
1890 
1891 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1892 		return 0;
1893 	if (grp->bb_free == 0)
1894 		return 0;
1895 
1896 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1897 	if (err)
1898 		return err;
1899 
1900 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1901 		ext4_mb_unload_buddy(e4b);
1902 		return 0;
1903 	}
1904 
1905 	ext4_lock_group(ac->ac_sb, group);
1906 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1907 			     ac->ac_g_ex.fe_len, &ex);
1908 	ex.fe_logical = 0xDEADFA11; /* debug value */
1909 
1910 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1911 		ext4_fsblk_t start;
1912 
1913 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1914 			ex.fe_start;
1915 		/* use do_div to get remainder (would be 64-bit modulo) */
1916 		if (do_div(start, sbi->s_stripe) == 0) {
1917 			ac->ac_found++;
1918 			ac->ac_b_ex = ex;
1919 			ext4_mb_use_best_found(ac, e4b);
1920 		}
1921 	} else if (max >= ac->ac_g_ex.fe_len) {
1922 		BUG_ON(ex.fe_len <= 0);
1923 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1924 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1925 		ac->ac_found++;
1926 		ac->ac_b_ex = ex;
1927 		ext4_mb_use_best_found(ac, e4b);
1928 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1929 		/* Sometimes, caller may want to merge even small
1930 		 * number of blocks to an existing extent */
1931 		BUG_ON(ex.fe_len <= 0);
1932 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1933 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1934 		ac->ac_found++;
1935 		ac->ac_b_ex = ex;
1936 		ext4_mb_use_best_found(ac, e4b);
1937 	}
1938 	ext4_unlock_group(ac->ac_sb, group);
1939 	ext4_mb_unload_buddy(e4b);
1940 
1941 	return 0;
1942 }
1943 
1944 /*
1945  * The routine scans buddy structures (not bitmap!) from given order
1946  * to max order and tries to find big enough chunk to satisfy the req
1947  */
1948 static noinline_for_stack
1949 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1950 					struct ext4_buddy *e4b)
1951 {
1952 	struct super_block *sb = ac->ac_sb;
1953 	struct ext4_group_info *grp = e4b->bd_info;
1954 	void *buddy;
1955 	int i;
1956 	int k;
1957 	int max;
1958 
1959 	BUG_ON(ac->ac_2order <= 0);
1960 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1961 		if (grp->bb_counters[i] == 0)
1962 			continue;
1963 
1964 		buddy = mb_find_buddy(e4b, i, &max);
1965 		BUG_ON(buddy == NULL);
1966 
1967 		k = mb_find_next_zero_bit(buddy, max, 0);
1968 		if (k >= max) {
1969 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1970 				"%d free clusters of order %d. But found 0",
1971 				grp->bb_counters[i], i);
1972 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1973 					 e4b->bd_group,
1974 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1975 			break;
1976 		}
1977 		ac->ac_found++;
1978 
1979 		ac->ac_b_ex.fe_len = 1 << i;
1980 		ac->ac_b_ex.fe_start = k << i;
1981 		ac->ac_b_ex.fe_group = e4b->bd_group;
1982 
1983 		ext4_mb_use_best_found(ac, e4b);
1984 
1985 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
1986 
1987 		if (EXT4_SB(sb)->s_mb_stats)
1988 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1989 
1990 		break;
1991 	}
1992 }
1993 
1994 /*
1995  * The routine scans the group and measures all found extents.
1996  * In order to optimize scanning, caller must pass number of
1997  * free blocks in the group, so the routine can know upper limit.
1998  */
1999 static noinline_for_stack
2000 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2001 					struct ext4_buddy *e4b)
2002 {
2003 	struct super_block *sb = ac->ac_sb;
2004 	void *bitmap = e4b->bd_bitmap;
2005 	struct ext4_free_extent ex;
2006 	int i;
2007 	int free;
2008 
2009 	free = e4b->bd_info->bb_free;
2010 	if (WARN_ON(free <= 0))
2011 		return;
2012 
2013 	i = e4b->bd_info->bb_first_free;
2014 
2015 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2016 		i = mb_find_next_zero_bit(bitmap,
2017 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2018 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2019 			/*
2020 			 * IF we have corrupt bitmap, we won't find any
2021 			 * free blocks even though group info says we
2022 			 * we have free blocks
2023 			 */
2024 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2025 					"%d free clusters as per "
2026 					"group info. But bitmap says 0",
2027 					free);
2028 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2029 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2030 			break;
2031 		}
2032 
2033 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2034 		if (WARN_ON(ex.fe_len <= 0))
2035 			break;
2036 		if (free < ex.fe_len) {
2037 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2038 					"%d free clusters as per "
2039 					"group info. But got %d blocks",
2040 					free, ex.fe_len);
2041 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2042 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2043 			/*
2044 			 * The number of free blocks differs. This mostly
2045 			 * indicate that the bitmap is corrupt. So exit
2046 			 * without claiming the space.
2047 			 */
2048 			break;
2049 		}
2050 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2051 		ext4_mb_measure_extent(ac, &ex, e4b);
2052 
2053 		i += ex.fe_len;
2054 		free -= ex.fe_len;
2055 	}
2056 
2057 	ext4_mb_check_limits(ac, e4b, 1);
2058 }
2059 
2060 /*
2061  * This is a special case for storages like raid5
2062  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2063  */
2064 static noinline_for_stack
2065 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2066 				 struct ext4_buddy *e4b)
2067 {
2068 	struct super_block *sb = ac->ac_sb;
2069 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2070 	void *bitmap = e4b->bd_bitmap;
2071 	struct ext4_free_extent ex;
2072 	ext4_fsblk_t first_group_block;
2073 	ext4_fsblk_t a;
2074 	ext4_grpblk_t i;
2075 	int max;
2076 
2077 	BUG_ON(sbi->s_stripe == 0);
2078 
2079 	/* find first stripe-aligned block in group */
2080 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2081 
2082 	a = first_group_block + sbi->s_stripe - 1;
2083 	do_div(a, sbi->s_stripe);
2084 	i = (a * sbi->s_stripe) - first_group_block;
2085 
2086 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2087 		if (!mb_test_bit(i, bitmap)) {
2088 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2089 			if (max >= sbi->s_stripe) {
2090 				ac->ac_found++;
2091 				ex.fe_logical = 0xDEADF00D; /* debug value */
2092 				ac->ac_b_ex = ex;
2093 				ext4_mb_use_best_found(ac, e4b);
2094 				break;
2095 			}
2096 		}
2097 		i += sbi->s_stripe;
2098 	}
2099 }
2100 
2101 /*
2102  * This is also called BEFORE we load the buddy bitmap.
2103  * Returns either 1 or 0 indicating that the group is either suitable
2104  * for the allocation or not.
2105  */
2106 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2107 				ext4_group_t group, int cr)
2108 {
2109 	ext4_grpblk_t free, fragments;
2110 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2111 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2112 
2113 	BUG_ON(cr < 0 || cr >= 4);
2114 
2115 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2116 		return false;
2117 
2118 	free = grp->bb_free;
2119 	if (free == 0)
2120 		return false;
2121 
2122 	fragments = grp->bb_fragments;
2123 	if (fragments == 0)
2124 		return false;
2125 
2126 	switch (cr) {
2127 	case 0:
2128 		BUG_ON(ac->ac_2order == 0);
2129 
2130 		/* Avoid using the first bg of a flexgroup for data files */
2131 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2132 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2133 		    ((group % flex_size) == 0))
2134 			return false;
2135 
2136 		if (free < ac->ac_g_ex.fe_len)
2137 			return false;
2138 
2139 		if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1)
2140 			return true;
2141 
2142 		if (grp->bb_largest_free_order < ac->ac_2order)
2143 			return false;
2144 
2145 		return true;
2146 	case 1:
2147 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2148 			return true;
2149 		break;
2150 	case 2:
2151 		if (free >= ac->ac_g_ex.fe_len)
2152 			return true;
2153 		break;
2154 	case 3:
2155 		return true;
2156 	default:
2157 		BUG();
2158 	}
2159 
2160 	return false;
2161 }
2162 
2163 /*
2164  * This could return negative error code if something goes wrong
2165  * during ext4_mb_init_group(). This should not be called with
2166  * ext4_lock_group() held.
2167  */
2168 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2169 				     ext4_group_t group, int cr)
2170 {
2171 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2172 	struct super_block *sb = ac->ac_sb;
2173 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2174 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2175 	ext4_grpblk_t free;
2176 	int ret = 0;
2177 
2178 	if (should_lock)
2179 		ext4_lock_group(sb, group);
2180 	free = grp->bb_free;
2181 	if (free == 0)
2182 		goto out;
2183 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2184 		goto out;
2185 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2186 		goto out;
2187 	if (should_lock)
2188 		ext4_unlock_group(sb, group);
2189 
2190 	/* We only do this if the grp has never been initialized */
2191 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2192 		struct ext4_group_desc *gdp =
2193 			ext4_get_group_desc(sb, group, NULL);
2194 		int ret;
2195 
2196 		/* cr=0/1 is a very optimistic search to find large
2197 		 * good chunks almost for free.  If buddy data is not
2198 		 * ready, then this optimization makes no sense.  But
2199 		 * we never skip the first block group in a flex_bg,
2200 		 * since this gets used for metadata block allocation,
2201 		 * and we want to make sure we locate metadata blocks
2202 		 * in the first block group in the flex_bg if possible.
2203 		 */
2204 		if (cr < 2 &&
2205 		    (!sbi->s_log_groups_per_flex ||
2206 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2207 		    !(ext4_has_group_desc_csum(sb) &&
2208 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2209 			return 0;
2210 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2211 		if (ret)
2212 			return ret;
2213 	}
2214 
2215 	if (should_lock)
2216 		ext4_lock_group(sb, group);
2217 	ret = ext4_mb_good_group(ac, group, cr);
2218 out:
2219 	if (should_lock)
2220 		ext4_unlock_group(sb, group);
2221 	return ret;
2222 }
2223 
2224 /*
2225  * Start prefetching @nr block bitmaps starting at @group.
2226  * Return the next group which needs to be prefetched.
2227  */
2228 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2229 			      unsigned int nr, int *cnt)
2230 {
2231 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2232 	struct buffer_head *bh;
2233 	struct blk_plug plug;
2234 
2235 	blk_start_plug(&plug);
2236 	while (nr-- > 0) {
2237 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2238 								  NULL);
2239 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2240 
2241 		/*
2242 		 * Prefetch block groups with free blocks; but don't
2243 		 * bother if it is marked uninitialized on disk, since
2244 		 * it won't require I/O to read.  Also only try to
2245 		 * prefetch once, so we avoid getblk() call, which can
2246 		 * be expensive.
2247 		 */
2248 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2249 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2250 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2251 		    !(ext4_has_group_desc_csum(sb) &&
2252 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2253 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2254 			if (bh && !IS_ERR(bh)) {
2255 				if (!buffer_uptodate(bh) && cnt)
2256 					(*cnt)++;
2257 				brelse(bh);
2258 			}
2259 		}
2260 		if (++group >= ngroups)
2261 			group = 0;
2262 	}
2263 	blk_finish_plug(&plug);
2264 	return group;
2265 }
2266 
2267 /*
2268  * Prefetching reads the block bitmap into the buffer cache; but we
2269  * need to make sure that the buddy bitmap in the page cache has been
2270  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2271  * is not yet completed, or indeed if it was not initiated by
2272  * ext4_mb_prefetch did not start the I/O.
2273  *
2274  * TODO: We should actually kick off the buddy bitmap setup in a work
2275  * queue when the buffer I/O is completed, so that we don't block
2276  * waiting for the block allocation bitmap read to finish when
2277  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2278  */
2279 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2280 			   unsigned int nr)
2281 {
2282 	while (nr-- > 0) {
2283 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2284 								  NULL);
2285 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2286 
2287 		if (!group)
2288 			group = ext4_get_groups_count(sb);
2289 		group--;
2290 		grp = ext4_get_group_info(sb, group);
2291 
2292 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
2293 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2294 		    !(ext4_has_group_desc_csum(sb) &&
2295 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2296 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2297 				break;
2298 		}
2299 	}
2300 }
2301 
2302 static noinline_for_stack int
2303 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2304 {
2305 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2306 	int cr = -1;
2307 	int err = 0, first_err = 0;
2308 	unsigned int nr = 0, prefetch_ios = 0;
2309 	struct ext4_sb_info *sbi;
2310 	struct super_block *sb;
2311 	struct ext4_buddy e4b;
2312 	int lost;
2313 
2314 	sb = ac->ac_sb;
2315 	sbi = EXT4_SB(sb);
2316 	ngroups = ext4_get_groups_count(sb);
2317 	/* non-extent files are limited to low blocks/groups */
2318 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2319 		ngroups = sbi->s_blockfile_groups;
2320 
2321 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2322 
2323 	/* first, try the goal */
2324 	err = ext4_mb_find_by_goal(ac, &e4b);
2325 	if (err || ac->ac_status == AC_STATUS_FOUND)
2326 		goto out;
2327 
2328 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2329 		goto out;
2330 
2331 	/*
2332 	 * ac->ac_2order is set only if the fe_len is a power of 2
2333 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2334 	 * try exact allocation using buddy.
2335 	 */
2336 	i = fls(ac->ac_g_ex.fe_len);
2337 	ac->ac_2order = 0;
2338 	/*
2339 	 * We search using buddy data only if the order of the request
2340 	 * is greater than equal to the sbi_s_mb_order2_reqs
2341 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2342 	 * We also support searching for power-of-two requests only for
2343 	 * requests upto maximum buddy size we have constructed.
2344 	 */
2345 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2346 		/*
2347 		 * This should tell if fe_len is exactly power of 2
2348 		 */
2349 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2350 			ac->ac_2order = array_index_nospec(i - 1,
2351 							   sb->s_blocksize_bits + 2);
2352 	}
2353 
2354 	/* if stream allocation is enabled, use global goal */
2355 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2356 		/* TBD: may be hot point */
2357 		spin_lock(&sbi->s_md_lock);
2358 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2359 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2360 		spin_unlock(&sbi->s_md_lock);
2361 	}
2362 
2363 	/* Let's just scan groups to find more-less suitable blocks */
2364 	cr = ac->ac_2order ? 0 : 1;
2365 	/*
2366 	 * cr == 0 try to get exact allocation,
2367 	 * cr == 3  try to get anything
2368 	 */
2369 repeat:
2370 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2371 		ac->ac_criteria = cr;
2372 		/*
2373 		 * searching for the right group start
2374 		 * from the goal value specified
2375 		 */
2376 		group = ac->ac_g_ex.fe_group;
2377 		prefetch_grp = group;
2378 
2379 		for (i = 0; i < ngroups; group++, i++) {
2380 			int ret = 0;
2381 			cond_resched();
2382 			/*
2383 			 * Artificially restricted ngroups for non-extent
2384 			 * files makes group > ngroups possible on first loop.
2385 			 */
2386 			if (group >= ngroups)
2387 				group = 0;
2388 
2389 			/*
2390 			 * Batch reads of the block allocation bitmaps
2391 			 * to get multiple READs in flight; limit
2392 			 * prefetching at cr=0/1, otherwise mballoc can
2393 			 * spend a lot of time loading imperfect groups
2394 			 */
2395 			if ((prefetch_grp == group) &&
2396 			    (cr > 1 ||
2397 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2398 				unsigned int curr_ios = prefetch_ios;
2399 
2400 				nr = sbi->s_mb_prefetch;
2401 				if (ext4_has_feature_flex_bg(sb)) {
2402 					nr = (group / sbi->s_mb_prefetch) *
2403 						sbi->s_mb_prefetch;
2404 					nr = nr + sbi->s_mb_prefetch - group;
2405 				}
2406 				prefetch_grp = ext4_mb_prefetch(sb, group,
2407 							nr, &prefetch_ios);
2408 				if (prefetch_ios == curr_ios)
2409 					nr = 0;
2410 			}
2411 
2412 			/* This now checks without needing the buddy page */
2413 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2414 			if (ret <= 0) {
2415 				if (!first_err)
2416 					first_err = ret;
2417 				continue;
2418 			}
2419 
2420 			err = ext4_mb_load_buddy(sb, group, &e4b);
2421 			if (err)
2422 				goto out;
2423 
2424 			ext4_lock_group(sb, group);
2425 
2426 			/*
2427 			 * We need to check again after locking the
2428 			 * block group
2429 			 */
2430 			ret = ext4_mb_good_group(ac, group, cr);
2431 			if (ret == 0) {
2432 				ext4_unlock_group(sb, group);
2433 				ext4_mb_unload_buddy(&e4b);
2434 				continue;
2435 			}
2436 
2437 			ac->ac_groups_scanned++;
2438 			if (cr == 0)
2439 				ext4_mb_simple_scan_group(ac, &e4b);
2440 			else if (cr == 1 && sbi->s_stripe &&
2441 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2442 				ext4_mb_scan_aligned(ac, &e4b);
2443 			else
2444 				ext4_mb_complex_scan_group(ac, &e4b);
2445 
2446 			ext4_unlock_group(sb, group);
2447 			ext4_mb_unload_buddy(&e4b);
2448 
2449 			if (ac->ac_status != AC_STATUS_CONTINUE)
2450 				break;
2451 		}
2452 	}
2453 
2454 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2455 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2456 		/*
2457 		 * We've been searching too long. Let's try to allocate
2458 		 * the best chunk we've found so far
2459 		 */
2460 		ext4_mb_try_best_found(ac, &e4b);
2461 		if (ac->ac_status != AC_STATUS_FOUND) {
2462 			/*
2463 			 * Someone more lucky has already allocated it.
2464 			 * The only thing we can do is just take first
2465 			 * found block(s)
2466 			 */
2467 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2468 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2469 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2470 				 ac->ac_b_ex.fe_len, lost);
2471 
2472 			ac->ac_b_ex.fe_group = 0;
2473 			ac->ac_b_ex.fe_start = 0;
2474 			ac->ac_b_ex.fe_len = 0;
2475 			ac->ac_status = AC_STATUS_CONTINUE;
2476 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2477 			cr = 3;
2478 			goto repeat;
2479 		}
2480 	}
2481 out:
2482 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2483 		err = first_err;
2484 
2485 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2486 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2487 		 ac->ac_flags, cr, err);
2488 
2489 	if (nr)
2490 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2491 
2492 	return err;
2493 }
2494 
2495 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2496 {
2497 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2498 	ext4_group_t group;
2499 
2500 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2501 		return NULL;
2502 	group = *pos + 1;
2503 	return (void *) ((unsigned long) group);
2504 }
2505 
2506 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2507 {
2508 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2509 	ext4_group_t group;
2510 
2511 	++*pos;
2512 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2513 		return NULL;
2514 	group = *pos + 1;
2515 	return (void *) ((unsigned long) group);
2516 }
2517 
2518 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2519 {
2520 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2521 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2522 	int i;
2523 	int err, buddy_loaded = 0;
2524 	struct ext4_buddy e4b;
2525 	struct ext4_group_info *grinfo;
2526 	unsigned char blocksize_bits = min_t(unsigned char,
2527 					     sb->s_blocksize_bits,
2528 					     EXT4_MAX_BLOCK_LOG_SIZE);
2529 	struct sg {
2530 		struct ext4_group_info info;
2531 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2532 	} sg;
2533 
2534 	group--;
2535 	if (group == 0)
2536 		seq_puts(seq, "#group: free  frags first ["
2537 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2538 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2539 
2540 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2541 		sizeof(struct ext4_group_info);
2542 
2543 	grinfo = ext4_get_group_info(sb, group);
2544 	/* Load the group info in memory only if not already loaded. */
2545 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2546 		err = ext4_mb_load_buddy(sb, group, &e4b);
2547 		if (err) {
2548 			seq_printf(seq, "#%-5u: I/O error\n", group);
2549 			return 0;
2550 		}
2551 		buddy_loaded = 1;
2552 	}
2553 
2554 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2555 
2556 	if (buddy_loaded)
2557 		ext4_mb_unload_buddy(&e4b);
2558 
2559 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2560 			sg.info.bb_fragments, sg.info.bb_first_free);
2561 	for (i = 0; i <= 13; i++)
2562 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2563 				sg.info.bb_counters[i] : 0);
2564 	seq_puts(seq, " ]\n");
2565 
2566 	return 0;
2567 }
2568 
2569 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2570 {
2571 }
2572 
2573 const struct seq_operations ext4_mb_seq_groups_ops = {
2574 	.start  = ext4_mb_seq_groups_start,
2575 	.next   = ext4_mb_seq_groups_next,
2576 	.stop   = ext4_mb_seq_groups_stop,
2577 	.show   = ext4_mb_seq_groups_show,
2578 };
2579 
2580 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2581 {
2582 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2583 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2584 
2585 	BUG_ON(!cachep);
2586 	return cachep;
2587 }
2588 
2589 /*
2590  * Allocate the top-level s_group_info array for the specified number
2591  * of groups
2592  */
2593 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2594 {
2595 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2596 	unsigned size;
2597 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2598 
2599 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2600 		EXT4_DESC_PER_BLOCK_BITS(sb);
2601 	if (size <= sbi->s_group_info_size)
2602 		return 0;
2603 
2604 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2605 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2606 	if (!new_groupinfo) {
2607 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2608 		return -ENOMEM;
2609 	}
2610 	rcu_read_lock();
2611 	old_groupinfo = rcu_dereference(sbi->s_group_info);
2612 	if (old_groupinfo)
2613 		memcpy(new_groupinfo, old_groupinfo,
2614 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2615 	rcu_read_unlock();
2616 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2617 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2618 	if (old_groupinfo)
2619 		ext4_kvfree_array_rcu(old_groupinfo);
2620 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2621 		   sbi->s_group_info_size);
2622 	return 0;
2623 }
2624 
2625 /* Create and initialize ext4_group_info data for the given group. */
2626 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2627 			  struct ext4_group_desc *desc)
2628 {
2629 	int i;
2630 	int metalen = 0;
2631 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2632 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2633 	struct ext4_group_info **meta_group_info;
2634 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2635 
2636 	/*
2637 	 * First check if this group is the first of a reserved block.
2638 	 * If it's true, we have to allocate a new table of pointers
2639 	 * to ext4_group_info structures
2640 	 */
2641 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2642 		metalen = sizeof(*meta_group_info) <<
2643 			EXT4_DESC_PER_BLOCK_BITS(sb);
2644 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2645 		if (meta_group_info == NULL) {
2646 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2647 				 "for a buddy group");
2648 			goto exit_meta_group_info;
2649 		}
2650 		rcu_read_lock();
2651 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2652 		rcu_read_unlock();
2653 	}
2654 
2655 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2656 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2657 
2658 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2659 	if (meta_group_info[i] == NULL) {
2660 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2661 		goto exit_group_info;
2662 	}
2663 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2664 		&(meta_group_info[i]->bb_state));
2665 
2666 	/*
2667 	 * initialize bb_free to be able to skip
2668 	 * empty groups without initialization
2669 	 */
2670 	if (ext4_has_group_desc_csum(sb) &&
2671 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2672 		meta_group_info[i]->bb_free =
2673 			ext4_free_clusters_after_init(sb, group, desc);
2674 	} else {
2675 		meta_group_info[i]->bb_free =
2676 			ext4_free_group_clusters(sb, desc);
2677 	}
2678 
2679 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2680 	init_rwsem(&meta_group_info[i]->alloc_sem);
2681 	meta_group_info[i]->bb_free_root = RB_ROOT;
2682 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2683 
2684 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
2685 	return 0;
2686 
2687 exit_group_info:
2688 	/* If a meta_group_info table has been allocated, release it now */
2689 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2690 		struct ext4_group_info ***group_info;
2691 
2692 		rcu_read_lock();
2693 		group_info = rcu_dereference(sbi->s_group_info);
2694 		kfree(group_info[idx]);
2695 		group_info[idx] = NULL;
2696 		rcu_read_unlock();
2697 	}
2698 exit_meta_group_info:
2699 	return -ENOMEM;
2700 } /* ext4_mb_add_groupinfo */
2701 
2702 static int ext4_mb_init_backend(struct super_block *sb)
2703 {
2704 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2705 	ext4_group_t i;
2706 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2707 	int err;
2708 	struct ext4_group_desc *desc;
2709 	struct ext4_group_info ***group_info;
2710 	struct kmem_cache *cachep;
2711 
2712 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2713 	if (err)
2714 		return err;
2715 
2716 	sbi->s_buddy_cache = new_inode(sb);
2717 	if (sbi->s_buddy_cache == NULL) {
2718 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2719 		goto err_freesgi;
2720 	}
2721 	/* To avoid potentially colliding with an valid on-disk inode number,
2722 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2723 	 * not in the inode hash, so it should never be found by iget(), but
2724 	 * this will avoid confusion if it ever shows up during debugging. */
2725 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2726 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2727 	for (i = 0; i < ngroups; i++) {
2728 		cond_resched();
2729 		desc = ext4_get_group_desc(sb, i, NULL);
2730 		if (desc == NULL) {
2731 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2732 			goto err_freebuddy;
2733 		}
2734 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2735 			goto err_freebuddy;
2736 	}
2737 
2738 	if (ext4_has_feature_flex_bg(sb)) {
2739 		/* a single flex group is supposed to be read by a single IO */
2740 		sbi->s_mb_prefetch = 1 << sbi->s_es->s_log_groups_per_flex;
2741 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
2742 	} else {
2743 		sbi->s_mb_prefetch = 32;
2744 	}
2745 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
2746 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
2747 	/* now many real IOs to prefetch within a single allocation at cr=0
2748 	 * given cr=0 is an CPU-related optimization we shouldn't try to
2749 	 * load too many groups, at some point we should start to use what
2750 	 * we've got in memory.
2751 	 * with an average random access time 5ms, it'd take a second to get
2752 	 * 200 groups (* N with flex_bg), so let's make this limit 4
2753 	 */
2754 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
2755 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
2756 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
2757 
2758 	return 0;
2759 
2760 err_freebuddy:
2761 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2762 	while (i-- > 0)
2763 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2764 	i = sbi->s_group_info_size;
2765 	rcu_read_lock();
2766 	group_info = rcu_dereference(sbi->s_group_info);
2767 	while (i-- > 0)
2768 		kfree(group_info[i]);
2769 	rcu_read_unlock();
2770 	iput(sbi->s_buddy_cache);
2771 err_freesgi:
2772 	rcu_read_lock();
2773 	kvfree(rcu_dereference(sbi->s_group_info));
2774 	rcu_read_unlock();
2775 	return -ENOMEM;
2776 }
2777 
2778 static void ext4_groupinfo_destroy_slabs(void)
2779 {
2780 	int i;
2781 
2782 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2783 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
2784 		ext4_groupinfo_caches[i] = NULL;
2785 	}
2786 }
2787 
2788 static int ext4_groupinfo_create_slab(size_t size)
2789 {
2790 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2791 	int slab_size;
2792 	int blocksize_bits = order_base_2(size);
2793 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2794 	struct kmem_cache *cachep;
2795 
2796 	if (cache_index >= NR_GRPINFO_CACHES)
2797 		return -EINVAL;
2798 
2799 	if (unlikely(cache_index < 0))
2800 		cache_index = 0;
2801 
2802 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2803 	if (ext4_groupinfo_caches[cache_index]) {
2804 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2805 		return 0;	/* Already created */
2806 	}
2807 
2808 	slab_size = offsetof(struct ext4_group_info,
2809 				bb_counters[blocksize_bits + 2]);
2810 
2811 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2812 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2813 					NULL);
2814 
2815 	ext4_groupinfo_caches[cache_index] = cachep;
2816 
2817 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2818 	if (!cachep) {
2819 		printk(KERN_EMERG
2820 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2821 		return -ENOMEM;
2822 	}
2823 
2824 	return 0;
2825 }
2826 
2827 int ext4_mb_init(struct super_block *sb)
2828 {
2829 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2830 	unsigned i, j;
2831 	unsigned offset, offset_incr;
2832 	unsigned max;
2833 	int ret;
2834 
2835 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2836 
2837 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2838 	if (sbi->s_mb_offsets == NULL) {
2839 		ret = -ENOMEM;
2840 		goto out;
2841 	}
2842 
2843 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2844 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2845 	if (sbi->s_mb_maxs == NULL) {
2846 		ret = -ENOMEM;
2847 		goto out;
2848 	}
2849 
2850 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2851 	if (ret < 0)
2852 		goto out;
2853 
2854 	/* order 0 is regular bitmap */
2855 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2856 	sbi->s_mb_offsets[0] = 0;
2857 
2858 	i = 1;
2859 	offset = 0;
2860 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2861 	max = sb->s_blocksize << 2;
2862 	do {
2863 		sbi->s_mb_offsets[i] = offset;
2864 		sbi->s_mb_maxs[i] = max;
2865 		offset += offset_incr;
2866 		offset_incr = offset_incr >> 1;
2867 		max = max >> 1;
2868 		i++;
2869 	} while (i <= sb->s_blocksize_bits + 1);
2870 
2871 	spin_lock_init(&sbi->s_md_lock);
2872 	spin_lock_init(&sbi->s_bal_lock);
2873 	sbi->s_mb_free_pending = 0;
2874 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2875 
2876 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2877 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2878 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2879 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2880 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2881 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
2882 	/*
2883 	 * The default group preallocation is 512, which for 4k block
2884 	 * sizes translates to 2 megabytes.  However for bigalloc file
2885 	 * systems, this is probably too big (i.e, if the cluster size
2886 	 * is 1 megabyte, then group preallocation size becomes half a
2887 	 * gigabyte!).  As a default, we will keep a two megabyte
2888 	 * group pralloc size for cluster sizes up to 64k, and after
2889 	 * that, we will force a minimum group preallocation size of
2890 	 * 32 clusters.  This translates to 8 megs when the cluster
2891 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2892 	 * which seems reasonable as a default.
2893 	 */
2894 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2895 				       sbi->s_cluster_bits, 32);
2896 	/*
2897 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2898 	 * to the lowest multiple of s_stripe which is bigger than
2899 	 * the s_mb_group_prealloc as determined above. We want
2900 	 * the preallocation size to be an exact multiple of the
2901 	 * RAID stripe size so that preallocations don't fragment
2902 	 * the stripes.
2903 	 */
2904 	if (sbi->s_stripe > 1) {
2905 		sbi->s_mb_group_prealloc = roundup(
2906 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2907 	}
2908 
2909 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2910 	if (sbi->s_locality_groups == NULL) {
2911 		ret = -ENOMEM;
2912 		goto out;
2913 	}
2914 	for_each_possible_cpu(i) {
2915 		struct ext4_locality_group *lg;
2916 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2917 		mutex_init(&lg->lg_mutex);
2918 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2919 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2920 		spin_lock_init(&lg->lg_prealloc_lock);
2921 	}
2922 
2923 	/* init file for buddy data */
2924 	ret = ext4_mb_init_backend(sb);
2925 	if (ret != 0)
2926 		goto out_free_locality_groups;
2927 
2928 	return 0;
2929 
2930 out_free_locality_groups:
2931 	free_percpu(sbi->s_locality_groups);
2932 	sbi->s_locality_groups = NULL;
2933 out:
2934 	kfree(sbi->s_mb_offsets);
2935 	sbi->s_mb_offsets = NULL;
2936 	kfree(sbi->s_mb_maxs);
2937 	sbi->s_mb_maxs = NULL;
2938 	return ret;
2939 }
2940 
2941 /* need to called with the ext4 group lock held */
2942 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2943 {
2944 	struct ext4_prealloc_space *pa;
2945 	struct list_head *cur, *tmp;
2946 	int count = 0;
2947 
2948 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2949 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2950 		list_del(&pa->pa_group_list);
2951 		count++;
2952 		kmem_cache_free(ext4_pspace_cachep, pa);
2953 	}
2954 	return count;
2955 }
2956 
2957 int ext4_mb_release(struct super_block *sb)
2958 {
2959 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2960 	ext4_group_t i;
2961 	int num_meta_group_infos;
2962 	struct ext4_group_info *grinfo, ***group_info;
2963 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2964 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2965 	int count;
2966 
2967 	if (sbi->s_group_info) {
2968 		for (i = 0; i < ngroups; i++) {
2969 			cond_resched();
2970 			grinfo = ext4_get_group_info(sb, i);
2971 			mb_group_bb_bitmap_free(grinfo);
2972 			ext4_lock_group(sb, i);
2973 			count = ext4_mb_cleanup_pa(grinfo);
2974 			if (count)
2975 				mb_debug(sb, "mballoc: %d PAs left\n",
2976 					 count);
2977 			ext4_unlock_group(sb, i);
2978 			kmem_cache_free(cachep, grinfo);
2979 		}
2980 		num_meta_group_infos = (ngroups +
2981 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2982 			EXT4_DESC_PER_BLOCK_BITS(sb);
2983 		rcu_read_lock();
2984 		group_info = rcu_dereference(sbi->s_group_info);
2985 		for (i = 0; i < num_meta_group_infos; i++)
2986 			kfree(group_info[i]);
2987 		kvfree(group_info);
2988 		rcu_read_unlock();
2989 	}
2990 	kfree(sbi->s_mb_offsets);
2991 	kfree(sbi->s_mb_maxs);
2992 	iput(sbi->s_buddy_cache);
2993 	if (sbi->s_mb_stats) {
2994 		ext4_msg(sb, KERN_INFO,
2995 		       "mballoc: %u blocks %u reqs (%u success)",
2996 				atomic_read(&sbi->s_bal_allocated),
2997 				atomic_read(&sbi->s_bal_reqs),
2998 				atomic_read(&sbi->s_bal_success));
2999 		ext4_msg(sb, KERN_INFO,
3000 		      "mballoc: %u extents scanned, %u goal hits, "
3001 				"%u 2^N hits, %u breaks, %u lost",
3002 				atomic_read(&sbi->s_bal_ex_scanned),
3003 				atomic_read(&sbi->s_bal_goals),
3004 				atomic_read(&sbi->s_bal_2orders),
3005 				atomic_read(&sbi->s_bal_breaks),
3006 				atomic_read(&sbi->s_mb_lost_chunks));
3007 		ext4_msg(sb, KERN_INFO,
3008 		       "mballoc: %lu generated and it took %Lu",
3009 				sbi->s_mb_buddies_generated,
3010 				sbi->s_mb_generation_time);
3011 		ext4_msg(sb, KERN_INFO,
3012 		       "mballoc: %u preallocated, %u discarded",
3013 				atomic_read(&sbi->s_mb_preallocated),
3014 				atomic_read(&sbi->s_mb_discarded));
3015 	}
3016 
3017 	free_percpu(sbi->s_locality_groups);
3018 
3019 	return 0;
3020 }
3021 
3022 static inline int ext4_issue_discard(struct super_block *sb,
3023 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3024 		struct bio **biop)
3025 {
3026 	ext4_fsblk_t discard_block;
3027 
3028 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3029 			 ext4_group_first_block_no(sb, block_group));
3030 	count = EXT4_C2B(EXT4_SB(sb), count);
3031 	trace_ext4_discard_blocks(sb,
3032 			(unsigned long long) discard_block, count);
3033 	if (biop) {
3034 		return __blkdev_issue_discard(sb->s_bdev,
3035 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3036 			(sector_t)count << (sb->s_blocksize_bits - 9),
3037 			GFP_NOFS, 0, biop);
3038 	} else
3039 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3040 }
3041 
3042 static void ext4_free_data_in_buddy(struct super_block *sb,
3043 				    struct ext4_free_data *entry)
3044 {
3045 	struct ext4_buddy e4b;
3046 	struct ext4_group_info *db;
3047 	int err, count = 0, count2 = 0;
3048 
3049 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3050 		 entry->efd_count, entry->efd_group, entry);
3051 
3052 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3053 	/* we expect to find existing buddy because it's pinned */
3054 	BUG_ON(err != 0);
3055 
3056 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3057 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3058 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3059 
3060 	db = e4b.bd_info;
3061 	/* there are blocks to put in buddy to make them really free */
3062 	count += entry->efd_count;
3063 	count2++;
3064 	ext4_lock_group(sb, entry->efd_group);
3065 	/* Take it out of per group rb tree */
3066 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3067 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3068 
3069 	/*
3070 	 * Clear the trimmed flag for the group so that the next
3071 	 * ext4_trim_fs can trim it.
3072 	 * If the volume is mounted with -o discard, online discard
3073 	 * is supported and the free blocks will be trimmed online.
3074 	 */
3075 	if (!test_opt(sb, DISCARD))
3076 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3077 
3078 	if (!db->bb_free_root.rb_node) {
3079 		/* No more items in the per group rb tree
3080 		 * balance refcounts from ext4_mb_free_metadata()
3081 		 */
3082 		put_page(e4b.bd_buddy_page);
3083 		put_page(e4b.bd_bitmap_page);
3084 	}
3085 	ext4_unlock_group(sb, entry->efd_group);
3086 	kmem_cache_free(ext4_free_data_cachep, entry);
3087 	ext4_mb_unload_buddy(&e4b);
3088 
3089 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
3090 		 count2);
3091 }
3092 
3093 /*
3094  * This function is called by the jbd2 layer once the commit has finished,
3095  * so we know we can free the blocks that were released with that commit.
3096  */
3097 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3098 {
3099 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3100 	struct ext4_free_data *entry, *tmp;
3101 	struct bio *discard_bio = NULL;
3102 	struct list_head freed_data_list;
3103 	struct list_head *cut_pos = NULL;
3104 	int err;
3105 
3106 	INIT_LIST_HEAD(&freed_data_list);
3107 
3108 	spin_lock(&sbi->s_md_lock);
3109 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3110 		if (entry->efd_tid != commit_tid)
3111 			break;
3112 		cut_pos = &entry->efd_list;
3113 	}
3114 	if (cut_pos)
3115 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3116 				  cut_pos);
3117 	spin_unlock(&sbi->s_md_lock);
3118 
3119 	if (test_opt(sb, DISCARD)) {
3120 		list_for_each_entry(entry, &freed_data_list, efd_list) {
3121 			err = ext4_issue_discard(sb, entry->efd_group,
3122 						 entry->efd_start_cluster,
3123 						 entry->efd_count,
3124 						 &discard_bio);
3125 			if (err && err != -EOPNOTSUPP) {
3126 				ext4_msg(sb, KERN_WARNING, "discard request in"
3127 					 " group:%d block:%d count:%d failed"
3128 					 " with %d", entry->efd_group,
3129 					 entry->efd_start_cluster,
3130 					 entry->efd_count, err);
3131 			} else if (err == -EOPNOTSUPP)
3132 				break;
3133 		}
3134 
3135 		if (discard_bio) {
3136 			submit_bio_wait(discard_bio);
3137 			bio_put(discard_bio);
3138 		}
3139 	}
3140 
3141 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3142 		ext4_free_data_in_buddy(sb, entry);
3143 }
3144 
3145 int __init ext4_init_mballoc(void)
3146 {
3147 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3148 					SLAB_RECLAIM_ACCOUNT);
3149 	if (ext4_pspace_cachep == NULL)
3150 		goto out;
3151 
3152 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3153 				    SLAB_RECLAIM_ACCOUNT);
3154 	if (ext4_ac_cachep == NULL)
3155 		goto out_pa_free;
3156 
3157 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3158 					   SLAB_RECLAIM_ACCOUNT);
3159 	if (ext4_free_data_cachep == NULL)
3160 		goto out_ac_free;
3161 
3162 	return 0;
3163 
3164 out_ac_free:
3165 	kmem_cache_destroy(ext4_ac_cachep);
3166 out_pa_free:
3167 	kmem_cache_destroy(ext4_pspace_cachep);
3168 out:
3169 	return -ENOMEM;
3170 }
3171 
3172 void ext4_exit_mballoc(void)
3173 {
3174 	/*
3175 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3176 	 * before destroying the slab cache.
3177 	 */
3178 	rcu_barrier();
3179 	kmem_cache_destroy(ext4_pspace_cachep);
3180 	kmem_cache_destroy(ext4_ac_cachep);
3181 	kmem_cache_destroy(ext4_free_data_cachep);
3182 	ext4_groupinfo_destroy_slabs();
3183 }
3184 
3185 
3186 /*
3187  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3188  * Returns 0 if success or error code
3189  */
3190 static noinline_for_stack int
3191 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3192 				handle_t *handle, unsigned int reserv_clstrs)
3193 {
3194 	struct buffer_head *bitmap_bh = NULL;
3195 	struct ext4_group_desc *gdp;
3196 	struct buffer_head *gdp_bh;
3197 	struct ext4_sb_info *sbi;
3198 	struct super_block *sb;
3199 	ext4_fsblk_t block;
3200 	int err, len;
3201 
3202 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3203 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3204 
3205 	sb = ac->ac_sb;
3206 	sbi = EXT4_SB(sb);
3207 
3208 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3209 	if (IS_ERR(bitmap_bh)) {
3210 		err = PTR_ERR(bitmap_bh);
3211 		bitmap_bh = NULL;
3212 		goto out_err;
3213 	}
3214 
3215 	BUFFER_TRACE(bitmap_bh, "getting write access");
3216 	err = ext4_journal_get_write_access(handle, bitmap_bh);
3217 	if (err)
3218 		goto out_err;
3219 
3220 	err = -EIO;
3221 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3222 	if (!gdp)
3223 		goto out_err;
3224 
3225 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3226 			ext4_free_group_clusters(sb, gdp));
3227 
3228 	BUFFER_TRACE(gdp_bh, "get_write_access");
3229 	err = ext4_journal_get_write_access(handle, gdp_bh);
3230 	if (err)
3231 		goto out_err;
3232 
3233 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3234 
3235 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3236 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3237 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3238 			   "fs metadata", block, block+len);
3239 		/* File system mounted not to panic on error
3240 		 * Fix the bitmap and return EFSCORRUPTED
3241 		 * We leak some of the blocks here.
3242 		 */
3243 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3244 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3245 			      ac->ac_b_ex.fe_len);
3246 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3247 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3248 		if (!err)
3249 			err = -EFSCORRUPTED;
3250 		goto out_err;
3251 	}
3252 
3253 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3254 #ifdef AGGRESSIVE_CHECK
3255 	{
3256 		int i;
3257 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3258 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3259 						bitmap_bh->b_data));
3260 		}
3261 	}
3262 #endif
3263 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3264 		      ac->ac_b_ex.fe_len);
3265 	if (ext4_has_group_desc_csum(sb) &&
3266 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3267 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3268 		ext4_free_group_clusters_set(sb, gdp,
3269 					     ext4_free_clusters_after_init(sb,
3270 						ac->ac_b_ex.fe_group, gdp));
3271 	}
3272 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3273 	ext4_free_group_clusters_set(sb, gdp, len);
3274 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3275 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3276 
3277 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3278 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3279 	/*
3280 	 * Now reduce the dirty block count also. Should not go negative
3281 	 */
3282 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3283 		/* release all the reserved blocks if non delalloc */
3284 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3285 				   reserv_clstrs);
3286 
3287 	if (sbi->s_log_groups_per_flex) {
3288 		ext4_group_t flex_group = ext4_flex_group(sbi,
3289 							  ac->ac_b_ex.fe_group);
3290 		atomic64_sub(ac->ac_b_ex.fe_len,
3291 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3292 						  flex_group)->free_clusters);
3293 	}
3294 
3295 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3296 	if (err)
3297 		goto out_err;
3298 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3299 
3300 out_err:
3301 	brelse(bitmap_bh);
3302 	return err;
3303 }
3304 
3305 /*
3306  * here we normalize request for locality group
3307  * Group request are normalized to s_mb_group_prealloc, which goes to
3308  * s_strip if we set the same via mount option.
3309  * s_mb_group_prealloc can be configured via
3310  * /sys/fs/ext4/<partition>/mb_group_prealloc
3311  *
3312  * XXX: should we try to preallocate more than the group has now?
3313  */
3314 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3315 {
3316 	struct super_block *sb = ac->ac_sb;
3317 	struct ext4_locality_group *lg = ac->ac_lg;
3318 
3319 	BUG_ON(lg == NULL);
3320 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3321 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3322 }
3323 
3324 /*
3325  * Normalization means making request better in terms of
3326  * size and alignment
3327  */
3328 static noinline_for_stack void
3329 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3330 				struct ext4_allocation_request *ar)
3331 {
3332 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3333 	int bsbits, max;
3334 	ext4_lblk_t end;
3335 	loff_t size, start_off;
3336 	loff_t orig_size __maybe_unused;
3337 	ext4_lblk_t start;
3338 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3339 	struct ext4_prealloc_space *pa;
3340 
3341 	/* do normalize only data requests, metadata requests
3342 	   do not need preallocation */
3343 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3344 		return;
3345 
3346 	/* sometime caller may want exact blocks */
3347 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3348 		return;
3349 
3350 	/* caller may indicate that preallocation isn't
3351 	 * required (it's a tail, for example) */
3352 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3353 		return;
3354 
3355 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3356 		ext4_mb_normalize_group_request(ac);
3357 		return ;
3358 	}
3359 
3360 	bsbits = ac->ac_sb->s_blocksize_bits;
3361 
3362 	/* first, let's learn actual file size
3363 	 * given current request is allocated */
3364 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3365 	size = size << bsbits;
3366 	if (size < i_size_read(ac->ac_inode))
3367 		size = i_size_read(ac->ac_inode);
3368 	orig_size = size;
3369 
3370 	/* max size of free chunks */
3371 	max = 2 << bsbits;
3372 
3373 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3374 		(req <= (size) || max <= (chunk_size))
3375 
3376 	/* first, try to predict filesize */
3377 	/* XXX: should this table be tunable? */
3378 	start_off = 0;
3379 	if (size <= 16 * 1024) {
3380 		size = 16 * 1024;
3381 	} else if (size <= 32 * 1024) {
3382 		size = 32 * 1024;
3383 	} else if (size <= 64 * 1024) {
3384 		size = 64 * 1024;
3385 	} else if (size <= 128 * 1024) {
3386 		size = 128 * 1024;
3387 	} else if (size <= 256 * 1024) {
3388 		size = 256 * 1024;
3389 	} else if (size <= 512 * 1024) {
3390 		size = 512 * 1024;
3391 	} else if (size <= 1024 * 1024) {
3392 		size = 1024 * 1024;
3393 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3394 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3395 						(21 - bsbits)) << 21;
3396 		size = 2 * 1024 * 1024;
3397 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3398 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3399 							(22 - bsbits)) << 22;
3400 		size = 4 * 1024 * 1024;
3401 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3402 					(8<<20)>>bsbits, max, 8 * 1024)) {
3403 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3404 							(23 - bsbits)) << 23;
3405 		size = 8 * 1024 * 1024;
3406 	} else {
3407 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3408 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3409 					      ac->ac_o_ex.fe_len) << bsbits;
3410 	}
3411 	size = size >> bsbits;
3412 	start = start_off >> bsbits;
3413 
3414 	/* don't cover already allocated blocks in selected range */
3415 	if (ar->pleft && start <= ar->lleft) {
3416 		size -= ar->lleft + 1 - start;
3417 		start = ar->lleft + 1;
3418 	}
3419 	if (ar->pright && start + size - 1 >= ar->lright)
3420 		size -= start + size - ar->lright;
3421 
3422 	/*
3423 	 * Trim allocation request for filesystems with artificially small
3424 	 * groups.
3425 	 */
3426 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3427 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3428 
3429 	end = start + size;
3430 
3431 	/* check we don't cross already preallocated blocks */
3432 	rcu_read_lock();
3433 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3434 		ext4_lblk_t pa_end;
3435 
3436 		if (pa->pa_deleted)
3437 			continue;
3438 		spin_lock(&pa->pa_lock);
3439 		if (pa->pa_deleted) {
3440 			spin_unlock(&pa->pa_lock);
3441 			continue;
3442 		}
3443 
3444 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3445 						  pa->pa_len);
3446 
3447 		/* PA must not overlap original request */
3448 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3449 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3450 
3451 		/* skip PAs this normalized request doesn't overlap with */
3452 		if (pa->pa_lstart >= end || pa_end <= start) {
3453 			spin_unlock(&pa->pa_lock);
3454 			continue;
3455 		}
3456 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3457 
3458 		/* adjust start or end to be adjacent to this pa */
3459 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3460 			BUG_ON(pa_end < start);
3461 			start = pa_end;
3462 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3463 			BUG_ON(pa->pa_lstart > end);
3464 			end = pa->pa_lstart;
3465 		}
3466 		spin_unlock(&pa->pa_lock);
3467 	}
3468 	rcu_read_unlock();
3469 	size = end - start;
3470 
3471 	/* XXX: extra loop to check we really don't overlap preallocations */
3472 	rcu_read_lock();
3473 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3474 		ext4_lblk_t pa_end;
3475 
3476 		spin_lock(&pa->pa_lock);
3477 		if (pa->pa_deleted == 0) {
3478 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3479 							  pa->pa_len);
3480 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3481 		}
3482 		spin_unlock(&pa->pa_lock);
3483 	}
3484 	rcu_read_unlock();
3485 
3486 	if (start + size <= ac->ac_o_ex.fe_logical &&
3487 			start > ac->ac_o_ex.fe_logical) {
3488 		ext4_msg(ac->ac_sb, KERN_ERR,
3489 			 "start %lu, size %lu, fe_logical %lu",
3490 			 (unsigned long) start, (unsigned long) size,
3491 			 (unsigned long) ac->ac_o_ex.fe_logical);
3492 		BUG();
3493 	}
3494 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3495 
3496 	/* now prepare goal request */
3497 
3498 	/* XXX: is it better to align blocks WRT to logical
3499 	 * placement or satisfy big request as is */
3500 	ac->ac_g_ex.fe_logical = start;
3501 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3502 
3503 	/* define goal start in order to merge */
3504 	if (ar->pright && (ar->lright == (start + size))) {
3505 		/* merge to the right */
3506 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3507 						&ac->ac_f_ex.fe_group,
3508 						&ac->ac_f_ex.fe_start);
3509 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3510 	}
3511 	if (ar->pleft && (ar->lleft + 1 == start)) {
3512 		/* merge to the left */
3513 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3514 						&ac->ac_f_ex.fe_group,
3515 						&ac->ac_f_ex.fe_start);
3516 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3517 	}
3518 
3519 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
3520 		 orig_size, start);
3521 }
3522 
3523 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3524 {
3525 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3526 
3527 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3528 		atomic_inc(&sbi->s_bal_reqs);
3529 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3530 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3531 			atomic_inc(&sbi->s_bal_success);
3532 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3533 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3534 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3535 			atomic_inc(&sbi->s_bal_goals);
3536 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3537 			atomic_inc(&sbi->s_bal_breaks);
3538 	}
3539 
3540 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3541 		trace_ext4_mballoc_alloc(ac);
3542 	else
3543 		trace_ext4_mballoc_prealloc(ac);
3544 }
3545 
3546 /*
3547  * Called on failure; free up any blocks from the inode PA for this
3548  * context.  We don't need this for MB_GROUP_PA because we only change
3549  * pa_free in ext4_mb_release_context(), but on failure, we've already
3550  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3551  */
3552 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3553 {
3554 	struct ext4_prealloc_space *pa = ac->ac_pa;
3555 	struct ext4_buddy e4b;
3556 	int err;
3557 
3558 	if (pa == NULL) {
3559 		if (ac->ac_f_ex.fe_len == 0)
3560 			return;
3561 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3562 		if (err) {
3563 			/*
3564 			 * This should never happen since we pin the
3565 			 * pages in the ext4_allocation_context so
3566 			 * ext4_mb_load_buddy() should never fail.
3567 			 */
3568 			WARN(1, "mb_load_buddy failed (%d)", err);
3569 			return;
3570 		}
3571 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3572 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3573 			       ac->ac_f_ex.fe_len);
3574 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3575 		ext4_mb_unload_buddy(&e4b);
3576 		return;
3577 	}
3578 	if (pa->pa_type == MB_INODE_PA)
3579 		pa->pa_free += ac->ac_b_ex.fe_len;
3580 }
3581 
3582 /*
3583  * use blocks preallocated to inode
3584  */
3585 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3586 				struct ext4_prealloc_space *pa)
3587 {
3588 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3589 	ext4_fsblk_t start;
3590 	ext4_fsblk_t end;
3591 	int len;
3592 
3593 	/* found preallocated blocks, use them */
3594 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3595 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3596 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3597 	len = EXT4_NUM_B2C(sbi, end - start);
3598 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3599 					&ac->ac_b_ex.fe_start);
3600 	ac->ac_b_ex.fe_len = len;
3601 	ac->ac_status = AC_STATUS_FOUND;
3602 	ac->ac_pa = pa;
3603 
3604 	BUG_ON(start < pa->pa_pstart);
3605 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3606 	BUG_ON(pa->pa_free < len);
3607 	pa->pa_free -= len;
3608 
3609 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
3610 }
3611 
3612 /*
3613  * use blocks preallocated to locality group
3614  */
3615 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3616 				struct ext4_prealloc_space *pa)
3617 {
3618 	unsigned int len = ac->ac_o_ex.fe_len;
3619 
3620 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3621 					&ac->ac_b_ex.fe_group,
3622 					&ac->ac_b_ex.fe_start);
3623 	ac->ac_b_ex.fe_len = len;
3624 	ac->ac_status = AC_STATUS_FOUND;
3625 	ac->ac_pa = pa;
3626 
3627 	/* we don't correct pa_pstart or pa_plen here to avoid
3628 	 * possible race when the group is being loaded concurrently
3629 	 * instead we correct pa later, after blocks are marked
3630 	 * in on-disk bitmap -- see ext4_mb_release_context()
3631 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3632 	 */
3633 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
3634 		 pa->pa_lstart-len, len, pa);
3635 }
3636 
3637 /*
3638  * Return the prealloc space that have minimal distance
3639  * from the goal block. @cpa is the prealloc
3640  * space that is having currently known minimal distance
3641  * from the goal block.
3642  */
3643 static struct ext4_prealloc_space *
3644 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3645 			struct ext4_prealloc_space *pa,
3646 			struct ext4_prealloc_space *cpa)
3647 {
3648 	ext4_fsblk_t cur_distance, new_distance;
3649 
3650 	if (cpa == NULL) {
3651 		atomic_inc(&pa->pa_count);
3652 		return pa;
3653 	}
3654 	cur_distance = abs(goal_block - cpa->pa_pstart);
3655 	new_distance = abs(goal_block - pa->pa_pstart);
3656 
3657 	if (cur_distance <= new_distance)
3658 		return cpa;
3659 
3660 	/* drop the previous reference */
3661 	atomic_dec(&cpa->pa_count);
3662 	atomic_inc(&pa->pa_count);
3663 	return pa;
3664 }
3665 
3666 /*
3667  * search goal blocks in preallocated space
3668  */
3669 static noinline_for_stack bool
3670 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3671 {
3672 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3673 	int order, i;
3674 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3675 	struct ext4_locality_group *lg;
3676 	struct ext4_prealloc_space *pa, *cpa = NULL;
3677 	ext4_fsblk_t goal_block;
3678 
3679 	/* only data can be preallocated */
3680 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3681 		return false;
3682 
3683 	/* first, try per-file preallocation */
3684 	rcu_read_lock();
3685 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3686 
3687 		/* all fields in this condition don't change,
3688 		 * so we can skip locking for them */
3689 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3690 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3691 					       EXT4_C2B(sbi, pa->pa_len)))
3692 			continue;
3693 
3694 		/* non-extent files can't have physical blocks past 2^32 */
3695 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3696 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3697 		     EXT4_MAX_BLOCK_FILE_PHYS))
3698 			continue;
3699 
3700 		/* found preallocated blocks, use them */
3701 		spin_lock(&pa->pa_lock);
3702 		if (pa->pa_deleted == 0 && pa->pa_free) {
3703 			atomic_inc(&pa->pa_count);
3704 			ext4_mb_use_inode_pa(ac, pa);
3705 			spin_unlock(&pa->pa_lock);
3706 			ac->ac_criteria = 10;
3707 			rcu_read_unlock();
3708 			return true;
3709 		}
3710 		spin_unlock(&pa->pa_lock);
3711 	}
3712 	rcu_read_unlock();
3713 
3714 	/* can we use group allocation? */
3715 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3716 		return false;
3717 
3718 	/* inode may have no locality group for some reason */
3719 	lg = ac->ac_lg;
3720 	if (lg == NULL)
3721 		return false;
3722 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3723 	if (order > PREALLOC_TB_SIZE - 1)
3724 		/* The max size of hash table is PREALLOC_TB_SIZE */
3725 		order = PREALLOC_TB_SIZE - 1;
3726 
3727 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3728 	/*
3729 	 * search for the prealloc space that is having
3730 	 * minimal distance from the goal block.
3731 	 */
3732 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3733 		rcu_read_lock();
3734 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3735 					pa_inode_list) {
3736 			spin_lock(&pa->pa_lock);
3737 			if (pa->pa_deleted == 0 &&
3738 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3739 
3740 				cpa = ext4_mb_check_group_pa(goal_block,
3741 								pa, cpa);
3742 			}
3743 			spin_unlock(&pa->pa_lock);
3744 		}
3745 		rcu_read_unlock();
3746 	}
3747 	if (cpa) {
3748 		ext4_mb_use_group_pa(ac, cpa);
3749 		ac->ac_criteria = 20;
3750 		return true;
3751 	}
3752 	return false;
3753 }
3754 
3755 /*
3756  * the function goes through all block freed in the group
3757  * but not yet committed and marks them used in in-core bitmap.
3758  * buddy must be generated from this bitmap
3759  * Need to be called with the ext4 group lock held
3760  */
3761 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3762 						ext4_group_t group)
3763 {
3764 	struct rb_node *n;
3765 	struct ext4_group_info *grp;
3766 	struct ext4_free_data *entry;
3767 
3768 	grp = ext4_get_group_info(sb, group);
3769 	n = rb_first(&(grp->bb_free_root));
3770 
3771 	while (n) {
3772 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3773 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3774 		n = rb_next(n);
3775 	}
3776 	return;
3777 }
3778 
3779 /*
3780  * the function goes through all preallocation in this group and marks them
3781  * used in in-core bitmap. buddy must be generated from this bitmap
3782  * Need to be called with ext4 group lock held
3783  */
3784 static noinline_for_stack
3785 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3786 					ext4_group_t group)
3787 {
3788 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3789 	struct ext4_prealloc_space *pa;
3790 	struct list_head *cur;
3791 	ext4_group_t groupnr;
3792 	ext4_grpblk_t start;
3793 	int preallocated = 0;
3794 	int len;
3795 
3796 	/* all form of preallocation discards first load group,
3797 	 * so the only competing code is preallocation use.
3798 	 * we don't need any locking here
3799 	 * notice we do NOT ignore preallocations with pa_deleted
3800 	 * otherwise we could leave used blocks available for
3801 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3802 	 * is dropping preallocation
3803 	 */
3804 	list_for_each(cur, &grp->bb_prealloc_list) {
3805 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3806 		spin_lock(&pa->pa_lock);
3807 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3808 					     &groupnr, &start);
3809 		len = pa->pa_len;
3810 		spin_unlock(&pa->pa_lock);
3811 		if (unlikely(len == 0))
3812 			continue;
3813 		BUG_ON(groupnr != group);
3814 		ext4_set_bits(bitmap, start, len);
3815 		preallocated += len;
3816 	}
3817 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
3818 }
3819 
3820 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
3821 				    struct ext4_prealloc_space *pa)
3822 {
3823 	struct ext4_inode_info *ei;
3824 
3825 	if (pa->pa_deleted) {
3826 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
3827 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
3828 			     pa->pa_len);
3829 		return;
3830 	}
3831 
3832 	pa->pa_deleted = 1;
3833 
3834 	if (pa->pa_type == MB_INODE_PA) {
3835 		ei = EXT4_I(pa->pa_inode);
3836 		atomic_dec(&ei->i_prealloc_active);
3837 	}
3838 }
3839 
3840 static void ext4_mb_pa_callback(struct rcu_head *head)
3841 {
3842 	struct ext4_prealloc_space *pa;
3843 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3844 
3845 	BUG_ON(atomic_read(&pa->pa_count));
3846 	BUG_ON(pa->pa_deleted == 0);
3847 	kmem_cache_free(ext4_pspace_cachep, pa);
3848 }
3849 
3850 /*
3851  * drops a reference to preallocated space descriptor
3852  * if this was the last reference and the space is consumed
3853  */
3854 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3855 			struct super_block *sb, struct ext4_prealloc_space *pa)
3856 {
3857 	ext4_group_t grp;
3858 	ext4_fsblk_t grp_blk;
3859 
3860 	/* in this short window concurrent discard can set pa_deleted */
3861 	spin_lock(&pa->pa_lock);
3862 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3863 		spin_unlock(&pa->pa_lock);
3864 		return;
3865 	}
3866 
3867 	if (pa->pa_deleted == 1) {
3868 		spin_unlock(&pa->pa_lock);
3869 		return;
3870 	}
3871 
3872 	ext4_mb_mark_pa_deleted(sb, pa);
3873 	spin_unlock(&pa->pa_lock);
3874 
3875 	grp_blk = pa->pa_pstart;
3876 	/*
3877 	 * If doing group-based preallocation, pa_pstart may be in the
3878 	 * next group when pa is used up
3879 	 */
3880 	if (pa->pa_type == MB_GROUP_PA)
3881 		grp_blk--;
3882 
3883 	grp = ext4_get_group_number(sb, grp_blk);
3884 
3885 	/*
3886 	 * possible race:
3887 	 *
3888 	 *  P1 (buddy init)			P2 (regular allocation)
3889 	 *					find block B in PA
3890 	 *  copy on-disk bitmap to buddy
3891 	 *  					mark B in on-disk bitmap
3892 	 *					drop PA from group
3893 	 *  mark all PAs in buddy
3894 	 *
3895 	 * thus, P1 initializes buddy with B available. to prevent this
3896 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3897 	 * against that pair
3898 	 */
3899 	ext4_lock_group(sb, grp);
3900 	list_del(&pa->pa_group_list);
3901 	ext4_unlock_group(sb, grp);
3902 
3903 	spin_lock(pa->pa_obj_lock);
3904 	list_del_rcu(&pa->pa_inode_list);
3905 	spin_unlock(pa->pa_obj_lock);
3906 
3907 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3908 }
3909 
3910 /*
3911  * creates new preallocated space for given inode
3912  */
3913 static noinline_for_stack void
3914 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3915 {
3916 	struct super_block *sb = ac->ac_sb;
3917 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3918 	struct ext4_prealloc_space *pa;
3919 	struct ext4_group_info *grp;
3920 	struct ext4_inode_info *ei;
3921 
3922 	/* preallocate only when found space is larger then requested */
3923 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3924 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3925 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3926 	BUG_ON(ac->ac_pa == NULL);
3927 
3928 	pa = ac->ac_pa;
3929 
3930 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3931 		int winl;
3932 		int wins;
3933 		int win;
3934 		int offs;
3935 
3936 		/* we can't allocate as much as normalizer wants.
3937 		 * so, found space must get proper lstart
3938 		 * to cover original request */
3939 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3940 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3941 
3942 		/* we're limited by original request in that
3943 		 * logical block must be covered any way
3944 		 * winl is window we can move our chunk within */
3945 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3946 
3947 		/* also, we should cover whole original request */
3948 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3949 
3950 		/* the smallest one defines real window */
3951 		win = min(winl, wins);
3952 
3953 		offs = ac->ac_o_ex.fe_logical %
3954 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3955 		if (offs && offs < win)
3956 			win = offs;
3957 
3958 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3959 			EXT4_NUM_B2C(sbi, win);
3960 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3961 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3962 	}
3963 
3964 	/* preallocation can change ac_b_ex, thus we store actually
3965 	 * allocated blocks for history */
3966 	ac->ac_f_ex = ac->ac_b_ex;
3967 
3968 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3969 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3970 	pa->pa_len = ac->ac_b_ex.fe_len;
3971 	pa->pa_free = pa->pa_len;
3972 	spin_lock_init(&pa->pa_lock);
3973 	INIT_LIST_HEAD(&pa->pa_inode_list);
3974 	INIT_LIST_HEAD(&pa->pa_group_list);
3975 	pa->pa_deleted = 0;
3976 	pa->pa_type = MB_INODE_PA;
3977 
3978 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
3979 		 pa->pa_len, pa->pa_lstart);
3980 	trace_ext4_mb_new_inode_pa(ac, pa);
3981 
3982 	ext4_mb_use_inode_pa(ac, pa);
3983 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3984 
3985 	ei = EXT4_I(ac->ac_inode);
3986 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3987 
3988 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3989 	pa->pa_inode = ac->ac_inode;
3990 
3991 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3992 
3993 	spin_lock(pa->pa_obj_lock);
3994 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3995 	spin_unlock(pa->pa_obj_lock);
3996 	atomic_inc(&ei->i_prealloc_active);
3997 }
3998 
3999 /*
4000  * creates new preallocated space for locality group inodes belongs to
4001  */
4002 static noinline_for_stack void
4003 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4004 {
4005 	struct super_block *sb = ac->ac_sb;
4006 	struct ext4_locality_group *lg;
4007 	struct ext4_prealloc_space *pa;
4008 	struct ext4_group_info *grp;
4009 
4010 	/* preallocate only when found space is larger then requested */
4011 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4012 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4013 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4014 	BUG_ON(ac->ac_pa == NULL);
4015 
4016 	pa = ac->ac_pa;
4017 
4018 	/* preallocation can change ac_b_ex, thus we store actually
4019 	 * allocated blocks for history */
4020 	ac->ac_f_ex = ac->ac_b_ex;
4021 
4022 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4023 	pa->pa_lstart = pa->pa_pstart;
4024 	pa->pa_len = ac->ac_b_ex.fe_len;
4025 	pa->pa_free = pa->pa_len;
4026 	spin_lock_init(&pa->pa_lock);
4027 	INIT_LIST_HEAD(&pa->pa_inode_list);
4028 	INIT_LIST_HEAD(&pa->pa_group_list);
4029 	pa->pa_deleted = 0;
4030 	pa->pa_type = MB_GROUP_PA;
4031 
4032 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4033 		 pa->pa_len, pa->pa_lstart);
4034 	trace_ext4_mb_new_group_pa(ac, pa);
4035 
4036 	ext4_mb_use_group_pa(ac, pa);
4037 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4038 
4039 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4040 	lg = ac->ac_lg;
4041 	BUG_ON(lg == NULL);
4042 
4043 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
4044 	pa->pa_inode = NULL;
4045 
4046 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4047 
4048 	/*
4049 	 * We will later add the new pa to the right bucket
4050 	 * after updating the pa_free in ext4_mb_release_context
4051 	 */
4052 }
4053 
4054 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4055 {
4056 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4057 		ext4_mb_new_group_pa(ac);
4058 	else
4059 		ext4_mb_new_inode_pa(ac);
4060 }
4061 
4062 /*
4063  * finds all unused blocks in on-disk bitmap, frees them in
4064  * in-core bitmap and buddy.
4065  * @pa must be unlinked from inode and group lists, so that
4066  * nobody else can find/use it.
4067  * the caller MUST hold group/inode locks.
4068  * TODO: optimize the case when there are no in-core structures yet
4069  */
4070 static noinline_for_stack int
4071 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4072 			struct ext4_prealloc_space *pa)
4073 {
4074 	struct super_block *sb = e4b->bd_sb;
4075 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4076 	unsigned int end;
4077 	unsigned int next;
4078 	ext4_group_t group;
4079 	ext4_grpblk_t bit;
4080 	unsigned long long grp_blk_start;
4081 	int free = 0;
4082 
4083 	BUG_ON(pa->pa_deleted == 0);
4084 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4085 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4086 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4087 	end = bit + pa->pa_len;
4088 
4089 	while (bit < end) {
4090 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4091 		if (bit >= end)
4092 			break;
4093 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4094 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4095 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4096 			 (unsigned) next - bit, (unsigned) group);
4097 		free += next - bit;
4098 
4099 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4100 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4101 						    EXT4_C2B(sbi, bit)),
4102 					       next - bit);
4103 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4104 		bit = next + 1;
4105 	}
4106 	if (free != pa->pa_free) {
4107 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4108 			 "pa %p: logic %lu, phys. %lu, len %d",
4109 			 pa, (unsigned long) pa->pa_lstart,
4110 			 (unsigned long) pa->pa_pstart,
4111 			 pa->pa_len);
4112 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4113 					free, pa->pa_free);
4114 		/*
4115 		 * pa is already deleted so we use the value obtained
4116 		 * from the bitmap and continue.
4117 		 */
4118 	}
4119 	atomic_add(free, &sbi->s_mb_discarded);
4120 
4121 	return 0;
4122 }
4123 
4124 static noinline_for_stack int
4125 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4126 				struct ext4_prealloc_space *pa)
4127 {
4128 	struct super_block *sb = e4b->bd_sb;
4129 	ext4_group_t group;
4130 	ext4_grpblk_t bit;
4131 
4132 	trace_ext4_mb_release_group_pa(sb, pa);
4133 	BUG_ON(pa->pa_deleted == 0);
4134 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4135 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4136 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4137 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4138 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4139 
4140 	return 0;
4141 }
4142 
4143 /*
4144  * releases all preallocations in given group
4145  *
4146  * first, we need to decide discard policy:
4147  * - when do we discard
4148  *   1) ENOSPC
4149  * - how many do we discard
4150  *   1) how many requested
4151  */
4152 static noinline_for_stack int
4153 ext4_mb_discard_group_preallocations(struct super_block *sb,
4154 					ext4_group_t group, int needed)
4155 {
4156 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4157 	struct buffer_head *bitmap_bh = NULL;
4158 	struct ext4_prealloc_space *pa, *tmp;
4159 	struct list_head list;
4160 	struct ext4_buddy e4b;
4161 	int err;
4162 	int busy = 0;
4163 	int free = 0;
4164 
4165 	mb_debug(sb, "discard preallocation for group %u\n", group);
4166 	if (list_empty(&grp->bb_prealloc_list))
4167 		goto out_dbg;
4168 
4169 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4170 	if (IS_ERR(bitmap_bh)) {
4171 		err = PTR_ERR(bitmap_bh);
4172 		ext4_error_err(sb, -err,
4173 			       "Error %d reading block bitmap for %u",
4174 			       err, group);
4175 		goto out_dbg;
4176 	}
4177 
4178 	err = ext4_mb_load_buddy(sb, group, &e4b);
4179 	if (err) {
4180 		ext4_warning(sb, "Error %d loading buddy information for %u",
4181 			     err, group);
4182 		put_bh(bitmap_bh);
4183 		goto out_dbg;
4184 	}
4185 
4186 	if (needed == 0)
4187 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4188 
4189 	INIT_LIST_HEAD(&list);
4190 repeat:
4191 	ext4_lock_group(sb, group);
4192 	this_cpu_inc(discard_pa_seq);
4193 	list_for_each_entry_safe(pa, tmp,
4194 				&grp->bb_prealloc_list, pa_group_list) {
4195 		spin_lock(&pa->pa_lock);
4196 		if (atomic_read(&pa->pa_count)) {
4197 			spin_unlock(&pa->pa_lock);
4198 			busy = 1;
4199 			continue;
4200 		}
4201 		if (pa->pa_deleted) {
4202 			spin_unlock(&pa->pa_lock);
4203 			continue;
4204 		}
4205 
4206 		/* seems this one can be freed ... */
4207 		ext4_mb_mark_pa_deleted(sb, pa);
4208 
4209 		/* we can trust pa_free ... */
4210 		free += pa->pa_free;
4211 
4212 		spin_unlock(&pa->pa_lock);
4213 
4214 		list_del(&pa->pa_group_list);
4215 		list_add(&pa->u.pa_tmp_list, &list);
4216 	}
4217 
4218 	/* if we still need more blocks and some PAs were used, try again */
4219 	if (free < needed && busy) {
4220 		busy = 0;
4221 		ext4_unlock_group(sb, group);
4222 		cond_resched();
4223 		goto repeat;
4224 	}
4225 
4226 	/* found anything to free? */
4227 	if (list_empty(&list)) {
4228 		BUG_ON(free != 0);
4229 		mb_debug(sb, "Someone else may have freed PA for this group %u\n",
4230 			 group);
4231 		goto out;
4232 	}
4233 
4234 	/* now free all selected PAs */
4235 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4236 
4237 		/* remove from object (inode or locality group) */
4238 		spin_lock(pa->pa_obj_lock);
4239 		list_del_rcu(&pa->pa_inode_list);
4240 		spin_unlock(pa->pa_obj_lock);
4241 
4242 		if (pa->pa_type == MB_GROUP_PA)
4243 			ext4_mb_release_group_pa(&e4b, pa);
4244 		else
4245 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4246 
4247 		list_del(&pa->u.pa_tmp_list);
4248 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4249 	}
4250 
4251 out:
4252 	ext4_unlock_group(sb, group);
4253 	ext4_mb_unload_buddy(&e4b);
4254 	put_bh(bitmap_bh);
4255 out_dbg:
4256 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4257 		 free, group, grp->bb_free);
4258 	return free;
4259 }
4260 
4261 /*
4262  * releases all non-used preallocated blocks for given inode
4263  *
4264  * It's important to discard preallocations under i_data_sem
4265  * We don't want another block to be served from the prealloc
4266  * space when we are discarding the inode prealloc space.
4267  *
4268  * FIXME!! Make sure it is valid at all the call sites
4269  */
4270 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4271 {
4272 	struct ext4_inode_info *ei = EXT4_I(inode);
4273 	struct super_block *sb = inode->i_sb;
4274 	struct buffer_head *bitmap_bh = NULL;
4275 	struct ext4_prealloc_space *pa, *tmp;
4276 	ext4_group_t group = 0;
4277 	struct list_head list;
4278 	struct ext4_buddy e4b;
4279 	int err;
4280 
4281 	if (!S_ISREG(inode->i_mode)) {
4282 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4283 		return;
4284 	}
4285 
4286 	mb_debug(sb, "discard preallocation for inode %lu\n",
4287 		 inode->i_ino);
4288 	trace_ext4_discard_preallocations(inode,
4289 			atomic_read(&ei->i_prealloc_active), needed);
4290 
4291 	INIT_LIST_HEAD(&list);
4292 
4293 	if (needed == 0)
4294 		needed = UINT_MAX;
4295 
4296 repeat:
4297 	/* first, collect all pa's in the inode */
4298 	spin_lock(&ei->i_prealloc_lock);
4299 	while (!list_empty(&ei->i_prealloc_list) && needed) {
4300 		pa = list_entry(ei->i_prealloc_list.prev,
4301 				struct ext4_prealloc_space, pa_inode_list);
4302 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4303 		spin_lock(&pa->pa_lock);
4304 		if (atomic_read(&pa->pa_count)) {
4305 			/* this shouldn't happen often - nobody should
4306 			 * use preallocation while we're discarding it */
4307 			spin_unlock(&pa->pa_lock);
4308 			spin_unlock(&ei->i_prealloc_lock);
4309 			ext4_msg(sb, KERN_ERR,
4310 				 "uh-oh! used pa while discarding");
4311 			WARN_ON(1);
4312 			schedule_timeout_uninterruptible(HZ);
4313 			goto repeat;
4314 
4315 		}
4316 		if (pa->pa_deleted == 0) {
4317 			ext4_mb_mark_pa_deleted(sb, pa);
4318 			spin_unlock(&pa->pa_lock);
4319 			list_del_rcu(&pa->pa_inode_list);
4320 			list_add(&pa->u.pa_tmp_list, &list);
4321 			needed--;
4322 			continue;
4323 		}
4324 
4325 		/* someone is deleting pa right now */
4326 		spin_unlock(&pa->pa_lock);
4327 		spin_unlock(&ei->i_prealloc_lock);
4328 
4329 		/* we have to wait here because pa_deleted
4330 		 * doesn't mean pa is already unlinked from
4331 		 * the list. as we might be called from
4332 		 * ->clear_inode() the inode will get freed
4333 		 * and concurrent thread which is unlinking
4334 		 * pa from inode's list may access already
4335 		 * freed memory, bad-bad-bad */
4336 
4337 		/* XXX: if this happens too often, we can
4338 		 * add a flag to force wait only in case
4339 		 * of ->clear_inode(), but not in case of
4340 		 * regular truncate */
4341 		schedule_timeout_uninterruptible(HZ);
4342 		goto repeat;
4343 	}
4344 	spin_unlock(&ei->i_prealloc_lock);
4345 
4346 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4347 		BUG_ON(pa->pa_type != MB_INODE_PA);
4348 		group = ext4_get_group_number(sb, pa->pa_pstart);
4349 
4350 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4351 					     GFP_NOFS|__GFP_NOFAIL);
4352 		if (err) {
4353 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4354 				       err, group);
4355 			continue;
4356 		}
4357 
4358 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4359 		if (IS_ERR(bitmap_bh)) {
4360 			err = PTR_ERR(bitmap_bh);
4361 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4362 				       err, group);
4363 			ext4_mb_unload_buddy(&e4b);
4364 			continue;
4365 		}
4366 
4367 		ext4_lock_group(sb, group);
4368 		list_del(&pa->pa_group_list);
4369 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4370 		ext4_unlock_group(sb, group);
4371 
4372 		ext4_mb_unload_buddy(&e4b);
4373 		put_bh(bitmap_bh);
4374 
4375 		list_del(&pa->u.pa_tmp_list);
4376 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4377 	}
4378 }
4379 
4380 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4381 {
4382 	struct ext4_prealloc_space *pa;
4383 
4384 	BUG_ON(ext4_pspace_cachep == NULL);
4385 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4386 	if (!pa)
4387 		return -ENOMEM;
4388 	atomic_set(&pa->pa_count, 1);
4389 	ac->ac_pa = pa;
4390 	return 0;
4391 }
4392 
4393 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4394 {
4395 	struct ext4_prealloc_space *pa = ac->ac_pa;
4396 
4397 	BUG_ON(!pa);
4398 	ac->ac_pa = NULL;
4399 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4400 	kmem_cache_free(ext4_pspace_cachep, pa);
4401 }
4402 
4403 #ifdef CONFIG_EXT4_DEBUG
4404 static inline void ext4_mb_show_pa(struct super_block *sb)
4405 {
4406 	ext4_group_t i, ngroups;
4407 
4408 	if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
4409 		return;
4410 
4411 	ngroups = ext4_get_groups_count(sb);
4412 	mb_debug(sb, "groups: ");
4413 	for (i = 0; i < ngroups; i++) {
4414 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4415 		struct ext4_prealloc_space *pa;
4416 		ext4_grpblk_t start;
4417 		struct list_head *cur;
4418 		ext4_lock_group(sb, i);
4419 		list_for_each(cur, &grp->bb_prealloc_list) {
4420 			pa = list_entry(cur, struct ext4_prealloc_space,
4421 					pa_group_list);
4422 			spin_lock(&pa->pa_lock);
4423 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4424 						     NULL, &start);
4425 			spin_unlock(&pa->pa_lock);
4426 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
4427 				 pa->pa_len);
4428 		}
4429 		ext4_unlock_group(sb, i);
4430 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
4431 			 grp->bb_fragments);
4432 	}
4433 }
4434 
4435 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4436 {
4437 	struct super_block *sb = ac->ac_sb;
4438 
4439 	if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
4440 		return;
4441 
4442 	mb_debug(sb, "Can't allocate:"
4443 			" Allocation context details:");
4444 	mb_debug(sb, "status %u flags 0x%x",
4445 			ac->ac_status, ac->ac_flags);
4446 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
4447 			"goal %lu/%lu/%lu@%lu, "
4448 			"best %lu/%lu/%lu@%lu cr %d",
4449 			(unsigned long)ac->ac_o_ex.fe_group,
4450 			(unsigned long)ac->ac_o_ex.fe_start,
4451 			(unsigned long)ac->ac_o_ex.fe_len,
4452 			(unsigned long)ac->ac_o_ex.fe_logical,
4453 			(unsigned long)ac->ac_g_ex.fe_group,
4454 			(unsigned long)ac->ac_g_ex.fe_start,
4455 			(unsigned long)ac->ac_g_ex.fe_len,
4456 			(unsigned long)ac->ac_g_ex.fe_logical,
4457 			(unsigned long)ac->ac_b_ex.fe_group,
4458 			(unsigned long)ac->ac_b_ex.fe_start,
4459 			(unsigned long)ac->ac_b_ex.fe_len,
4460 			(unsigned long)ac->ac_b_ex.fe_logical,
4461 			(int)ac->ac_criteria);
4462 	mb_debug(sb, "%u found", ac->ac_found);
4463 	ext4_mb_show_pa(sb);
4464 }
4465 #else
4466 static inline void ext4_mb_show_pa(struct super_block *sb)
4467 {
4468 	return;
4469 }
4470 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4471 {
4472 	ext4_mb_show_pa(ac->ac_sb);
4473 	return;
4474 }
4475 #endif
4476 
4477 /*
4478  * We use locality group preallocation for small size file. The size of the
4479  * file is determined by the current size or the resulting size after
4480  * allocation which ever is larger
4481  *
4482  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4483  */
4484 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4485 {
4486 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4487 	int bsbits = ac->ac_sb->s_blocksize_bits;
4488 	loff_t size, isize;
4489 
4490 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4491 		return;
4492 
4493 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4494 		return;
4495 
4496 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4497 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4498 		>> bsbits;
4499 
4500 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4501 	    !inode_is_open_for_write(ac->ac_inode)) {
4502 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4503 		return;
4504 	}
4505 
4506 	if (sbi->s_mb_group_prealloc <= 0) {
4507 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4508 		return;
4509 	}
4510 
4511 	/* don't use group allocation for large files */
4512 	size = max(size, isize);
4513 	if (size > sbi->s_mb_stream_request) {
4514 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4515 		return;
4516 	}
4517 
4518 	BUG_ON(ac->ac_lg != NULL);
4519 	/*
4520 	 * locality group prealloc space are per cpu. The reason for having
4521 	 * per cpu locality group is to reduce the contention between block
4522 	 * request from multiple CPUs.
4523 	 */
4524 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4525 
4526 	/* we're going to use group allocation */
4527 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4528 
4529 	/* serialize all allocations in the group */
4530 	mutex_lock(&ac->ac_lg->lg_mutex);
4531 }
4532 
4533 static noinline_for_stack int
4534 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4535 				struct ext4_allocation_request *ar)
4536 {
4537 	struct super_block *sb = ar->inode->i_sb;
4538 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4539 	struct ext4_super_block *es = sbi->s_es;
4540 	ext4_group_t group;
4541 	unsigned int len;
4542 	ext4_fsblk_t goal;
4543 	ext4_grpblk_t block;
4544 
4545 	/* we can't allocate > group size */
4546 	len = ar->len;
4547 
4548 	/* just a dirty hack to filter too big requests  */
4549 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4550 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4551 
4552 	/* start searching from the goal */
4553 	goal = ar->goal;
4554 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4555 			goal >= ext4_blocks_count(es))
4556 		goal = le32_to_cpu(es->s_first_data_block);
4557 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4558 
4559 	/* set up allocation goals */
4560 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4561 	ac->ac_status = AC_STATUS_CONTINUE;
4562 	ac->ac_sb = sb;
4563 	ac->ac_inode = ar->inode;
4564 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4565 	ac->ac_o_ex.fe_group = group;
4566 	ac->ac_o_ex.fe_start = block;
4567 	ac->ac_o_ex.fe_len = len;
4568 	ac->ac_g_ex = ac->ac_o_ex;
4569 	ac->ac_flags = ar->flags;
4570 
4571 	/* we have to define context: we'll work with a file or
4572 	 * locality group. this is a policy, actually */
4573 	ext4_mb_group_or_file(ac);
4574 
4575 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4576 			"left: %u/%u, right %u/%u to %swritable\n",
4577 			(unsigned) ar->len, (unsigned) ar->logical,
4578 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4579 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4580 			(unsigned) ar->lright, (unsigned) ar->pright,
4581 			inode_is_open_for_write(ar->inode) ? "" : "non-");
4582 	return 0;
4583 
4584 }
4585 
4586 static noinline_for_stack void
4587 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4588 					struct ext4_locality_group *lg,
4589 					int order, int total_entries)
4590 {
4591 	ext4_group_t group = 0;
4592 	struct ext4_buddy e4b;
4593 	struct list_head discard_list;
4594 	struct ext4_prealloc_space *pa, *tmp;
4595 
4596 	mb_debug(sb, "discard locality group preallocation\n");
4597 
4598 	INIT_LIST_HEAD(&discard_list);
4599 
4600 	spin_lock(&lg->lg_prealloc_lock);
4601 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4602 				pa_inode_list,
4603 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4604 		spin_lock(&pa->pa_lock);
4605 		if (atomic_read(&pa->pa_count)) {
4606 			/*
4607 			 * This is the pa that we just used
4608 			 * for block allocation. So don't
4609 			 * free that
4610 			 */
4611 			spin_unlock(&pa->pa_lock);
4612 			continue;
4613 		}
4614 		if (pa->pa_deleted) {
4615 			spin_unlock(&pa->pa_lock);
4616 			continue;
4617 		}
4618 		/* only lg prealloc space */
4619 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4620 
4621 		/* seems this one can be freed ... */
4622 		ext4_mb_mark_pa_deleted(sb, pa);
4623 		spin_unlock(&pa->pa_lock);
4624 
4625 		list_del_rcu(&pa->pa_inode_list);
4626 		list_add(&pa->u.pa_tmp_list, &discard_list);
4627 
4628 		total_entries--;
4629 		if (total_entries <= 5) {
4630 			/*
4631 			 * we want to keep only 5 entries
4632 			 * allowing it to grow to 8. This
4633 			 * mak sure we don't call discard
4634 			 * soon for this list.
4635 			 */
4636 			break;
4637 		}
4638 	}
4639 	spin_unlock(&lg->lg_prealloc_lock);
4640 
4641 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4642 		int err;
4643 
4644 		group = ext4_get_group_number(sb, pa->pa_pstart);
4645 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4646 					     GFP_NOFS|__GFP_NOFAIL);
4647 		if (err) {
4648 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4649 				       err, group);
4650 			continue;
4651 		}
4652 		ext4_lock_group(sb, group);
4653 		list_del(&pa->pa_group_list);
4654 		ext4_mb_release_group_pa(&e4b, pa);
4655 		ext4_unlock_group(sb, group);
4656 
4657 		ext4_mb_unload_buddy(&e4b);
4658 		list_del(&pa->u.pa_tmp_list);
4659 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4660 	}
4661 }
4662 
4663 /*
4664  * We have incremented pa_count. So it cannot be freed at this
4665  * point. Also we hold lg_mutex. So no parallel allocation is
4666  * possible from this lg. That means pa_free cannot be updated.
4667  *
4668  * A parallel ext4_mb_discard_group_preallocations is possible.
4669  * which can cause the lg_prealloc_list to be updated.
4670  */
4671 
4672 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4673 {
4674 	int order, added = 0, lg_prealloc_count = 1;
4675 	struct super_block *sb = ac->ac_sb;
4676 	struct ext4_locality_group *lg = ac->ac_lg;
4677 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4678 
4679 	order = fls(pa->pa_free) - 1;
4680 	if (order > PREALLOC_TB_SIZE - 1)
4681 		/* The max size of hash table is PREALLOC_TB_SIZE */
4682 		order = PREALLOC_TB_SIZE - 1;
4683 	/* Add the prealloc space to lg */
4684 	spin_lock(&lg->lg_prealloc_lock);
4685 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4686 				pa_inode_list,
4687 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4688 		spin_lock(&tmp_pa->pa_lock);
4689 		if (tmp_pa->pa_deleted) {
4690 			spin_unlock(&tmp_pa->pa_lock);
4691 			continue;
4692 		}
4693 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4694 			/* Add to the tail of the previous entry */
4695 			list_add_tail_rcu(&pa->pa_inode_list,
4696 						&tmp_pa->pa_inode_list);
4697 			added = 1;
4698 			/*
4699 			 * we want to count the total
4700 			 * number of entries in the list
4701 			 */
4702 		}
4703 		spin_unlock(&tmp_pa->pa_lock);
4704 		lg_prealloc_count++;
4705 	}
4706 	if (!added)
4707 		list_add_tail_rcu(&pa->pa_inode_list,
4708 					&lg->lg_prealloc_list[order]);
4709 	spin_unlock(&lg->lg_prealloc_lock);
4710 
4711 	/* Now trim the list to be not more than 8 elements */
4712 	if (lg_prealloc_count > 8) {
4713 		ext4_mb_discard_lg_preallocations(sb, lg,
4714 						  order, lg_prealloc_count);
4715 		return;
4716 	}
4717 	return ;
4718 }
4719 
4720 /*
4721  * if per-inode prealloc list is too long, trim some PA
4722  */
4723 static void ext4_mb_trim_inode_pa(struct inode *inode)
4724 {
4725 	struct ext4_inode_info *ei = EXT4_I(inode);
4726 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4727 	int count, delta;
4728 
4729 	count = atomic_read(&ei->i_prealloc_active);
4730 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
4731 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
4732 		count -= sbi->s_mb_max_inode_prealloc;
4733 		ext4_discard_preallocations(inode, count);
4734 	}
4735 }
4736 
4737 /*
4738  * release all resource we used in allocation
4739  */
4740 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4741 {
4742 	struct inode *inode = ac->ac_inode;
4743 	struct ext4_inode_info *ei = EXT4_I(inode);
4744 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4745 	struct ext4_prealloc_space *pa = ac->ac_pa;
4746 	if (pa) {
4747 		if (pa->pa_type == MB_GROUP_PA) {
4748 			/* see comment in ext4_mb_use_group_pa() */
4749 			spin_lock(&pa->pa_lock);
4750 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4751 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4752 			pa->pa_free -= ac->ac_b_ex.fe_len;
4753 			pa->pa_len -= ac->ac_b_ex.fe_len;
4754 			spin_unlock(&pa->pa_lock);
4755 
4756 			/*
4757 			 * We want to add the pa to the right bucket.
4758 			 * Remove it from the list and while adding
4759 			 * make sure the list to which we are adding
4760 			 * doesn't grow big.
4761 			 */
4762 			if (likely(pa->pa_free)) {
4763 				spin_lock(pa->pa_obj_lock);
4764 				list_del_rcu(&pa->pa_inode_list);
4765 				spin_unlock(pa->pa_obj_lock);
4766 				ext4_mb_add_n_trim(ac);
4767 			}
4768 		}
4769 
4770 		if (pa->pa_type == MB_INODE_PA) {
4771 			/*
4772 			 * treat per-inode prealloc list as a lru list, then try
4773 			 * to trim the least recently used PA.
4774 			 */
4775 			spin_lock(pa->pa_obj_lock);
4776 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
4777 			spin_unlock(pa->pa_obj_lock);
4778 		}
4779 
4780 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4781 	}
4782 	if (ac->ac_bitmap_page)
4783 		put_page(ac->ac_bitmap_page);
4784 	if (ac->ac_buddy_page)
4785 		put_page(ac->ac_buddy_page);
4786 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4787 		mutex_unlock(&ac->ac_lg->lg_mutex);
4788 	ext4_mb_collect_stats(ac);
4789 	ext4_mb_trim_inode_pa(inode);
4790 	return 0;
4791 }
4792 
4793 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4794 {
4795 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4796 	int ret;
4797 	int freed = 0;
4798 
4799 	trace_ext4_mb_discard_preallocations(sb, needed);
4800 	for (i = 0; i < ngroups && needed > 0; i++) {
4801 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4802 		freed += ret;
4803 		needed -= ret;
4804 	}
4805 
4806 	return freed;
4807 }
4808 
4809 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
4810 			struct ext4_allocation_context *ac, u64 *seq)
4811 {
4812 	int freed;
4813 	u64 seq_retry = 0;
4814 	bool ret = false;
4815 
4816 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4817 	if (freed) {
4818 		ret = true;
4819 		goto out_dbg;
4820 	}
4821 	seq_retry = ext4_get_discard_pa_seq_sum();
4822 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
4823 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
4824 		*seq = seq_retry;
4825 		ret = true;
4826 	}
4827 
4828 out_dbg:
4829 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
4830 	return ret;
4831 }
4832 
4833 /*
4834  * Main entry point into mballoc to allocate blocks
4835  * it tries to use preallocation first, then falls back
4836  * to usual allocation
4837  */
4838 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4839 				struct ext4_allocation_request *ar, int *errp)
4840 {
4841 	struct ext4_allocation_context *ac = NULL;
4842 	struct ext4_sb_info *sbi;
4843 	struct super_block *sb;
4844 	ext4_fsblk_t block = 0;
4845 	unsigned int inquota = 0;
4846 	unsigned int reserv_clstrs = 0;
4847 	u64 seq;
4848 
4849 	might_sleep();
4850 	sb = ar->inode->i_sb;
4851 	sbi = EXT4_SB(sb);
4852 
4853 	trace_ext4_request_blocks(ar);
4854 
4855 	/* Allow to use superuser reservation for quota file */
4856 	if (ext4_is_quota_file(ar->inode))
4857 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4858 
4859 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4860 		/* Without delayed allocation we need to verify
4861 		 * there is enough free blocks to do block allocation
4862 		 * and verify allocation doesn't exceed the quota limits.
4863 		 */
4864 		while (ar->len &&
4865 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4866 
4867 			/* let others to free the space */
4868 			cond_resched();
4869 			ar->len = ar->len >> 1;
4870 		}
4871 		if (!ar->len) {
4872 			ext4_mb_show_pa(sb);
4873 			*errp = -ENOSPC;
4874 			return 0;
4875 		}
4876 		reserv_clstrs = ar->len;
4877 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4878 			dquot_alloc_block_nofail(ar->inode,
4879 						 EXT4_C2B(sbi, ar->len));
4880 		} else {
4881 			while (ar->len &&
4882 				dquot_alloc_block(ar->inode,
4883 						  EXT4_C2B(sbi, ar->len))) {
4884 
4885 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4886 				ar->len--;
4887 			}
4888 		}
4889 		inquota = ar->len;
4890 		if (ar->len == 0) {
4891 			*errp = -EDQUOT;
4892 			goto out;
4893 		}
4894 	}
4895 
4896 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4897 	if (!ac) {
4898 		ar->len = 0;
4899 		*errp = -ENOMEM;
4900 		goto out;
4901 	}
4902 
4903 	*errp = ext4_mb_initialize_context(ac, ar);
4904 	if (*errp) {
4905 		ar->len = 0;
4906 		goto out;
4907 	}
4908 
4909 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4910 	seq = this_cpu_read(discard_pa_seq);
4911 	if (!ext4_mb_use_preallocated(ac)) {
4912 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4913 		ext4_mb_normalize_request(ac, ar);
4914 
4915 		*errp = ext4_mb_pa_alloc(ac);
4916 		if (*errp)
4917 			goto errout;
4918 repeat:
4919 		/* allocate space in core */
4920 		*errp = ext4_mb_regular_allocator(ac);
4921 		/*
4922 		 * pa allocated above is added to grp->bb_prealloc_list only
4923 		 * when we were able to allocate some block i.e. when
4924 		 * ac->ac_status == AC_STATUS_FOUND.
4925 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
4926 		 * So we have to free this pa here itself.
4927 		 */
4928 		if (*errp) {
4929 			ext4_mb_pa_free(ac);
4930 			ext4_discard_allocated_blocks(ac);
4931 			goto errout;
4932 		}
4933 		if (ac->ac_status == AC_STATUS_FOUND &&
4934 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
4935 			ext4_mb_pa_free(ac);
4936 	}
4937 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4938 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4939 		if (*errp) {
4940 			ext4_discard_allocated_blocks(ac);
4941 			goto errout;
4942 		} else {
4943 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4944 			ar->len = ac->ac_b_ex.fe_len;
4945 		}
4946 	} else {
4947 		if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
4948 			goto repeat;
4949 		/*
4950 		 * If block allocation fails then the pa allocated above
4951 		 * needs to be freed here itself.
4952 		 */
4953 		ext4_mb_pa_free(ac);
4954 		*errp = -ENOSPC;
4955 	}
4956 
4957 errout:
4958 	if (*errp) {
4959 		ac->ac_b_ex.fe_len = 0;
4960 		ar->len = 0;
4961 		ext4_mb_show_ac(ac);
4962 	}
4963 	ext4_mb_release_context(ac);
4964 out:
4965 	if (ac)
4966 		kmem_cache_free(ext4_ac_cachep, ac);
4967 	if (inquota && ar->len < inquota)
4968 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4969 	if (!ar->len) {
4970 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4971 			/* release all the reserved blocks if non delalloc */
4972 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4973 						reserv_clstrs);
4974 	}
4975 
4976 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4977 
4978 	return block;
4979 }
4980 
4981 /*
4982  * We can merge two free data extents only if the physical blocks
4983  * are contiguous, AND the extents were freed by the same transaction,
4984  * AND the blocks are associated with the same group.
4985  */
4986 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4987 					struct ext4_free_data *entry,
4988 					struct ext4_free_data *new_entry,
4989 					struct rb_root *entry_rb_root)
4990 {
4991 	if ((entry->efd_tid != new_entry->efd_tid) ||
4992 	    (entry->efd_group != new_entry->efd_group))
4993 		return;
4994 	if (entry->efd_start_cluster + entry->efd_count ==
4995 	    new_entry->efd_start_cluster) {
4996 		new_entry->efd_start_cluster = entry->efd_start_cluster;
4997 		new_entry->efd_count += entry->efd_count;
4998 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4999 		   entry->efd_start_cluster) {
5000 		new_entry->efd_count += entry->efd_count;
5001 	} else
5002 		return;
5003 	spin_lock(&sbi->s_md_lock);
5004 	list_del(&entry->efd_list);
5005 	spin_unlock(&sbi->s_md_lock);
5006 	rb_erase(&entry->efd_node, entry_rb_root);
5007 	kmem_cache_free(ext4_free_data_cachep, entry);
5008 }
5009 
5010 static noinline_for_stack int
5011 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5012 		      struct ext4_free_data *new_entry)
5013 {
5014 	ext4_group_t group = e4b->bd_group;
5015 	ext4_grpblk_t cluster;
5016 	ext4_grpblk_t clusters = new_entry->efd_count;
5017 	struct ext4_free_data *entry;
5018 	struct ext4_group_info *db = e4b->bd_info;
5019 	struct super_block *sb = e4b->bd_sb;
5020 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5021 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5022 	struct rb_node *parent = NULL, *new_node;
5023 
5024 	BUG_ON(!ext4_handle_valid(handle));
5025 	BUG_ON(e4b->bd_bitmap_page == NULL);
5026 	BUG_ON(e4b->bd_buddy_page == NULL);
5027 
5028 	new_node = &new_entry->efd_node;
5029 	cluster = new_entry->efd_start_cluster;
5030 
5031 	if (!*n) {
5032 		/* first free block exent. We need to
5033 		   protect buddy cache from being freed,
5034 		 * otherwise we'll refresh it from
5035 		 * on-disk bitmap and lose not-yet-available
5036 		 * blocks */
5037 		get_page(e4b->bd_buddy_page);
5038 		get_page(e4b->bd_bitmap_page);
5039 	}
5040 	while (*n) {
5041 		parent = *n;
5042 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5043 		if (cluster < entry->efd_start_cluster)
5044 			n = &(*n)->rb_left;
5045 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5046 			n = &(*n)->rb_right;
5047 		else {
5048 			ext4_grp_locked_error(sb, group, 0,
5049 				ext4_group_first_block_no(sb, group) +
5050 				EXT4_C2B(sbi, cluster),
5051 				"Block already on to-be-freed list");
5052 			return 0;
5053 		}
5054 	}
5055 
5056 	rb_link_node(new_node, parent, n);
5057 	rb_insert_color(new_node, &db->bb_free_root);
5058 
5059 	/* Now try to see the extent can be merged to left and right */
5060 	node = rb_prev(new_node);
5061 	if (node) {
5062 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5063 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5064 					    &(db->bb_free_root));
5065 	}
5066 
5067 	node = rb_next(new_node);
5068 	if (node) {
5069 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5070 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5071 					    &(db->bb_free_root));
5072 	}
5073 
5074 	spin_lock(&sbi->s_md_lock);
5075 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5076 	sbi->s_mb_free_pending += clusters;
5077 	spin_unlock(&sbi->s_md_lock);
5078 	return 0;
5079 }
5080 
5081 /**
5082  * ext4_free_blocks() -- Free given blocks and update quota
5083  * @handle:		handle for this transaction
5084  * @inode:		inode
5085  * @bh:			optional buffer of the block to be freed
5086  * @block:		starting physical block to be freed
5087  * @count:		number of blocks to be freed
5088  * @flags:		flags used by ext4_free_blocks
5089  */
5090 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5091 		      struct buffer_head *bh, ext4_fsblk_t block,
5092 		      unsigned long count, int flags)
5093 {
5094 	struct buffer_head *bitmap_bh = NULL;
5095 	struct super_block *sb = inode->i_sb;
5096 	struct ext4_group_desc *gdp;
5097 	unsigned int overflow;
5098 	ext4_grpblk_t bit;
5099 	struct buffer_head *gd_bh;
5100 	ext4_group_t block_group;
5101 	struct ext4_sb_info *sbi;
5102 	struct ext4_buddy e4b;
5103 	unsigned int count_clusters;
5104 	int err = 0;
5105 	int ret;
5106 
5107 	might_sleep();
5108 	if (bh) {
5109 		if (block)
5110 			BUG_ON(block != bh->b_blocknr);
5111 		else
5112 			block = bh->b_blocknr;
5113 	}
5114 
5115 	sbi = EXT4_SB(sb);
5116 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5117 	    !ext4_inode_block_valid(inode, block, count)) {
5118 		ext4_error(sb, "Freeing blocks not in datazone - "
5119 			   "block = %llu, count = %lu", block, count);
5120 		goto error_return;
5121 	}
5122 
5123 	ext4_debug("freeing block %llu\n", block);
5124 	trace_ext4_free_blocks(inode, block, count, flags);
5125 
5126 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5127 		BUG_ON(count > 1);
5128 
5129 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5130 			    inode, bh, block);
5131 	}
5132 
5133 	/*
5134 	 * If the extent to be freed does not begin on a cluster
5135 	 * boundary, we need to deal with partial clusters at the
5136 	 * beginning and end of the extent.  Normally we will free
5137 	 * blocks at the beginning or the end unless we are explicitly
5138 	 * requested to avoid doing so.
5139 	 */
5140 	overflow = EXT4_PBLK_COFF(sbi, block);
5141 	if (overflow) {
5142 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5143 			overflow = sbi->s_cluster_ratio - overflow;
5144 			block += overflow;
5145 			if (count > overflow)
5146 				count -= overflow;
5147 			else
5148 				return;
5149 		} else {
5150 			block -= overflow;
5151 			count += overflow;
5152 		}
5153 	}
5154 	overflow = EXT4_LBLK_COFF(sbi, count);
5155 	if (overflow) {
5156 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5157 			if (count > overflow)
5158 				count -= overflow;
5159 			else
5160 				return;
5161 		} else
5162 			count += sbi->s_cluster_ratio - overflow;
5163 	}
5164 
5165 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5166 		int i;
5167 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5168 
5169 		for (i = 0; i < count; i++) {
5170 			cond_resched();
5171 			if (is_metadata)
5172 				bh = sb_find_get_block(inode->i_sb, block + i);
5173 			ext4_forget(handle, is_metadata, inode, bh, block + i);
5174 		}
5175 	}
5176 
5177 do_more:
5178 	overflow = 0;
5179 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5180 
5181 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5182 			ext4_get_group_info(sb, block_group))))
5183 		return;
5184 
5185 	/*
5186 	 * Check to see if we are freeing blocks across a group
5187 	 * boundary.
5188 	 */
5189 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5190 		overflow = EXT4_C2B(sbi, bit) + count -
5191 			EXT4_BLOCKS_PER_GROUP(sb);
5192 		count -= overflow;
5193 	}
5194 	count_clusters = EXT4_NUM_B2C(sbi, count);
5195 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5196 	if (IS_ERR(bitmap_bh)) {
5197 		err = PTR_ERR(bitmap_bh);
5198 		bitmap_bh = NULL;
5199 		goto error_return;
5200 	}
5201 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5202 	if (!gdp) {
5203 		err = -EIO;
5204 		goto error_return;
5205 	}
5206 
5207 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5208 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5209 	    in_range(block, ext4_inode_table(sb, gdp),
5210 		     sbi->s_itb_per_group) ||
5211 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
5212 		     sbi->s_itb_per_group)) {
5213 
5214 		ext4_error(sb, "Freeing blocks in system zone - "
5215 			   "Block = %llu, count = %lu", block, count);
5216 		/* err = 0. ext4_std_error should be a no op */
5217 		goto error_return;
5218 	}
5219 
5220 	BUFFER_TRACE(bitmap_bh, "getting write access");
5221 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5222 	if (err)
5223 		goto error_return;
5224 
5225 	/*
5226 	 * We are about to modify some metadata.  Call the journal APIs
5227 	 * to unshare ->b_data if a currently-committing transaction is
5228 	 * using it
5229 	 */
5230 	BUFFER_TRACE(gd_bh, "get_write_access");
5231 	err = ext4_journal_get_write_access(handle, gd_bh);
5232 	if (err)
5233 		goto error_return;
5234 #ifdef AGGRESSIVE_CHECK
5235 	{
5236 		int i;
5237 		for (i = 0; i < count_clusters; i++)
5238 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5239 	}
5240 #endif
5241 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5242 
5243 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5244 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5245 				     GFP_NOFS|__GFP_NOFAIL);
5246 	if (err)
5247 		goto error_return;
5248 
5249 	/*
5250 	 * We need to make sure we don't reuse the freed block until after the
5251 	 * transaction is committed. We make an exception if the inode is to be
5252 	 * written in writeback mode since writeback mode has weak data
5253 	 * consistency guarantees.
5254 	 */
5255 	if (ext4_handle_valid(handle) &&
5256 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5257 	     !ext4_should_writeback_data(inode))) {
5258 		struct ext4_free_data *new_entry;
5259 		/*
5260 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5261 		 * to fail.
5262 		 */
5263 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5264 				GFP_NOFS|__GFP_NOFAIL);
5265 		new_entry->efd_start_cluster = bit;
5266 		new_entry->efd_group = block_group;
5267 		new_entry->efd_count = count_clusters;
5268 		new_entry->efd_tid = handle->h_transaction->t_tid;
5269 
5270 		ext4_lock_group(sb, block_group);
5271 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5272 		ext4_mb_free_metadata(handle, &e4b, new_entry);
5273 	} else {
5274 		/* need to update group_info->bb_free and bitmap
5275 		 * with group lock held. generate_buddy look at
5276 		 * them with group lock_held
5277 		 */
5278 		if (test_opt(sb, DISCARD)) {
5279 			err = ext4_issue_discard(sb, block_group, bit, count,
5280 						 NULL);
5281 			if (err && err != -EOPNOTSUPP)
5282 				ext4_msg(sb, KERN_WARNING, "discard request in"
5283 					 " group:%d block:%d count:%lu failed"
5284 					 " with %d", block_group, bit, count,
5285 					 err);
5286 		} else
5287 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5288 
5289 		ext4_lock_group(sb, block_group);
5290 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5291 		mb_free_blocks(inode, &e4b, bit, count_clusters);
5292 	}
5293 
5294 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5295 	ext4_free_group_clusters_set(sb, gdp, ret);
5296 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5297 	ext4_group_desc_csum_set(sb, block_group, gdp);
5298 	ext4_unlock_group(sb, block_group);
5299 
5300 	if (sbi->s_log_groups_per_flex) {
5301 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5302 		atomic64_add(count_clusters,
5303 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5304 						  flex_group)->free_clusters);
5305 	}
5306 
5307 	/*
5308 	 * on a bigalloc file system, defer the s_freeclusters_counter
5309 	 * update to the caller (ext4_remove_space and friends) so they
5310 	 * can determine if a cluster freed here should be rereserved
5311 	 */
5312 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
5313 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
5314 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
5315 		percpu_counter_add(&sbi->s_freeclusters_counter,
5316 				   count_clusters);
5317 	}
5318 
5319 	ext4_mb_unload_buddy(&e4b);
5320 
5321 	/* We dirtied the bitmap block */
5322 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5323 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5324 
5325 	/* And the group descriptor block */
5326 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5327 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5328 	if (!err)
5329 		err = ret;
5330 
5331 	if (overflow && !err) {
5332 		block += count;
5333 		count = overflow;
5334 		put_bh(bitmap_bh);
5335 		goto do_more;
5336 	}
5337 error_return:
5338 	brelse(bitmap_bh);
5339 	ext4_std_error(sb, err);
5340 	return;
5341 }
5342 
5343 /**
5344  * ext4_group_add_blocks() -- Add given blocks to an existing group
5345  * @handle:			handle to this transaction
5346  * @sb:				super block
5347  * @block:			start physical block to add to the block group
5348  * @count:			number of blocks to free
5349  *
5350  * This marks the blocks as free in the bitmap and buddy.
5351  */
5352 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5353 			 ext4_fsblk_t block, unsigned long count)
5354 {
5355 	struct buffer_head *bitmap_bh = NULL;
5356 	struct buffer_head *gd_bh;
5357 	ext4_group_t block_group;
5358 	ext4_grpblk_t bit;
5359 	unsigned int i;
5360 	struct ext4_group_desc *desc;
5361 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5362 	struct ext4_buddy e4b;
5363 	int err = 0, ret, free_clusters_count;
5364 	ext4_grpblk_t clusters_freed;
5365 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5366 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5367 	unsigned long cluster_count = last_cluster - first_cluster + 1;
5368 
5369 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5370 
5371 	if (count == 0)
5372 		return 0;
5373 
5374 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5375 	/*
5376 	 * Check to see if we are freeing blocks across a group
5377 	 * boundary.
5378 	 */
5379 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5380 		ext4_warning(sb, "too many blocks added to group %u",
5381 			     block_group);
5382 		err = -EINVAL;
5383 		goto error_return;
5384 	}
5385 
5386 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5387 	if (IS_ERR(bitmap_bh)) {
5388 		err = PTR_ERR(bitmap_bh);
5389 		bitmap_bh = NULL;
5390 		goto error_return;
5391 	}
5392 
5393 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5394 	if (!desc) {
5395 		err = -EIO;
5396 		goto error_return;
5397 	}
5398 
5399 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5400 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5401 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5402 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5403 		     sbi->s_itb_per_group)) {
5404 		ext4_error(sb, "Adding blocks in system zones - "
5405 			   "Block = %llu, count = %lu",
5406 			   block, count);
5407 		err = -EINVAL;
5408 		goto error_return;
5409 	}
5410 
5411 	BUFFER_TRACE(bitmap_bh, "getting write access");
5412 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5413 	if (err)
5414 		goto error_return;
5415 
5416 	/*
5417 	 * We are about to modify some metadata.  Call the journal APIs
5418 	 * to unshare ->b_data if a currently-committing transaction is
5419 	 * using it
5420 	 */
5421 	BUFFER_TRACE(gd_bh, "get_write_access");
5422 	err = ext4_journal_get_write_access(handle, gd_bh);
5423 	if (err)
5424 		goto error_return;
5425 
5426 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5427 		BUFFER_TRACE(bitmap_bh, "clear bit");
5428 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5429 			ext4_error(sb, "bit already cleared for block %llu",
5430 				   (ext4_fsblk_t)(block + i));
5431 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5432 		} else {
5433 			clusters_freed++;
5434 		}
5435 	}
5436 
5437 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5438 	if (err)
5439 		goto error_return;
5440 
5441 	/*
5442 	 * need to update group_info->bb_free and bitmap
5443 	 * with group lock held. generate_buddy look at
5444 	 * them with group lock_held
5445 	 */
5446 	ext4_lock_group(sb, block_group);
5447 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5448 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
5449 	free_clusters_count = clusters_freed +
5450 		ext4_free_group_clusters(sb, desc);
5451 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5452 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5453 	ext4_group_desc_csum_set(sb, block_group, desc);
5454 	ext4_unlock_group(sb, block_group);
5455 	percpu_counter_add(&sbi->s_freeclusters_counter,
5456 			   clusters_freed);
5457 
5458 	if (sbi->s_log_groups_per_flex) {
5459 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5460 		atomic64_add(clusters_freed,
5461 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5462 						  flex_group)->free_clusters);
5463 	}
5464 
5465 	ext4_mb_unload_buddy(&e4b);
5466 
5467 	/* We dirtied the bitmap block */
5468 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5469 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5470 
5471 	/* And the group descriptor block */
5472 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5473 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5474 	if (!err)
5475 		err = ret;
5476 
5477 error_return:
5478 	brelse(bitmap_bh);
5479 	ext4_std_error(sb, err);
5480 	return err;
5481 }
5482 
5483 /**
5484  * ext4_trim_extent -- function to TRIM one single free extent in the group
5485  * @sb:		super block for the file system
5486  * @start:	starting block of the free extent in the alloc. group
5487  * @count:	number of blocks to TRIM
5488  * @group:	alloc. group we are working with
5489  * @e4b:	ext4 buddy for the group
5490  *
5491  * Trim "count" blocks starting at "start" in the "group". To assure that no
5492  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5493  * be called with under the group lock.
5494  */
5495 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5496 			     ext4_group_t group, struct ext4_buddy *e4b)
5497 __releases(bitlock)
5498 __acquires(bitlock)
5499 {
5500 	struct ext4_free_extent ex;
5501 	int ret = 0;
5502 
5503 	trace_ext4_trim_extent(sb, group, start, count);
5504 
5505 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5506 
5507 	ex.fe_start = start;
5508 	ex.fe_group = group;
5509 	ex.fe_len = count;
5510 
5511 	/*
5512 	 * Mark blocks used, so no one can reuse them while
5513 	 * being trimmed.
5514 	 */
5515 	mb_mark_used(e4b, &ex);
5516 	ext4_unlock_group(sb, group);
5517 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5518 	ext4_lock_group(sb, group);
5519 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5520 	return ret;
5521 }
5522 
5523 /**
5524  * ext4_trim_all_free -- function to trim all free space in alloc. group
5525  * @sb:			super block for file system
5526  * @group:		group to be trimmed
5527  * @start:		first group block to examine
5528  * @max:		last group block to examine
5529  * @minblocks:		minimum extent block count
5530  *
5531  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5532  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5533  * the extent.
5534  *
5535  *
5536  * ext4_trim_all_free walks through group's block bitmap searching for free
5537  * extents. When the free extent is found, mark it as used in group buddy
5538  * bitmap. Then issue a TRIM command on this extent and free the extent in
5539  * the group buddy bitmap. This is done until whole group is scanned.
5540  */
5541 static ext4_grpblk_t
5542 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5543 		   ext4_grpblk_t start, ext4_grpblk_t max,
5544 		   ext4_grpblk_t minblocks)
5545 {
5546 	void *bitmap;
5547 	ext4_grpblk_t next, count = 0, free_count = 0;
5548 	struct ext4_buddy e4b;
5549 	int ret = 0;
5550 
5551 	trace_ext4_trim_all_free(sb, group, start, max);
5552 
5553 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5554 	if (ret) {
5555 		ext4_warning(sb, "Error %d loading buddy information for %u",
5556 			     ret, group);
5557 		return ret;
5558 	}
5559 	bitmap = e4b.bd_bitmap;
5560 
5561 	ext4_lock_group(sb, group);
5562 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5563 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5564 		goto out;
5565 
5566 	start = (e4b.bd_info->bb_first_free > start) ?
5567 		e4b.bd_info->bb_first_free : start;
5568 
5569 	while (start <= max) {
5570 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5571 		if (start > max)
5572 			break;
5573 		next = mb_find_next_bit(bitmap, max + 1, start);
5574 
5575 		if ((next - start) >= minblocks) {
5576 			ret = ext4_trim_extent(sb, start,
5577 					       next - start, group, &e4b);
5578 			if (ret && ret != -EOPNOTSUPP)
5579 				break;
5580 			ret = 0;
5581 			count += next - start;
5582 		}
5583 		free_count += next - start;
5584 		start = next + 1;
5585 
5586 		if (fatal_signal_pending(current)) {
5587 			count = -ERESTARTSYS;
5588 			break;
5589 		}
5590 
5591 		if (need_resched()) {
5592 			ext4_unlock_group(sb, group);
5593 			cond_resched();
5594 			ext4_lock_group(sb, group);
5595 		}
5596 
5597 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5598 			break;
5599 	}
5600 
5601 	if (!ret) {
5602 		ret = count;
5603 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5604 	}
5605 out:
5606 	ext4_unlock_group(sb, group);
5607 	ext4_mb_unload_buddy(&e4b);
5608 
5609 	ext4_debug("trimmed %d blocks in the group %d\n",
5610 		count, group);
5611 
5612 	return ret;
5613 }
5614 
5615 /**
5616  * ext4_trim_fs() -- trim ioctl handle function
5617  * @sb:			superblock for filesystem
5618  * @range:		fstrim_range structure
5619  *
5620  * start:	First Byte to trim
5621  * len:		number of Bytes to trim from start
5622  * minlen:	minimum extent length in Bytes
5623  * ext4_trim_fs goes through all allocation groups containing Bytes from
5624  * start to start+len. For each such a group ext4_trim_all_free function
5625  * is invoked to trim all free space.
5626  */
5627 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5628 {
5629 	struct ext4_group_info *grp;
5630 	ext4_group_t group, first_group, last_group;
5631 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5632 	uint64_t start, end, minlen, trimmed = 0;
5633 	ext4_fsblk_t first_data_blk =
5634 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5635 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5636 	int ret = 0;
5637 
5638 	start = range->start >> sb->s_blocksize_bits;
5639 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5640 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5641 			      range->minlen >> sb->s_blocksize_bits);
5642 
5643 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5644 	    start >= max_blks ||
5645 	    range->len < sb->s_blocksize)
5646 		return -EINVAL;
5647 	if (end >= max_blks)
5648 		end = max_blks - 1;
5649 	if (end <= first_data_blk)
5650 		goto out;
5651 	if (start < first_data_blk)
5652 		start = first_data_blk;
5653 
5654 	/* Determine first and last group to examine based on start and end */
5655 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5656 				     &first_group, &first_cluster);
5657 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5658 				     &last_group, &last_cluster);
5659 
5660 	/* end now represents the last cluster to discard in this group */
5661 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5662 
5663 	for (group = first_group; group <= last_group; group++) {
5664 		grp = ext4_get_group_info(sb, group);
5665 		/* We only do this if the grp has never been initialized */
5666 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5667 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5668 			if (ret)
5669 				break;
5670 		}
5671 
5672 		/*
5673 		 * For all the groups except the last one, last cluster will
5674 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5675 		 * change it for the last group, note that last_cluster is
5676 		 * already computed earlier by ext4_get_group_no_and_offset()
5677 		 */
5678 		if (group == last_group)
5679 			end = last_cluster;
5680 
5681 		if (grp->bb_free >= minlen) {
5682 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5683 						end, minlen);
5684 			if (cnt < 0) {
5685 				ret = cnt;
5686 				break;
5687 			}
5688 			trimmed += cnt;
5689 		}
5690 
5691 		/*
5692 		 * For every group except the first one, we are sure
5693 		 * that the first cluster to discard will be cluster #0.
5694 		 */
5695 		first_cluster = 0;
5696 	}
5697 
5698 	if (!ret)
5699 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5700 
5701 out:
5702 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5703 	return ret;
5704 }
5705 
5706 /* Iterate all the free extents in the group. */
5707 int
5708 ext4_mballoc_query_range(
5709 	struct super_block		*sb,
5710 	ext4_group_t			group,
5711 	ext4_grpblk_t			start,
5712 	ext4_grpblk_t			end,
5713 	ext4_mballoc_query_range_fn	formatter,
5714 	void				*priv)
5715 {
5716 	void				*bitmap;
5717 	ext4_grpblk_t			next;
5718 	struct ext4_buddy		e4b;
5719 	int				error;
5720 
5721 	error = ext4_mb_load_buddy(sb, group, &e4b);
5722 	if (error)
5723 		return error;
5724 	bitmap = e4b.bd_bitmap;
5725 
5726 	ext4_lock_group(sb, group);
5727 
5728 	start = (e4b.bd_info->bb_first_free > start) ?
5729 		e4b.bd_info->bb_first_free : start;
5730 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5731 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5732 
5733 	while (start <= end) {
5734 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5735 		if (start > end)
5736 			break;
5737 		next = mb_find_next_bit(bitmap, end + 1, start);
5738 
5739 		ext4_unlock_group(sb, group);
5740 		error = formatter(sb, group, start, next - start, priv);
5741 		if (error)
5742 			goto out_unload;
5743 		ext4_lock_group(sb, group);
5744 
5745 		start = next + 1;
5746 	}
5747 
5748 	ext4_unlock_group(sb, group);
5749 out_unload:
5750 	ext4_mb_unload_buddy(&e4b);
5751 
5752 	return error;
5753 }
5754