xref: /openbmc/linux/fs/ext4/mballoc.c (revision f3a8b664)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31 
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34 
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38 
39 /*
40  * MUSTDO:
41  *   - test ext4_ext_search_left() and ext4_ext_search_right()
42  *   - search for metadata in few groups
43  *
44  * TODO v4:
45  *   - normalization should take into account whether file is still open
46  *   - discard preallocations if no free space left (policy?)
47  *   - don't normalize tails
48  *   - quota
49  *   - reservation for superuser
50  *
51  * TODO v3:
52  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
53  *   - track min/max extents in each group for better group selection
54  *   - mb_mark_used() may allocate chunk right after splitting buddy
55  *   - tree of groups sorted by number of free blocks
56  *   - error handling
57  */
58 
59 /*
60  * The allocation request involve request for multiple number of blocks
61  * near to the goal(block) value specified.
62  *
63  * During initialization phase of the allocator we decide to use the
64  * group preallocation or inode preallocation depending on the size of
65  * the file. The size of the file could be the resulting file size we
66  * would have after allocation, or the current file size, which ever
67  * is larger. If the size is less than sbi->s_mb_stream_request we
68  * select to use the group preallocation. The default value of
69  * s_mb_stream_request is 16 blocks. This can also be tuned via
70  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71  * terms of number of blocks.
72  *
73  * The main motivation for having small file use group preallocation is to
74  * ensure that we have small files closer together on the disk.
75  *
76  * First stage the allocator looks at the inode prealloc list,
77  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78  * spaces for this particular inode. The inode prealloc space is
79  * represented as:
80  *
81  * pa_lstart -> the logical start block for this prealloc space
82  * pa_pstart -> the physical start block for this prealloc space
83  * pa_len    -> length for this prealloc space (in clusters)
84  * pa_free   ->  free space available in this prealloc space (in clusters)
85  *
86  * The inode preallocation space is used looking at the _logical_ start
87  * block. If only the logical file block falls within the range of prealloc
88  * space we will consume the particular prealloc space. This makes sure that
89  * we have contiguous physical blocks representing the file blocks
90  *
91  * The important thing to be noted in case of inode prealloc space is that
92  * we don't modify the values associated to inode prealloc space except
93  * pa_free.
94  *
95  * If we are not able to find blocks in the inode prealloc space and if we
96  * have the group allocation flag set then we look at the locality group
97  * prealloc space. These are per CPU prealloc list represented as
98  *
99  * ext4_sb_info.s_locality_groups[smp_processor_id()]
100  *
101  * The reason for having a per cpu locality group is to reduce the contention
102  * between CPUs. It is possible to get scheduled at this point.
103  *
104  * The locality group prealloc space is used looking at whether we have
105  * enough free space (pa_free) within the prealloc space.
106  *
107  * If we can't allocate blocks via inode prealloc or/and locality group
108  * prealloc then we look at the buddy cache. The buddy cache is represented
109  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110  * mapped to the buddy and bitmap information regarding different
111  * groups. The buddy information is attached to buddy cache inode so that
112  * we can access them through the page cache. The information regarding
113  * each group is loaded via ext4_mb_load_buddy.  The information involve
114  * block bitmap and buddy information. The information are stored in the
115  * inode as:
116  *
117  *  {                        page                        }
118  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119  *
120  *
121  * one block each for bitmap and buddy information.  So for each group we
122  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123  * blocksize) blocks.  So it can have information regarding groups_per_page
124  * which is blocks_per_page/2
125  *
126  * The buddy cache inode is not stored on disk. The inode is thrown
127  * away when the filesystem is unmounted.
128  *
129  * We look for count number of blocks in the buddy cache. If we were able
130  * to locate that many free blocks we return with additional information
131  * regarding rest of the contiguous physical block available
132  *
133  * Before allocating blocks via buddy cache we normalize the request
134  * blocks. This ensure we ask for more blocks that we needed. The extra
135  * blocks that we get after allocation is added to the respective prealloc
136  * list. In case of inode preallocation we follow a list of heuristics
137  * based on file size. This can be found in ext4_mb_normalize_request. If
138  * we are doing a group prealloc we try to normalize the request to
139  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
140  * dependent on the cluster size; for non-bigalloc file systems, it is
141  * 512 blocks. This can be tuned via
142  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143  * terms of number of blocks. If we have mounted the file system with -O
144  * stripe=<value> option the group prealloc request is normalized to the
145  * the smallest multiple of the stripe value (sbi->s_stripe) which is
146  * greater than the default mb_group_prealloc.
147  *
148  * The regular allocator (using the buddy cache) supports a few tunables.
149  *
150  * /sys/fs/ext4/<partition>/mb_min_to_scan
151  * /sys/fs/ext4/<partition>/mb_max_to_scan
152  * /sys/fs/ext4/<partition>/mb_order2_req
153  *
154  * The regular allocator uses buddy scan only if the request len is power of
155  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156  * value of s_mb_order2_reqs can be tuned via
157  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
158  * stripe size (sbi->s_stripe), we try to search for contiguous block in
159  * stripe size. This should result in better allocation on RAID setups. If
160  * not, we search in the specific group using bitmap for best extents. The
161  * tunable min_to_scan and max_to_scan control the behaviour here.
162  * min_to_scan indicate how long the mballoc __must__ look for a best
163  * extent and max_to_scan indicates how long the mballoc __can__ look for a
164  * best extent in the found extents. Searching for the blocks starts with
165  * the group specified as the goal value in allocation context via
166  * ac_g_ex. Each group is first checked based on the criteria whether it
167  * can be used for allocation. ext4_mb_good_group explains how the groups are
168  * checked.
169  *
170  * Both the prealloc space are getting populated as above. So for the first
171  * request we will hit the buddy cache which will result in this prealloc
172  * space getting filled. The prealloc space is then later used for the
173  * subsequent request.
174  */
175 
176 /*
177  * mballoc operates on the following data:
178  *  - on-disk bitmap
179  *  - in-core buddy (actually includes buddy and bitmap)
180  *  - preallocation descriptors (PAs)
181  *
182  * there are two types of preallocations:
183  *  - inode
184  *    assiged to specific inode and can be used for this inode only.
185  *    it describes part of inode's space preallocated to specific
186  *    physical blocks. any block from that preallocated can be used
187  *    independent. the descriptor just tracks number of blocks left
188  *    unused. so, before taking some block from descriptor, one must
189  *    make sure corresponded logical block isn't allocated yet. this
190  *    also means that freeing any block within descriptor's range
191  *    must discard all preallocated blocks.
192  *  - locality group
193  *    assigned to specific locality group which does not translate to
194  *    permanent set of inodes: inode can join and leave group. space
195  *    from this type of preallocation can be used for any inode. thus
196  *    it's consumed from the beginning to the end.
197  *
198  * relation between them can be expressed as:
199  *    in-core buddy = on-disk bitmap + preallocation descriptors
200  *
201  * this mean blocks mballoc considers used are:
202  *  - allocated blocks (persistent)
203  *  - preallocated blocks (non-persistent)
204  *
205  * consistency in mballoc world means that at any time a block is either
206  * free or used in ALL structures. notice: "any time" should not be read
207  * literally -- time is discrete and delimited by locks.
208  *
209  *  to keep it simple, we don't use block numbers, instead we count number of
210  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211  *
212  * all operations can be expressed as:
213  *  - init buddy:			buddy = on-disk + PAs
214  *  - new PA:				buddy += N; PA = N
215  *  - use inode PA:			on-disk += N; PA -= N
216  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
217  *  - use locality group PA		on-disk += N; PA -= N
218  *  - discard locality group PA		buddy -= PA; PA = 0
219  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220  *        is used in real operation because we can't know actual used
221  *        bits from PA, only from on-disk bitmap
222  *
223  * if we follow this strict logic, then all operations above should be atomic.
224  * given some of them can block, we'd have to use something like semaphores
225  * killing performance on high-end SMP hardware. let's try to relax it using
226  * the following knowledge:
227  *  1) if buddy is referenced, it's already initialized
228  *  2) while block is used in buddy and the buddy is referenced,
229  *     nobody can re-allocate that block
230  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
232  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233  *     block
234  *
235  * so, now we're building a concurrency table:
236  *  - init buddy vs.
237  *    - new PA
238  *      blocks for PA are allocated in the buddy, buddy must be referenced
239  *      until PA is linked to allocation group to avoid concurrent buddy init
240  *    - use inode PA
241  *      we need to make sure that either on-disk bitmap or PA has uptodate data
242  *      given (3) we care that PA-=N operation doesn't interfere with init
243  *    - discard inode PA
244  *      the simplest way would be to have buddy initialized by the discard
245  *    - use locality group PA
246  *      again PA-=N must be serialized with init
247  *    - discard locality group PA
248  *      the simplest way would be to have buddy initialized by the discard
249  *  - new PA vs.
250  *    - use inode PA
251  *      i_data_sem serializes them
252  *    - discard inode PA
253  *      discard process must wait until PA isn't used by another process
254  *    - use locality group PA
255  *      some mutex should serialize them
256  *    - discard locality group PA
257  *      discard process must wait until PA isn't used by another process
258  *  - use inode PA
259  *    - use inode PA
260  *      i_data_sem or another mutex should serializes them
261  *    - discard inode PA
262  *      discard process must wait until PA isn't used by another process
263  *    - use locality group PA
264  *      nothing wrong here -- they're different PAs covering different blocks
265  *    - discard locality group PA
266  *      discard process must wait until PA isn't used by another process
267  *
268  * now we're ready to make few consequences:
269  *  - PA is referenced and while it is no discard is possible
270  *  - PA is referenced until block isn't marked in on-disk bitmap
271  *  - PA changes only after on-disk bitmap
272  *  - discard must not compete with init. either init is done before
273  *    any discard or they're serialized somehow
274  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
275  *
276  * a special case when we've used PA to emptiness. no need to modify buddy
277  * in this case, but we should care about concurrent init
278  *
279  */
280 
281  /*
282  * Logic in few words:
283  *
284  *  - allocation:
285  *    load group
286  *    find blocks
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - use preallocation:
291  *    find proper PA (per-inode or group)
292  *    load group
293  *    mark bits in on-disk bitmap
294  *    release group
295  *    release PA
296  *
297  *  - free:
298  *    load group
299  *    mark bits in on-disk bitmap
300  *    release group
301  *
302  *  - discard preallocations in group:
303  *    mark PAs deleted
304  *    move them onto local list
305  *    load on-disk bitmap
306  *    load group
307  *    remove PA from object (inode or locality group)
308  *    mark free blocks in-core
309  *
310  *  - discard inode's preallocations:
311  */
312 
313 /*
314  * Locking rules
315  *
316  * Locks:
317  *  - bitlock on a group	(group)
318  *  - object (inode/locality)	(object)
319  *  - per-pa lock		(pa)
320  *
321  * Paths:
322  *  - new pa
323  *    object
324  *    group
325  *
326  *  - find and use pa:
327  *    pa
328  *
329  *  - release consumed pa:
330  *    pa
331  *    group
332  *    object
333  *
334  *  - generate in-core bitmap:
335  *    group
336  *        pa
337  *
338  *  - discard all for given object (inode, locality group):
339  *    object
340  *        pa
341  *    group
342  *
343  *  - discard all for given group:
344  *    group
345  *        pa
346  *    group
347  *        object
348  *
349  */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353 
354 /* We create slab caches for groupinfo data structures based on the
355  * superblock block size.  There will be one per mounted filesystem for
356  * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359 
360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365 
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 					ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 						ext4_group_t group);
370 static void ext4_free_data_callback(struct super_block *sb,
371 				struct ext4_journal_cb_entry *jce, int rc);
372 
373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 {
375 #if BITS_PER_LONG == 64
376 	*bit += ((unsigned long) addr & 7UL) << 3;
377 	addr = (void *) ((unsigned long) addr & ~7UL);
378 #elif BITS_PER_LONG == 32
379 	*bit += ((unsigned long) addr & 3UL) << 3;
380 	addr = (void *) ((unsigned long) addr & ~3UL);
381 #else
382 #error "how many bits you are?!"
383 #endif
384 	return addr;
385 }
386 
387 static inline int mb_test_bit(int bit, void *addr)
388 {
389 	/*
390 	 * ext4_test_bit on architecture like powerpc
391 	 * needs unsigned long aligned address
392 	 */
393 	addr = mb_correct_addr_and_bit(&bit, addr);
394 	return ext4_test_bit(bit, addr);
395 }
396 
397 static inline void mb_set_bit(int bit, void *addr)
398 {
399 	addr = mb_correct_addr_and_bit(&bit, addr);
400 	ext4_set_bit(bit, addr);
401 }
402 
403 static inline void mb_clear_bit(int bit, void *addr)
404 {
405 	addr = mb_correct_addr_and_bit(&bit, addr);
406 	ext4_clear_bit(bit, addr);
407 }
408 
409 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 {
411 	addr = mb_correct_addr_and_bit(&bit, addr);
412 	return ext4_test_and_clear_bit(bit, addr);
413 }
414 
415 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 {
417 	int fix = 0, ret, tmpmax;
418 	addr = mb_correct_addr_and_bit(&fix, addr);
419 	tmpmax = max + fix;
420 	start += fix;
421 
422 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 	if (ret > max)
424 		return max;
425 	return ret;
426 }
427 
428 static inline int mb_find_next_bit(void *addr, int max, int start)
429 {
430 	int fix = 0, ret, tmpmax;
431 	addr = mb_correct_addr_and_bit(&fix, addr);
432 	tmpmax = max + fix;
433 	start += fix;
434 
435 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 	if (ret > max)
437 		return max;
438 	return ret;
439 }
440 
441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 {
443 	char *bb;
444 
445 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 	BUG_ON(max == NULL);
447 
448 	if (order > e4b->bd_blkbits + 1) {
449 		*max = 0;
450 		return NULL;
451 	}
452 
453 	/* at order 0 we see each particular block */
454 	if (order == 0) {
455 		*max = 1 << (e4b->bd_blkbits + 3);
456 		return e4b->bd_bitmap;
457 	}
458 
459 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461 
462 	return bb;
463 }
464 
465 #ifdef DOUBLE_CHECK
466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 			   int first, int count)
468 {
469 	int i;
470 	struct super_block *sb = e4b->bd_sb;
471 
472 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 		return;
474 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 	for (i = 0; i < count; i++) {
476 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 			ext4_fsblk_t blocknr;
478 
479 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 			ext4_grp_locked_error(sb, e4b->bd_group,
482 					      inode ? inode->i_ino : 0,
483 					      blocknr,
484 					      "freeing block already freed "
485 					      "(bit %u)",
486 					      first + i);
487 		}
488 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489 	}
490 }
491 
492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 {
494 	int i;
495 
496 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 		return;
498 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 	for (i = 0; i < count; i++) {
500 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502 	}
503 }
504 
505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 {
507 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 		unsigned char *b1, *b2;
509 		int i;
510 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 		b2 = (unsigned char *) bitmap;
512 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 			if (b1[i] != b2[i]) {
514 				ext4_msg(e4b->bd_sb, KERN_ERR,
515 					 "corruption in group %u "
516 					 "at byte %u(%u): %x in copy != %x "
517 					 "on disk/prealloc",
518 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 				BUG();
520 			}
521 		}
522 	}
523 }
524 
525 #else
526 static inline void mb_free_blocks_double(struct inode *inode,
527 				struct ext4_buddy *e4b, int first, int count)
528 {
529 	return;
530 }
531 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 						int first, int count)
533 {
534 	return;
535 }
536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 {
538 	return;
539 }
540 #endif
541 
542 #ifdef AGGRESSIVE_CHECK
543 
544 #define MB_CHECK_ASSERT(assert)						\
545 do {									\
546 	if (!(assert)) {						\
547 		printk(KERN_EMERG					\
548 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
549 			function, file, line, # assert);		\
550 		BUG();							\
551 	}								\
552 } while (0)
553 
554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 				const char *function, int line)
556 {
557 	struct super_block *sb = e4b->bd_sb;
558 	int order = e4b->bd_blkbits + 1;
559 	int max;
560 	int max2;
561 	int i;
562 	int j;
563 	int k;
564 	int count;
565 	struct ext4_group_info *grp;
566 	int fragments = 0;
567 	int fstart;
568 	struct list_head *cur;
569 	void *buddy;
570 	void *buddy2;
571 
572 	{
573 		static int mb_check_counter;
574 		if (mb_check_counter++ % 100 != 0)
575 			return 0;
576 	}
577 
578 	while (order > 1) {
579 		buddy = mb_find_buddy(e4b, order, &max);
580 		MB_CHECK_ASSERT(buddy);
581 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 		MB_CHECK_ASSERT(buddy2);
583 		MB_CHECK_ASSERT(buddy != buddy2);
584 		MB_CHECK_ASSERT(max * 2 == max2);
585 
586 		count = 0;
587 		for (i = 0; i < max; i++) {
588 
589 			if (mb_test_bit(i, buddy)) {
590 				/* only single bit in buddy2 may be 1 */
591 				if (!mb_test_bit(i << 1, buddy2)) {
592 					MB_CHECK_ASSERT(
593 						mb_test_bit((i<<1)+1, buddy2));
594 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 					MB_CHECK_ASSERT(
596 						mb_test_bit(i << 1, buddy2));
597 				}
598 				continue;
599 			}
600 
601 			/* both bits in buddy2 must be 1 */
602 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604 
605 			for (j = 0; j < (1 << order); j++) {
606 				k = (i * (1 << order)) + j;
607 				MB_CHECK_ASSERT(
608 					!mb_test_bit(k, e4b->bd_bitmap));
609 			}
610 			count++;
611 		}
612 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 		order--;
614 	}
615 
616 	fstart = -1;
617 	buddy = mb_find_buddy(e4b, 0, &max);
618 	for (i = 0; i < max; i++) {
619 		if (!mb_test_bit(i, buddy)) {
620 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 			if (fstart == -1) {
622 				fragments++;
623 				fstart = i;
624 			}
625 			continue;
626 		}
627 		fstart = -1;
628 		/* check used bits only */
629 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 			buddy2 = mb_find_buddy(e4b, j, &max2);
631 			k = i >> j;
632 			MB_CHECK_ASSERT(k < max2);
633 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634 		}
635 	}
636 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638 
639 	grp = ext4_get_group_info(sb, e4b->bd_group);
640 	list_for_each(cur, &grp->bb_prealloc_list) {
641 		ext4_group_t groupnr;
642 		struct ext4_prealloc_space *pa;
643 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 		for (i = 0; i < pa->pa_len; i++)
647 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 	}
649 	return 0;
650 }
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
653 					__FILE__, __func__, __LINE__)
654 #else
655 #define mb_check_buddy(e4b)
656 #endif
657 
658 /*
659  * Divide blocks started from @first with length @len into
660  * smaller chunks with power of 2 blocks.
661  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662  * then increase bb_counters[] for corresponded chunk size.
663  */
664 static void ext4_mb_mark_free_simple(struct super_block *sb,
665 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 					struct ext4_group_info *grp)
667 {
668 	struct ext4_sb_info *sbi = EXT4_SB(sb);
669 	ext4_grpblk_t min;
670 	ext4_grpblk_t max;
671 	ext4_grpblk_t chunk;
672 	unsigned short border;
673 
674 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675 
676 	border = 2 << sb->s_blocksize_bits;
677 
678 	while (len > 0) {
679 		/* find how many blocks can be covered since this position */
680 		max = ffs(first | border) - 1;
681 
682 		/* find how many blocks of power 2 we need to mark */
683 		min = fls(len) - 1;
684 
685 		if (max < min)
686 			min = max;
687 		chunk = 1 << min;
688 
689 		/* mark multiblock chunks only */
690 		grp->bb_counters[min]++;
691 		if (min > 0)
692 			mb_clear_bit(first >> min,
693 				     buddy + sbi->s_mb_offsets[min]);
694 
695 		len -= chunk;
696 		first += chunk;
697 	}
698 }
699 
700 /*
701  * Cache the order of the largest free extent we have available in this block
702  * group.
703  */
704 static void
705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 {
707 	int i;
708 	int bits;
709 
710 	grp->bb_largest_free_order = -1; /* uninit */
711 
712 	bits = sb->s_blocksize_bits + 1;
713 	for (i = bits; i >= 0; i--) {
714 		if (grp->bb_counters[i] > 0) {
715 			grp->bb_largest_free_order = i;
716 			break;
717 		}
718 	}
719 }
720 
721 static noinline_for_stack
722 void ext4_mb_generate_buddy(struct super_block *sb,
723 				void *buddy, void *bitmap, ext4_group_t group)
724 {
725 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 	struct ext4_sb_info *sbi = EXT4_SB(sb);
727 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 	ext4_grpblk_t i = 0;
729 	ext4_grpblk_t first;
730 	ext4_grpblk_t len;
731 	unsigned free = 0;
732 	unsigned fragments = 0;
733 	unsigned long long period = get_cycles();
734 
735 	/* initialize buddy from bitmap which is aggregation
736 	 * of on-disk bitmap and preallocations */
737 	i = mb_find_next_zero_bit(bitmap, max, 0);
738 	grp->bb_first_free = i;
739 	while (i < max) {
740 		fragments++;
741 		first = i;
742 		i = mb_find_next_bit(bitmap, max, i);
743 		len = i - first;
744 		free += len;
745 		if (len > 1)
746 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 		else
748 			grp->bb_counters[0]++;
749 		if (i < max)
750 			i = mb_find_next_zero_bit(bitmap, max, i);
751 	}
752 	grp->bb_fragments = fragments;
753 
754 	if (free != grp->bb_free) {
755 		ext4_grp_locked_error(sb, group, 0, 0,
756 				      "block bitmap and bg descriptor "
757 				      "inconsistent: %u vs %u free clusters",
758 				      free, grp->bb_free);
759 		/*
760 		 * If we intend to continue, we consider group descriptor
761 		 * corrupt and update bb_free using bitmap value
762 		 */
763 		grp->bb_free = free;
764 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 			percpu_counter_sub(&sbi->s_freeclusters_counter,
766 					   grp->bb_free);
767 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 	}
769 	mb_set_largest_free_order(sb, grp);
770 
771 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772 
773 	period = get_cycles() - period;
774 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 	EXT4_SB(sb)->s_mb_buddies_generated++;
776 	EXT4_SB(sb)->s_mb_generation_time += period;
777 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778 }
779 
780 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 {
782 	int count;
783 	int order = 1;
784 	void *buddy;
785 
786 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 		ext4_set_bits(buddy, 0, count);
788 	}
789 	e4b->bd_info->bb_fragments = 0;
790 	memset(e4b->bd_info->bb_counters, 0,
791 		sizeof(*e4b->bd_info->bb_counters) *
792 		(e4b->bd_sb->s_blocksize_bits + 2));
793 
794 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 		e4b->bd_bitmap, e4b->bd_group);
796 }
797 
798 /* The buddy information is attached the buddy cache inode
799  * for convenience. The information regarding each group
800  * is loaded via ext4_mb_load_buddy. The information involve
801  * block bitmap and buddy information. The information are
802  * stored in the inode as
803  *
804  * {                        page                        }
805  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806  *
807  *
808  * one block each for bitmap and buddy information.
809  * So for each group we take up 2 blocks. A page can
810  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
811  * So it can have information regarding groups_per_page which
812  * is blocks_per_page/2
813  *
814  * Locking note:  This routine takes the block group lock of all groups
815  * for this page; do not hold this lock when calling this routine!
816  */
817 
818 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
819 {
820 	ext4_group_t ngroups;
821 	int blocksize;
822 	int blocks_per_page;
823 	int groups_per_page;
824 	int err = 0;
825 	int i;
826 	ext4_group_t first_group, group;
827 	int first_block;
828 	struct super_block *sb;
829 	struct buffer_head *bhs;
830 	struct buffer_head **bh = NULL;
831 	struct inode *inode;
832 	char *data;
833 	char *bitmap;
834 	struct ext4_group_info *grinfo;
835 
836 	mb_debug(1, "init page %lu\n", page->index);
837 
838 	inode = page->mapping->host;
839 	sb = inode->i_sb;
840 	ngroups = ext4_get_groups_count(sb);
841 	blocksize = 1 << inode->i_blkbits;
842 	blocks_per_page = PAGE_SIZE / blocksize;
843 
844 	groups_per_page = blocks_per_page >> 1;
845 	if (groups_per_page == 0)
846 		groups_per_page = 1;
847 
848 	/* allocate buffer_heads to read bitmaps */
849 	if (groups_per_page > 1) {
850 		i = sizeof(struct buffer_head *) * groups_per_page;
851 		bh = kzalloc(i, gfp);
852 		if (bh == NULL) {
853 			err = -ENOMEM;
854 			goto out;
855 		}
856 	} else
857 		bh = &bhs;
858 
859 	first_group = page->index * blocks_per_page / 2;
860 
861 	/* read all groups the page covers into the cache */
862 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 		if (group >= ngroups)
864 			break;
865 
866 		grinfo = ext4_get_group_info(sb, group);
867 		/*
868 		 * If page is uptodate then we came here after online resize
869 		 * which added some new uninitialized group info structs, so
870 		 * we must skip all initialized uptodate buddies on the page,
871 		 * which may be currently in use by an allocating task.
872 		 */
873 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 			bh[i] = NULL;
875 			continue;
876 		}
877 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878 		if (IS_ERR(bh[i])) {
879 			err = PTR_ERR(bh[i]);
880 			bh[i] = NULL;
881 			goto out;
882 		}
883 		mb_debug(1, "read bitmap for group %u\n", group);
884 	}
885 
886 	/* wait for I/O completion */
887 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 		int err2;
889 
890 		if (!bh[i])
891 			continue;
892 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893 		if (!err)
894 			err = err2;
895 	}
896 
897 	first_block = page->index * blocks_per_page;
898 	for (i = 0; i < blocks_per_page; i++) {
899 		group = (first_block + i) >> 1;
900 		if (group >= ngroups)
901 			break;
902 
903 		if (!bh[group - first_group])
904 			/* skip initialized uptodate buddy */
905 			continue;
906 
907 		if (!buffer_verified(bh[group - first_group]))
908 			/* Skip faulty bitmaps */
909 			continue;
910 		err = 0;
911 
912 		/*
913 		 * data carry information regarding this
914 		 * particular group in the format specified
915 		 * above
916 		 *
917 		 */
918 		data = page_address(page) + (i * blocksize);
919 		bitmap = bh[group - first_group]->b_data;
920 
921 		/*
922 		 * We place the buddy block and bitmap block
923 		 * close together
924 		 */
925 		if ((first_block + i) & 1) {
926 			/* this is block of buddy */
927 			BUG_ON(incore == NULL);
928 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 				group, page->index, i * blocksize);
930 			trace_ext4_mb_buddy_bitmap_load(sb, group);
931 			grinfo = ext4_get_group_info(sb, group);
932 			grinfo->bb_fragments = 0;
933 			memset(grinfo->bb_counters, 0,
934 			       sizeof(*grinfo->bb_counters) *
935 				(sb->s_blocksize_bits+2));
936 			/*
937 			 * incore got set to the group block bitmap below
938 			 */
939 			ext4_lock_group(sb, group);
940 			/* init the buddy */
941 			memset(data, 0xff, blocksize);
942 			ext4_mb_generate_buddy(sb, data, incore, group);
943 			ext4_unlock_group(sb, group);
944 			incore = NULL;
945 		} else {
946 			/* this is block of bitmap */
947 			BUG_ON(incore != NULL);
948 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 				group, page->index, i * blocksize);
950 			trace_ext4_mb_bitmap_load(sb, group);
951 
952 			/* see comments in ext4_mb_put_pa() */
953 			ext4_lock_group(sb, group);
954 			memcpy(data, bitmap, blocksize);
955 
956 			/* mark all preallocated blks used in in-core bitmap */
957 			ext4_mb_generate_from_pa(sb, data, group);
958 			ext4_mb_generate_from_freelist(sb, data, group);
959 			ext4_unlock_group(sb, group);
960 
961 			/* set incore so that the buddy information can be
962 			 * generated using this
963 			 */
964 			incore = data;
965 		}
966 	}
967 	SetPageUptodate(page);
968 
969 out:
970 	if (bh) {
971 		for (i = 0; i < groups_per_page; i++)
972 			brelse(bh[i]);
973 		if (bh != &bhs)
974 			kfree(bh);
975 	}
976 	return err;
977 }
978 
979 /*
980  * Lock the buddy and bitmap pages. This make sure other parallel init_group
981  * on the same buddy page doesn't happen whild holding the buddy page lock.
982  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984  */
985 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
987 {
988 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989 	int block, pnum, poff;
990 	int blocks_per_page;
991 	struct page *page;
992 
993 	e4b->bd_buddy_page = NULL;
994 	e4b->bd_bitmap_page = NULL;
995 
996 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
997 	/*
998 	 * the buddy cache inode stores the block bitmap
999 	 * and buddy information in consecutive blocks.
1000 	 * So for each group we need two blocks.
1001 	 */
1002 	block = group * 2;
1003 	pnum = block / blocks_per_page;
1004 	poff = block % blocks_per_page;
1005 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006 	if (!page)
1007 		return -ENOMEM;
1008 	BUG_ON(page->mapping != inode->i_mapping);
1009 	e4b->bd_bitmap_page = page;
1010 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011 
1012 	if (blocks_per_page >= 2) {
1013 		/* buddy and bitmap are on the same page */
1014 		return 0;
1015 	}
1016 
1017 	block++;
1018 	pnum = block / blocks_per_page;
1019 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1020 	if (!page)
1021 		return -ENOMEM;
1022 	BUG_ON(page->mapping != inode->i_mapping);
1023 	e4b->bd_buddy_page = page;
1024 	return 0;
1025 }
1026 
1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 {
1029 	if (e4b->bd_bitmap_page) {
1030 		unlock_page(e4b->bd_bitmap_page);
1031 		put_page(e4b->bd_bitmap_page);
1032 	}
1033 	if (e4b->bd_buddy_page) {
1034 		unlock_page(e4b->bd_buddy_page);
1035 		put_page(e4b->bd_buddy_page);
1036 	}
1037 }
1038 
1039 /*
1040  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1041  * block group lock of all groups for this page; do not hold the BG lock when
1042  * calling this routine!
1043  */
1044 static noinline_for_stack
1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046 {
1047 
1048 	struct ext4_group_info *this_grp;
1049 	struct ext4_buddy e4b;
1050 	struct page *page;
1051 	int ret = 0;
1052 
1053 	might_sleep();
1054 	mb_debug(1, "init group %u\n", group);
1055 	this_grp = ext4_get_group_info(sb, group);
1056 	/*
1057 	 * This ensures that we don't reinit the buddy cache
1058 	 * page which map to the group from which we are already
1059 	 * allocating. If we are looking at the buddy cache we would
1060 	 * have taken a reference using ext4_mb_load_buddy and that
1061 	 * would have pinned buddy page to page cache.
1062 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1063 	 * page accessed.
1064 	 */
1065 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 		/*
1068 		 * somebody initialized the group
1069 		 * return without doing anything
1070 		 */
1071 		goto err;
1072 	}
1073 
1074 	page = e4b.bd_bitmap_page;
1075 	ret = ext4_mb_init_cache(page, NULL, gfp);
1076 	if (ret)
1077 		goto err;
1078 	if (!PageUptodate(page)) {
1079 		ret = -EIO;
1080 		goto err;
1081 	}
1082 
1083 	if (e4b.bd_buddy_page == NULL) {
1084 		/*
1085 		 * If both the bitmap and buddy are in
1086 		 * the same page we don't need to force
1087 		 * init the buddy
1088 		 */
1089 		ret = 0;
1090 		goto err;
1091 	}
1092 	/* init buddy cache */
1093 	page = e4b.bd_buddy_page;
1094 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095 	if (ret)
1096 		goto err;
1097 	if (!PageUptodate(page)) {
1098 		ret = -EIO;
1099 		goto err;
1100 	}
1101 err:
1102 	ext4_mb_put_buddy_page_lock(&e4b);
1103 	return ret;
1104 }
1105 
1106 /*
1107  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1108  * block group lock of all groups for this page; do not hold the BG lock when
1109  * calling this routine!
1110  */
1111 static noinline_for_stack int
1112 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1113 		       struct ext4_buddy *e4b, gfp_t gfp)
1114 {
1115 	int blocks_per_page;
1116 	int block;
1117 	int pnum;
1118 	int poff;
1119 	struct page *page;
1120 	int ret;
1121 	struct ext4_group_info *grp;
1122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1123 	struct inode *inode = sbi->s_buddy_cache;
1124 
1125 	might_sleep();
1126 	mb_debug(1, "load group %u\n", group);
1127 
1128 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129 	grp = ext4_get_group_info(sb, group);
1130 
1131 	e4b->bd_blkbits = sb->s_blocksize_bits;
1132 	e4b->bd_info = grp;
1133 	e4b->bd_sb = sb;
1134 	e4b->bd_group = group;
1135 	e4b->bd_buddy_page = NULL;
1136 	e4b->bd_bitmap_page = NULL;
1137 
1138 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139 		/*
1140 		 * we need full data about the group
1141 		 * to make a good selection
1142 		 */
1143 		ret = ext4_mb_init_group(sb, group, gfp);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 
1148 	/*
1149 	 * the buddy cache inode stores the block bitmap
1150 	 * and buddy information in consecutive blocks.
1151 	 * So for each group we need two blocks.
1152 	 */
1153 	block = group * 2;
1154 	pnum = block / blocks_per_page;
1155 	poff = block % blocks_per_page;
1156 
1157 	/* we could use find_or_create_page(), but it locks page
1158 	 * what we'd like to avoid in fast path ... */
1159 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 	if (page == NULL || !PageUptodate(page)) {
1161 		if (page)
1162 			/*
1163 			 * drop the page reference and try
1164 			 * to get the page with lock. If we
1165 			 * are not uptodate that implies
1166 			 * somebody just created the page but
1167 			 * is yet to initialize the same. So
1168 			 * wait for it to initialize.
1169 			 */
1170 			put_page(page);
1171 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172 		if (page) {
1173 			BUG_ON(page->mapping != inode->i_mapping);
1174 			if (!PageUptodate(page)) {
1175 				ret = ext4_mb_init_cache(page, NULL, gfp);
1176 				if (ret) {
1177 					unlock_page(page);
1178 					goto err;
1179 				}
1180 				mb_cmp_bitmaps(e4b, page_address(page) +
1181 					       (poff * sb->s_blocksize));
1182 			}
1183 			unlock_page(page);
1184 		}
1185 	}
1186 	if (page == NULL) {
1187 		ret = -ENOMEM;
1188 		goto err;
1189 	}
1190 	if (!PageUptodate(page)) {
1191 		ret = -EIO;
1192 		goto err;
1193 	}
1194 
1195 	/* Pages marked accessed already */
1196 	e4b->bd_bitmap_page = page;
1197 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198 
1199 	block++;
1200 	pnum = block / blocks_per_page;
1201 	poff = block % blocks_per_page;
1202 
1203 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 	if (page == NULL || !PageUptodate(page)) {
1205 		if (page)
1206 			put_page(page);
1207 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208 		if (page) {
1209 			BUG_ON(page->mapping != inode->i_mapping);
1210 			if (!PageUptodate(page)) {
1211 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212 							 gfp);
1213 				if (ret) {
1214 					unlock_page(page);
1215 					goto err;
1216 				}
1217 			}
1218 			unlock_page(page);
1219 		}
1220 	}
1221 	if (page == NULL) {
1222 		ret = -ENOMEM;
1223 		goto err;
1224 	}
1225 	if (!PageUptodate(page)) {
1226 		ret = -EIO;
1227 		goto err;
1228 	}
1229 
1230 	/* Pages marked accessed already */
1231 	e4b->bd_buddy_page = page;
1232 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1233 
1234 	BUG_ON(e4b->bd_bitmap_page == NULL);
1235 	BUG_ON(e4b->bd_buddy_page == NULL);
1236 
1237 	return 0;
1238 
1239 err:
1240 	if (page)
1241 		put_page(page);
1242 	if (e4b->bd_bitmap_page)
1243 		put_page(e4b->bd_bitmap_page);
1244 	if (e4b->bd_buddy_page)
1245 		put_page(e4b->bd_buddy_page);
1246 	e4b->bd_buddy = NULL;
1247 	e4b->bd_bitmap = NULL;
1248 	return ret;
1249 }
1250 
1251 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1252 			      struct ext4_buddy *e4b)
1253 {
1254 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1255 }
1256 
1257 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258 {
1259 	if (e4b->bd_bitmap_page)
1260 		put_page(e4b->bd_bitmap_page);
1261 	if (e4b->bd_buddy_page)
1262 		put_page(e4b->bd_buddy_page);
1263 }
1264 
1265 
1266 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1267 {
1268 	int order = 1;
1269 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1270 	void *bb;
1271 
1272 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1273 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1274 
1275 	bb = e4b->bd_buddy;
1276 	while (order <= e4b->bd_blkbits + 1) {
1277 		block = block >> 1;
1278 		if (!mb_test_bit(block, bb)) {
1279 			/* this block is part of buddy of order 'order' */
1280 			return order;
1281 		}
1282 		bb += bb_incr;
1283 		bb_incr >>= 1;
1284 		order++;
1285 	}
1286 	return 0;
1287 }
1288 
1289 static void mb_clear_bits(void *bm, int cur, int len)
1290 {
1291 	__u32 *addr;
1292 
1293 	len = cur + len;
1294 	while (cur < len) {
1295 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1296 			/* fast path: clear whole word at once */
1297 			addr = bm + (cur >> 3);
1298 			*addr = 0;
1299 			cur += 32;
1300 			continue;
1301 		}
1302 		mb_clear_bit(cur, bm);
1303 		cur++;
1304 	}
1305 }
1306 
1307 /* clear bits in given range
1308  * will return first found zero bit if any, -1 otherwise
1309  */
1310 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1311 {
1312 	__u32 *addr;
1313 	int zero_bit = -1;
1314 
1315 	len = cur + len;
1316 	while (cur < len) {
1317 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1318 			/* fast path: clear whole word at once */
1319 			addr = bm + (cur >> 3);
1320 			if (*addr != (__u32)(-1) && zero_bit == -1)
1321 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1322 			*addr = 0;
1323 			cur += 32;
1324 			continue;
1325 		}
1326 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1327 			zero_bit = cur;
1328 		cur++;
1329 	}
1330 
1331 	return zero_bit;
1332 }
1333 
1334 void ext4_set_bits(void *bm, int cur, int len)
1335 {
1336 	__u32 *addr;
1337 
1338 	len = cur + len;
1339 	while (cur < len) {
1340 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1341 			/* fast path: set whole word at once */
1342 			addr = bm + (cur >> 3);
1343 			*addr = 0xffffffff;
1344 			cur += 32;
1345 			continue;
1346 		}
1347 		mb_set_bit(cur, bm);
1348 		cur++;
1349 	}
1350 }
1351 
1352 /*
1353  * _________________________________________________________________ */
1354 
1355 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1356 {
1357 	if (mb_test_bit(*bit + side, bitmap)) {
1358 		mb_clear_bit(*bit, bitmap);
1359 		(*bit) -= side;
1360 		return 1;
1361 	}
1362 	else {
1363 		(*bit) += side;
1364 		mb_set_bit(*bit, bitmap);
1365 		return -1;
1366 	}
1367 }
1368 
1369 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1370 {
1371 	int max;
1372 	int order = 1;
1373 	void *buddy = mb_find_buddy(e4b, order, &max);
1374 
1375 	while (buddy) {
1376 		void *buddy2;
1377 
1378 		/* Bits in range [first; last] are known to be set since
1379 		 * corresponding blocks were allocated. Bits in range
1380 		 * (first; last) will stay set because they form buddies on
1381 		 * upper layer. We just deal with borders if they don't
1382 		 * align with upper layer and then go up.
1383 		 * Releasing entire group is all about clearing
1384 		 * single bit of highest order buddy.
1385 		 */
1386 
1387 		/* Example:
1388 		 * ---------------------------------
1389 		 * |   1   |   1   |   1   |   1   |
1390 		 * ---------------------------------
1391 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1392 		 * ---------------------------------
1393 		 *   0   1   2   3   4   5   6   7
1394 		 *      \_____________________/
1395 		 *
1396 		 * Neither [1] nor [6] is aligned to above layer.
1397 		 * Left neighbour [0] is free, so mark it busy,
1398 		 * decrease bb_counters and extend range to
1399 		 * [0; 6]
1400 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1401 		 * mark [6] free, increase bb_counters and shrink range to
1402 		 * [0; 5].
1403 		 * Then shift range to [0; 2], go up and do the same.
1404 		 */
1405 
1406 
1407 		if (first & 1)
1408 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1409 		if (!(last & 1))
1410 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1411 		if (first > last)
1412 			break;
1413 		order++;
1414 
1415 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1416 			mb_clear_bits(buddy, first, last - first + 1);
1417 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1418 			break;
1419 		}
1420 		first >>= 1;
1421 		last >>= 1;
1422 		buddy = buddy2;
1423 	}
1424 }
1425 
1426 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1427 			   int first, int count)
1428 {
1429 	int left_is_free = 0;
1430 	int right_is_free = 0;
1431 	int block;
1432 	int last = first + count - 1;
1433 	struct super_block *sb = e4b->bd_sb;
1434 
1435 	if (WARN_ON(count == 0))
1436 		return;
1437 	BUG_ON(last >= (sb->s_blocksize << 3));
1438 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1439 	/* Don't bother if the block group is corrupt. */
1440 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1441 		return;
1442 
1443 	mb_check_buddy(e4b);
1444 	mb_free_blocks_double(inode, e4b, first, count);
1445 
1446 	e4b->bd_info->bb_free += count;
1447 	if (first < e4b->bd_info->bb_first_free)
1448 		e4b->bd_info->bb_first_free = first;
1449 
1450 	/* access memory sequentially: check left neighbour,
1451 	 * clear range and then check right neighbour
1452 	 */
1453 	if (first != 0)
1454 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1455 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1456 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1457 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1458 
1459 	if (unlikely(block != -1)) {
1460 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1461 		ext4_fsblk_t blocknr;
1462 
1463 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1464 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1465 		ext4_grp_locked_error(sb, e4b->bd_group,
1466 				      inode ? inode->i_ino : 0,
1467 				      blocknr,
1468 				      "freeing already freed block "
1469 				      "(bit %u); block bitmap corrupt.",
1470 				      block);
1471 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1472 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1473 					   e4b->bd_info->bb_free);
1474 		/* Mark the block group as corrupt. */
1475 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1476 			&e4b->bd_info->bb_state);
1477 		mb_regenerate_buddy(e4b);
1478 		goto done;
1479 	}
1480 
1481 	/* let's maintain fragments counter */
1482 	if (left_is_free && right_is_free)
1483 		e4b->bd_info->bb_fragments--;
1484 	else if (!left_is_free && !right_is_free)
1485 		e4b->bd_info->bb_fragments++;
1486 
1487 	/* buddy[0] == bd_bitmap is a special case, so handle
1488 	 * it right away and let mb_buddy_mark_free stay free of
1489 	 * zero order checks.
1490 	 * Check if neighbours are to be coaleasced,
1491 	 * adjust bitmap bb_counters and borders appropriately.
1492 	 */
1493 	if (first & 1) {
1494 		first += !left_is_free;
1495 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1496 	}
1497 	if (!(last & 1)) {
1498 		last -= !right_is_free;
1499 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1500 	}
1501 
1502 	if (first <= last)
1503 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1504 
1505 done:
1506 	mb_set_largest_free_order(sb, e4b->bd_info);
1507 	mb_check_buddy(e4b);
1508 }
1509 
1510 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1511 				int needed, struct ext4_free_extent *ex)
1512 {
1513 	int next = block;
1514 	int max, order;
1515 	void *buddy;
1516 
1517 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1518 	BUG_ON(ex == NULL);
1519 
1520 	buddy = mb_find_buddy(e4b, 0, &max);
1521 	BUG_ON(buddy == NULL);
1522 	BUG_ON(block >= max);
1523 	if (mb_test_bit(block, buddy)) {
1524 		ex->fe_len = 0;
1525 		ex->fe_start = 0;
1526 		ex->fe_group = 0;
1527 		return 0;
1528 	}
1529 
1530 	/* find actual order */
1531 	order = mb_find_order_for_block(e4b, block);
1532 	block = block >> order;
1533 
1534 	ex->fe_len = 1 << order;
1535 	ex->fe_start = block << order;
1536 	ex->fe_group = e4b->bd_group;
1537 
1538 	/* calc difference from given start */
1539 	next = next - ex->fe_start;
1540 	ex->fe_len -= next;
1541 	ex->fe_start += next;
1542 
1543 	while (needed > ex->fe_len &&
1544 	       mb_find_buddy(e4b, order, &max)) {
1545 
1546 		if (block + 1 >= max)
1547 			break;
1548 
1549 		next = (block + 1) * (1 << order);
1550 		if (mb_test_bit(next, e4b->bd_bitmap))
1551 			break;
1552 
1553 		order = mb_find_order_for_block(e4b, next);
1554 
1555 		block = next >> order;
1556 		ex->fe_len += 1 << order;
1557 	}
1558 
1559 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1560 	return ex->fe_len;
1561 }
1562 
1563 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1564 {
1565 	int ord;
1566 	int mlen = 0;
1567 	int max = 0;
1568 	int cur;
1569 	int start = ex->fe_start;
1570 	int len = ex->fe_len;
1571 	unsigned ret = 0;
1572 	int len0 = len;
1573 	void *buddy;
1574 
1575 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1576 	BUG_ON(e4b->bd_group != ex->fe_group);
1577 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1578 	mb_check_buddy(e4b);
1579 	mb_mark_used_double(e4b, start, len);
1580 
1581 	e4b->bd_info->bb_free -= len;
1582 	if (e4b->bd_info->bb_first_free == start)
1583 		e4b->bd_info->bb_first_free += len;
1584 
1585 	/* let's maintain fragments counter */
1586 	if (start != 0)
1587 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1588 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1589 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1590 	if (mlen && max)
1591 		e4b->bd_info->bb_fragments++;
1592 	else if (!mlen && !max)
1593 		e4b->bd_info->bb_fragments--;
1594 
1595 	/* let's maintain buddy itself */
1596 	while (len) {
1597 		ord = mb_find_order_for_block(e4b, start);
1598 
1599 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1600 			/* the whole chunk may be allocated at once! */
1601 			mlen = 1 << ord;
1602 			buddy = mb_find_buddy(e4b, ord, &max);
1603 			BUG_ON((start >> ord) >= max);
1604 			mb_set_bit(start >> ord, buddy);
1605 			e4b->bd_info->bb_counters[ord]--;
1606 			start += mlen;
1607 			len -= mlen;
1608 			BUG_ON(len < 0);
1609 			continue;
1610 		}
1611 
1612 		/* store for history */
1613 		if (ret == 0)
1614 			ret = len | (ord << 16);
1615 
1616 		/* we have to split large buddy */
1617 		BUG_ON(ord <= 0);
1618 		buddy = mb_find_buddy(e4b, ord, &max);
1619 		mb_set_bit(start >> ord, buddy);
1620 		e4b->bd_info->bb_counters[ord]--;
1621 
1622 		ord--;
1623 		cur = (start >> ord) & ~1U;
1624 		buddy = mb_find_buddy(e4b, ord, &max);
1625 		mb_clear_bit(cur, buddy);
1626 		mb_clear_bit(cur + 1, buddy);
1627 		e4b->bd_info->bb_counters[ord]++;
1628 		e4b->bd_info->bb_counters[ord]++;
1629 	}
1630 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1631 
1632 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1633 	mb_check_buddy(e4b);
1634 
1635 	return ret;
1636 }
1637 
1638 /*
1639  * Must be called under group lock!
1640  */
1641 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1642 					struct ext4_buddy *e4b)
1643 {
1644 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1645 	int ret;
1646 
1647 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1648 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1649 
1650 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1651 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1652 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1653 
1654 	/* preallocation can change ac_b_ex, thus we store actually
1655 	 * allocated blocks for history */
1656 	ac->ac_f_ex = ac->ac_b_ex;
1657 
1658 	ac->ac_status = AC_STATUS_FOUND;
1659 	ac->ac_tail = ret & 0xffff;
1660 	ac->ac_buddy = ret >> 16;
1661 
1662 	/*
1663 	 * take the page reference. We want the page to be pinned
1664 	 * so that we don't get a ext4_mb_init_cache_call for this
1665 	 * group until we update the bitmap. That would mean we
1666 	 * double allocate blocks. The reference is dropped
1667 	 * in ext4_mb_release_context
1668 	 */
1669 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1670 	get_page(ac->ac_bitmap_page);
1671 	ac->ac_buddy_page = e4b->bd_buddy_page;
1672 	get_page(ac->ac_buddy_page);
1673 	/* store last allocated for subsequent stream allocation */
1674 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1675 		spin_lock(&sbi->s_md_lock);
1676 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1677 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1678 		spin_unlock(&sbi->s_md_lock);
1679 	}
1680 }
1681 
1682 /*
1683  * regular allocator, for general purposes allocation
1684  */
1685 
1686 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1687 					struct ext4_buddy *e4b,
1688 					int finish_group)
1689 {
1690 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1691 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1692 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1693 	struct ext4_free_extent ex;
1694 	int max;
1695 
1696 	if (ac->ac_status == AC_STATUS_FOUND)
1697 		return;
1698 	/*
1699 	 * We don't want to scan for a whole year
1700 	 */
1701 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1702 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1703 		ac->ac_status = AC_STATUS_BREAK;
1704 		return;
1705 	}
1706 
1707 	/*
1708 	 * Haven't found good chunk so far, let's continue
1709 	 */
1710 	if (bex->fe_len < gex->fe_len)
1711 		return;
1712 
1713 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1714 			&& bex->fe_group == e4b->bd_group) {
1715 		/* recheck chunk's availability - we don't know
1716 		 * when it was found (within this lock-unlock
1717 		 * period or not) */
1718 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1719 		if (max >= gex->fe_len) {
1720 			ext4_mb_use_best_found(ac, e4b);
1721 			return;
1722 		}
1723 	}
1724 }
1725 
1726 /*
1727  * The routine checks whether found extent is good enough. If it is,
1728  * then the extent gets marked used and flag is set to the context
1729  * to stop scanning. Otherwise, the extent is compared with the
1730  * previous found extent and if new one is better, then it's stored
1731  * in the context. Later, the best found extent will be used, if
1732  * mballoc can't find good enough extent.
1733  *
1734  * FIXME: real allocation policy is to be designed yet!
1735  */
1736 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1737 					struct ext4_free_extent *ex,
1738 					struct ext4_buddy *e4b)
1739 {
1740 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1741 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1742 
1743 	BUG_ON(ex->fe_len <= 0);
1744 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1745 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1746 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1747 
1748 	ac->ac_found++;
1749 
1750 	/*
1751 	 * The special case - take what you catch first
1752 	 */
1753 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1754 		*bex = *ex;
1755 		ext4_mb_use_best_found(ac, e4b);
1756 		return;
1757 	}
1758 
1759 	/*
1760 	 * Let's check whether the chuck is good enough
1761 	 */
1762 	if (ex->fe_len == gex->fe_len) {
1763 		*bex = *ex;
1764 		ext4_mb_use_best_found(ac, e4b);
1765 		return;
1766 	}
1767 
1768 	/*
1769 	 * If this is first found extent, just store it in the context
1770 	 */
1771 	if (bex->fe_len == 0) {
1772 		*bex = *ex;
1773 		return;
1774 	}
1775 
1776 	/*
1777 	 * If new found extent is better, store it in the context
1778 	 */
1779 	if (bex->fe_len < gex->fe_len) {
1780 		/* if the request isn't satisfied, any found extent
1781 		 * larger than previous best one is better */
1782 		if (ex->fe_len > bex->fe_len)
1783 			*bex = *ex;
1784 	} else if (ex->fe_len > gex->fe_len) {
1785 		/* if the request is satisfied, then we try to find
1786 		 * an extent that still satisfy the request, but is
1787 		 * smaller than previous one */
1788 		if (ex->fe_len < bex->fe_len)
1789 			*bex = *ex;
1790 	}
1791 
1792 	ext4_mb_check_limits(ac, e4b, 0);
1793 }
1794 
1795 static noinline_for_stack
1796 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1797 					struct ext4_buddy *e4b)
1798 {
1799 	struct ext4_free_extent ex = ac->ac_b_ex;
1800 	ext4_group_t group = ex.fe_group;
1801 	int max;
1802 	int err;
1803 
1804 	BUG_ON(ex.fe_len <= 0);
1805 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1806 	if (err)
1807 		return err;
1808 
1809 	ext4_lock_group(ac->ac_sb, group);
1810 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1811 
1812 	if (max > 0) {
1813 		ac->ac_b_ex = ex;
1814 		ext4_mb_use_best_found(ac, e4b);
1815 	}
1816 
1817 	ext4_unlock_group(ac->ac_sb, group);
1818 	ext4_mb_unload_buddy(e4b);
1819 
1820 	return 0;
1821 }
1822 
1823 static noinline_for_stack
1824 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1825 				struct ext4_buddy *e4b)
1826 {
1827 	ext4_group_t group = ac->ac_g_ex.fe_group;
1828 	int max;
1829 	int err;
1830 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1831 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1832 	struct ext4_free_extent ex;
1833 
1834 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1835 		return 0;
1836 	if (grp->bb_free == 0)
1837 		return 0;
1838 
1839 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1840 	if (err)
1841 		return err;
1842 
1843 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1844 		ext4_mb_unload_buddy(e4b);
1845 		return 0;
1846 	}
1847 
1848 	ext4_lock_group(ac->ac_sb, group);
1849 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1850 			     ac->ac_g_ex.fe_len, &ex);
1851 	ex.fe_logical = 0xDEADFA11; /* debug value */
1852 
1853 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1854 		ext4_fsblk_t start;
1855 
1856 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1857 			ex.fe_start;
1858 		/* use do_div to get remainder (would be 64-bit modulo) */
1859 		if (do_div(start, sbi->s_stripe) == 0) {
1860 			ac->ac_found++;
1861 			ac->ac_b_ex = ex;
1862 			ext4_mb_use_best_found(ac, e4b);
1863 		}
1864 	} else if (max >= ac->ac_g_ex.fe_len) {
1865 		BUG_ON(ex.fe_len <= 0);
1866 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1867 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1868 		ac->ac_found++;
1869 		ac->ac_b_ex = ex;
1870 		ext4_mb_use_best_found(ac, e4b);
1871 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1872 		/* Sometimes, caller may want to merge even small
1873 		 * number of blocks to an existing extent */
1874 		BUG_ON(ex.fe_len <= 0);
1875 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1876 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1877 		ac->ac_found++;
1878 		ac->ac_b_ex = ex;
1879 		ext4_mb_use_best_found(ac, e4b);
1880 	}
1881 	ext4_unlock_group(ac->ac_sb, group);
1882 	ext4_mb_unload_buddy(e4b);
1883 
1884 	return 0;
1885 }
1886 
1887 /*
1888  * The routine scans buddy structures (not bitmap!) from given order
1889  * to max order and tries to find big enough chunk to satisfy the req
1890  */
1891 static noinline_for_stack
1892 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1893 					struct ext4_buddy *e4b)
1894 {
1895 	struct super_block *sb = ac->ac_sb;
1896 	struct ext4_group_info *grp = e4b->bd_info;
1897 	void *buddy;
1898 	int i;
1899 	int k;
1900 	int max;
1901 
1902 	BUG_ON(ac->ac_2order <= 0);
1903 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1904 		if (grp->bb_counters[i] == 0)
1905 			continue;
1906 
1907 		buddy = mb_find_buddy(e4b, i, &max);
1908 		BUG_ON(buddy == NULL);
1909 
1910 		k = mb_find_next_zero_bit(buddy, max, 0);
1911 		BUG_ON(k >= max);
1912 
1913 		ac->ac_found++;
1914 
1915 		ac->ac_b_ex.fe_len = 1 << i;
1916 		ac->ac_b_ex.fe_start = k << i;
1917 		ac->ac_b_ex.fe_group = e4b->bd_group;
1918 
1919 		ext4_mb_use_best_found(ac, e4b);
1920 
1921 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1922 
1923 		if (EXT4_SB(sb)->s_mb_stats)
1924 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1925 
1926 		break;
1927 	}
1928 }
1929 
1930 /*
1931  * The routine scans the group and measures all found extents.
1932  * In order to optimize scanning, caller must pass number of
1933  * free blocks in the group, so the routine can know upper limit.
1934  */
1935 static noinline_for_stack
1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1937 					struct ext4_buddy *e4b)
1938 {
1939 	struct super_block *sb = ac->ac_sb;
1940 	void *bitmap = e4b->bd_bitmap;
1941 	struct ext4_free_extent ex;
1942 	int i;
1943 	int free;
1944 
1945 	free = e4b->bd_info->bb_free;
1946 	BUG_ON(free <= 0);
1947 
1948 	i = e4b->bd_info->bb_first_free;
1949 
1950 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1951 		i = mb_find_next_zero_bit(bitmap,
1952 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1953 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1954 			/*
1955 			 * IF we have corrupt bitmap, we won't find any
1956 			 * free blocks even though group info says we
1957 			 * we have free blocks
1958 			 */
1959 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1960 					"%d free clusters as per "
1961 					"group info. But bitmap says 0",
1962 					free);
1963 			break;
1964 		}
1965 
1966 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1967 		BUG_ON(ex.fe_len <= 0);
1968 		if (free < ex.fe_len) {
1969 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1970 					"%d free clusters as per "
1971 					"group info. But got %d blocks",
1972 					free, ex.fe_len);
1973 			/*
1974 			 * The number of free blocks differs. This mostly
1975 			 * indicate that the bitmap is corrupt. So exit
1976 			 * without claiming the space.
1977 			 */
1978 			break;
1979 		}
1980 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1981 		ext4_mb_measure_extent(ac, &ex, e4b);
1982 
1983 		i += ex.fe_len;
1984 		free -= ex.fe_len;
1985 	}
1986 
1987 	ext4_mb_check_limits(ac, e4b, 1);
1988 }
1989 
1990 /*
1991  * This is a special case for storages like raid5
1992  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1993  */
1994 static noinline_for_stack
1995 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1996 				 struct ext4_buddy *e4b)
1997 {
1998 	struct super_block *sb = ac->ac_sb;
1999 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2000 	void *bitmap = e4b->bd_bitmap;
2001 	struct ext4_free_extent ex;
2002 	ext4_fsblk_t first_group_block;
2003 	ext4_fsblk_t a;
2004 	ext4_grpblk_t i;
2005 	int max;
2006 
2007 	BUG_ON(sbi->s_stripe == 0);
2008 
2009 	/* find first stripe-aligned block in group */
2010 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2011 
2012 	a = first_group_block + sbi->s_stripe - 1;
2013 	do_div(a, sbi->s_stripe);
2014 	i = (a * sbi->s_stripe) - first_group_block;
2015 
2016 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2017 		if (!mb_test_bit(i, bitmap)) {
2018 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2019 			if (max >= sbi->s_stripe) {
2020 				ac->ac_found++;
2021 				ex.fe_logical = 0xDEADF00D; /* debug value */
2022 				ac->ac_b_ex = ex;
2023 				ext4_mb_use_best_found(ac, e4b);
2024 				break;
2025 			}
2026 		}
2027 		i += sbi->s_stripe;
2028 	}
2029 }
2030 
2031 /*
2032  * This is now called BEFORE we load the buddy bitmap.
2033  * Returns either 1 or 0 indicating that the group is either suitable
2034  * for the allocation or not. In addition it can also return negative
2035  * error code when something goes wrong.
2036  */
2037 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2038 				ext4_group_t group, int cr)
2039 {
2040 	unsigned free, fragments;
2041 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2042 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2043 
2044 	BUG_ON(cr < 0 || cr >= 4);
2045 
2046 	free = grp->bb_free;
2047 	if (free == 0)
2048 		return 0;
2049 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2050 		return 0;
2051 
2052 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2053 		return 0;
2054 
2055 	/* We only do this if the grp has never been initialized */
2056 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2057 		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2058 		if (ret)
2059 			return ret;
2060 	}
2061 
2062 	fragments = grp->bb_fragments;
2063 	if (fragments == 0)
2064 		return 0;
2065 
2066 	switch (cr) {
2067 	case 0:
2068 		BUG_ON(ac->ac_2order == 0);
2069 
2070 		/* Avoid using the first bg of a flexgroup for data files */
2071 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2072 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2073 		    ((group % flex_size) == 0))
2074 			return 0;
2075 
2076 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2077 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2078 			return 1;
2079 
2080 		if (grp->bb_largest_free_order < ac->ac_2order)
2081 			return 0;
2082 
2083 		return 1;
2084 	case 1:
2085 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2086 			return 1;
2087 		break;
2088 	case 2:
2089 		if (free >= ac->ac_g_ex.fe_len)
2090 			return 1;
2091 		break;
2092 	case 3:
2093 		return 1;
2094 	default:
2095 		BUG();
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static noinline_for_stack int
2102 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2103 {
2104 	ext4_group_t ngroups, group, i;
2105 	int cr;
2106 	int err = 0, first_err = 0;
2107 	struct ext4_sb_info *sbi;
2108 	struct super_block *sb;
2109 	struct ext4_buddy e4b;
2110 
2111 	sb = ac->ac_sb;
2112 	sbi = EXT4_SB(sb);
2113 	ngroups = ext4_get_groups_count(sb);
2114 	/* non-extent files are limited to low blocks/groups */
2115 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2116 		ngroups = sbi->s_blockfile_groups;
2117 
2118 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2119 
2120 	/* first, try the goal */
2121 	err = ext4_mb_find_by_goal(ac, &e4b);
2122 	if (err || ac->ac_status == AC_STATUS_FOUND)
2123 		goto out;
2124 
2125 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2126 		goto out;
2127 
2128 	/*
2129 	 * ac->ac2_order is set only if the fe_len is a power of 2
2130 	 * if ac2_order is set we also set criteria to 0 so that we
2131 	 * try exact allocation using buddy.
2132 	 */
2133 	i = fls(ac->ac_g_ex.fe_len);
2134 	ac->ac_2order = 0;
2135 	/*
2136 	 * We search using buddy data only if the order of the request
2137 	 * is greater than equal to the sbi_s_mb_order2_reqs
2138 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2139 	 */
2140 	if (i >= sbi->s_mb_order2_reqs) {
2141 		/*
2142 		 * This should tell if fe_len is exactly power of 2
2143 		 */
2144 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2145 			ac->ac_2order = i - 1;
2146 	}
2147 
2148 	/* if stream allocation is enabled, use global goal */
2149 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 		/* TBD: may be hot point */
2151 		spin_lock(&sbi->s_md_lock);
2152 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154 		spin_unlock(&sbi->s_md_lock);
2155 	}
2156 
2157 	/* Let's just scan groups to find more-less suitable blocks */
2158 	cr = ac->ac_2order ? 0 : 1;
2159 	/*
2160 	 * cr == 0 try to get exact allocation,
2161 	 * cr == 3  try to get anything
2162 	 */
2163 repeat:
2164 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165 		ac->ac_criteria = cr;
2166 		/*
2167 		 * searching for the right group start
2168 		 * from the goal value specified
2169 		 */
2170 		group = ac->ac_g_ex.fe_group;
2171 
2172 		for (i = 0; i < ngroups; group++, i++) {
2173 			int ret = 0;
2174 			cond_resched();
2175 			/*
2176 			 * Artificially restricted ngroups for non-extent
2177 			 * files makes group > ngroups possible on first loop.
2178 			 */
2179 			if (group >= ngroups)
2180 				group = 0;
2181 
2182 			/* This now checks without needing the buddy page */
2183 			ret = ext4_mb_good_group(ac, group, cr);
2184 			if (ret <= 0) {
2185 				if (!first_err)
2186 					first_err = ret;
2187 				continue;
2188 			}
2189 
2190 			err = ext4_mb_load_buddy(sb, group, &e4b);
2191 			if (err)
2192 				goto out;
2193 
2194 			ext4_lock_group(sb, group);
2195 
2196 			/*
2197 			 * We need to check again after locking the
2198 			 * block group
2199 			 */
2200 			ret = ext4_mb_good_group(ac, group, cr);
2201 			if (ret <= 0) {
2202 				ext4_unlock_group(sb, group);
2203 				ext4_mb_unload_buddy(&e4b);
2204 				if (!first_err)
2205 					first_err = ret;
2206 				continue;
2207 			}
2208 
2209 			ac->ac_groups_scanned++;
2210 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2211 				ext4_mb_simple_scan_group(ac, &e4b);
2212 			else if (cr == 1 && sbi->s_stripe &&
2213 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 				ext4_mb_scan_aligned(ac, &e4b);
2215 			else
2216 				ext4_mb_complex_scan_group(ac, &e4b);
2217 
2218 			ext4_unlock_group(sb, group);
2219 			ext4_mb_unload_buddy(&e4b);
2220 
2221 			if (ac->ac_status != AC_STATUS_CONTINUE)
2222 				break;
2223 		}
2224 	}
2225 
2226 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228 		/*
2229 		 * We've been searching too long. Let's try to allocate
2230 		 * the best chunk we've found so far
2231 		 */
2232 
2233 		ext4_mb_try_best_found(ac, &e4b);
2234 		if (ac->ac_status != AC_STATUS_FOUND) {
2235 			/*
2236 			 * Someone more lucky has already allocated it.
2237 			 * The only thing we can do is just take first
2238 			 * found block(s)
2239 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2240 			 */
2241 			ac->ac_b_ex.fe_group = 0;
2242 			ac->ac_b_ex.fe_start = 0;
2243 			ac->ac_b_ex.fe_len = 0;
2244 			ac->ac_status = AC_STATUS_CONTINUE;
2245 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2246 			cr = 3;
2247 			atomic_inc(&sbi->s_mb_lost_chunks);
2248 			goto repeat;
2249 		}
2250 	}
2251 out:
2252 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2253 		err = first_err;
2254 	return err;
2255 }
2256 
2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2258 {
2259 	struct super_block *sb = seq->private;
2260 	ext4_group_t group;
2261 
2262 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263 		return NULL;
2264 	group = *pos + 1;
2265 	return (void *) ((unsigned long) group);
2266 }
2267 
2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2269 {
2270 	struct super_block *sb = seq->private;
2271 	ext4_group_t group;
2272 
2273 	++*pos;
2274 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 		return NULL;
2276 	group = *pos + 1;
2277 	return (void *) ((unsigned long) group);
2278 }
2279 
2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2281 {
2282 	struct super_block *sb = seq->private;
2283 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284 	int i;
2285 	int err, buddy_loaded = 0;
2286 	struct ext4_buddy e4b;
2287 	struct ext4_group_info *grinfo;
2288 	struct sg {
2289 		struct ext4_group_info info;
2290 		ext4_grpblk_t counters[16];
2291 	} sg;
2292 
2293 	group--;
2294 	if (group == 0)
2295 		seq_puts(seq, "#group: free  frags first ["
2296 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2297 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2298 
2299 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2300 		sizeof(struct ext4_group_info);
2301 	grinfo = ext4_get_group_info(sb, group);
2302 	/* Load the group info in memory only if not already loaded. */
2303 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2304 		err = ext4_mb_load_buddy(sb, group, &e4b);
2305 		if (err) {
2306 			seq_printf(seq, "#%-5u: I/O error\n", group);
2307 			return 0;
2308 		}
2309 		buddy_loaded = 1;
2310 	}
2311 
2312 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2313 
2314 	if (buddy_loaded)
2315 		ext4_mb_unload_buddy(&e4b);
2316 
2317 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2318 			sg.info.bb_fragments, sg.info.bb_first_free);
2319 	for (i = 0; i <= 13; i++)
2320 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2321 				sg.info.bb_counters[i] : 0);
2322 	seq_printf(seq, " ]\n");
2323 
2324 	return 0;
2325 }
2326 
2327 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2328 {
2329 }
2330 
2331 static const struct seq_operations ext4_mb_seq_groups_ops = {
2332 	.start  = ext4_mb_seq_groups_start,
2333 	.next   = ext4_mb_seq_groups_next,
2334 	.stop   = ext4_mb_seq_groups_stop,
2335 	.show   = ext4_mb_seq_groups_show,
2336 };
2337 
2338 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2339 {
2340 	struct super_block *sb = PDE_DATA(inode);
2341 	int rc;
2342 
2343 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2344 	if (rc == 0) {
2345 		struct seq_file *m = file->private_data;
2346 		m->private = sb;
2347 	}
2348 	return rc;
2349 
2350 }
2351 
2352 const struct file_operations ext4_seq_mb_groups_fops = {
2353 	.open		= ext4_mb_seq_groups_open,
2354 	.read		= seq_read,
2355 	.llseek		= seq_lseek,
2356 	.release	= seq_release,
2357 };
2358 
2359 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2360 {
2361 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2362 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2363 
2364 	BUG_ON(!cachep);
2365 	return cachep;
2366 }
2367 
2368 /*
2369  * Allocate the top-level s_group_info array for the specified number
2370  * of groups
2371  */
2372 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2373 {
2374 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2375 	unsigned size;
2376 	struct ext4_group_info ***new_groupinfo;
2377 
2378 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2379 		EXT4_DESC_PER_BLOCK_BITS(sb);
2380 	if (size <= sbi->s_group_info_size)
2381 		return 0;
2382 
2383 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2384 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2385 	if (!new_groupinfo) {
2386 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2387 		return -ENOMEM;
2388 	}
2389 	if (sbi->s_group_info) {
2390 		memcpy(new_groupinfo, sbi->s_group_info,
2391 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2392 		kvfree(sbi->s_group_info);
2393 	}
2394 	sbi->s_group_info = new_groupinfo;
2395 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2396 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2397 		   sbi->s_group_info_size);
2398 	return 0;
2399 }
2400 
2401 /* Create and initialize ext4_group_info data for the given group. */
2402 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2403 			  struct ext4_group_desc *desc)
2404 {
2405 	int i;
2406 	int metalen = 0;
2407 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2408 	struct ext4_group_info **meta_group_info;
2409 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2410 
2411 	/*
2412 	 * First check if this group is the first of a reserved block.
2413 	 * If it's true, we have to allocate a new table of pointers
2414 	 * to ext4_group_info structures
2415 	 */
2416 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2417 		metalen = sizeof(*meta_group_info) <<
2418 			EXT4_DESC_PER_BLOCK_BITS(sb);
2419 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2420 		if (meta_group_info == NULL) {
2421 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2422 				 "for a buddy group");
2423 			goto exit_meta_group_info;
2424 		}
2425 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2426 			meta_group_info;
2427 	}
2428 
2429 	meta_group_info =
2430 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2431 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2432 
2433 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2434 	if (meta_group_info[i] == NULL) {
2435 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2436 		goto exit_group_info;
2437 	}
2438 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2439 		&(meta_group_info[i]->bb_state));
2440 
2441 	/*
2442 	 * initialize bb_free to be able to skip
2443 	 * empty groups without initialization
2444 	 */
2445 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2446 		meta_group_info[i]->bb_free =
2447 			ext4_free_clusters_after_init(sb, group, desc);
2448 	} else {
2449 		meta_group_info[i]->bb_free =
2450 			ext4_free_group_clusters(sb, desc);
2451 	}
2452 
2453 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2454 	init_rwsem(&meta_group_info[i]->alloc_sem);
2455 	meta_group_info[i]->bb_free_root = RB_ROOT;
2456 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2457 
2458 #ifdef DOUBLE_CHECK
2459 	{
2460 		struct buffer_head *bh;
2461 		meta_group_info[i]->bb_bitmap =
2462 			kmalloc(sb->s_blocksize, GFP_NOFS);
2463 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2464 		bh = ext4_read_block_bitmap(sb, group);
2465 		BUG_ON(IS_ERR_OR_NULL(bh));
2466 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2467 			sb->s_blocksize);
2468 		put_bh(bh);
2469 	}
2470 #endif
2471 
2472 	return 0;
2473 
2474 exit_group_info:
2475 	/* If a meta_group_info table has been allocated, release it now */
2476 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2477 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2478 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2479 	}
2480 exit_meta_group_info:
2481 	return -ENOMEM;
2482 } /* ext4_mb_add_groupinfo */
2483 
2484 static int ext4_mb_init_backend(struct super_block *sb)
2485 {
2486 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2487 	ext4_group_t i;
2488 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2489 	int err;
2490 	struct ext4_group_desc *desc;
2491 	struct kmem_cache *cachep;
2492 
2493 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2494 	if (err)
2495 		return err;
2496 
2497 	sbi->s_buddy_cache = new_inode(sb);
2498 	if (sbi->s_buddy_cache == NULL) {
2499 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2500 		goto err_freesgi;
2501 	}
2502 	/* To avoid potentially colliding with an valid on-disk inode number,
2503 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2504 	 * not in the inode hash, so it should never be found by iget(), but
2505 	 * this will avoid confusion if it ever shows up during debugging. */
2506 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2507 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2508 	for (i = 0; i < ngroups; i++) {
2509 		desc = ext4_get_group_desc(sb, i, NULL);
2510 		if (desc == NULL) {
2511 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2512 			goto err_freebuddy;
2513 		}
2514 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2515 			goto err_freebuddy;
2516 	}
2517 
2518 	return 0;
2519 
2520 err_freebuddy:
2521 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2522 	while (i-- > 0)
2523 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2524 	i = sbi->s_group_info_size;
2525 	while (i-- > 0)
2526 		kfree(sbi->s_group_info[i]);
2527 	iput(sbi->s_buddy_cache);
2528 err_freesgi:
2529 	kvfree(sbi->s_group_info);
2530 	return -ENOMEM;
2531 }
2532 
2533 static void ext4_groupinfo_destroy_slabs(void)
2534 {
2535 	int i;
2536 
2537 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2538 		if (ext4_groupinfo_caches[i])
2539 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2540 		ext4_groupinfo_caches[i] = NULL;
2541 	}
2542 }
2543 
2544 static int ext4_groupinfo_create_slab(size_t size)
2545 {
2546 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2547 	int slab_size;
2548 	int blocksize_bits = order_base_2(size);
2549 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2550 	struct kmem_cache *cachep;
2551 
2552 	if (cache_index >= NR_GRPINFO_CACHES)
2553 		return -EINVAL;
2554 
2555 	if (unlikely(cache_index < 0))
2556 		cache_index = 0;
2557 
2558 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2559 	if (ext4_groupinfo_caches[cache_index]) {
2560 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2561 		return 0;	/* Already created */
2562 	}
2563 
2564 	slab_size = offsetof(struct ext4_group_info,
2565 				bb_counters[blocksize_bits + 2]);
2566 
2567 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2568 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2569 					NULL);
2570 
2571 	ext4_groupinfo_caches[cache_index] = cachep;
2572 
2573 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2574 	if (!cachep) {
2575 		printk(KERN_EMERG
2576 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2577 		return -ENOMEM;
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 int ext4_mb_init(struct super_block *sb)
2584 {
2585 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2586 	unsigned i, j;
2587 	unsigned offset, offset_incr;
2588 	unsigned max;
2589 	int ret;
2590 
2591 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2592 
2593 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2594 	if (sbi->s_mb_offsets == NULL) {
2595 		ret = -ENOMEM;
2596 		goto out;
2597 	}
2598 
2599 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2600 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2601 	if (sbi->s_mb_maxs == NULL) {
2602 		ret = -ENOMEM;
2603 		goto out;
2604 	}
2605 
2606 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2607 	if (ret < 0)
2608 		goto out;
2609 
2610 	/* order 0 is regular bitmap */
2611 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2612 	sbi->s_mb_offsets[0] = 0;
2613 
2614 	i = 1;
2615 	offset = 0;
2616 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2617 	max = sb->s_blocksize << 2;
2618 	do {
2619 		sbi->s_mb_offsets[i] = offset;
2620 		sbi->s_mb_maxs[i] = max;
2621 		offset += offset_incr;
2622 		offset_incr = offset_incr >> 1;
2623 		max = max >> 1;
2624 		i++;
2625 	} while (i <= sb->s_blocksize_bits + 1);
2626 
2627 	spin_lock_init(&sbi->s_md_lock);
2628 	spin_lock_init(&sbi->s_bal_lock);
2629 	sbi->s_mb_free_pending = 0;
2630 
2631 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2632 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2633 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2634 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2635 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2636 	/*
2637 	 * The default group preallocation is 512, which for 4k block
2638 	 * sizes translates to 2 megabytes.  However for bigalloc file
2639 	 * systems, this is probably too big (i.e, if the cluster size
2640 	 * is 1 megabyte, then group preallocation size becomes half a
2641 	 * gigabyte!).  As a default, we will keep a two megabyte
2642 	 * group pralloc size for cluster sizes up to 64k, and after
2643 	 * that, we will force a minimum group preallocation size of
2644 	 * 32 clusters.  This translates to 8 megs when the cluster
2645 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2646 	 * which seems reasonable as a default.
2647 	 */
2648 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2649 				       sbi->s_cluster_bits, 32);
2650 	/*
2651 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2652 	 * to the lowest multiple of s_stripe which is bigger than
2653 	 * the s_mb_group_prealloc as determined above. We want
2654 	 * the preallocation size to be an exact multiple of the
2655 	 * RAID stripe size so that preallocations don't fragment
2656 	 * the stripes.
2657 	 */
2658 	if (sbi->s_stripe > 1) {
2659 		sbi->s_mb_group_prealloc = roundup(
2660 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2661 	}
2662 
2663 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2664 	if (sbi->s_locality_groups == NULL) {
2665 		ret = -ENOMEM;
2666 		goto out;
2667 	}
2668 	for_each_possible_cpu(i) {
2669 		struct ext4_locality_group *lg;
2670 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2671 		mutex_init(&lg->lg_mutex);
2672 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2673 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2674 		spin_lock_init(&lg->lg_prealloc_lock);
2675 	}
2676 
2677 	/* init file for buddy data */
2678 	ret = ext4_mb_init_backend(sb);
2679 	if (ret != 0)
2680 		goto out_free_locality_groups;
2681 
2682 	return 0;
2683 
2684 out_free_locality_groups:
2685 	free_percpu(sbi->s_locality_groups);
2686 	sbi->s_locality_groups = NULL;
2687 out:
2688 	kfree(sbi->s_mb_offsets);
2689 	sbi->s_mb_offsets = NULL;
2690 	kfree(sbi->s_mb_maxs);
2691 	sbi->s_mb_maxs = NULL;
2692 	return ret;
2693 }
2694 
2695 /* need to called with the ext4 group lock held */
2696 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2697 {
2698 	struct ext4_prealloc_space *pa;
2699 	struct list_head *cur, *tmp;
2700 	int count = 0;
2701 
2702 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2703 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2704 		list_del(&pa->pa_group_list);
2705 		count++;
2706 		kmem_cache_free(ext4_pspace_cachep, pa);
2707 	}
2708 	if (count)
2709 		mb_debug(1, "mballoc: %u PAs left\n", count);
2710 
2711 }
2712 
2713 int ext4_mb_release(struct super_block *sb)
2714 {
2715 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2716 	ext4_group_t i;
2717 	int num_meta_group_infos;
2718 	struct ext4_group_info *grinfo;
2719 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2720 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2721 
2722 	if (sbi->s_group_info) {
2723 		for (i = 0; i < ngroups; i++) {
2724 			grinfo = ext4_get_group_info(sb, i);
2725 #ifdef DOUBLE_CHECK
2726 			kfree(grinfo->bb_bitmap);
2727 #endif
2728 			ext4_lock_group(sb, i);
2729 			ext4_mb_cleanup_pa(grinfo);
2730 			ext4_unlock_group(sb, i);
2731 			kmem_cache_free(cachep, grinfo);
2732 		}
2733 		num_meta_group_infos = (ngroups +
2734 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2735 			EXT4_DESC_PER_BLOCK_BITS(sb);
2736 		for (i = 0; i < num_meta_group_infos; i++)
2737 			kfree(sbi->s_group_info[i]);
2738 		kvfree(sbi->s_group_info);
2739 	}
2740 	kfree(sbi->s_mb_offsets);
2741 	kfree(sbi->s_mb_maxs);
2742 	iput(sbi->s_buddy_cache);
2743 	if (sbi->s_mb_stats) {
2744 		ext4_msg(sb, KERN_INFO,
2745 		       "mballoc: %u blocks %u reqs (%u success)",
2746 				atomic_read(&sbi->s_bal_allocated),
2747 				atomic_read(&sbi->s_bal_reqs),
2748 				atomic_read(&sbi->s_bal_success));
2749 		ext4_msg(sb, KERN_INFO,
2750 		      "mballoc: %u extents scanned, %u goal hits, "
2751 				"%u 2^N hits, %u breaks, %u lost",
2752 				atomic_read(&sbi->s_bal_ex_scanned),
2753 				atomic_read(&sbi->s_bal_goals),
2754 				atomic_read(&sbi->s_bal_2orders),
2755 				atomic_read(&sbi->s_bal_breaks),
2756 				atomic_read(&sbi->s_mb_lost_chunks));
2757 		ext4_msg(sb, KERN_INFO,
2758 		       "mballoc: %lu generated and it took %Lu",
2759 				sbi->s_mb_buddies_generated,
2760 				sbi->s_mb_generation_time);
2761 		ext4_msg(sb, KERN_INFO,
2762 		       "mballoc: %u preallocated, %u discarded",
2763 				atomic_read(&sbi->s_mb_preallocated),
2764 				atomic_read(&sbi->s_mb_discarded));
2765 	}
2766 
2767 	free_percpu(sbi->s_locality_groups);
2768 
2769 	return 0;
2770 }
2771 
2772 static inline int ext4_issue_discard(struct super_block *sb,
2773 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2774 {
2775 	ext4_fsblk_t discard_block;
2776 
2777 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2778 			 ext4_group_first_block_no(sb, block_group));
2779 	count = EXT4_C2B(EXT4_SB(sb), count);
2780 	trace_ext4_discard_blocks(sb,
2781 			(unsigned long long) discard_block, count);
2782 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2783 }
2784 
2785 /*
2786  * This function is called by the jbd2 layer once the commit has finished,
2787  * so we know we can free the blocks that were released with that commit.
2788  */
2789 static void ext4_free_data_callback(struct super_block *sb,
2790 				    struct ext4_journal_cb_entry *jce,
2791 				    int rc)
2792 {
2793 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2794 	struct ext4_buddy e4b;
2795 	struct ext4_group_info *db;
2796 	int err, count = 0, count2 = 0;
2797 
2798 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2799 		 entry->efd_count, entry->efd_group, entry);
2800 
2801 	if (test_opt(sb, DISCARD)) {
2802 		err = ext4_issue_discard(sb, entry->efd_group,
2803 					 entry->efd_start_cluster,
2804 					 entry->efd_count);
2805 		if (err && err != -EOPNOTSUPP)
2806 			ext4_msg(sb, KERN_WARNING, "discard request in"
2807 				 " group:%d block:%d count:%d failed"
2808 				 " with %d", entry->efd_group,
2809 				 entry->efd_start_cluster,
2810 				 entry->efd_count, err);
2811 	}
2812 
2813 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2814 	/* we expect to find existing buddy because it's pinned */
2815 	BUG_ON(err != 0);
2816 
2817 	spin_lock(&EXT4_SB(sb)->s_md_lock);
2818 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2819 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2820 
2821 	db = e4b.bd_info;
2822 	/* there are blocks to put in buddy to make them really free */
2823 	count += entry->efd_count;
2824 	count2++;
2825 	ext4_lock_group(sb, entry->efd_group);
2826 	/* Take it out of per group rb tree */
2827 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2828 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2829 
2830 	/*
2831 	 * Clear the trimmed flag for the group so that the next
2832 	 * ext4_trim_fs can trim it.
2833 	 * If the volume is mounted with -o discard, online discard
2834 	 * is supported and the free blocks will be trimmed online.
2835 	 */
2836 	if (!test_opt(sb, DISCARD))
2837 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2838 
2839 	if (!db->bb_free_root.rb_node) {
2840 		/* No more items in the per group rb tree
2841 		 * balance refcounts from ext4_mb_free_metadata()
2842 		 */
2843 		put_page(e4b.bd_buddy_page);
2844 		put_page(e4b.bd_bitmap_page);
2845 	}
2846 	ext4_unlock_group(sb, entry->efd_group);
2847 	kmem_cache_free(ext4_free_data_cachep, entry);
2848 	ext4_mb_unload_buddy(&e4b);
2849 
2850 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2851 }
2852 
2853 int __init ext4_init_mballoc(void)
2854 {
2855 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2856 					SLAB_RECLAIM_ACCOUNT);
2857 	if (ext4_pspace_cachep == NULL)
2858 		return -ENOMEM;
2859 
2860 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2861 				    SLAB_RECLAIM_ACCOUNT);
2862 	if (ext4_ac_cachep == NULL) {
2863 		kmem_cache_destroy(ext4_pspace_cachep);
2864 		return -ENOMEM;
2865 	}
2866 
2867 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2868 					   SLAB_RECLAIM_ACCOUNT);
2869 	if (ext4_free_data_cachep == NULL) {
2870 		kmem_cache_destroy(ext4_pspace_cachep);
2871 		kmem_cache_destroy(ext4_ac_cachep);
2872 		return -ENOMEM;
2873 	}
2874 	return 0;
2875 }
2876 
2877 void ext4_exit_mballoc(void)
2878 {
2879 	/*
2880 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2881 	 * before destroying the slab cache.
2882 	 */
2883 	rcu_barrier();
2884 	kmem_cache_destroy(ext4_pspace_cachep);
2885 	kmem_cache_destroy(ext4_ac_cachep);
2886 	kmem_cache_destroy(ext4_free_data_cachep);
2887 	ext4_groupinfo_destroy_slabs();
2888 }
2889 
2890 
2891 /*
2892  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2893  * Returns 0 if success or error code
2894  */
2895 static noinline_for_stack int
2896 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2897 				handle_t *handle, unsigned int reserv_clstrs)
2898 {
2899 	struct buffer_head *bitmap_bh = NULL;
2900 	struct ext4_group_desc *gdp;
2901 	struct buffer_head *gdp_bh;
2902 	struct ext4_sb_info *sbi;
2903 	struct super_block *sb;
2904 	ext4_fsblk_t block;
2905 	int err, len;
2906 
2907 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2908 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2909 
2910 	sb = ac->ac_sb;
2911 	sbi = EXT4_SB(sb);
2912 
2913 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2914 	if (IS_ERR(bitmap_bh)) {
2915 		err = PTR_ERR(bitmap_bh);
2916 		bitmap_bh = NULL;
2917 		goto out_err;
2918 	}
2919 
2920 	BUFFER_TRACE(bitmap_bh, "getting write access");
2921 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2922 	if (err)
2923 		goto out_err;
2924 
2925 	err = -EIO;
2926 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2927 	if (!gdp)
2928 		goto out_err;
2929 
2930 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2931 			ext4_free_group_clusters(sb, gdp));
2932 
2933 	BUFFER_TRACE(gdp_bh, "get_write_access");
2934 	err = ext4_journal_get_write_access(handle, gdp_bh);
2935 	if (err)
2936 		goto out_err;
2937 
2938 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2939 
2940 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2941 	if (!ext4_data_block_valid(sbi, block, len)) {
2942 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2943 			   "fs metadata", block, block+len);
2944 		/* File system mounted not to panic on error
2945 		 * Fix the bitmap and return EFSCORRUPTED
2946 		 * We leak some of the blocks here.
2947 		 */
2948 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2949 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2950 			      ac->ac_b_ex.fe_len);
2951 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2952 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2953 		if (!err)
2954 			err = -EFSCORRUPTED;
2955 		goto out_err;
2956 	}
2957 
2958 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2959 #ifdef AGGRESSIVE_CHECK
2960 	{
2961 		int i;
2962 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2963 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2964 						bitmap_bh->b_data));
2965 		}
2966 	}
2967 #endif
2968 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2969 		      ac->ac_b_ex.fe_len);
2970 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2971 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2972 		ext4_free_group_clusters_set(sb, gdp,
2973 					     ext4_free_clusters_after_init(sb,
2974 						ac->ac_b_ex.fe_group, gdp));
2975 	}
2976 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2977 	ext4_free_group_clusters_set(sb, gdp, len);
2978 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2979 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2980 
2981 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2982 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2983 	/*
2984 	 * Now reduce the dirty block count also. Should not go negative
2985 	 */
2986 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2987 		/* release all the reserved blocks if non delalloc */
2988 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2989 				   reserv_clstrs);
2990 
2991 	if (sbi->s_log_groups_per_flex) {
2992 		ext4_group_t flex_group = ext4_flex_group(sbi,
2993 							  ac->ac_b_ex.fe_group);
2994 		atomic64_sub(ac->ac_b_ex.fe_len,
2995 			     &sbi->s_flex_groups[flex_group].free_clusters);
2996 	}
2997 
2998 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2999 	if (err)
3000 		goto out_err;
3001 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3002 
3003 out_err:
3004 	brelse(bitmap_bh);
3005 	return err;
3006 }
3007 
3008 /*
3009  * here we normalize request for locality group
3010  * Group request are normalized to s_mb_group_prealloc, which goes to
3011  * s_strip if we set the same via mount option.
3012  * s_mb_group_prealloc can be configured via
3013  * /sys/fs/ext4/<partition>/mb_group_prealloc
3014  *
3015  * XXX: should we try to preallocate more than the group has now?
3016  */
3017 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3018 {
3019 	struct super_block *sb = ac->ac_sb;
3020 	struct ext4_locality_group *lg = ac->ac_lg;
3021 
3022 	BUG_ON(lg == NULL);
3023 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3024 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3025 		current->pid, ac->ac_g_ex.fe_len);
3026 }
3027 
3028 /*
3029  * Normalization means making request better in terms of
3030  * size and alignment
3031  */
3032 static noinline_for_stack void
3033 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3034 				struct ext4_allocation_request *ar)
3035 {
3036 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3037 	int bsbits, max;
3038 	ext4_lblk_t end;
3039 	loff_t size, start_off;
3040 	loff_t orig_size __maybe_unused;
3041 	ext4_lblk_t start;
3042 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3043 	struct ext4_prealloc_space *pa;
3044 
3045 	/* do normalize only data requests, metadata requests
3046 	   do not need preallocation */
3047 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3048 		return;
3049 
3050 	/* sometime caller may want exact blocks */
3051 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3052 		return;
3053 
3054 	/* caller may indicate that preallocation isn't
3055 	 * required (it's a tail, for example) */
3056 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3057 		return;
3058 
3059 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3060 		ext4_mb_normalize_group_request(ac);
3061 		return ;
3062 	}
3063 
3064 	bsbits = ac->ac_sb->s_blocksize_bits;
3065 
3066 	/* first, let's learn actual file size
3067 	 * given current request is allocated */
3068 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3069 	size = size << bsbits;
3070 	if (size < i_size_read(ac->ac_inode))
3071 		size = i_size_read(ac->ac_inode);
3072 	orig_size = size;
3073 
3074 	/* max size of free chunks */
3075 	max = 2 << bsbits;
3076 
3077 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3078 		(req <= (size) || max <= (chunk_size))
3079 
3080 	/* first, try to predict filesize */
3081 	/* XXX: should this table be tunable? */
3082 	start_off = 0;
3083 	if (size <= 16 * 1024) {
3084 		size = 16 * 1024;
3085 	} else if (size <= 32 * 1024) {
3086 		size = 32 * 1024;
3087 	} else if (size <= 64 * 1024) {
3088 		size = 64 * 1024;
3089 	} else if (size <= 128 * 1024) {
3090 		size = 128 * 1024;
3091 	} else if (size <= 256 * 1024) {
3092 		size = 256 * 1024;
3093 	} else if (size <= 512 * 1024) {
3094 		size = 512 * 1024;
3095 	} else if (size <= 1024 * 1024) {
3096 		size = 1024 * 1024;
3097 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3098 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3099 						(21 - bsbits)) << 21;
3100 		size = 2 * 1024 * 1024;
3101 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3102 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3103 							(22 - bsbits)) << 22;
3104 		size = 4 * 1024 * 1024;
3105 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3106 					(8<<20)>>bsbits, max, 8 * 1024)) {
3107 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3108 							(23 - bsbits)) << 23;
3109 		size = 8 * 1024 * 1024;
3110 	} else {
3111 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3112 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3113 					      ac->ac_o_ex.fe_len) << bsbits;
3114 	}
3115 	size = size >> bsbits;
3116 	start = start_off >> bsbits;
3117 
3118 	/* don't cover already allocated blocks in selected range */
3119 	if (ar->pleft && start <= ar->lleft) {
3120 		size -= ar->lleft + 1 - start;
3121 		start = ar->lleft + 1;
3122 	}
3123 	if (ar->pright && start + size - 1 >= ar->lright)
3124 		size -= start + size - ar->lright;
3125 
3126 	end = start + size;
3127 
3128 	/* check we don't cross already preallocated blocks */
3129 	rcu_read_lock();
3130 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3131 		ext4_lblk_t pa_end;
3132 
3133 		if (pa->pa_deleted)
3134 			continue;
3135 		spin_lock(&pa->pa_lock);
3136 		if (pa->pa_deleted) {
3137 			spin_unlock(&pa->pa_lock);
3138 			continue;
3139 		}
3140 
3141 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3142 						  pa->pa_len);
3143 
3144 		/* PA must not overlap original request */
3145 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3146 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3147 
3148 		/* skip PAs this normalized request doesn't overlap with */
3149 		if (pa->pa_lstart >= end || pa_end <= start) {
3150 			spin_unlock(&pa->pa_lock);
3151 			continue;
3152 		}
3153 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3154 
3155 		/* adjust start or end to be adjacent to this pa */
3156 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3157 			BUG_ON(pa_end < start);
3158 			start = pa_end;
3159 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3160 			BUG_ON(pa->pa_lstart > end);
3161 			end = pa->pa_lstart;
3162 		}
3163 		spin_unlock(&pa->pa_lock);
3164 	}
3165 	rcu_read_unlock();
3166 	size = end - start;
3167 
3168 	/* XXX: extra loop to check we really don't overlap preallocations */
3169 	rcu_read_lock();
3170 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3171 		ext4_lblk_t pa_end;
3172 
3173 		spin_lock(&pa->pa_lock);
3174 		if (pa->pa_deleted == 0) {
3175 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3176 							  pa->pa_len);
3177 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3178 		}
3179 		spin_unlock(&pa->pa_lock);
3180 	}
3181 	rcu_read_unlock();
3182 
3183 	if (start + size <= ac->ac_o_ex.fe_logical &&
3184 			start > ac->ac_o_ex.fe_logical) {
3185 		ext4_msg(ac->ac_sb, KERN_ERR,
3186 			 "start %lu, size %lu, fe_logical %lu",
3187 			 (unsigned long) start, (unsigned long) size,
3188 			 (unsigned long) ac->ac_o_ex.fe_logical);
3189 		BUG();
3190 	}
3191 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3192 
3193 	/* now prepare goal request */
3194 
3195 	/* XXX: is it better to align blocks WRT to logical
3196 	 * placement or satisfy big request as is */
3197 	ac->ac_g_ex.fe_logical = start;
3198 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3199 
3200 	/* define goal start in order to merge */
3201 	if (ar->pright && (ar->lright == (start + size))) {
3202 		/* merge to the right */
3203 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3204 						&ac->ac_f_ex.fe_group,
3205 						&ac->ac_f_ex.fe_start);
3206 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3207 	}
3208 	if (ar->pleft && (ar->lleft + 1 == start)) {
3209 		/* merge to the left */
3210 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3211 						&ac->ac_f_ex.fe_group,
3212 						&ac->ac_f_ex.fe_start);
3213 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3214 	}
3215 
3216 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3217 		(unsigned) orig_size, (unsigned) start);
3218 }
3219 
3220 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3221 {
3222 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3223 
3224 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3225 		atomic_inc(&sbi->s_bal_reqs);
3226 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3227 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3228 			atomic_inc(&sbi->s_bal_success);
3229 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3230 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3231 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3232 			atomic_inc(&sbi->s_bal_goals);
3233 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3234 			atomic_inc(&sbi->s_bal_breaks);
3235 	}
3236 
3237 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3238 		trace_ext4_mballoc_alloc(ac);
3239 	else
3240 		trace_ext4_mballoc_prealloc(ac);
3241 }
3242 
3243 /*
3244  * Called on failure; free up any blocks from the inode PA for this
3245  * context.  We don't need this for MB_GROUP_PA because we only change
3246  * pa_free in ext4_mb_release_context(), but on failure, we've already
3247  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3248  */
3249 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3250 {
3251 	struct ext4_prealloc_space *pa = ac->ac_pa;
3252 	struct ext4_buddy e4b;
3253 	int err;
3254 
3255 	if (pa == NULL) {
3256 		if (ac->ac_f_ex.fe_len == 0)
3257 			return;
3258 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3259 		if (err) {
3260 			/*
3261 			 * This should never happen since we pin the
3262 			 * pages in the ext4_allocation_context so
3263 			 * ext4_mb_load_buddy() should never fail.
3264 			 */
3265 			WARN(1, "mb_load_buddy failed (%d)", err);
3266 			return;
3267 		}
3268 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3269 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3270 			       ac->ac_f_ex.fe_len);
3271 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3272 		ext4_mb_unload_buddy(&e4b);
3273 		return;
3274 	}
3275 	if (pa->pa_type == MB_INODE_PA)
3276 		pa->pa_free += ac->ac_b_ex.fe_len;
3277 }
3278 
3279 /*
3280  * use blocks preallocated to inode
3281  */
3282 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3283 				struct ext4_prealloc_space *pa)
3284 {
3285 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3286 	ext4_fsblk_t start;
3287 	ext4_fsblk_t end;
3288 	int len;
3289 
3290 	/* found preallocated blocks, use them */
3291 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3292 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3293 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3294 	len = EXT4_NUM_B2C(sbi, end - start);
3295 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3296 					&ac->ac_b_ex.fe_start);
3297 	ac->ac_b_ex.fe_len = len;
3298 	ac->ac_status = AC_STATUS_FOUND;
3299 	ac->ac_pa = pa;
3300 
3301 	BUG_ON(start < pa->pa_pstart);
3302 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3303 	BUG_ON(pa->pa_free < len);
3304 	pa->pa_free -= len;
3305 
3306 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3307 }
3308 
3309 /*
3310  * use blocks preallocated to locality group
3311  */
3312 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3313 				struct ext4_prealloc_space *pa)
3314 {
3315 	unsigned int len = ac->ac_o_ex.fe_len;
3316 
3317 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3318 					&ac->ac_b_ex.fe_group,
3319 					&ac->ac_b_ex.fe_start);
3320 	ac->ac_b_ex.fe_len = len;
3321 	ac->ac_status = AC_STATUS_FOUND;
3322 	ac->ac_pa = pa;
3323 
3324 	/* we don't correct pa_pstart or pa_plen here to avoid
3325 	 * possible race when the group is being loaded concurrently
3326 	 * instead we correct pa later, after blocks are marked
3327 	 * in on-disk bitmap -- see ext4_mb_release_context()
3328 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3329 	 */
3330 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3331 }
3332 
3333 /*
3334  * Return the prealloc space that have minimal distance
3335  * from the goal block. @cpa is the prealloc
3336  * space that is having currently known minimal distance
3337  * from the goal block.
3338  */
3339 static struct ext4_prealloc_space *
3340 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3341 			struct ext4_prealloc_space *pa,
3342 			struct ext4_prealloc_space *cpa)
3343 {
3344 	ext4_fsblk_t cur_distance, new_distance;
3345 
3346 	if (cpa == NULL) {
3347 		atomic_inc(&pa->pa_count);
3348 		return pa;
3349 	}
3350 	cur_distance = abs(goal_block - cpa->pa_pstart);
3351 	new_distance = abs(goal_block - pa->pa_pstart);
3352 
3353 	if (cur_distance <= new_distance)
3354 		return cpa;
3355 
3356 	/* drop the previous reference */
3357 	atomic_dec(&cpa->pa_count);
3358 	atomic_inc(&pa->pa_count);
3359 	return pa;
3360 }
3361 
3362 /*
3363  * search goal blocks in preallocated space
3364  */
3365 static noinline_for_stack int
3366 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3367 {
3368 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3369 	int order, i;
3370 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3371 	struct ext4_locality_group *lg;
3372 	struct ext4_prealloc_space *pa, *cpa = NULL;
3373 	ext4_fsblk_t goal_block;
3374 
3375 	/* only data can be preallocated */
3376 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3377 		return 0;
3378 
3379 	/* first, try per-file preallocation */
3380 	rcu_read_lock();
3381 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3382 
3383 		/* all fields in this condition don't change,
3384 		 * so we can skip locking for them */
3385 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3386 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3387 					       EXT4_C2B(sbi, pa->pa_len)))
3388 			continue;
3389 
3390 		/* non-extent files can't have physical blocks past 2^32 */
3391 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3392 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3393 		     EXT4_MAX_BLOCK_FILE_PHYS))
3394 			continue;
3395 
3396 		/* found preallocated blocks, use them */
3397 		spin_lock(&pa->pa_lock);
3398 		if (pa->pa_deleted == 0 && pa->pa_free) {
3399 			atomic_inc(&pa->pa_count);
3400 			ext4_mb_use_inode_pa(ac, pa);
3401 			spin_unlock(&pa->pa_lock);
3402 			ac->ac_criteria = 10;
3403 			rcu_read_unlock();
3404 			return 1;
3405 		}
3406 		spin_unlock(&pa->pa_lock);
3407 	}
3408 	rcu_read_unlock();
3409 
3410 	/* can we use group allocation? */
3411 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3412 		return 0;
3413 
3414 	/* inode may have no locality group for some reason */
3415 	lg = ac->ac_lg;
3416 	if (lg == NULL)
3417 		return 0;
3418 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3419 	if (order > PREALLOC_TB_SIZE - 1)
3420 		/* The max size of hash table is PREALLOC_TB_SIZE */
3421 		order = PREALLOC_TB_SIZE - 1;
3422 
3423 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3424 	/*
3425 	 * search for the prealloc space that is having
3426 	 * minimal distance from the goal block.
3427 	 */
3428 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3429 		rcu_read_lock();
3430 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3431 					pa_inode_list) {
3432 			spin_lock(&pa->pa_lock);
3433 			if (pa->pa_deleted == 0 &&
3434 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3435 
3436 				cpa = ext4_mb_check_group_pa(goal_block,
3437 								pa, cpa);
3438 			}
3439 			spin_unlock(&pa->pa_lock);
3440 		}
3441 		rcu_read_unlock();
3442 	}
3443 	if (cpa) {
3444 		ext4_mb_use_group_pa(ac, cpa);
3445 		ac->ac_criteria = 20;
3446 		return 1;
3447 	}
3448 	return 0;
3449 }
3450 
3451 /*
3452  * the function goes through all block freed in the group
3453  * but not yet committed and marks them used in in-core bitmap.
3454  * buddy must be generated from this bitmap
3455  * Need to be called with the ext4 group lock held
3456  */
3457 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3458 						ext4_group_t group)
3459 {
3460 	struct rb_node *n;
3461 	struct ext4_group_info *grp;
3462 	struct ext4_free_data *entry;
3463 
3464 	grp = ext4_get_group_info(sb, group);
3465 	n = rb_first(&(grp->bb_free_root));
3466 
3467 	while (n) {
3468 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3469 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3470 		n = rb_next(n);
3471 	}
3472 	return;
3473 }
3474 
3475 /*
3476  * the function goes through all preallocation in this group and marks them
3477  * used in in-core bitmap. buddy must be generated from this bitmap
3478  * Need to be called with ext4 group lock held
3479  */
3480 static noinline_for_stack
3481 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3482 					ext4_group_t group)
3483 {
3484 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3485 	struct ext4_prealloc_space *pa;
3486 	struct list_head *cur;
3487 	ext4_group_t groupnr;
3488 	ext4_grpblk_t start;
3489 	int preallocated = 0;
3490 	int len;
3491 
3492 	/* all form of preallocation discards first load group,
3493 	 * so the only competing code is preallocation use.
3494 	 * we don't need any locking here
3495 	 * notice we do NOT ignore preallocations with pa_deleted
3496 	 * otherwise we could leave used blocks available for
3497 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3498 	 * is dropping preallocation
3499 	 */
3500 	list_for_each(cur, &grp->bb_prealloc_list) {
3501 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3502 		spin_lock(&pa->pa_lock);
3503 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3504 					     &groupnr, &start);
3505 		len = pa->pa_len;
3506 		spin_unlock(&pa->pa_lock);
3507 		if (unlikely(len == 0))
3508 			continue;
3509 		BUG_ON(groupnr != group);
3510 		ext4_set_bits(bitmap, start, len);
3511 		preallocated += len;
3512 	}
3513 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3514 }
3515 
3516 static void ext4_mb_pa_callback(struct rcu_head *head)
3517 {
3518 	struct ext4_prealloc_space *pa;
3519 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3520 
3521 	BUG_ON(atomic_read(&pa->pa_count));
3522 	BUG_ON(pa->pa_deleted == 0);
3523 	kmem_cache_free(ext4_pspace_cachep, pa);
3524 }
3525 
3526 /*
3527  * drops a reference to preallocated space descriptor
3528  * if this was the last reference and the space is consumed
3529  */
3530 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3531 			struct super_block *sb, struct ext4_prealloc_space *pa)
3532 {
3533 	ext4_group_t grp;
3534 	ext4_fsblk_t grp_blk;
3535 
3536 	/* in this short window concurrent discard can set pa_deleted */
3537 	spin_lock(&pa->pa_lock);
3538 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3539 		spin_unlock(&pa->pa_lock);
3540 		return;
3541 	}
3542 
3543 	if (pa->pa_deleted == 1) {
3544 		spin_unlock(&pa->pa_lock);
3545 		return;
3546 	}
3547 
3548 	pa->pa_deleted = 1;
3549 	spin_unlock(&pa->pa_lock);
3550 
3551 	grp_blk = pa->pa_pstart;
3552 	/*
3553 	 * If doing group-based preallocation, pa_pstart may be in the
3554 	 * next group when pa is used up
3555 	 */
3556 	if (pa->pa_type == MB_GROUP_PA)
3557 		grp_blk--;
3558 
3559 	grp = ext4_get_group_number(sb, grp_blk);
3560 
3561 	/*
3562 	 * possible race:
3563 	 *
3564 	 *  P1 (buddy init)			P2 (regular allocation)
3565 	 *					find block B in PA
3566 	 *  copy on-disk bitmap to buddy
3567 	 *  					mark B in on-disk bitmap
3568 	 *					drop PA from group
3569 	 *  mark all PAs in buddy
3570 	 *
3571 	 * thus, P1 initializes buddy with B available. to prevent this
3572 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3573 	 * against that pair
3574 	 */
3575 	ext4_lock_group(sb, grp);
3576 	list_del(&pa->pa_group_list);
3577 	ext4_unlock_group(sb, grp);
3578 
3579 	spin_lock(pa->pa_obj_lock);
3580 	list_del_rcu(&pa->pa_inode_list);
3581 	spin_unlock(pa->pa_obj_lock);
3582 
3583 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3584 }
3585 
3586 /*
3587  * creates new preallocated space for given inode
3588  */
3589 static noinline_for_stack int
3590 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3591 {
3592 	struct super_block *sb = ac->ac_sb;
3593 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3594 	struct ext4_prealloc_space *pa;
3595 	struct ext4_group_info *grp;
3596 	struct ext4_inode_info *ei;
3597 
3598 	/* preallocate only when found space is larger then requested */
3599 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3600 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3601 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3602 
3603 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3604 	if (pa == NULL)
3605 		return -ENOMEM;
3606 
3607 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3608 		int winl;
3609 		int wins;
3610 		int win;
3611 		int offs;
3612 
3613 		/* we can't allocate as much as normalizer wants.
3614 		 * so, found space must get proper lstart
3615 		 * to cover original request */
3616 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3617 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3618 
3619 		/* we're limited by original request in that
3620 		 * logical block must be covered any way
3621 		 * winl is window we can move our chunk within */
3622 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3623 
3624 		/* also, we should cover whole original request */
3625 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3626 
3627 		/* the smallest one defines real window */
3628 		win = min(winl, wins);
3629 
3630 		offs = ac->ac_o_ex.fe_logical %
3631 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3632 		if (offs && offs < win)
3633 			win = offs;
3634 
3635 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3636 			EXT4_NUM_B2C(sbi, win);
3637 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3638 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3639 	}
3640 
3641 	/* preallocation can change ac_b_ex, thus we store actually
3642 	 * allocated blocks for history */
3643 	ac->ac_f_ex = ac->ac_b_ex;
3644 
3645 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3646 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3647 	pa->pa_len = ac->ac_b_ex.fe_len;
3648 	pa->pa_free = pa->pa_len;
3649 	atomic_set(&pa->pa_count, 1);
3650 	spin_lock_init(&pa->pa_lock);
3651 	INIT_LIST_HEAD(&pa->pa_inode_list);
3652 	INIT_LIST_HEAD(&pa->pa_group_list);
3653 	pa->pa_deleted = 0;
3654 	pa->pa_type = MB_INODE_PA;
3655 
3656 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3657 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3658 	trace_ext4_mb_new_inode_pa(ac, pa);
3659 
3660 	ext4_mb_use_inode_pa(ac, pa);
3661 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3662 
3663 	ei = EXT4_I(ac->ac_inode);
3664 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3665 
3666 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3667 	pa->pa_inode = ac->ac_inode;
3668 
3669 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3670 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3671 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3672 
3673 	spin_lock(pa->pa_obj_lock);
3674 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3675 	spin_unlock(pa->pa_obj_lock);
3676 
3677 	return 0;
3678 }
3679 
3680 /*
3681  * creates new preallocated space for locality group inodes belongs to
3682  */
3683 static noinline_for_stack int
3684 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3685 {
3686 	struct super_block *sb = ac->ac_sb;
3687 	struct ext4_locality_group *lg;
3688 	struct ext4_prealloc_space *pa;
3689 	struct ext4_group_info *grp;
3690 
3691 	/* preallocate only when found space is larger then requested */
3692 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3693 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3694 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3695 
3696 	BUG_ON(ext4_pspace_cachep == NULL);
3697 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3698 	if (pa == NULL)
3699 		return -ENOMEM;
3700 
3701 	/* preallocation can change ac_b_ex, thus we store actually
3702 	 * allocated blocks for history */
3703 	ac->ac_f_ex = ac->ac_b_ex;
3704 
3705 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3706 	pa->pa_lstart = pa->pa_pstart;
3707 	pa->pa_len = ac->ac_b_ex.fe_len;
3708 	pa->pa_free = pa->pa_len;
3709 	atomic_set(&pa->pa_count, 1);
3710 	spin_lock_init(&pa->pa_lock);
3711 	INIT_LIST_HEAD(&pa->pa_inode_list);
3712 	INIT_LIST_HEAD(&pa->pa_group_list);
3713 	pa->pa_deleted = 0;
3714 	pa->pa_type = MB_GROUP_PA;
3715 
3716 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3717 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3718 	trace_ext4_mb_new_group_pa(ac, pa);
3719 
3720 	ext4_mb_use_group_pa(ac, pa);
3721 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3722 
3723 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3724 	lg = ac->ac_lg;
3725 	BUG_ON(lg == NULL);
3726 
3727 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3728 	pa->pa_inode = NULL;
3729 
3730 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3731 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3732 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3733 
3734 	/*
3735 	 * We will later add the new pa to the right bucket
3736 	 * after updating the pa_free in ext4_mb_release_context
3737 	 */
3738 	return 0;
3739 }
3740 
3741 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3742 {
3743 	int err;
3744 
3745 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3746 		err = ext4_mb_new_group_pa(ac);
3747 	else
3748 		err = ext4_mb_new_inode_pa(ac);
3749 	return err;
3750 }
3751 
3752 /*
3753  * finds all unused blocks in on-disk bitmap, frees them in
3754  * in-core bitmap and buddy.
3755  * @pa must be unlinked from inode and group lists, so that
3756  * nobody else can find/use it.
3757  * the caller MUST hold group/inode locks.
3758  * TODO: optimize the case when there are no in-core structures yet
3759  */
3760 static noinline_for_stack int
3761 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3762 			struct ext4_prealloc_space *pa)
3763 {
3764 	struct super_block *sb = e4b->bd_sb;
3765 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3766 	unsigned int end;
3767 	unsigned int next;
3768 	ext4_group_t group;
3769 	ext4_grpblk_t bit;
3770 	unsigned long long grp_blk_start;
3771 	int err = 0;
3772 	int free = 0;
3773 
3774 	BUG_ON(pa->pa_deleted == 0);
3775 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3776 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3777 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3778 	end = bit + pa->pa_len;
3779 
3780 	while (bit < end) {
3781 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3782 		if (bit >= end)
3783 			break;
3784 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3785 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3786 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3787 			 (unsigned) next - bit, (unsigned) group);
3788 		free += next - bit;
3789 
3790 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3791 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3792 						    EXT4_C2B(sbi, bit)),
3793 					       next - bit);
3794 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3795 		bit = next + 1;
3796 	}
3797 	if (free != pa->pa_free) {
3798 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3799 			 "pa %p: logic %lu, phys. %lu, len %lu",
3800 			 pa, (unsigned long) pa->pa_lstart,
3801 			 (unsigned long) pa->pa_pstart,
3802 			 (unsigned long) pa->pa_len);
3803 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3804 					free, pa->pa_free);
3805 		/*
3806 		 * pa is already deleted so we use the value obtained
3807 		 * from the bitmap and continue.
3808 		 */
3809 	}
3810 	atomic_add(free, &sbi->s_mb_discarded);
3811 
3812 	return err;
3813 }
3814 
3815 static noinline_for_stack int
3816 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3817 				struct ext4_prealloc_space *pa)
3818 {
3819 	struct super_block *sb = e4b->bd_sb;
3820 	ext4_group_t group;
3821 	ext4_grpblk_t bit;
3822 
3823 	trace_ext4_mb_release_group_pa(sb, pa);
3824 	BUG_ON(pa->pa_deleted == 0);
3825 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3826 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3827 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3828 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3829 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3830 
3831 	return 0;
3832 }
3833 
3834 /*
3835  * releases all preallocations in given group
3836  *
3837  * first, we need to decide discard policy:
3838  * - when do we discard
3839  *   1) ENOSPC
3840  * - how many do we discard
3841  *   1) how many requested
3842  */
3843 static noinline_for_stack int
3844 ext4_mb_discard_group_preallocations(struct super_block *sb,
3845 					ext4_group_t group, int needed)
3846 {
3847 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3848 	struct buffer_head *bitmap_bh = NULL;
3849 	struct ext4_prealloc_space *pa, *tmp;
3850 	struct list_head list;
3851 	struct ext4_buddy e4b;
3852 	int err;
3853 	int busy = 0;
3854 	int free = 0;
3855 
3856 	mb_debug(1, "discard preallocation for group %u\n", group);
3857 
3858 	if (list_empty(&grp->bb_prealloc_list))
3859 		return 0;
3860 
3861 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3862 	if (IS_ERR(bitmap_bh)) {
3863 		err = PTR_ERR(bitmap_bh);
3864 		ext4_error(sb, "Error %d reading block bitmap for %u",
3865 			   err, group);
3866 		return 0;
3867 	}
3868 
3869 	err = ext4_mb_load_buddy(sb, group, &e4b);
3870 	if (err) {
3871 		ext4_error(sb, "Error loading buddy information for %u", group);
3872 		put_bh(bitmap_bh);
3873 		return 0;
3874 	}
3875 
3876 	if (needed == 0)
3877 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3878 
3879 	INIT_LIST_HEAD(&list);
3880 repeat:
3881 	ext4_lock_group(sb, group);
3882 	list_for_each_entry_safe(pa, tmp,
3883 				&grp->bb_prealloc_list, pa_group_list) {
3884 		spin_lock(&pa->pa_lock);
3885 		if (atomic_read(&pa->pa_count)) {
3886 			spin_unlock(&pa->pa_lock);
3887 			busy = 1;
3888 			continue;
3889 		}
3890 		if (pa->pa_deleted) {
3891 			spin_unlock(&pa->pa_lock);
3892 			continue;
3893 		}
3894 
3895 		/* seems this one can be freed ... */
3896 		pa->pa_deleted = 1;
3897 
3898 		/* we can trust pa_free ... */
3899 		free += pa->pa_free;
3900 
3901 		spin_unlock(&pa->pa_lock);
3902 
3903 		list_del(&pa->pa_group_list);
3904 		list_add(&pa->u.pa_tmp_list, &list);
3905 	}
3906 
3907 	/* if we still need more blocks and some PAs were used, try again */
3908 	if (free < needed && busy) {
3909 		busy = 0;
3910 		ext4_unlock_group(sb, group);
3911 		cond_resched();
3912 		goto repeat;
3913 	}
3914 
3915 	/* found anything to free? */
3916 	if (list_empty(&list)) {
3917 		BUG_ON(free != 0);
3918 		goto out;
3919 	}
3920 
3921 	/* now free all selected PAs */
3922 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3923 
3924 		/* remove from object (inode or locality group) */
3925 		spin_lock(pa->pa_obj_lock);
3926 		list_del_rcu(&pa->pa_inode_list);
3927 		spin_unlock(pa->pa_obj_lock);
3928 
3929 		if (pa->pa_type == MB_GROUP_PA)
3930 			ext4_mb_release_group_pa(&e4b, pa);
3931 		else
3932 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3933 
3934 		list_del(&pa->u.pa_tmp_list);
3935 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3936 	}
3937 
3938 out:
3939 	ext4_unlock_group(sb, group);
3940 	ext4_mb_unload_buddy(&e4b);
3941 	put_bh(bitmap_bh);
3942 	return free;
3943 }
3944 
3945 /*
3946  * releases all non-used preallocated blocks for given inode
3947  *
3948  * It's important to discard preallocations under i_data_sem
3949  * We don't want another block to be served from the prealloc
3950  * space when we are discarding the inode prealloc space.
3951  *
3952  * FIXME!! Make sure it is valid at all the call sites
3953  */
3954 void ext4_discard_preallocations(struct inode *inode)
3955 {
3956 	struct ext4_inode_info *ei = EXT4_I(inode);
3957 	struct super_block *sb = inode->i_sb;
3958 	struct buffer_head *bitmap_bh = NULL;
3959 	struct ext4_prealloc_space *pa, *tmp;
3960 	ext4_group_t group = 0;
3961 	struct list_head list;
3962 	struct ext4_buddy e4b;
3963 	int err;
3964 
3965 	if (!S_ISREG(inode->i_mode)) {
3966 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3967 		return;
3968 	}
3969 
3970 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3971 	trace_ext4_discard_preallocations(inode);
3972 
3973 	INIT_LIST_HEAD(&list);
3974 
3975 repeat:
3976 	/* first, collect all pa's in the inode */
3977 	spin_lock(&ei->i_prealloc_lock);
3978 	while (!list_empty(&ei->i_prealloc_list)) {
3979 		pa = list_entry(ei->i_prealloc_list.next,
3980 				struct ext4_prealloc_space, pa_inode_list);
3981 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3982 		spin_lock(&pa->pa_lock);
3983 		if (atomic_read(&pa->pa_count)) {
3984 			/* this shouldn't happen often - nobody should
3985 			 * use preallocation while we're discarding it */
3986 			spin_unlock(&pa->pa_lock);
3987 			spin_unlock(&ei->i_prealloc_lock);
3988 			ext4_msg(sb, KERN_ERR,
3989 				 "uh-oh! used pa while discarding");
3990 			WARN_ON(1);
3991 			schedule_timeout_uninterruptible(HZ);
3992 			goto repeat;
3993 
3994 		}
3995 		if (pa->pa_deleted == 0) {
3996 			pa->pa_deleted = 1;
3997 			spin_unlock(&pa->pa_lock);
3998 			list_del_rcu(&pa->pa_inode_list);
3999 			list_add(&pa->u.pa_tmp_list, &list);
4000 			continue;
4001 		}
4002 
4003 		/* someone is deleting pa right now */
4004 		spin_unlock(&pa->pa_lock);
4005 		spin_unlock(&ei->i_prealloc_lock);
4006 
4007 		/* we have to wait here because pa_deleted
4008 		 * doesn't mean pa is already unlinked from
4009 		 * the list. as we might be called from
4010 		 * ->clear_inode() the inode will get freed
4011 		 * and concurrent thread which is unlinking
4012 		 * pa from inode's list may access already
4013 		 * freed memory, bad-bad-bad */
4014 
4015 		/* XXX: if this happens too often, we can
4016 		 * add a flag to force wait only in case
4017 		 * of ->clear_inode(), but not in case of
4018 		 * regular truncate */
4019 		schedule_timeout_uninterruptible(HZ);
4020 		goto repeat;
4021 	}
4022 	spin_unlock(&ei->i_prealloc_lock);
4023 
4024 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4025 		BUG_ON(pa->pa_type != MB_INODE_PA);
4026 		group = ext4_get_group_number(sb, pa->pa_pstart);
4027 
4028 		err = ext4_mb_load_buddy(sb, group, &e4b);
4029 		if (err) {
4030 			ext4_error(sb, "Error loading buddy information for %u",
4031 					group);
4032 			continue;
4033 		}
4034 
4035 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4036 		if (IS_ERR(bitmap_bh)) {
4037 			err = PTR_ERR(bitmap_bh);
4038 			ext4_error(sb, "Error %d reading block bitmap for %u",
4039 					err, group);
4040 			ext4_mb_unload_buddy(&e4b);
4041 			continue;
4042 		}
4043 
4044 		ext4_lock_group(sb, group);
4045 		list_del(&pa->pa_group_list);
4046 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4047 		ext4_unlock_group(sb, group);
4048 
4049 		ext4_mb_unload_buddy(&e4b);
4050 		put_bh(bitmap_bh);
4051 
4052 		list_del(&pa->u.pa_tmp_list);
4053 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4054 	}
4055 }
4056 
4057 #ifdef CONFIG_EXT4_DEBUG
4058 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4059 {
4060 	struct super_block *sb = ac->ac_sb;
4061 	ext4_group_t ngroups, i;
4062 
4063 	if (!ext4_mballoc_debug ||
4064 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4065 		return;
4066 
4067 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4068 			" Allocation context details:");
4069 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4070 			ac->ac_status, ac->ac_flags);
4071 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4072 		 	"goal %lu/%lu/%lu@%lu, "
4073 			"best %lu/%lu/%lu@%lu cr %d",
4074 			(unsigned long)ac->ac_o_ex.fe_group,
4075 			(unsigned long)ac->ac_o_ex.fe_start,
4076 			(unsigned long)ac->ac_o_ex.fe_len,
4077 			(unsigned long)ac->ac_o_ex.fe_logical,
4078 			(unsigned long)ac->ac_g_ex.fe_group,
4079 			(unsigned long)ac->ac_g_ex.fe_start,
4080 			(unsigned long)ac->ac_g_ex.fe_len,
4081 			(unsigned long)ac->ac_g_ex.fe_logical,
4082 			(unsigned long)ac->ac_b_ex.fe_group,
4083 			(unsigned long)ac->ac_b_ex.fe_start,
4084 			(unsigned long)ac->ac_b_ex.fe_len,
4085 			(unsigned long)ac->ac_b_ex.fe_logical,
4086 			(int)ac->ac_criteria);
4087 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4088 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4089 	ngroups = ext4_get_groups_count(sb);
4090 	for (i = 0; i < ngroups; i++) {
4091 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4092 		struct ext4_prealloc_space *pa;
4093 		ext4_grpblk_t start;
4094 		struct list_head *cur;
4095 		ext4_lock_group(sb, i);
4096 		list_for_each(cur, &grp->bb_prealloc_list) {
4097 			pa = list_entry(cur, struct ext4_prealloc_space,
4098 					pa_group_list);
4099 			spin_lock(&pa->pa_lock);
4100 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4101 						     NULL, &start);
4102 			spin_unlock(&pa->pa_lock);
4103 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4104 			       start, pa->pa_len);
4105 		}
4106 		ext4_unlock_group(sb, i);
4107 
4108 		if (grp->bb_free == 0)
4109 			continue;
4110 		printk(KERN_ERR "%u: %d/%d \n",
4111 		       i, grp->bb_free, grp->bb_fragments);
4112 	}
4113 	printk(KERN_ERR "\n");
4114 }
4115 #else
4116 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4117 {
4118 	return;
4119 }
4120 #endif
4121 
4122 /*
4123  * We use locality group preallocation for small size file. The size of the
4124  * file is determined by the current size or the resulting size after
4125  * allocation which ever is larger
4126  *
4127  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4128  */
4129 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4130 {
4131 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4132 	int bsbits = ac->ac_sb->s_blocksize_bits;
4133 	loff_t size, isize;
4134 
4135 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4136 		return;
4137 
4138 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4139 		return;
4140 
4141 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4142 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4143 		>> bsbits;
4144 
4145 	if ((size == isize) &&
4146 	    !ext4_fs_is_busy(sbi) &&
4147 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4148 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4149 		return;
4150 	}
4151 
4152 	if (sbi->s_mb_group_prealloc <= 0) {
4153 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4154 		return;
4155 	}
4156 
4157 	/* don't use group allocation for large files */
4158 	size = max(size, isize);
4159 	if (size > sbi->s_mb_stream_request) {
4160 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4161 		return;
4162 	}
4163 
4164 	BUG_ON(ac->ac_lg != NULL);
4165 	/*
4166 	 * locality group prealloc space are per cpu. The reason for having
4167 	 * per cpu locality group is to reduce the contention between block
4168 	 * request from multiple CPUs.
4169 	 */
4170 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4171 
4172 	/* we're going to use group allocation */
4173 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4174 
4175 	/* serialize all allocations in the group */
4176 	mutex_lock(&ac->ac_lg->lg_mutex);
4177 }
4178 
4179 static noinline_for_stack int
4180 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4181 				struct ext4_allocation_request *ar)
4182 {
4183 	struct super_block *sb = ar->inode->i_sb;
4184 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4185 	struct ext4_super_block *es = sbi->s_es;
4186 	ext4_group_t group;
4187 	unsigned int len;
4188 	ext4_fsblk_t goal;
4189 	ext4_grpblk_t block;
4190 
4191 	/* we can't allocate > group size */
4192 	len = ar->len;
4193 
4194 	/* just a dirty hack to filter too big requests  */
4195 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4196 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4197 
4198 	/* start searching from the goal */
4199 	goal = ar->goal;
4200 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4201 			goal >= ext4_blocks_count(es))
4202 		goal = le32_to_cpu(es->s_first_data_block);
4203 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4204 
4205 	/* set up allocation goals */
4206 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4207 	ac->ac_status = AC_STATUS_CONTINUE;
4208 	ac->ac_sb = sb;
4209 	ac->ac_inode = ar->inode;
4210 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4211 	ac->ac_o_ex.fe_group = group;
4212 	ac->ac_o_ex.fe_start = block;
4213 	ac->ac_o_ex.fe_len = len;
4214 	ac->ac_g_ex = ac->ac_o_ex;
4215 	ac->ac_flags = ar->flags;
4216 
4217 	/* we have to define context: we'll we work with a file or
4218 	 * locality group. this is a policy, actually */
4219 	ext4_mb_group_or_file(ac);
4220 
4221 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4222 			"left: %u/%u, right %u/%u to %swritable\n",
4223 			(unsigned) ar->len, (unsigned) ar->logical,
4224 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4225 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4226 			(unsigned) ar->lright, (unsigned) ar->pright,
4227 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4228 	return 0;
4229 
4230 }
4231 
4232 static noinline_for_stack void
4233 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4234 					struct ext4_locality_group *lg,
4235 					int order, int total_entries)
4236 {
4237 	ext4_group_t group = 0;
4238 	struct ext4_buddy e4b;
4239 	struct list_head discard_list;
4240 	struct ext4_prealloc_space *pa, *tmp;
4241 
4242 	mb_debug(1, "discard locality group preallocation\n");
4243 
4244 	INIT_LIST_HEAD(&discard_list);
4245 
4246 	spin_lock(&lg->lg_prealloc_lock);
4247 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4248 						pa_inode_list) {
4249 		spin_lock(&pa->pa_lock);
4250 		if (atomic_read(&pa->pa_count)) {
4251 			/*
4252 			 * This is the pa that we just used
4253 			 * for block allocation. So don't
4254 			 * free that
4255 			 */
4256 			spin_unlock(&pa->pa_lock);
4257 			continue;
4258 		}
4259 		if (pa->pa_deleted) {
4260 			spin_unlock(&pa->pa_lock);
4261 			continue;
4262 		}
4263 		/* only lg prealloc space */
4264 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4265 
4266 		/* seems this one can be freed ... */
4267 		pa->pa_deleted = 1;
4268 		spin_unlock(&pa->pa_lock);
4269 
4270 		list_del_rcu(&pa->pa_inode_list);
4271 		list_add(&pa->u.pa_tmp_list, &discard_list);
4272 
4273 		total_entries--;
4274 		if (total_entries <= 5) {
4275 			/*
4276 			 * we want to keep only 5 entries
4277 			 * allowing it to grow to 8. This
4278 			 * mak sure we don't call discard
4279 			 * soon for this list.
4280 			 */
4281 			break;
4282 		}
4283 	}
4284 	spin_unlock(&lg->lg_prealloc_lock);
4285 
4286 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4287 
4288 		group = ext4_get_group_number(sb, pa->pa_pstart);
4289 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4290 			ext4_error(sb, "Error loading buddy information for %u",
4291 					group);
4292 			continue;
4293 		}
4294 		ext4_lock_group(sb, group);
4295 		list_del(&pa->pa_group_list);
4296 		ext4_mb_release_group_pa(&e4b, pa);
4297 		ext4_unlock_group(sb, group);
4298 
4299 		ext4_mb_unload_buddy(&e4b);
4300 		list_del(&pa->u.pa_tmp_list);
4301 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4302 	}
4303 }
4304 
4305 /*
4306  * We have incremented pa_count. So it cannot be freed at this
4307  * point. Also we hold lg_mutex. So no parallel allocation is
4308  * possible from this lg. That means pa_free cannot be updated.
4309  *
4310  * A parallel ext4_mb_discard_group_preallocations is possible.
4311  * which can cause the lg_prealloc_list to be updated.
4312  */
4313 
4314 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4315 {
4316 	int order, added = 0, lg_prealloc_count = 1;
4317 	struct super_block *sb = ac->ac_sb;
4318 	struct ext4_locality_group *lg = ac->ac_lg;
4319 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4320 
4321 	order = fls(pa->pa_free) - 1;
4322 	if (order > PREALLOC_TB_SIZE - 1)
4323 		/* The max size of hash table is PREALLOC_TB_SIZE */
4324 		order = PREALLOC_TB_SIZE - 1;
4325 	/* Add the prealloc space to lg */
4326 	spin_lock(&lg->lg_prealloc_lock);
4327 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4328 						pa_inode_list) {
4329 		spin_lock(&tmp_pa->pa_lock);
4330 		if (tmp_pa->pa_deleted) {
4331 			spin_unlock(&tmp_pa->pa_lock);
4332 			continue;
4333 		}
4334 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4335 			/* Add to the tail of the previous entry */
4336 			list_add_tail_rcu(&pa->pa_inode_list,
4337 						&tmp_pa->pa_inode_list);
4338 			added = 1;
4339 			/*
4340 			 * we want to count the total
4341 			 * number of entries in the list
4342 			 */
4343 		}
4344 		spin_unlock(&tmp_pa->pa_lock);
4345 		lg_prealloc_count++;
4346 	}
4347 	if (!added)
4348 		list_add_tail_rcu(&pa->pa_inode_list,
4349 					&lg->lg_prealloc_list[order]);
4350 	spin_unlock(&lg->lg_prealloc_lock);
4351 
4352 	/* Now trim the list to be not more than 8 elements */
4353 	if (lg_prealloc_count > 8) {
4354 		ext4_mb_discard_lg_preallocations(sb, lg,
4355 						  order, lg_prealloc_count);
4356 		return;
4357 	}
4358 	return ;
4359 }
4360 
4361 /*
4362  * release all resource we used in allocation
4363  */
4364 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4365 {
4366 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4367 	struct ext4_prealloc_space *pa = ac->ac_pa;
4368 	if (pa) {
4369 		if (pa->pa_type == MB_GROUP_PA) {
4370 			/* see comment in ext4_mb_use_group_pa() */
4371 			spin_lock(&pa->pa_lock);
4372 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4373 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4374 			pa->pa_free -= ac->ac_b_ex.fe_len;
4375 			pa->pa_len -= ac->ac_b_ex.fe_len;
4376 			spin_unlock(&pa->pa_lock);
4377 		}
4378 	}
4379 	if (pa) {
4380 		/*
4381 		 * We want to add the pa to the right bucket.
4382 		 * Remove it from the list and while adding
4383 		 * make sure the list to which we are adding
4384 		 * doesn't grow big.
4385 		 */
4386 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4387 			spin_lock(pa->pa_obj_lock);
4388 			list_del_rcu(&pa->pa_inode_list);
4389 			spin_unlock(pa->pa_obj_lock);
4390 			ext4_mb_add_n_trim(ac);
4391 		}
4392 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4393 	}
4394 	if (ac->ac_bitmap_page)
4395 		put_page(ac->ac_bitmap_page);
4396 	if (ac->ac_buddy_page)
4397 		put_page(ac->ac_buddy_page);
4398 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4399 		mutex_unlock(&ac->ac_lg->lg_mutex);
4400 	ext4_mb_collect_stats(ac);
4401 	return 0;
4402 }
4403 
4404 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4405 {
4406 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4407 	int ret;
4408 	int freed = 0;
4409 
4410 	trace_ext4_mb_discard_preallocations(sb, needed);
4411 	for (i = 0; i < ngroups && needed > 0; i++) {
4412 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4413 		freed += ret;
4414 		needed -= ret;
4415 	}
4416 
4417 	return freed;
4418 }
4419 
4420 /*
4421  * Main entry point into mballoc to allocate blocks
4422  * it tries to use preallocation first, then falls back
4423  * to usual allocation
4424  */
4425 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4426 				struct ext4_allocation_request *ar, int *errp)
4427 {
4428 	int freed;
4429 	struct ext4_allocation_context *ac = NULL;
4430 	struct ext4_sb_info *sbi;
4431 	struct super_block *sb;
4432 	ext4_fsblk_t block = 0;
4433 	unsigned int inquota = 0;
4434 	unsigned int reserv_clstrs = 0;
4435 
4436 	might_sleep();
4437 	sb = ar->inode->i_sb;
4438 	sbi = EXT4_SB(sb);
4439 
4440 	trace_ext4_request_blocks(ar);
4441 
4442 	/* Allow to use superuser reservation for quota file */
4443 	if (IS_NOQUOTA(ar->inode))
4444 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4445 
4446 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4447 		/* Without delayed allocation we need to verify
4448 		 * there is enough free blocks to do block allocation
4449 		 * and verify allocation doesn't exceed the quota limits.
4450 		 */
4451 		while (ar->len &&
4452 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4453 
4454 			/* let others to free the space */
4455 			cond_resched();
4456 			ar->len = ar->len >> 1;
4457 		}
4458 		if (!ar->len) {
4459 			*errp = -ENOSPC;
4460 			return 0;
4461 		}
4462 		reserv_clstrs = ar->len;
4463 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4464 			dquot_alloc_block_nofail(ar->inode,
4465 						 EXT4_C2B(sbi, ar->len));
4466 		} else {
4467 			while (ar->len &&
4468 				dquot_alloc_block(ar->inode,
4469 						  EXT4_C2B(sbi, ar->len))) {
4470 
4471 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4472 				ar->len--;
4473 			}
4474 		}
4475 		inquota = ar->len;
4476 		if (ar->len == 0) {
4477 			*errp = -EDQUOT;
4478 			goto out;
4479 		}
4480 	}
4481 
4482 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4483 	if (!ac) {
4484 		ar->len = 0;
4485 		*errp = -ENOMEM;
4486 		goto out;
4487 	}
4488 
4489 	*errp = ext4_mb_initialize_context(ac, ar);
4490 	if (*errp) {
4491 		ar->len = 0;
4492 		goto out;
4493 	}
4494 
4495 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4496 	if (!ext4_mb_use_preallocated(ac)) {
4497 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4498 		ext4_mb_normalize_request(ac, ar);
4499 repeat:
4500 		/* allocate space in core */
4501 		*errp = ext4_mb_regular_allocator(ac);
4502 		if (*errp)
4503 			goto discard_and_exit;
4504 
4505 		/* as we've just preallocated more space than
4506 		 * user requested originally, we store allocated
4507 		 * space in a special descriptor */
4508 		if (ac->ac_status == AC_STATUS_FOUND &&
4509 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4510 			*errp = ext4_mb_new_preallocation(ac);
4511 		if (*errp) {
4512 		discard_and_exit:
4513 			ext4_discard_allocated_blocks(ac);
4514 			goto errout;
4515 		}
4516 	}
4517 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4518 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4519 		if (*errp) {
4520 			ext4_discard_allocated_blocks(ac);
4521 			goto errout;
4522 		} else {
4523 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4524 			ar->len = ac->ac_b_ex.fe_len;
4525 		}
4526 	} else {
4527 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4528 		if (freed)
4529 			goto repeat;
4530 		*errp = -ENOSPC;
4531 	}
4532 
4533 errout:
4534 	if (*errp) {
4535 		ac->ac_b_ex.fe_len = 0;
4536 		ar->len = 0;
4537 		ext4_mb_show_ac(ac);
4538 	}
4539 	ext4_mb_release_context(ac);
4540 out:
4541 	if (ac)
4542 		kmem_cache_free(ext4_ac_cachep, ac);
4543 	if (inquota && ar->len < inquota)
4544 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4545 	if (!ar->len) {
4546 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4547 			/* release all the reserved blocks if non delalloc */
4548 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4549 						reserv_clstrs);
4550 	}
4551 
4552 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4553 
4554 	return block;
4555 }
4556 
4557 /*
4558  * We can merge two free data extents only if the physical blocks
4559  * are contiguous, AND the extents were freed by the same transaction,
4560  * AND the blocks are associated with the same group.
4561  */
4562 static int can_merge(struct ext4_free_data *entry1,
4563 			struct ext4_free_data *entry2)
4564 {
4565 	if ((entry1->efd_tid == entry2->efd_tid) &&
4566 	    (entry1->efd_group == entry2->efd_group) &&
4567 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4568 		return 1;
4569 	return 0;
4570 }
4571 
4572 static noinline_for_stack int
4573 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4574 		      struct ext4_free_data *new_entry)
4575 {
4576 	ext4_group_t group = e4b->bd_group;
4577 	ext4_grpblk_t cluster;
4578 	ext4_grpblk_t clusters = new_entry->efd_count;
4579 	struct ext4_free_data *entry;
4580 	struct ext4_group_info *db = e4b->bd_info;
4581 	struct super_block *sb = e4b->bd_sb;
4582 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4583 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4584 	struct rb_node *parent = NULL, *new_node;
4585 
4586 	BUG_ON(!ext4_handle_valid(handle));
4587 	BUG_ON(e4b->bd_bitmap_page == NULL);
4588 	BUG_ON(e4b->bd_buddy_page == NULL);
4589 
4590 	new_node = &new_entry->efd_node;
4591 	cluster = new_entry->efd_start_cluster;
4592 
4593 	if (!*n) {
4594 		/* first free block exent. We need to
4595 		   protect buddy cache from being freed,
4596 		 * otherwise we'll refresh it from
4597 		 * on-disk bitmap and lose not-yet-available
4598 		 * blocks */
4599 		get_page(e4b->bd_buddy_page);
4600 		get_page(e4b->bd_bitmap_page);
4601 	}
4602 	while (*n) {
4603 		parent = *n;
4604 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4605 		if (cluster < entry->efd_start_cluster)
4606 			n = &(*n)->rb_left;
4607 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4608 			n = &(*n)->rb_right;
4609 		else {
4610 			ext4_grp_locked_error(sb, group, 0,
4611 				ext4_group_first_block_no(sb, group) +
4612 				EXT4_C2B(sbi, cluster),
4613 				"Block already on to-be-freed list");
4614 			return 0;
4615 		}
4616 	}
4617 
4618 	rb_link_node(new_node, parent, n);
4619 	rb_insert_color(new_node, &db->bb_free_root);
4620 
4621 	/* Now try to see the extent can be merged to left and right */
4622 	node = rb_prev(new_node);
4623 	if (node) {
4624 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4625 		if (can_merge(entry, new_entry) &&
4626 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4627 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4628 			new_entry->efd_count += entry->efd_count;
4629 			rb_erase(node, &(db->bb_free_root));
4630 			kmem_cache_free(ext4_free_data_cachep, entry);
4631 		}
4632 	}
4633 
4634 	node = rb_next(new_node);
4635 	if (node) {
4636 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4637 		if (can_merge(new_entry, entry) &&
4638 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4639 			new_entry->efd_count += entry->efd_count;
4640 			rb_erase(node, &(db->bb_free_root));
4641 			kmem_cache_free(ext4_free_data_cachep, entry);
4642 		}
4643 	}
4644 	/* Add the extent to transaction's private list */
4645 	new_entry->efd_jce.jce_func = ext4_free_data_callback;
4646 	spin_lock(&sbi->s_md_lock);
4647 	_ext4_journal_callback_add(handle, &new_entry->efd_jce);
4648 	sbi->s_mb_free_pending += clusters;
4649 	spin_unlock(&sbi->s_md_lock);
4650 	return 0;
4651 }
4652 
4653 /**
4654  * ext4_free_blocks() -- Free given blocks and update quota
4655  * @handle:		handle for this transaction
4656  * @inode:		inode
4657  * @block:		start physical block to free
4658  * @count:		number of blocks to count
4659  * @flags:		flags used by ext4_free_blocks
4660  */
4661 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4662 		      struct buffer_head *bh, ext4_fsblk_t block,
4663 		      unsigned long count, int flags)
4664 {
4665 	struct buffer_head *bitmap_bh = NULL;
4666 	struct super_block *sb = inode->i_sb;
4667 	struct ext4_group_desc *gdp;
4668 	unsigned int overflow;
4669 	ext4_grpblk_t bit;
4670 	struct buffer_head *gd_bh;
4671 	ext4_group_t block_group;
4672 	struct ext4_sb_info *sbi;
4673 	struct ext4_buddy e4b;
4674 	unsigned int count_clusters;
4675 	int err = 0;
4676 	int ret;
4677 
4678 	might_sleep();
4679 	if (bh) {
4680 		if (block)
4681 			BUG_ON(block != bh->b_blocknr);
4682 		else
4683 			block = bh->b_blocknr;
4684 	}
4685 
4686 	sbi = EXT4_SB(sb);
4687 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4688 	    !ext4_data_block_valid(sbi, block, count)) {
4689 		ext4_error(sb, "Freeing blocks not in datazone - "
4690 			   "block = %llu, count = %lu", block, count);
4691 		goto error_return;
4692 	}
4693 
4694 	ext4_debug("freeing block %llu\n", block);
4695 	trace_ext4_free_blocks(inode, block, count, flags);
4696 
4697 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4698 		BUG_ON(count > 1);
4699 
4700 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4701 			    inode, bh, block);
4702 	}
4703 
4704 	/*
4705 	 * If the extent to be freed does not begin on a cluster
4706 	 * boundary, we need to deal with partial clusters at the
4707 	 * beginning and end of the extent.  Normally we will free
4708 	 * blocks at the beginning or the end unless we are explicitly
4709 	 * requested to avoid doing so.
4710 	 */
4711 	overflow = EXT4_PBLK_COFF(sbi, block);
4712 	if (overflow) {
4713 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4714 			overflow = sbi->s_cluster_ratio - overflow;
4715 			block += overflow;
4716 			if (count > overflow)
4717 				count -= overflow;
4718 			else
4719 				return;
4720 		} else {
4721 			block -= overflow;
4722 			count += overflow;
4723 		}
4724 	}
4725 	overflow = EXT4_LBLK_COFF(sbi, count);
4726 	if (overflow) {
4727 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4728 			if (count > overflow)
4729 				count -= overflow;
4730 			else
4731 				return;
4732 		} else
4733 			count += sbi->s_cluster_ratio - overflow;
4734 	}
4735 
4736 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4737 		int i;
4738 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4739 
4740 		for (i = 0; i < count; i++) {
4741 			cond_resched();
4742 			if (is_metadata)
4743 				bh = sb_find_get_block(inode->i_sb, block + i);
4744 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4745 		}
4746 	}
4747 
4748 do_more:
4749 	overflow = 0;
4750 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4751 
4752 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4753 			ext4_get_group_info(sb, block_group))))
4754 		return;
4755 
4756 	/*
4757 	 * Check to see if we are freeing blocks across a group
4758 	 * boundary.
4759 	 */
4760 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4761 		overflow = EXT4_C2B(sbi, bit) + count -
4762 			EXT4_BLOCKS_PER_GROUP(sb);
4763 		count -= overflow;
4764 	}
4765 	count_clusters = EXT4_NUM_B2C(sbi, count);
4766 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4767 	if (IS_ERR(bitmap_bh)) {
4768 		err = PTR_ERR(bitmap_bh);
4769 		bitmap_bh = NULL;
4770 		goto error_return;
4771 	}
4772 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4773 	if (!gdp) {
4774 		err = -EIO;
4775 		goto error_return;
4776 	}
4777 
4778 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4779 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4780 	    in_range(block, ext4_inode_table(sb, gdp),
4781 		     EXT4_SB(sb)->s_itb_per_group) ||
4782 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4783 		     EXT4_SB(sb)->s_itb_per_group)) {
4784 
4785 		ext4_error(sb, "Freeing blocks in system zone - "
4786 			   "Block = %llu, count = %lu", block, count);
4787 		/* err = 0. ext4_std_error should be a no op */
4788 		goto error_return;
4789 	}
4790 
4791 	BUFFER_TRACE(bitmap_bh, "getting write access");
4792 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4793 	if (err)
4794 		goto error_return;
4795 
4796 	/*
4797 	 * We are about to modify some metadata.  Call the journal APIs
4798 	 * to unshare ->b_data if a currently-committing transaction is
4799 	 * using it
4800 	 */
4801 	BUFFER_TRACE(gd_bh, "get_write_access");
4802 	err = ext4_journal_get_write_access(handle, gd_bh);
4803 	if (err)
4804 		goto error_return;
4805 #ifdef AGGRESSIVE_CHECK
4806 	{
4807 		int i;
4808 		for (i = 0; i < count_clusters; i++)
4809 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4810 	}
4811 #endif
4812 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4813 
4814 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4815 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4816 				     GFP_NOFS|__GFP_NOFAIL);
4817 	if (err)
4818 		goto error_return;
4819 
4820 	/*
4821 	 * We need to make sure we don't reuse the freed block until after the
4822 	 * transaction is committed. We make an exception if the inode is to be
4823 	 * written in writeback mode since writeback mode has weak data
4824 	 * consistency guarantees.
4825 	 */
4826 	if (ext4_handle_valid(handle) &&
4827 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4828 	     !ext4_should_writeback_data(inode))) {
4829 		struct ext4_free_data *new_entry;
4830 		/*
4831 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4832 		 * to fail.
4833 		 */
4834 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4835 				GFP_NOFS|__GFP_NOFAIL);
4836 		new_entry->efd_start_cluster = bit;
4837 		new_entry->efd_group = block_group;
4838 		new_entry->efd_count = count_clusters;
4839 		new_entry->efd_tid = handle->h_transaction->t_tid;
4840 
4841 		ext4_lock_group(sb, block_group);
4842 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4843 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4844 	} else {
4845 		/* need to update group_info->bb_free and bitmap
4846 		 * with group lock held. generate_buddy look at
4847 		 * them with group lock_held
4848 		 */
4849 		if (test_opt(sb, DISCARD)) {
4850 			err = ext4_issue_discard(sb, block_group, bit, count);
4851 			if (err && err != -EOPNOTSUPP)
4852 				ext4_msg(sb, KERN_WARNING, "discard request in"
4853 					 " group:%d block:%d count:%lu failed"
4854 					 " with %d", block_group, bit, count,
4855 					 err);
4856 		} else
4857 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4858 
4859 		ext4_lock_group(sb, block_group);
4860 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4861 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4862 	}
4863 
4864 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4865 	ext4_free_group_clusters_set(sb, gdp, ret);
4866 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4867 	ext4_group_desc_csum_set(sb, block_group, gdp);
4868 	ext4_unlock_group(sb, block_group);
4869 
4870 	if (sbi->s_log_groups_per_flex) {
4871 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4872 		atomic64_add(count_clusters,
4873 			     &sbi->s_flex_groups[flex_group].free_clusters);
4874 	}
4875 
4876 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4877 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4878 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4879 
4880 	ext4_mb_unload_buddy(&e4b);
4881 
4882 	/* We dirtied the bitmap block */
4883 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4884 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4885 
4886 	/* And the group descriptor block */
4887 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4888 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4889 	if (!err)
4890 		err = ret;
4891 
4892 	if (overflow && !err) {
4893 		block += count;
4894 		count = overflow;
4895 		put_bh(bitmap_bh);
4896 		goto do_more;
4897 	}
4898 error_return:
4899 	brelse(bitmap_bh);
4900 	ext4_std_error(sb, err);
4901 	return;
4902 }
4903 
4904 /**
4905  * ext4_group_add_blocks() -- Add given blocks to an existing group
4906  * @handle:			handle to this transaction
4907  * @sb:				super block
4908  * @block:			start physical block to add to the block group
4909  * @count:			number of blocks to free
4910  *
4911  * This marks the blocks as free in the bitmap and buddy.
4912  */
4913 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4914 			 ext4_fsblk_t block, unsigned long count)
4915 {
4916 	struct buffer_head *bitmap_bh = NULL;
4917 	struct buffer_head *gd_bh;
4918 	ext4_group_t block_group;
4919 	ext4_grpblk_t bit;
4920 	unsigned int i;
4921 	struct ext4_group_desc *desc;
4922 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4923 	struct ext4_buddy e4b;
4924 	int err = 0, ret, blk_free_count;
4925 	ext4_grpblk_t blocks_freed;
4926 
4927 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4928 
4929 	if (count == 0)
4930 		return 0;
4931 
4932 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4933 	/*
4934 	 * Check to see if we are freeing blocks across a group
4935 	 * boundary.
4936 	 */
4937 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4938 		ext4_warning(sb, "too much blocks added to group %u",
4939 			     block_group);
4940 		err = -EINVAL;
4941 		goto error_return;
4942 	}
4943 
4944 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4945 	if (IS_ERR(bitmap_bh)) {
4946 		err = PTR_ERR(bitmap_bh);
4947 		bitmap_bh = NULL;
4948 		goto error_return;
4949 	}
4950 
4951 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4952 	if (!desc) {
4953 		err = -EIO;
4954 		goto error_return;
4955 	}
4956 
4957 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4958 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4959 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4960 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4961 		     sbi->s_itb_per_group)) {
4962 		ext4_error(sb, "Adding blocks in system zones - "
4963 			   "Block = %llu, count = %lu",
4964 			   block, count);
4965 		err = -EINVAL;
4966 		goto error_return;
4967 	}
4968 
4969 	BUFFER_TRACE(bitmap_bh, "getting write access");
4970 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4971 	if (err)
4972 		goto error_return;
4973 
4974 	/*
4975 	 * We are about to modify some metadata.  Call the journal APIs
4976 	 * to unshare ->b_data if a currently-committing transaction is
4977 	 * using it
4978 	 */
4979 	BUFFER_TRACE(gd_bh, "get_write_access");
4980 	err = ext4_journal_get_write_access(handle, gd_bh);
4981 	if (err)
4982 		goto error_return;
4983 
4984 	for (i = 0, blocks_freed = 0; i < count; i++) {
4985 		BUFFER_TRACE(bitmap_bh, "clear bit");
4986 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4987 			ext4_error(sb, "bit already cleared for block %llu",
4988 				   (ext4_fsblk_t)(block + i));
4989 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4990 		} else {
4991 			blocks_freed++;
4992 		}
4993 	}
4994 
4995 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4996 	if (err)
4997 		goto error_return;
4998 
4999 	/*
5000 	 * need to update group_info->bb_free and bitmap
5001 	 * with group lock held. generate_buddy look at
5002 	 * them with group lock_held
5003 	 */
5004 	ext4_lock_group(sb, block_group);
5005 	mb_clear_bits(bitmap_bh->b_data, bit, count);
5006 	mb_free_blocks(NULL, &e4b, bit, count);
5007 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5008 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5009 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5010 	ext4_group_desc_csum_set(sb, block_group, desc);
5011 	ext4_unlock_group(sb, block_group);
5012 	percpu_counter_add(&sbi->s_freeclusters_counter,
5013 			   EXT4_NUM_B2C(sbi, blocks_freed));
5014 
5015 	if (sbi->s_log_groups_per_flex) {
5016 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5017 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5018 			     &sbi->s_flex_groups[flex_group].free_clusters);
5019 	}
5020 
5021 	ext4_mb_unload_buddy(&e4b);
5022 
5023 	/* We dirtied the bitmap block */
5024 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5025 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5026 
5027 	/* And the group descriptor block */
5028 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5029 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5030 	if (!err)
5031 		err = ret;
5032 
5033 error_return:
5034 	brelse(bitmap_bh);
5035 	ext4_std_error(sb, err);
5036 	return err;
5037 }
5038 
5039 /**
5040  * ext4_trim_extent -- function to TRIM one single free extent in the group
5041  * @sb:		super block for the file system
5042  * @start:	starting block of the free extent in the alloc. group
5043  * @count:	number of blocks to TRIM
5044  * @group:	alloc. group we are working with
5045  * @e4b:	ext4 buddy for the group
5046  *
5047  * Trim "count" blocks starting at "start" in the "group". To assure that no
5048  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5049  * be called with under the group lock.
5050  */
5051 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5052 			     ext4_group_t group, struct ext4_buddy *e4b)
5053 __releases(bitlock)
5054 __acquires(bitlock)
5055 {
5056 	struct ext4_free_extent ex;
5057 	int ret = 0;
5058 
5059 	trace_ext4_trim_extent(sb, group, start, count);
5060 
5061 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5062 
5063 	ex.fe_start = start;
5064 	ex.fe_group = group;
5065 	ex.fe_len = count;
5066 
5067 	/*
5068 	 * Mark blocks used, so no one can reuse them while
5069 	 * being trimmed.
5070 	 */
5071 	mb_mark_used(e4b, &ex);
5072 	ext4_unlock_group(sb, group);
5073 	ret = ext4_issue_discard(sb, group, start, count);
5074 	ext4_lock_group(sb, group);
5075 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5076 	return ret;
5077 }
5078 
5079 /**
5080  * ext4_trim_all_free -- function to trim all free space in alloc. group
5081  * @sb:			super block for file system
5082  * @group:		group to be trimmed
5083  * @start:		first group block to examine
5084  * @max:		last group block to examine
5085  * @minblocks:		minimum extent block count
5086  *
5087  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5088  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5089  * the extent.
5090  *
5091  *
5092  * ext4_trim_all_free walks through group's block bitmap searching for free
5093  * extents. When the free extent is found, mark it as used in group buddy
5094  * bitmap. Then issue a TRIM command on this extent and free the extent in
5095  * the group buddy bitmap. This is done until whole group is scanned.
5096  */
5097 static ext4_grpblk_t
5098 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5099 		   ext4_grpblk_t start, ext4_grpblk_t max,
5100 		   ext4_grpblk_t minblocks)
5101 {
5102 	void *bitmap;
5103 	ext4_grpblk_t next, count = 0, free_count = 0;
5104 	struct ext4_buddy e4b;
5105 	int ret = 0;
5106 
5107 	trace_ext4_trim_all_free(sb, group, start, max);
5108 
5109 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5110 	if (ret) {
5111 		ext4_error(sb, "Error in loading buddy "
5112 				"information for %u", group);
5113 		return ret;
5114 	}
5115 	bitmap = e4b.bd_bitmap;
5116 
5117 	ext4_lock_group(sb, group);
5118 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5119 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5120 		goto out;
5121 
5122 	start = (e4b.bd_info->bb_first_free > start) ?
5123 		e4b.bd_info->bb_first_free : start;
5124 
5125 	while (start <= max) {
5126 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5127 		if (start > max)
5128 			break;
5129 		next = mb_find_next_bit(bitmap, max + 1, start);
5130 
5131 		if ((next - start) >= minblocks) {
5132 			ret = ext4_trim_extent(sb, start,
5133 					       next - start, group, &e4b);
5134 			if (ret && ret != -EOPNOTSUPP)
5135 				break;
5136 			ret = 0;
5137 			count += next - start;
5138 		}
5139 		free_count += next - start;
5140 		start = next + 1;
5141 
5142 		if (fatal_signal_pending(current)) {
5143 			count = -ERESTARTSYS;
5144 			break;
5145 		}
5146 
5147 		if (need_resched()) {
5148 			ext4_unlock_group(sb, group);
5149 			cond_resched();
5150 			ext4_lock_group(sb, group);
5151 		}
5152 
5153 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5154 			break;
5155 	}
5156 
5157 	if (!ret) {
5158 		ret = count;
5159 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5160 	}
5161 out:
5162 	ext4_unlock_group(sb, group);
5163 	ext4_mb_unload_buddy(&e4b);
5164 
5165 	ext4_debug("trimmed %d blocks in the group %d\n",
5166 		count, group);
5167 
5168 	return ret;
5169 }
5170 
5171 /**
5172  * ext4_trim_fs() -- trim ioctl handle function
5173  * @sb:			superblock for filesystem
5174  * @range:		fstrim_range structure
5175  *
5176  * start:	First Byte to trim
5177  * len:		number of Bytes to trim from start
5178  * minlen:	minimum extent length in Bytes
5179  * ext4_trim_fs goes through all allocation groups containing Bytes from
5180  * start to start+len. For each such a group ext4_trim_all_free function
5181  * is invoked to trim all free space.
5182  */
5183 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5184 {
5185 	struct ext4_group_info *grp;
5186 	ext4_group_t group, first_group, last_group;
5187 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5188 	uint64_t start, end, minlen, trimmed = 0;
5189 	ext4_fsblk_t first_data_blk =
5190 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5191 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5192 	int ret = 0;
5193 
5194 	start = range->start >> sb->s_blocksize_bits;
5195 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5196 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5197 			      range->minlen >> sb->s_blocksize_bits);
5198 
5199 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5200 	    start >= max_blks ||
5201 	    range->len < sb->s_blocksize)
5202 		return -EINVAL;
5203 	if (end >= max_blks)
5204 		end = max_blks - 1;
5205 	if (end <= first_data_blk)
5206 		goto out;
5207 	if (start < first_data_blk)
5208 		start = first_data_blk;
5209 
5210 	/* Determine first and last group to examine based on start and end */
5211 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5212 				     &first_group, &first_cluster);
5213 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5214 				     &last_group, &last_cluster);
5215 
5216 	/* end now represents the last cluster to discard in this group */
5217 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5218 
5219 	for (group = first_group; group <= last_group; group++) {
5220 		grp = ext4_get_group_info(sb, group);
5221 		/* We only do this if the grp has never been initialized */
5222 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5223 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5224 			if (ret)
5225 				break;
5226 		}
5227 
5228 		/*
5229 		 * For all the groups except the last one, last cluster will
5230 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5231 		 * change it for the last group, note that last_cluster is
5232 		 * already computed earlier by ext4_get_group_no_and_offset()
5233 		 */
5234 		if (group == last_group)
5235 			end = last_cluster;
5236 
5237 		if (grp->bb_free >= minlen) {
5238 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5239 						end, minlen);
5240 			if (cnt < 0) {
5241 				ret = cnt;
5242 				break;
5243 			}
5244 			trimmed += cnt;
5245 		}
5246 
5247 		/*
5248 		 * For every group except the first one, we are sure
5249 		 * that the first cluster to discard will be cluster #0.
5250 		 */
5251 		first_cluster = 0;
5252 	}
5253 
5254 	if (!ret)
5255 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5256 
5257 out:
5258 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5259 	return ret;
5260 }
5261