1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 22 /* 23 * MUSTDO: 24 * - test ext4_ext_search_left() and ext4_ext_search_right() 25 * - search for metadata in few groups 26 * 27 * TODO v4: 28 * - normalization should take into account whether file is still open 29 * - discard preallocations if no free space left (policy?) 30 * - don't normalize tails 31 * - quota 32 * - reservation for superuser 33 * 34 * TODO v3: 35 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 36 * - track min/max extents in each group for better group selection 37 * - mb_mark_used() may allocate chunk right after splitting buddy 38 * - tree of groups sorted by number of free blocks 39 * - error handling 40 */ 41 42 /* 43 * The allocation request involve request for multiple number of blocks 44 * near to the goal(block) value specified. 45 * 46 * During initialization phase of the allocator we decide to use the 47 * group preallocation or inode preallocation depending on the size of 48 * the file. The size of the file could be the resulting file size we 49 * would have after allocation, or the current file size, which ever 50 * is larger. If the size is less than sbi->s_mb_stream_request we 51 * select to use the group preallocation. The default value of 52 * s_mb_stream_request is 16 blocks. This can also be tuned via 53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 54 * terms of number of blocks. 55 * 56 * The main motivation for having small file use group preallocation is to 57 * ensure that we have small files closer together on the disk. 58 * 59 * First stage the allocator looks at the inode prealloc list, 60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 61 * spaces for this particular inode. The inode prealloc space is 62 * represented as: 63 * 64 * pa_lstart -> the logical start block for this prealloc space 65 * pa_pstart -> the physical start block for this prealloc space 66 * pa_len -> length for this prealloc space (in clusters) 67 * pa_free -> free space available in this prealloc space (in clusters) 68 * 69 * The inode preallocation space is used looking at the _logical_ start 70 * block. If only the logical file block falls within the range of prealloc 71 * space we will consume the particular prealloc space. This makes sure that 72 * we have contiguous physical blocks representing the file blocks 73 * 74 * The important thing to be noted in case of inode prealloc space is that 75 * we don't modify the values associated to inode prealloc space except 76 * pa_free. 77 * 78 * If we are not able to find blocks in the inode prealloc space and if we 79 * have the group allocation flag set then we look at the locality group 80 * prealloc space. These are per CPU prealloc list represented as 81 * 82 * ext4_sb_info.s_locality_groups[smp_processor_id()] 83 * 84 * The reason for having a per cpu locality group is to reduce the contention 85 * between CPUs. It is possible to get scheduled at this point. 86 * 87 * The locality group prealloc space is used looking at whether we have 88 * enough free space (pa_free) within the prealloc space. 89 * 90 * If we can't allocate blocks via inode prealloc or/and locality group 91 * prealloc then we look at the buddy cache. The buddy cache is represented 92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 93 * mapped to the buddy and bitmap information regarding different 94 * groups. The buddy information is attached to buddy cache inode so that 95 * we can access them through the page cache. The information regarding 96 * each group is loaded via ext4_mb_load_buddy. The information involve 97 * block bitmap and buddy information. The information are stored in the 98 * inode as: 99 * 100 * { page } 101 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 102 * 103 * 104 * one block each for bitmap and buddy information. So for each group we 105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 106 * blocksize) blocks. So it can have information regarding groups_per_page 107 * which is blocks_per_page/2 108 * 109 * The buddy cache inode is not stored on disk. The inode is thrown 110 * away when the filesystem is unmounted. 111 * 112 * We look for count number of blocks in the buddy cache. If we were able 113 * to locate that many free blocks we return with additional information 114 * regarding rest of the contiguous physical block available 115 * 116 * Before allocating blocks via buddy cache we normalize the request 117 * blocks. This ensure we ask for more blocks that we needed. The extra 118 * blocks that we get after allocation is added to the respective prealloc 119 * list. In case of inode preallocation we follow a list of heuristics 120 * based on file size. This can be found in ext4_mb_normalize_request. If 121 * we are doing a group prealloc we try to normalize the request to 122 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 123 * dependent on the cluster size; for non-bigalloc file systems, it is 124 * 512 blocks. This can be tuned via 125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 126 * terms of number of blocks. If we have mounted the file system with -O 127 * stripe=<value> option the group prealloc request is normalized to the 128 * smallest multiple of the stripe value (sbi->s_stripe) which is 129 * greater than the default mb_group_prealloc. 130 * 131 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 132 * structures in two data structures: 133 * 134 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 135 * 136 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 137 * 138 * This is an array of lists where the index in the array represents the 139 * largest free order in the buddy bitmap of the participating group infos of 140 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 141 * number of buddy bitmap orders possible) number of lists. Group-infos are 142 * placed in appropriate lists. 143 * 144 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 145 * 146 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 147 * 148 * This is an array of lists where in the i-th list there are groups with 149 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 150 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 151 * Note that we don't bother with a special list for completely empty groups 152 * so we only have MB_NUM_ORDERS(sb) lists. 153 * 154 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 155 * structures to decide the order in which groups are to be traversed for 156 * fulfilling an allocation request. 157 * 158 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 159 * >= the order of the request. We directly look at the largest free order list 160 * in the data structure (1) above where largest_free_order = order of the 161 * request. If that list is empty, we look at remaining list in the increasing 162 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 163 * lookup in O(1) time. 164 * 165 * At CR_GOAL_LEN_FAST, we only consider groups where 166 * average fragment size > request size. So, we lookup a group which has average 167 * fragment size just above or equal to request size using our average fragment 168 * size group lists (data structure 2) in O(1) time. 169 * 170 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 171 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 172 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 173 * fragment size > goal length. So before falling to the slower 174 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 175 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 176 * enough average fragment size. This increases the chances of finding a 177 * suitable block group in O(1) time and results in faster allocation at the 178 * cost of reduced size of allocation. 179 * 180 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 181 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 182 * CR_GOAL_LEN_FAST phase. 183 * 184 * The regular allocator (using the buddy cache) supports a few tunables. 185 * 186 * /sys/fs/ext4/<partition>/mb_min_to_scan 187 * /sys/fs/ext4/<partition>/mb_max_to_scan 188 * /sys/fs/ext4/<partition>/mb_order2_req 189 * /sys/fs/ext4/<partition>/mb_linear_limit 190 * 191 * The regular allocator uses buddy scan only if the request len is power of 192 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 193 * value of s_mb_order2_reqs can be tuned via 194 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 195 * stripe size (sbi->s_stripe), we try to search for contiguous block in 196 * stripe size. This should result in better allocation on RAID setups. If 197 * not, we search in the specific group using bitmap for best extents. The 198 * tunable min_to_scan and max_to_scan control the behaviour here. 199 * min_to_scan indicate how long the mballoc __must__ look for a best 200 * extent and max_to_scan indicates how long the mballoc __can__ look for a 201 * best extent in the found extents. Searching for the blocks starts with 202 * the group specified as the goal value in allocation context via 203 * ac_g_ex. Each group is first checked based on the criteria whether it 204 * can be used for allocation. ext4_mb_good_group explains how the groups are 205 * checked. 206 * 207 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 208 * get traversed linearly. That may result in subsequent allocations being not 209 * close to each other. And so, the underlying device may get filled up in a 210 * non-linear fashion. While that may not matter on non-rotational devices, for 211 * rotational devices that may result in higher seek times. "mb_linear_limit" 212 * tells mballoc how many groups mballoc should search linearly before 213 * performing consulting above data structures for more efficient lookups. For 214 * non rotational devices, this value defaults to 0 and for rotational devices 215 * this is set to MB_DEFAULT_LINEAR_LIMIT. 216 * 217 * Both the prealloc space are getting populated as above. So for the first 218 * request we will hit the buddy cache which will result in this prealloc 219 * space getting filled. The prealloc space is then later used for the 220 * subsequent request. 221 */ 222 223 /* 224 * mballoc operates on the following data: 225 * - on-disk bitmap 226 * - in-core buddy (actually includes buddy and bitmap) 227 * - preallocation descriptors (PAs) 228 * 229 * there are two types of preallocations: 230 * - inode 231 * assiged to specific inode and can be used for this inode only. 232 * it describes part of inode's space preallocated to specific 233 * physical blocks. any block from that preallocated can be used 234 * independent. the descriptor just tracks number of blocks left 235 * unused. so, before taking some block from descriptor, one must 236 * make sure corresponded logical block isn't allocated yet. this 237 * also means that freeing any block within descriptor's range 238 * must discard all preallocated blocks. 239 * - locality group 240 * assigned to specific locality group which does not translate to 241 * permanent set of inodes: inode can join and leave group. space 242 * from this type of preallocation can be used for any inode. thus 243 * it's consumed from the beginning to the end. 244 * 245 * relation between them can be expressed as: 246 * in-core buddy = on-disk bitmap + preallocation descriptors 247 * 248 * this mean blocks mballoc considers used are: 249 * - allocated blocks (persistent) 250 * - preallocated blocks (non-persistent) 251 * 252 * consistency in mballoc world means that at any time a block is either 253 * free or used in ALL structures. notice: "any time" should not be read 254 * literally -- time is discrete and delimited by locks. 255 * 256 * to keep it simple, we don't use block numbers, instead we count number of 257 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 258 * 259 * all operations can be expressed as: 260 * - init buddy: buddy = on-disk + PAs 261 * - new PA: buddy += N; PA = N 262 * - use inode PA: on-disk += N; PA -= N 263 * - discard inode PA buddy -= on-disk - PA; PA = 0 264 * - use locality group PA on-disk += N; PA -= N 265 * - discard locality group PA buddy -= PA; PA = 0 266 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 267 * is used in real operation because we can't know actual used 268 * bits from PA, only from on-disk bitmap 269 * 270 * if we follow this strict logic, then all operations above should be atomic. 271 * given some of them can block, we'd have to use something like semaphores 272 * killing performance on high-end SMP hardware. let's try to relax it using 273 * the following knowledge: 274 * 1) if buddy is referenced, it's already initialized 275 * 2) while block is used in buddy and the buddy is referenced, 276 * nobody can re-allocate that block 277 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 278 * bit set and PA claims same block, it's OK. IOW, one can set bit in 279 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 280 * block 281 * 282 * so, now we're building a concurrency table: 283 * - init buddy vs. 284 * - new PA 285 * blocks for PA are allocated in the buddy, buddy must be referenced 286 * until PA is linked to allocation group to avoid concurrent buddy init 287 * - use inode PA 288 * we need to make sure that either on-disk bitmap or PA has uptodate data 289 * given (3) we care that PA-=N operation doesn't interfere with init 290 * - discard inode PA 291 * the simplest way would be to have buddy initialized by the discard 292 * - use locality group PA 293 * again PA-=N must be serialized with init 294 * - discard locality group PA 295 * the simplest way would be to have buddy initialized by the discard 296 * - new PA vs. 297 * - use inode PA 298 * i_data_sem serializes them 299 * - discard inode PA 300 * discard process must wait until PA isn't used by another process 301 * - use locality group PA 302 * some mutex should serialize them 303 * - discard locality group PA 304 * discard process must wait until PA isn't used by another process 305 * - use inode PA 306 * - use inode PA 307 * i_data_sem or another mutex should serializes them 308 * - discard inode PA 309 * discard process must wait until PA isn't used by another process 310 * - use locality group PA 311 * nothing wrong here -- they're different PAs covering different blocks 312 * - discard locality group PA 313 * discard process must wait until PA isn't used by another process 314 * 315 * now we're ready to make few consequences: 316 * - PA is referenced and while it is no discard is possible 317 * - PA is referenced until block isn't marked in on-disk bitmap 318 * - PA changes only after on-disk bitmap 319 * - discard must not compete with init. either init is done before 320 * any discard or they're serialized somehow 321 * - buddy init as sum of on-disk bitmap and PAs is done atomically 322 * 323 * a special case when we've used PA to emptiness. no need to modify buddy 324 * in this case, but we should care about concurrent init 325 * 326 */ 327 328 /* 329 * Logic in few words: 330 * 331 * - allocation: 332 * load group 333 * find blocks 334 * mark bits in on-disk bitmap 335 * release group 336 * 337 * - use preallocation: 338 * find proper PA (per-inode or group) 339 * load group 340 * mark bits in on-disk bitmap 341 * release group 342 * release PA 343 * 344 * - free: 345 * load group 346 * mark bits in on-disk bitmap 347 * release group 348 * 349 * - discard preallocations in group: 350 * mark PAs deleted 351 * move them onto local list 352 * load on-disk bitmap 353 * load group 354 * remove PA from object (inode or locality group) 355 * mark free blocks in-core 356 * 357 * - discard inode's preallocations: 358 */ 359 360 /* 361 * Locking rules 362 * 363 * Locks: 364 * - bitlock on a group (group) 365 * - object (inode/locality) (object) 366 * - per-pa lock (pa) 367 * - cr_power2_aligned lists lock (cr_power2_aligned) 368 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 369 * 370 * Paths: 371 * - new pa 372 * object 373 * group 374 * 375 * - find and use pa: 376 * pa 377 * 378 * - release consumed pa: 379 * pa 380 * group 381 * object 382 * 383 * - generate in-core bitmap: 384 * group 385 * pa 386 * 387 * - discard all for given object (inode, locality group): 388 * object 389 * pa 390 * group 391 * 392 * - discard all for given group: 393 * group 394 * pa 395 * group 396 * object 397 * 398 * - allocation path (ext4_mb_regular_allocator) 399 * group 400 * cr_power2_aligned/cr_goal_len_fast 401 */ 402 static struct kmem_cache *ext4_pspace_cachep; 403 static struct kmem_cache *ext4_ac_cachep; 404 static struct kmem_cache *ext4_free_data_cachep; 405 406 /* We create slab caches for groupinfo data structures based on the 407 * superblock block size. There will be one per mounted filesystem for 408 * each unique s_blocksize_bits */ 409 #define NR_GRPINFO_CACHES 8 410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 411 412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 413 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 414 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 415 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 416 }; 417 418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 419 ext4_group_t group); 420 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 421 ext4_group_t group); 422 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 423 424 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 425 ext4_group_t group, enum criteria cr); 426 427 static int ext4_try_to_trim_range(struct super_block *sb, 428 struct ext4_buddy *e4b, ext4_grpblk_t start, 429 ext4_grpblk_t max, ext4_grpblk_t minblocks); 430 431 /* 432 * The algorithm using this percpu seq counter goes below: 433 * 1. We sample the percpu discard_pa_seq counter before trying for block 434 * allocation in ext4_mb_new_blocks(). 435 * 2. We increment this percpu discard_pa_seq counter when we either allocate 436 * or free these blocks i.e. while marking those blocks as used/free in 437 * mb_mark_used()/mb_free_blocks(). 438 * 3. We also increment this percpu seq counter when we successfully identify 439 * that the bb_prealloc_list is not empty and hence proceed for discarding 440 * of those PAs inside ext4_mb_discard_group_preallocations(). 441 * 442 * Now to make sure that the regular fast path of block allocation is not 443 * affected, as a small optimization we only sample the percpu seq counter 444 * on that cpu. Only when the block allocation fails and when freed blocks 445 * found were 0, that is when we sample percpu seq counter for all cpus using 446 * below function ext4_get_discard_pa_seq_sum(). This happens after making 447 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 448 */ 449 static DEFINE_PER_CPU(u64, discard_pa_seq); 450 static inline u64 ext4_get_discard_pa_seq_sum(void) 451 { 452 int __cpu; 453 u64 __seq = 0; 454 455 for_each_possible_cpu(__cpu) 456 __seq += per_cpu(discard_pa_seq, __cpu); 457 return __seq; 458 } 459 460 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 461 { 462 #if BITS_PER_LONG == 64 463 *bit += ((unsigned long) addr & 7UL) << 3; 464 addr = (void *) ((unsigned long) addr & ~7UL); 465 #elif BITS_PER_LONG == 32 466 *bit += ((unsigned long) addr & 3UL) << 3; 467 addr = (void *) ((unsigned long) addr & ~3UL); 468 #else 469 #error "how many bits you are?!" 470 #endif 471 return addr; 472 } 473 474 static inline int mb_test_bit(int bit, void *addr) 475 { 476 /* 477 * ext4_test_bit on architecture like powerpc 478 * needs unsigned long aligned address 479 */ 480 addr = mb_correct_addr_and_bit(&bit, addr); 481 return ext4_test_bit(bit, addr); 482 } 483 484 static inline void mb_set_bit(int bit, void *addr) 485 { 486 addr = mb_correct_addr_and_bit(&bit, addr); 487 ext4_set_bit(bit, addr); 488 } 489 490 static inline void mb_clear_bit(int bit, void *addr) 491 { 492 addr = mb_correct_addr_and_bit(&bit, addr); 493 ext4_clear_bit(bit, addr); 494 } 495 496 static inline int mb_test_and_clear_bit(int bit, void *addr) 497 { 498 addr = mb_correct_addr_and_bit(&bit, addr); 499 return ext4_test_and_clear_bit(bit, addr); 500 } 501 502 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 503 { 504 int fix = 0, ret, tmpmax; 505 addr = mb_correct_addr_and_bit(&fix, addr); 506 tmpmax = max + fix; 507 start += fix; 508 509 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 510 if (ret > max) 511 return max; 512 return ret; 513 } 514 515 static inline int mb_find_next_bit(void *addr, int max, int start) 516 { 517 int fix = 0, ret, tmpmax; 518 addr = mb_correct_addr_and_bit(&fix, addr); 519 tmpmax = max + fix; 520 start += fix; 521 522 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 523 if (ret > max) 524 return max; 525 return ret; 526 } 527 528 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 529 { 530 char *bb; 531 532 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 533 BUG_ON(max == NULL); 534 535 if (order > e4b->bd_blkbits + 1) { 536 *max = 0; 537 return NULL; 538 } 539 540 /* at order 0 we see each particular block */ 541 if (order == 0) { 542 *max = 1 << (e4b->bd_blkbits + 3); 543 return e4b->bd_bitmap; 544 } 545 546 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 547 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 548 549 return bb; 550 } 551 552 #ifdef DOUBLE_CHECK 553 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 554 int first, int count) 555 { 556 int i; 557 struct super_block *sb = e4b->bd_sb; 558 559 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 560 return; 561 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 562 for (i = 0; i < count; i++) { 563 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 564 ext4_fsblk_t blocknr; 565 566 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 567 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 568 ext4_grp_locked_error(sb, e4b->bd_group, 569 inode ? inode->i_ino : 0, 570 blocknr, 571 "freeing block already freed " 572 "(bit %u)", 573 first + i); 574 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 575 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 576 } 577 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 578 } 579 } 580 581 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 582 { 583 int i; 584 585 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 586 return; 587 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 588 for (i = 0; i < count; i++) { 589 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 590 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 591 } 592 } 593 594 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 595 { 596 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 597 return; 598 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 599 unsigned char *b1, *b2; 600 int i; 601 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 602 b2 = (unsigned char *) bitmap; 603 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 604 if (b1[i] != b2[i]) { 605 ext4_msg(e4b->bd_sb, KERN_ERR, 606 "corruption in group %u " 607 "at byte %u(%u): %x in copy != %x " 608 "on disk/prealloc", 609 e4b->bd_group, i, i * 8, b1[i], b2[i]); 610 BUG(); 611 } 612 } 613 } 614 } 615 616 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 617 struct ext4_group_info *grp, ext4_group_t group) 618 { 619 struct buffer_head *bh; 620 621 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 622 if (!grp->bb_bitmap) 623 return; 624 625 bh = ext4_read_block_bitmap(sb, group); 626 if (IS_ERR_OR_NULL(bh)) { 627 kfree(grp->bb_bitmap); 628 grp->bb_bitmap = NULL; 629 return; 630 } 631 632 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 633 put_bh(bh); 634 } 635 636 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 637 { 638 kfree(grp->bb_bitmap); 639 } 640 641 #else 642 static inline void mb_free_blocks_double(struct inode *inode, 643 struct ext4_buddy *e4b, int first, int count) 644 { 645 return; 646 } 647 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 648 int first, int count) 649 { 650 return; 651 } 652 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 653 { 654 return; 655 } 656 657 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 658 struct ext4_group_info *grp, ext4_group_t group) 659 { 660 return; 661 } 662 663 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 664 { 665 return; 666 } 667 #endif 668 669 #ifdef AGGRESSIVE_CHECK 670 671 #define MB_CHECK_ASSERT(assert) \ 672 do { \ 673 if (!(assert)) { \ 674 printk(KERN_EMERG \ 675 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 676 function, file, line, # assert); \ 677 BUG(); \ 678 } \ 679 } while (0) 680 681 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 682 const char *function, int line) 683 { 684 struct super_block *sb = e4b->bd_sb; 685 int order = e4b->bd_blkbits + 1; 686 int max; 687 int max2; 688 int i; 689 int j; 690 int k; 691 int count; 692 struct ext4_group_info *grp; 693 int fragments = 0; 694 int fstart; 695 struct list_head *cur; 696 void *buddy; 697 void *buddy2; 698 699 if (e4b->bd_info->bb_check_counter++ % 10) 700 return 0; 701 702 while (order > 1) { 703 buddy = mb_find_buddy(e4b, order, &max); 704 MB_CHECK_ASSERT(buddy); 705 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 706 MB_CHECK_ASSERT(buddy2); 707 MB_CHECK_ASSERT(buddy != buddy2); 708 MB_CHECK_ASSERT(max * 2 == max2); 709 710 count = 0; 711 for (i = 0; i < max; i++) { 712 713 if (mb_test_bit(i, buddy)) { 714 /* only single bit in buddy2 may be 0 */ 715 if (!mb_test_bit(i << 1, buddy2)) { 716 MB_CHECK_ASSERT( 717 mb_test_bit((i<<1)+1, buddy2)); 718 } 719 continue; 720 } 721 722 /* both bits in buddy2 must be 1 */ 723 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 724 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 725 726 for (j = 0; j < (1 << order); j++) { 727 k = (i * (1 << order)) + j; 728 MB_CHECK_ASSERT( 729 !mb_test_bit(k, e4b->bd_bitmap)); 730 } 731 count++; 732 } 733 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 734 order--; 735 } 736 737 fstart = -1; 738 buddy = mb_find_buddy(e4b, 0, &max); 739 for (i = 0; i < max; i++) { 740 if (!mb_test_bit(i, buddy)) { 741 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 742 if (fstart == -1) { 743 fragments++; 744 fstart = i; 745 } 746 continue; 747 } 748 fstart = -1; 749 /* check used bits only */ 750 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 751 buddy2 = mb_find_buddy(e4b, j, &max2); 752 k = i >> j; 753 MB_CHECK_ASSERT(k < max2); 754 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 755 } 756 } 757 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 758 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 759 760 grp = ext4_get_group_info(sb, e4b->bd_group); 761 if (!grp) 762 return NULL; 763 list_for_each(cur, &grp->bb_prealloc_list) { 764 ext4_group_t groupnr; 765 struct ext4_prealloc_space *pa; 766 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 767 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 768 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 769 for (i = 0; i < pa->pa_len; i++) 770 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 771 } 772 return 0; 773 } 774 #undef MB_CHECK_ASSERT 775 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 776 __FILE__, __func__, __LINE__) 777 #else 778 #define mb_check_buddy(e4b) 779 #endif 780 781 /* 782 * Divide blocks started from @first with length @len into 783 * smaller chunks with power of 2 blocks. 784 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 785 * then increase bb_counters[] for corresponded chunk size. 786 */ 787 static void ext4_mb_mark_free_simple(struct super_block *sb, 788 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 789 struct ext4_group_info *grp) 790 { 791 struct ext4_sb_info *sbi = EXT4_SB(sb); 792 ext4_grpblk_t min; 793 ext4_grpblk_t max; 794 ext4_grpblk_t chunk; 795 unsigned int border; 796 797 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 798 799 border = 2 << sb->s_blocksize_bits; 800 801 while (len > 0) { 802 /* find how many blocks can be covered since this position */ 803 max = ffs(first | border) - 1; 804 805 /* find how many blocks of power 2 we need to mark */ 806 min = fls(len) - 1; 807 808 if (max < min) 809 min = max; 810 chunk = 1 << min; 811 812 /* mark multiblock chunks only */ 813 grp->bb_counters[min]++; 814 if (min > 0) 815 mb_clear_bit(first >> min, 816 buddy + sbi->s_mb_offsets[min]); 817 818 len -= chunk; 819 first += chunk; 820 } 821 } 822 823 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 824 { 825 int order; 826 827 /* 828 * We don't bother with a special lists groups with only 1 block free 829 * extents and for completely empty groups. 830 */ 831 order = fls(len) - 2; 832 if (order < 0) 833 return 0; 834 if (order == MB_NUM_ORDERS(sb)) 835 order--; 836 return order; 837 } 838 839 /* Move group to appropriate avg_fragment_size list */ 840 static void 841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 842 { 843 struct ext4_sb_info *sbi = EXT4_SB(sb); 844 int new_order; 845 846 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 847 return; 848 849 new_order = mb_avg_fragment_size_order(sb, 850 grp->bb_free / grp->bb_fragments); 851 if (new_order == grp->bb_avg_fragment_size_order) 852 return; 853 854 if (grp->bb_avg_fragment_size_order != -1) { 855 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 856 grp->bb_avg_fragment_size_order]); 857 list_del(&grp->bb_avg_fragment_size_node); 858 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 859 grp->bb_avg_fragment_size_order]); 860 } 861 grp->bb_avg_fragment_size_order = new_order; 862 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 863 grp->bb_avg_fragment_size_order]); 864 list_add_tail(&grp->bb_avg_fragment_size_node, 865 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 866 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 867 grp->bb_avg_fragment_size_order]); 868 } 869 870 /* 871 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 872 * cr level needs an update. 873 */ 874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 875 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 876 { 877 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 878 struct ext4_group_info *iter; 879 int i; 880 881 if (ac->ac_status == AC_STATUS_FOUND) 882 return; 883 884 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 885 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 886 887 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 888 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 889 continue; 890 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 891 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 892 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 893 continue; 894 } 895 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 896 bb_largest_free_order_node) { 897 if (sbi->s_mb_stats) 898 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 899 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 900 *group = iter->bb_group; 901 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 902 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 903 return; 904 } 905 } 906 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 907 } 908 909 /* Increment cr and search again if no group is found */ 910 *new_cr = CR_GOAL_LEN_FAST; 911 } 912 913 /* 914 * Find a suitable group of given order from the average fragments list. 915 */ 916 static struct ext4_group_info * 917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 918 { 919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 920 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 921 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 922 struct ext4_group_info *grp = NULL, *iter; 923 enum criteria cr = ac->ac_criteria; 924 925 if (list_empty(frag_list)) 926 return NULL; 927 read_lock(frag_list_lock); 928 if (list_empty(frag_list)) { 929 read_unlock(frag_list_lock); 930 return NULL; 931 } 932 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 933 if (sbi->s_mb_stats) 934 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 935 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 936 grp = iter; 937 break; 938 } 939 } 940 read_unlock(frag_list_lock); 941 return grp; 942 } 943 944 /* 945 * Choose next group by traversing average fragment size list of suitable 946 * order. Updates *new_cr if cr level needs an update. 947 */ 948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 949 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 950 { 951 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 952 struct ext4_group_info *grp = NULL; 953 int i; 954 955 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 956 if (sbi->s_mb_stats) 957 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 958 } 959 960 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 961 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 962 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 963 if (grp) { 964 *group = grp->bb_group; 965 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 966 return; 967 } 968 } 969 970 /* 971 * CR_BEST_AVAIL_LEN works based on the concept that we have 972 * a larger normalized goal len request which can be trimmed to 973 * a smaller goal len such that it can still satisfy original 974 * request len. However, allocation request for non-regular 975 * files never gets normalized. 976 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 977 */ 978 if (ac->ac_flags & EXT4_MB_HINT_DATA) 979 *new_cr = CR_BEST_AVAIL_LEN; 980 else 981 *new_cr = CR_GOAL_LEN_SLOW; 982 } 983 984 /* 985 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 986 * order we have and proactively trim the goal request length to that order to 987 * find a suitable group faster. 988 * 989 * This optimizes allocation speed at the cost of slightly reduced 990 * preallocations. However, we make sure that we don't trim the request too 991 * much and fall to CR_GOAL_LEN_SLOW in that case. 992 */ 993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 994 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 995 { 996 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 997 struct ext4_group_info *grp = NULL; 998 int i, order, min_order; 999 unsigned long num_stripe_clusters = 0; 1000 1001 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1002 if (sbi->s_mb_stats) 1003 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1004 } 1005 1006 /* 1007 * mb_avg_fragment_size_order() returns order in a way that makes 1008 * retrieving back the length using (1 << order) inaccurate. Hence, use 1009 * fls() instead since we need to know the actual length while modifying 1010 * goal length. 1011 */ 1012 order = fls(ac->ac_g_ex.fe_len) - 1; 1013 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1014 if (min_order < 0) 1015 min_order = 0; 1016 1017 if (sbi->s_stripe > 0) { 1018 /* 1019 * We are assuming that stripe size is always a multiple of 1020 * cluster ratio otherwise __ext4_fill_super exists early. 1021 */ 1022 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1023 if (1 << min_order < num_stripe_clusters) 1024 /* 1025 * We consider 1 order less because later we round 1026 * up the goal len to num_stripe_clusters 1027 */ 1028 min_order = fls(num_stripe_clusters) - 1; 1029 } 1030 1031 if (1 << min_order < ac->ac_o_ex.fe_len) 1032 min_order = fls(ac->ac_o_ex.fe_len); 1033 1034 for (i = order; i >= min_order; i--) { 1035 int frag_order; 1036 /* 1037 * Scale down goal len to make sure we find something 1038 * in the free fragments list. Basically, reduce 1039 * preallocations. 1040 */ 1041 ac->ac_g_ex.fe_len = 1 << i; 1042 1043 if (num_stripe_clusters > 0) { 1044 /* 1045 * Try to round up the adjusted goal length to 1046 * stripe size (in cluster units) multiple for 1047 * efficiency. 1048 */ 1049 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1050 num_stripe_clusters); 1051 } 1052 1053 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1054 ac->ac_g_ex.fe_len); 1055 1056 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1057 if (grp) { 1058 *group = grp->bb_group; 1059 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1060 return; 1061 } 1062 } 1063 1064 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1065 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1066 *new_cr = CR_GOAL_LEN_SLOW; 1067 } 1068 1069 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1070 { 1071 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1072 return 0; 1073 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1074 return 0; 1075 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1076 return 0; 1077 return 1; 1078 } 1079 1080 /* 1081 * Return next linear group for allocation. If linear traversal should not be 1082 * performed, this function just returns the same group 1083 */ 1084 static ext4_group_t 1085 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1086 ext4_group_t ngroups) 1087 { 1088 if (!should_optimize_scan(ac)) 1089 goto inc_and_return; 1090 1091 if (ac->ac_groups_linear_remaining) { 1092 ac->ac_groups_linear_remaining--; 1093 goto inc_and_return; 1094 } 1095 1096 return group; 1097 inc_and_return: 1098 /* 1099 * Artificially restricted ngroups for non-extent 1100 * files makes group > ngroups possible on first loop. 1101 */ 1102 return group + 1 >= ngroups ? 0 : group + 1; 1103 } 1104 1105 /* 1106 * ext4_mb_choose_next_group: choose next group for allocation. 1107 * 1108 * @ac Allocation Context 1109 * @new_cr This is an output parameter. If the there is no good group 1110 * available at current CR level, this field is updated to indicate 1111 * the new cr level that should be used. 1112 * @group This is an input / output parameter. As an input it indicates the 1113 * next group that the allocator intends to use for allocation. As 1114 * output, this field indicates the next group that should be used as 1115 * determined by the optimization functions. 1116 * @ngroups Total number of groups 1117 */ 1118 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1119 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1120 { 1121 *new_cr = ac->ac_criteria; 1122 1123 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1124 *group = next_linear_group(ac, *group, ngroups); 1125 return; 1126 } 1127 1128 if (*new_cr == CR_POWER2_ALIGNED) { 1129 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1130 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1131 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1132 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1133 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1134 } else { 1135 /* 1136 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1137 * bb_free. But until that happens, we should never come here. 1138 */ 1139 WARN_ON(1); 1140 } 1141 } 1142 1143 /* 1144 * Cache the order of the largest free extent we have available in this block 1145 * group. 1146 */ 1147 static void 1148 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1149 { 1150 struct ext4_sb_info *sbi = EXT4_SB(sb); 1151 int i; 1152 1153 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1154 if (grp->bb_counters[i] > 0) 1155 break; 1156 /* No need to move between order lists? */ 1157 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1158 i == grp->bb_largest_free_order) { 1159 grp->bb_largest_free_order = i; 1160 return; 1161 } 1162 1163 if (grp->bb_largest_free_order >= 0) { 1164 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1165 grp->bb_largest_free_order]); 1166 list_del_init(&grp->bb_largest_free_order_node); 1167 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1168 grp->bb_largest_free_order]); 1169 } 1170 grp->bb_largest_free_order = i; 1171 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1172 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1173 grp->bb_largest_free_order]); 1174 list_add_tail(&grp->bb_largest_free_order_node, 1175 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1176 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1177 grp->bb_largest_free_order]); 1178 } 1179 } 1180 1181 static noinline_for_stack 1182 void ext4_mb_generate_buddy(struct super_block *sb, 1183 void *buddy, void *bitmap, ext4_group_t group, 1184 struct ext4_group_info *grp) 1185 { 1186 struct ext4_sb_info *sbi = EXT4_SB(sb); 1187 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1188 ext4_grpblk_t i = 0; 1189 ext4_grpblk_t first; 1190 ext4_grpblk_t len; 1191 unsigned free = 0; 1192 unsigned fragments = 0; 1193 unsigned long long period = get_cycles(); 1194 1195 /* initialize buddy from bitmap which is aggregation 1196 * of on-disk bitmap and preallocations */ 1197 i = mb_find_next_zero_bit(bitmap, max, 0); 1198 grp->bb_first_free = i; 1199 while (i < max) { 1200 fragments++; 1201 first = i; 1202 i = mb_find_next_bit(bitmap, max, i); 1203 len = i - first; 1204 free += len; 1205 if (len > 1) 1206 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1207 else 1208 grp->bb_counters[0]++; 1209 if (i < max) 1210 i = mb_find_next_zero_bit(bitmap, max, i); 1211 } 1212 grp->bb_fragments = fragments; 1213 1214 if (free != grp->bb_free) { 1215 ext4_grp_locked_error(sb, group, 0, 0, 1216 "block bitmap and bg descriptor " 1217 "inconsistent: %u vs %u free clusters", 1218 free, grp->bb_free); 1219 /* 1220 * If we intend to continue, we consider group descriptor 1221 * corrupt and update bb_free using bitmap value 1222 */ 1223 grp->bb_free = free; 1224 ext4_mark_group_bitmap_corrupted(sb, group, 1225 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1226 } 1227 mb_set_largest_free_order(sb, grp); 1228 mb_update_avg_fragment_size(sb, grp); 1229 1230 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1231 1232 period = get_cycles() - period; 1233 atomic_inc(&sbi->s_mb_buddies_generated); 1234 atomic64_add(period, &sbi->s_mb_generation_time); 1235 } 1236 1237 /* The buddy information is attached the buddy cache inode 1238 * for convenience. The information regarding each group 1239 * is loaded via ext4_mb_load_buddy. The information involve 1240 * block bitmap and buddy information. The information are 1241 * stored in the inode as 1242 * 1243 * { page } 1244 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1245 * 1246 * 1247 * one block each for bitmap and buddy information. 1248 * So for each group we take up 2 blocks. A page can 1249 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1250 * So it can have information regarding groups_per_page which 1251 * is blocks_per_page/2 1252 * 1253 * Locking note: This routine takes the block group lock of all groups 1254 * for this page; do not hold this lock when calling this routine! 1255 */ 1256 1257 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1258 { 1259 ext4_group_t ngroups; 1260 unsigned int blocksize; 1261 int blocks_per_page; 1262 int groups_per_page; 1263 int err = 0; 1264 int i; 1265 ext4_group_t first_group, group; 1266 int first_block; 1267 struct super_block *sb; 1268 struct buffer_head *bhs; 1269 struct buffer_head **bh = NULL; 1270 struct inode *inode; 1271 char *data; 1272 char *bitmap; 1273 struct ext4_group_info *grinfo; 1274 1275 inode = page->mapping->host; 1276 sb = inode->i_sb; 1277 ngroups = ext4_get_groups_count(sb); 1278 blocksize = i_blocksize(inode); 1279 blocks_per_page = PAGE_SIZE / blocksize; 1280 1281 mb_debug(sb, "init page %lu\n", page->index); 1282 1283 groups_per_page = blocks_per_page >> 1; 1284 if (groups_per_page == 0) 1285 groups_per_page = 1; 1286 1287 /* allocate buffer_heads to read bitmaps */ 1288 if (groups_per_page > 1) { 1289 i = sizeof(struct buffer_head *) * groups_per_page; 1290 bh = kzalloc(i, gfp); 1291 if (bh == NULL) 1292 return -ENOMEM; 1293 } else 1294 bh = &bhs; 1295 1296 first_group = page->index * blocks_per_page / 2; 1297 1298 /* read all groups the page covers into the cache */ 1299 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1300 if (group >= ngroups) 1301 break; 1302 1303 grinfo = ext4_get_group_info(sb, group); 1304 if (!grinfo) 1305 continue; 1306 /* 1307 * If page is uptodate then we came here after online resize 1308 * which added some new uninitialized group info structs, so 1309 * we must skip all initialized uptodate buddies on the page, 1310 * which may be currently in use by an allocating task. 1311 */ 1312 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1313 bh[i] = NULL; 1314 continue; 1315 } 1316 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1317 if (IS_ERR(bh[i])) { 1318 err = PTR_ERR(bh[i]); 1319 bh[i] = NULL; 1320 goto out; 1321 } 1322 mb_debug(sb, "read bitmap for group %u\n", group); 1323 } 1324 1325 /* wait for I/O completion */ 1326 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1327 int err2; 1328 1329 if (!bh[i]) 1330 continue; 1331 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1332 if (!err) 1333 err = err2; 1334 } 1335 1336 first_block = page->index * blocks_per_page; 1337 for (i = 0; i < blocks_per_page; i++) { 1338 group = (first_block + i) >> 1; 1339 if (group >= ngroups) 1340 break; 1341 1342 if (!bh[group - first_group]) 1343 /* skip initialized uptodate buddy */ 1344 continue; 1345 1346 if (!buffer_verified(bh[group - first_group])) 1347 /* Skip faulty bitmaps */ 1348 continue; 1349 err = 0; 1350 1351 /* 1352 * data carry information regarding this 1353 * particular group in the format specified 1354 * above 1355 * 1356 */ 1357 data = page_address(page) + (i * blocksize); 1358 bitmap = bh[group - first_group]->b_data; 1359 1360 /* 1361 * We place the buddy block and bitmap block 1362 * close together 1363 */ 1364 if ((first_block + i) & 1) { 1365 /* this is block of buddy */ 1366 BUG_ON(incore == NULL); 1367 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1368 group, page->index, i * blocksize); 1369 trace_ext4_mb_buddy_bitmap_load(sb, group); 1370 grinfo = ext4_get_group_info(sb, group); 1371 if (!grinfo) { 1372 err = -EFSCORRUPTED; 1373 goto out; 1374 } 1375 grinfo->bb_fragments = 0; 1376 memset(grinfo->bb_counters, 0, 1377 sizeof(*grinfo->bb_counters) * 1378 (MB_NUM_ORDERS(sb))); 1379 /* 1380 * incore got set to the group block bitmap below 1381 */ 1382 ext4_lock_group(sb, group); 1383 /* init the buddy */ 1384 memset(data, 0xff, blocksize); 1385 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1386 ext4_unlock_group(sb, group); 1387 incore = NULL; 1388 } else { 1389 /* this is block of bitmap */ 1390 BUG_ON(incore != NULL); 1391 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1392 group, page->index, i * blocksize); 1393 trace_ext4_mb_bitmap_load(sb, group); 1394 1395 /* see comments in ext4_mb_put_pa() */ 1396 ext4_lock_group(sb, group); 1397 memcpy(data, bitmap, blocksize); 1398 1399 /* mark all preallocated blks used in in-core bitmap */ 1400 ext4_mb_generate_from_pa(sb, data, group); 1401 ext4_mb_generate_from_freelist(sb, data, group); 1402 ext4_unlock_group(sb, group); 1403 1404 /* set incore so that the buddy information can be 1405 * generated using this 1406 */ 1407 incore = data; 1408 } 1409 } 1410 SetPageUptodate(page); 1411 1412 out: 1413 if (bh) { 1414 for (i = 0; i < groups_per_page; i++) 1415 brelse(bh[i]); 1416 if (bh != &bhs) 1417 kfree(bh); 1418 } 1419 return err; 1420 } 1421 1422 /* 1423 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1424 * on the same buddy page doesn't happen whild holding the buddy page lock. 1425 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1426 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1427 */ 1428 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1429 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1430 { 1431 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1432 int block, pnum, poff; 1433 int blocks_per_page; 1434 struct page *page; 1435 1436 e4b->bd_buddy_page = NULL; 1437 e4b->bd_bitmap_page = NULL; 1438 1439 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1440 /* 1441 * the buddy cache inode stores the block bitmap 1442 * and buddy information in consecutive blocks. 1443 * So for each group we need two blocks. 1444 */ 1445 block = group * 2; 1446 pnum = block / blocks_per_page; 1447 poff = block % blocks_per_page; 1448 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1449 if (!page) 1450 return -ENOMEM; 1451 BUG_ON(page->mapping != inode->i_mapping); 1452 e4b->bd_bitmap_page = page; 1453 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1454 1455 if (blocks_per_page >= 2) { 1456 /* buddy and bitmap are on the same page */ 1457 return 0; 1458 } 1459 1460 block++; 1461 pnum = block / blocks_per_page; 1462 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1463 if (!page) 1464 return -ENOMEM; 1465 BUG_ON(page->mapping != inode->i_mapping); 1466 e4b->bd_buddy_page = page; 1467 return 0; 1468 } 1469 1470 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1471 { 1472 if (e4b->bd_bitmap_page) { 1473 unlock_page(e4b->bd_bitmap_page); 1474 put_page(e4b->bd_bitmap_page); 1475 } 1476 if (e4b->bd_buddy_page) { 1477 unlock_page(e4b->bd_buddy_page); 1478 put_page(e4b->bd_buddy_page); 1479 } 1480 } 1481 1482 /* 1483 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1484 * block group lock of all groups for this page; do not hold the BG lock when 1485 * calling this routine! 1486 */ 1487 static noinline_for_stack 1488 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1489 { 1490 1491 struct ext4_group_info *this_grp; 1492 struct ext4_buddy e4b; 1493 struct page *page; 1494 int ret = 0; 1495 1496 might_sleep(); 1497 mb_debug(sb, "init group %u\n", group); 1498 this_grp = ext4_get_group_info(sb, group); 1499 if (!this_grp) 1500 return -EFSCORRUPTED; 1501 1502 /* 1503 * This ensures that we don't reinit the buddy cache 1504 * page which map to the group from which we are already 1505 * allocating. If we are looking at the buddy cache we would 1506 * have taken a reference using ext4_mb_load_buddy and that 1507 * would have pinned buddy page to page cache. 1508 * The call to ext4_mb_get_buddy_page_lock will mark the 1509 * page accessed. 1510 */ 1511 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1512 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1513 /* 1514 * somebody initialized the group 1515 * return without doing anything 1516 */ 1517 goto err; 1518 } 1519 1520 page = e4b.bd_bitmap_page; 1521 ret = ext4_mb_init_cache(page, NULL, gfp); 1522 if (ret) 1523 goto err; 1524 if (!PageUptodate(page)) { 1525 ret = -EIO; 1526 goto err; 1527 } 1528 1529 if (e4b.bd_buddy_page == NULL) { 1530 /* 1531 * If both the bitmap and buddy are in 1532 * the same page we don't need to force 1533 * init the buddy 1534 */ 1535 ret = 0; 1536 goto err; 1537 } 1538 /* init buddy cache */ 1539 page = e4b.bd_buddy_page; 1540 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1541 if (ret) 1542 goto err; 1543 if (!PageUptodate(page)) { 1544 ret = -EIO; 1545 goto err; 1546 } 1547 err: 1548 ext4_mb_put_buddy_page_lock(&e4b); 1549 return ret; 1550 } 1551 1552 /* 1553 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1554 * block group lock of all groups for this page; do not hold the BG lock when 1555 * calling this routine! 1556 */ 1557 static noinline_for_stack int 1558 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1559 struct ext4_buddy *e4b, gfp_t gfp) 1560 { 1561 int blocks_per_page; 1562 int block; 1563 int pnum; 1564 int poff; 1565 struct page *page; 1566 int ret; 1567 struct ext4_group_info *grp; 1568 struct ext4_sb_info *sbi = EXT4_SB(sb); 1569 struct inode *inode = sbi->s_buddy_cache; 1570 1571 might_sleep(); 1572 mb_debug(sb, "load group %u\n", group); 1573 1574 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1575 grp = ext4_get_group_info(sb, group); 1576 if (!grp) 1577 return -EFSCORRUPTED; 1578 1579 e4b->bd_blkbits = sb->s_blocksize_bits; 1580 e4b->bd_info = grp; 1581 e4b->bd_sb = sb; 1582 e4b->bd_group = group; 1583 e4b->bd_buddy_page = NULL; 1584 e4b->bd_bitmap_page = NULL; 1585 1586 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1587 /* 1588 * we need full data about the group 1589 * to make a good selection 1590 */ 1591 ret = ext4_mb_init_group(sb, group, gfp); 1592 if (ret) 1593 return ret; 1594 } 1595 1596 /* 1597 * the buddy cache inode stores the block bitmap 1598 * and buddy information in consecutive blocks. 1599 * So for each group we need two blocks. 1600 */ 1601 block = group * 2; 1602 pnum = block / blocks_per_page; 1603 poff = block % blocks_per_page; 1604 1605 /* we could use find_or_create_page(), but it locks page 1606 * what we'd like to avoid in fast path ... */ 1607 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1608 if (page == NULL || !PageUptodate(page)) { 1609 if (page) 1610 /* 1611 * drop the page reference and try 1612 * to get the page with lock. If we 1613 * are not uptodate that implies 1614 * somebody just created the page but 1615 * is yet to initialize the same. So 1616 * wait for it to initialize. 1617 */ 1618 put_page(page); 1619 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1620 if (page) { 1621 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1622 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1623 /* should never happen */ 1624 unlock_page(page); 1625 ret = -EINVAL; 1626 goto err; 1627 } 1628 if (!PageUptodate(page)) { 1629 ret = ext4_mb_init_cache(page, NULL, gfp); 1630 if (ret) { 1631 unlock_page(page); 1632 goto err; 1633 } 1634 mb_cmp_bitmaps(e4b, page_address(page) + 1635 (poff * sb->s_blocksize)); 1636 } 1637 unlock_page(page); 1638 } 1639 } 1640 if (page == NULL) { 1641 ret = -ENOMEM; 1642 goto err; 1643 } 1644 if (!PageUptodate(page)) { 1645 ret = -EIO; 1646 goto err; 1647 } 1648 1649 /* Pages marked accessed already */ 1650 e4b->bd_bitmap_page = page; 1651 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1652 1653 block++; 1654 pnum = block / blocks_per_page; 1655 poff = block % blocks_per_page; 1656 1657 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1658 if (page == NULL || !PageUptodate(page)) { 1659 if (page) 1660 put_page(page); 1661 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1662 if (page) { 1663 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1664 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1665 /* should never happen */ 1666 unlock_page(page); 1667 ret = -EINVAL; 1668 goto err; 1669 } 1670 if (!PageUptodate(page)) { 1671 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1672 gfp); 1673 if (ret) { 1674 unlock_page(page); 1675 goto err; 1676 } 1677 } 1678 unlock_page(page); 1679 } 1680 } 1681 if (page == NULL) { 1682 ret = -ENOMEM; 1683 goto err; 1684 } 1685 if (!PageUptodate(page)) { 1686 ret = -EIO; 1687 goto err; 1688 } 1689 1690 /* Pages marked accessed already */ 1691 e4b->bd_buddy_page = page; 1692 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1693 1694 return 0; 1695 1696 err: 1697 if (page) 1698 put_page(page); 1699 if (e4b->bd_bitmap_page) 1700 put_page(e4b->bd_bitmap_page); 1701 1702 e4b->bd_buddy = NULL; 1703 e4b->bd_bitmap = NULL; 1704 return ret; 1705 } 1706 1707 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1708 struct ext4_buddy *e4b) 1709 { 1710 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1711 } 1712 1713 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1714 { 1715 if (e4b->bd_bitmap_page) 1716 put_page(e4b->bd_bitmap_page); 1717 if (e4b->bd_buddy_page) 1718 put_page(e4b->bd_buddy_page); 1719 } 1720 1721 1722 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1723 { 1724 int order = 1, max; 1725 void *bb; 1726 1727 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1728 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1729 1730 while (order <= e4b->bd_blkbits + 1) { 1731 bb = mb_find_buddy(e4b, order, &max); 1732 if (!mb_test_bit(block >> order, bb)) { 1733 /* this block is part of buddy of order 'order' */ 1734 return order; 1735 } 1736 order++; 1737 } 1738 return 0; 1739 } 1740 1741 static void mb_clear_bits(void *bm, int cur, int len) 1742 { 1743 __u32 *addr; 1744 1745 len = cur + len; 1746 while (cur < len) { 1747 if ((cur & 31) == 0 && (len - cur) >= 32) { 1748 /* fast path: clear whole word at once */ 1749 addr = bm + (cur >> 3); 1750 *addr = 0; 1751 cur += 32; 1752 continue; 1753 } 1754 mb_clear_bit(cur, bm); 1755 cur++; 1756 } 1757 } 1758 1759 /* clear bits in given range 1760 * will return first found zero bit if any, -1 otherwise 1761 */ 1762 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1763 { 1764 __u32 *addr; 1765 int zero_bit = -1; 1766 1767 len = cur + len; 1768 while (cur < len) { 1769 if ((cur & 31) == 0 && (len - cur) >= 32) { 1770 /* fast path: clear whole word at once */ 1771 addr = bm + (cur >> 3); 1772 if (*addr != (__u32)(-1) && zero_bit == -1) 1773 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1774 *addr = 0; 1775 cur += 32; 1776 continue; 1777 } 1778 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1779 zero_bit = cur; 1780 cur++; 1781 } 1782 1783 return zero_bit; 1784 } 1785 1786 void mb_set_bits(void *bm, int cur, int len) 1787 { 1788 __u32 *addr; 1789 1790 len = cur + len; 1791 while (cur < len) { 1792 if ((cur & 31) == 0 && (len - cur) >= 32) { 1793 /* fast path: set whole word at once */ 1794 addr = bm + (cur >> 3); 1795 *addr = 0xffffffff; 1796 cur += 32; 1797 continue; 1798 } 1799 mb_set_bit(cur, bm); 1800 cur++; 1801 } 1802 } 1803 1804 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1805 { 1806 if (mb_test_bit(*bit + side, bitmap)) { 1807 mb_clear_bit(*bit, bitmap); 1808 (*bit) -= side; 1809 return 1; 1810 } 1811 else { 1812 (*bit) += side; 1813 mb_set_bit(*bit, bitmap); 1814 return -1; 1815 } 1816 } 1817 1818 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1819 { 1820 int max; 1821 int order = 1; 1822 void *buddy = mb_find_buddy(e4b, order, &max); 1823 1824 while (buddy) { 1825 void *buddy2; 1826 1827 /* Bits in range [first; last] are known to be set since 1828 * corresponding blocks were allocated. Bits in range 1829 * (first; last) will stay set because they form buddies on 1830 * upper layer. We just deal with borders if they don't 1831 * align with upper layer and then go up. 1832 * Releasing entire group is all about clearing 1833 * single bit of highest order buddy. 1834 */ 1835 1836 /* Example: 1837 * --------------------------------- 1838 * | 1 | 1 | 1 | 1 | 1839 * --------------------------------- 1840 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1841 * --------------------------------- 1842 * 0 1 2 3 4 5 6 7 1843 * \_____________________/ 1844 * 1845 * Neither [1] nor [6] is aligned to above layer. 1846 * Left neighbour [0] is free, so mark it busy, 1847 * decrease bb_counters and extend range to 1848 * [0; 6] 1849 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1850 * mark [6] free, increase bb_counters and shrink range to 1851 * [0; 5]. 1852 * Then shift range to [0; 2], go up and do the same. 1853 */ 1854 1855 1856 if (first & 1) 1857 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1858 if (!(last & 1)) 1859 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1860 if (first > last) 1861 break; 1862 order++; 1863 1864 buddy2 = mb_find_buddy(e4b, order, &max); 1865 if (!buddy2) { 1866 mb_clear_bits(buddy, first, last - first + 1); 1867 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1868 break; 1869 } 1870 first >>= 1; 1871 last >>= 1; 1872 buddy = buddy2; 1873 } 1874 } 1875 1876 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1877 int first, int count) 1878 { 1879 int left_is_free = 0; 1880 int right_is_free = 0; 1881 int block; 1882 int last = first + count - 1; 1883 struct super_block *sb = e4b->bd_sb; 1884 1885 if (WARN_ON(count == 0)) 1886 return; 1887 BUG_ON(last >= (sb->s_blocksize << 3)); 1888 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1889 /* Don't bother if the block group is corrupt. */ 1890 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1891 return; 1892 1893 mb_check_buddy(e4b); 1894 mb_free_blocks_double(inode, e4b, first, count); 1895 1896 this_cpu_inc(discard_pa_seq); 1897 e4b->bd_info->bb_free += count; 1898 if (first < e4b->bd_info->bb_first_free) 1899 e4b->bd_info->bb_first_free = first; 1900 1901 /* access memory sequentially: check left neighbour, 1902 * clear range and then check right neighbour 1903 */ 1904 if (first != 0) 1905 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1906 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1907 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1908 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1909 1910 if (unlikely(block != -1)) { 1911 struct ext4_sb_info *sbi = EXT4_SB(sb); 1912 ext4_fsblk_t blocknr; 1913 1914 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1915 blocknr += EXT4_C2B(sbi, block); 1916 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1917 ext4_grp_locked_error(sb, e4b->bd_group, 1918 inode ? inode->i_ino : 0, 1919 blocknr, 1920 "freeing already freed block (bit %u); block bitmap corrupt.", 1921 block); 1922 ext4_mark_group_bitmap_corrupted( 1923 sb, e4b->bd_group, 1924 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1925 } 1926 goto done; 1927 } 1928 1929 /* let's maintain fragments counter */ 1930 if (left_is_free && right_is_free) 1931 e4b->bd_info->bb_fragments--; 1932 else if (!left_is_free && !right_is_free) 1933 e4b->bd_info->bb_fragments++; 1934 1935 /* buddy[0] == bd_bitmap is a special case, so handle 1936 * it right away and let mb_buddy_mark_free stay free of 1937 * zero order checks. 1938 * Check if neighbours are to be coaleasced, 1939 * adjust bitmap bb_counters and borders appropriately. 1940 */ 1941 if (first & 1) { 1942 first += !left_is_free; 1943 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1944 } 1945 if (!(last & 1)) { 1946 last -= !right_is_free; 1947 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1948 } 1949 1950 if (first <= last) 1951 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1952 1953 done: 1954 mb_set_largest_free_order(sb, e4b->bd_info); 1955 mb_update_avg_fragment_size(sb, e4b->bd_info); 1956 mb_check_buddy(e4b); 1957 } 1958 1959 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1960 int needed, struct ext4_free_extent *ex) 1961 { 1962 int next = block; 1963 int max, order; 1964 void *buddy; 1965 1966 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1967 BUG_ON(ex == NULL); 1968 1969 buddy = mb_find_buddy(e4b, 0, &max); 1970 BUG_ON(buddy == NULL); 1971 BUG_ON(block >= max); 1972 if (mb_test_bit(block, buddy)) { 1973 ex->fe_len = 0; 1974 ex->fe_start = 0; 1975 ex->fe_group = 0; 1976 return 0; 1977 } 1978 1979 /* find actual order */ 1980 order = mb_find_order_for_block(e4b, block); 1981 block = block >> order; 1982 1983 ex->fe_len = 1 << order; 1984 ex->fe_start = block << order; 1985 ex->fe_group = e4b->bd_group; 1986 1987 /* calc difference from given start */ 1988 next = next - ex->fe_start; 1989 ex->fe_len -= next; 1990 ex->fe_start += next; 1991 1992 while (needed > ex->fe_len && 1993 mb_find_buddy(e4b, order, &max)) { 1994 1995 if (block + 1 >= max) 1996 break; 1997 1998 next = (block + 1) * (1 << order); 1999 if (mb_test_bit(next, e4b->bd_bitmap)) 2000 break; 2001 2002 order = mb_find_order_for_block(e4b, next); 2003 2004 block = next >> order; 2005 ex->fe_len += 1 << order; 2006 } 2007 2008 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2009 /* Should never happen! (but apparently sometimes does?!?) */ 2010 WARN_ON(1); 2011 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2012 "corruption or bug in mb_find_extent " 2013 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2014 block, order, needed, ex->fe_group, ex->fe_start, 2015 ex->fe_len, ex->fe_logical); 2016 ex->fe_len = 0; 2017 ex->fe_start = 0; 2018 ex->fe_group = 0; 2019 } 2020 return ex->fe_len; 2021 } 2022 2023 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2024 { 2025 int ord; 2026 int mlen = 0; 2027 int max = 0; 2028 int cur; 2029 int start = ex->fe_start; 2030 int len = ex->fe_len; 2031 unsigned ret = 0; 2032 int len0 = len; 2033 void *buddy; 2034 bool split = false; 2035 2036 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2037 BUG_ON(e4b->bd_group != ex->fe_group); 2038 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2039 mb_check_buddy(e4b); 2040 mb_mark_used_double(e4b, start, len); 2041 2042 this_cpu_inc(discard_pa_seq); 2043 e4b->bd_info->bb_free -= len; 2044 if (e4b->bd_info->bb_first_free == start) 2045 e4b->bd_info->bb_first_free += len; 2046 2047 /* let's maintain fragments counter */ 2048 if (start != 0) 2049 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2050 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2051 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2052 if (mlen && max) 2053 e4b->bd_info->bb_fragments++; 2054 else if (!mlen && !max) 2055 e4b->bd_info->bb_fragments--; 2056 2057 /* let's maintain buddy itself */ 2058 while (len) { 2059 if (!split) 2060 ord = mb_find_order_for_block(e4b, start); 2061 2062 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2063 /* the whole chunk may be allocated at once! */ 2064 mlen = 1 << ord; 2065 if (!split) 2066 buddy = mb_find_buddy(e4b, ord, &max); 2067 else 2068 split = false; 2069 BUG_ON((start >> ord) >= max); 2070 mb_set_bit(start >> ord, buddy); 2071 e4b->bd_info->bb_counters[ord]--; 2072 start += mlen; 2073 len -= mlen; 2074 BUG_ON(len < 0); 2075 continue; 2076 } 2077 2078 /* store for history */ 2079 if (ret == 0) 2080 ret = len | (ord << 16); 2081 2082 /* we have to split large buddy */ 2083 BUG_ON(ord <= 0); 2084 buddy = mb_find_buddy(e4b, ord, &max); 2085 mb_set_bit(start >> ord, buddy); 2086 e4b->bd_info->bb_counters[ord]--; 2087 2088 ord--; 2089 cur = (start >> ord) & ~1U; 2090 buddy = mb_find_buddy(e4b, ord, &max); 2091 mb_clear_bit(cur, buddy); 2092 mb_clear_bit(cur + 1, buddy); 2093 e4b->bd_info->bb_counters[ord]++; 2094 e4b->bd_info->bb_counters[ord]++; 2095 split = true; 2096 } 2097 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2098 2099 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2100 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2101 mb_check_buddy(e4b); 2102 2103 return ret; 2104 } 2105 2106 /* 2107 * Must be called under group lock! 2108 */ 2109 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2110 struct ext4_buddy *e4b) 2111 { 2112 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2113 int ret; 2114 2115 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2116 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2117 2118 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2119 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2120 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2121 2122 /* preallocation can change ac_b_ex, thus we store actually 2123 * allocated blocks for history */ 2124 ac->ac_f_ex = ac->ac_b_ex; 2125 2126 ac->ac_status = AC_STATUS_FOUND; 2127 ac->ac_tail = ret & 0xffff; 2128 ac->ac_buddy = ret >> 16; 2129 2130 /* 2131 * take the page reference. We want the page to be pinned 2132 * so that we don't get a ext4_mb_init_cache_call for this 2133 * group until we update the bitmap. That would mean we 2134 * double allocate blocks. The reference is dropped 2135 * in ext4_mb_release_context 2136 */ 2137 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2138 get_page(ac->ac_bitmap_page); 2139 ac->ac_buddy_page = e4b->bd_buddy_page; 2140 get_page(ac->ac_buddy_page); 2141 /* store last allocated for subsequent stream allocation */ 2142 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2143 spin_lock(&sbi->s_md_lock); 2144 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2145 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2146 spin_unlock(&sbi->s_md_lock); 2147 } 2148 /* 2149 * As we've just preallocated more space than 2150 * user requested originally, we store allocated 2151 * space in a special descriptor. 2152 */ 2153 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2154 ext4_mb_new_preallocation(ac); 2155 2156 } 2157 2158 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2159 struct ext4_buddy *e4b, 2160 int finish_group) 2161 { 2162 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2163 struct ext4_free_extent *bex = &ac->ac_b_ex; 2164 struct ext4_free_extent *gex = &ac->ac_g_ex; 2165 2166 if (ac->ac_status == AC_STATUS_FOUND) 2167 return; 2168 /* 2169 * We don't want to scan for a whole year 2170 */ 2171 if (ac->ac_found > sbi->s_mb_max_to_scan && 2172 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2173 ac->ac_status = AC_STATUS_BREAK; 2174 return; 2175 } 2176 2177 /* 2178 * Haven't found good chunk so far, let's continue 2179 */ 2180 if (bex->fe_len < gex->fe_len) 2181 return; 2182 2183 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2184 ext4_mb_use_best_found(ac, e4b); 2185 } 2186 2187 /* 2188 * The routine checks whether found extent is good enough. If it is, 2189 * then the extent gets marked used and flag is set to the context 2190 * to stop scanning. Otherwise, the extent is compared with the 2191 * previous found extent and if new one is better, then it's stored 2192 * in the context. Later, the best found extent will be used, if 2193 * mballoc can't find good enough extent. 2194 * 2195 * The algorithm used is roughly as follows: 2196 * 2197 * * If free extent found is exactly as big as goal, then 2198 * stop the scan and use it immediately 2199 * 2200 * * If free extent found is smaller than goal, then keep retrying 2201 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2202 * that stop scanning and use whatever we have. 2203 * 2204 * * If free extent found is bigger than goal, then keep retrying 2205 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2206 * stopping the scan and using the extent. 2207 * 2208 * 2209 * FIXME: real allocation policy is to be designed yet! 2210 */ 2211 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2212 struct ext4_free_extent *ex, 2213 struct ext4_buddy *e4b) 2214 { 2215 struct ext4_free_extent *bex = &ac->ac_b_ex; 2216 struct ext4_free_extent *gex = &ac->ac_g_ex; 2217 2218 BUG_ON(ex->fe_len <= 0); 2219 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2220 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2221 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2222 2223 ac->ac_found++; 2224 ac->ac_cX_found[ac->ac_criteria]++; 2225 2226 /* 2227 * The special case - take what you catch first 2228 */ 2229 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2230 *bex = *ex; 2231 ext4_mb_use_best_found(ac, e4b); 2232 return; 2233 } 2234 2235 /* 2236 * Let's check whether the chuck is good enough 2237 */ 2238 if (ex->fe_len == gex->fe_len) { 2239 *bex = *ex; 2240 ext4_mb_use_best_found(ac, e4b); 2241 return; 2242 } 2243 2244 /* 2245 * If this is first found extent, just store it in the context 2246 */ 2247 if (bex->fe_len == 0) { 2248 *bex = *ex; 2249 return; 2250 } 2251 2252 /* 2253 * If new found extent is better, store it in the context 2254 */ 2255 if (bex->fe_len < gex->fe_len) { 2256 /* if the request isn't satisfied, any found extent 2257 * larger than previous best one is better */ 2258 if (ex->fe_len > bex->fe_len) 2259 *bex = *ex; 2260 } else if (ex->fe_len > gex->fe_len) { 2261 /* if the request is satisfied, then we try to find 2262 * an extent that still satisfy the request, but is 2263 * smaller than previous one */ 2264 if (ex->fe_len < bex->fe_len) 2265 *bex = *ex; 2266 } 2267 2268 ext4_mb_check_limits(ac, e4b, 0); 2269 } 2270 2271 static noinline_for_stack 2272 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2273 struct ext4_buddy *e4b) 2274 { 2275 struct ext4_free_extent ex = ac->ac_b_ex; 2276 ext4_group_t group = ex.fe_group; 2277 int max; 2278 int err; 2279 2280 BUG_ON(ex.fe_len <= 0); 2281 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2282 if (err) 2283 return; 2284 2285 ext4_lock_group(ac->ac_sb, group); 2286 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2287 2288 if (max > 0) { 2289 ac->ac_b_ex = ex; 2290 ext4_mb_use_best_found(ac, e4b); 2291 } 2292 2293 ext4_unlock_group(ac->ac_sb, group); 2294 ext4_mb_unload_buddy(e4b); 2295 } 2296 2297 static noinline_for_stack 2298 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2299 struct ext4_buddy *e4b) 2300 { 2301 ext4_group_t group = ac->ac_g_ex.fe_group; 2302 int max; 2303 int err; 2304 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2305 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2306 struct ext4_free_extent ex; 2307 2308 if (!grp) 2309 return -EFSCORRUPTED; 2310 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2311 return 0; 2312 if (grp->bb_free == 0) 2313 return 0; 2314 2315 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2316 if (err) 2317 return err; 2318 2319 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2320 ext4_mb_unload_buddy(e4b); 2321 return 0; 2322 } 2323 2324 ext4_lock_group(ac->ac_sb, group); 2325 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2326 ac->ac_g_ex.fe_len, &ex); 2327 ex.fe_logical = 0xDEADFA11; /* debug value */ 2328 2329 if (max >= ac->ac_g_ex.fe_len && 2330 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2331 ext4_fsblk_t start; 2332 2333 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2334 /* use do_div to get remainder (would be 64-bit modulo) */ 2335 if (do_div(start, sbi->s_stripe) == 0) { 2336 ac->ac_found++; 2337 ac->ac_b_ex = ex; 2338 ext4_mb_use_best_found(ac, e4b); 2339 } 2340 } else if (max >= ac->ac_g_ex.fe_len) { 2341 BUG_ON(ex.fe_len <= 0); 2342 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2343 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2344 ac->ac_found++; 2345 ac->ac_b_ex = ex; 2346 ext4_mb_use_best_found(ac, e4b); 2347 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2348 /* Sometimes, caller may want to merge even small 2349 * number of blocks to an existing extent */ 2350 BUG_ON(ex.fe_len <= 0); 2351 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2352 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2353 ac->ac_found++; 2354 ac->ac_b_ex = ex; 2355 ext4_mb_use_best_found(ac, e4b); 2356 } 2357 ext4_unlock_group(ac->ac_sb, group); 2358 ext4_mb_unload_buddy(e4b); 2359 2360 return 0; 2361 } 2362 2363 /* 2364 * The routine scans buddy structures (not bitmap!) from given order 2365 * to max order and tries to find big enough chunk to satisfy the req 2366 */ 2367 static noinline_for_stack 2368 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2369 struct ext4_buddy *e4b) 2370 { 2371 struct super_block *sb = ac->ac_sb; 2372 struct ext4_group_info *grp = e4b->bd_info; 2373 void *buddy; 2374 int i; 2375 int k; 2376 int max; 2377 2378 BUG_ON(ac->ac_2order <= 0); 2379 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2380 if (grp->bb_counters[i] == 0) 2381 continue; 2382 2383 buddy = mb_find_buddy(e4b, i, &max); 2384 if (WARN_RATELIMIT(buddy == NULL, 2385 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2386 continue; 2387 2388 k = mb_find_next_zero_bit(buddy, max, 0); 2389 if (k >= max) { 2390 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2391 "%d free clusters of order %d. But found 0", 2392 grp->bb_counters[i], i); 2393 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2394 e4b->bd_group, 2395 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2396 break; 2397 } 2398 ac->ac_found++; 2399 ac->ac_cX_found[ac->ac_criteria]++; 2400 2401 ac->ac_b_ex.fe_len = 1 << i; 2402 ac->ac_b_ex.fe_start = k << i; 2403 ac->ac_b_ex.fe_group = e4b->bd_group; 2404 2405 ext4_mb_use_best_found(ac, e4b); 2406 2407 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2408 2409 if (EXT4_SB(sb)->s_mb_stats) 2410 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2411 2412 break; 2413 } 2414 } 2415 2416 /* 2417 * The routine scans the group and measures all found extents. 2418 * In order to optimize scanning, caller must pass number of 2419 * free blocks in the group, so the routine can know upper limit. 2420 */ 2421 static noinline_for_stack 2422 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2423 struct ext4_buddy *e4b) 2424 { 2425 struct super_block *sb = ac->ac_sb; 2426 void *bitmap = e4b->bd_bitmap; 2427 struct ext4_free_extent ex; 2428 int i, j, freelen; 2429 int free; 2430 2431 free = e4b->bd_info->bb_free; 2432 if (WARN_ON(free <= 0)) 2433 return; 2434 2435 i = e4b->bd_info->bb_first_free; 2436 2437 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2438 i = mb_find_next_zero_bit(bitmap, 2439 EXT4_CLUSTERS_PER_GROUP(sb), i); 2440 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2441 /* 2442 * IF we have corrupt bitmap, we won't find any 2443 * free blocks even though group info says we 2444 * have free blocks 2445 */ 2446 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2447 "%d free clusters as per " 2448 "group info. But bitmap says 0", 2449 free); 2450 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2451 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2452 break; 2453 } 2454 2455 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2456 /* 2457 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2458 * sure that this group will have a large enough 2459 * continuous free extent, so skip over the smaller free 2460 * extents 2461 */ 2462 j = mb_find_next_bit(bitmap, 2463 EXT4_CLUSTERS_PER_GROUP(sb), i); 2464 freelen = j - i; 2465 2466 if (freelen < ac->ac_g_ex.fe_len) { 2467 i = j; 2468 free -= freelen; 2469 continue; 2470 } 2471 } 2472 2473 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2474 if (WARN_ON(ex.fe_len <= 0)) 2475 break; 2476 if (free < ex.fe_len) { 2477 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2478 "%d free clusters as per " 2479 "group info. But got %d blocks", 2480 free, ex.fe_len); 2481 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2482 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2483 /* 2484 * The number of free blocks differs. This mostly 2485 * indicate that the bitmap is corrupt. So exit 2486 * without claiming the space. 2487 */ 2488 break; 2489 } 2490 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2491 ext4_mb_measure_extent(ac, &ex, e4b); 2492 2493 i += ex.fe_len; 2494 free -= ex.fe_len; 2495 } 2496 2497 ext4_mb_check_limits(ac, e4b, 1); 2498 } 2499 2500 /* 2501 * This is a special case for storages like raid5 2502 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2503 */ 2504 static noinline_for_stack 2505 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2506 struct ext4_buddy *e4b) 2507 { 2508 struct super_block *sb = ac->ac_sb; 2509 struct ext4_sb_info *sbi = EXT4_SB(sb); 2510 void *bitmap = e4b->bd_bitmap; 2511 struct ext4_free_extent ex; 2512 ext4_fsblk_t first_group_block; 2513 ext4_fsblk_t a; 2514 ext4_grpblk_t i, stripe; 2515 int max; 2516 2517 BUG_ON(sbi->s_stripe == 0); 2518 2519 /* find first stripe-aligned block in group */ 2520 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2521 2522 a = first_group_block + sbi->s_stripe - 1; 2523 do_div(a, sbi->s_stripe); 2524 i = (a * sbi->s_stripe) - first_group_block; 2525 2526 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2527 i = EXT4_B2C(sbi, i); 2528 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2529 if (!mb_test_bit(i, bitmap)) { 2530 max = mb_find_extent(e4b, i, stripe, &ex); 2531 if (max >= stripe) { 2532 ac->ac_found++; 2533 ac->ac_cX_found[ac->ac_criteria]++; 2534 ex.fe_logical = 0xDEADF00D; /* debug value */ 2535 ac->ac_b_ex = ex; 2536 ext4_mb_use_best_found(ac, e4b); 2537 break; 2538 } 2539 } 2540 i += stripe; 2541 } 2542 } 2543 2544 /* 2545 * This is also called BEFORE we load the buddy bitmap. 2546 * Returns either 1 or 0 indicating that the group is either suitable 2547 * for the allocation or not. 2548 */ 2549 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2550 ext4_group_t group, enum criteria cr) 2551 { 2552 ext4_grpblk_t free, fragments; 2553 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2554 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2555 2556 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2557 2558 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2559 return false; 2560 2561 free = grp->bb_free; 2562 if (free == 0) 2563 return false; 2564 2565 fragments = grp->bb_fragments; 2566 if (fragments == 0) 2567 return false; 2568 2569 switch (cr) { 2570 case CR_POWER2_ALIGNED: 2571 BUG_ON(ac->ac_2order == 0); 2572 2573 /* Avoid using the first bg of a flexgroup for data files */ 2574 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2575 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2576 ((group % flex_size) == 0)) 2577 return false; 2578 2579 if (free < ac->ac_g_ex.fe_len) 2580 return false; 2581 2582 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2583 return true; 2584 2585 if (grp->bb_largest_free_order < ac->ac_2order) 2586 return false; 2587 2588 return true; 2589 case CR_GOAL_LEN_FAST: 2590 case CR_BEST_AVAIL_LEN: 2591 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2592 return true; 2593 break; 2594 case CR_GOAL_LEN_SLOW: 2595 if (free >= ac->ac_g_ex.fe_len) 2596 return true; 2597 break; 2598 case CR_ANY_FREE: 2599 return true; 2600 default: 2601 BUG(); 2602 } 2603 2604 return false; 2605 } 2606 2607 /* 2608 * This could return negative error code if something goes wrong 2609 * during ext4_mb_init_group(). This should not be called with 2610 * ext4_lock_group() held. 2611 * 2612 * Note: because we are conditionally operating with the group lock in 2613 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2614 * function using __acquire and __release. This means we need to be 2615 * super careful before messing with the error path handling via "goto 2616 * out"! 2617 */ 2618 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2619 ext4_group_t group, enum criteria cr) 2620 { 2621 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2622 struct super_block *sb = ac->ac_sb; 2623 struct ext4_sb_info *sbi = EXT4_SB(sb); 2624 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2625 ext4_grpblk_t free; 2626 int ret = 0; 2627 2628 if (!grp) 2629 return -EFSCORRUPTED; 2630 if (sbi->s_mb_stats) 2631 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2632 if (should_lock) { 2633 ext4_lock_group(sb, group); 2634 __release(ext4_group_lock_ptr(sb, group)); 2635 } 2636 free = grp->bb_free; 2637 if (free == 0) 2638 goto out; 2639 /* 2640 * In all criterias except CR_ANY_FREE we try to avoid groups that 2641 * can't possibly satisfy the full goal request due to insufficient 2642 * free blocks. 2643 */ 2644 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2645 goto out; 2646 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2647 goto out; 2648 if (should_lock) { 2649 __acquire(ext4_group_lock_ptr(sb, group)); 2650 ext4_unlock_group(sb, group); 2651 } 2652 2653 /* We only do this if the grp has never been initialized */ 2654 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2655 struct ext4_group_desc *gdp = 2656 ext4_get_group_desc(sb, group, NULL); 2657 int ret; 2658 2659 /* 2660 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2661 * search to find large good chunks almost for free. If buddy 2662 * data is not ready, then this optimization makes no sense. But 2663 * we never skip the first block group in a flex_bg, since this 2664 * gets used for metadata block allocation, and we want to make 2665 * sure we locate metadata blocks in the first block group in 2666 * the flex_bg if possible. 2667 */ 2668 if (!ext4_mb_cr_expensive(cr) && 2669 (!sbi->s_log_groups_per_flex || 2670 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2671 !(ext4_has_group_desc_csum(sb) && 2672 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2673 return 0; 2674 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2675 if (ret) 2676 return ret; 2677 } 2678 2679 if (should_lock) { 2680 ext4_lock_group(sb, group); 2681 __release(ext4_group_lock_ptr(sb, group)); 2682 } 2683 ret = ext4_mb_good_group(ac, group, cr); 2684 out: 2685 if (should_lock) { 2686 __acquire(ext4_group_lock_ptr(sb, group)); 2687 ext4_unlock_group(sb, group); 2688 } 2689 return ret; 2690 } 2691 2692 /* 2693 * Start prefetching @nr block bitmaps starting at @group. 2694 * Return the next group which needs to be prefetched. 2695 */ 2696 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2697 unsigned int nr, int *cnt) 2698 { 2699 ext4_group_t ngroups = ext4_get_groups_count(sb); 2700 struct buffer_head *bh; 2701 struct blk_plug plug; 2702 2703 blk_start_plug(&plug); 2704 while (nr-- > 0) { 2705 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2706 NULL); 2707 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2708 2709 /* 2710 * Prefetch block groups with free blocks; but don't 2711 * bother if it is marked uninitialized on disk, since 2712 * it won't require I/O to read. Also only try to 2713 * prefetch once, so we avoid getblk() call, which can 2714 * be expensive. 2715 */ 2716 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2717 EXT4_MB_GRP_NEED_INIT(grp) && 2718 ext4_free_group_clusters(sb, gdp) > 0 ) { 2719 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2720 if (bh && !IS_ERR(bh)) { 2721 if (!buffer_uptodate(bh) && cnt) 2722 (*cnt)++; 2723 brelse(bh); 2724 } 2725 } 2726 if (++group >= ngroups) 2727 group = 0; 2728 } 2729 blk_finish_plug(&plug); 2730 return group; 2731 } 2732 2733 /* 2734 * Prefetching reads the block bitmap into the buffer cache; but we 2735 * need to make sure that the buddy bitmap in the page cache has been 2736 * initialized. Note that ext4_mb_init_group() will block if the I/O 2737 * is not yet completed, or indeed if it was not initiated by 2738 * ext4_mb_prefetch did not start the I/O. 2739 * 2740 * TODO: We should actually kick off the buddy bitmap setup in a work 2741 * queue when the buffer I/O is completed, so that we don't block 2742 * waiting for the block allocation bitmap read to finish when 2743 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2744 */ 2745 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2746 unsigned int nr) 2747 { 2748 struct ext4_group_desc *gdp; 2749 struct ext4_group_info *grp; 2750 2751 while (nr-- > 0) { 2752 if (!group) 2753 group = ext4_get_groups_count(sb); 2754 group--; 2755 gdp = ext4_get_group_desc(sb, group, NULL); 2756 grp = ext4_get_group_info(sb, group); 2757 2758 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2759 ext4_free_group_clusters(sb, gdp) > 0) { 2760 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2761 break; 2762 } 2763 } 2764 } 2765 2766 static noinline_for_stack int 2767 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2768 { 2769 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2770 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2771 int err = 0, first_err = 0; 2772 unsigned int nr = 0, prefetch_ios = 0; 2773 struct ext4_sb_info *sbi; 2774 struct super_block *sb; 2775 struct ext4_buddy e4b; 2776 int lost; 2777 2778 sb = ac->ac_sb; 2779 sbi = EXT4_SB(sb); 2780 ngroups = ext4_get_groups_count(sb); 2781 /* non-extent files are limited to low blocks/groups */ 2782 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2783 ngroups = sbi->s_blockfile_groups; 2784 2785 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2786 2787 /* first, try the goal */ 2788 err = ext4_mb_find_by_goal(ac, &e4b); 2789 if (err || ac->ac_status == AC_STATUS_FOUND) 2790 goto out; 2791 2792 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2793 goto out; 2794 2795 /* 2796 * ac->ac_2order is set only if the fe_len is a power of 2 2797 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2798 * so that we try exact allocation using buddy. 2799 */ 2800 i = fls(ac->ac_g_ex.fe_len); 2801 ac->ac_2order = 0; 2802 /* 2803 * We search using buddy data only if the order of the request 2804 * is greater than equal to the sbi_s_mb_order2_reqs 2805 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2806 * We also support searching for power-of-two requests only for 2807 * requests upto maximum buddy size we have constructed. 2808 */ 2809 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2810 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2811 ac->ac_2order = array_index_nospec(i - 1, 2812 MB_NUM_ORDERS(sb)); 2813 } 2814 2815 /* if stream allocation is enabled, use global goal */ 2816 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2817 /* TBD: may be hot point */ 2818 spin_lock(&sbi->s_md_lock); 2819 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2820 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2821 spin_unlock(&sbi->s_md_lock); 2822 } 2823 2824 /* 2825 * Let's just scan groups to find more-less suitable blocks We 2826 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2827 * aligned, in which case let's do that faster approach first. 2828 */ 2829 if (ac->ac_2order) 2830 cr = CR_POWER2_ALIGNED; 2831 repeat: 2832 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2833 ac->ac_criteria = cr; 2834 /* 2835 * searching for the right group start 2836 * from the goal value specified 2837 */ 2838 group = ac->ac_g_ex.fe_group; 2839 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2840 prefetch_grp = group; 2841 2842 for (i = 0, new_cr = cr; i < ngroups; i++, 2843 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2844 int ret = 0; 2845 2846 cond_resched(); 2847 if (new_cr != cr) { 2848 cr = new_cr; 2849 goto repeat; 2850 } 2851 2852 /* 2853 * Batch reads of the block allocation bitmaps 2854 * to get multiple READs in flight; limit 2855 * prefetching at inexpensive CR, otherwise mballoc 2856 * can spend a lot of time loading imperfect groups 2857 */ 2858 if ((prefetch_grp == group) && 2859 (ext4_mb_cr_expensive(cr) || 2860 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2861 nr = sbi->s_mb_prefetch; 2862 if (ext4_has_feature_flex_bg(sb)) { 2863 nr = 1 << sbi->s_log_groups_per_flex; 2864 nr -= group & (nr - 1); 2865 nr = min(nr, sbi->s_mb_prefetch); 2866 } 2867 prefetch_grp = ext4_mb_prefetch(sb, group, 2868 nr, &prefetch_ios); 2869 } 2870 2871 /* This now checks without needing the buddy page */ 2872 ret = ext4_mb_good_group_nolock(ac, group, cr); 2873 if (ret <= 0) { 2874 if (!first_err) 2875 first_err = ret; 2876 continue; 2877 } 2878 2879 err = ext4_mb_load_buddy(sb, group, &e4b); 2880 if (err) 2881 goto out; 2882 2883 ext4_lock_group(sb, group); 2884 2885 /* 2886 * We need to check again after locking the 2887 * block group 2888 */ 2889 ret = ext4_mb_good_group(ac, group, cr); 2890 if (ret == 0) { 2891 ext4_unlock_group(sb, group); 2892 ext4_mb_unload_buddy(&e4b); 2893 continue; 2894 } 2895 2896 ac->ac_groups_scanned++; 2897 if (cr == CR_POWER2_ALIGNED) 2898 ext4_mb_simple_scan_group(ac, &e4b); 2899 else if ((cr == CR_GOAL_LEN_FAST || 2900 cr == CR_BEST_AVAIL_LEN) && 2901 sbi->s_stripe && 2902 !(ac->ac_g_ex.fe_len % 2903 EXT4_B2C(sbi, sbi->s_stripe))) 2904 ext4_mb_scan_aligned(ac, &e4b); 2905 else 2906 ext4_mb_complex_scan_group(ac, &e4b); 2907 2908 ext4_unlock_group(sb, group); 2909 ext4_mb_unload_buddy(&e4b); 2910 2911 if (ac->ac_status != AC_STATUS_CONTINUE) 2912 break; 2913 } 2914 /* Processed all groups and haven't found blocks */ 2915 if (sbi->s_mb_stats && i == ngroups) 2916 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2917 2918 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2919 /* Reset goal length to original goal length before 2920 * falling into CR_GOAL_LEN_SLOW */ 2921 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2922 } 2923 2924 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2925 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2926 /* 2927 * We've been searching too long. Let's try to allocate 2928 * the best chunk we've found so far 2929 */ 2930 ext4_mb_try_best_found(ac, &e4b); 2931 if (ac->ac_status != AC_STATUS_FOUND) { 2932 /* 2933 * Someone more lucky has already allocated it. 2934 * The only thing we can do is just take first 2935 * found block(s) 2936 */ 2937 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2938 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2939 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2940 ac->ac_b_ex.fe_len, lost); 2941 2942 ac->ac_b_ex.fe_group = 0; 2943 ac->ac_b_ex.fe_start = 0; 2944 ac->ac_b_ex.fe_len = 0; 2945 ac->ac_status = AC_STATUS_CONTINUE; 2946 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2947 cr = CR_ANY_FREE; 2948 goto repeat; 2949 } 2950 } 2951 2952 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2953 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2954 out: 2955 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2956 err = first_err; 2957 2958 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2959 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2960 ac->ac_flags, cr, err); 2961 2962 if (nr) 2963 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2964 2965 return err; 2966 } 2967 2968 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2969 { 2970 struct super_block *sb = pde_data(file_inode(seq->file)); 2971 ext4_group_t group; 2972 2973 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2974 return NULL; 2975 group = *pos + 1; 2976 return (void *) ((unsigned long) group); 2977 } 2978 2979 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2980 { 2981 struct super_block *sb = pde_data(file_inode(seq->file)); 2982 ext4_group_t group; 2983 2984 ++*pos; 2985 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2986 return NULL; 2987 group = *pos + 1; 2988 return (void *) ((unsigned long) group); 2989 } 2990 2991 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2992 { 2993 struct super_block *sb = pde_data(file_inode(seq->file)); 2994 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2995 int i; 2996 int err, buddy_loaded = 0; 2997 struct ext4_buddy e4b; 2998 struct ext4_group_info *grinfo; 2999 unsigned char blocksize_bits = min_t(unsigned char, 3000 sb->s_blocksize_bits, 3001 EXT4_MAX_BLOCK_LOG_SIZE); 3002 struct sg { 3003 struct ext4_group_info info; 3004 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3005 } sg; 3006 3007 group--; 3008 if (group == 0) 3009 seq_puts(seq, "#group: free frags first [" 3010 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3011 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3012 3013 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3014 sizeof(struct ext4_group_info); 3015 3016 grinfo = ext4_get_group_info(sb, group); 3017 if (!grinfo) 3018 return 0; 3019 /* Load the group info in memory only if not already loaded. */ 3020 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3021 err = ext4_mb_load_buddy(sb, group, &e4b); 3022 if (err) { 3023 seq_printf(seq, "#%-5u: I/O error\n", group); 3024 return 0; 3025 } 3026 buddy_loaded = 1; 3027 } 3028 3029 memcpy(&sg, grinfo, i); 3030 3031 if (buddy_loaded) 3032 ext4_mb_unload_buddy(&e4b); 3033 3034 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3035 sg.info.bb_fragments, sg.info.bb_first_free); 3036 for (i = 0; i <= 13; i++) 3037 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3038 sg.info.bb_counters[i] : 0); 3039 seq_puts(seq, " ]\n"); 3040 3041 return 0; 3042 } 3043 3044 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3045 { 3046 } 3047 3048 const struct seq_operations ext4_mb_seq_groups_ops = { 3049 .start = ext4_mb_seq_groups_start, 3050 .next = ext4_mb_seq_groups_next, 3051 .stop = ext4_mb_seq_groups_stop, 3052 .show = ext4_mb_seq_groups_show, 3053 }; 3054 3055 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3056 { 3057 struct super_block *sb = seq->private; 3058 struct ext4_sb_info *sbi = EXT4_SB(sb); 3059 3060 seq_puts(seq, "mballoc:\n"); 3061 if (!sbi->s_mb_stats) { 3062 seq_puts(seq, "\tmb stats collection turned off.\n"); 3063 seq_puts( 3064 seq, 3065 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3066 return 0; 3067 } 3068 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3069 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3070 3071 seq_printf(seq, "\tgroups_scanned: %u\n", 3072 atomic_read(&sbi->s_bal_groups_scanned)); 3073 3074 /* CR_POWER2_ALIGNED stats */ 3075 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3076 seq_printf(seq, "\t\thits: %llu\n", 3077 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3078 seq_printf( 3079 seq, "\t\tgroups_considered: %llu\n", 3080 atomic64_read( 3081 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3082 seq_printf(seq, "\t\textents_scanned: %u\n", 3083 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3084 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3085 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3086 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3087 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3088 3089 /* CR_GOAL_LEN_FAST stats */ 3090 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3091 seq_printf(seq, "\t\thits: %llu\n", 3092 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3093 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3094 atomic64_read( 3095 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3096 seq_printf(seq, "\t\textents_scanned: %u\n", 3097 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3098 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3099 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3100 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3101 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3102 3103 /* CR_BEST_AVAIL_LEN stats */ 3104 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3105 seq_printf(seq, "\t\thits: %llu\n", 3106 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3107 seq_printf( 3108 seq, "\t\tgroups_considered: %llu\n", 3109 atomic64_read( 3110 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3111 seq_printf(seq, "\t\textents_scanned: %u\n", 3112 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3113 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3114 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3115 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3116 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3117 3118 /* CR_GOAL_LEN_SLOW stats */ 3119 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3120 seq_printf(seq, "\t\thits: %llu\n", 3121 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3122 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3123 atomic64_read( 3124 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3125 seq_printf(seq, "\t\textents_scanned: %u\n", 3126 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3127 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3128 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3129 3130 /* CR_ANY_FREE stats */ 3131 seq_puts(seq, "\tcr_any_free_stats:\n"); 3132 seq_printf(seq, "\t\thits: %llu\n", 3133 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3134 seq_printf( 3135 seq, "\t\tgroups_considered: %llu\n", 3136 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3137 seq_printf(seq, "\t\textents_scanned: %u\n", 3138 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3139 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3140 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3141 3142 /* Aggregates */ 3143 seq_printf(seq, "\textents_scanned: %u\n", 3144 atomic_read(&sbi->s_bal_ex_scanned)); 3145 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3146 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3147 atomic_read(&sbi->s_bal_len_goals)); 3148 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3149 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3150 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3151 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3152 atomic_read(&sbi->s_mb_buddies_generated), 3153 ext4_get_groups_count(sb)); 3154 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3155 atomic64_read(&sbi->s_mb_generation_time)); 3156 seq_printf(seq, "\tpreallocated: %u\n", 3157 atomic_read(&sbi->s_mb_preallocated)); 3158 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3159 return 0; 3160 } 3161 3162 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3163 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3164 { 3165 struct super_block *sb = pde_data(file_inode(seq->file)); 3166 unsigned long position; 3167 3168 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3169 return NULL; 3170 position = *pos + 1; 3171 return (void *) ((unsigned long) position); 3172 } 3173 3174 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3175 { 3176 struct super_block *sb = pde_data(file_inode(seq->file)); 3177 unsigned long position; 3178 3179 ++*pos; 3180 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3181 return NULL; 3182 position = *pos + 1; 3183 return (void *) ((unsigned long) position); 3184 } 3185 3186 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3187 { 3188 struct super_block *sb = pde_data(file_inode(seq->file)); 3189 struct ext4_sb_info *sbi = EXT4_SB(sb); 3190 unsigned long position = ((unsigned long) v); 3191 struct ext4_group_info *grp; 3192 unsigned int count; 3193 3194 position--; 3195 if (position >= MB_NUM_ORDERS(sb)) { 3196 position -= MB_NUM_ORDERS(sb); 3197 if (position == 0) 3198 seq_puts(seq, "avg_fragment_size_lists:\n"); 3199 3200 count = 0; 3201 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3202 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3203 bb_avg_fragment_size_node) 3204 count++; 3205 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3206 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3207 (unsigned int)position, count); 3208 return 0; 3209 } 3210 3211 if (position == 0) { 3212 seq_printf(seq, "optimize_scan: %d\n", 3213 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3214 seq_puts(seq, "max_free_order_lists:\n"); 3215 } 3216 count = 0; 3217 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3218 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3219 bb_largest_free_order_node) 3220 count++; 3221 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3222 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3223 (unsigned int)position, count); 3224 3225 return 0; 3226 } 3227 3228 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3229 { 3230 } 3231 3232 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3233 .start = ext4_mb_seq_structs_summary_start, 3234 .next = ext4_mb_seq_structs_summary_next, 3235 .stop = ext4_mb_seq_structs_summary_stop, 3236 .show = ext4_mb_seq_structs_summary_show, 3237 }; 3238 3239 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3240 { 3241 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3242 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3243 3244 BUG_ON(!cachep); 3245 return cachep; 3246 } 3247 3248 /* 3249 * Allocate the top-level s_group_info array for the specified number 3250 * of groups 3251 */ 3252 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3253 { 3254 struct ext4_sb_info *sbi = EXT4_SB(sb); 3255 unsigned size; 3256 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3257 3258 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3259 EXT4_DESC_PER_BLOCK_BITS(sb); 3260 if (size <= sbi->s_group_info_size) 3261 return 0; 3262 3263 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3264 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3265 if (!new_groupinfo) { 3266 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3267 return -ENOMEM; 3268 } 3269 rcu_read_lock(); 3270 old_groupinfo = rcu_dereference(sbi->s_group_info); 3271 if (old_groupinfo) 3272 memcpy(new_groupinfo, old_groupinfo, 3273 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3274 rcu_read_unlock(); 3275 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3276 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3277 if (old_groupinfo) 3278 ext4_kvfree_array_rcu(old_groupinfo); 3279 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3280 sbi->s_group_info_size); 3281 return 0; 3282 } 3283 3284 /* Create and initialize ext4_group_info data for the given group. */ 3285 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3286 struct ext4_group_desc *desc) 3287 { 3288 int i; 3289 int metalen = 0; 3290 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3291 struct ext4_sb_info *sbi = EXT4_SB(sb); 3292 struct ext4_group_info **meta_group_info; 3293 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3294 3295 /* 3296 * First check if this group is the first of a reserved block. 3297 * If it's true, we have to allocate a new table of pointers 3298 * to ext4_group_info structures 3299 */ 3300 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3301 metalen = sizeof(*meta_group_info) << 3302 EXT4_DESC_PER_BLOCK_BITS(sb); 3303 meta_group_info = kmalloc(metalen, GFP_NOFS); 3304 if (meta_group_info == NULL) { 3305 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3306 "for a buddy group"); 3307 return -ENOMEM; 3308 } 3309 rcu_read_lock(); 3310 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3311 rcu_read_unlock(); 3312 } 3313 3314 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3315 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3316 3317 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3318 if (meta_group_info[i] == NULL) { 3319 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3320 goto exit_group_info; 3321 } 3322 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3323 &(meta_group_info[i]->bb_state)); 3324 3325 /* 3326 * initialize bb_free to be able to skip 3327 * empty groups without initialization 3328 */ 3329 if (ext4_has_group_desc_csum(sb) && 3330 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3331 meta_group_info[i]->bb_free = 3332 ext4_free_clusters_after_init(sb, group, desc); 3333 } else { 3334 meta_group_info[i]->bb_free = 3335 ext4_free_group_clusters(sb, desc); 3336 } 3337 3338 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3339 init_rwsem(&meta_group_info[i]->alloc_sem); 3340 meta_group_info[i]->bb_free_root = RB_ROOT; 3341 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3342 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3343 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3344 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3345 meta_group_info[i]->bb_group = group; 3346 3347 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3348 return 0; 3349 3350 exit_group_info: 3351 /* If a meta_group_info table has been allocated, release it now */ 3352 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3353 struct ext4_group_info ***group_info; 3354 3355 rcu_read_lock(); 3356 group_info = rcu_dereference(sbi->s_group_info); 3357 kfree(group_info[idx]); 3358 group_info[idx] = NULL; 3359 rcu_read_unlock(); 3360 } 3361 return -ENOMEM; 3362 } /* ext4_mb_add_groupinfo */ 3363 3364 static int ext4_mb_init_backend(struct super_block *sb) 3365 { 3366 ext4_group_t ngroups = ext4_get_groups_count(sb); 3367 ext4_group_t i; 3368 struct ext4_sb_info *sbi = EXT4_SB(sb); 3369 int err; 3370 struct ext4_group_desc *desc; 3371 struct ext4_group_info ***group_info; 3372 struct kmem_cache *cachep; 3373 3374 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3375 if (err) 3376 return err; 3377 3378 sbi->s_buddy_cache = new_inode(sb); 3379 if (sbi->s_buddy_cache == NULL) { 3380 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3381 goto err_freesgi; 3382 } 3383 /* To avoid potentially colliding with an valid on-disk inode number, 3384 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3385 * not in the inode hash, so it should never be found by iget(), but 3386 * this will avoid confusion if it ever shows up during debugging. */ 3387 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3388 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3389 for (i = 0; i < ngroups; i++) { 3390 cond_resched(); 3391 desc = ext4_get_group_desc(sb, i, NULL); 3392 if (desc == NULL) { 3393 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3394 goto err_freebuddy; 3395 } 3396 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3397 goto err_freebuddy; 3398 } 3399 3400 if (ext4_has_feature_flex_bg(sb)) { 3401 /* a single flex group is supposed to be read by a single IO. 3402 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3403 * unsigned integer, so the maximum shift is 32. 3404 */ 3405 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3406 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3407 goto err_freebuddy; 3408 } 3409 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3410 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3411 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3412 } else { 3413 sbi->s_mb_prefetch = 32; 3414 } 3415 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3416 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3417 /* now many real IOs to prefetch within a single allocation at cr=0 3418 * given cr=0 is an CPU-related optimization we shouldn't try to 3419 * load too many groups, at some point we should start to use what 3420 * we've got in memory. 3421 * with an average random access time 5ms, it'd take a second to get 3422 * 200 groups (* N with flex_bg), so let's make this limit 4 3423 */ 3424 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3425 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3426 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3427 3428 return 0; 3429 3430 err_freebuddy: 3431 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3432 while (i-- > 0) { 3433 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3434 3435 if (grp) 3436 kmem_cache_free(cachep, grp); 3437 } 3438 i = sbi->s_group_info_size; 3439 rcu_read_lock(); 3440 group_info = rcu_dereference(sbi->s_group_info); 3441 while (i-- > 0) 3442 kfree(group_info[i]); 3443 rcu_read_unlock(); 3444 iput(sbi->s_buddy_cache); 3445 err_freesgi: 3446 rcu_read_lock(); 3447 kvfree(rcu_dereference(sbi->s_group_info)); 3448 rcu_read_unlock(); 3449 return -ENOMEM; 3450 } 3451 3452 static void ext4_groupinfo_destroy_slabs(void) 3453 { 3454 int i; 3455 3456 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3457 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3458 ext4_groupinfo_caches[i] = NULL; 3459 } 3460 } 3461 3462 static int ext4_groupinfo_create_slab(size_t size) 3463 { 3464 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3465 int slab_size; 3466 int blocksize_bits = order_base_2(size); 3467 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3468 struct kmem_cache *cachep; 3469 3470 if (cache_index >= NR_GRPINFO_CACHES) 3471 return -EINVAL; 3472 3473 if (unlikely(cache_index < 0)) 3474 cache_index = 0; 3475 3476 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3477 if (ext4_groupinfo_caches[cache_index]) { 3478 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3479 return 0; /* Already created */ 3480 } 3481 3482 slab_size = offsetof(struct ext4_group_info, 3483 bb_counters[blocksize_bits + 2]); 3484 3485 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3486 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3487 NULL); 3488 3489 ext4_groupinfo_caches[cache_index] = cachep; 3490 3491 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3492 if (!cachep) { 3493 printk(KERN_EMERG 3494 "EXT4-fs: no memory for groupinfo slab cache\n"); 3495 return -ENOMEM; 3496 } 3497 3498 return 0; 3499 } 3500 3501 static void ext4_discard_work(struct work_struct *work) 3502 { 3503 struct ext4_sb_info *sbi = container_of(work, 3504 struct ext4_sb_info, s_discard_work); 3505 struct super_block *sb = sbi->s_sb; 3506 struct ext4_free_data *fd, *nfd; 3507 struct ext4_buddy e4b; 3508 LIST_HEAD(discard_list); 3509 ext4_group_t grp, load_grp; 3510 int err = 0; 3511 3512 spin_lock(&sbi->s_md_lock); 3513 list_splice_init(&sbi->s_discard_list, &discard_list); 3514 spin_unlock(&sbi->s_md_lock); 3515 3516 load_grp = UINT_MAX; 3517 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3518 /* 3519 * If filesystem is umounting or no memory or suffering 3520 * from no space, give up the discard 3521 */ 3522 if ((sb->s_flags & SB_ACTIVE) && !err && 3523 !atomic_read(&sbi->s_retry_alloc_pending)) { 3524 grp = fd->efd_group; 3525 if (grp != load_grp) { 3526 if (load_grp != UINT_MAX) 3527 ext4_mb_unload_buddy(&e4b); 3528 3529 err = ext4_mb_load_buddy(sb, grp, &e4b); 3530 if (err) { 3531 kmem_cache_free(ext4_free_data_cachep, fd); 3532 load_grp = UINT_MAX; 3533 continue; 3534 } else { 3535 load_grp = grp; 3536 } 3537 } 3538 3539 ext4_lock_group(sb, grp); 3540 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3541 fd->efd_start_cluster + fd->efd_count - 1, 1); 3542 ext4_unlock_group(sb, grp); 3543 } 3544 kmem_cache_free(ext4_free_data_cachep, fd); 3545 } 3546 3547 if (load_grp != UINT_MAX) 3548 ext4_mb_unload_buddy(&e4b); 3549 } 3550 3551 int ext4_mb_init(struct super_block *sb) 3552 { 3553 struct ext4_sb_info *sbi = EXT4_SB(sb); 3554 unsigned i, j; 3555 unsigned offset, offset_incr; 3556 unsigned max; 3557 int ret; 3558 3559 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3560 3561 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3562 if (sbi->s_mb_offsets == NULL) { 3563 ret = -ENOMEM; 3564 goto out; 3565 } 3566 3567 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3568 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3569 if (sbi->s_mb_maxs == NULL) { 3570 ret = -ENOMEM; 3571 goto out; 3572 } 3573 3574 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3575 if (ret < 0) 3576 goto out; 3577 3578 /* order 0 is regular bitmap */ 3579 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3580 sbi->s_mb_offsets[0] = 0; 3581 3582 i = 1; 3583 offset = 0; 3584 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3585 max = sb->s_blocksize << 2; 3586 do { 3587 sbi->s_mb_offsets[i] = offset; 3588 sbi->s_mb_maxs[i] = max; 3589 offset += offset_incr; 3590 offset_incr = offset_incr >> 1; 3591 max = max >> 1; 3592 i++; 3593 } while (i < MB_NUM_ORDERS(sb)); 3594 3595 sbi->s_mb_avg_fragment_size = 3596 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3597 GFP_KERNEL); 3598 if (!sbi->s_mb_avg_fragment_size) { 3599 ret = -ENOMEM; 3600 goto out; 3601 } 3602 sbi->s_mb_avg_fragment_size_locks = 3603 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3604 GFP_KERNEL); 3605 if (!sbi->s_mb_avg_fragment_size_locks) { 3606 ret = -ENOMEM; 3607 goto out; 3608 } 3609 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3610 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3611 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3612 } 3613 sbi->s_mb_largest_free_orders = 3614 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3615 GFP_KERNEL); 3616 if (!sbi->s_mb_largest_free_orders) { 3617 ret = -ENOMEM; 3618 goto out; 3619 } 3620 sbi->s_mb_largest_free_orders_locks = 3621 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3622 GFP_KERNEL); 3623 if (!sbi->s_mb_largest_free_orders_locks) { 3624 ret = -ENOMEM; 3625 goto out; 3626 } 3627 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3628 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3629 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3630 } 3631 3632 spin_lock_init(&sbi->s_md_lock); 3633 sbi->s_mb_free_pending = 0; 3634 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3635 INIT_LIST_HEAD(&sbi->s_discard_list); 3636 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3637 atomic_set(&sbi->s_retry_alloc_pending, 0); 3638 3639 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3640 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3641 sbi->s_mb_stats = MB_DEFAULT_STATS; 3642 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3643 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3644 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3645 3646 /* 3647 * The default group preallocation is 512, which for 4k block 3648 * sizes translates to 2 megabytes. However for bigalloc file 3649 * systems, this is probably too big (i.e, if the cluster size 3650 * is 1 megabyte, then group preallocation size becomes half a 3651 * gigabyte!). As a default, we will keep a two megabyte 3652 * group pralloc size for cluster sizes up to 64k, and after 3653 * that, we will force a minimum group preallocation size of 3654 * 32 clusters. This translates to 8 megs when the cluster 3655 * size is 256k, and 32 megs when the cluster size is 1 meg, 3656 * which seems reasonable as a default. 3657 */ 3658 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3659 sbi->s_cluster_bits, 32); 3660 /* 3661 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3662 * to the lowest multiple of s_stripe which is bigger than 3663 * the s_mb_group_prealloc as determined above. We want 3664 * the preallocation size to be an exact multiple of the 3665 * RAID stripe size so that preallocations don't fragment 3666 * the stripes. 3667 */ 3668 if (sbi->s_stripe > 1) { 3669 sbi->s_mb_group_prealloc = roundup( 3670 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3671 } 3672 3673 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3674 if (sbi->s_locality_groups == NULL) { 3675 ret = -ENOMEM; 3676 goto out; 3677 } 3678 for_each_possible_cpu(i) { 3679 struct ext4_locality_group *lg; 3680 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3681 mutex_init(&lg->lg_mutex); 3682 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3683 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3684 spin_lock_init(&lg->lg_prealloc_lock); 3685 } 3686 3687 if (bdev_nonrot(sb->s_bdev)) 3688 sbi->s_mb_max_linear_groups = 0; 3689 else 3690 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3691 /* init file for buddy data */ 3692 ret = ext4_mb_init_backend(sb); 3693 if (ret != 0) 3694 goto out_free_locality_groups; 3695 3696 return 0; 3697 3698 out_free_locality_groups: 3699 free_percpu(sbi->s_locality_groups); 3700 sbi->s_locality_groups = NULL; 3701 out: 3702 kfree(sbi->s_mb_avg_fragment_size); 3703 kfree(sbi->s_mb_avg_fragment_size_locks); 3704 kfree(sbi->s_mb_largest_free_orders); 3705 kfree(sbi->s_mb_largest_free_orders_locks); 3706 kfree(sbi->s_mb_offsets); 3707 sbi->s_mb_offsets = NULL; 3708 kfree(sbi->s_mb_maxs); 3709 sbi->s_mb_maxs = NULL; 3710 return ret; 3711 } 3712 3713 /* need to called with the ext4 group lock held */ 3714 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3715 { 3716 struct ext4_prealloc_space *pa; 3717 struct list_head *cur, *tmp; 3718 int count = 0; 3719 3720 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3721 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3722 list_del(&pa->pa_group_list); 3723 count++; 3724 kmem_cache_free(ext4_pspace_cachep, pa); 3725 } 3726 return count; 3727 } 3728 3729 int ext4_mb_release(struct super_block *sb) 3730 { 3731 ext4_group_t ngroups = ext4_get_groups_count(sb); 3732 ext4_group_t i; 3733 int num_meta_group_infos; 3734 struct ext4_group_info *grinfo, ***group_info; 3735 struct ext4_sb_info *sbi = EXT4_SB(sb); 3736 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3737 int count; 3738 3739 if (test_opt(sb, DISCARD)) { 3740 /* 3741 * wait the discard work to drain all of ext4_free_data 3742 */ 3743 flush_work(&sbi->s_discard_work); 3744 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3745 } 3746 3747 if (sbi->s_group_info) { 3748 for (i = 0; i < ngroups; i++) { 3749 cond_resched(); 3750 grinfo = ext4_get_group_info(sb, i); 3751 if (!grinfo) 3752 continue; 3753 mb_group_bb_bitmap_free(grinfo); 3754 ext4_lock_group(sb, i); 3755 count = ext4_mb_cleanup_pa(grinfo); 3756 if (count) 3757 mb_debug(sb, "mballoc: %d PAs left\n", 3758 count); 3759 ext4_unlock_group(sb, i); 3760 kmem_cache_free(cachep, grinfo); 3761 } 3762 num_meta_group_infos = (ngroups + 3763 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3764 EXT4_DESC_PER_BLOCK_BITS(sb); 3765 rcu_read_lock(); 3766 group_info = rcu_dereference(sbi->s_group_info); 3767 for (i = 0; i < num_meta_group_infos; i++) 3768 kfree(group_info[i]); 3769 kvfree(group_info); 3770 rcu_read_unlock(); 3771 } 3772 kfree(sbi->s_mb_avg_fragment_size); 3773 kfree(sbi->s_mb_avg_fragment_size_locks); 3774 kfree(sbi->s_mb_largest_free_orders); 3775 kfree(sbi->s_mb_largest_free_orders_locks); 3776 kfree(sbi->s_mb_offsets); 3777 kfree(sbi->s_mb_maxs); 3778 iput(sbi->s_buddy_cache); 3779 if (sbi->s_mb_stats) { 3780 ext4_msg(sb, KERN_INFO, 3781 "mballoc: %u blocks %u reqs (%u success)", 3782 atomic_read(&sbi->s_bal_allocated), 3783 atomic_read(&sbi->s_bal_reqs), 3784 atomic_read(&sbi->s_bal_success)); 3785 ext4_msg(sb, KERN_INFO, 3786 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3787 "%u 2^N hits, %u breaks, %u lost", 3788 atomic_read(&sbi->s_bal_ex_scanned), 3789 atomic_read(&sbi->s_bal_groups_scanned), 3790 atomic_read(&sbi->s_bal_goals), 3791 atomic_read(&sbi->s_bal_2orders), 3792 atomic_read(&sbi->s_bal_breaks), 3793 atomic_read(&sbi->s_mb_lost_chunks)); 3794 ext4_msg(sb, KERN_INFO, 3795 "mballoc: %u generated and it took %llu", 3796 atomic_read(&sbi->s_mb_buddies_generated), 3797 atomic64_read(&sbi->s_mb_generation_time)); 3798 ext4_msg(sb, KERN_INFO, 3799 "mballoc: %u preallocated, %u discarded", 3800 atomic_read(&sbi->s_mb_preallocated), 3801 atomic_read(&sbi->s_mb_discarded)); 3802 } 3803 3804 free_percpu(sbi->s_locality_groups); 3805 3806 return 0; 3807 } 3808 3809 static inline int ext4_issue_discard(struct super_block *sb, 3810 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3811 struct bio **biop) 3812 { 3813 ext4_fsblk_t discard_block; 3814 3815 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3816 ext4_group_first_block_no(sb, block_group)); 3817 count = EXT4_C2B(EXT4_SB(sb), count); 3818 trace_ext4_discard_blocks(sb, 3819 (unsigned long long) discard_block, count); 3820 if (biop) { 3821 return __blkdev_issue_discard(sb->s_bdev, 3822 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3823 (sector_t)count << (sb->s_blocksize_bits - 9), 3824 GFP_NOFS, biop); 3825 } else 3826 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3827 } 3828 3829 static void ext4_free_data_in_buddy(struct super_block *sb, 3830 struct ext4_free_data *entry) 3831 { 3832 struct ext4_buddy e4b; 3833 struct ext4_group_info *db; 3834 int err, count = 0; 3835 3836 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3837 entry->efd_count, entry->efd_group, entry); 3838 3839 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3840 /* we expect to find existing buddy because it's pinned */ 3841 BUG_ON(err != 0); 3842 3843 spin_lock(&EXT4_SB(sb)->s_md_lock); 3844 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3845 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3846 3847 db = e4b.bd_info; 3848 /* there are blocks to put in buddy to make them really free */ 3849 count += entry->efd_count; 3850 ext4_lock_group(sb, entry->efd_group); 3851 /* Take it out of per group rb tree */ 3852 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3853 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3854 3855 /* 3856 * Clear the trimmed flag for the group so that the next 3857 * ext4_trim_fs can trim it. 3858 * If the volume is mounted with -o discard, online discard 3859 * is supported and the free blocks will be trimmed online. 3860 */ 3861 if (!test_opt(sb, DISCARD)) 3862 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3863 3864 if (!db->bb_free_root.rb_node) { 3865 /* No more items in the per group rb tree 3866 * balance refcounts from ext4_mb_free_metadata() 3867 */ 3868 put_page(e4b.bd_buddy_page); 3869 put_page(e4b.bd_bitmap_page); 3870 } 3871 ext4_unlock_group(sb, entry->efd_group); 3872 ext4_mb_unload_buddy(&e4b); 3873 3874 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3875 } 3876 3877 /* 3878 * This function is called by the jbd2 layer once the commit has finished, 3879 * so we know we can free the blocks that were released with that commit. 3880 */ 3881 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3882 { 3883 struct ext4_sb_info *sbi = EXT4_SB(sb); 3884 struct ext4_free_data *entry, *tmp; 3885 LIST_HEAD(freed_data_list); 3886 struct list_head *cut_pos = NULL; 3887 bool wake; 3888 3889 spin_lock(&sbi->s_md_lock); 3890 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3891 if (entry->efd_tid != commit_tid) 3892 break; 3893 cut_pos = &entry->efd_list; 3894 } 3895 if (cut_pos) 3896 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3897 cut_pos); 3898 spin_unlock(&sbi->s_md_lock); 3899 3900 list_for_each_entry(entry, &freed_data_list, efd_list) 3901 ext4_free_data_in_buddy(sb, entry); 3902 3903 if (test_opt(sb, DISCARD)) { 3904 spin_lock(&sbi->s_md_lock); 3905 wake = list_empty(&sbi->s_discard_list); 3906 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3907 spin_unlock(&sbi->s_md_lock); 3908 if (wake) 3909 queue_work(system_unbound_wq, &sbi->s_discard_work); 3910 } else { 3911 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3912 kmem_cache_free(ext4_free_data_cachep, entry); 3913 } 3914 } 3915 3916 int __init ext4_init_mballoc(void) 3917 { 3918 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3919 SLAB_RECLAIM_ACCOUNT); 3920 if (ext4_pspace_cachep == NULL) 3921 goto out; 3922 3923 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3924 SLAB_RECLAIM_ACCOUNT); 3925 if (ext4_ac_cachep == NULL) 3926 goto out_pa_free; 3927 3928 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3929 SLAB_RECLAIM_ACCOUNT); 3930 if (ext4_free_data_cachep == NULL) 3931 goto out_ac_free; 3932 3933 return 0; 3934 3935 out_ac_free: 3936 kmem_cache_destroy(ext4_ac_cachep); 3937 out_pa_free: 3938 kmem_cache_destroy(ext4_pspace_cachep); 3939 out: 3940 return -ENOMEM; 3941 } 3942 3943 void ext4_exit_mballoc(void) 3944 { 3945 /* 3946 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3947 * before destroying the slab cache. 3948 */ 3949 rcu_barrier(); 3950 kmem_cache_destroy(ext4_pspace_cachep); 3951 kmem_cache_destroy(ext4_ac_cachep); 3952 kmem_cache_destroy(ext4_free_data_cachep); 3953 ext4_groupinfo_destroy_slabs(); 3954 } 3955 3956 3957 /* 3958 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3959 * Returns 0 if success or error code 3960 */ 3961 static noinline_for_stack int 3962 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3963 handle_t *handle, unsigned int reserv_clstrs) 3964 { 3965 struct buffer_head *bitmap_bh = NULL; 3966 struct ext4_group_desc *gdp; 3967 struct buffer_head *gdp_bh; 3968 struct ext4_sb_info *sbi; 3969 struct super_block *sb; 3970 ext4_fsblk_t block; 3971 int err, len; 3972 3973 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3974 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3975 3976 sb = ac->ac_sb; 3977 sbi = EXT4_SB(sb); 3978 3979 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3980 if (IS_ERR(bitmap_bh)) { 3981 return PTR_ERR(bitmap_bh); 3982 } 3983 3984 BUFFER_TRACE(bitmap_bh, "getting write access"); 3985 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 3986 EXT4_JTR_NONE); 3987 if (err) 3988 goto out_err; 3989 3990 err = -EIO; 3991 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3992 if (!gdp) 3993 goto out_err; 3994 3995 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3996 ext4_free_group_clusters(sb, gdp)); 3997 3998 BUFFER_TRACE(gdp_bh, "get_write_access"); 3999 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 4000 if (err) 4001 goto out_err; 4002 4003 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4004 4005 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4006 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4007 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4008 "fs metadata", block, block+len); 4009 /* File system mounted not to panic on error 4010 * Fix the bitmap and return EFSCORRUPTED 4011 * We leak some of the blocks here. 4012 */ 4013 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4014 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4015 ac->ac_b_ex.fe_len); 4016 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4017 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4018 if (!err) 4019 err = -EFSCORRUPTED; 4020 goto out_err; 4021 } 4022 4023 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4024 #ifdef AGGRESSIVE_CHECK 4025 { 4026 int i; 4027 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 4028 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 4029 bitmap_bh->b_data)); 4030 } 4031 } 4032 #endif 4033 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4034 ac->ac_b_ex.fe_len); 4035 if (ext4_has_group_desc_csum(sb) && 4036 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4037 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4038 ext4_free_group_clusters_set(sb, gdp, 4039 ext4_free_clusters_after_init(sb, 4040 ac->ac_b_ex.fe_group, gdp)); 4041 } 4042 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 4043 ext4_free_group_clusters_set(sb, gdp, len); 4044 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4045 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 4046 4047 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4048 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4049 /* 4050 * Now reduce the dirty block count also. Should not go negative 4051 */ 4052 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4053 /* release all the reserved blocks if non delalloc */ 4054 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4055 reserv_clstrs); 4056 4057 if (sbi->s_log_groups_per_flex) { 4058 ext4_group_t flex_group = ext4_flex_group(sbi, 4059 ac->ac_b_ex.fe_group); 4060 atomic64_sub(ac->ac_b_ex.fe_len, 4061 &sbi_array_rcu_deref(sbi, s_flex_groups, 4062 flex_group)->free_clusters); 4063 } 4064 4065 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4066 if (err) 4067 goto out_err; 4068 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4069 4070 out_err: 4071 brelse(bitmap_bh); 4072 return err; 4073 } 4074 4075 /* 4076 * Idempotent helper for Ext4 fast commit replay path to set the state of 4077 * blocks in bitmaps and update counters. 4078 */ 4079 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4080 int len, int state) 4081 { 4082 struct buffer_head *bitmap_bh = NULL; 4083 struct ext4_group_desc *gdp; 4084 struct buffer_head *gdp_bh; 4085 struct ext4_sb_info *sbi = EXT4_SB(sb); 4086 ext4_group_t group; 4087 ext4_grpblk_t blkoff; 4088 int i, err = 0; 4089 int already; 4090 unsigned int clen, clen_changed, thisgrp_len; 4091 4092 while (len > 0) { 4093 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4094 4095 /* 4096 * Check to see if we are freeing blocks across a group 4097 * boundary. 4098 * In case of flex_bg, this can happen that (block, len) may 4099 * span across more than one group. In that case we need to 4100 * get the corresponding group metadata to work with. 4101 * For this we have goto again loop. 4102 */ 4103 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4104 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4105 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4106 4107 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4108 ext4_error(sb, "Marking blocks in system zone - " 4109 "Block = %llu, len = %u", 4110 block, thisgrp_len); 4111 bitmap_bh = NULL; 4112 break; 4113 } 4114 4115 bitmap_bh = ext4_read_block_bitmap(sb, group); 4116 if (IS_ERR(bitmap_bh)) { 4117 err = PTR_ERR(bitmap_bh); 4118 bitmap_bh = NULL; 4119 break; 4120 } 4121 4122 err = -EIO; 4123 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4124 if (!gdp) 4125 break; 4126 4127 ext4_lock_group(sb, group); 4128 already = 0; 4129 for (i = 0; i < clen; i++) 4130 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4131 !state) 4132 already++; 4133 4134 clen_changed = clen - already; 4135 if (state) 4136 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 4137 else 4138 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 4139 if (ext4_has_group_desc_csum(sb) && 4140 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4141 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4142 ext4_free_group_clusters_set(sb, gdp, 4143 ext4_free_clusters_after_init(sb, group, gdp)); 4144 } 4145 if (state) 4146 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 4147 else 4148 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 4149 4150 ext4_free_group_clusters_set(sb, gdp, clen); 4151 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4152 ext4_group_desc_csum_set(sb, group, gdp); 4153 4154 ext4_unlock_group(sb, group); 4155 4156 if (sbi->s_log_groups_per_flex) { 4157 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4158 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4159 s_flex_groups, flex_group); 4160 4161 if (state) 4162 atomic64_sub(clen_changed, &fg->free_clusters); 4163 else 4164 atomic64_add(clen_changed, &fg->free_clusters); 4165 4166 } 4167 4168 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 4169 if (err) 4170 break; 4171 sync_dirty_buffer(bitmap_bh); 4172 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 4173 sync_dirty_buffer(gdp_bh); 4174 if (err) 4175 break; 4176 4177 block += thisgrp_len; 4178 len -= thisgrp_len; 4179 brelse(bitmap_bh); 4180 BUG_ON(len < 0); 4181 } 4182 4183 if (err) 4184 brelse(bitmap_bh); 4185 } 4186 4187 /* 4188 * here we normalize request for locality group 4189 * Group request are normalized to s_mb_group_prealloc, which goes to 4190 * s_strip if we set the same via mount option. 4191 * s_mb_group_prealloc can be configured via 4192 * /sys/fs/ext4/<partition>/mb_group_prealloc 4193 * 4194 * XXX: should we try to preallocate more than the group has now? 4195 */ 4196 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4197 { 4198 struct super_block *sb = ac->ac_sb; 4199 struct ext4_locality_group *lg = ac->ac_lg; 4200 4201 BUG_ON(lg == NULL); 4202 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4203 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4204 } 4205 4206 /* 4207 * This function returns the next element to look at during inode 4208 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4209 * (ei->i_prealloc_lock) 4210 * 4211 * new_start The start of the range we want to compare 4212 * cur_start The existing start that we are comparing against 4213 * node The node of the rb_tree 4214 */ 4215 static inline struct rb_node* 4216 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4217 { 4218 if (new_start < cur_start) 4219 return node->rb_left; 4220 else 4221 return node->rb_right; 4222 } 4223 4224 static inline void 4225 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4226 ext4_lblk_t start, loff_t end) 4227 { 4228 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4229 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4230 struct ext4_prealloc_space *tmp_pa; 4231 ext4_lblk_t tmp_pa_start; 4232 loff_t tmp_pa_end; 4233 struct rb_node *iter; 4234 4235 read_lock(&ei->i_prealloc_lock); 4236 for (iter = ei->i_prealloc_node.rb_node; iter; 4237 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4238 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4239 pa_node.inode_node); 4240 tmp_pa_start = tmp_pa->pa_lstart; 4241 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4242 4243 spin_lock(&tmp_pa->pa_lock); 4244 if (tmp_pa->pa_deleted == 0) 4245 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4246 spin_unlock(&tmp_pa->pa_lock); 4247 } 4248 read_unlock(&ei->i_prealloc_lock); 4249 } 4250 4251 /* 4252 * Given an allocation context "ac" and a range "start", "end", check 4253 * and adjust boundaries if the range overlaps with any of the existing 4254 * preallocatoins stored in the corresponding inode of the allocation context. 4255 * 4256 * Parameters: 4257 * ac allocation context 4258 * start start of the new range 4259 * end end of the new range 4260 */ 4261 static inline void 4262 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4263 ext4_lblk_t *start, loff_t *end) 4264 { 4265 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4266 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4267 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4268 struct rb_node *iter; 4269 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4270 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4271 4272 new_start = *start; 4273 new_end = *end; 4274 4275 /* 4276 * Adjust the normalized range so that it doesn't overlap with any 4277 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4278 * so it doesn't change underneath us. 4279 */ 4280 read_lock(&ei->i_prealloc_lock); 4281 4282 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4283 for (iter = ei->i_prealloc_node.rb_node; iter; 4284 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4285 tmp_pa_start, iter)) { 4286 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4287 pa_node.inode_node); 4288 tmp_pa_start = tmp_pa->pa_lstart; 4289 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4290 4291 /* PA must not overlap original request */ 4292 spin_lock(&tmp_pa->pa_lock); 4293 if (tmp_pa->pa_deleted == 0) 4294 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4295 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4296 spin_unlock(&tmp_pa->pa_lock); 4297 } 4298 4299 /* 4300 * Step 2: check if the found PA is left or right neighbor and 4301 * get the other neighbor 4302 */ 4303 if (tmp_pa) { 4304 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4305 struct rb_node *tmp; 4306 4307 left_pa = tmp_pa; 4308 tmp = rb_next(&left_pa->pa_node.inode_node); 4309 if (tmp) { 4310 right_pa = rb_entry(tmp, 4311 struct ext4_prealloc_space, 4312 pa_node.inode_node); 4313 } 4314 } else { 4315 struct rb_node *tmp; 4316 4317 right_pa = tmp_pa; 4318 tmp = rb_prev(&right_pa->pa_node.inode_node); 4319 if (tmp) { 4320 left_pa = rb_entry(tmp, 4321 struct ext4_prealloc_space, 4322 pa_node.inode_node); 4323 } 4324 } 4325 } 4326 4327 /* Step 3: get the non deleted neighbors */ 4328 if (left_pa) { 4329 for (iter = &left_pa->pa_node.inode_node;; 4330 iter = rb_prev(iter)) { 4331 if (!iter) { 4332 left_pa = NULL; 4333 break; 4334 } 4335 4336 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4337 pa_node.inode_node); 4338 left_pa = tmp_pa; 4339 spin_lock(&tmp_pa->pa_lock); 4340 if (tmp_pa->pa_deleted == 0) { 4341 spin_unlock(&tmp_pa->pa_lock); 4342 break; 4343 } 4344 spin_unlock(&tmp_pa->pa_lock); 4345 } 4346 } 4347 4348 if (right_pa) { 4349 for (iter = &right_pa->pa_node.inode_node;; 4350 iter = rb_next(iter)) { 4351 if (!iter) { 4352 right_pa = NULL; 4353 break; 4354 } 4355 4356 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4357 pa_node.inode_node); 4358 right_pa = tmp_pa; 4359 spin_lock(&tmp_pa->pa_lock); 4360 if (tmp_pa->pa_deleted == 0) { 4361 spin_unlock(&tmp_pa->pa_lock); 4362 break; 4363 } 4364 spin_unlock(&tmp_pa->pa_lock); 4365 } 4366 } 4367 4368 if (left_pa) { 4369 left_pa_end = pa_logical_end(sbi, left_pa); 4370 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4371 } 4372 4373 if (right_pa) { 4374 right_pa_start = right_pa->pa_lstart; 4375 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4376 } 4377 4378 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4379 if (left_pa) { 4380 if (left_pa_end > new_start) 4381 new_start = left_pa_end; 4382 } 4383 4384 if (right_pa) { 4385 if (right_pa_start < new_end) 4386 new_end = right_pa_start; 4387 } 4388 read_unlock(&ei->i_prealloc_lock); 4389 4390 /* XXX: extra loop to check we really don't overlap preallocations */ 4391 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4392 4393 *start = new_start; 4394 *end = new_end; 4395 } 4396 4397 /* 4398 * Normalization means making request better in terms of 4399 * size and alignment 4400 */ 4401 static noinline_for_stack void 4402 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4403 struct ext4_allocation_request *ar) 4404 { 4405 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4406 struct ext4_super_block *es = sbi->s_es; 4407 int bsbits, max; 4408 loff_t size, start_off, end; 4409 loff_t orig_size __maybe_unused; 4410 ext4_lblk_t start; 4411 4412 /* do normalize only data requests, metadata requests 4413 do not need preallocation */ 4414 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4415 return; 4416 4417 /* sometime caller may want exact blocks */ 4418 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4419 return; 4420 4421 /* caller may indicate that preallocation isn't 4422 * required (it's a tail, for example) */ 4423 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4424 return; 4425 4426 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4427 ext4_mb_normalize_group_request(ac); 4428 return ; 4429 } 4430 4431 bsbits = ac->ac_sb->s_blocksize_bits; 4432 4433 /* first, let's learn actual file size 4434 * given current request is allocated */ 4435 size = extent_logical_end(sbi, &ac->ac_o_ex); 4436 size = size << bsbits; 4437 if (size < i_size_read(ac->ac_inode)) 4438 size = i_size_read(ac->ac_inode); 4439 orig_size = size; 4440 4441 /* max size of free chunks */ 4442 max = 2 << bsbits; 4443 4444 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4445 (req <= (size) || max <= (chunk_size)) 4446 4447 /* first, try to predict filesize */ 4448 /* XXX: should this table be tunable? */ 4449 start_off = 0; 4450 if (size <= 16 * 1024) { 4451 size = 16 * 1024; 4452 } else if (size <= 32 * 1024) { 4453 size = 32 * 1024; 4454 } else if (size <= 64 * 1024) { 4455 size = 64 * 1024; 4456 } else if (size <= 128 * 1024) { 4457 size = 128 * 1024; 4458 } else if (size <= 256 * 1024) { 4459 size = 256 * 1024; 4460 } else if (size <= 512 * 1024) { 4461 size = 512 * 1024; 4462 } else if (size <= 1024 * 1024) { 4463 size = 1024 * 1024; 4464 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4465 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4466 (21 - bsbits)) << 21; 4467 size = 2 * 1024 * 1024; 4468 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4469 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4470 (22 - bsbits)) << 22; 4471 size = 4 * 1024 * 1024; 4472 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4473 (8<<20)>>bsbits, max, 8 * 1024)) { 4474 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4475 (23 - bsbits)) << 23; 4476 size = 8 * 1024 * 1024; 4477 } else { 4478 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4479 size = (loff_t) EXT4_C2B(sbi, 4480 ac->ac_o_ex.fe_len) << bsbits; 4481 } 4482 size = size >> bsbits; 4483 start = start_off >> bsbits; 4484 4485 /* 4486 * For tiny groups (smaller than 8MB) the chosen allocation 4487 * alignment may be larger than group size. Make sure the 4488 * alignment does not move allocation to a different group which 4489 * makes mballoc fail assertions later. 4490 */ 4491 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4492 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4493 4494 /* don't cover already allocated blocks in selected range */ 4495 if (ar->pleft && start <= ar->lleft) { 4496 size -= ar->lleft + 1 - start; 4497 start = ar->lleft + 1; 4498 } 4499 if (ar->pright && start + size - 1 >= ar->lright) 4500 size -= start + size - ar->lright; 4501 4502 /* 4503 * Trim allocation request for filesystems with artificially small 4504 * groups. 4505 */ 4506 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4507 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4508 4509 end = start + size; 4510 4511 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4512 4513 size = end - start; 4514 4515 /* 4516 * In this function "start" and "size" are normalized for better 4517 * alignment and length such that we could preallocate more blocks. 4518 * This normalization is done such that original request of 4519 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4520 * "size" boundaries. 4521 * (Note fe_len can be relaxed since FS block allocation API does not 4522 * provide gurantee on number of contiguous blocks allocation since that 4523 * depends upon free space left, etc). 4524 * In case of inode pa, later we use the allocated blocks 4525 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4526 * range of goal/best blocks [start, size] to put it at the 4527 * ac_o_ex.fe_logical extent of this inode. 4528 * (See ext4_mb_use_inode_pa() for more details) 4529 */ 4530 if (start + size <= ac->ac_o_ex.fe_logical || 4531 start > ac->ac_o_ex.fe_logical) { 4532 ext4_msg(ac->ac_sb, KERN_ERR, 4533 "start %lu, size %lu, fe_logical %lu", 4534 (unsigned long) start, (unsigned long) size, 4535 (unsigned long) ac->ac_o_ex.fe_logical); 4536 BUG(); 4537 } 4538 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4539 4540 /* now prepare goal request */ 4541 4542 /* XXX: is it better to align blocks WRT to logical 4543 * placement or satisfy big request as is */ 4544 ac->ac_g_ex.fe_logical = start; 4545 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4546 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4547 4548 /* define goal start in order to merge */ 4549 if (ar->pright && (ar->lright == (start + size)) && 4550 ar->pright >= size && 4551 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4552 /* merge to the right */ 4553 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4554 &ac->ac_g_ex.fe_group, 4555 &ac->ac_g_ex.fe_start); 4556 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4557 } 4558 if (ar->pleft && (ar->lleft + 1 == start) && 4559 ar->pleft + 1 < ext4_blocks_count(es)) { 4560 /* merge to the left */ 4561 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4562 &ac->ac_g_ex.fe_group, 4563 &ac->ac_g_ex.fe_start); 4564 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4565 } 4566 4567 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4568 orig_size, start); 4569 } 4570 4571 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4572 { 4573 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4574 4575 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4576 atomic_inc(&sbi->s_bal_reqs); 4577 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4578 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4579 atomic_inc(&sbi->s_bal_success); 4580 4581 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4582 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4583 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4584 } 4585 4586 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4587 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4588 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4589 atomic_inc(&sbi->s_bal_goals); 4590 /* did we allocate as much as normalizer originally wanted? */ 4591 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4592 atomic_inc(&sbi->s_bal_len_goals); 4593 4594 if (ac->ac_found > sbi->s_mb_max_to_scan) 4595 atomic_inc(&sbi->s_bal_breaks); 4596 } 4597 4598 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4599 trace_ext4_mballoc_alloc(ac); 4600 else 4601 trace_ext4_mballoc_prealloc(ac); 4602 } 4603 4604 /* 4605 * Called on failure; free up any blocks from the inode PA for this 4606 * context. We don't need this for MB_GROUP_PA because we only change 4607 * pa_free in ext4_mb_release_context(), but on failure, we've already 4608 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4609 */ 4610 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4611 { 4612 struct ext4_prealloc_space *pa = ac->ac_pa; 4613 struct ext4_buddy e4b; 4614 int err; 4615 4616 if (pa == NULL) { 4617 if (ac->ac_f_ex.fe_len == 0) 4618 return; 4619 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4620 if (WARN_RATELIMIT(err, 4621 "ext4: mb_load_buddy failed (%d)", err)) 4622 /* 4623 * This should never happen since we pin the 4624 * pages in the ext4_allocation_context so 4625 * ext4_mb_load_buddy() should never fail. 4626 */ 4627 return; 4628 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4629 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4630 ac->ac_f_ex.fe_len); 4631 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4632 ext4_mb_unload_buddy(&e4b); 4633 return; 4634 } 4635 if (pa->pa_type == MB_INODE_PA) { 4636 spin_lock(&pa->pa_lock); 4637 pa->pa_free += ac->ac_b_ex.fe_len; 4638 spin_unlock(&pa->pa_lock); 4639 } 4640 } 4641 4642 /* 4643 * use blocks preallocated to inode 4644 */ 4645 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4646 struct ext4_prealloc_space *pa) 4647 { 4648 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4649 ext4_fsblk_t start; 4650 ext4_fsblk_t end; 4651 int len; 4652 4653 /* found preallocated blocks, use them */ 4654 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4655 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4656 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4657 len = EXT4_NUM_B2C(sbi, end - start); 4658 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4659 &ac->ac_b_ex.fe_start); 4660 ac->ac_b_ex.fe_len = len; 4661 ac->ac_status = AC_STATUS_FOUND; 4662 ac->ac_pa = pa; 4663 4664 BUG_ON(start < pa->pa_pstart); 4665 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4666 BUG_ON(pa->pa_free < len); 4667 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4668 pa->pa_free -= len; 4669 4670 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4671 } 4672 4673 /* 4674 * use blocks preallocated to locality group 4675 */ 4676 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4677 struct ext4_prealloc_space *pa) 4678 { 4679 unsigned int len = ac->ac_o_ex.fe_len; 4680 4681 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4682 &ac->ac_b_ex.fe_group, 4683 &ac->ac_b_ex.fe_start); 4684 ac->ac_b_ex.fe_len = len; 4685 ac->ac_status = AC_STATUS_FOUND; 4686 ac->ac_pa = pa; 4687 4688 /* we don't correct pa_pstart or pa_len here to avoid 4689 * possible race when the group is being loaded concurrently 4690 * instead we correct pa later, after blocks are marked 4691 * in on-disk bitmap -- see ext4_mb_release_context() 4692 * Other CPUs are prevented from allocating from this pa by lg_mutex 4693 */ 4694 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4695 pa->pa_lstart, len, pa); 4696 } 4697 4698 /* 4699 * Return the prealloc space that have minimal distance 4700 * from the goal block. @cpa is the prealloc 4701 * space that is having currently known minimal distance 4702 * from the goal block. 4703 */ 4704 static struct ext4_prealloc_space * 4705 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4706 struct ext4_prealloc_space *pa, 4707 struct ext4_prealloc_space *cpa) 4708 { 4709 ext4_fsblk_t cur_distance, new_distance; 4710 4711 if (cpa == NULL) { 4712 atomic_inc(&pa->pa_count); 4713 return pa; 4714 } 4715 cur_distance = abs(goal_block - cpa->pa_pstart); 4716 new_distance = abs(goal_block - pa->pa_pstart); 4717 4718 if (cur_distance <= new_distance) 4719 return cpa; 4720 4721 /* drop the previous reference */ 4722 atomic_dec(&cpa->pa_count); 4723 atomic_inc(&pa->pa_count); 4724 return pa; 4725 } 4726 4727 /* 4728 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4729 */ 4730 static bool 4731 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4732 struct ext4_prealloc_space *pa) 4733 { 4734 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4735 ext4_fsblk_t start; 4736 4737 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4738 return true; 4739 4740 /* 4741 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4742 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4743 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4744 * consistent with ext4_mb_find_by_goal. 4745 */ 4746 start = pa->pa_pstart + 4747 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4748 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4749 return false; 4750 4751 if (ac->ac_g_ex.fe_len > pa->pa_len - 4752 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4753 return false; 4754 4755 return true; 4756 } 4757 4758 /* 4759 * search goal blocks in preallocated space 4760 */ 4761 static noinline_for_stack bool 4762 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4763 { 4764 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4765 int order, i; 4766 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4767 struct ext4_locality_group *lg; 4768 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4769 struct rb_node *iter; 4770 ext4_fsblk_t goal_block; 4771 4772 /* only data can be preallocated */ 4773 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4774 return false; 4775 4776 /* 4777 * first, try per-file preallocation by searching the inode pa rbtree. 4778 * 4779 * Here, we can't do a direct traversal of the tree because 4780 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4781 * deleted and that can cause direct traversal to skip some entries. 4782 */ 4783 read_lock(&ei->i_prealloc_lock); 4784 4785 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4786 goto try_group_pa; 4787 } 4788 4789 /* 4790 * Step 1: Find a pa with logical start immediately adjacent to the 4791 * original logical start. This could be on the left or right. 4792 * 4793 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4794 */ 4795 for (iter = ei->i_prealloc_node.rb_node; iter; 4796 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4797 tmp_pa->pa_lstart, iter)) { 4798 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4799 pa_node.inode_node); 4800 } 4801 4802 /* 4803 * Step 2: The adjacent pa might be to the right of logical start, find 4804 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4805 * logical start is towards the left of original request's logical start 4806 */ 4807 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4808 struct rb_node *tmp; 4809 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4810 4811 if (tmp) { 4812 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4813 pa_node.inode_node); 4814 } else { 4815 /* 4816 * If there is no adjacent pa to the left then finding 4817 * an overlapping pa is not possible hence stop searching 4818 * inode pa tree 4819 */ 4820 goto try_group_pa; 4821 } 4822 } 4823 4824 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4825 4826 /* 4827 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4828 * the first non deleted adjacent pa. After this step we should have a 4829 * valid tmp_pa which is guaranteed to be non deleted. 4830 */ 4831 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4832 if (!iter) { 4833 /* 4834 * no non deleted left adjacent pa, so stop searching 4835 * inode pa tree 4836 */ 4837 goto try_group_pa; 4838 } 4839 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4840 pa_node.inode_node); 4841 spin_lock(&tmp_pa->pa_lock); 4842 if (tmp_pa->pa_deleted == 0) { 4843 /* 4844 * We will keep holding the pa_lock from 4845 * this point on because we don't want group discard 4846 * to delete this pa underneath us. Since group 4847 * discard is anyways an ENOSPC operation it 4848 * should be okay for it to wait a few more cycles. 4849 */ 4850 break; 4851 } else { 4852 spin_unlock(&tmp_pa->pa_lock); 4853 } 4854 } 4855 4856 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4857 BUG_ON(tmp_pa->pa_deleted == 1); 4858 4859 /* 4860 * Step 4: We now have the non deleted left adjacent pa. Only this 4861 * pa can possibly satisfy the request hence check if it overlaps 4862 * original logical start and stop searching if it doesn't. 4863 */ 4864 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4865 spin_unlock(&tmp_pa->pa_lock); 4866 goto try_group_pa; 4867 } 4868 4869 /* non-extent files can't have physical blocks past 2^32 */ 4870 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4871 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4872 EXT4_MAX_BLOCK_FILE_PHYS)) { 4873 /* 4874 * Since PAs don't overlap, we won't find any other PA to 4875 * satisfy this. 4876 */ 4877 spin_unlock(&tmp_pa->pa_lock); 4878 goto try_group_pa; 4879 } 4880 4881 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4882 atomic_inc(&tmp_pa->pa_count); 4883 ext4_mb_use_inode_pa(ac, tmp_pa); 4884 spin_unlock(&tmp_pa->pa_lock); 4885 read_unlock(&ei->i_prealloc_lock); 4886 return true; 4887 } else { 4888 /* 4889 * We found a valid overlapping pa but couldn't use it because 4890 * it had no free blocks. This should ideally never happen 4891 * because: 4892 * 4893 * 1. When a new inode pa is added to rbtree it must have 4894 * pa_free > 0 since otherwise we won't actually need 4895 * preallocation. 4896 * 4897 * 2. An inode pa that is in the rbtree can only have it's 4898 * pa_free become zero when another thread calls: 4899 * ext4_mb_new_blocks 4900 * ext4_mb_use_preallocated 4901 * ext4_mb_use_inode_pa 4902 * 4903 * 3. Further, after the above calls make pa_free == 0, we will 4904 * immediately remove it from the rbtree in: 4905 * ext4_mb_new_blocks 4906 * ext4_mb_release_context 4907 * ext4_mb_put_pa 4908 * 4909 * 4. Since the pa_free becoming 0 and pa_free getting removed 4910 * from tree both happen in ext4_mb_new_blocks, which is always 4911 * called with i_data_sem held for data allocations, we can be 4912 * sure that another process will never see a pa in rbtree with 4913 * pa_free == 0. 4914 */ 4915 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4916 } 4917 spin_unlock(&tmp_pa->pa_lock); 4918 try_group_pa: 4919 read_unlock(&ei->i_prealloc_lock); 4920 4921 /* can we use group allocation? */ 4922 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4923 return false; 4924 4925 /* inode may have no locality group for some reason */ 4926 lg = ac->ac_lg; 4927 if (lg == NULL) 4928 return false; 4929 order = fls(ac->ac_o_ex.fe_len) - 1; 4930 if (order > PREALLOC_TB_SIZE - 1) 4931 /* The max size of hash table is PREALLOC_TB_SIZE */ 4932 order = PREALLOC_TB_SIZE - 1; 4933 4934 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4935 /* 4936 * search for the prealloc space that is having 4937 * minimal distance from the goal block. 4938 */ 4939 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4940 rcu_read_lock(); 4941 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4942 pa_node.lg_list) { 4943 spin_lock(&tmp_pa->pa_lock); 4944 if (tmp_pa->pa_deleted == 0 && 4945 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4946 4947 cpa = ext4_mb_check_group_pa(goal_block, 4948 tmp_pa, cpa); 4949 } 4950 spin_unlock(&tmp_pa->pa_lock); 4951 } 4952 rcu_read_unlock(); 4953 } 4954 if (cpa) { 4955 ext4_mb_use_group_pa(ac, cpa); 4956 return true; 4957 } 4958 return false; 4959 } 4960 4961 /* 4962 * the function goes through all block freed in the group 4963 * but not yet committed and marks them used in in-core bitmap. 4964 * buddy must be generated from this bitmap 4965 * Need to be called with the ext4 group lock held 4966 */ 4967 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 4968 ext4_group_t group) 4969 { 4970 struct rb_node *n; 4971 struct ext4_group_info *grp; 4972 struct ext4_free_data *entry; 4973 4974 grp = ext4_get_group_info(sb, group); 4975 if (!grp) 4976 return; 4977 n = rb_first(&(grp->bb_free_root)); 4978 4979 while (n) { 4980 entry = rb_entry(n, struct ext4_free_data, efd_node); 4981 mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 4982 n = rb_next(n); 4983 } 4984 } 4985 4986 /* 4987 * the function goes through all preallocation in this group and marks them 4988 * used in in-core bitmap. buddy must be generated from this bitmap 4989 * Need to be called with ext4 group lock held 4990 */ 4991 static noinline_for_stack 4992 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4993 ext4_group_t group) 4994 { 4995 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4996 struct ext4_prealloc_space *pa; 4997 struct list_head *cur; 4998 ext4_group_t groupnr; 4999 ext4_grpblk_t start; 5000 int preallocated = 0; 5001 int len; 5002 5003 if (!grp) 5004 return; 5005 5006 /* all form of preallocation discards first load group, 5007 * so the only competing code is preallocation use. 5008 * we don't need any locking here 5009 * notice we do NOT ignore preallocations with pa_deleted 5010 * otherwise we could leave used blocks available for 5011 * allocation in buddy when concurrent ext4_mb_put_pa() 5012 * is dropping preallocation 5013 */ 5014 list_for_each(cur, &grp->bb_prealloc_list) { 5015 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5016 spin_lock(&pa->pa_lock); 5017 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5018 &groupnr, &start); 5019 len = pa->pa_len; 5020 spin_unlock(&pa->pa_lock); 5021 if (unlikely(len == 0)) 5022 continue; 5023 BUG_ON(groupnr != group); 5024 mb_set_bits(bitmap, start, len); 5025 preallocated += len; 5026 } 5027 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5028 } 5029 5030 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5031 struct ext4_prealloc_space *pa) 5032 { 5033 struct ext4_inode_info *ei; 5034 5035 if (pa->pa_deleted) { 5036 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5037 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5038 pa->pa_len); 5039 return; 5040 } 5041 5042 pa->pa_deleted = 1; 5043 5044 if (pa->pa_type == MB_INODE_PA) { 5045 ei = EXT4_I(pa->pa_inode); 5046 atomic_dec(&ei->i_prealloc_active); 5047 } 5048 } 5049 5050 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5051 { 5052 BUG_ON(!pa); 5053 BUG_ON(atomic_read(&pa->pa_count)); 5054 BUG_ON(pa->pa_deleted == 0); 5055 kmem_cache_free(ext4_pspace_cachep, pa); 5056 } 5057 5058 static void ext4_mb_pa_callback(struct rcu_head *head) 5059 { 5060 struct ext4_prealloc_space *pa; 5061 5062 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5063 ext4_mb_pa_free(pa); 5064 } 5065 5066 /* 5067 * drops a reference to preallocated space descriptor 5068 * if this was the last reference and the space is consumed 5069 */ 5070 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5071 struct super_block *sb, struct ext4_prealloc_space *pa) 5072 { 5073 ext4_group_t grp; 5074 ext4_fsblk_t grp_blk; 5075 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5076 5077 /* in this short window concurrent discard can set pa_deleted */ 5078 spin_lock(&pa->pa_lock); 5079 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5080 spin_unlock(&pa->pa_lock); 5081 return; 5082 } 5083 5084 if (pa->pa_deleted == 1) { 5085 spin_unlock(&pa->pa_lock); 5086 return; 5087 } 5088 5089 ext4_mb_mark_pa_deleted(sb, pa); 5090 spin_unlock(&pa->pa_lock); 5091 5092 grp_blk = pa->pa_pstart; 5093 /* 5094 * If doing group-based preallocation, pa_pstart may be in the 5095 * next group when pa is used up 5096 */ 5097 if (pa->pa_type == MB_GROUP_PA) 5098 grp_blk--; 5099 5100 grp = ext4_get_group_number(sb, grp_blk); 5101 5102 /* 5103 * possible race: 5104 * 5105 * P1 (buddy init) P2 (regular allocation) 5106 * find block B in PA 5107 * copy on-disk bitmap to buddy 5108 * mark B in on-disk bitmap 5109 * drop PA from group 5110 * mark all PAs in buddy 5111 * 5112 * thus, P1 initializes buddy with B available. to prevent this 5113 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5114 * against that pair 5115 */ 5116 ext4_lock_group(sb, grp); 5117 list_del(&pa->pa_group_list); 5118 ext4_unlock_group(sb, grp); 5119 5120 if (pa->pa_type == MB_INODE_PA) { 5121 write_lock(pa->pa_node_lock.inode_lock); 5122 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5123 write_unlock(pa->pa_node_lock.inode_lock); 5124 ext4_mb_pa_free(pa); 5125 } else { 5126 spin_lock(pa->pa_node_lock.lg_lock); 5127 list_del_rcu(&pa->pa_node.lg_list); 5128 spin_unlock(pa->pa_node_lock.lg_lock); 5129 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5130 } 5131 } 5132 5133 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5134 { 5135 struct rb_node **iter = &root->rb_node, *parent = NULL; 5136 struct ext4_prealloc_space *iter_pa, *new_pa; 5137 ext4_lblk_t iter_start, new_start; 5138 5139 while (*iter) { 5140 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5141 pa_node.inode_node); 5142 new_pa = rb_entry(new, struct ext4_prealloc_space, 5143 pa_node.inode_node); 5144 iter_start = iter_pa->pa_lstart; 5145 new_start = new_pa->pa_lstart; 5146 5147 parent = *iter; 5148 if (new_start < iter_start) 5149 iter = &((*iter)->rb_left); 5150 else 5151 iter = &((*iter)->rb_right); 5152 } 5153 5154 rb_link_node(new, parent, iter); 5155 rb_insert_color(new, root); 5156 } 5157 5158 /* 5159 * creates new preallocated space for given inode 5160 */ 5161 static noinline_for_stack void 5162 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5163 { 5164 struct super_block *sb = ac->ac_sb; 5165 struct ext4_sb_info *sbi = EXT4_SB(sb); 5166 struct ext4_prealloc_space *pa; 5167 struct ext4_group_info *grp; 5168 struct ext4_inode_info *ei; 5169 5170 /* preallocate only when found space is larger then requested */ 5171 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5172 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5173 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5174 BUG_ON(ac->ac_pa == NULL); 5175 5176 pa = ac->ac_pa; 5177 5178 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5179 struct ext4_free_extent ex = { 5180 .fe_logical = ac->ac_g_ex.fe_logical, 5181 .fe_len = ac->ac_orig_goal_len, 5182 }; 5183 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5184 5185 /* we can't allocate as much as normalizer wants. 5186 * so, found space must get proper lstart 5187 * to cover original request */ 5188 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5189 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5190 5191 /* 5192 * Use the below logic for adjusting best extent as it keeps 5193 * fragmentation in check while ensuring logical range of best 5194 * extent doesn't overflow out of goal extent: 5195 * 5196 * 1. Check if best ex can be kept at end of goal (before 5197 * cr_best_avail trimmed it) and still cover original start 5198 * 2. Else, check if best ex can be kept at start of goal and 5199 * still cover original start 5200 * 3. Else, keep the best ex at start of original request. 5201 */ 5202 ex.fe_len = ac->ac_b_ex.fe_len; 5203 5204 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5205 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5206 goto adjust_bex; 5207 5208 ex.fe_logical = ac->ac_g_ex.fe_logical; 5209 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex)) 5210 goto adjust_bex; 5211 5212 ex.fe_logical = ac->ac_o_ex.fe_logical; 5213 adjust_bex: 5214 ac->ac_b_ex.fe_logical = ex.fe_logical; 5215 5216 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5217 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 5218 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5219 } 5220 5221 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5222 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5223 pa->pa_len = ac->ac_b_ex.fe_len; 5224 pa->pa_free = pa->pa_len; 5225 spin_lock_init(&pa->pa_lock); 5226 INIT_LIST_HEAD(&pa->pa_group_list); 5227 pa->pa_deleted = 0; 5228 pa->pa_type = MB_INODE_PA; 5229 5230 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5231 pa->pa_len, pa->pa_lstart); 5232 trace_ext4_mb_new_inode_pa(ac, pa); 5233 5234 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5235 ext4_mb_use_inode_pa(ac, pa); 5236 5237 ei = EXT4_I(ac->ac_inode); 5238 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5239 if (!grp) 5240 return; 5241 5242 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5243 pa->pa_inode = ac->ac_inode; 5244 5245 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5246 5247 write_lock(pa->pa_node_lock.inode_lock); 5248 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5249 write_unlock(pa->pa_node_lock.inode_lock); 5250 atomic_inc(&ei->i_prealloc_active); 5251 } 5252 5253 /* 5254 * creates new preallocated space for locality group inodes belongs to 5255 */ 5256 static noinline_for_stack void 5257 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5258 { 5259 struct super_block *sb = ac->ac_sb; 5260 struct ext4_locality_group *lg; 5261 struct ext4_prealloc_space *pa; 5262 struct ext4_group_info *grp; 5263 5264 /* preallocate only when found space is larger then requested */ 5265 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5266 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5267 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5268 BUG_ON(ac->ac_pa == NULL); 5269 5270 pa = ac->ac_pa; 5271 5272 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5273 pa->pa_lstart = pa->pa_pstart; 5274 pa->pa_len = ac->ac_b_ex.fe_len; 5275 pa->pa_free = pa->pa_len; 5276 spin_lock_init(&pa->pa_lock); 5277 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5278 INIT_LIST_HEAD(&pa->pa_group_list); 5279 pa->pa_deleted = 0; 5280 pa->pa_type = MB_GROUP_PA; 5281 5282 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5283 pa->pa_len, pa->pa_lstart); 5284 trace_ext4_mb_new_group_pa(ac, pa); 5285 5286 ext4_mb_use_group_pa(ac, pa); 5287 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5288 5289 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5290 if (!grp) 5291 return; 5292 lg = ac->ac_lg; 5293 BUG_ON(lg == NULL); 5294 5295 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5296 pa->pa_inode = NULL; 5297 5298 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5299 5300 /* 5301 * We will later add the new pa to the right bucket 5302 * after updating the pa_free in ext4_mb_release_context 5303 */ 5304 } 5305 5306 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5307 { 5308 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5309 ext4_mb_new_group_pa(ac); 5310 else 5311 ext4_mb_new_inode_pa(ac); 5312 } 5313 5314 /* 5315 * finds all unused blocks in on-disk bitmap, frees them in 5316 * in-core bitmap and buddy. 5317 * @pa must be unlinked from inode and group lists, so that 5318 * nobody else can find/use it. 5319 * the caller MUST hold group/inode locks. 5320 * TODO: optimize the case when there are no in-core structures yet 5321 */ 5322 static noinline_for_stack int 5323 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5324 struct ext4_prealloc_space *pa) 5325 { 5326 struct super_block *sb = e4b->bd_sb; 5327 struct ext4_sb_info *sbi = EXT4_SB(sb); 5328 unsigned int end; 5329 unsigned int next; 5330 ext4_group_t group; 5331 ext4_grpblk_t bit; 5332 unsigned long long grp_blk_start; 5333 int free = 0; 5334 5335 BUG_ON(pa->pa_deleted == 0); 5336 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5337 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5338 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5339 end = bit + pa->pa_len; 5340 5341 while (bit < end) { 5342 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5343 if (bit >= end) 5344 break; 5345 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5346 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5347 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5348 (unsigned) next - bit, (unsigned) group); 5349 free += next - bit; 5350 5351 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5352 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5353 EXT4_C2B(sbi, bit)), 5354 next - bit); 5355 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5356 bit = next + 1; 5357 } 5358 if (free != pa->pa_free) { 5359 ext4_msg(e4b->bd_sb, KERN_CRIT, 5360 "pa %p: logic %lu, phys. %lu, len %d", 5361 pa, (unsigned long) pa->pa_lstart, 5362 (unsigned long) pa->pa_pstart, 5363 pa->pa_len); 5364 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5365 free, pa->pa_free); 5366 /* 5367 * pa is already deleted so we use the value obtained 5368 * from the bitmap and continue. 5369 */ 5370 } 5371 atomic_add(free, &sbi->s_mb_discarded); 5372 5373 return 0; 5374 } 5375 5376 static noinline_for_stack int 5377 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5378 struct ext4_prealloc_space *pa) 5379 { 5380 struct super_block *sb = e4b->bd_sb; 5381 ext4_group_t group; 5382 ext4_grpblk_t bit; 5383 5384 trace_ext4_mb_release_group_pa(sb, pa); 5385 BUG_ON(pa->pa_deleted == 0); 5386 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5387 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5388 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5389 e4b->bd_group, group, pa->pa_pstart); 5390 return 0; 5391 } 5392 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5393 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5394 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5395 5396 return 0; 5397 } 5398 5399 /* 5400 * releases all preallocations in given group 5401 * 5402 * first, we need to decide discard policy: 5403 * - when do we discard 5404 * 1) ENOSPC 5405 * - how many do we discard 5406 * 1) how many requested 5407 */ 5408 static noinline_for_stack int 5409 ext4_mb_discard_group_preallocations(struct super_block *sb, 5410 ext4_group_t group, int *busy) 5411 { 5412 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5413 struct buffer_head *bitmap_bh = NULL; 5414 struct ext4_prealloc_space *pa, *tmp; 5415 LIST_HEAD(list); 5416 struct ext4_buddy e4b; 5417 struct ext4_inode_info *ei; 5418 int err; 5419 int free = 0; 5420 5421 if (!grp) 5422 return 0; 5423 mb_debug(sb, "discard preallocation for group %u\n", group); 5424 if (list_empty(&grp->bb_prealloc_list)) 5425 goto out_dbg; 5426 5427 bitmap_bh = ext4_read_block_bitmap(sb, group); 5428 if (IS_ERR(bitmap_bh)) { 5429 err = PTR_ERR(bitmap_bh); 5430 ext4_error_err(sb, -err, 5431 "Error %d reading block bitmap for %u", 5432 err, group); 5433 goto out_dbg; 5434 } 5435 5436 err = ext4_mb_load_buddy(sb, group, &e4b); 5437 if (err) { 5438 ext4_warning(sb, "Error %d loading buddy information for %u", 5439 err, group); 5440 put_bh(bitmap_bh); 5441 goto out_dbg; 5442 } 5443 5444 ext4_lock_group(sb, group); 5445 list_for_each_entry_safe(pa, tmp, 5446 &grp->bb_prealloc_list, pa_group_list) { 5447 spin_lock(&pa->pa_lock); 5448 if (atomic_read(&pa->pa_count)) { 5449 spin_unlock(&pa->pa_lock); 5450 *busy = 1; 5451 continue; 5452 } 5453 if (pa->pa_deleted) { 5454 spin_unlock(&pa->pa_lock); 5455 continue; 5456 } 5457 5458 /* seems this one can be freed ... */ 5459 ext4_mb_mark_pa_deleted(sb, pa); 5460 5461 if (!free) 5462 this_cpu_inc(discard_pa_seq); 5463 5464 /* we can trust pa_free ... */ 5465 free += pa->pa_free; 5466 5467 spin_unlock(&pa->pa_lock); 5468 5469 list_del(&pa->pa_group_list); 5470 list_add(&pa->u.pa_tmp_list, &list); 5471 } 5472 5473 /* now free all selected PAs */ 5474 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5475 5476 /* remove from object (inode or locality group) */ 5477 if (pa->pa_type == MB_GROUP_PA) { 5478 spin_lock(pa->pa_node_lock.lg_lock); 5479 list_del_rcu(&pa->pa_node.lg_list); 5480 spin_unlock(pa->pa_node_lock.lg_lock); 5481 } else { 5482 write_lock(pa->pa_node_lock.inode_lock); 5483 ei = EXT4_I(pa->pa_inode); 5484 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5485 write_unlock(pa->pa_node_lock.inode_lock); 5486 } 5487 5488 list_del(&pa->u.pa_tmp_list); 5489 5490 if (pa->pa_type == MB_GROUP_PA) { 5491 ext4_mb_release_group_pa(&e4b, pa); 5492 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5493 } else { 5494 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5495 ext4_mb_pa_free(pa); 5496 } 5497 } 5498 5499 ext4_unlock_group(sb, group); 5500 ext4_mb_unload_buddy(&e4b); 5501 put_bh(bitmap_bh); 5502 out_dbg: 5503 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5504 free, group, grp->bb_free); 5505 return free; 5506 } 5507 5508 /* 5509 * releases all non-used preallocated blocks for given inode 5510 * 5511 * It's important to discard preallocations under i_data_sem 5512 * We don't want another block to be served from the prealloc 5513 * space when we are discarding the inode prealloc space. 5514 * 5515 * FIXME!! Make sure it is valid at all the call sites 5516 */ 5517 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5518 { 5519 struct ext4_inode_info *ei = EXT4_I(inode); 5520 struct super_block *sb = inode->i_sb; 5521 struct buffer_head *bitmap_bh = NULL; 5522 struct ext4_prealloc_space *pa, *tmp; 5523 ext4_group_t group = 0; 5524 LIST_HEAD(list); 5525 struct ext4_buddy e4b; 5526 struct rb_node *iter; 5527 int err; 5528 5529 if (!S_ISREG(inode->i_mode)) { 5530 return; 5531 } 5532 5533 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5534 return; 5535 5536 mb_debug(sb, "discard preallocation for inode %lu\n", 5537 inode->i_ino); 5538 trace_ext4_discard_preallocations(inode, 5539 atomic_read(&ei->i_prealloc_active), needed); 5540 5541 if (needed == 0) 5542 needed = UINT_MAX; 5543 5544 repeat: 5545 /* first, collect all pa's in the inode */ 5546 write_lock(&ei->i_prealloc_lock); 5547 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5548 iter = rb_next(iter)) { 5549 pa = rb_entry(iter, struct ext4_prealloc_space, 5550 pa_node.inode_node); 5551 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5552 5553 spin_lock(&pa->pa_lock); 5554 if (atomic_read(&pa->pa_count)) { 5555 /* this shouldn't happen often - nobody should 5556 * use preallocation while we're discarding it */ 5557 spin_unlock(&pa->pa_lock); 5558 write_unlock(&ei->i_prealloc_lock); 5559 ext4_msg(sb, KERN_ERR, 5560 "uh-oh! used pa while discarding"); 5561 WARN_ON(1); 5562 schedule_timeout_uninterruptible(HZ); 5563 goto repeat; 5564 5565 } 5566 if (pa->pa_deleted == 0) { 5567 ext4_mb_mark_pa_deleted(sb, pa); 5568 spin_unlock(&pa->pa_lock); 5569 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5570 list_add(&pa->u.pa_tmp_list, &list); 5571 needed--; 5572 continue; 5573 } 5574 5575 /* someone is deleting pa right now */ 5576 spin_unlock(&pa->pa_lock); 5577 write_unlock(&ei->i_prealloc_lock); 5578 5579 /* we have to wait here because pa_deleted 5580 * doesn't mean pa is already unlinked from 5581 * the list. as we might be called from 5582 * ->clear_inode() the inode will get freed 5583 * and concurrent thread which is unlinking 5584 * pa from inode's list may access already 5585 * freed memory, bad-bad-bad */ 5586 5587 /* XXX: if this happens too often, we can 5588 * add a flag to force wait only in case 5589 * of ->clear_inode(), but not in case of 5590 * regular truncate */ 5591 schedule_timeout_uninterruptible(HZ); 5592 goto repeat; 5593 } 5594 write_unlock(&ei->i_prealloc_lock); 5595 5596 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5597 BUG_ON(pa->pa_type != MB_INODE_PA); 5598 group = ext4_get_group_number(sb, pa->pa_pstart); 5599 5600 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5601 GFP_NOFS|__GFP_NOFAIL); 5602 if (err) { 5603 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5604 err, group); 5605 continue; 5606 } 5607 5608 bitmap_bh = ext4_read_block_bitmap(sb, group); 5609 if (IS_ERR(bitmap_bh)) { 5610 err = PTR_ERR(bitmap_bh); 5611 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5612 err, group); 5613 ext4_mb_unload_buddy(&e4b); 5614 continue; 5615 } 5616 5617 ext4_lock_group(sb, group); 5618 list_del(&pa->pa_group_list); 5619 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5620 ext4_unlock_group(sb, group); 5621 5622 ext4_mb_unload_buddy(&e4b); 5623 put_bh(bitmap_bh); 5624 5625 list_del(&pa->u.pa_tmp_list); 5626 ext4_mb_pa_free(pa); 5627 } 5628 } 5629 5630 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5631 { 5632 struct ext4_prealloc_space *pa; 5633 5634 BUG_ON(ext4_pspace_cachep == NULL); 5635 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5636 if (!pa) 5637 return -ENOMEM; 5638 atomic_set(&pa->pa_count, 1); 5639 ac->ac_pa = pa; 5640 return 0; 5641 } 5642 5643 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5644 { 5645 struct ext4_prealloc_space *pa = ac->ac_pa; 5646 5647 BUG_ON(!pa); 5648 ac->ac_pa = NULL; 5649 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5650 /* 5651 * current function is only called due to an error or due to 5652 * len of found blocks < len of requested blocks hence the PA has not 5653 * been added to grp->bb_prealloc_list. So we don't need to lock it 5654 */ 5655 pa->pa_deleted = 1; 5656 ext4_mb_pa_free(pa); 5657 } 5658 5659 #ifdef CONFIG_EXT4_DEBUG 5660 static inline void ext4_mb_show_pa(struct super_block *sb) 5661 { 5662 ext4_group_t i, ngroups; 5663 5664 if (ext4_forced_shutdown(sb)) 5665 return; 5666 5667 ngroups = ext4_get_groups_count(sb); 5668 mb_debug(sb, "groups: "); 5669 for (i = 0; i < ngroups; i++) { 5670 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5671 struct ext4_prealloc_space *pa; 5672 ext4_grpblk_t start; 5673 struct list_head *cur; 5674 5675 if (!grp) 5676 continue; 5677 ext4_lock_group(sb, i); 5678 list_for_each(cur, &grp->bb_prealloc_list) { 5679 pa = list_entry(cur, struct ext4_prealloc_space, 5680 pa_group_list); 5681 spin_lock(&pa->pa_lock); 5682 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5683 NULL, &start); 5684 spin_unlock(&pa->pa_lock); 5685 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5686 pa->pa_len); 5687 } 5688 ext4_unlock_group(sb, i); 5689 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5690 grp->bb_fragments); 5691 } 5692 } 5693 5694 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5695 { 5696 struct super_block *sb = ac->ac_sb; 5697 5698 if (ext4_forced_shutdown(sb)) 5699 return; 5700 5701 mb_debug(sb, "Can't allocate:" 5702 " Allocation context details:"); 5703 mb_debug(sb, "status %u flags 0x%x", 5704 ac->ac_status, ac->ac_flags); 5705 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5706 "goal %lu/%lu/%lu@%lu, " 5707 "best %lu/%lu/%lu@%lu cr %d", 5708 (unsigned long)ac->ac_o_ex.fe_group, 5709 (unsigned long)ac->ac_o_ex.fe_start, 5710 (unsigned long)ac->ac_o_ex.fe_len, 5711 (unsigned long)ac->ac_o_ex.fe_logical, 5712 (unsigned long)ac->ac_g_ex.fe_group, 5713 (unsigned long)ac->ac_g_ex.fe_start, 5714 (unsigned long)ac->ac_g_ex.fe_len, 5715 (unsigned long)ac->ac_g_ex.fe_logical, 5716 (unsigned long)ac->ac_b_ex.fe_group, 5717 (unsigned long)ac->ac_b_ex.fe_start, 5718 (unsigned long)ac->ac_b_ex.fe_len, 5719 (unsigned long)ac->ac_b_ex.fe_logical, 5720 (int)ac->ac_criteria); 5721 mb_debug(sb, "%u found", ac->ac_found); 5722 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5723 if (ac->ac_pa) 5724 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5725 "group pa" : "inode pa"); 5726 ext4_mb_show_pa(sb); 5727 } 5728 #else 5729 static inline void ext4_mb_show_pa(struct super_block *sb) 5730 { 5731 } 5732 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5733 { 5734 ext4_mb_show_pa(ac->ac_sb); 5735 } 5736 #endif 5737 5738 /* 5739 * We use locality group preallocation for small size file. The size of the 5740 * file is determined by the current size or the resulting size after 5741 * allocation which ever is larger 5742 * 5743 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5744 */ 5745 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5746 { 5747 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5748 int bsbits = ac->ac_sb->s_blocksize_bits; 5749 loff_t size, isize; 5750 bool inode_pa_eligible, group_pa_eligible; 5751 5752 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5753 return; 5754 5755 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5756 return; 5757 5758 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5759 inode_pa_eligible = true; 5760 size = extent_logical_end(sbi, &ac->ac_o_ex); 5761 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5762 >> bsbits; 5763 5764 /* No point in using inode preallocation for closed files */ 5765 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5766 !inode_is_open_for_write(ac->ac_inode)) 5767 inode_pa_eligible = false; 5768 5769 size = max(size, isize); 5770 /* Don't use group allocation for large files */ 5771 if (size > sbi->s_mb_stream_request) 5772 group_pa_eligible = false; 5773 5774 if (!group_pa_eligible) { 5775 if (inode_pa_eligible) 5776 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5777 else 5778 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5779 return; 5780 } 5781 5782 BUG_ON(ac->ac_lg != NULL); 5783 /* 5784 * locality group prealloc space are per cpu. The reason for having 5785 * per cpu locality group is to reduce the contention between block 5786 * request from multiple CPUs. 5787 */ 5788 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5789 5790 /* we're going to use group allocation */ 5791 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5792 5793 /* serialize all allocations in the group */ 5794 mutex_lock(&ac->ac_lg->lg_mutex); 5795 } 5796 5797 static noinline_for_stack void 5798 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5799 struct ext4_allocation_request *ar) 5800 { 5801 struct super_block *sb = ar->inode->i_sb; 5802 struct ext4_sb_info *sbi = EXT4_SB(sb); 5803 struct ext4_super_block *es = sbi->s_es; 5804 ext4_group_t group; 5805 unsigned int len; 5806 ext4_fsblk_t goal; 5807 ext4_grpblk_t block; 5808 5809 /* we can't allocate > group size */ 5810 len = ar->len; 5811 5812 /* just a dirty hack to filter too big requests */ 5813 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5814 len = EXT4_CLUSTERS_PER_GROUP(sb); 5815 5816 /* start searching from the goal */ 5817 goal = ar->goal; 5818 if (goal < le32_to_cpu(es->s_first_data_block) || 5819 goal >= ext4_blocks_count(es)) 5820 goal = le32_to_cpu(es->s_first_data_block); 5821 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5822 5823 /* set up allocation goals */ 5824 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5825 ac->ac_status = AC_STATUS_CONTINUE; 5826 ac->ac_sb = sb; 5827 ac->ac_inode = ar->inode; 5828 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5829 ac->ac_o_ex.fe_group = group; 5830 ac->ac_o_ex.fe_start = block; 5831 ac->ac_o_ex.fe_len = len; 5832 ac->ac_g_ex = ac->ac_o_ex; 5833 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5834 ac->ac_flags = ar->flags; 5835 5836 /* we have to define context: we'll work with a file or 5837 * locality group. this is a policy, actually */ 5838 ext4_mb_group_or_file(ac); 5839 5840 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5841 "left: %u/%u, right %u/%u to %swritable\n", 5842 (unsigned) ar->len, (unsigned) ar->logical, 5843 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5844 (unsigned) ar->lleft, (unsigned) ar->pleft, 5845 (unsigned) ar->lright, (unsigned) ar->pright, 5846 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5847 } 5848 5849 static noinline_for_stack void 5850 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5851 struct ext4_locality_group *lg, 5852 int order, int total_entries) 5853 { 5854 ext4_group_t group = 0; 5855 struct ext4_buddy e4b; 5856 LIST_HEAD(discard_list); 5857 struct ext4_prealloc_space *pa, *tmp; 5858 5859 mb_debug(sb, "discard locality group preallocation\n"); 5860 5861 spin_lock(&lg->lg_prealloc_lock); 5862 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5863 pa_node.lg_list, 5864 lockdep_is_held(&lg->lg_prealloc_lock)) { 5865 spin_lock(&pa->pa_lock); 5866 if (atomic_read(&pa->pa_count)) { 5867 /* 5868 * This is the pa that we just used 5869 * for block allocation. So don't 5870 * free that 5871 */ 5872 spin_unlock(&pa->pa_lock); 5873 continue; 5874 } 5875 if (pa->pa_deleted) { 5876 spin_unlock(&pa->pa_lock); 5877 continue; 5878 } 5879 /* only lg prealloc space */ 5880 BUG_ON(pa->pa_type != MB_GROUP_PA); 5881 5882 /* seems this one can be freed ... */ 5883 ext4_mb_mark_pa_deleted(sb, pa); 5884 spin_unlock(&pa->pa_lock); 5885 5886 list_del_rcu(&pa->pa_node.lg_list); 5887 list_add(&pa->u.pa_tmp_list, &discard_list); 5888 5889 total_entries--; 5890 if (total_entries <= 5) { 5891 /* 5892 * we want to keep only 5 entries 5893 * allowing it to grow to 8. This 5894 * mak sure we don't call discard 5895 * soon for this list. 5896 */ 5897 break; 5898 } 5899 } 5900 spin_unlock(&lg->lg_prealloc_lock); 5901 5902 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5903 int err; 5904 5905 group = ext4_get_group_number(sb, pa->pa_pstart); 5906 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5907 GFP_NOFS|__GFP_NOFAIL); 5908 if (err) { 5909 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5910 err, group); 5911 continue; 5912 } 5913 ext4_lock_group(sb, group); 5914 list_del(&pa->pa_group_list); 5915 ext4_mb_release_group_pa(&e4b, pa); 5916 ext4_unlock_group(sb, group); 5917 5918 ext4_mb_unload_buddy(&e4b); 5919 list_del(&pa->u.pa_tmp_list); 5920 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5921 } 5922 } 5923 5924 /* 5925 * We have incremented pa_count. So it cannot be freed at this 5926 * point. Also we hold lg_mutex. So no parallel allocation is 5927 * possible from this lg. That means pa_free cannot be updated. 5928 * 5929 * A parallel ext4_mb_discard_group_preallocations is possible. 5930 * which can cause the lg_prealloc_list to be updated. 5931 */ 5932 5933 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5934 { 5935 int order, added = 0, lg_prealloc_count = 1; 5936 struct super_block *sb = ac->ac_sb; 5937 struct ext4_locality_group *lg = ac->ac_lg; 5938 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5939 5940 order = fls(pa->pa_free) - 1; 5941 if (order > PREALLOC_TB_SIZE - 1) 5942 /* The max size of hash table is PREALLOC_TB_SIZE */ 5943 order = PREALLOC_TB_SIZE - 1; 5944 /* Add the prealloc space to lg */ 5945 spin_lock(&lg->lg_prealloc_lock); 5946 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5947 pa_node.lg_list, 5948 lockdep_is_held(&lg->lg_prealloc_lock)) { 5949 spin_lock(&tmp_pa->pa_lock); 5950 if (tmp_pa->pa_deleted) { 5951 spin_unlock(&tmp_pa->pa_lock); 5952 continue; 5953 } 5954 if (!added && pa->pa_free < tmp_pa->pa_free) { 5955 /* Add to the tail of the previous entry */ 5956 list_add_tail_rcu(&pa->pa_node.lg_list, 5957 &tmp_pa->pa_node.lg_list); 5958 added = 1; 5959 /* 5960 * we want to count the total 5961 * number of entries in the list 5962 */ 5963 } 5964 spin_unlock(&tmp_pa->pa_lock); 5965 lg_prealloc_count++; 5966 } 5967 if (!added) 5968 list_add_tail_rcu(&pa->pa_node.lg_list, 5969 &lg->lg_prealloc_list[order]); 5970 spin_unlock(&lg->lg_prealloc_lock); 5971 5972 /* Now trim the list to be not more than 8 elements */ 5973 if (lg_prealloc_count > 8) 5974 ext4_mb_discard_lg_preallocations(sb, lg, 5975 order, lg_prealloc_count); 5976 } 5977 5978 /* 5979 * release all resource we used in allocation 5980 */ 5981 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5982 { 5983 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5984 struct ext4_prealloc_space *pa = ac->ac_pa; 5985 if (pa) { 5986 if (pa->pa_type == MB_GROUP_PA) { 5987 /* see comment in ext4_mb_use_group_pa() */ 5988 spin_lock(&pa->pa_lock); 5989 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5990 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5991 pa->pa_free -= ac->ac_b_ex.fe_len; 5992 pa->pa_len -= ac->ac_b_ex.fe_len; 5993 spin_unlock(&pa->pa_lock); 5994 5995 /* 5996 * We want to add the pa to the right bucket. 5997 * Remove it from the list and while adding 5998 * make sure the list to which we are adding 5999 * doesn't grow big. 6000 */ 6001 if (likely(pa->pa_free)) { 6002 spin_lock(pa->pa_node_lock.lg_lock); 6003 list_del_rcu(&pa->pa_node.lg_list); 6004 spin_unlock(pa->pa_node_lock.lg_lock); 6005 ext4_mb_add_n_trim(ac); 6006 } 6007 } 6008 6009 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6010 } 6011 if (ac->ac_bitmap_page) 6012 put_page(ac->ac_bitmap_page); 6013 if (ac->ac_buddy_page) 6014 put_page(ac->ac_buddy_page); 6015 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6016 mutex_unlock(&ac->ac_lg->lg_mutex); 6017 ext4_mb_collect_stats(ac); 6018 return 0; 6019 } 6020 6021 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6022 { 6023 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6024 int ret; 6025 int freed = 0, busy = 0; 6026 int retry = 0; 6027 6028 trace_ext4_mb_discard_preallocations(sb, needed); 6029 6030 if (needed == 0) 6031 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6032 repeat: 6033 for (i = 0; i < ngroups && needed > 0; i++) { 6034 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6035 freed += ret; 6036 needed -= ret; 6037 cond_resched(); 6038 } 6039 6040 if (needed > 0 && busy && ++retry < 3) { 6041 busy = 0; 6042 goto repeat; 6043 } 6044 6045 return freed; 6046 } 6047 6048 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6049 struct ext4_allocation_context *ac, u64 *seq) 6050 { 6051 int freed; 6052 u64 seq_retry = 0; 6053 bool ret = false; 6054 6055 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6056 if (freed) { 6057 ret = true; 6058 goto out_dbg; 6059 } 6060 seq_retry = ext4_get_discard_pa_seq_sum(); 6061 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6062 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6063 *seq = seq_retry; 6064 ret = true; 6065 } 6066 6067 out_dbg: 6068 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6069 return ret; 6070 } 6071 6072 /* 6073 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6074 * linearly starting at the goal block and also excludes the blocks which 6075 * are going to be in use after fast commit replay. 6076 */ 6077 static ext4_fsblk_t 6078 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6079 { 6080 struct buffer_head *bitmap_bh; 6081 struct super_block *sb = ar->inode->i_sb; 6082 struct ext4_sb_info *sbi = EXT4_SB(sb); 6083 ext4_group_t group, nr; 6084 ext4_grpblk_t blkoff; 6085 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6086 ext4_grpblk_t i = 0; 6087 ext4_fsblk_t goal, block; 6088 struct ext4_super_block *es = sbi->s_es; 6089 6090 goal = ar->goal; 6091 if (goal < le32_to_cpu(es->s_first_data_block) || 6092 goal >= ext4_blocks_count(es)) 6093 goal = le32_to_cpu(es->s_first_data_block); 6094 6095 ar->len = 0; 6096 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6097 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6098 bitmap_bh = ext4_read_block_bitmap(sb, group); 6099 if (IS_ERR(bitmap_bh)) { 6100 *errp = PTR_ERR(bitmap_bh); 6101 pr_warn("Failed to read block bitmap\n"); 6102 return 0; 6103 } 6104 6105 while (1) { 6106 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6107 blkoff); 6108 if (i >= max) 6109 break; 6110 if (ext4_fc_replay_check_excluded(sb, 6111 ext4_group_first_block_no(sb, group) + 6112 EXT4_C2B(sbi, i))) { 6113 blkoff = i + 1; 6114 } else 6115 break; 6116 } 6117 brelse(bitmap_bh); 6118 if (i < max) 6119 break; 6120 6121 if (++group >= ext4_get_groups_count(sb)) 6122 group = 0; 6123 6124 blkoff = 0; 6125 } 6126 6127 if (i >= max) { 6128 *errp = -ENOSPC; 6129 return 0; 6130 } 6131 6132 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6133 ext4_mb_mark_bb(sb, block, 1, 1); 6134 ar->len = 1; 6135 6136 return block; 6137 } 6138 6139 /* 6140 * Main entry point into mballoc to allocate blocks 6141 * it tries to use preallocation first, then falls back 6142 * to usual allocation 6143 */ 6144 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6145 struct ext4_allocation_request *ar, int *errp) 6146 { 6147 struct ext4_allocation_context *ac = NULL; 6148 struct ext4_sb_info *sbi; 6149 struct super_block *sb; 6150 ext4_fsblk_t block = 0; 6151 unsigned int inquota = 0; 6152 unsigned int reserv_clstrs = 0; 6153 int retries = 0; 6154 u64 seq; 6155 6156 might_sleep(); 6157 sb = ar->inode->i_sb; 6158 sbi = EXT4_SB(sb); 6159 6160 trace_ext4_request_blocks(ar); 6161 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6162 return ext4_mb_new_blocks_simple(ar, errp); 6163 6164 /* Allow to use superuser reservation for quota file */ 6165 if (ext4_is_quota_file(ar->inode)) 6166 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6167 6168 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6169 /* Without delayed allocation we need to verify 6170 * there is enough free blocks to do block allocation 6171 * and verify allocation doesn't exceed the quota limits. 6172 */ 6173 while (ar->len && 6174 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6175 6176 /* let others to free the space */ 6177 cond_resched(); 6178 ar->len = ar->len >> 1; 6179 } 6180 if (!ar->len) { 6181 ext4_mb_show_pa(sb); 6182 *errp = -ENOSPC; 6183 return 0; 6184 } 6185 reserv_clstrs = ar->len; 6186 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6187 dquot_alloc_block_nofail(ar->inode, 6188 EXT4_C2B(sbi, ar->len)); 6189 } else { 6190 while (ar->len && 6191 dquot_alloc_block(ar->inode, 6192 EXT4_C2B(sbi, ar->len))) { 6193 6194 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6195 ar->len--; 6196 } 6197 } 6198 inquota = ar->len; 6199 if (ar->len == 0) { 6200 *errp = -EDQUOT; 6201 goto out; 6202 } 6203 } 6204 6205 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6206 if (!ac) { 6207 ar->len = 0; 6208 *errp = -ENOMEM; 6209 goto out; 6210 } 6211 6212 ext4_mb_initialize_context(ac, ar); 6213 6214 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6215 seq = this_cpu_read(discard_pa_seq); 6216 if (!ext4_mb_use_preallocated(ac)) { 6217 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6218 ext4_mb_normalize_request(ac, ar); 6219 6220 *errp = ext4_mb_pa_alloc(ac); 6221 if (*errp) 6222 goto errout; 6223 repeat: 6224 /* allocate space in core */ 6225 *errp = ext4_mb_regular_allocator(ac); 6226 /* 6227 * pa allocated above is added to grp->bb_prealloc_list only 6228 * when we were able to allocate some block i.e. when 6229 * ac->ac_status == AC_STATUS_FOUND. 6230 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6231 * So we have to free this pa here itself. 6232 */ 6233 if (*errp) { 6234 ext4_mb_pa_put_free(ac); 6235 ext4_discard_allocated_blocks(ac); 6236 goto errout; 6237 } 6238 if (ac->ac_status == AC_STATUS_FOUND && 6239 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6240 ext4_mb_pa_put_free(ac); 6241 } 6242 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6243 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6244 if (*errp) { 6245 ext4_discard_allocated_blocks(ac); 6246 goto errout; 6247 } else { 6248 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6249 ar->len = ac->ac_b_ex.fe_len; 6250 } 6251 } else { 6252 if (++retries < 3 && 6253 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6254 goto repeat; 6255 /* 6256 * If block allocation fails then the pa allocated above 6257 * needs to be freed here itself. 6258 */ 6259 ext4_mb_pa_put_free(ac); 6260 *errp = -ENOSPC; 6261 } 6262 6263 if (*errp) { 6264 errout: 6265 ac->ac_b_ex.fe_len = 0; 6266 ar->len = 0; 6267 ext4_mb_show_ac(ac); 6268 } 6269 ext4_mb_release_context(ac); 6270 kmem_cache_free(ext4_ac_cachep, ac); 6271 out: 6272 if (inquota && ar->len < inquota) 6273 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6274 if (!ar->len) { 6275 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6276 /* release all the reserved blocks if non delalloc */ 6277 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6278 reserv_clstrs); 6279 } 6280 6281 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6282 6283 return block; 6284 } 6285 6286 /* 6287 * We can merge two free data extents only if the physical blocks 6288 * are contiguous, AND the extents were freed by the same transaction, 6289 * AND the blocks are associated with the same group. 6290 */ 6291 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6292 struct ext4_free_data *entry, 6293 struct ext4_free_data *new_entry, 6294 struct rb_root *entry_rb_root) 6295 { 6296 if ((entry->efd_tid != new_entry->efd_tid) || 6297 (entry->efd_group != new_entry->efd_group)) 6298 return; 6299 if (entry->efd_start_cluster + entry->efd_count == 6300 new_entry->efd_start_cluster) { 6301 new_entry->efd_start_cluster = entry->efd_start_cluster; 6302 new_entry->efd_count += entry->efd_count; 6303 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6304 entry->efd_start_cluster) { 6305 new_entry->efd_count += entry->efd_count; 6306 } else 6307 return; 6308 spin_lock(&sbi->s_md_lock); 6309 list_del(&entry->efd_list); 6310 spin_unlock(&sbi->s_md_lock); 6311 rb_erase(&entry->efd_node, entry_rb_root); 6312 kmem_cache_free(ext4_free_data_cachep, entry); 6313 } 6314 6315 static noinline_for_stack void 6316 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6317 struct ext4_free_data *new_entry) 6318 { 6319 ext4_group_t group = e4b->bd_group; 6320 ext4_grpblk_t cluster; 6321 ext4_grpblk_t clusters = new_entry->efd_count; 6322 struct ext4_free_data *entry; 6323 struct ext4_group_info *db = e4b->bd_info; 6324 struct super_block *sb = e4b->bd_sb; 6325 struct ext4_sb_info *sbi = EXT4_SB(sb); 6326 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6327 struct rb_node *parent = NULL, *new_node; 6328 6329 BUG_ON(!ext4_handle_valid(handle)); 6330 BUG_ON(e4b->bd_bitmap_page == NULL); 6331 BUG_ON(e4b->bd_buddy_page == NULL); 6332 6333 new_node = &new_entry->efd_node; 6334 cluster = new_entry->efd_start_cluster; 6335 6336 if (!*n) { 6337 /* first free block exent. We need to 6338 protect buddy cache from being freed, 6339 * otherwise we'll refresh it from 6340 * on-disk bitmap and lose not-yet-available 6341 * blocks */ 6342 get_page(e4b->bd_buddy_page); 6343 get_page(e4b->bd_bitmap_page); 6344 } 6345 while (*n) { 6346 parent = *n; 6347 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6348 if (cluster < entry->efd_start_cluster) 6349 n = &(*n)->rb_left; 6350 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6351 n = &(*n)->rb_right; 6352 else { 6353 ext4_grp_locked_error(sb, group, 0, 6354 ext4_group_first_block_no(sb, group) + 6355 EXT4_C2B(sbi, cluster), 6356 "Block already on to-be-freed list"); 6357 kmem_cache_free(ext4_free_data_cachep, new_entry); 6358 return; 6359 } 6360 } 6361 6362 rb_link_node(new_node, parent, n); 6363 rb_insert_color(new_node, &db->bb_free_root); 6364 6365 /* Now try to see the extent can be merged to left and right */ 6366 node = rb_prev(new_node); 6367 if (node) { 6368 entry = rb_entry(node, struct ext4_free_data, efd_node); 6369 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6370 &(db->bb_free_root)); 6371 } 6372 6373 node = rb_next(new_node); 6374 if (node) { 6375 entry = rb_entry(node, struct ext4_free_data, efd_node); 6376 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6377 &(db->bb_free_root)); 6378 } 6379 6380 spin_lock(&sbi->s_md_lock); 6381 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 6382 sbi->s_mb_free_pending += clusters; 6383 spin_unlock(&sbi->s_md_lock); 6384 } 6385 6386 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6387 unsigned long count) 6388 { 6389 struct buffer_head *bitmap_bh; 6390 struct super_block *sb = inode->i_sb; 6391 struct ext4_group_desc *gdp; 6392 struct buffer_head *gdp_bh; 6393 ext4_group_t group; 6394 ext4_grpblk_t blkoff; 6395 int already_freed = 0, err, i; 6396 6397 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6398 bitmap_bh = ext4_read_block_bitmap(sb, group); 6399 if (IS_ERR(bitmap_bh)) { 6400 pr_warn("Failed to read block bitmap\n"); 6401 return; 6402 } 6403 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 6404 if (!gdp) 6405 goto err_out; 6406 6407 for (i = 0; i < count; i++) { 6408 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 6409 already_freed++; 6410 } 6411 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 6412 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 6413 if (err) 6414 goto err_out; 6415 ext4_free_group_clusters_set( 6416 sb, gdp, ext4_free_group_clusters(sb, gdp) + 6417 count - already_freed); 6418 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6419 ext4_group_desc_csum_set(sb, group, gdp); 6420 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 6421 sync_dirty_buffer(bitmap_bh); 6422 sync_dirty_buffer(gdp_bh); 6423 6424 err_out: 6425 brelse(bitmap_bh); 6426 } 6427 6428 /** 6429 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6430 * Used by ext4_free_blocks() 6431 * @handle: handle for this transaction 6432 * @inode: inode 6433 * @block: starting physical block to be freed 6434 * @count: number of blocks to be freed 6435 * @flags: flags used by ext4_free_blocks 6436 */ 6437 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6438 ext4_fsblk_t block, unsigned long count, 6439 int flags) 6440 { 6441 struct buffer_head *bitmap_bh = NULL; 6442 struct super_block *sb = inode->i_sb; 6443 struct ext4_group_desc *gdp; 6444 struct ext4_group_info *grp; 6445 unsigned int overflow; 6446 ext4_grpblk_t bit; 6447 struct buffer_head *gd_bh; 6448 ext4_group_t block_group; 6449 struct ext4_sb_info *sbi; 6450 struct ext4_buddy e4b; 6451 unsigned int count_clusters; 6452 int err = 0; 6453 int ret; 6454 6455 sbi = EXT4_SB(sb); 6456 6457 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6458 !ext4_inode_block_valid(inode, block, count)) { 6459 ext4_error(sb, "Freeing blocks in system zone - " 6460 "Block = %llu, count = %lu", block, count); 6461 /* err = 0. ext4_std_error should be a no op */ 6462 goto error_return; 6463 } 6464 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6465 6466 do_more: 6467 overflow = 0; 6468 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6469 6470 grp = ext4_get_group_info(sb, block_group); 6471 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6472 return; 6473 6474 /* 6475 * Check to see if we are freeing blocks across a group 6476 * boundary. 6477 */ 6478 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6479 overflow = EXT4_C2B(sbi, bit) + count - 6480 EXT4_BLOCKS_PER_GROUP(sb); 6481 count -= overflow; 6482 /* The range changed so it's no longer validated */ 6483 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6484 } 6485 count_clusters = EXT4_NUM_B2C(sbi, count); 6486 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6487 if (IS_ERR(bitmap_bh)) { 6488 err = PTR_ERR(bitmap_bh); 6489 bitmap_bh = NULL; 6490 goto error_return; 6491 } 6492 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 6493 if (!gdp) { 6494 err = -EIO; 6495 goto error_return; 6496 } 6497 6498 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6499 !ext4_inode_block_valid(inode, block, count)) { 6500 ext4_error(sb, "Freeing blocks in system zone - " 6501 "Block = %llu, count = %lu", block, count); 6502 /* err = 0. ext4_std_error should be a no op */ 6503 goto error_return; 6504 } 6505 6506 BUFFER_TRACE(bitmap_bh, "getting write access"); 6507 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6508 EXT4_JTR_NONE); 6509 if (err) 6510 goto error_return; 6511 6512 /* 6513 * We are about to modify some metadata. Call the journal APIs 6514 * to unshare ->b_data if a currently-committing transaction is 6515 * using it 6516 */ 6517 BUFFER_TRACE(gd_bh, "get_write_access"); 6518 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6519 if (err) 6520 goto error_return; 6521 #ifdef AGGRESSIVE_CHECK 6522 { 6523 int i; 6524 for (i = 0; i < count_clusters; i++) 6525 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6526 } 6527 #endif 6528 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6529 6530 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6531 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6532 GFP_NOFS|__GFP_NOFAIL); 6533 if (err) 6534 goto error_return; 6535 6536 /* 6537 * We need to make sure we don't reuse the freed block until after the 6538 * transaction is committed. We make an exception if the inode is to be 6539 * written in writeback mode since writeback mode has weak data 6540 * consistency guarantees. 6541 */ 6542 if (ext4_handle_valid(handle) && 6543 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6544 !ext4_should_writeback_data(inode))) { 6545 struct ext4_free_data *new_entry; 6546 /* 6547 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6548 * to fail. 6549 */ 6550 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6551 GFP_NOFS|__GFP_NOFAIL); 6552 new_entry->efd_start_cluster = bit; 6553 new_entry->efd_group = block_group; 6554 new_entry->efd_count = count_clusters; 6555 new_entry->efd_tid = handle->h_transaction->t_tid; 6556 6557 ext4_lock_group(sb, block_group); 6558 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6559 ext4_mb_free_metadata(handle, &e4b, new_entry); 6560 } else { 6561 /* need to update group_info->bb_free and bitmap 6562 * with group lock held. generate_buddy look at 6563 * them with group lock_held 6564 */ 6565 if (test_opt(sb, DISCARD)) { 6566 err = ext4_issue_discard(sb, block_group, bit, 6567 count_clusters, NULL); 6568 if (err && err != -EOPNOTSUPP) 6569 ext4_msg(sb, KERN_WARNING, "discard request in" 6570 " group:%u block:%d count:%lu failed" 6571 " with %d", block_group, bit, count, 6572 err); 6573 } else 6574 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6575 6576 ext4_lock_group(sb, block_group); 6577 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6578 mb_free_blocks(inode, &e4b, bit, count_clusters); 6579 } 6580 6581 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6582 ext4_free_group_clusters_set(sb, gdp, ret); 6583 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6584 ext4_group_desc_csum_set(sb, block_group, gdp); 6585 ext4_unlock_group(sb, block_group); 6586 6587 if (sbi->s_log_groups_per_flex) { 6588 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6589 atomic64_add(count_clusters, 6590 &sbi_array_rcu_deref(sbi, s_flex_groups, 6591 flex_group)->free_clusters); 6592 } 6593 6594 /* 6595 * on a bigalloc file system, defer the s_freeclusters_counter 6596 * update to the caller (ext4_remove_space and friends) so they 6597 * can determine if a cluster freed here should be rereserved 6598 */ 6599 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6600 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6601 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6602 percpu_counter_add(&sbi->s_freeclusters_counter, 6603 count_clusters); 6604 } 6605 6606 ext4_mb_unload_buddy(&e4b); 6607 6608 /* We dirtied the bitmap block */ 6609 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6610 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6611 6612 /* And the group descriptor block */ 6613 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6614 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6615 if (!err) 6616 err = ret; 6617 6618 if (overflow && !err) { 6619 block += count; 6620 count = overflow; 6621 put_bh(bitmap_bh); 6622 /* The range changed so it's no longer validated */ 6623 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6624 goto do_more; 6625 } 6626 error_return: 6627 brelse(bitmap_bh); 6628 ext4_std_error(sb, err); 6629 } 6630 6631 /** 6632 * ext4_free_blocks() -- Free given blocks and update quota 6633 * @handle: handle for this transaction 6634 * @inode: inode 6635 * @bh: optional buffer of the block to be freed 6636 * @block: starting physical block to be freed 6637 * @count: number of blocks to be freed 6638 * @flags: flags used by ext4_free_blocks 6639 */ 6640 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6641 struct buffer_head *bh, ext4_fsblk_t block, 6642 unsigned long count, int flags) 6643 { 6644 struct super_block *sb = inode->i_sb; 6645 unsigned int overflow; 6646 struct ext4_sb_info *sbi; 6647 6648 sbi = EXT4_SB(sb); 6649 6650 if (bh) { 6651 if (block) 6652 BUG_ON(block != bh->b_blocknr); 6653 else 6654 block = bh->b_blocknr; 6655 } 6656 6657 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6658 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6659 return; 6660 } 6661 6662 might_sleep(); 6663 6664 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6665 !ext4_inode_block_valid(inode, block, count)) { 6666 ext4_error(sb, "Freeing blocks not in datazone - " 6667 "block = %llu, count = %lu", block, count); 6668 return; 6669 } 6670 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6671 6672 ext4_debug("freeing block %llu\n", block); 6673 trace_ext4_free_blocks(inode, block, count, flags); 6674 6675 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6676 BUG_ON(count > 1); 6677 6678 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6679 inode, bh, block); 6680 } 6681 6682 /* 6683 * If the extent to be freed does not begin on a cluster 6684 * boundary, we need to deal with partial clusters at the 6685 * beginning and end of the extent. Normally we will free 6686 * blocks at the beginning or the end unless we are explicitly 6687 * requested to avoid doing so. 6688 */ 6689 overflow = EXT4_PBLK_COFF(sbi, block); 6690 if (overflow) { 6691 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6692 overflow = sbi->s_cluster_ratio - overflow; 6693 block += overflow; 6694 if (count > overflow) 6695 count -= overflow; 6696 else 6697 return; 6698 } else { 6699 block -= overflow; 6700 count += overflow; 6701 } 6702 /* The range changed so it's no longer validated */ 6703 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6704 } 6705 overflow = EXT4_LBLK_COFF(sbi, count); 6706 if (overflow) { 6707 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6708 if (count > overflow) 6709 count -= overflow; 6710 else 6711 return; 6712 } else 6713 count += sbi->s_cluster_ratio - overflow; 6714 /* The range changed so it's no longer validated */ 6715 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6716 } 6717 6718 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6719 int i; 6720 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6721 6722 for (i = 0; i < count; i++) { 6723 cond_resched(); 6724 if (is_metadata) 6725 bh = sb_find_get_block(inode->i_sb, block + i); 6726 ext4_forget(handle, is_metadata, inode, bh, block + i); 6727 } 6728 } 6729 6730 ext4_mb_clear_bb(handle, inode, block, count, flags); 6731 } 6732 6733 /** 6734 * ext4_group_add_blocks() -- Add given blocks to an existing group 6735 * @handle: handle to this transaction 6736 * @sb: super block 6737 * @block: start physical block to add to the block group 6738 * @count: number of blocks to free 6739 * 6740 * This marks the blocks as free in the bitmap and buddy. 6741 */ 6742 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6743 ext4_fsblk_t block, unsigned long count) 6744 { 6745 struct buffer_head *bitmap_bh = NULL; 6746 struct buffer_head *gd_bh; 6747 ext4_group_t block_group; 6748 ext4_grpblk_t bit; 6749 unsigned int i; 6750 struct ext4_group_desc *desc; 6751 struct ext4_sb_info *sbi = EXT4_SB(sb); 6752 struct ext4_buddy e4b; 6753 int err = 0, ret, free_clusters_count; 6754 ext4_grpblk_t clusters_freed; 6755 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6756 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6757 unsigned long cluster_count = last_cluster - first_cluster + 1; 6758 6759 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6760 6761 if (count == 0) 6762 return 0; 6763 6764 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6765 /* 6766 * Check to see if we are freeing blocks across a group 6767 * boundary. 6768 */ 6769 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6770 ext4_warning(sb, "too many blocks added to group %u", 6771 block_group); 6772 err = -EINVAL; 6773 goto error_return; 6774 } 6775 6776 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6777 if (IS_ERR(bitmap_bh)) { 6778 err = PTR_ERR(bitmap_bh); 6779 bitmap_bh = NULL; 6780 goto error_return; 6781 } 6782 6783 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6784 if (!desc) { 6785 err = -EIO; 6786 goto error_return; 6787 } 6788 6789 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6790 ext4_error(sb, "Adding blocks in system zones - " 6791 "Block = %llu, count = %lu", 6792 block, count); 6793 err = -EINVAL; 6794 goto error_return; 6795 } 6796 6797 BUFFER_TRACE(bitmap_bh, "getting write access"); 6798 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6799 EXT4_JTR_NONE); 6800 if (err) 6801 goto error_return; 6802 6803 /* 6804 * We are about to modify some metadata. Call the journal APIs 6805 * to unshare ->b_data if a currently-committing transaction is 6806 * using it 6807 */ 6808 BUFFER_TRACE(gd_bh, "get_write_access"); 6809 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6810 if (err) 6811 goto error_return; 6812 6813 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6814 BUFFER_TRACE(bitmap_bh, "clear bit"); 6815 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6816 ext4_error(sb, "bit already cleared for block %llu", 6817 (ext4_fsblk_t)(block + i)); 6818 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6819 } else { 6820 clusters_freed++; 6821 } 6822 } 6823 6824 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6825 if (err) 6826 goto error_return; 6827 6828 /* 6829 * need to update group_info->bb_free and bitmap 6830 * with group lock held. generate_buddy look at 6831 * them with group lock_held 6832 */ 6833 ext4_lock_group(sb, block_group); 6834 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6835 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6836 free_clusters_count = clusters_freed + 6837 ext4_free_group_clusters(sb, desc); 6838 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6839 ext4_block_bitmap_csum_set(sb, desc, bitmap_bh); 6840 ext4_group_desc_csum_set(sb, block_group, desc); 6841 ext4_unlock_group(sb, block_group); 6842 percpu_counter_add(&sbi->s_freeclusters_counter, 6843 clusters_freed); 6844 6845 if (sbi->s_log_groups_per_flex) { 6846 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6847 atomic64_add(clusters_freed, 6848 &sbi_array_rcu_deref(sbi, s_flex_groups, 6849 flex_group)->free_clusters); 6850 } 6851 6852 ext4_mb_unload_buddy(&e4b); 6853 6854 /* We dirtied the bitmap block */ 6855 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6856 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6857 6858 /* And the group descriptor block */ 6859 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6860 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6861 if (!err) 6862 err = ret; 6863 6864 error_return: 6865 brelse(bitmap_bh); 6866 ext4_std_error(sb, err); 6867 return err; 6868 } 6869 6870 /** 6871 * ext4_trim_extent -- function to TRIM one single free extent in the group 6872 * @sb: super block for the file system 6873 * @start: starting block of the free extent in the alloc. group 6874 * @count: number of blocks to TRIM 6875 * @e4b: ext4 buddy for the group 6876 * 6877 * Trim "count" blocks starting at "start" in the "group". To assure that no 6878 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6879 * be called with under the group lock. 6880 */ 6881 static int ext4_trim_extent(struct super_block *sb, 6882 int start, int count, struct ext4_buddy *e4b) 6883 __releases(bitlock) 6884 __acquires(bitlock) 6885 { 6886 struct ext4_free_extent ex; 6887 ext4_group_t group = e4b->bd_group; 6888 int ret = 0; 6889 6890 trace_ext4_trim_extent(sb, group, start, count); 6891 6892 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6893 6894 ex.fe_start = start; 6895 ex.fe_group = group; 6896 ex.fe_len = count; 6897 6898 /* 6899 * Mark blocks used, so no one can reuse them while 6900 * being trimmed. 6901 */ 6902 mb_mark_used(e4b, &ex); 6903 ext4_unlock_group(sb, group); 6904 ret = ext4_issue_discard(sb, group, start, count, NULL); 6905 ext4_lock_group(sb, group); 6906 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6907 return ret; 6908 } 6909 6910 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6911 ext4_group_t grp) 6912 { 6913 if (grp < ext4_get_groups_count(sb)) 6914 return EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6915 return (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6916 ext4_group_first_block_no(sb, grp) - 1) >> 6917 EXT4_CLUSTER_BITS(sb); 6918 } 6919 6920 static bool ext4_trim_interrupted(void) 6921 { 6922 return fatal_signal_pending(current) || freezing(current); 6923 } 6924 6925 static int ext4_try_to_trim_range(struct super_block *sb, 6926 struct ext4_buddy *e4b, ext4_grpblk_t start, 6927 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6928 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6929 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6930 { 6931 ext4_grpblk_t next, count, free_count; 6932 bool set_trimmed = false; 6933 void *bitmap; 6934 6935 bitmap = e4b->bd_bitmap; 6936 if (start == 0 && max >= ext4_last_grp_cluster(sb, e4b->bd_group)) 6937 set_trimmed = true; 6938 start = max(e4b->bd_info->bb_first_free, start); 6939 count = 0; 6940 free_count = 0; 6941 6942 while (start <= max) { 6943 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6944 if (start > max) 6945 break; 6946 next = mb_find_next_bit(bitmap, max + 1, start); 6947 6948 if ((next - start) >= minblocks) { 6949 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6950 6951 if (ret && ret != -EOPNOTSUPP) 6952 return count; 6953 count += next - start; 6954 } 6955 free_count += next - start; 6956 start = next + 1; 6957 6958 if (ext4_trim_interrupted()) 6959 return count; 6960 6961 if (need_resched()) { 6962 ext4_unlock_group(sb, e4b->bd_group); 6963 cond_resched(); 6964 ext4_lock_group(sb, e4b->bd_group); 6965 } 6966 6967 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6968 break; 6969 } 6970 6971 if (set_trimmed) 6972 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6973 6974 return count; 6975 } 6976 6977 /** 6978 * ext4_trim_all_free -- function to trim all free space in alloc. group 6979 * @sb: super block for file system 6980 * @group: group to be trimmed 6981 * @start: first group block to examine 6982 * @max: last group block to examine 6983 * @minblocks: minimum extent block count 6984 * 6985 * ext4_trim_all_free walks through group's block bitmap searching for free 6986 * extents. When the free extent is found, mark it as used in group buddy 6987 * bitmap. Then issue a TRIM command on this extent and free the extent in 6988 * the group buddy bitmap. 6989 */ 6990 static ext4_grpblk_t 6991 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6992 ext4_grpblk_t start, ext4_grpblk_t max, 6993 ext4_grpblk_t minblocks) 6994 { 6995 struct ext4_buddy e4b; 6996 int ret; 6997 6998 trace_ext4_trim_all_free(sb, group, start, max); 6999 7000 ret = ext4_mb_load_buddy(sb, group, &e4b); 7001 if (ret) { 7002 ext4_warning(sb, "Error %d loading buddy information for %u", 7003 ret, group); 7004 return ret; 7005 } 7006 7007 ext4_lock_group(sb, group); 7008 7009 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 7010 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 7011 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 7012 else 7013 ret = 0; 7014 7015 ext4_unlock_group(sb, group); 7016 ext4_mb_unload_buddy(&e4b); 7017 7018 ext4_debug("trimmed %d blocks in the group %d\n", 7019 ret, group); 7020 7021 return ret; 7022 } 7023 7024 /** 7025 * ext4_trim_fs() -- trim ioctl handle function 7026 * @sb: superblock for filesystem 7027 * @range: fstrim_range structure 7028 * 7029 * start: First Byte to trim 7030 * len: number of Bytes to trim from start 7031 * minlen: minimum extent length in Bytes 7032 * ext4_trim_fs goes through all allocation groups containing Bytes from 7033 * start to start+len. For each such a group ext4_trim_all_free function 7034 * is invoked to trim all free space. 7035 */ 7036 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7037 { 7038 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7039 struct ext4_group_info *grp; 7040 ext4_group_t group, first_group, last_group; 7041 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7042 uint64_t start, end, minlen, trimmed = 0; 7043 ext4_fsblk_t first_data_blk = 7044 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7045 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7046 int ret = 0; 7047 7048 start = range->start >> sb->s_blocksize_bits; 7049 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7050 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7051 range->minlen >> sb->s_blocksize_bits); 7052 7053 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7054 start >= max_blks || 7055 range->len < sb->s_blocksize) 7056 return -EINVAL; 7057 /* No point to try to trim less than discard granularity */ 7058 if (range->minlen < discard_granularity) { 7059 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7060 discard_granularity >> sb->s_blocksize_bits); 7061 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7062 goto out; 7063 } 7064 if (end >= max_blks - 1) 7065 end = max_blks - 1; 7066 if (end <= first_data_blk) 7067 goto out; 7068 if (start < first_data_blk) 7069 start = first_data_blk; 7070 7071 /* Determine first and last group to examine based on start and end */ 7072 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7073 &first_group, &first_cluster); 7074 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7075 &last_group, &last_cluster); 7076 7077 /* end now represents the last cluster to discard in this group */ 7078 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7079 7080 for (group = first_group; group <= last_group; group++) { 7081 if (ext4_trim_interrupted()) 7082 break; 7083 grp = ext4_get_group_info(sb, group); 7084 if (!grp) 7085 continue; 7086 /* We only do this if the grp has never been initialized */ 7087 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7088 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7089 if (ret) 7090 break; 7091 } 7092 7093 /* 7094 * For all the groups except the last one, last cluster will 7095 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7096 * change it for the last group, note that last_cluster is 7097 * already computed earlier by ext4_get_group_no_and_offset() 7098 */ 7099 if (group == last_group) 7100 end = last_cluster; 7101 if (grp->bb_free >= minlen) { 7102 cnt = ext4_trim_all_free(sb, group, first_cluster, 7103 end, minlen); 7104 if (cnt < 0) { 7105 ret = cnt; 7106 break; 7107 } 7108 trimmed += cnt; 7109 } 7110 7111 /* 7112 * For every group except the first one, we are sure 7113 * that the first cluster to discard will be cluster #0. 7114 */ 7115 first_cluster = 0; 7116 } 7117 7118 if (!ret) 7119 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7120 7121 out: 7122 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7123 return ret; 7124 } 7125 7126 /* Iterate all the free extents in the group. */ 7127 int 7128 ext4_mballoc_query_range( 7129 struct super_block *sb, 7130 ext4_group_t group, 7131 ext4_grpblk_t start, 7132 ext4_grpblk_t end, 7133 ext4_mballoc_query_range_fn formatter, 7134 void *priv) 7135 { 7136 void *bitmap; 7137 ext4_grpblk_t next; 7138 struct ext4_buddy e4b; 7139 int error; 7140 7141 error = ext4_mb_load_buddy(sb, group, &e4b); 7142 if (error) 7143 return error; 7144 bitmap = e4b.bd_bitmap; 7145 7146 ext4_lock_group(sb, group); 7147 7148 start = max(e4b.bd_info->bb_first_free, start); 7149 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7150 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7151 7152 while (start <= end) { 7153 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7154 if (start > end) 7155 break; 7156 next = mb_find_next_bit(bitmap, end + 1, start); 7157 7158 ext4_unlock_group(sb, group); 7159 error = formatter(sb, group, start, next - start, priv); 7160 if (error) 7161 goto out_unload; 7162 ext4_lock_group(sb, group); 7163 7164 start = next + 1; 7165 } 7166 7167 ext4_unlock_group(sb, group); 7168 out_unload: 7169 ext4_mb_unload_buddy(&e4b); 7170 7171 return error; 7172 } 7173