1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 /* 22 * MUSTDO: 23 * - test ext4_ext_search_left() and ext4_ext_search_right() 24 * - search for metadata in few groups 25 * 26 * TODO v4: 27 * - normalization should take into account whether file is still open 28 * - discard preallocations if no free space left (policy?) 29 * - don't normalize tails 30 * - quota 31 * - reservation for superuser 32 * 33 * TODO v3: 34 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 35 * - track min/max extents in each group for better group selection 36 * - mb_mark_used() may allocate chunk right after splitting buddy 37 * - tree of groups sorted by number of free blocks 38 * - error handling 39 */ 40 41 /* 42 * The allocation request involve request for multiple number of blocks 43 * near to the goal(block) value specified. 44 * 45 * During initialization phase of the allocator we decide to use the 46 * group preallocation or inode preallocation depending on the size of 47 * the file. The size of the file could be the resulting file size we 48 * would have after allocation, or the current file size, which ever 49 * is larger. If the size is less than sbi->s_mb_stream_request we 50 * select to use the group preallocation. The default value of 51 * s_mb_stream_request is 16 blocks. This can also be tuned via 52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 53 * terms of number of blocks. 54 * 55 * The main motivation for having small file use group preallocation is to 56 * ensure that we have small files closer together on the disk. 57 * 58 * First stage the allocator looks at the inode prealloc list, 59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 60 * spaces for this particular inode. The inode prealloc space is 61 * represented as: 62 * 63 * pa_lstart -> the logical start block for this prealloc space 64 * pa_pstart -> the physical start block for this prealloc space 65 * pa_len -> length for this prealloc space (in clusters) 66 * pa_free -> free space available in this prealloc space (in clusters) 67 * 68 * The inode preallocation space is used looking at the _logical_ start 69 * block. If only the logical file block falls within the range of prealloc 70 * space we will consume the particular prealloc space. This makes sure that 71 * we have contiguous physical blocks representing the file blocks 72 * 73 * The important thing to be noted in case of inode prealloc space is that 74 * we don't modify the values associated to inode prealloc space except 75 * pa_free. 76 * 77 * If we are not able to find blocks in the inode prealloc space and if we 78 * have the group allocation flag set then we look at the locality group 79 * prealloc space. These are per CPU prealloc list represented as 80 * 81 * ext4_sb_info.s_locality_groups[smp_processor_id()] 82 * 83 * The reason for having a per cpu locality group is to reduce the contention 84 * between CPUs. It is possible to get scheduled at this point. 85 * 86 * The locality group prealloc space is used looking at whether we have 87 * enough free space (pa_free) within the prealloc space. 88 * 89 * If we can't allocate blocks via inode prealloc or/and locality group 90 * prealloc then we look at the buddy cache. The buddy cache is represented 91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 92 * mapped to the buddy and bitmap information regarding different 93 * groups. The buddy information is attached to buddy cache inode so that 94 * we can access them through the page cache. The information regarding 95 * each group is loaded via ext4_mb_load_buddy. The information involve 96 * block bitmap and buddy information. The information are stored in the 97 * inode as: 98 * 99 * { page } 100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 101 * 102 * 103 * one block each for bitmap and buddy information. So for each group we 104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 105 * blocksize) blocks. So it can have information regarding groups_per_page 106 * which is blocks_per_page/2 107 * 108 * The buddy cache inode is not stored on disk. The inode is thrown 109 * away when the filesystem is unmounted. 110 * 111 * We look for count number of blocks in the buddy cache. If we were able 112 * to locate that many free blocks we return with additional information 113 * regarding rest of the contiguous physical block available 114 * 115 * Before allocating blocks via buddy cache we normalize the request 116 * blocks. This ensure we ask for more blocks that we needed. The extra 117 * blocks that we get after allocation is added to the respective prealloc 118 * list. In case of inode preallocation we follow a list of heuristics 119 * based on file size. This can be found in ext4_mb_normalize_request. If 120 * we are doing a group prealloc we try to normalize the request to 121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 122 * dependent on the cluster size; for non-bigalloc file systems, it is 123 * 512 blocks. This can be tuned via 124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 125 * terms of number of blocks. If we have mounted the file system with -O 126 * stripe=<value> option the group prealloc request is normalized to the 127 * smallest multiple of the stripe value (sbi->s_stripe) which is 128 * greater than the default mb_group_prealloc. 129 * 130 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 131 * structures in two data structures: 132 * 133 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 134 * 135 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 136 * 137 * This is an array of lists where the index in the array represents the 138 * largest free order in the buddy bitmap of the participating group infos of 139 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 140 * number of buddy bitmap orders possible) number of lists. Group-infos are 141 * placed in appropriate lists. 142 * 143 * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root) 144 * 145 * Locking: sbi->s_mb_rb_lock (rwlock) 146 * 147 * This is a red black tree consisting of group infos and the tree is sorted 148 * by average fragment sizes (which is calculated as ext4_group_info->bb_free 149 * / ext4_group_info->bb_fragments). 150 * 151 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 152 * structures to decide the order in which groups are to be traversed for 153 * fulfilling an allocation request. 154 * 155 * At CR = 0, we look for groups which have the largest_free_order >= the order 156 * of the request. We directly look at the largest free order list in the data 157 * structure (1) above where largest_free_order = order of the request. If that 158 * list is empty, we look at remaining list in the increasing order of 159 * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time. 160 * 161 * At CR = 1, we only consider groups where average fragment size > request 162 * size. So, we lookup a group which has average fragment size just above or 163 * equal to request size using our rb tree (data structure 2) in O(log N) time. 164 * 165 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 166 * linear order which requires O(N) search time for each CR 0 and CR 1 phase. 167 * 168 * The regular allocator (using the buddy cache) supports a few tunables. 169 * 170 * /sys/fs/ext4/<partition>/mb_min_to_scan 171 * /sys/fs/ext4/<partition>/mb_max_to_scan 172 * /sys/fs/ext4/<partition>/mb_order2_req 173 * /sys/fs/ext4/<partition>/mb_linear_limit 174 * 175 * The regular allocator uses buddy scan only if the request len is power of 176 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 177 * value of s_mb_order2_reqs can be tuned via 178 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 179 * stripe size (sbi->s_stripe), we try to search for contiguous block in 180 * stripe size. This should result in better allocation on RAID setups. If 181 * not, we search in the specific group using bitmap for best extents. The 182 * tunable min_to_scan and max_to_scan control the behaviour here. 183 * min_to_scan indicate how long the mballoc __must__ look for a best 184 * extent and max_to_scan indicates how long the mballoc __can__ look for a 185 * best extent in the found extents. Searching for the blocks starts with 186 * the group specified as the goal value in allocation context via 187 * ac_g_ex. Each group is first checked based on the criteria whether it 188 * can be used for allocation. ext4_mb_good_group explains how the groups are 189 * checked. 190 * 191 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 192 * get traversed linearly. That may result in subsequent allocations being not 193 * close to each other. And so, the underlying device may get filled up in a 194 * non-linear fashion. While that may not matter on non-rotational devices, for 195 * rotational devices that may result in higher seek times. "mb_linear_limit" 196 * tells mballoc how many groups mballoc should search linearly before 197 * performing consulting above data structures for more efficient lookups. For 198 * non rotational devices, this value defaults to 0 and for rotational devices 199 * this is set to MB_DEFAULT_LINEAR_LIMIT. 200 * 201 * Both the prealloc space are getting populated as above. So for the first 202 * request we will hit the buddy cache which will result in this prealloc 203 * space getting filled. The prealloc space is then later used for the 204 * subsequent request. 205 */ 206 207 /* 208 * mballoc operates on the following data: 209 * - on-disk bitmap 210 * - in-core buddy (actually includes buddy and bitmap) 211 * - preallocation descriptors (PAs) 212 * 213 * there are two types of preallocations: 214 * - inode 215 * assiged to specific inode and can be used for this inode only. 216 * it describes part of inode's space preallocated to specific 217 * physical blocks. any block from that preallocated can be used 218 * independent. the descriptor just tracks number of blocks left 219 * unused. so, before taking some block from descriptor, one must 220 * make sure corresponded logical block isn't allocated yet. this 221 * also means that freeing any block within descriptor's range 222 * must discard all preallocated blocks. 223 * - locality group 224 * assigned to specific locality group which does not translate to 225 * permanent set of inodes: inode can join and leave group. space 226 * from this type of preallocation can be used for any inode. thus 227 * it's consumed from the beginning to the end. 228 * 229 * relation between them can be expressed as: 230 * in-core buddy = on-disk bitmap + preallocation descriptors 231 * 232 * this mean blocks mballoc considers used are: 233 * - allocated blocks (persistent) 234 * - preallocated blocks (non-persistent) 235 * 236 * consistency in mballoc world means that at any time a block is either 237 * free or used in ALL structures. notice: "any time" should not be read 238 * literally -- time is discrete and delimited by locks. 239 * 240 * to keep it simple, we don't use block numbers, instead we count number of 241 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 242 * 243 * all operations can be expressed as: 244 * - init buddy: buddy = on-disk + PAs 245 * - new PA: buddy += N; PA = N 246 * - use inode PA: on-disk += N; PA -= N 247 * - discard inode PA buddy -= on-disk - PA; PA = 0 248 * - use locality group PA on-disk += N; PA -= N 249 * - discard locality group PA buddy -= PA; PA = 0 250 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 251 * is used in real operation because we can't know actual used 252 * bits from PA, only from on-disk bitmap 253 * 254 * if we follow this strict logic, then all operations above should be atomic. 255 * given some of them can block, we'd have to use something like semaphores 256 * killing performance on high-end SMP hardware. let's try to relax it using 257 * the following knowledge: 258 * 1) if buddy is referenced, it's already initialized 259 * 2) while block is used in buddy and the buddy is referenced, 260 * nobody can re-allocate that block 261 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 262 * bit set and PA claims same block, it's OK. IOW, one can set bit in 263 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 264 * block 265 * 266 * so, now we're building a concurrency table: 267 * - init buddy vs. 268 * - new PA 269 * blocks for PA are allocated in the buddy, buddy must be referenced 270 * until PA is linked to allocation group to avoid concurrent buddy init 271 * - use inode PA 272 * we need to make sure that either on-disk bitmap or PA has uptodate data 273 * given (3) we care that PA-=N operation doesn't interfere with init 274 * - discard inode PA 275 * the simplest way would be to have buddy initialized by the discard 276 * - use locality group PA 277 * again PA-=N must be serialized with init 278 * - discard locality group PA 279 * the simplest way would be to have buddy initialized by the discard 280 * - new PA vs. 281 * - use inode PA 282 * i_data_sem serializes them 283 * - discard inode PA 284 * discard process must wait until PA isn't used by another process 285 * - use locality group PA 286 * some mutex should serialize them 287 * - discard locality group PA 288 * discard process must wait until PA isn't used by another process 289 * - use inode PA 290 * - use inode PA 291 * i_data_sem or another mutex should serializes them 292 * - discard inode PA 293 * discard process must wait until PA isn't used by another process 294 * - use locality group PA 295 * nothing wrong here -- they're different PAs covering different blocks 296 * - discard locality group PA 297 * discard process must wait until PA isn't used by another process 298 * 299 * now we're ready to make few consequences: 300 * - PA is referenced and while it is no discard is possible 301 * - PA is referenced until block isn't marked in on-disk bitmap 302 * - PA changes only after on-disk bitmap 303 * - discard must not compete with init. either init is done before 304 * any discard or they're serialized somehow 305 * - buddy init as sum of on-disk bitmap and PAs is done atomically 306 * 307 * a special case when we've used PA to emptiness. no need to modify buddy 308 * in this case, but we should care about concurrent init 309 * 310 */ 311 312 /* 313 * Logic in few words: 314 * 315 * - allocation: 316 * load group 317 * find blocks 318 * mark bits in on-disk bitmap 319 * release group 320 * 321 * - use preallocation: 322 * find proper PA (per-inode or group) 323 * load group 324 * mark bits in on-disk bitmap 325 * release group 326 * release PA 327 * 328 * - free: 329 * load group 330 * mark bits in on-disk bitmap 331 * release group 332 * 333 * - discard preallocations in group: 334 * mark PAs deleted 335 * move them onto local list 336 * load on-disk bitmap 337 * load group 338 * remove PA from object (inode or locality group) 339 * mark free blocks in-core 340 * 341 * - discard inode's preallocations: 342 */ 343 344 /* 345 * Locking rules 346 * 347 * Locks: 348 * - bitlock on a group (group) 349 * - object (inode/locality) (object) 350 * - per-pa lock (pa) 351 * - cr0 lists lock (cr0) 352 * - cr1 tree lock (cr1) 353 * 354 * Paths: 355 * - new pa 356 * object 357 * group 358 * 359 * - find and use pa: 360 * pa 361 * 362 * - release consumed pa: 363 * pa 364 * group 365 * object 366 * 367 * - generate in-core bitmap: 368 * group 369 * pa 370 * 371 * - discard all for given object (inode, locality group): 372 * object 373 * pa 374 * group 375 * 376 * - discard all for given group: 377 * group 378 * pa 379 * group 380 * object 381 * 382 * - allocation path (ext4_mb_regular_allocator) 383 * group 384 * cr0/cr1 385 */ 386 static struct kmem_cache *ext4_pspace_cachep; 387 static struct kmem_cache *ext4_ac_cachep; 388 static struct kmem_cache *ext4_free_data_cachep; 389 390 /* We create slab caches for groupinfo data structures based on the 391 * superblock block size. There will be one per mounted filesystem for 392 * each unique s_blocksize_bits */ 393 #define NR_GRPINFO_CACHES 8 394 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 395 396 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 397 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 398 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 399 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 400 }; 401 402 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 403 ext4_group_t group); 404 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 405 ext4_group_t group); 406 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 407 408 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 409 ext4_group_t group, int cr); 410 411 /* 412 * The algorithm using this percpu seq counter goes below: 413 * 1. We sample the percpu discard_pa_seq counter before trying for block 414 * allocation in ext4_mb_new_blocks(). 415 * 2. We increment this percpu discard_pa_seq counter when we either allocate 416 * or free these blocks i.e. while marking those blocks as used/free in 417 * mb_mark_used()/mb_free_blocks(). 418 * 3. We also increment this percpu seq counter when we successfully identify 419 * that the bb_prealloc_list is not empty and hence proceed for discarding 420 * of those PAs inside ext4_mb_discard_group_preallocations(). 421 * 422 * Now to make sure that the regular fast path of block allocation is not 423 * affected, as a small optimization we only sample the percpu seq counter 424 * on that cpu. Only when the block allocation fails and when freed blocks 425 * found were 0, that is when we sample percpu seq counter for all cpus using 426 * below function ext4_get_discard_pa_seq_sum(). This happens after making 427 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 428 */ 429 static DEFINE_PER_CPU(u64, discard_pa_seq); 430 static inline u64 ext4_get_discard_pa_seq_sum(void) 431 { 432 int __cpu; 433 u64 __seq = 0; 434 435 for_each_possible_cpu(__cpu) 436 __seq += per_cpu(discard_pa_seq, __cpu); 437 return __seq; 438 } 439 440 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 441 { 442 #if BITS_PER_LONG == 64 443 *bit += ((unsigned long) addr & 7UL) << 3; 444 addr = (void *) ((unsigned long) addr & ~7UL); 445 #elif BITS_PER_LONG == 32 446 *bit += ((unsigned long) addr & 3UL) << 3; 447 addr = (void *) ((unsigned long) addr & ~3UL); 448 #else 449 #error "how many bits you are?!" 450 #endif 451 return addr; 452 } 453 454 static inline int mb_test_bit(int bit, void *addr) 455 { 456 /* 457 * ext4_test_bit on architecture like powerpc 458 * needs unsigned long aligned address 459 */ 460 addr = mb_correct_addr_and_bit(&bit, addr); 461 return ext4_test_bit(bit, addr); 462 } 463 464 static inline void mb_set_bit(int bit, void *addr) 465 { 466 addr = mb_correct_addr_and_bit(&bit, addr); 467 ext4_set_bit(bit, addr); 468 } 469 470 static inline void mb_clear_bit(int bit, void *addr) 471 { 472 addr = mb_correct_addr_and_bit(&bit, addr); 473 ext4_clear_bit(bit, addr); 474 } 475 476 static inline int mb_test_and_clear_bit(int bit, void *addr) 477 { 478 addr = mb_correct_addr_and_bit(&bit, addr); 479 return ext4_test_and_clear_bit(bit, addr); 480 } 481 482 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 483 { 484 int fix = 0, ret, tmpmax; 485 addr = mb_correct_addr_and_bit(&fix, addr); 486 tmpmax = max + fix; 487 start += fix; 488 489 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 490 if (ret > max) 491 return max; 492 return ret; 493 } 494 495 static inline int mb_find_next_bit(void *addr, int max, int start) 496 { 497 int fix = 0, ret, tmpmax; 498 addr = mb_correct_addr_and_bit(&fix, addr); 499 tmpmax = max + fix; 500 start += fix; 501 502 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 503 if (ret > max) 504 return max; 505 return ret; 506 } 507 508 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 509 { 510 char *bb; 511 512 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 513 BUG_ON(max == NULL); 514 515 if (order > e4b->bd_blkbits + 1) { 516 *max = 0; 517 return NULL; 518 } 519 520 /* at order 0 we see each particular block */ 521 if (order == 0) { 522 *max = 1 << (e4b->bd_blkbits + 3); 523 return e4b->bd_bitmap; 524 } 525 526 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 527 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 528 529 return bb; 530 } 531 532 #ifdef DOUBLE_CHECK 533 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 534 int first, int count) 535 { 536 int i; 537 struct super_block *sb = e4b->bd_sb; 538 539 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 540 return; 541 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 542 for (i = 0; i < count; i++) { 543 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 544 ext4_fsblk_t blocknr; 545 546 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 547 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 548 ext4_grp_locked_error(sb, e4b->bd_group, 549 inode ? inode->i_ino : 0, 550 blocknr, 551 "freeing block already freed " 552 "(bit %u)", 553 first + i); 554 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 555 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 556 } 557 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 558 } 559 } 560 561 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 562 { 563 int i; 564 565 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 566 return; 567 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 568 for (i = 0; i < count; i++) { 569 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 570 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 571 } 572 } 573 574 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 575 { 576 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 577 return; 578 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 579 unsigned char *b1, *b2; 580 int i; 581 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 582 b2 = (unsigned char *) bitmap; 583 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 584 if (b1[i] != b2[i]) { 585 ext4_msg(e4b->bd_sb, KERN_ERR, 586 "corruption in group %u " 587 "at byte %u(%u): %x in copy != %x " 588 "on disk/prealloc", 589 e4b->bd_group, i, i * 8, b1[i], b2[i]); 590 BUG(); 591 } 592 } 593 } 594 } 595 596 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 597 struct ext4_group_info *grp, ext4_group_t group) 598 { 599 struct buffer_head *bh; 600 601 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 602 if (!grp->bb_bitmap) 603 return; 604 605 bh = ext4_read_block_bitmap(sb, group); 606 if (IS_ERR_OR_NULL(bh)) { 607 kfree(grp->bb_bitmap); 608 grp->bb_bitmap = NULL; 609 return; 610 } 611 612 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 613 put_bh(bh); 614 } 615 616 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 617 { 618 kfree(grp->bb_bitmap); 619 } 620 621 #else 622 static inline void mb_free_blocks_double(struct inode *inode, 623 struct ext4_buddy *e4b, int first, int count) 624 { 625 return; 626 } 627 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 628 int first, int count) 629 { 630 return; 631 } 632 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 633 { 634 return; 635 } 636 637 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 638 struct ext4_group_info *grp, ext4_group_t group) 639 { 640 return; 641 } 642 643 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 644 { 645 return; 646 } 647 #endif 648 649 #ifdef AGGRESSIVE_CHECK 650 651 #define MB_CHECK_ASSERT(assert) \ 652 do { \ 653 if (!(assert)) { \ 654 printk(KERN_EMERG \ 655 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 656 function, file, line, # assert); \ 657 BUG(); \ 658 } \ 659 } while (0) 660 661 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 662 const char *function, int line) 663 { 664 struct super_block *sb = e4b->bd_sb; 665 int order = e4b->bd_blkbits + 1; 666 int max; 667 int max2; 668 int i; 669 int j; 670 int k; 671 int count; 672 struct ext4_group_info *grp; 673 int fragments = 0; 674 int fstart; 675 struct list_head *cur; 676 void *buddy; 677 void *buddy2; 678 679 if (e4b->bd_info->bb_check_counter++ % 10) 680 return 0; 681 682 while (order > 1) { 683 buddy = mb_find_buddy(e4b, order, &max); 684 MB_CHECK_ASSERT(buddy); 685 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 686 MB_CHECK_ASSERT(buddy2); 687 MB_CHECK_ASSERT(buddy != buddy2); 688 MB_CHECK_ASSERT(max * 2 == max2); 689 690 count = 0; 691 for (i = 0; i < max; i++) { 692 693 if (mb_test_bit(i, buddy)) { 694 /* only single bit in buddy2 may be 1 */ 695 if (!mb_test_bit(i << 1, buddy2)) { 696 MB_CHECK_ASSERT( 697 mb_test_bit((i<<1)+1, buddy2)); 698 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 699 MB_CHECK_ASSERT( 700 mb_test_bit(i << 1, buddy2)); 701 } 702 continue; 703 } 704 705 /* both bits in buddy2 must be 1 */ 706 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 707 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 708 709 for (j = 0; j < (1 << order); j++) { 710 k = (i * (1 << order)) + j; 711 MB_CHECK_ASSERT( 712 !mb_test_bit(k, e4b->bd_bitmap)); 713 } 714 count++; 715 } 716 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 717 order--; 718 } 719 720 fstart = -1; 721 buddy = mb_find_buddy(e4b, 0, &max); 722 for (i = 0; i < max; i++) { 723 if (!mb_test_bit(i, buddy)) { 724 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 725 if (fstart == -1) { 726 fragments++; 727 fstart = i; 728 } 729 continue; 730 } 731 fstart = -1; 732 /* check used bits only */ 733 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 734 buddy2 = mb_find_buddy(e4b, j, &max2); 735 k = i >> j; 736 MB_CHECK_ASSERT(k < max2); 737 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 738 } 739 } 740 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 741 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 742 743 grp = ext4_get_group_info(sb, e4b->bd_group); 744 list_for_each(cur, &grp->bb_prealloc_list) { 745 ext4_group_t groupnr; 746 struct ext4_prealloc_space *pa; 747 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 748 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 749 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 750 for (i = 0; i < pa->pa_len; i++) 751 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 752 } 753 return 0; 754 } 755 #undef MB_CHECK_ASSERT 756 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 757 __FILE__, __func__, __LINE__) 758 #else 759 #define mb_check_buddy(e4b) 760 #endif 761 762 /* 763 * Divide blocks started from @first with length @len into 764 * smaller chunks with power of 2 blocks. 765 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 766 * then increase bb_counters[] for corresponded chunk size. 767 */ 768 static void ext4_mb_mark_free_simple(struct super_block *sb, 769 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 770 struct ext4_group_info *grp) 771 { 772 struct ext4_sb_info *sbi = EXT4_SB(sb); 773 ext4_grpblk_t min; 774 ext4_grpblk_t max; 775 ext4_grpblk_t chunk; 776 unsigned int border; 777 778 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 779 780 border = 2 << sb->s_blocksize_bits; 781 782 while (len > 0) { 783 /* find how many blocks can be covered since this position */ 784 max = ffs(first | border) - 1; 785 786 /* find how many blocks of power 2 we need to mark */ 787 min = fls(len) - 1; 788 789 if (max < min) 790 min = max; 791 chunk = 1 << min; 792 793 /* mark multiblock chunks only */ 794 grp->bb_counters[min]++; 795 if (min > 0) 796 mb_clear_bit(first >> min, 797 buddy + sbi->s_mb_offsets[min]); 798 799 len -= chunk; 800 first += chunk; 801 } 802 } 803 804 static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new, 805 int (*cmp)(struct rb_node *, struct rb_node *)) 806 { 807 struct rb_node **iter = &root->rb_node, *parent = NULL; 808 809 while (*iter) { 810 parent = *iter; 811 if (cmp(new, *iter) > 0) 812 iter = &((*iter)->rb_left); 813 else 814 iter = &((*iter)->rb_right); 815 } 816 817 rb_link_node(new, parent, iter); 818 rb_insert_color(new, root); 819 } 820 821 static int 822 ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2) 823 { 824 struct ext4_group_info *grp1 = rb_entry(rb1, 825 struct ext4_group_info, 826 bb_avg_fragment_size_rb); 827 struct ext4_group_info *grp2 = rb_entry(rb2, 828 struct ext4_group_info, 829 bb_avg_fragment_size_rb); 830 int num_frags_1, num_frags_2; 831 832 num_frags_1 = grp1->bb_fragments ? 833 grp1->bb_free / grp1->bb_fragments : 0; 834 num_frags_2 = grp2->bb_fragments ? 835 grp2->bb_free / grp2->bb_fragments : 0; 836 837 return (num_frags_2 - num_frags_1); 838 } 839 840 /* 841 * Reinsert grpinfo into the avg_fragment_size tree with new average 842 * fragment size. 843 */ 844 static void 845 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 846 { 847 struct ext4_sb_info *sbi = EXT4_SB(sb); 848 849 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 850 return; 851 852 write_lock(&sbi->s_mb_rb_lock); 853 if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) { 854 rb_erase(&grp->bb_avg_fragment_size_rb, 855 &sbi->s_mb_avg_fragment_size_root); 856 RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb); 857 } 858 859 ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root, 860 &grp->bb_avg_fragment_size_rb, 861 ext4_mb_avg_fragment_size_cmp); 862 write_unlock(&sbi->s_mb_rb_lock); 863 } 864 865 /* 866 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 867 * cr level needs an update. 868 */ 869 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac, 870 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 871 { 872 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 873 struct ext4_group_info *iter, *grp; 874 int i; 875 876 if (ac->ac_status == AC_STATUS_FOUND) 877 return; 878 879 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED)) 880 atomic_inc(&sbi->s_bal_cr0_bad_suggestions); 881 882 grp = NULL; 883 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 884 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 885 continue; 886 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 887 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 888 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 889 continue; 890 } 891 grp = NULL; 892 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 893 bb_largest_free_order_node) { 894 if (sbi->s_mb_stats) 895 atomic64_inc(&sbi->s_bal_cX_groups_considered[0]); 896 if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) { 897 grp = iter; 898 break; 899 } 900 } 901 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 902 if (grp) 903 break; 904 } 905 906 if (!grp) { 907 /* Increment cr and search again */ 908 *new_cr = 1; 909 } else { 910 *group = grp->bb_group; 911 ac->ac_last_optimal_group = *group; 912 ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED; 913 } 914 } 915 916 /* 917 * Choose next group by traversing average fragment size tree. Updates *new_cr 918 * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that 919 * the linear search should continue for one iteration since there's lock 920 * contention on the rb tree lock. 921 */ 922 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac, 923 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 924 { 925 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 926 int avg_fragment_size, best_so_far; 927 struct rb_node *node, *found; 928 struct ext4_group_info *grp; 929 930 /* 931 * If there is contention on the lock, instead of waiting for the lock 932 * to become available, just continue searching lineraly. We'll resume 933 * our rb tree search later starting at ac->ac_last_optimal_group. 934 */ 935 if (!read_trylock(&sbi->s_mb_rb_lock)) { 936 ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR; 937 return; 938 } 939 940 if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) { 941 if (sbi->s_mb_stats) 942 atomic_inc(&sbi->s_bal_cr1_bad_suggestions); 943 /* We have found something at CR 1 in the past */ 944 grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group); 945 for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL; 946 found = rb_next(found)) { 947 grp = rb_entry(found, struct ext4_group_info, 948 bb_avg_fragment_size_rb); 949 if (sbi->s_mb_stats) 950 atomic64_inc(&sbi->s_bal_cX_groups_considered[1]); 951 if (likely(ext4_mb_good_group(ac, grp->bb_group, 1))) 952 break; 953 } 954 goto done; 955 } 956 957 node = sbi->s_mb_avg_fragment_size_root.rb_node; 958 best_so_far = 0; 959 found = NULL; 960 961 while (node) { 962 grp = rb_entry(node, struct ext4_group_info, 963 bb_avg_fragment_size_rb); 964 avg_fragment_size = 0; 965 if (ext4_mb_good_group(ac, grp->bb_group, 1)) { 966 avg_fragment_size = grp->bb_fragments ? 967 grp->bb_free / grp->bb_fragments : 0; 968 if (!best_so_far || avg_fragment_size < best_so_far) { 969 best_so_far = avg_fragment_size; 970 found = node; 971 } 972 } 973 if (avg_fragment_size > ac->ac_g_ex.fe_len) 974 node = node->rb_right; 975 else 976 node = node->rb_left; 977 } 978 979 done: 980 if (found) { 981 grp = rb_entry(found, struct ext4_group_info, 982 bb_avg_fragment_size_rb); 983 *group = grp->bb_group; 984 ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED; 985 } else { 986 *new_cr = 2; 987 } 988 989 read_unlock(&sbi->s_mb_rb_lock); 990 ac->ac_last_optimal_group = *group; 991 } 992 993 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 994 { 995 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 996 return 0; 997 if (ac->ac_criteria >= 2) 998 return 0; 999 if (ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1000 return 0; 1001 return 1; 1002 } 1003 1004 /* 1005 * Return next linear group for allocation. If linear traversal should not be 1006 * performed, this function just returns the same group 1007 */ 1008 static int 1009 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups) 1010 { 1011 if (!should_optimize_scan(ac)) 1012 goto inc_and_return; 1013 1014 if (ac->ac_groups_linear_remaining) { 1015 ac->ac_groups_linear_remaining--; 1016 goto inc_and_return; 1017 } 1018 1019 if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) { 1020 ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR; 1021 goto inc_and_return; 1022 } 1023 1024 return group; 1025 inc_and_return: 1026 /* 1027 * Artificially restricted ngroups for non-extent 1028 * files makes group > ngroups possible on first loop. 1029 */ 1030 return group + 1 >= ngroups ? 0 : group + 1; 1031 } 1032 1033 /* 1034 * ext4_mb_choose_next_group: choose next group for allocation. 1035 * 1036 * @ac Allocation Context 1037 * @new_cr This is an output parameter. If the there is no good group 1038 * available at current CR level, this field is updated to indicate 1039 * the new cr level that should be used. 1040 * @group This is an input / output parameter. As an input it indicates the 1041 * next group that the allocator intends to use for allocation. As 1042 * output, this field indicates the next group that should be used as 1043 * determined by the optimization functions. 1044 * @ngroups Total number of groups 1045 */ 1046 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1047 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1048 { 1049 *new_cr = ac->ac_criteria; 1050 1051 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) 1052 return; 1053 1054 if (*new_cr == 0) { 1055 ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups); 1056 } else if (*new_cr == 1) { 1057 ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups); 1058 } else { 1059 /* 1060 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1061 * bb_free. But until that happens, we should never come here. 1062 */ 1063 WARN_ON(1); 1064 } 1065 } 1066 1067 /* 1068 * Cache the order of the largest free extent we have available in this block 1069 * group. 1070 */ 1071 static void 1072 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1073 { 1074 struct ext4_sb_info *sbi = EXT4_SB(sb); 1075 int i; 1076 1077 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) { 1078 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1079 grp->bb_largest_free_order]); 1080 list_del_init(&grp->bb_largest_free_order_node); 1081 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1082 grp->bb_largest_free_order]); 1083 } 1084 grp->bb_largest_free_order = -1; /* uninit */ 1085 1086 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) { 1087 if (grp->bb_counters[i] > 0) { 1088 grp->bb_largest_free_order = i; 1089 break; 1090 } 1091 } 1092 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && 1093 grp->bb_largest_free_order >= 0 && grp->bb_free) { 1094 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1095 grp->bb_largest_free_order]); 1096 list_add_tail(&grp->bb_largest_free_order_node, 1097 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1098 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1099 grp->bb_largest_free_order]); 1100 } 1101 } 1102 1103 static noinline_for_stack 1104 void ext4_mb_generate_buddy(struct super_block *sb, 1105 void *buddy, void *bitmap, ext4_group_t group) 1106 { 1107 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1108 struct ext4_sb_info *sbi = EXT4_SB(sb); 1109 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1110 ext4_grpblk_t i = 0; 1111 ext4_grpblk_t first; 1112 ext4_grpblk_t len; 1113 unsigned free = 0; 1114 unsigned fragments = 0; 1115 unsigned long long period = get_cycles(); 1116 1117 /* initialize buddy from bitmap which is aggregation 1118 * of on-disk bitmap and preallocations */ 1119 i = mb_find_next_zero_bit(bitmap, max, 0); 1120 grp->bb_first_free = i; 1121 while (i < max) { 1122 fragments++; 1123 first = i; 1124 i = mb_find_next_bit(bitmap, max, i); 1125 len = i - first; 1126 free += len; 1127 if (len > 1) 1128 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1129 else 1130 grp->bb_counters[0]++; 1131 if (i < max) 1132 i = mb_find_next_zero_bit(bitmap, max, i); 1133 } 1134 grp->bb_fragments = fragments; 1135 1136 if (free != grp->bb_free) { 1137 ext4_grp_locked_error(sb, group, 0, 0, 1138 "block bitmap and bg descriptor " 1139 "inconsistent: %u vs %u free clusters", 1140 free, grp->bb_free); 1141 /* 1142 * If we intend to continue, we consider group descriptor 1143 * corrupt and update bb_free using bitmap value 1144 */ 1145 grp->bb_free = free; 1146 ext4_mark_group_bitmap_corrupted(sb, group, 1147 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1148 } 1149 mb_set_largest_free_order(sb, grp); 1150 1151 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1152 1153 period = get_cycles() - period; 1154 atomic_inc(&sbi->s_mb_buddies_generated); 1155 atomic64_add(period, &sbi->s_mb_generation_time); 1156 mb_update_avg_fragment_size(sb, grp); 1157 } 1158 1159 /* The buddy information is attached the buddy cache inode 1160 * for convenience. The information regarding each group 1161 * is loaded via ext4_mb_load_buddy. The information involve 1162 * block bitmap and buddy information. The information are 1163 * stored in the inode as 1164 * 1165 * { page } 1166 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1167 * 1168 * 1169 * one block each for bitmap and buddy information. 1170 * So for each group we take up 2 blocks. A page can 1171 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1172 * So it can have information regarding groups_per_page which 1173 * is blocks_per_page/2 1174 * 1175 * Locking note: This routine takes the block group lock of all groups 1176 * for this page; do not hold this lock when calling this routine! 1177 */ 1178 1179 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1180 { 1181 ext4_group_t ngroups; 1182 int blocksize; 1183 int blocks_per_page; 1184 int groups_per_page; 1185 int err = 0; 1186 int i; 1187 ext4_group_t first_group, group; 1188 int first_block; 1189 struct super_block *sb; 1190 struct buffer_head *bhs; 1191 struct buffer_head **bh = NULL; 1192 struct inode *inode; 1193 char *data; 1194 char *bitmap; 1195 struct ext4_group_info *grinfo; 1196 1197 inode = page->mapping->host; 1198 sb = inode->i_sb; 1199 ngroups = ext4_get_groups_count(sb); 1200 blocksize = i_blocksize(inode); 1201 blocks_per_page = PAGE_SIZE / blocksize; 1202 1203 mb_debug(sb, "init page %lu\n", page->index); 1204 1205 groups_per_page = blocks_per_page >> 1; 1206 if (groups_per_page == 0) 1207 groups_per_page = 1; 1208 1209 /* allocate buffer_heads to read bitmaps */ 1210 if (groups_per_page > 1) { 1211 i = sizeof(struct buffer_head *) * groups_per_page; 1212 bh = kzalloc(i, gfp); 1213 if (bh == NULL) { 1214 err = -ENOMEM; 1215 goto out; 1216 } 1217 } else 1218 bh = &bhs; 1219 1220 first_group = page->index * blocks_per_page / 2; 1221 1222 /* read all groups the page covers into the cache */ 1223 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1224 if (group >= ngroups) 1225 break; 1226 1227 grinfo = ext4_get_group_info(sb, group); 1228 /* 1229 * If page is uptodate then we came here after online resize 1230 * which added some new uninitialized group info structs, so 1231 * we must skip all initialized uptodate buddies on the page, 1232 * which may be currently in use by an allocating task. 1233 */ 1234 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1235 bh[i] = NULL; 1236 continue; 1237 } 1238 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1239 if (IS_ERR(bh[i])) { 1240 err = PTR_ERR(bh[i]); 1241 bh[i] = NULL; 1242 goto out; 1243 } 1244 mb_debug(sb, "read bitmap for group %u\n", group); 1245 } 1246 1247 /* wait for I/O completion */ 1248 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1249 int err2; 1250 1251 if (!bh[i]) 1252 continue; 1253 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1254 if (!err) 1255 err = err2; 1256 } 1257 1258 first_block = page->index * blocks_per_page; 1259 for (i = 0; i < blocks_per_page; i++) { 1260 group = (first_block + i) >> 1; 1261 if (group >= ngroups) 1262 break; 1263 1264 if (!bh[group - first_group]) 1265 /* skip initialized uptodate buddy */ 1266 continue; 1267 1268 if (!buffer_verified(bh[group - first_group])) 1269 /* Skip faulty bitmaps */ 1270 continue; 1271 err = 0; 1272 1273 /* 1274 * data carry information regarding this 1275 * particular group in the format specified 1276 * above 1277 * 1278 */ 1279 data = page_address(page) + (i * blocksize); 1280 bitmap = bh[group - first_group]->b_data; 1281 1282 /* 1283 * We place the buddy block and bitmap block 1284 * close together 1285 */ 1286 if ((first_block + i) & 1) { 1287 /* this is block of buddy */ 1288 BUG_ON(incore == NULL); 1289 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1290 group, page->index, i * blocksize); 1291 trace_ext4_mb_buddy_bitmap_load(sb, group); 1292 grinfo = ext4_get_group_info(sb, group); 1293 grinfo->bb_fragments = 0; 1294 memset(grinfo->bb_counters, 0, 1295 sizeof(*grinfo->bb_counters) * 1296 (MB_NUM_ORDERS(sb))); 1297 /* 1298 * incore got set to the group block bitmap below 1299 */ 1300 ext4_lock_group(sb, group); 1301 /* init the buddy */ 1302 memset(data, 0xff, blocksize); 1303 ext4_mb_generate_buddy(sb, data, incore, group); 1304 ext4_unlock_group(sb, group); 1305 incore = NULL; 1306 } else { 1307 /* this is block of bitmap */ 1308 BUG_ON(incore != NULL); 1309 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1310 group, page->index, i * blocksize); 1311 trace_ext4_mb_bitmap_load(sb, group); 1312 1313 /* see comments in ext4_mb_put_pa() */ 1314 ext4_lock_group(sb, group); 1315 memcpy(data, bitmap, blocksize); 1316 1317 /* mark all preallocated blks used in in-core bitmap */ 1318 ext4_mb_generate_from_pa(sb, data, group); 1319 ext4_mb_generate_from_freelist(sb, data, group); 1320 ext4_unlock_group(sb, group); 1321 1322 /* set incore so that the buddy information can be 1323 * generated using this 1324 */ 1325 incore = data; 1326 } 1327 } 1328 SetPageUptodate(page); 1329 1330 out: 1331 if (bh) { 1332 for (i = 0; i < groups_per_page; i++) 1333 brelse(bh[i]); 1334 if (bh != &bhs) 1335 kfree(bh); 1336 } 1337 return err; 1338 } 1339 1340 /* 1341 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1342 * on the same buddy page doesn't happen whild holding the buddy page lock. 1343 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1344 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1345 */ 1346 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1347 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1348 { 1349 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1350 int block, pnum, poff; 1351 int blocks_per_page; 1352 struct page *page; 1353 1354 e4b->bd_buddy_page = NULL; 1355 e4b->bd_bitmap_page = NULL; 1356 1357 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1358 /* 1359 * the buddy cache inode stores the block bitmap 1360 * and buddy information in consecutive blocks. 1361 * So for each group we need two blocks. 1362 */ 1363 block = group * 2; 1364 pnum = block / blocks_per_page; 1365 poff = block % blocks_per_page; 1366 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1367 if (!page) 1368 return -ENOMEM; 1369 BUG_ON(page->mapping != inode->i_mapping); 1370 e4b->bd_bitmap_page = page; 1371 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1372 1373 if (blocks_per_page >= 2) { 1374 /* buddy and bitmap are on the same page */ 1375 return 0; 1376 } 1377 1378 block++; 1379 pnum = block / blocks_per_page; 1380 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1381 if (!page) 1382 return -ENOMEM; 1383 BUG_ON(page->mapping != inode->i_mapping); 1384 e4b->bd_buddy_page = page; 1385 return 0; 1386 } 1387 1388 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1389 { 1390 if (e4b->bd_bitmap_page) { 1391 unlock_page(e4b->bd_bitmap_page); 1392 put_page(e4b->bd_bitmap_page); 1393 } 1394 if (e4b->bd_buddy_page) { 1395 unlock_page(e4b->bd_buddy_page); 1396 put_page(e4b->bd_buddy_page); 1397 } 1398 } 1399 1400 /* 1401 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1402 * block group lock of all groups for this page; do not hold the BG lock when 1403 * calling this routine! 1404 */ 1405 static noinline_for_stack 1406 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1407 { 1408 1409 struct ext4_group_info *this_grp; 1410 struct ext4_buddy e4b; 1411 struct page *page; 1412 int ret = 0; 1413 1414 might_sleep(); 1415 mb_debug(sb, "init group %u\n", group); 1416 this_grp = ext4_get_group_info(sb, group); 1417 /* 1418 * This ensures that we don't reinit the buddy cache 1419 * page which map to the group from which we are already 1420 * allocating. If we are looking at the buddy cache we would 1421 * have taken a reference using ext4_mb_load_buddy and that 1422 * would have pinned buddy page to page cache. 1423 * The call to ext4_mb_get_buddy_page_lock will mark the 1424 * page accessed. 1425 */ 1426 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1427 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1428 /* 1429 * somebody initialized the group 1430 * return without doing anything 1431 */ 1432 goto err; 1433 } 1434 1435 page = e4b.bd_bitmap_page; 1436 ret = ext4_mb_init_cache(page, NULL, gfp); 1437 if (ret) 1438 goto err; 1439 if (!PageUptodate(page)) { 1440 ret = -EIO; 1441 goto err; 1442 } 1443 1444 if (e4b.bd_buddy_page == NULL) { 1445 /* 1446 * If both the bitmap and buddy are in 1447 * the same page we don't need to force 1448 * init the buddy 1449 */ 1450 ret = 0; 1451 goto err; 1452 } 1453 /* init buddy cache */ 1454 page = e4b.bd_buddy_page; 1455 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1456 if (ret) 1457 goto err; 1458 if (!PageUptodate(page)) { 1459 ret = -EIO; 1460 goto err; 1461 } 1462 err: 1463 ext4_mb_put_buddy_page_lock(&e4b); 1464 return ret; 1465 } 1466 1467 /* 1468 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1469 * block group lock of all groups for this page; do not hold the BG lock when 1470 * calling this routine! 1471 */ 1472 static noinline_for_stack int 1473 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1474 struct ext4_buddy *e4b, gfp_t gfp) 1475 { 1476 int blocks_per_page; 1477 int block; 1478 int pnum; 1479 int poff; 1480 struct page *page; 1481 int ret; 1482 struct ext4_group_info *grp; 1483 struct ext4_sb_info *sbi = EXT4_SB(sb); 1484 struct inode *inode = sbi->s_buddy_cache; 1485 1486 might_sleep(); 1487 mb_debug(sb, "load group %u\n", group); 1488 1489 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1490 grp = ext4_get_group_info(sb, group); 1491 1492 e4b->bd_blkbits = sb->s_blocksize_bits; 1493 e4b->bd_info = grp; 1494 e4b->bd_sb = sb; 1495 e4b->bd_group = group; 1496 e4b->bd_buddy_page = NULL; 1497 e4b->bd_bitmap_page = NULL; 1498 1499 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1500 /* 1501 * we need full data about the group 1502 * to make a good selection 1503 */ 1504 ret = ext4_mb_init_group(sb, group, gfp); 1505 if (ret) 1506 return ret; 1507 } 1508 1509 /* 1510 * the buddy cache inode stores the block bitmap 1511 * and buddy information in consecutive blocks. 1512 * So for each group we need two blocks. 1513 */ 1514 block = group * 2; 1515 pnum = block / blocks_per_page; 1516 poff = block % blocks_per_page; 1517 1518 /* we could use find_or_create_page(), but it locks page 1519 * what we'd like to avoid in fast path ... */ 1520 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1521 if (page == NULL || !PageUptodate(page)) { 1522 if (page) 1523 /* 1524 * drop the page reference and try 1525 * to get the page with lock. If we 1526 * are not uptodate that implies 1527 * somebody just created the page but 1528 * is yet to initialize the same. So 1529 * wait for it to initialize. 1530 */ 1531 put_page(page); 1532 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1533 if (page) { 1534 BUG_ON(page->mapping != inode->i_mapping); 1535 if (!PageUptodate(page)) { 1536 ret = ext4_mb_init_cache(page, NULL, gfp); 1537 if (ret) { 1538 unlock_page(page); 1539 goto err; 1540 } 1541 mb_cmp_bitmaps(e4b, page_address(page) + 1542 (poff * sb->s_blocksize)); 1543 } 1544 unlock_page(page); 1545 } 1546 } 1547 if (page == NULL) { 1548 ret = -ENOMEM; 1549 goto err; 1550 } 1551 if (!PageUptodate(page)) { 1552 ret = -EIO; 1553 goto err; 1554 } 1555 1556 /* Pages marked accessed already */ 1557 e4b->bd_bitmap_page = page; 1558 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1559 1560 block++; 1561 pnum = block / blocks_per_page; 1562 poff = block % blocks_per_page; 1563 1564 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1565 if (page == NULL || !PageUptodate(page)) { 1566 if (page) 1567 put_page(page); 1568 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1569 if (page) { 1570 BUG_ON(page->mapping != inode->i_mapping); 1571 if (!PageUptodate(page)) { 1572 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1573 gfp); 1574 if (ret) { 1575 unlock_page(page); 1576 goto err; 1577 } 1578 } 1579 unlock_page(page); 1580 } 1581 } 1582 if (page == NULL) { 1583 ret = -ENOMEM; 1584 goto err; 1585 } 1586 if (!PageUptodate(page)) { 1587 ret = -EIO; 1588 goto err; 1589 } 1590 1591 /* Pages marked accessed already */ 1592 e4b->bd_buddy_page = page; 1593 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1594 1595 return 0; 1596 1597 err: 1598 if (page) 1599 put_page(page); 1600 if (e4b->bd_bitmap_page) 1601 put_page(e4b->bd_bitmap_page); 1602 if (e4b->bd_buddy_page) 1603 put_page(e4b->bd_buddy_page); 1604 e4b->bd_buddy = NULL; 1605 e4b->bd_bitmap = NULL; 1606 return ret; 1607 } 1608 1609 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1610 struct ext4_buddy *e4b) 1611 { 1612 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1613 } 1614 1615 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1616 { 1617 if (e4b->bd_bitmap_page) 1618 put_page(e4b->bd_bitmap_page); 1619 if (e4b->bd_buddy_page) 1620 put_page(e4b->bd_buddy_page); 1621 } 1622 1623 1624 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1625 { 1626 int order = 1, max; 1627 void *bb; 1628 1629 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1630 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1631 1632 while (order <= e4b->bd_blkbits + 1) { 1633 bb = mb_find_buddy(e4b, order, &max); 1634 if (!mb_test_bit(block >> order, bb)) { 1635 /* this block is part of buddy of order 'order' */ 1636 return order; 1637 } 1638 order++; 1639 } 1640 return 0; 1641 } 1642 1643 static void mb_clear_bits(void *bm, int cur, int len) 1644 { 1645 __u32 *addr; 1646 1647 len = cur + len; 1648 while (cur < len) { 1649 if ((cur & 31) == 0 && (len - cur) >= 32) { 1650 /* fast path: clear whole word at once */ 1651 addr = bm + (cur >> 3); 1652 *addr = 0; 1653 cur += 32; 1654 continue; 1655 } 1656 mb_clear_bit(cur, bm); 1657 cur++; 1658 } 1659 } 1660 1661 /* clear bits in given range 1662 * will return first found zero bit if any, -1 otherwise 1663 */ 1664 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1665 { 1666 __u32 *addr; 1667 int zero_bit = -1; 1668 1669 len = cur + len; 1670 while (cur < len) { 1671 if ((cur & 31) == 0 && (len - cur) >= 32) { 1672 /* fast path: clear whole word at once */ 1673 addr = bm + (cur >> 3); 1674 if (*addr != (__u32)(-1) && zero_bit == -1) 1675 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1676 *addr = 0; 1677 cur += 32; 1678 continue; 1679 } 1680 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1681 zero_bit = cur; 1682 cur++; 1683 } 1684 1685 return zero_bit; 1686 } 1687 1688 void ext4_set_bits(void *bm, int cur, int len) 1689 { 1690 __u32 *addr; 1691 1692 len = cur + len; 1693 while (cur < len) { 1694 if ((cur & 31) == 0 && (len - cur) >= 32) { 1695 /* fast path: set whole word at once */ 1696 addr = bm + (cur >> 3); 1697 *addr = 0xffffffff; 1698 cur += 32; 1699 continue; 1700 } 1701 mb_set_bit(cur, bm); 1702 cur++; 1703 } 1704 } 1705 1706 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1707 { 1708 if (mb_test_bit(*bit + side, bitmap)) { 1709 mb_clear_bit(*bit, bitmap); 1710 (*bit) -= side; 1711 return 1; 1712 } 1713 else { 1714 (*bit) += side; 1715 mb_set_bit(*bit, bitmap); 1716 return -1; 1717 } 1718 } 1719 1720 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1721 { 1722 int max; 1723 int order = 1; 1724 void *buddy = mb_find_buddy(e4b, order, &max); 1725 1726 while (buddy) { 1727 void *buddy2; 1728 1729 /* Bits in range [first; last] are known to be set since 1730 * corresponding blocks were allocated. Bits in range 1731 * (first; last) will stay set because they form buddies on 1732 * upper layer. We just deal with borders if they don't 1733 * align with upper layer and then go up. 1734 * Releasing entire group is all about clearing 1735 * single bit of highest order buddy. 1736 */ 1737 1738 /* Example: 1739 * --------------------------------- 1740 * | 1 | 1 | 1 | 1 | 1741 * --------------------------------- 1742 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1743 * --------------------------------- 1744 * 0 1 2 3 4 5 6 7 1745 * \_____________________/ 1746 * 1747 * Neither [1] nor [6] is aligned to above layer. 1748 * Left neighbour [0] is free, so mark it busy, 1749 * decrease bb_counters and extend range to 1750 * [0; 6] 1751 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1752 * mark [6] free, increase bb_counters and shrink range to 1753 * [0; 5]. 1754 * Then shift range to [0; 2], go up and do the same. 1755 */ 1756 1757 1758 if (first & 1) 1759 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1760 if (!(last & 1)) 1761 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1762 if (first > last) 1763 break; 1764 order++; 1765 1766 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1767 mb_clear_bits(buddy, first, last - first + 1); 1768 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1769 break; 1770 } 1771 first >>= 1; 1772 last >>= 1; 1773 buddy = buddy2; 1774 } 1775 } 1776 1777 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1778 int first, int count) 1779 { 1780 int left_is_free = 0; 1781 int right_is_free = 0; 1782 int block; 1783 int last = first + count - 1; 1784 struct super_block *sb = e4b->bd_sb; 1785 1786 if (WARN_ON(count == 0)) 1787 return; 1788 BUG_ON(last >= (sb->s_blocksize << 3)); 1789 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1790 /* Don't bother if the block group is corrupt. */ 1791 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1792 return; 1793 1794 mb_check_buddy(e4b); 1795 mb_free_blocks_double(inode, e4b, first, count); 1796 1797 this_cpu_inc(discard_pa_seq); 1798 e4b->bd_info->bb_free += count; 1799 if (first < e4b->bd_info->bb_first_free) 1800 e4b->bd_info->bb_first_free = first; 1801 1802 /* access memory sequentially: check left neighbour, 1803 * clear range and then check right neighbour 1804 */ 1805 if (first != 0) 1806 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1807 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1808 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1809 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1810 1811 if (unlikely(block != -1)) { 1812 struct ext4_sb_info *sbi = EXT4_SB(sb); 1813 ext4_fsblk_t blocknr; 1814 1815 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1816 blocknr += EXT4_C2B(sbi, block); 1817 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1818 ext4_grp_locked_error(sb, e4b->bd_group, 1819 inode ? inode->i_ino : 0, 1820 blocknr, 1821 "freeing already freed block (bit %u); block bitmap corrupt.", 1822 block); 1823 ext4_mark_group_bitmap_corrupted( 1824 sb, e4b->bd_group, 1825 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1826 } 1827 goto done; 1828 } 1829 1830 /* let's maintain fragments counter */ 1831 if (left_is_free && right_is_free) 1832 e4b->bd_info->bb_fragments--; 1833 else if (!left_is_free && !right_is_free) 1834 e4b->bd_info->bb_fragments++; 1835 1836 /* buddy[0] == bd_bitmap is a special case, so handle 1837 * it right away and let mb_buddy_mark_free stay free of 1838 * zero order checks. 1839 * Check if neighbours are to be coaleasced, 1840 * adjust bitmap bb_counters and borders appropriately. 1841 */ 1842 if (first & 1) { 1843 first += !left_is_free; 1844 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1845 } 1846 if (!(last & 1)) { 1847 last -= !right_is_free; 1848 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1849 } 1850 1851 if (first <= last) 1852 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1853 1854 done: 1855 mb_set_largest_free_order(sb, e4b->bd_info); 1856 mb_update_avg_fragment_size(sb, e4b->bd_info); 1857 mb_check_buddy(e4b); 1858 } 1859 1860 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1861 int needed, struct ext4_free_extent *ex) 1862 { 1863 int next = block; 1864 int max, order; 1865 void *buddy; 1866 1867 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1868 BUG_ON(ex == NULL); 1869 1870 buddy = mb_find_buddy(e4b, 0, &max); 1871 BUG_ON(buddy == NULL); 1872 BUG_ON(block >= max); 1873 if (mb_test_bit(block, buddy)) { 1874 ex->fe_len = 0; 1875 ex->fe_start = 0; 1876 ex->fe_group = 0; 1877 return 0; 1878 } 1879 1880 /* find actual order */ 1881 order = mb_find_order_for_block(e4b, block); 1882 block = block >> order; 1883 1884 ex->fe_len = 1 << order; 1885 ex->fe_start = block << order; 1886 ex->fe_group = e4b->bd_group; 1887 1888 /* calc difference from given start */ 1889 next = next - ex->fe_start; 1890 ex->fe_len -= next; 1891 ex->fe_start += next; 1892 1893 while (needed > ex->fe_len && 1894 mb_find_buddy(e4b, order, &max)) { 1895 1896 if (block + 1 >= max) 1897 break; 1898 1899 next = (block + 1) * (1 << order); 1900 if (mb_test_bit(next, e4b->bd_bitmap)) 1901 break; 1902 1903 order = mb_find_order_for_block(e4b, next); 1904 1905 block = next >> order; 1906 ex->fe_len += 1 << order; 1907 } 1908 1909 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1910 /* Should never happen! (but apparently sometimes does?!?) */ 1911 WARN_ON(1); 1912 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 1913 "corruption or bug in mb_find_extent " 1914 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1915 block, order, needed, ex->fe_group, ex->fe_start, 1916 ex->fe_len, ex->fe_logical); 1917 ex->fe_len = 0; 1918 ex->fe_start = 0; 1919 ex->fe_group = 0; 1920 } 1921 return ex->fe_len; 1922 } 1923 1924 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1925 { 1926 int ord; 1927 int mlen = 0; 1928 int max = 0; 1929 int cur; 1930 int start = ex->fe_start; 1931 int len = ex->fe_len; 1932 unsigned ret = 0; 1933 int len0 = len; 1934 void *buddy; 1935 1936 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1937 BUG_ON(e4b->bd_group != ex->fe_group); 1938 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1939 mb_check_buddy(e4b); 1940 mb_mark_used_double(e4b, start, len); 1941 1942 this_cpu_inc(discard_pa_seq); 1943 e4b->bd_info->bb_free -= len; 1944 if (e4b->bd_info->bb_first_free == start) 1945 e4b->bd_info->bb_first_free += len; 1946 1947 /* let's maintain fragments counter */ 1948 if (start != 0) 1949 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1950 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1951 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1952 if (mlen && max) 1953 e4b->bd_info->bb_fragments++; 1954 else if (!mlen && !max) 1955 e4b->bd_info->bb_fragments--; 1956 1957 /* let's maintain buddy itself */ 1958 while (len) { 1959 ord = mb_find_order_for_block(e4b, start); 1960 1961 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1962 /* the whole chunk may be allocated at once! */ 1963 mlen = 1 << ord; 1964 buddy = mb_find_buddy(e4b, ord, &max); 1965 BUG_ON((start >> ord) >= max); 1966 mb_set_bit(start >> ord, buddy); 1967 e4b->bd_info->bb_counters[ord]--; 1968 start += mlen; 1969 len -= mlen; 1970 BUG_ON(len < 0); 1971 continue; 1972 } 1973 1974 /* store for history */ 1975 if (ret == 0) 1976 ret = len | (ord << 16); 1977 1978 /* we have to split large buddy */ 1979 BUG_ON(ord <= 0); 1980 buddy = mb_find_buddy(e4b, ord, &max); 1981 mb_set_bit(start >> ord, buddy); 1982 e4b->bd_info->bb_counters[ord]--; 1983 1984 ord--; 1985 cur = (start >> ord) & ~1U; 1986 buddy = mb_find_buddy(e4b, ord, &max); 1987 mb_clear_bit(cur, buddy); 1988 mb_clear_bit(cur + 1, buddy); 1989 e4b->bd_info->bb_counters[ord]++; 1990 e4b->bd_info->bb_counters[ord]++; 1991 } 1992 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1993 1994 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 1995 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1996 mb_check_buddy(e4b); 1997 1998 return ret; 1999 } 2000 2001 /* 2002 * Must be called under group lock! 2003 */ 2004 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2005 struct ext4_buddy *e4b) 2006 { 2007 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2008 int ret; 2009 2010 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2011 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2012 2013 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2014 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2015 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2016 2017 /* preallocation can change ac_b_ex, thus we store actually 2018 * allocated blocks for history */ 2019 ac->ac_f_ex = ac->ac_b_ex; 2020 2021 ac->ac_status = AC_STATUS_FOUND; 2022 ac->ac_tail = ret & 0xffff; 2023 ac->ac_buddy = ret >> 16; 2024 2025 /* 2026 * take the page reference. We want the page to be pinned 2027 * so that we don't get a ext4_mb_init_cache_call for this 2028 * group until we update the bitmap. That would mean we 2029 * double allocate blocks. The reference is dropped 2030 * in ext4_mb_release_context 2031 */ 2032 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2033 get_page(ac->ac_bitmap_page); 2034 ac->ac_buddy_page = e4b->bd_buddy_page; 2035 get_page(ac->ac_buddy_page); 2036 /* store last allocated for subsequent stream allocation */ 2037 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2038 spin_lock(&sbi->s_md_lock); 2039 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2040 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2041 spin_unlock(&sbi->s_md_lock); 2042 } 2043 /* 2044 * As we've just preallocated more space than 2045 * user requested originally, we store allocated 2046 * space in a special descriptor. 2047 */ 2048 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2049 ext4_mb_new_preallocation(ac); 2050 2051 } 2052 2053 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2054 struct ext4_buddy *e4b, 2055 int finish_group) 2056 { 2057 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2058 struct ext4_free_extent *bex = &ac->ac_b_ex; 2059 struct ext4_free_extent *gex = &ac->ac_g_ex; 2060 struct ext4_free_extent ex; 2061 int max; 2062 2063 if (ac->ac_status == AC_STATUS_FOUND) 2064 return; 2065 /* 2066 * We don't want to scan for a whole year 2067 */ 2068 if (ac->ac_found > sbi->s_mb_max_to_scan && 2069 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2070 ac->ac_status = AC_STATUS_BREAK; 2071 return; 2072 } 2073 2074 /* 2075 * Haven't found good chunk so far, let's continue 2076 */ 2077 if (bex->fe_len < gex->fe_len) 2078 return; 2079 2080 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2081 && bex->fe_group == e4b->bd_group) { 2082 /* recheck chunk's availability - we don't know 2083 * when it was found (within this lock-unlock 2084 * period or not) */ 2085 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 2086 if (max >= gex->fe_len) { 2087 ext4_mb_use_best_found(ac, e4b); 2088 return; 2089 } 2090 } 2091 } 2092 2093 /* 2094 * The routine checks whether found extent is good enough. If it is, 2095 * then the extent gets marked used and flag is set to the context 2096 * to stop scanning. Otherwise, the extent is compared with the 2097 * previous found extent and if new one is better, then it's stored 2098 * in the context. Later, the best found extent will be used, if 2099 * mballoc can't find good enough extent. 2100 * 2101 * FIXME: real allocation policy is to be designed yet! 2102 */ 2103 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2104 struct ext4_free_extent *ex, 2105 struct ext4_buddy *e4b) 2106 { 2107 struct ext4_free_extent *bex = &ac->ac_b_ex; 2108 struct ext4_free_extent *gex = &ac->ac_g_ex; 2109 2110 BUG_ON(ex->fe_len <= 0); 2111 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2112 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2113 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2114 2115 ac->ac_found++; 2116 2117 /* 2118 * The special case - take what you catch first 2119 */ 2120 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2121 *bex = *ex; 2122 ext4_mb_use_best_found(ac, e4b); 2123 return; 2124 } 2125 2126 /* 2127 * Let's check whether the chuck is good enough 2128 */ 2129 if (ex->fe_len == gex->fe_len) { 2130 *bex = *ex; 2131 ext4_mb_use_best_found(ac, e4b); 2132 return; 2133 } 2134 2135 /* 2136 * If this is first found extent, just store it in the context 2137 */ 2138 if (bex->fe_len == 0) { 2139 *bex = *ex; 2140 return; 2141 } 2142 2143 /* 2144 * If new found extent is better, store it in the context 2145 */ 2146 if (bex->fe_len < gex->fe_len) { 2147 /* if the request isn't satisfied, any found extent 2148 * larger than previous best one is better */ 2149 if (ex->fe_len > bex->fe_len) 2150 *bex = *ex; 2151 } else if (ex->fe_len > gex->fe_len) { 2152 /* if the request is satisfied, then we try to find 2153 * an extent that still satisfy the request, but is 2154 * smaller than previous one */ 2155 if (ex->fe_len < bex->fe_len) 2156 *bex = *ex; 2157 } 2158 2159 ext4_mb_check_limits(ac, e4b, 0); 2160 } 2161 2162 static noinline_for_stack 2163 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2164 struct ext4_buddy *e4b) 2165 { 2166 struct ext4_free_extent ex = ac->ac_b_ex; 2167 ext4_group_t group = ex.fe_group; 2168 int max; 2169 int err; 2170 2171 BUG_ON(ex.fe_len <= 0); 2172 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2173 if (err) 2174 return err; 2175 2176 ext4_lock_group(ac->ac_sb, group); 2177 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2178 2179 if (max > 0) { 2180 ac->ac_b_ex = ex; 2181 ext4_mb_use_best_found(ac, e4b); 2182 } 2183 2184 ext4_unlock_group(ac->ac_sb, group); 2185 ext4_mb_unload_buddy(e4b); 2186 2187 return 0; 2188 } 2189 2190 static noinline_for_stack 2191 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2192 struct ext4_buddy *e4b) 2193 { 2194 ext4_group_t group = ac->ac_g_ex.fe_group; 2195 int max; 2196 int err; 2197 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2198 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2199 struct ext4_free_extent ex; 2200 2201 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 2202 return 0; 2203 if (grp->bb_free == 0) 2204 return 0; 2205 2206 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2207 if (err) 2208 return err; 2209 2210 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2211 ext4_mb_unload_buddy(e4b); 2212 return 0; 2213 } 2214 2215 ext4_lock_group(ac->ac_sb, group); 2216 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2217 ac->ac_g_ex.fe_len, &ex); 2218 ex.fe_logical = 0xDEADFA11; /* debug value */ 2219 2220 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 2221 ext4_fsblk_t start; 2222 2223 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 2224 ex.fe_start; 2225 /* use do_div to get remainder (would be 64-bit modulo) */ 2226 if (do_div(start, sbi->s_stripe) == 0) { 2227 ac->ac_found++; 2228 ac->ac_b_ex = ex; 2229 ext4_mb_use_best_found(ac, e4b); 2230 } 2231 } else if (max >= ac->ac_g_ex.fe_len) { 2232 BUG_ON(ex.fe_len <= 0); 2233 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2234 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2235 ac->ac_found++; 2236 ac->ac_b_ex = ex; 2237 ext4_mb_use_best_found(ac, e4b); 2238 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2239 /* Sometimes, caller may want to merge even small 2240 * number of blocks to an existing extent */ 2241 BUG_ON(ex.fe_len <= 0); 2242 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2243 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2244 ac->ac_found++; 2245 ac->ac_b_ex = ex; 2246 ext4_mb_use_best_found(ac, e4b); 2247 } 2248 ext4_unlock_group(ac->ac_sb, group); 2249 ext4_mb_unload_buddy(e4b); 2250 2251 return 0; 2252 } 2253 2254 /* 2255 * The routine scans buddy structures (not bitmap!) from given order 2256 * to max order and tries to find big enough chunk to satisfy the req 2257 */ 2258 static noinline_for_stack 2259 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2260 struct ext4_buddy *e4b) 2261 { 2262 struct super_block *sb = ac->ac_sb; 2263 struct ext4_group_info *grp = e4b->bd_info; 2264 void *buddy; 2265 int i; 2266 int k; 2267 int max; 2268 2269 BUG_ON(ac->ac_2order <= 0); 2270 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2271 if (grp->bb_counters[i] == 0) 2272 continue; 2273 2274 buddy = mb_find_buddy(e4b, i, &max); 2275 BUG_ON(buddy == NULL); 2276 2277 k = mb_find_next_zero_bit(buddy, max, 0); 2278 if (k >= max) { 2279 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2280 "%d free clusters of order %d. But found 0", 2281 grp->bb_counters[i], i); 2282 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2283 e4b->bd_group, 2284 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2285 break; 2286 } 2287 ac->ac_found++; 2288 2289 ac->ac_b_ex.fe_len = 1 << i; 2290 ac->ac_b_ex.fe_start = k << i; 2291 ac->ac_b_ex.fe_group = e4b->bd_group; 2292 2293 ext4_mb_use_best_found(ac, e4b); 2294 2295 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2296 2297 if (EXT4_SB(sb)->s_mb_stats) 2298 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2299 2300 break; 2301 } 2302 } 2303 2304 /* 2305 * The routine scans the group and measures all found extents. 2306 * In order to optimize scanning, caller must pass number of 2307 * free blocks in the group, so the routine can know upper limit. 2308 */ 2309 static noinline_for_stack 2310 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2311 struct ext4_buddy *e4b) 2312 { 2313 struct super_block *sb = ac->ac_sb; 2314 void *bitmap = e4b->bd_bitmap; 2315 struct ext4_free_extent ex; 2316 int i; 2317 int free; 2318 2319 free = e4b->bd_info->bb_free; 2320 if (WARN_ON(free <= 0)) 2321 return; 2322 2323 i = e4b->bd_info->bb_first_free; 2324 2325 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2326 i = mb_find_next_zero_bit(bitmap, 2327 EXT4_CLUSTERS_PER_GROUP(sb), i); 2328 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2329 /* 2330 * IF we have corrupt bitmap, we won't find any 2331 * free blocks even though group info says we 2332 * have free blocks 2333 */ 2334 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2335 "%d free clusters as per " 2336 "group info. But bitmap says 0", 2337 free); 2338 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2339 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2340 break; 2341 } 2342 2343 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2344 if (WARN_ON(ex.fe_len <= 0)) 2345 break; 2346 if (free < ex.fe_len) { 2347 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2348 "%d free clusters as per " 2349 "group info. But got %d blocks", 2350 free, ex.fe_len); 2351 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2352 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2353 /* 2354 * The number of free blocks differs. This mostly 2355 * indicate that the bitmap is corrupt. So exit 2356 * without claiming the space. 2357 */ 2358 break; 2359 } 2360 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2361 ext4_mb_measure_extent(ac, &ex, e4b); 2362 2363 i += ex.fe_len; 2364 free -= ex.fe_len; 2365 } 2366 2367 ext4_mb_check_limits(ac, e4b, 1); 2368 } 2369 2370 /* 2371 * This is a special case for storages like raid5 2372 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2373 */ 2374 static noinline_for_stack 2375 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2376 struct ext4_buddy *e4b) 2377 { 2378 struct super_block *sb = ac->ac_sb; 2379 struct ext4_sb_info *sbi = EXT4_SB(sb); 2380 void *bitmap = e4b->bd_bitmap; 2381 struct ext4_free_extent ex; 2382 ext4_fsblk_t first_group_block; 2383 ext4_fsblk_t a; 2384 ext4_grpblk_t i; 2385 int max; 2386 2387 BUG_ON(sbi->s_stripe == 0); 2388 2389 /* find first stripe-aligned block in group */ 2390 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2391 2392 a = first_group_block + sbi->s_stripe - 1; 2393 do_div(a, sbi->s_stripe); 2394 i = (a * sbi->s_stripe) - first_group_block; 2395 2396 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2397 if (!mb_test_bit(i, bitmap)) { 2398 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2399 if (max >= sbi->s_stripe) { 2400 ac->ac_found++; 2401 ex.fe_logical = 0xDEADF00D; /* debug value */ 2402 ac->ac_b_ex = ex; 2403 ext4_mb_use_best_found(ac, e4b); 2404 break; 2405 } 2406 } 2407 i += sbi->s_stripe; 2408 } 2409 } 2410 2411 /* 2412 * This is also called BEFORE we load the buddy bitmap. 2413 * Returns either 1 or 0 indicating that the group is either suitable 2414 * for the allocation or not. 2415 */ 2416 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2417 ext4_group_t group, int cr) 2418 { 2419 ext4_grpblk_t free, fragments; 2420 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2421 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2422 2423 BUG_ON(cr < 0 || cr >= 4); 2424 2425 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2426 return false; 2427 2428 free = grp->bb_free; 2429 if (free == 0) 2430 return false; 2431 2432 fragments = grp->bb_fragments; 2433 if (fragments == 0) 2434 return false; 2435 2436 switch (cr) { 2437 case 0: 2438 BUG_ON(ac->ac_2order == 0); 2439 2440 /* Avoid using the first bg of a flexgroup for data files */ 2441 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2442 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2443 ((group % flex_size) == 0)) 2444 return false; 2445 2446 if (free < ac->ac_g_ex.fe_len) 2447 return false; 2448 2449 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2450 return true; 2451 2452 if (grp->bb_largest_free_order < ac->ac_2order) 2453 return false; 2454 2455 return true; 2456 case 1: 2457 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2458 return true; 2459 break; 2460 case 2: 2461 if (free >= ac->ac_g_ex.fe_len) 2462 return true; 2463 break; 2464 case 3: 2465 return true; 2466 default: 2467 BUG(); 2468 } 2469 2470 return false; 2471 } 2472 2473 /* 2474 * This could return negative error code if something goes wrong 2475 * during ext4_mb_init_group(). This should not be called with 2476 * ext4_lock_group() held. 2477 */ 2478 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2479 ext4_group_t group, int cr) 2480 { 2481 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2482 struct super_block *sb = ac->ac_sb; 2483 struct ext4_sb_info *sbi = EXT4_SB(sb); 2484 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2485 ext4_grpblk_t free; 2486 int ret = 0; 2487 2488 if (sbi->s_mb_stats) 2489 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2490 if (should_lock) 2491 ext4_lock_group(sb, group); 2492 free = grp->bb_free; 2493 if (free == 0) 2494 goto out; 2495 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2496 goto out; 2497 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2498 goto out; 2499 if (should_lock) 2500 ext4_unlock_group(sb, group); 2501 2502 /* We only do this if the grp has never been initialized */ 2503 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2504 struct ext4_group_desc *gdp = 2505 ext4_get_group_desc(sb, group, NULL); 2506 int ret; 2507 2508 /* cr=0/1 is a very optimistic search to find large 2509 * good chunks almost for free. If buddy data is not 2510 * ready, then this optimization makes no sense. But 2511 * we never skip the first block group in a flex_bg, 2512 * since this gets used for metadata block allocation, 2513 * and we want to make sure we locate metadata blocks 2514 * in the first block group in the flex_bg if possible. 2515 */ 2516 if (cr < 2 && 2517 (!sbi->s_log_groups_per_flex || 2518 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2519 !(ext4_has_group_desc_csum(sb) && 2520 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2521 return 0; 2522 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2523 if (ret) 2524 return ret; 2525 } 2526 2527 if (should_lock) 2528 ext4_lock_group(sb, group); 2529 ret = ext4_mb_good_group(ac, group, cr); 2530 out: 2531 if (should_lock) 2532 ext4_unlock_group(sb, group); 2533 return ret; 2534 } 2535 2536 /* 2537 * Start prefetching @nr block bitmaps starting at @group. 2538 * Return the next group which needs to be prefetched. 2539 */ 2540 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2541 unsigned int nr, int *cnt) 2542 { 2543 ext4_group_t ngroups = ext4_get_groups_count(sb); 2544 struct buffer_head *bh; 2545 struct blk_plug plug; 2546 2547 blk_start_plug(&plug); 2548 while (nr-- > 0) { 2549 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2550 NULL); 2551 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2552 2553 /* 2554 * Prefetch block groups with free blocks; but don't 2555 * bother if it is marked uninitialized on disk, since 2556 * it won't require I/O to read. Also only try to 2557 * prefetch once, so we avoid getblk() call, which can 2558 * be expensive. 2559 */ 2560 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2561 EXT4_MB_GRP_NEED_INIT(grp) && 2562 ext4_free_group_clusters(sb, gdp) > 0 && 2563 !(ext4_has_group_desc_csum(sb) && 2564 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2565 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2566 if (bh && !IS_ERR(bh)) { 2567 if (!buffer_uptodate(bh) && cnt) 2568 (*cnt)++; 2569 brelse(bh); 2570 } 2571 } 2572 if (++group >= ngroups) 2573 group = 0; 2574 } 2575 blk_finish_plug(&plug); 2576 return group; 2577 } 2578 2579 /* 2580 * Prefetching reads the block bitmap into the buffer cache; but we 2581 * need to make sure that the buddy bitmap in the page cache has been 2582 * initialized. Note that ext4_mb_init_group() will block if the I/O 2583 * is not yet completed, or indeed if it was not initiated by 2584 * ext4_mb_prefetch did not start the I/O. 2585 * 2586 * TODO: We should actually kick off the buddy bitmap setup in a work 2587 * queue when the buffer I/O is completed, so that we don't block 2588 * waiting for the block allocation bitmap read to finish when 2589 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2590 */ 2591 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2592 unsigned int nr) 2593 { 2594 while (nr-- > 0) { 2595 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2596 NULL); 2597 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2598 2599 if (!group) 2600 group = ext4_get_groups_count(sb); 2601 group--; 2602 grp = ext4_get_group_info(sb, group); 2603 2604 if (EXT4_MB_GRP_NEED_INIT(grp) && 2605 ext4_free_group_clusters(sb, gdp) > 0 && 2606 !(ext4_has_group_desc_csum(sb) && 2607 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2608 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2609 break; 2610 } 2611 } 2612 } 2613 2614 static noinline_for_stack int 2615 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2616 { 2617 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2618 int cr = -1; 2619 int err = 0, first_err = 0; 2620 unsigned int nr = 0, prefetch_ios = 0; 2621 struct ext4_sb_info *sbi; 2622 struct super_block *sb; 2623 struct ext4_buddy e4b; 2624 int lost; 2625 2626 sb = ac->ac_sb; 2627 sbi = EXT4_SB(sb); 2628 ngroups = ext4_get_groups_count(sb); 2629 /* non-extent files are limited to low blocks/groups */ 2630 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2631 ngroups = sbi->s_blockfile_groups; 2632 2633 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2634 2635 /* first, try the goal */ 2636 err = ext4_mb_find_by_goal(ac, &e4b); 2637 if (err || ac->ac_status == AC_STATUS_FOUND) 2638 goto out; 2639 2640 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2641 goto out; 2642 2643 /* 2644 * ac->ac_2order is set only if the fe_len is a power of 2 2645 * if ac->ac_2order is set we also set criteria to 0 so that we 2646 * try exact allocation using buddy. 2647 */ 2648 i = fls(ac->ac_g_ex.fe_len); 2649 ac->ac_2order = 0; 2650 /* 2651 * We search using buddy data only if the order of the request 2652 * is greater than equal to the sbi_s_mb_order2_reqs 2653 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2654 * We also support searching for power-of-two requests only for 2655 * requests upto maximum buddy size we have constructed. 2656 */ 2657 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2658 /* 2659 * This should tell if fe_len is exactly power of 2 2660 */ 2661 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2662 ac->ac_2order = array_index_nospec(i - 1, 2663 MB_NUM_ORDERS(sb)); 2664 } 2665 2666 /* if stream allocation is enabled, use global goal */ 2667 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2668 /* TBD: may be hot point */ 2669 spin_lock(&sbi->s_md_lock); 2670 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2671 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2672 spin_unlock(&sbi->s_md_lock); 2673 } 2674 2675 /* Let's just scan groups to find more-less suitable blocks */ 2676 cr = ac->ac_2order ? 0 : 1; 2677 /* 2678 * cr == 0 try to get exact allocation, 2679 * cr == 3 try to get anything 2680 */ 2681 repeat: 2682 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2683 ac->ac_criteria = cr; 2684 /* 2685 * searching for the right group start 2686 * from the goal value specified 2687 */ 2688 group = ac->ac_g_ex.fe_group; 2689 ac->ac_last_optimal_group = group; 2690 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2691 prefetch_grp = group; 2692 2693 for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups), 2694 i++) { 2695 int ret = 0, new_cr; 2696 2697 cond_resched(); 2698 2699 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups); 2700 if (new_cr != cr) { 2701 cr = new_cr; 2702 goto repeat; 2703 } 2704 2705 /* 2706 * Batch reads of the block allocation bitmaps 2707 * to get multiple READs in flight; limit 2708 * prefetching at cr=0/1, otherwise mballoc can 2709 * spend a lot of time loading imperfect groups 2710 */ 2711 if ((prefetch_grp == group) && 2712 (cr > 1 || 2713 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2714 unsigned int curr_ios = prefetch_ios; 2715 2716 nr = sbi->s_mb_prefetch; 2717 if (ext4_has_feature_flex_bg(sb)) { 2718 nr = 1 << sbi->s_log_groups_per_flex; 2719 nr -= group & (nr - 1); 2720 nr = min(nr, sbi->s_mb_prefetch); 2721 } 2722 prefetch_grp = ext4_mb_prefetch(sb, group, 2723 nr, &prefetch_ios); 2724 if (prefetch_ios == curr_ios) 2725 nr = 0; 2726 } 2727 2728 /* This now checks without needing the buddy page */ 2729 ret = ext4_mb_good_group_nolock(ac, group, cr); 2730 if (ret <= 0) { 2731 if (!first_err) 2732 first_err = ret; 2733 continue; 2734 } 2735 2736 err = ext4_mb_load_buddy(sb, group, &e4b); 2737 if (err) 2738 goto out; 2739 2740 ext4_lock_group(sb, group); 2741 2742 /* 2743 * We need to check again after locking the 2744 * block group 2745 */ 2746 ret = ext4_mb_good_group(ac, group, cr); 2747 if (ret == 0) { 2748 ext4_unlock_group(sb, group); 2749 ext4_mb_unload_buddy(&e4b); 2750 continue; 2751 } 2752 2753 ac->ac_groups_scanned++; 2754 if (cr == 0) 2755 ext4_mb_simple_scan_group(ac, &e4b); 2756 else if (cr == 1 && sbi->s_stripe && 2757 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2758 ext4_mb_scan_aligned(ac, &e4b); 2759 else 2760 ext4_mb_complex_scan_group(ac, &e4b); 2761 2762 ext4_unlock_group(sb, group); 2763 ext4_mb_unload_buddy(&e4b); 2764 2765 if (ac->ac_status != AC_STATUS_CONTINUE) 2766 break; 2767 } 2768 /* Processed all groups and haven't found blocks */ 2769 if (sbi->s_mb_stats && i == ngroups) 2770 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2771 } 2772 2773 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2774 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2775 /* 2776 * We've been searching too long. Let's try to allocate 2777 * the best chunk we've found so far 2778 */ 2779 ext4_mb_try_best_found(ac, &e4b); 2780 if (ac->ac_status != AC_STATUS_FOUND) { 2781 /* 2782 * Someone more lucky has already allocated it. 2783 * The only thing we can do is just take first 2784 * found block(s) 2785 */ 2786 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2787 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2788 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2789 ac->ac_b_ex.fe_len, lost); 2790 2791 ac->ac_b_ex.fe_group = 0; 2792 ac->ac_b_ex.fe_start = 0; 2793 ac->ac_b_ex.fe_len = 0; 2794 ac->ac_status = AC_STATUS_CONTINUE; 2795 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2796 cr = 3; 2797 goto repeat; 2798 } 2799 } 2800 2801 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2802 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2803 out: 2804 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2805 err = first_err; 2806 2807 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2808 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2809 ac->ac_flags, cr, err); 2810 2811 if (nr) 2812 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2813 2814 return err; 2815 } 2816 2817 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2818 { 2819 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2820 ext4_group_t group; 2821 2822 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2823 return NULL; 2824 group = *pos + 1; 2825 return (void *) ((unsigned long) group); 2826 } 2827 2828 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2829 { 2830 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2831 ext4_group_t group; 2832 2833 ++*pos; 2834 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2835 return NULL; 2836 group = *pos + 1; 2837 return (void *) ((unsigned long) group); 2838 } 2839 2840 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2841 { 2842 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2843 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2844 int i; 2845 int err, buddy_loaded = 0; 2846 struct ext4_buddy e4b; 2847 struct ext4_group_info *grinfo; 2848 unsigned char blocksize_bits = min_t(unsigned char, 2849 sb->s_blocksize_bits, 2850 EXT4_MAX_BLOCK_LOG_SIZE); 2851 struct sg { 2852 struct ext4_group_info info; 2853 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2854 } sg; 2855 2856 group--; 2857 if (group == 0) 2858 seq_puts(seq, "#group: free frags first [" 2859 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2860 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2861 2862 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2863 sizeof(struct ext4_group_info); 2864 2865 grinfo = ext4_get_group_info(sb, group); 2866 /* Load the group info in memory only if not already loaded. */ 2867 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2868 err = ext4_mb_load_buddy(sb, group, &e4b); 2869 if (err) { 2870 seq_printf(seq, "#%-5u: I/O error\n", group); 2871 return 0; 2872 } 2873 buddy_loaded = 1; 2874 } 2875 2876 memcpy(&sg, ext4_get_group_info(sb, group), i); 2877 2878 if (buddy_loaded) 2879 ext4_mb_unload_buddy(&e4b); 2880 2881 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2882 sg.info.bb_fragments, sg.info.bb_first_free); 2883 for (i = 0; i <= 13; i++) 2884 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2885 sg.info.bb_counters[i] : 0); 2886 seq_puts(seq, " ]\n"); 2887 2888 return 0; 2889 } 2890 2891 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2892 { 2893 } 2894 2895 const struct seq_operations ext4_mb_seq_groups_ops = { 2896 .start = ext4_mb_seq_groups_start, 2897 .next = ext4_mb_seq_groups_next, 2898 .stop = ext4_mb_seq_groups_stop, 2899 .show = ext4_mb_seq_groups_show, 2900 }; 2901 2902 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 2903 { 2904 struct super_block *sb = (struct super_block *)seq->private; 2905 struct ext4_sb_info *sbi = EXT4_SB(sb); 2906 2907 seq_puts(seq, "mballoc:\n"); 2908 if (!sbi->s_mb_stats) { 2909 seq_puts(seq, "\tmb stats collection turned off.\n"); 2910 seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 2911 return 0; 2912 } 2913 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 2914 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 2915 2916 seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned)); 2917 2918 seq_puts(seq, "\tcr0_stats:\n"); 2919 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0])); 2920 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2921 atomic64_read(&sbi->s_bal_cX_groups_considered[0])); 2922 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2923 atomic64_read(&sbi->s_bal_cX_failed[0])); 2924 seq_printf(seq, "\t\tbad_suggestions: %u\n", 2925 atomic_read(&sbi->s_bal_cr0_bad_suggestions)); 2926 2927 seq_puts(seq, "\tcr1_stats:\n"); 2928 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1])); 2929 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2930 atomic64_read(&sbi->s_bal_cX_groups_considered[1])); 2931 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2932 atomic64_read(&sbi->s_bal_cX_failed[1])); 2933 seq_printf(seq, "\t\tbad_suggestions: %u\n", 2934 atomic_read(&sbi->s_bal_cr1_bad_suggestions)); 2935 2936 seq_puts(seq, "\tcr2_stats:\n"); 2937 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2])); 2938 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2939 atomic64_read(&sbi->s_bal_cX_groups_considered[2])); 2940 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2941 atomic64_read(&sbi->s_bal_cX_failed[2])); 2942 2943 seq_puts(seq, "\tcr3_stats:\n"); 2944 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3])); 2945 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2946 atomic64_read(&sbi->s_bal_cX_groups_considered[3])); 2947 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2948 atomic64_read(&sbi->s_bal_cX_failed[3])); 2949 seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned)); 2950 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 2951 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 2952 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 2953 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 2954 2955 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 2956 atomic_read(&sbi->s_mb_buddies_generated), 2957 ext4_get_groups_count(sb)); 2958 seq_printf(seq, "\tbuddies_time_used: %llu\n", 2959 atomic64_read(&sbi->s_mb_generation_time)); 2960 seq_printf(seq, "\tpreallocated: %u\n", 2961 atomic_read(&sbi->s_mb_preallocated)); 2962 seq_printf(seq, "\tdiscarded: %u\n", 2963 atomic_read(&sbi->s_mb_discarded)); 2964 return 0; 2965 } 2966 2967 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 2968 { 2969 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2970 unsigned long position; 2971 2972 read_lock(&EXT4_SB(sb)->s_mb_rb_lock); 2973 2974 if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1) 2975 return NULL; 2976 position = *pos + 1; 2977 return (void *) ((unsigned long) position); 2978 } 2979 2980 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 2981 { 2982 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2983 unsigned long position; 2984 2985 ++*pos; 2986 if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1) 2987 return NULL; 2988 position = *pos + 1; 2989 return (void *) ((unsigned long) position); 2990 } 2991 2992 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 2993 { 2994 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2995 struct ext4_sb_info *sbi = EXT4_SB(sb); 2996 unsigned long position = ((unsigned long) v); 2997 struct ext4_group_info *grp; 2998 struct rb_node *n; 2999 unsigned int count, min, max; 3000 3001 position--; 3002 if (position >= MB_NUM_ORDERS(sb)) { 3003 seq_puts(seq, "fragment_size_tree:\n"); 3004 n = rb_first(&sbi->s_mb_avg_fragment_size_root); 3005 if (!n) { 3006 seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n"); 3007 return 0; 3008 } 3009 grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb); 3010 min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0; 3011 count = 1; 3012 while (rb_next(n)) { 3013 count++; 3014 n = rb_next(n); 3015 } 3016 grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb); 3017 max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0; 3018 3019 seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n", 3020 min, max, count); 3021 return 0; 3022 } 3023 3024 if (position == 0) { 3025 seq_printf(seq, "optimize_scan: %d\n", 3026 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3027 seq_puts(seq, "max_free_order_lists:\n"); 3028 } 3029 count = 0; 3030 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3031 bb_largest_free_order_node) 3032 count++; 3033 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3034 (unsigned int)position, count); 3035 3036 return 0; 3037 } 3038 3039 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3040 { 3041 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 3042 3043 read_unlock(&EXT4_SB(sb)->s_mb_rb_lock); 3044 } 3045 3046 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3047 .start = ext4_mb_seq_structs_summary_start, 3048 .next = ext4_mb_seq_structs_summary_next, 3049 .stop = ext4_mb_seq_structs_summary_stop, 3050 .show = ext4_mb_seq_structs_summary_show, 3051 }; 3052 3053 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3054 { 3055 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3056 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3057 3058 BUG_ON(!cachep); 3059 return cachep; 3060 } 3061 3062 /* 3063 * Allocate the top-level s_group_info array for the specified number 3064 * of groups 3065 */ 3066 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3067 { 3068 struct ext4_sb_info *sbi = EXT4_SB(sb); 3069 unsigned size; 3070 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3071 3072 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3073 EXT4_DESC_PER_BLOCK_BITS(sb); 3074 if (size <= sbi->s_group_info_size) 3075 return 0; 3076 3077 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3078 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3079 if (!new_groupinfo) { 3080 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3081 return -ENOMEM; 3082 } 3083 rcu_read_lock(); 3084 old_groupinfo = rcu_dereference(sbi->s_group_info); 3085 if (old_groupinfo) 3086 memcpy(new_groupinfo, old_groupinfo, 3087 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3088 rcu_read_unlock(); 3089 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3090 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3091 if (old_groupinfo) 3092 ext4_kvfree_array_rcu(old_groupinfo); 3093 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3094 sbi->s_group_info_size); 3095 return 0; 3096 } 3097 3098 /* Create and initialize ext4_group_info data for the given group. */ 3099 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3100 struct ext4_group_desc *desc) 3101 { 3102 int i; 3103 int metalen = 0; 3104 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3105 struct ext4_sb_info *sbi = EXT4_SB(sb); 3106 struct ext4_group_info **meta_group_info; 3107 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3108 3109 /* 3110 * First check if this group is the first of a reserved block. 3111 * If it's true, we have to allocate a new table of pointers 3112 * to ext4_group_info structures 3113 */ 3114 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3115 metalen = sizeof(*meta_group_info) << 3116 EXT4_DESC_PER_BLOCK_BITS(sb); 3117 meta_group_info = kmalloc(metalen, GFP_NOFS); 3118 if (meta_group_info == NULL) { 3119 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3120 "for a buddy group"); 3121 goto exit_meta_group_info; 3122 } 3123 rcu_read_lock(); 3124 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3125 rcu_read_unlock(); 3126 } 3127 3128 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3129 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3130 3131 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3132 if (meta_group_info[i] == NULL) { 3133 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3134 goto exit_group_info; 3135 } 3136 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3137 &(meta_group_info[i]->bb_state)); 3138 3139 /* 3140 * initialize bb_free to be able to skip 3141 * empty groups without initialization 3142 */ 3143 if (ext4_has_group_desc_csum(sb) && 3144 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3145 meta_group_info[i]->bb_free = 3146 ext4_free_clusters_after_init(sb, group, desc); 3147 } else { 3148 meta_group_info[i]->bb_free = 3149 ext4_free_group_clusters(sb, desc); 3150 } 3151 3152 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3153 init_rwsem(&meta_group_info[i]->alloc_sem); 3154 meta_group_info[i]->bb_free_root = RB_ROOT; 3155 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3156 RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb); 3157 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3158 meta_group_info[i]->bb_group = group; 3159 3160 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3161 return 0; 3162 3163 exit_group_info: 3164 /* If a meta_group_info table has been allocated, release it now */ 3165 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3166 struct ext4_group_info ***group_info; 3167 3168 rcu_read_lock(); 3169 group_info = rcu_dereference(sbi->s_group_info); 3170 kfree(group_info[idx]); 3171 group_info[idx] = NULL; 3172 rcu_read_unlock(); 3173 } 3174 exit_meta_group_info: 3175 return -ENOMEM; 3176 } /* ext4_mb_add_groupinfo */ 3177 3178 static int ext4_mb_init_backend(struct super_block *sb) 3179 { 3180 ext4_group_t ngroups = ext4_get_groups_count(sb); 3181 ext4_group_t i; 3182 struct ext4_sb_info *sbi = EXT4_SB(sb); 3183 int err; 3184 struct ext4_group_desc *desc; 3185 struct ext4_group_info ***group_info; 3186 struct kmem_cache *cachep; 3187 3188 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3189 if (err) 3190 return err; 3191 3192 sbi->s_buddy_cache = new_inode(sb); 3193 if (sbi->s_buddy_cache == NULL) { 3194 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3195 goto err_freesgi; 3196 } 3197 /* To avoid potentially colliding with an valid on-disk inode number, 3198 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3199 * not in the inode hash, so it should never be found by iget(), but 3200 * this will avoid confusion if it ever shows up during debugging. */ 3201 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3202 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3203 for (i = 0; i < ngroups; i++) { 3204 cond_resched(); 3205 desc = ext4_get_group_desc(sb, i, NULL); 3206 if (desc == NULL) { 3207 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3208 goto err_freebuddy; 3209 } 3210 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3211 goto err_freebuddy; 3212 } 3213 3214 if (ext4_has_feature_flex_bg(sb)) { 3215 /* a single flex group is supposed to be read by a single IO. 3216 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3217 * unsigned integer, so the maximum shift is 32. 3218 */ 3219 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3220 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3221 goto err_freebuddy; 3222 } 3223 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3224 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3225 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3226 } else { 3227 sbi->s_mb_prefetch = 32; 3228 } 3229 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3230 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3231 /* now many real IOs to prefetch within a single allocation at cr=0 3232 * given cr=0 is an CPU-related optimization we shouldn't try to 3233 * load too many groups, at some point we should start to use what 3234 * we've got in memory. 3235 * with an average random access time 5ms, it'd take a second to get 3236 * 200 groups (* N with flex_bg), so let's make this limit 4 3237 */ 3238 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3239 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3240 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3241 3242 return 0; 3243 3244 err_freebuddy: 3245 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3246 while (i-- > 0) 3247 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 3248 i = sbi->s_group_info_size; 3249 rcu_read_lock(); 3250 group_info = rcu_dereference(sbi->s_group_info); 3251 while (i-- > 0) 3252 kfree(group_info[i]); 3253 rcu_read_unlock(); 3254 iput(sbi->s_buddy_cache); 3255 err_freesgi: 3256 rcu_read_lock(); 3257 kvfree(rcu_dereference(sbi->s_group_info)); 3258 rcu_read_unlock(); 3259 return -ENOMEM; 3260 } 3261 3262 static void ext4_groupinfo_destroy_slabs(void) 3263 { 3264 int i; 3265 3266 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3267 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3268 ext4_groupinfo_caches[i] = NULL; 3269 } 3270 } 3271 3272 static int ext4_groupinfo_create_slab(size_t size) 3273 { 3274 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3275 int slab_size; 3276 int blocksize_bits = order_base_2(size); 3277 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3278 struct kmem_cache *cachep; 3279 3280 if (cache_index >= NR_GRPINFO_CACHES) 3281 return -EINVAL; 3282 3283 if (unlikely(cache_index < 0)) 3284 cache_index = 0; 3285 3286 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3287 if (ext4_groupinfo_caches[cache_index]) { 3288 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3289 return 0; /* Already created */ 3290 } 3291 3292 slab_size = offsetof(struct ext4_group_info, 3293 bb_counters[blocksize_bits + 2]); 3294 3295 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3296 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3297 NULL); 3298 3299 ext4_groupinfo_caches[cache_index] = cachep; 3300 3301 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3302 if (!cachep) { 3303 printk(KERN_EMERG 3304 "EXT4-fs: no memory for groupinfo slab cache\n"); 3305 return -ENOMEM; 3306 } 3307 3308 return 0; 3309 } 3310 3311 int ext4_mb_init(struct super_block *sb) 3312 { 3313 struct ext4_sb_info *sbi = EXT4_SB(sb); 3314 unsigned i, j; 3315 unsigned offset, offset_incr; 3316 unsigned max; 3317 int ret; 3318 3319 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3320 3321 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3322 if (sbi->s_mb_offsets == NULL) { 3323 ret = -ENOMEM; 3324 goto out; 3325 } 3326 3327 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3328 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3329 if (sbi->s_mb_maxs == NULL) { 3330 ret = -ENOMEM; 3331 goto out; 3332 } 3333 3334 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3335 if (ret < 0) 3336 goto out; 3337 3338 /* order 0 is regular bitmap */ 3339 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3340 sbi->s_mb_offsets[0] = 0; 3341 3342 i = 1; 3343 offset = 0; 3344 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3345 max = sb->s_blocksize << 2; 3346 do { 3347 sbi->s_mb_offsets[i] = offset; 3348 sbi->s_mb_maxs[i] = max; 3349 offset += offset_incr; 3350 offset_incr = offset_incr >> 1; 3351 max = max >> 1; 3352 i++; 3353 } while (i < MB_NUM_ORDERS(sb)); 3354 3355 sbi->s_mb_avg_fragment_size_root = RB_ROOT; 3356 sbi->s_mb_largest_free_orders = 3357 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3358 GFP_KERNEL); 3359 if (!sbi->s_mb_largest_free_orders) { 3360 ret = -ENOMEM; 3361 goto out; 3362 } 3363 sbi->s_mb_largest_free_orders_locks = 3364 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3365 GFP_KERNEL); 3366 if (!sbi->s_mb_largest_free_orders_locks) { 3367 ret = -ENOMEM; 3368 goto out; 3369 } 3370 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3371 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3372 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3373 } 3374 rwlock_init(&sbi->s_mb_rb_lock); 3375 3376 spin_lock_init(&sbi->s_md_lock); 3377 sbi->s_mb_free_pending = 0; 3378 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3379 3380 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3381 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3382 sbi->s_mb_stats = MB_DEFAULT_STATS; 3383 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3384 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3385 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC; 3386 /* 3387 * The default group preallocation is 512, which for 4k block 3388 * sizes translates to 2 megabytes. However for bigalloc file 3389 * systems, this is probably too big (i.e, if the cluster size 3390 * is 1 megabyte, then group preallocation size becomes half a 3391 * gigabyte!). As a default, we will keep a two megabyte 3392 * group pralloc size for cluster sizes up to 64k, and after 3393 * that, we will force a minimum group preallocation size of 3394 * 32 clusters. This translates to 8 megs when the cluster 3395 * size is 256k, and 32 megs when the cluster size is 1 meg, 3396 * which seems reasonable as a default. 3397 */ 3398 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3399 sbi->s_cluster_bits, 32); 3400 /* 3401 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3402 * to the lowest multiple of s_stripe which is bigger than 3403 * the s_mb_group_prealloc as determined above. We want 3404 * the preallocation size to be an exact multiple of the 3405 * RAID stripe size so that preallocations don't fragment 3406 * the stripes. 3407 */ 3408 if (sbi->s_stripe > 1) { 3409 sbi->s_mb_group_prealloc = roundup( 3410 sbi->s_mb_group_prealloc, sbi->s_stripe); 3411 } 3412 3413 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3414 if (sbi->s_locality_groups == NULL) { 3415 ret = -ENOMEM; 3416 goto out; 3417 } 3418 for_each_possible_cpu(i) { 3419 struct ext4_locality_group *lg; 3420 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3421 mutex_init(&lg->lg_mutex); 3422 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3423 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3424 spin_lock_init(&lg->lg_prealloc_lock); 3425 } 3426 3427 if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev))) 3428 sbi->s_mb_max_linear_groups = 0; 3429 else 3430 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3431 /* init file for buddy data */ 3432 ret = ext4_mb_init_backend(sb); 3433 if (ret != 0) 3434 goto out_free_locality_groups; 3435 3436 return 0; 3437 3438 out_free_locality_groups: 3439 free_percpu(sbi->s_locality_groups); 3440 sbi->s_locality_groups = NULL; 3441 out: 3442 kfree(sbi->s_mb_largest_free_orders); 3443 kfree(sbi->s_mb_largest_free_orders_locks); 3444 kfree(sbi->s_mb_offsets); 3445 sbi->s_mb_offsets = NULL; 3446 kfree(sbi->s_mb_maxs); 3447 sbi->s_mb_maxs = NULL; 3448 return ret; 3449 } 3450 3451 /* need to called with the ext4 group lock held */ 3452 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3453 { 3454 struct ext4_prealloc_space *pa; 3455 struct list_head *cur, *tmp; 3456 int count = 0; 3457 3458 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3459 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3460 list_del(&pa->pa_group_list); 3461 count++; 3462 kmem_cache_free(ext4_pspace_cachep, pa); 3463 } 3464 return count; 3465 } 3466 3467 int ext4_mb_release(struct super_block *sb) 3468 { 3469 ext4_group_t ngroups = ext4_get_groups_count(sb); 3470 ext4_group_t i; 3471 int num_meta_group_infos; 3472 struct ext4_group_info *grinfo, ***group_info; 3473 struct ext4_sb_info *sbi = EXT4_SB(sb); 3474 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3475 int count; 3476 3477 if (sbi->s_group_info) { 3478 for (i = 0; i < ngroups; i++) { 3479 cond_resched(); 3480 grinfo = ext4_get_group_info(sb, i); 3481 mb_group_bb_bitmap_free(grinfo); 3482 ext4_lock_group(sb, i); 3483 count = ext4_mb_cleanup_pa(grinfo); 3484 if (count) 3485 mb_debug(sb, "mballoc: %d PAs left\n", 3486 count); 3487 ext4_unlock_group(sb, i); 3488 kmem_cache_free(cachep, grinfo); 3489 } 3490 num_meta_group_infos = (ngroups + 3491 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3492 EXT4_DESC_PER_BLOCK_BITS(sb); 3493 rcu_read_lock(); 3494 group_info = rcu_dereference(sbi->s_group_info); 3495 for (i = 0; i < num_meta_group_infos; i++) 3496 kfree(group_info[i]); 3497 kvfree(group_info); 3498 rcu_read_unlock(); 3499 } 3500 kfree(sbi->s_mb_largest_free_orders); 3501 kfree(sbi->s_mb_largest_free_orders_locks); 3502 kfree(sbi->s_mb_offsets); 3503 kfree(sbi->s_mb_maxs); 3504 iput(sbi->s_buddy_cache); 3505 if (sbi->s_mb_stats) { 3506 ext4_msg(sb, KERN_INFO, 3507 "mballoc: %u blocks %u reqs (%u success)", 3508 atomic_read(&sbi->s_bal_allocated), 3509 atomic_read(&sbi->s_bal_reqs), 3510 atomic_read(&sbi->s_bal_success)); 3511 ext4_msg(sb, KERN_INFO, 3512 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3513 "%u 2^N hits, %u breaks, %u lost", 3514 atomic_read(&sbi->s_bal_ex_scanned), 3515 atomic_read(&sbi->s_bal_groups_scanned), 3516 atomic_read(&sbi->s_bal_goals), 3517 atomic_read(&sbi->s_bal_2orders), 3518 atomic_read(&sbi->s_bal_breaks), 3519 atomic_read(&sbi->s_mb_lost_chunks)); 3520 ext4_msg(sb, KERN_INFO, 3521 "mballoc: %u generated and it took %llu", 3522 atomic_read(&sbi->s_mb_buddies_generated), 3523 atomic64_read(&sbi->s_mb_generation_time)); 3524 ext4_msg(sb, KERN_INFO, 3525 "mballoc: %u preallocated, %u discarded", 3526 atomic_read(&sbi->s_mb_preallocated), 3527 atomic_read(&sbi->s_mb_discarded)); 3528 } 3529 3530 free_percpu(sbi->s_locality_groups); 3531 3532 return 0; 3533 } 3534 3535 static inline int ext4_issue_discard(struct super_block *sb, 3536 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3537 struct bio **biop) 3538 { 3539 ext4_fsblk_t discard_block; 3540 3541 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3542 ext4_group_first_block_no(sb, block_group)); 3543 count = EXT4_C2B(EXT4_SB(sb), count); 3544 trace_ext4_discard_blocks(sb, 3545 (unsigned long long) discard_block, count); 3546 if (biop) { 3547 return __blkdev_issue_discard(sb->s_bdev, 3548 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3549 (sector_t)count << (sb->s_blocksize_bits - 9), 3550 GFP_NOFS, 0, biop); 3551 } else 3552 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3553 } 3554 3555 static void ext4_free_data_in_buddy(struct super_block *sb, 3556 struct ext4_free_data *entry) 3557 { 3558 struct ext4_buddy e4b; 3559 struct ext4_group_info *db; 3560 int err, count = 0, count2 = 0; 3561 3562 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3563 entry->efd_count, entry->efd_group, entry); 3564 3565 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3566 /* we expect to find existing buddy because it's pinned */ 3567 BUG_ON(err != 0); 3568 3569 spin_lock(&EXT4_SB(sb)->s_md_lock); 3570 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3571 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3572 3573 db = e4b.bd_info; 3574 /* there are blocks to put in buddy to make them really free */ 3575 count += entry->efd_count; 3576 count2++; 3577 ext4_lock_group(sb, entry->efd_group); 3578 /* Take it out of per group rb tree */ 3579 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3580 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3581 3582 /* 3583 * Clear the trimmed flag for the group so that the next 3584 * ext4_trim_fs can trim it. 3585 * If the volume is mounted with -o discard, online discard 3586 * is supported and the free blocks will be trimmed online. 3587 */ 3588 if (!test_opt(sb, DISCARD)) 3589 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3590 3591 if (!db->bb_free_root.rb_node) { 3592 /* No more items in the per group rb tree 3593 * balance refcounts from ext4_mb_free_metadata() 3594 */ 3595 put_page(e4b.bd_buddy_page); 3596 put_page(e4b.bd_bitmap_page); 3597 } 3598 ext4_unlock_group(sb, entry->efd_group); 3599 kmem_cache_free(ext4_free_data_cachep, entry); 3600 ext4_mb_unload_buddy(&e4b); 3601 3602 mb_debug(sb, "freed %d blocks in %d structures\n", count, 3603 count2); 3604 } 3605 3606 /* 3607 * This function is called by the jbd2 layer once the commit has finished, 3608 * so we know we can free the blocks that were released with that commit. 3609 */ 3610 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3611 { 3612 struct ext4_sb_info *sbi = EXT4_SB(sb); 3613 struct ext4_free_data *entry, *tmp; 3614 struct bio *discard_bio = NULL; 3615 struct list_head freed_data_list; 3616 struct list_head *cut_pos = NULL; 3617 int err; 3618 3619 INIT_LIST_HEAD(&freed_data_list); 3620 3621 spin_lock(&sbi->s_md_lock); 3622 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3623 if (entry->efd_tid != commit_tid) 3624 break; 3625 cut_pos = &entry->efd_list; 3626 } 3627 if (cut_pos) 3628 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3629 cut_pos); 3630 spin_unlock(&sbi->s_md_lock); 3631 3632 if (test_opt(sb, DISCARD)) { 3633 list_for_each_entry(entry, &freed_data_list, efd_list) { 3634 err = ext4_issue_discard(sb, entry->efd_group, 3635 entry->efd_start_cluster, 3636 entry->efd_count, 3637 &discard_bio); 3638 if (err && err != -EOPNOTSUPP) { 3639 ext4_msg(sb, KERN_WARNING, "discard request in" 3640 " group:%d block:%d count:%d failed" 3641 " with %d", entry->efd_group, 3642 entry->efd_start_cluster, 3643 entry->efd_count, err); 3644 } else if (err == -EOPNOTSUPP) 3645 break; 3646 } 3647 3648 if (discard_bio) { 3649 submit_bio_wait(discard_bio); 3650 bio_put(discard_bio); 3651 } 3652 } 3653 3654 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3655 ext4_free_data_in_buddy(sb, entry); 3656 } 3657 3658 int __init ext4_init_mballoc(void) 3659 { 3660 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3661 SLAB_RECLAIM_ACCOUNT); 3662 if (ext4_pspace_cachep == NULL) 3663 goto out; 3664 3665 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3666 SLAB_RECLAIM_ACCOUNT); 3667 if (ext4_ac_cachep == NULL) 3668 goto out_pa_free; 3669 3670 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3671 SLAB_RECLAIM_ACCOUNT); 3672 if (ext4_free_data_cachep == NULL) 3673 goto out_ac_free; 3674 3675 return 0; 3676 3677 out_ac_free: 3678 kmem_cache_destroy(ext4_ac_cachep); 3679 out_pa_free: 3680 kmem_cache_destroy(ext4_pspace_cachep); 3681 out: 3682 return -ENOMEM; 3683 } 3684 3685 void ext4_exit_mballoc(void) 3686 { 3687 /* 3688 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3689 * before destroying the slab cache. 3690 */ 3691 rcu_barrier(); 3692 kmem_cache_destroy(ext4_pspace_cachep); 3693 kmem_cache_destroy(ext4_ac_cachep); 3694 kmem_cache_destroy(ext4_free_data_cachep); 3695 ext4_groupinfo_destroy_slabs(); 3696 } 3697 3698 3699 /* 3700 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3701 * Returns 0 if success or error code 3702 */ 3703 static noinline_for_stack int 3704 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3705 handle_t *handle, unsigned int reserv_clstrs) 3706 { 3707 struct buffer_head *bitmap_bh = NULL; 3708 struct ext4_group_desc *gdp; 3709 struct buffer_head *gdp_bh; 3710 struct ext4_sb_info *sbi; 3711 struct super_block *sb; 3712 ext4_fsblk_t block; 3713 int err, len; 3714 3715 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3716 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3717 3718 sb = ac->ac_sb; 3719 sbi = EXT4_SB(sb); 3720 3721 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3722 if (IS_ERR(bitmap_bh)) { 3723 err = PTR_ERR(bitmap_bh); 3724 bitmap_bh = NULL; 3725 goto out_err; 3726 } 3727 3728 BUFFER_TRACE(bitmap_bh, "getting write access"); 3729 err = ext4_journal_get_write_access(handle, bitmap_bh); 3730 if (err) 3731 goto out_err; 3732 3733 err = -EIO; 3734 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3735 if (!gdp) 3736 goto out_err; 3737 3738 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3739 ext4_free_group_clusters(sb, gdp)); 3740 3741 BUFFER_TRACE(gdp_bh, "get_write_access"); 3742 err = ext4_journal_get_write_access(handle, gdp_bh); 3743 if (err) 3744 goto out_err; 3745 3746 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3747 3748 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3749 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 3750 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 3751 "fs metadata", block, block+len); 3752 /* File system mounted not to panic on error 3753 * Fix the bitmap and return EFSCORRUPTED 3754 * We leak some of the blocks here. 3755 */ 3756 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3757 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3758 ac->ac_b_ex.fe_len); 3759 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3760 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3761 if (!err) 3762 err = -EFSCORRUPTED; 3763 goto out_err; 3764 } 3765 3766 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3767 #ifdef AGGRESSIVE_CHECK 3768 { 3769 int i; 3770 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3771 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3772 bitmap_bh->b_data)); 3773 } 3774 } 3775 #endif 3776 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3777 ac->ac_b_ex.fe_len); 3778 if (ext4_has_group_desc_csum(sb) && 3779 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3780 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3781 ext4_free_group_clusters_set(sb, gdp, 3782 ext4_free_clusters_after_init(sb, 3783 ac->ac_b_ex.fe_group, gdp)); 3784 } 3785 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3786 ext4_free_group_clusters_set(sb, gdp, len); 3787 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3788 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3789 3790 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3791 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3792 /* 3793 * Now reduce the dirty block count also. Should not go negative 3794 */ 3795 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3796 /* release all the reserved blocks if non delalloc */ 3797 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3798 reserv_clstrs); 3799 3800 if (sbi->s_log_groups_per_flex) { 3801 ext4_group_t flex_group = ext4_flex_group(sbi, 3802 ac->ac_b_ex.fe_group); 3803 atomic64_sub(ac->ac_b_ex.fe_len, 3804 &sbi_array_rcu_deref(sbi, s_flex_groups, 3805 flex_group)->free_clusters); 3806 } 3807 3808 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3809 if (err) 3810 goto out_err; 3811 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3812 3813 out_err: 3814 brelse(bitmap_bh); 3815 return err; 3816 } 3817 3818 /* 3819 * Idempotent helper for Ext4 fast commit replay path to set the state of 3820 * blocks in bitmaps and update counters. 3821 */ 3822 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 3823 int len, int state) 3824 { 3825 struct buffer_head *bitmap_bh = NULL; 3826 struct ext4_group_desc *gdp; 3827 struct buffer_head *gdp_bh; 3828 struct ext4_sb_info *sbi = EXT4_SB(sb); 3829 ext4_group_t group; 3830 ext4_grpblk_t blkoff; 3831 int i, clen, err; 3832 int already; 3833 3834 clen = EXT4_B2C(sbi, len); 3835 3836 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 3837 bitmap_bh = ext4_read_block_bitmap(sb, group); 3838 if (IS_ERR(bitmap_bh)) { 3839 err = PTR_ERR(bitmap_bh); 3840 bitmap_bh = NULL; 3841 goto out_err; 3842 } 3843 3844 err = -EIO; 3845 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 3846 if (!gdp) 3847 goto out_err; 3848 3849 ext4_lock_group(sb, group); 3850 already = 0; 3851 for (i = 0; i < clen; i++) 3852 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state) 3853 already++; 3854 3855 if (state) 3856 ext4_set_bits(bitmap_bh->b_data, blkoff, clen); 3857 else 3858 mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen); 3859 if (ext4_has_group_desc_csum(sb) && 3860 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3861 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3862 ext4_free_group_clusters_set(sb, gdp, 3863 ext4_free_clusters_after_init(sb, 3864 group, gdp)); 3865 } 3866 if (state) 3867 clen = ext4_free_group_clusters(sb, gdp) - clen + already; 3868 else 3869 clen = ext4_free_group_clusters(sb, gdp) + clen - already; 3870 3871 ext4_free_group_clusters_set(sb, gdp, clen); 3872 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 3873 ext4_group_desc_csum_set(sb, group, gdp); 3874 3875 ext4_unlock_group(sb, group); 3876 3877 if (sbi->s_log_groups_per_flex) { 3878 ext4_group_t flex_group = ext4_flex_group(sbi, group); 3879 3880 atomic64_sub(len, 3881 &sbi_array_rcu_deref(sbi, s_flex_groups, 3882 flex_group)->free_clusters); 3883 } 3884 3885 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 3886 if (err) 3887 goto out_err; 3888 sync_dirty_buffer(bitmap_bh); 3889 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 3890 sync_dirty_buffer(gdp_bh); 3891 3892 out_err: 3893 brelse(bitmap_bh); 3894 } 3895 3896 /* 3897 * here we normalize request for locality group 3898 * Group request are normalized to s_mb_group_prealloc, which goes to 3899 * s_strip if we set the same via mount option. 3900 * s_mb_group_prealloc can be configured via 3901 * /sys/fs/ext4/<partition>/mb_group_prealloc 3902 * 3903 * XXX: should we try to preallocate more than the group has now? 3904 */ 3905 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3906 { 3907 struct super_block *sb = ac->ac_sb; 3908 struct ext4_locality_group *lg = ac->ac_lg; 3909 3910 BUG_ON(lg == NULL); 3911 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3912 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 3913 } 3914 3915 /* 3916 * Normalization means making request better in terms of 3917 * size and alignment 3918 */ 3919 static noinline_for_stack void 3920 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3921 struct ext4_allocation_request *ar) 3922 { 3923 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3924 int bsbits, max; 3925 ext4_lblk_t end; 3926 loff_t size, start_off; 3927 loff_t orig_size __maybe_unused; 3928 ext4_lblk_t start; 3929 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3930 struct ext4_prealloc_space *pa; 3931 3932 /* do normalize only data requests, metadata requests 3933 do not need preallocation */ 3934 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3935 return; 3936 3937 /* sometime caller may want exact blocks */ 3938 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3939 return; 3940 3941 /* caller may indicate that preallocation isn't 3942 * required (it's a tail, for example) */ 3943 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3944 return; 3945 3946 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3947 ext4_mb_normalize_group_request(ac); 3948 return ; 3949 } 3950 3951 bsbits = ac->ac_sb->s_blocksize_bits; 3952 3953 /* first, let's learn actual file size 3954 * given current request is allocated */ 3955 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3956 size = size << bsbits; 3957 if (size < i_size_read(ac->ac_inode)) 3958 size = i_size_read(ac->ac_inode); 3959 orig_size = size; 3960 3961 /* max size of free chunks */ 3962 max = 2 << bsbits; 3963 3964 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3965 (req <= (size) || max <= (chunk_size)) 3966 3967 /* first, try to predict filesize */ 3968 /* XXX: should this table be tunable? */ 3969 start_off = 0; 3970 if (size <= 16 * 1024) { 3971 size = 16 * 1024; 3972 } else if (size <= 32 * 1024) { 3973 size = 32 * 1024; 3974 } else if (size <= 64 * 1024) { 3975 size = 64 * 1024; 3976 } else if (size <= 128 * 1024) { 3977 size = 128 * 1024; 3978 } else if (size <= 256 * 1024) { 3979 size = 256 * 1024; 3980 } else if (size <= 512 * 1024) { 3981 size = 512 * 1024; 3982 } else if (size <= 1024 * 1024) { 3983 size = 1024 * 1024; 3984 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3985 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3986 (21 - bsbits)) << 21; 3987 size = 2 * 1024 * 1024; 3988 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3989 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3990 (22 - bsbits)) << 22; 3991 size = 4 * 1024 * 1024; 3992 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3993 (8<<20)>>bsbits, max, 8 * 1024)) { 3994 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3995 (23 - bsbits)) << 23; 3996 size = 8 * 1024 * 1024; 3997 } else { 3998 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3999 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 4000 ac->ac_o_ex.fe_len) << bsbits; 4001 } 4002 size = size >> bsbits; 4003 start = start_off >> bsbits; 4004 4005 /* don't cover already allocated blocks in selected range */ 4006 if (ar->pleft && start <= ar->lleft) { 4007 size -= ar->lleft + 1 - start; 4008 start = ar->lleft + 1; 4009 } 4010 if (ar->pright && start + size - 1 >= ar->lright) 4011 size -= start + size - ar->lright; 4012 4013 /* 4014 * Trim allocation request for filesystems with artificially small 4015 * groups. 4016 */ 4017 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4018 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4019 4020 end = start + size; 4021 4022 /* check we don't cross already preallocated blocks */ 4023 rcu_read_lock(); 4024 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4025 ext4_lblk_t pa_end; 4026 4027 if (pa->pa_deleted) 4028 continue; 4029 spin_lock(&pa->pa_lock); 4030 if (pa->pa_deleted) { 4031 spin_unlock(&pa->pa_lock); 4032 continue; 4033 } 4034 4035 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 4036 pa->pa_len); 4037 4038 /* PA must not overlap original request */ 4039 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 4040 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 4041 4042 /* skip PAs this normalized request doesn't overlap with */ 4043 if (pa->pa_lstart >= end || pa_end <= start) { 4044 spin_unlock(&pa->pa_lock); 4045 continue; 4046 } 4047 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 4048 4049 /* adjust start or end to be adjacent to this pa */ 4050 if (pa_end <= ac->ac_o_ex.fe_logical) { 4051 BUG_ON(pa_end < start); 4052 start = pa_end; 4053 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4054 BUG_ON(pa->pa_lstart > end); 4055 end = pa->pa_lstart; 4056 } 4057 spin_unlock(&pa->pa_lock); 4058 } 4059 rcu_read_unlock(); 4060 size = end - start; 4061 4062 /* XXX: extra loop to check we really don't overlap preallocations */ 4063 rcu_read_lock(); 4064 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4065 ext4_lblk_t pa_end; 4066 4067 spin_lock(&pa->pa_lock); 4068 if (pa->pa_deleted == 0) { 4069 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 4070 pa->pa_len); 4071 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 4072 } 4073 spin_unlock(&pa->pa_lock); 4074 } 4075 rcu_read_unlock(); 4076 4077 if (start + size <= ac->ac_o_ex.fe_logical && 4078 start > ac->ac_o_ex.fe_logical) { 4079 ext4_msg(ac->ac_sb, KERN_ERR, 4080 "start %lu, size %lu, fe_logical %lu", 4081 (unsigned long) start, (unsigned long) size, 4082 (unsigned long) ac->ac_o_ex.fe_logical); 4083 BUG(); 4084 } 4085 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4086 4087 /* now prepare goal request */ 4088 4089 /* XXX: is it better to align blocks WRT to logical 4090 * placement or satisfy big request as is */ 4091 ac->ac_g_ex.fe_logical = start; 4092 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4093 4094 /* define goal start in order to merge */ 4095 if (ar->pright && (ar->lright == (start + size))) { 4096 /* merge to the right */ 4097 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4098 &ac->ac_f_ex.fe_group, 4099 &ac->ac_f_ex.fe_start); 4100 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4101 } 4102 if (ar->pleft && (ar->lleft + 1 == start)) { 4103 /* merge to the left */ 4104 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4105 &ac->ac_f_ex.fe_group, 4106 &ac->ac_f_ex.fe_start); 4107 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4108 } 4109 4110 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4111 orig_size, start); 4112 } 4113 4114 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4115 { 4116 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4117 4118 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4119 atomic_inc(&sbi->s_bal_reqs); 4120 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4121 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4122 atomic_inc(&sbi->s_bal_success); 4123 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4124 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4125 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4126 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4127 atomic_inc(&sbi->s_bal_goals); 4128 if (ac->ac_found > sbi->s_mb_max_to_scan) 4129 atomic_inc(&sbi->s_bal_breaks); 4130 } 4131 4132 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4133 trace_ext4_mballoc_alloc(ac); 4134 else 4135 trace_ext4_mballoc_prealloc(ac); 4136 } 4137 4138 /* 4139 * Called on failure; free up any blocks from the inode PA for this 4140 * context. We don't need this for MB_GROUP_PA because we only change 4141 * pa_free in ext4_mb_release_context(), but on failure, we've already 4142 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4143 */ 4144 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4145 { 4146 struct ext4_prealloc_space *pa = ac->ac_pa; 4147 struct ext4_buddy e4b; 4148 int err; 4149 4150 if (pa == NULL) { 4151 if (ac->ac_f_ex.fe_len == 0) 4152 return; 4153 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4154 if (err) { 4155 /* 4156 * This should never happen since we pin the 4157 * pages in the ext4_allocation_context so 4158 * ext4_mb_load_buddy() should never fail. 4159 */ 4160 WARN(1, "mb_load_buddy failed (%d)", err); 4161 return; 4162 } 4163 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4164 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4165 ac->ac_f_ex.fe_len); 4166 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4167 ext4_mb_unload_buddy(&e4b); 4168 return; 4169 } 4170 if (pa->pa_type == MB_INODE_PA) 4171 pa->pa_free += ac->ac_b_ex.fe_len; 4172 } 4173 4174 /* 4175 * use blocks preallocated to inode 4176 */ 4177 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4178 struct ext4_prealloc_space *pa) 4179 { 4180 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4181 ext4_fsblk_t start; 4182 ext4_fsblk_t end; 4183 int len; 4184 4185 /* found preallocated blocks, use them */ 4186 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4187 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4188 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4189 len = EXT4_NUM_B2C(sbi, end - start); 4190 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4191 &ac->ac_b_ex.fe_start); 4192 ac->ac_b_ex.fe_len = len; 4193 ac->ac_status = AC_STATUS_FOUND; 4194 ac->ac_pa = pa; 4195 4196 BUG_ON(start < pa->pa_pstart); 4197 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4198 BUG_ON(pa->pa_free < len); 4199 pa->pa_free -= len; 4200 4201 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4202 } 4203 4204 /* 4205 * use blocks preallocated to locality group 4206 */ 4207 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4208 struct ext4_prealloc_space *pa) 4209 { 4210 unsigned int len = ac->ac_o_ex.fe_len; 4211 4212 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4213 &ac->ac_b_ex.fe_group, 4214 &ac->ac_b_ex.fe_start); 4215 ac->ac_b_ex.fe_len = len; 4216 ac->ac_status = AC_STATUS_FOUND; 4217 ac->ac_pa = pa; 4218 4219 /* we don't correct pa_pstart or pa_plen here to avoid 4220 * possible race when the group is being loaded concurrently 4221 * instead we correct pa later, after blocks are marked 4222 * in on-disk bitmap -- see ext4_mb_release_context() 4223 * Other CPUs are prevented from allocating from this pa by lg_mutex 4224 */ 4225 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4226 pa->pa_lstart-len, len, pa); 4227 } 4228 4229 /* 4230 * Return the prealloc space that have minimal distance 4231 * from the goal block. @cpa is the prealloc 4232 * space that is having currently known minimal distance 4233 * from the goal block. 4234 */ 4235 static struct ext4_prealloc_space * 4236 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4237 struct ext4_prealloc_space *pa, 4238 struct ext4_prealloc_space *cpa) 4239 { 4240 ext4_fsblk_t cur_distance, new_distance; 4241 4242 if (cpa == NULL) { 4243 atomic_inc(&pa->pa_count); 4244 return pa; 4245 } 4246 cur_distance = abs(goal_block - cpa->pa_pstart); 4247 new_distance = abs(goal_block - pa->pa_pstart); 4248 4249 if (cur_distance <= new_distance) 4250 return cpa; 4251 4252 /* drop the previous reference */ 4253 atomic_dec(&cpa->pa_count); 4254 atomic_inc(&pa->pa_count); 4255 return pa; 4256 } 4257 4258 /* 4259 * search goal blocks in preallocated space 4260 */ 4261 static noinline_for_stack bool 4262 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4263 { 4264 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4265 int order, i; 4266 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4267 struct ext4_locality_group *lg; 4268 struct ext4_prealloc_space *pa, *cpa = NULL; 4269 ext4_fsblk_t goal_block; 4270 4271 /* only data can be preallocated */ 4272 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4273 return false; 4274 4275 /* first, try per-file preallocation */ 4276 rcu_read_lock(); 4277 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4278 4279 /* all fields in this condition don't change, 4280 * so we can skip locking for them */ 4281 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 4282 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 4283 EXT4_C2B(sbi, pa->pa_len))) 4284 continue; 4285 4286 /* non-extent files can't have physical blocks past 2^32 */ 4287 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4288 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 4289 EXT4_MAX_BLOCK_FILE_PHYS)) 4290 continue; 4291 4292 /* found preallocated blocks, use them */ 4293 spin_lock(&pa->pa_lock); 4294 if (pa->pa_deleted == 0 && pa->pa_free) { 4295 atomic_inc(&pa->pa_count); 4296 ext4_mb_use_inode_pa(ac, pa); 4297 spin_unlock(&pa->pa_lock); 4298 ac->ac_criteria = 10; 4299 rcu_read_unlock(); 4300 return true; 4301 } 4302 spin_unlock(&pa->pa_lock); 4303 } 4304 rcu_read_unlock(); 4305 4306 /* can we use group allocation? */ 4307 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4308 return false; 4309 4310 /* inode may have no locality group for some reason */ 4311 lg = ac->ac_lg; 4312 if (lg == NULL) 4313 return false; 4314 order = fls(ac->ac_o_ex.fe_len) - 1; 4315 if (order > PREALLOC_TB_SIZE - 1) 4316 /* The max size of hash table is PREALLOC_TB_SIZE */ 4317 order = PREALLOC_TB_SIZE - 1; 4318 4319 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4320 /* 4321 * search for the prealloc space that is having 4322 * minimal distance from the goal block. 4323 */ 4324 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4325 rcu_read_lock(); 4326 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 4327 pa_inode_list) { 4328 spin_lock(&pa->pa_lock); 4329 if (pa->pa_deleted == 0 && 4330 pa->pa_free >= ac->ac_o_ex.fe_len) { 4331 4332 cpa = ext4_mb_check_group_pa(goal_block, 4333 pa, cpa); 4334 } 4335 spin_unlock(&pa->pa_lock); 4336 } 4337 rcu_read_unlock(); 4338 } 4339 if (cpa) { 4340 ext4_mb_use_group_pa(ac, cpa); 4341 ac->ac_criteria = 20; 4342 return true; 4343 } 4344 return false; 4345 } 4346 4347 /* 4348 * the function goes through all block freed in the group 4349 * but not yet committed and marks them used in in-core bitmap. 4350 * buddy must be generated from this bitmap 4351 * Need to be called with the ext4 group lock held 4352 */ 4353 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 4354 ext4_group_t group) 4355 { 4356 struct rb_node *n; 4357 struct ext4_group_info *grp; 4358 struct ext4_free_data *entry; 4359 4360 grp = ext4_get_group_info(sb, group); 4361 n = rb_first(&(grp->bb_free_root)); 4362 4363 while (n) { 4364 entry = rb_entry(n, struct ext4_free_data, efd_node); 4365 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 4366 n = rb_next(n); 4367 } 4368 return; 4369 } 4370 4371 /* 4372 * the function goes through all preallocation in this group and marks them 4373 * used in in-core bitmap. buddy must be generated from this bitmap 4374 * Need to be called with ext4 group lock held 4375 */ 4376 static noinline_for_stack 4377 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4378 ext4_group_t group) 4379 { 4380 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4381 struct ext4_prealloc_space *pa; 4382 struct list_head *cur; 4383 ext4_group_t groupnr; 4384 ext4_grpblk_t start; 4385 int preallocated = 0; 4386 int len; 4387 4388 /* all form of preallocation discards first load group, 4389 * so the only competing code is preallocation use. 4390 * we don't need any locking here 4391 * notice we do NOT ignore preallocations with pa_deleted 4392 * otherwise we could leave used blocks available for 4393 * allocation in buddy when concurrent ext4_mb_put_pa() 4394 * is dropping preallocation 4395 */ 4396 list_for_each(cur, &grp->bb_prealloc_list) { 4397 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 4398 spin_lock(&pa->pa_lock); 4399 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4400 &groupnr, &start); 4401 len = pa->pa_len; 4402 spin_unlock(&pa->pa_lock); 4403 if (unlikely(len == 0)) 4404 continue; 4405 BUG_ON(groupnr != group); 4406 ext4_set_bits(bitmap, start, len); 4407 preallocated += len; 4408 } 4409 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 4410 } 4411 4412 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 4413 struct ext4_prealloc_space *pa) 4414 { 4415 struct ext4_inode_info *ei; 4416 4417 if (pa->pa_deleted) { 4418 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 4419 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 4420 pa->pa_len); 4421 return; 4422 } 4423 4424 pa->pa_deleted = 1; 4425 4426 if (pa->pa_type == MB_INODE_PA) { 4427 ei = EXT4_I(pa->pa_inode); 4428 atomic_dec(&ei->i_prealloc_active); 4429 } 4430 } 4431 4432 static void ext4_mb_pa_callback(struct rcu_head *head) 4433 { 4434 struct ext4_prealloc_space *pa; 4435 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 4436 4437 BUG_ON(atomic_read(&pa->pa_count)); 4438 BUG_ON(pa->pa_deleted == 0); 4439 kmem_cache_free(ext4_pspace_cachep, pa); 4440 } 4441 4442 /* 4443 * drops a reference to preallocated space descriptor 4444 * if this was the last reference and the space is consumed 4445 */ 4446 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 4447 struct super_block *sb, struct ext4_prealloc_space *pa) 4448 { 4449 ext4_group_t grp; 4450 ext4_fsblk_t grp_blk; 4451 4452 /* in this short window concurrent discard can set pa_deleted */ 4453 spin_lock(&pa->pa_lock); 4454 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 4455 spin_unlock(&pa->pa_lock); 4456 return; 4457 } 4458 4459 if (pa->pa_deleted == 1) { 4460 spin_unlock(&pa->pa_lock); 4461 return; 4462 } 4463 4464 ext4_mb_mark_pa_deleted(sb, pa); 4465 spin_unlock(&pa->pa_lock); 4466 4467 grp_blk = pa->pa_pstart; 4468 /* 4469 * If doing group-based preallocation, pa_pstart may be in the 4470 * next group when pa is used up 4471 */ 4472 if (pa->pa_type == MB_GROUP_PA) 4473 grp_blk--; 4474 4475 grp = ext4_get_group_number(sb, grp_blk); 4476 4477 /* 4478 * possible race: 4479 * 4480 * P1 (buddy init) P2 (regular allocation) 4481 * find block B in PA 4482 * copy on-disk bitmap to buddy 4483 * mark B in on-disk bitmap 4484 * drop PA from group 4485 * mark all PAs in buddy 4486 * 4487 * thus, P1 initializes buddy with B available. to prevent this 4488 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 4489 * against that pair 4490 */ 4491 ext4_lock_group(sb, grp); 4492 list_del(&pa->pa_group_list); 4493 ext4_unlock_group(sb, grp); 4494 4495 spin_lock(pa->pa_obj_lock); 4496 list_del_rcu(&pa->pa_inode_list); 4497 spin_unlock(pa->pa_obj_lock); 4498 4499 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4500 } 4501 4502 /* 4503 * creates new preallocated space for given inode 4504 */ 4505 static noinline_for_stack void 4506 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 4507 { 4508 struct super_block *sb = ac->ac_sb; 4509 struct ext4_sb_info *sbi = EXT4_SB(sb); 4510 struct ext4_prealloc_space *pa; 4511 struct ext4_group_info *grp; 4512 struct ext4_inode_info *ei; 4513 4514 /* preallocate only when found space is larger then requested */ 4515 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4516 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4517 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4518 BUG_ON(ac->ac_pa == NULL); 4519 4520 pa = ac->ac_pa; 4521 4522 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 4523 int winl; 4524 int wins; 4525 int win; 4526 int offs; 4527 4528 /* we can't allocate as much as normalizer wants. 4529 * so, found space must get proper lstart 4530 * to cover original request */ 4531 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 4532 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 4533 4534 /* we're limited by original request in that 4535 * logical block must be covered any way 4536 * winl is window we can move our chunk within */ 4537 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 4538 4539 /* also, we should cover whole original request */ 4540 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 4541 4542 /* the smallest one defines real window */ 4543 win = min(winl, wins); 4544 4545 offs = ac->ac_o_ex.fe_logical % 4546 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4547 if (offs && offs < win) 4548 win = offs; 4549 4550 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 4551 EXT4_NUM_B2C(sbi, win); 4552 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 4553 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 4554 } 4555 4556 /* preallocation can change ac_b_ex, thus we store actually 4557 * allocated blocks for history */ 4558 ac->ac_f_ex = ac->ac_b_ex; 4559 4560 pa->pa_lstart = ac->ac_b_ex.fe_logical; 4561 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4562 pa->pa_len = ac->ac_b_ex.fe_len; 4563 pa->pa_free = pa->pa_len; 4564 spin_lock_init(&pa->pa_lock); 4565 INIT_LIST_HEAD(&pa->pa_inode_list); 4566 INIT_LIST_HEAD(&pa->pa_group_list); 4567 pa->pa_deleted = 0; 4568 pa->pa_type = MB_INODE_PA; 4569 4570 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4571 pa->pa_len, pa->pa_lstart); 4572 trace_ext4_mb_new_inode_pa(ac, pa); 4573 4574 ext4_mb_use_inode_pa(ac, pa); 4575 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 4576 4577 ei = EXT4_I(ac->ac_inode); 4578 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4579 4580 pa->pa_obj_lock = &ei->i_prealloc_lock; 4581 pa->pa_inode = ac->ac_inode; 4582 4583 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4584 4585 spin_lock(pa->pa_obj_lock); 4586 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 4587 spin_unlock(pa->pa_obj_lock); 4588 atomic_inc(&ei->i_prealloc_active); 4589 } 4590 4591 /* 4592 * creates new preallocated space for locality group inodes belongs to 4593 */ 4594 static noinline_for_stack void 4595 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 4596 { 4597 struct super_block *sb = ac->ac_sb; 4598 struct ext4_locality_group *lg; 4599 struct ext4_prealloc_space *pa; 4600 struct ext4_group_info *grp; 4601 4602 /* preallocate only when found space is larger then requested */ 4603 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4604 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4605 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4606 BUG_ON(ac->ac_pa == NULL); 4607 4608 pa = ac->ac_pa; 4609 4610 /* preallocation can change ac_b_ex, thus we store actually 4611 * allocated blocks for history */ 4612 ac->ac_f_ex = ac->ac_b_ex; 4613 4614 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4615 pa->pa_lstart = pa->pa_pstart; 4616 pa->pa_len = ac->ac_b_ex.fe_len; 4617 pa->pa_free = pa->pa_len; 4618 spin_lock_init(&pa->pa_lock); 4619 INIT_LIST_HEAD(&pa->pa_inode_list); 4620 INIT_LIST_HEAD(&pa->pa_group_list); 4621 pa->pa_deleted = 0; 4622 pa->pa_type = MB_GROUP_PA; 4623 4624 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4625 pa->pa_len, pa->pa_lstart); 4626 trace_ext4_mb_new_group_pa(ac, pa); 4627 4628 ext4_mb_use_group_pa(ac, pa); 4629 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 4630 4631 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4632 lg = ac->ac_lg; 4633 BUG_ON(lg == NULL); 4634 4635 pa->pa_obj_lock = &lg->lg_prealloc_lock; 4636 pa->pa_inode = NULL; 4637 4638 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4639 4640 /* 4641 * We will later add the new pa to the right bucket 4642 * after updating the pa_free in ext4_mb_release_context 4643 */ 4644 } 4645 4646 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 4647 { 4648 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4649 ext4_mb_new_group_pa(ac); 4650 else 4651 ext4_mb_new_inode_pa(ac); 4652 } 4653 4654 /* 4655 * finds all unused blocks in on-disk bitmap, frees them in 4656 * in-core bitmap and buddy. 4657 * @pa must be unlinked from inode and group lists, so that 4658 * nobody else can find/use it. 4659 * the caller MUST hold group/inode locks. 4660 * TODO: optimize the case when there are no in-core structures yet 4661 */ 4662 static noinline_for_stack int 4663 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 4664 struct ext4_prealloc_space *pa) 4665 { 4666 struct super_block *sb = e4b->bd_sb; 4667 struct ext4_sb_info *sbi = EXT4_SB(sb); 4668 unsigned int end; 4669 unsigned int next; 4670 ext4_group_t group; 4671 ext4_grpblk_t bit; 4672 unsigned long long grp_blk_start; 4673 int free = 0; 4674 4675 BUG_ON(pa->pa_deleted == 0); 4676 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4677 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 4678 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4679 end = bit + pa->pa_len; 4680 4681 while (bit < end) { 4682 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 4683 if (bit >= end) 4684 break; 4685 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 4686 mb_debug(sb, "free preallocated %u/%u in group %u\n", 4687 (unsigned) ext4_group_first_block_no(sb, group) + bit, 4688 (unsigned) next - bit, (unsigned) group); 4689 free += next - bit; 4690 4691 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 4692 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 4693 EXT4_C2B(sbi, bit)), 4694 next - bit); 4695 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 4696 bit = next + 1; 4697 } 4698 if (free != pa->pa_free) { 4699 ext4_msg(e4b->bd_sb, KERN_CRIT, 4700 "pa %p: logic %lu, phys. %lu, len %d", 4701 pa, (unsigned long) pa->pa_lstart, 4702 (unsigned long) pa->pa_pstart, 4703 pa->pa_len); 4704 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 4705 free, pa->pa_free); 4706 /* 4707 * pa is already deleted so we use the value obtained 4708 * from the bitmap and continue. 4709 */ 4710 } 4711 atomic_add(free, &sbi->s_mb_discarded); 4712 4713 return 0; 4714 } 4715 4716 static noinline_for_stack int 4717 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 4718 struct ext4_prealloc_space *pa) 4719 { 4720 struct super_block *sb = e4b->bd_sb; 4721 ext4_group_t group; 4722 ext4_grpblk_t bit; 4723 4724 trace_ext4_mb_release_group_pa(sb, pa); 4725 BUG_ON(pa->pa_deleted == 0); 4726 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4727 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4728 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 4729 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 4730 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 4731 4732 return 0; 4733 } 4734 4735 /* 4736 * releases all preallocations in given group 4737 * 4738 * first, we need to decide discard policy: 4739 * - when do we discard 4740 * 1) ENOSPC 4741 * - how many do we discard 4742 * 1) how many requested 4743 */ 4744 static noinline_for_stack int 4745 ext4_mb_discard_group_preallocations(struct super_block *sb, 4746 ext4_group_t group, int needed) 4747 { 4748 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4749 struct buffer_head *bitmap_bh = NULL; 4750 struct ext4_prealloc_space *pa, *tmp; 4751 struct list_head list; 4752 struct ext4_buddy e4b; 4753 int err; 4754 int busy = 0; 4755 int free, free_total = 0; 4756 4757 mb_debug(sb, "discard preallocation for group %u\n", group); 4758 if (list_empty(&grp->bb_prealloc_list)) 4759 goto out_dbg; 4760 4761 bitmap_bh = ext4_read_block_bitmap(sb, group); 4762 if (IS_ERR(bitmap_bh)) { 4763 err = PTR_ERR(bitmap_bh); 4764 ext4_error_err(sb, -err, 4765 "Error %d reading block bitmap for %u", 4766 err, group); 4767 goto out_dbg; 4768 } 4769 4770 err = ext4_mb_load_buddy(sb, group, &e4b); 4771 if (err) { 4772 ext4_warning(sb, "Error %d loading buddy information for %u", 4773 err, group); 4774 put_bh(bitmap_bh); 4775 goto out_dbg; 4776 } 4777 4778 if (needed == 0) 4779 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 4780 4781 INIT_LIST_HEAD(&list); 4782 repeat: 4783 free = 0; 4784 ext4_lock_group(sb, group); 4785 list_for_each_entry_safe(pa, tmp, 4786 &grp->bb_prealloc_list, pa_group_list) { 4787 spin_lock(&pa->pa_lock); 4788 if (atomic_read(&pa->pa_count)) { 4789 spin_unlock(&pa->pa_lock); 4790 busy = 1; 4791 continue; 4792 } 4793 if (pa->pa_deleted) { 4794 spin_unlock(&pa->pa_lock); 4795 continue; 4796 } 4797 4798 /* seems this one can be freed ... */ 4799 ext4_mb_mark_pa_deleted(sb, pa); 4800 4801 if (!free) 4802 this_cpu_inc(discard_pa_seq); 4803 4804 /* we can trust pa_free ... */ 4805 free += pa->pa_free; 4806 4807 spin_unlock(&pa->pa_lock); 4808 4809 list_del(&pa->pa_group_list); 4810 list_add(&pa->u.pa_tmp_list, &list); 4811 } 4812 4813 /* now free all selected PAs */ 4814 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4815 4816 /* remove from object (inode or locality group) */ 4817 spin_lock(pa->pa_obj_lock); 4818 list_del_rcu(&pa->pa_inode_list); 4819 spin_unlock(pa->pa_obj_lock); 4820 4821 if (pa->pa_type == MB_GROUP_PA) 4822 ext4_mb_release_group_pa(&e4b, pa); 4823 else 4824 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4825 4826 list_del(&pa->u.pa_tmp_list); 4827 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4828 } 4829 4830 free_total += free; 4831 4832 /* if we still need more blocks and some PAs were used, try again */ 4833 if (free_total < needed && busy) { 4834 ext4_unlock_group(sb, group); 4835 cond_resched(); 4836 busy = 0; 4837 goto repeat; 4838 } 4839 ext4_unlock_group(sb, group); 4840 ext4_mb_unload_buddy(&e4b); 4841 put_bh(bitmap_bh); 4842 out_dbg: 4843 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 4844 free_total, group, grp->bb_free); 4845 return free_total; 4846 } 4847 4848 /* 4849 * releases all non-used preallocated blocks for given inode 4850 * 4851 * It's important to discard preallocations under i_data_sem 4852 * We don't want another block to be served from the prealloc 4853 * space when we are discarding the inode prealloc space. 4854 * 4855 * FIXME!! Make sure it is valid at all the call sites 4856 */ 4857 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 4858 { 4859 struct ext4_inode_info *ei = EXT4_I(inode); 4860 struct super_block *sb = inode->i_sb; 4861 struct buffer_head *bitmap_bh = NULL; 4862 struct ext4_prealloc_space *pa, *tmp; 4863 ext4_group_t group = 0; 4864 struct list_head list; 4865 struct ext4_buddy e4b; 4866 int err; 4867 4868 if (!S_ISREG(inode->i_mode)) { 4869 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4870 return; 4871 } 4872 4873 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 4874 return; 4875 4876 mb_debug(sb, "discard preallocation for inode %lu\n", 4877 inode->i_ino); 4878 trace_ext4_discard_preallocations(inode, 4879 atomic_read(&ei->i_prealloc_active), needed); 4880 4881 INIT_LIST_HEAD(&list); 4882 4883 if (needed == 0) 4884 needed = UINT_MAX; 4885 4886 repeat: 4887 /* first, collect all pa's in the inode */ 4888 spin_lock(&ei->i_prealloc_lock); 4889 while (!list_empty(&ei->i_prealloc_list) && needed) { 4890 pa = list_entry(ei->i_prealloc_list.prev, 4891 struct ext4_prealloc_space, pa_inode_list); 4892 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4893 spin_lock(&pa->pa_lock); 4894 if (atomic_read(&pa->pa_count)) { 4895 /* this shouldn't happen often - nobody should 4896 * use preallocation while we're discarding it */ 4897 spin_unlock(&pa->pa_lock); 4898 spin_unlock(&ei->i_prealloc_lock); 4899 ext4_msg(sb, KERN_ERR, 4900 "uh-oh! used pa while discarding"); 4901 WARN_ON(1); 4902 schedule_timeout_uninterruptible(HZ); 4903 goto repeat; 4904 4905 } 4906 if (pa->pa_deleted == 0) { 4907 ext4_mb_mark_pa_deleted(sb, pa); 4908 spin_unlock(&pa->pa_lock); 4909 list_del_rcu(&pa->pa_inode_list); 4910 list_add(&pa->u.pa_tmp_list, &list); 4911 needed--; 4912 continue; 4913 } 4914 4915 /* someone is deleting pa right now */ 4916 spin_unlock(&pa->pa_lock); 4917 spin_unlock(&ei->i_prealloc_lock); 4918 4919 /* we have to wait here because pa_deleted 4920 * doesn't mean pa is already unlinked from 4921 * the list. as we might be called from 4922 * ->clear_inode() the inode will get freed 4923 * and concurrent thread which is unlinking 4924 * pa from inode's list may access already 4925 * freed memory, bad-bad-bad */ 4926 4927 /* XXX: if this happens too often, we can 4928 * add a flag to force wait only in case 4929 * of ->clear_inode(), but not in case of 4930 * regular truncate */ 4931 schedule_timeout_uninterruptible(HZ); 4932 goto repeat; 4933 } 4934 spin_unlock(&ei->i_prealloc_lock); 4935 4936 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4937 BUG_ON(pa->pa_type != MB_INODE_PA); 4938 group = ext4_get_group_number(sb, pa->pa_pstart); 4939 4940 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4941 GFP_NOFS|__GFP_NOFAIL); 4942 if (err) { 4943 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4944 err, group); 4945 continue; 4946 } 4947 4948 bitmap_bh = ext4_read_block_bitmap(sb, group); 4949 if (IS_ERR(bitmap_bh)) { 4950 err = PTR_ERR(bitmap_bh); 4951 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 4952 err, group); 4953 ext4_mb_unload_buddy(&e4b); 4954 continue; 4955 } 4956 4957 ext4_lock_group(sb, group); 4958 list_del(&pa->pa_group_list); 4959 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4960 ext4_unlock_group(sb, group); 4961 4962 ext4_mb_unload_buddy(&e4b); 4963 put_bh(bitmap_bh); 4964 4965 list_del(&pa->u.pa_tmp_list); 4966 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4967 } 4968 } 4969 4970 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 4971 { 4972 struct ext4_prealloc_space *pa; 4973 4974 BUG_ON(ext4_pspace_cachep == NULL); 4975 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 4976 if (!pa) 4977 return -ENOMEM; 4978 atomic_set(&pa->pa_count, 1); 4979 ac->ac_pa = pa; 4980 return 0; 4981 } 4982 4983 static void ext4_mb_pa_free(struct ext4_allocation_context *ac) 4984 { 4985 struct ext4_prealloc_space *pa = ac->ac_pa; 4986 4987 BUG_ON(!pa); 4988 ac->ac_pa = NULL; 4989 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 4990 kmem_cache_free(ext4_pspace_cachep, pa); 4991 } 4992 4993 #ifdef CONFIG_EXT4_DEBUG 4994 static inline void ext4_mb_show_pa(struct super_block *sb) 4995 { 4996 ext4_group_t i, ngroups; 4997 4998 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 4999 return; 5000 5001 ngroups = ext4_get_groups_count(sb); 5002 mb_debug(sb, "groups: "); 5003 for (i = 0; i < ngroups; i++) { 5004 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5005 struct ext4_prealloc_space *pa; 5006 ext4_grpblk_t start; 5007 struct list_head *cur; 5008 ext4_lock_group(sb, i); 5009 list_for_each(cur, &grp->bb_prealloc_list) { 5010 pa = list_entry(cur, struct ext4_prealloc_space, 5011 pa_group_list); 5012 spin_lock(&pa->pa_lock); 5013 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5014 NULL, &start); 5015 spin_unlock(&pa->pa_lock); 5016 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5017 pa->pa_len); 5018 } 5019 ext4_unlock_group(sb, i); 5020 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5021 grp->bb_fragments); 5022 } 5023 } 5024 5025 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5026 { 5027 struct super_block *sb = ac->ac_sb; 5028 5029 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5030 return; 5031 5032 mb_debug(sb, "Can't allocate:" 5033 " Allocation context details:"); 5034 mb_debug(sb, "status %u flags 0x%x", 5035 ac->ac_status, ac->ac_flags); 5036 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5037 "goal %lu/%lu/%lu@%lu, " 5038 "best %lu/%lu/%lu@%lu cr %d", 5039 (unsigned long)ac->ac_o_ex.fe_group, 5040 (unsigned long)ac->ac_o_ex.fe_start, 5041 (unsigned long)ac->ac_o_ex.fe_len, 5042 (unsigned long)ac->ac_o_ex.fe_logical, 5043 (unsigned long)ac->ac_g_ex.fe_group, 5044 (unsigned long)ac->ac_g_ex.fe_start, 5045 (unsigned long)ac->ac_g_ex.fe_len, 5046 (unsigned long)ac->ac_g_ex.fe_logical, 5047 (unsigned long)ac->ac_b_ex.fe_group, 5048 (unsigned long)ac->ac_b_ex.fe_start, 5049 (unsigned long)ac->ac_b_ex.fe_len, 5050 (unsigned long)ac->ac_b_ex.fe_logical, 5051 (int)ac->ac_criteria); 5052 mb_debug(sb, "%u found", ac->ac_found); 5053 ext4_mb_show_pa(sb); 5054 } 5055 #else 5056 static inline void ext4_mb_show_pa(struct super_block *sb) 5057 { 5058 return; 5059 } 5060 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5061 { 5062 ext4_mb_show_pa(ac->ac_sb); 5063 return; 5064 } 5065 #endif 5066 5067 /* 5068 * We use locality group preallocation for small size file. The size of the 5069 * file is determined by the current size or the resulting size after 5070 * allocation which ever is larger 5071 * 5072 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5073 */ 5074 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5075 { 5076 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5077 int bsbits = ac->ac_sb->s_blocksize_bits; 5078 loff_t size, isize; 5079 5080 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5081 return; 5082 5083 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5084 return; 5085 5086 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 5087 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5088 >> bsbits; 5089 5090 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5091 !inode_is_open_for_write(ac->ac_inode)) { 5092 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5093 return; 5094 } 5095 5096 if (sbi->s_mb_group_prealloc <= 0) { 5097 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5098 return; 5099 } 5100 5101 /* don't use group allocation for large files */ 5102 size = max(size, isize); 5103 if (size > sbi->s_mb_stream_request) { 5104 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5105 return; 5106 } 5107 5108 BUG_ON(ac->ac_lg != NULL); 5109 /* 5110 * locality group prealloc space are per cpu. The reason for having 5111 * per cpu locality group is to reduce the contention between block 5112 * request from multiple CPUs. 5113 */ 5114 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5115 5116 /* we're going to use group allocation */ 5117 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5118 5119 /* serialize all allocations in the group */ 5120 mutex_lock(&ac->ac_lg->lg_mutex); 5121 } 5122 5123 static noinline_for_stack int 5124 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5125 struct ext4_allocation_request *ar) 5126 { 5127 struct super_block *sb = ar->inode->i_sb; 5128 struct ext4_sb_info *sbi = EXT4_SB(sb); 5129 struct ext4_super_block *es = sbi->s_es; 5130 ext4_group_t group; 5131 unsigned int len; 5132 ext4_fsblk_t goal; 5133 ext4_grpblk_t block; 5134 5135 /* we can't allocate > group size */ 5136 len = ar->len; 5137 5138 /* just a dirty hack to filter too big requests */ 5139 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5140 len = EXT4_CLUSTERS_PER_GROUP(sb); 5141 5142 /* start searching from the goal */ 5143 goal = ar->goal; 5144 if (goal < le32_to_cpu(es->s_first_data_block) || 5145 goal >= ext4_blocks_count(es)) 5146 goal = le32_to_cpu(es->s_first_data_block); 5147 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5148 5149 /* set up allocation goals */ 5150 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5151 ac->ac_status = AC_STATUS_CONTINUE; 5152 ac->ac_sb = sb; 5153 ac->ac_inode = ar->inode; 5154 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5155 ac->ac_o_ex.fe_group = group; 5156 ac->ac_o_ex.fe_start = block; 5157 ac->ac_o_ex.fe_len = len; 5158 ac->ac_g_ex = ac->ac_o_ex; 5159 ac->ac_flags = ar->flags; 5160 5161 /* we have to define context: we'll work with a file or 5162 * locality group. this is a policy, actually */ 5163 ext4_mb_group_or_file(ac); 5164 5165 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5166 "left: %u/%u, right %u/%u to %swritable\n", 5167 (unsigned) ar->len, (unsigned) ar->logical, 5168 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5169 (unsigned) ar->lleft, (unsigned) ar->pleft, 5170 (unsigned) ar->lright, (unsigned) ar->pright, 5171 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5172 return 0; 5173 5174 } 5175 5176 static noinline_for_stack void 5177 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5178 struct ext4_locality_group *lg, 5179 int order, int total_entries) 5180 { 5181 ext4_group_t group = 0; 5182 struct ext4_buddy e4b; 5183 struct list_head discard_list; 5184 struct ext4_prealloc_space *pa, *tmp; 5185 5186 mb_debug(sb, "discard locality group preallocation\n"); 5187 5188 INIT_LIST_HEAD(&discard_list); 5189 5190 spin_lock(&lg->lg_prealloc_lock); 5191 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5192 pa_inode_list, 5193 lockdep_is_held(&lg->lg_prealloc_lock)) { 5194 spin_lock(&pa->pa_lock); 5195 if (atomic_read(&pa->pa_count)) { 5196 /* 5197 * This is the pa that we just used 5198 * for block allocation. So don't 5199 * free that 5200 */ 5201 spin_unlock(&pa->pa_lock); 5202 continue; 5203 } 5204 if (pa->pa_deleted) { 5205 spin_unlock(&pa->pa_lock); 5206 continue; 5207 } 5208 /* only lg prealloc space */ 5209 BUG_ON(pa->pa_type != MB_GROUP_PA); 5210 5211 /* seems this one can be freed ... */ 5212 ext4_mb_mark_pa_deleted(sb, pa); 5213 spin_unlock(&pa->pa_lock); 5214 5215 list_del_rcu(&pa->pa_inode_list); 5216 list_add(&pa->u.pa_tmp_list, &discard_list); 5217 5218 total_entries--; 5219 if (total_entries <= 5) { 5220 /* 5221 * we want to keep only 5 entries 5222 * allowing it to grow to 8. This 5223 * mak sure we don't call discard 5224 * soon for this list. 5225 */ 5226 break; 5227 } 5228 } 5229 spin_unlock(&lg->lg_prealloc_lock); 5230 5231 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5232 int err; 5233 5234 group = ext4_get_group_number(sb, pa->pa_pstart); 5235 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5236 GFP_NOFS|__GFP_NOFAIL); 5237 if (err) { 5238 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5239 err, group); 5240 continue; 5241 } 5242 ext4_lock_group(sb, group); 5243 list_del(&pa->pa_group_list); 5244 ext4_mb_release_group_pa(&e4b, pa); 5245 ext4_unlock_group(sb, group); 5246 5247 ext4_mb_unload_buddy(&e4b); 5248 list_del(&pa->u.pa_tmp_list); 5249 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5250 } 5251 } 5252 5253 /* 5254 * We have incremented pa_count. So it cannot be freed at this 5255 * point. Also we hold lg_mutex. So no parallel allocation is 5256 * possible from this lg. That means pa_free cannot be updated. 5257 * 5258 * A parallel ext4_mb_discard_group_preallocations is possible. 5259 * which can cause the lg_prealloc_list to be updated. 5260 */ 5261 5262 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5263 { 5264 int order, added = 0, lg_prealloc_count = 1; 5265 struct super_block *sb = ac->ac_sb; 5266 struct ext4_locality_group *lg = ac->ac_lg; 5267 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5268 5269 order = fls(pa->pa_free) - 1; 5270 if (order > PREALLOC_TB_SIZE - 1) 5271 /* The max size of hash table is PREALLOC_TB_SIZE */ 5272 order = PREALLOC_TB_SIZE - 1; 5273 /* Add the prealloc space to lg */ 5274 spin_lock(&lg->lg_prealloc_lock); 5275 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5276 pa_inode_list, 5277 lockdep_is_held(&lg->lg_prealloc_lock)) { 5278 spin_lock(&tmp_pa->pa_lock); 5279 if (tmp_pa->pa_deleted) { 5280 spin_unlock(&tmp_pa->pa_lock); 5281 continue; 5282 } 5283 if (!added && pa->pa_free < tmp_pa->pa_free) { 5284 /* Add to the tail of the previous entry */ 5285 list_add_tail_rcu(&pa->pa_inode_list, 5286 &tmp_pa->pa_inode_list); 5287 added = 1; 5288 /* 5289 * we want to count the total 5290 * number of entries in the list 5291 */ 5292 } 5293 spin_unlock(&tmp_pa->pa_lock); 5294 lg_prealloc_count++; 5295 } 5296 if (!added) 5297 list_add_tail_rcu(&pa->pa_inode_list, 5298 &lg->lg_prealloc_list[order]); 5299 spin_unlock(&lg->lg_prealloc_lock); 5300 5301 /* Now trim the list to be not more than 8 elements */ 5302 if (lg_prealloc_count > 8) { 5303 ext4_mb_discard_lg_preallocations(sb, lg, 5304 order, lg_prealloc_count); 5305 return; 5306 } 5307 return ; 5308 } 5309 5310 /* 5311 * if per-inode prealloc list is too long, trim some PA 5312 */ 5313 static void ext4_mb_trim_inode_pa(struct inode *inode) 5314 { 5315 struct ext4_inode_info *ei = EXT4_I(inode); 5316 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5317 int count, delta; 5318 5319 count = atomic_read(&ei->i_prealloc_active); 5320 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1; 5321 if (count > sbi->s_mb_max_inode_prealloc + delta) { 5322 count -= sbi->s_mb_max_inode_prealloc; 5323 ext4_discard_preallocations(inode, count); 5324 } 5325 } 5326 5327 /* 5328 * release all resource we used in allocation 5329 */ 5330 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5331 { 5332 struct inode *inode = ac->ac_inode; 5333 struct ext4_inode_info *ei = EXT4_I(inode); 5334 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5335 struct ext4_prealloc_space *pa = ac->ac_pa; 5336 if (pa) { 5337 if (pa->pa_type == MB_GROUP_PA) { 5338 /* see comment in ext4_mb_use_group_pa() */ 5339 spin_lock(&pa->pa_lock); 5340 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5341 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5342 pa->pa_free -= ac->ac_b_ex.fe_len; 5343 pa->pa_len -= ac->ac_b_ex.fe_len; 5344 spin_unlock(&pa->pa_lock); 5345 5346 /* 5347 * We want to add the pa to the right bucket. 5348 * Remove it from the list and while adding 5349 * make sure the list to which we are adding 5350 * doesn't grow big. 5351 */ 5352 if (likely(pa->pa_free)) { 5353 spin_lock(pa->pa_obj_lock); 5354 list_del_rcu(&pa->pa_inode_list); 5355 spin_unlock(pa->pa_obj_lock); 5356 ext4_mb_add_n_trim(ac); 5357 } 5358 } 5359 5360 if (pa->pa_type == MB_INODE_PA) { 5361 /* 5362 * treat per-inode prealloc list as a lru list, then try 5363 * to trim the least recently used PA. 5364 */ 5365 spin_lock(pa->pa_obj_lock); 5366 list_move(&pa->pa_inode_list, &ei->i_prealloc_list); 5367 spin_unlock(pa->pa_obj_lock); 5368 } 5369 5370 ext4_mb_put_pa(ac, ac->ac_sb, pa); 5371 } 5372 if (ac->ac_bitmap_page) 5373 put_page(ac->ac_bitmap_page); 5374 if (ac->ac_buddy_page) 5375 put_page(ac->ac_buddy_page); 5376 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5377 mutex_unlock(&ac->ac_lg->lg_mutex); 5378 ext4_mb_collect_stats(ac); 5379 ext4_mb_trim_inode_pa(inode); 5380 return 0; 5381 } 5382 5383 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 5384 { 5385 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 5386 int ret; 5387 int freed = 0; 5388 5389 trace_ext4_mb_discard_preallocations(sb, needed); 5390 for (i = 0; i < ngroups && needed > 0; i++) { 5391 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 5392 freed += ret; 5393 needed -= ret; 5394 } 5395 5396 return freed; 5397 } 5398 5399 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 5400 struct ext4_allocation_context *ac, u64 *seq) 5401 { 5402 int freed; 5403 u64 seq_retry = 0; 5404 bool ret = false; 5405 5406 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 5407 if (freed) { 5408 ret = true; 5409 goto out_dbg; 5410 } 5411 seq_retry = ext4_get_discard_pa_seq_sum(); 5412 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 5413 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 5414 *seq = seq_retry; 5415 ret = true; 5416 } 5417 5418 out_dbg: 5419 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 5420 return ret; 5421 } 5422 5423 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5424 struct ext4_allocation_request *ar, int *errp); 5425 5426 /* 5427 * Main entry point into mballoc to allocate blocks 5428 * it tries to use preallocation first, then falls back 5429 * to usual allocation 5430 */ 5431 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 5432 struct ext4_allocation_request *ar, int *errp) 5433 { 5434 struct ext4_allocation_context *ac = NULL; 5435 struct ext4_sb_info *sbi; 5436 struct super_block *sb; 5437 ext4_fsblk_t block = 0; 5438 unsigned int inquota = 0; 5439 unsigned int reserv_clstrs = 0; 5440 u64 seq; 5441 5442 might_sleep(); 5443 sb = ar->inode->i_sb; 5444 sbi = EXT4_SB(sb); 5445 5446 trace_ext4_request_blocks(ar); 5447 if (sbi->s_mount_state & EXT4_FC_REPLAY) 5448 return ext4_mb_new_blocks_simple(handle, ar, errp); 5449 5450 /* Allow to use superuser reservation for quota file */ 5451 if (ext4_is_quota_file(ar->inode)) 5452 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 5453 5454 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 5455 /* Without delayed allocation we need to verify 5456 * there is enough free blocks to do block allocation 5457 * and verify allocation doesn't exceed the quota limits. 5458 */ 5459 while (ar->len && 5460 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 5461 5462 /* let others to free the space */ 5463 cond_resched(); 5464 ar->len = ar->len >> 1; 5465 } 5466 if (!ar->len) { 5467 ext4_mb_show_pa(sb); 5468 *errp = -ENOSPC; 5469 return 0; 5470 } 5471 reserv_clstrs = ar->len; 5472 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 5473 dquot_alloc_block_nofail(ar->inode, 5474 EXT4_C2B(sbi, ar->len)); 5475 } else { 5476 while (ar->len && 5477 dquot_alloc_block(ar->inode, 5478 EXT4_C2B(sbi, ar->len))) { 5479 5480 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 5481 ar->len--; 5482 } 5483 } 5484 inquota = ar->len; 5485 if (ar->len == 0) { 5486 *errp = -EDQUOT; 5487 goto out; 5488 } 5489 } 5490 5491 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 5492 if (!ac) { 5493 ar->len = 0; 5494 *errp = -ENOMEM; 5495 goto out; 5496 } 5497 5498 *errp = ext4_mb_initialize_context(ac, ar); 5499 if (*errp) { 5500 ar->len = 0; 5501 goto out; 5502 } 5503 5504 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 5505 seq = this_cpu_read(discard_pa_seq); 5506 if (!ext4_mb_use_preallocated(ac)) { 5507 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 5508 ext4_mb_normalize_request(ac, ar); 5509 5510 *errp = ext4_mb_pa_alloc(ac); 5511 if (*errp) 5512 goto errout; 5513 repeat: 5514 /* allocate space in core */ 5515 *errp = ext4_mb_regular_allocator(ac); 5516 /* 5517 * pa allocated above is added to grp->bb_prealloc_list only 5518 * when we were able to allocate some block i.e. when 5519 * ac->ac_status == AC_STATUS_FOUND. 5520 * And error from above mean ac->ac_status != AC_STATUS_FOUND 5521 * So we have to free this pa here itself. 5522 */ 5523 if (*errp) { 5524 ext4_mb_pa_free(ac); 5525 ext4_discard_allocated_blocks(ac); 5526 goto errout; 5527 } 5528 if (ac->ac_status == AC_STATUS_FOUND && 5529 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 5530 ext4_mb_pa_free(ac); 5531 } 5532 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 5533 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 5534 if (*errp) { 5535 ext4_discard_allocated_blocks(ac); 5536 goto errout; 5537 } else { 5538 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5539 ar->len = ac->ac_b_ex.fe_len; 5540 } 5541 } else { 5542 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 5543 goto repeat; 5544 /* 5545 * If block allocation fails then the pa allocated above 5546 * needs to be freed here itself. 5547 */ 5548 ext4_mb_pa_free(ac); 5549 *errp = -ENOSPC; 5550 } 5551 5552 errout: 5553 if (*errp) { 5554 ac->ac_b_ex.fe_len = 0; 5555 ar->len = 0; 5556 ext4_mb_show_ac(ac); 5557 } 5558 ext4_mb_release_context(ac); 5559 out: 5560 if (ac) 5561 kmem_cache_free(ext4_ac_cachep, ac); 5562 if (inquota && ar->len < inquota) 5563 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 5564 if (!ar->len) { 5565 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 5566 /* release all the reserved blocks if non delalloc */ 5567 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 5568 reserv_clstrs); 5569 } 5570 5571 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 5572 5573 return block; 5574 } 5575 5576 /* 5577 * We can merge two free data extents only if the physical blocks 5578 * are contiguous, AND the extents were freed by the same transaction, 5579 * AND the blocks are associated with the same group. 5580 */ 5581 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 5582 struct ext4_free_data *entry, 5583 struct ext4_free_data *new_entry, 5584 struct rb_root *entry_rb_root) 5585 { 5586 if ((entry->efd_tid != new_entry->efd_tid) || 5587 (entry->efd_group != new_entry->efd_group)) 5588 return; 5589 if (entry->efd_start_cluster + entry->efd_count == 5590 new_entry->efd_start_cluster) { 5591 new_entry->efd_start_cluster = entry->efd_start_cluster; 5592 new_entry->efd_count += entry->efd_count; 5593 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 5594 entry->efd_start_cluster) { 5595 new_entry->efd_count += entry->efd_count; 5596 } else 5597 return; 5598 spin_lock(&sbi->s_md_lock); 5599 list_del(&entry->efd_list); 5600 spin_unlock(&sbi->s_md_lock); 5601 rb_erase(&entry->efd_node, entry_rb_root); 5602 kmem_cache_free(ext4_free_data_cachep, entry); 5603 } 5604 5605 static noinline_for_stack int 5606 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 5607 struct ext4_free_data *new_entry) 5608 { 5609 ext4_group_t group = e4b->bd_group; 5610 ext4_grpblk_t cluster; 5611 ext4_grpblk_t clusters = new_entry->efd_count; 5612 struct ext4_free_data *entry; 5613 struct ext4_group_info *db = e4b->bd_info; 5614 struct super_block *sb = e4b->bd_sb; 5615 struct ext4_sb_info *sbi = EXT4_SB(sb); 5616 struct rb_node **n = &db->bb_free_root.rb_node, *node; 5617 struct rb_node *parent = NULL, *new_node; 5618 5619 BUG_ON(!ext4_handle_valid(handle)); 5620 BUG_ON(e4b->bd_bitmap_page == NULL); 5621 BUG_ON(e4b->bd_buddy_page == NULL); 5622 5623 new_node = &new_entry->efd_node; 5624 cluster = new_entry->efd_start_cluster; 5625 5626 if (!*n) { 5627 /* first free block exent. We need to 5628 protect buddy cache from being freed, 5629 * otherwise we'll refresh it from 5630 * on-disk bitmap and lose not-yet-available 5631 * blocks */ 5632 get_page(e4b->bd_buddy_page); 5633 get_page(e4b->bd_bitmap_page); 5634 } 5635 while (*n) { 5636 parent = *n; 5637 entry = rb_entry(parent, struct ext4_free_data, efd_node); 5638 if (cluster < entry->efd_start_cluster) 5639 n = &(*n)->rb_left; 5640 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 5641 n = &(*n)->rb_right; 5642 else { 5643 ext4_grp_locked_error(sb, group, 0, 5644 ext4_group_first_block_no(sb, group) + 5645 EXT4_C2B(sbi, cluster), 5646 "Block already on to-be-freed list"); 5647 kmem_cache_free(ext4_free_data_cachep, new_entry); 5648 return 0; 5649 } 5650 } 5651 5652 rb_link_node(new_node, parent, n); 5653 rb_insert_color(new_node, &db->bb_free_root); 5654 5655 /* Now try to see the extent can be merged to left and right */ 5656 node = rb_prev(new_node); 5657 if (node) { 5658 entry = rb_entry(node, struct ext4_free_data, efd_node); 5659 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5660 &(db->bb_free_root)); 5661 } 5662 5663 node = rb_next(new_node); 5664 if (node) { 5665 entry = rb_entry(node, struct ext4_free_data, efd_node); 5666 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5667 &(db->bb_free_root)); 5668 } 5669 5670 spin_lock(&sbi->s_md_lock); 5671 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 5672 sbi->s_mb_free_pending += clusters; 5673 spin_unlock(&sbi->s_md_lock); 5674 return 0; 5675 } 5676 5677 /* 5678 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 5679 * linearly starting at the goal block and also excludes the blocks which 5680 * are going to be in use after fast commit replay. 5681 */ 5682 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5683 struct ext4_allocation_request *ar, int *errp) 5684 { 5685 struct buffer_head *bitmap_bh; 5686 struct super_block *sb = ar->inode->i_sb; 5687 ext4_group_t group; 5688 ext4_grpblk_t blkoff; 5689 int i = sb->s_blocksize; 5690 ext4_fsblk_t goal, block; 5691 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5692 5693 goal = ar->goal; 5694 if (goal < le32_to_cpu(es->s_first_data_block) || 5695 goal >= ext4_blocks_count(es)) 5696 goal = le32_to_cpu(es->s_first_data_block); 5697 5698 ar->len = 0; 5699 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 5700 for (; group < ext4_get_groups_count(sb); group++) { 5701 bitmap_bh = ext4_read_block_bitmap(sb, group); 5702 if (IS_ERR(bitmap_bh)) { 5703 *errp = PTR_ERR(bitmap_bh); 5704 pr_warn("Failed to read block bitmap\n"); 5705 return 0; 5706 } 5707 5708 ext4_get_group_no_and_offset(sb, 5709 max(ext4_group_first_block_no(sb, group), goal), 5710 NULL, &blkoff); 5711 i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize, 5712 blkoff); 5713 brelse(bitmap_bh); 5714 if (i >= sb->s_blocksize) 5715 continue; 5716 if (ext4_fc_replay_check_excluded(sb, 5717 ext4_group_first_block_no(sb, group) + i)) 5718 continue; 5719 break; 5720 } 5721 5722 if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize) 5723 return 0; 5724 5725 block = ext4_group_first_block_no(sb, group) + i; 5726 ext4_mb_mark_bb(sb, block, 1, 1); 5727 ar->len = 1; 5728 5729 return block; 5730 } 5731 5732 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 5733 unsigned long count) 5734 { 5735 struct buffer_head *bitmap_bh; 5736 struct super_block *sb = inode->i_sb; 5737 struct ext4_group_desc *gdp; 5738 struct buffer_head *gdp_bh; 5739 ext4_group_t group; 5740 ext4_grpblk_t blkoff; 5741 int already_freed = 0, err, i; 5742 5743 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 5744 bitmap_bh = ext4_read_block_bitmap(sb, group); 5745 if (IS_ERR(bitmap_bh)) { 5746 err = PTR_ERR(bitmap_bh); 5747 pr_warn("Failed to read block bitmap\n"); 5748 return; 5749 } 5750 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 5751 if (!gdp) 5752 return; 5753 5754 for (i = 0; i < count; i++) { 5755 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 5756 already_freed++; 5757 } 5758 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 5759 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 5760 if (err) 5761 return; 5762 ext4_free_group_clusters_set( 5763 sb, gdp, ext4_free_group_clusters(sb, gdp) + 5764 count - already_freed); 5765 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 5766 ext4_group_desc_csum_set(sb, group, gdp); 5767 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 5768 sync_dirty_buffer(bitmap_bh); 5769 sync_dirty_buffer(gdp_bh); 5770 brelse(bitmap_bh); 5771 } 5772 5773 /** 5774 * ext4_free_blocks() -- Free given blocks and update quota 5775 * @handle: handle for this transaction 5776 * @inode: inode 5777 * @bh: optional buffer of the block to be freed 5778 * @block: starting physical block to be freed 5779 * @count: number of blocks to be freed 5780 * @flags: flags used by ext4_free_blocks 5781 */ 5782 void ext4_free_blocks(handle_t *handle, struct inode *inode, 5783 struct buffer_head *bh, ext4_fsblk_t block, 5784 unsigned long count, int flags) 5785 { 5786 struct buffer_head *bitmap_bh = NULL; 5787 struct super_block *sb = inode->i_sb; 5788 struct ext4_group_desc *gdp; 5789 unsigned int overflow; 5790 ext4_grpblk_t bit; 5791 struct buffer_head *gd_bh; 5792 ext4_group_t block_group; 5793 struct ext4_sb_info *sbi; 5794 struct ext4_buddy e4b; 5795 unsigned int count_clusters; 5796 int err = 0; 5797 int ret; 5798 5799 sbi = EXT4_SB(sb); 5800 5801 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 5802 ext4_free_blocks_simple(inode, block, count); 5803 return; 5804 } 5805 5806 might_sleep(); 5807 if (bh) { 5808 if (block) 5809 BUG_ON(block != bh->b_blocknr); 5810 else 5811 block = bh->b_blocknr; 5812 } 5813 5814 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5815 !ext4_inode_block_valid(inode, block, count)) { 5816 ext4_error(sb, "Freeing blocks not in datazone - " 5817 "block = %llu, count = %lu", block, count); 5818 goto error_return; 5819 } 5820 5821 ext4_debug("freeing block %llu\n", block); 5822 trace_ext4_free_blocks(inode, block, count, flags); 5823 5824 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5825 BUG_ON(count > 1); 5826 5827 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 5828 inode, bh, block); 5829 } 5830 5831 /* 5832 * If the extent to be freed does not begin on a cluster 5833 * boundary, we need to deal with partial clusters at the 5834 * beginning and end of the extent. Normally we will free 5835 * blocks at the beginning or the end unless we are explicitly 5836 * requested to avoid doing so. 5837 */ 5838 overflow = EXT4_PBLK_COFF(sbi, block); 5839 if (overflow) { 5840 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 5841 overflow = sbi->s_cluster_ratio - overflow; 5842 block += overflow; 5843 if (count > overflow) 5844 count -= overflow; 5845 else 5846 return; 5847 } else { 5848 block -= overflow; 5849 count += overflow; 5850 } 5851 } 5852 overflow = EXT4_LBLK_COFF(sbi, count); 5853 if (overflow) { 5854 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 5855 if (count > overflow) 5856 count -= overflow; 5857 else 5858 return; 5859 } else 5860 count += sbi->s_cluster_ratio - overflow; 5861 } 5862 5863 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5864 int i; 5865 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 5866 5867 for (i = 0; i < count; i++) { 5868 cond_resched(); 5869 if (is_metadata) 5870 bh = sb_find_get_block(inode->i_sb, block + i); 5871 ext4_forget(handle, is_metadata, inode, bh, block + i); 5872 } 5873 } 5874 5875 do_more: 5876 overflow = 0; 5877 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5878 5879 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 5880 ext4_get_group_info(sb, block_group)))) 5881 return; 5882 5883 /* 5884 * Check to see if we are freeing blocks across a group 5885 * boundary. 5886 */ 5887 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 5888 overflow = EXT4_C2B(sbi, bit) + count - 5889 EXT4_BLOCKS_PER_GROUP(sb); 5890 count -= overflow; 5891 } 5892 count_clusters = EXT4_NUM_B2C(sbi, count); 5893 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5894 if (IS_ERR(bitmap_bh)) { 5895 err = PTR_ERR(bitmap_bh); 5896 bitmap_bh = NULL; 5897 goto error_return; 5898 } 5899 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 5900 if (!gdp) { 5901 err = -EIO; 5902 goto error_return; 5903 } 5904 5905 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 5906 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 5907 in_range(block, ext4_inode_table(sb, gdp), 5908 sbi->s_itb_per_group) || 5909 in_range(block + count - 1, ext4_inode_table(sb, gdp), 5910 sbi->s_itb_per_group)) { 5911 5912 ext4_error(sb, "Freeing blocks in system zone - " 5913 "Block = %llu, count = %lu", block, count); 5914 /* err = 0. ext4_std_error should be a no op */ 5915 goto error_return; 5916 } 5917 5918 BUFFER_TRACE(bitmap_bh, "getting write access"); 5919 err = ext4_journal_get_write_access(handle, bitmap_bh); 5920 if (err) 5921 goto error_return; 5922 5923 /* 5924 * We are about to modify some metadata. Call the journal APIs 5925 * to unshare ->b_data if a currently-committing transaction is 5926 * using it 5927 */ 5928 BUFFER_TRACE(gd_bh, "get_write_access"); 5929 err = ext4_journal_get_write_access(handle, gd_bh); 5930 if (err) 5931 goto error_return; 5932 #ifdef AGGRESSIVE_CHECK 5933 { 5934 int i; 5935 for (i = 0; i < count_clusters; i++) 5936 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 5937 } 5938 #endif 5939 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 5940 5941 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 5942 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 5943 GFP_NOFS|__GFP_NOFAIL); 5944 if (err) 5945 goto error_return; 5946 5947 /* 5948 * We need to make sure we don't reuse the freed block until after the 5949 * transaction is committed. We make an exception if the inode is to be 5950 * written in writeback mode since writeback mode has weak data 5951 * consistency guarantees. 5952 */ 5953 if (ext4_handle_valid(handle) && 5954 ((flags & EXT4_FREE_BLOCKS_METADATA) || 5955 !ext4_should_writeback_data(inode))) { 5956 struct ext4_free_data *new_entry; 5957 /* 5958 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 5959 * to fail. 5960 */ 5961 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 5962 GFP_NOFS|__GFP_NOFAIL); 5963 new_entry->efd_start_cluster = bit; 5964 new_entry->efd_group = block_group; 5965 new_entry->efd_count = count_clusters; 5966 new_entry->efd_tid = handle->h_transaction->t_tid; 5967 5968 ext4_lock_group(sb, block_group); 5969 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5970 ext4_mb_free_metadata(handle, &e4b, new_entry); 5971 } else { 5972 /* need to update group_info->bb_free and bitmap 5973 * with group lock held. generate_buddy look at 5974 * them with group lock_held 5975 */ 5976 if (test_opt(sb, DISCARD)) { 5977 err = ext4_issue_discard(sb, block_group, bit, count, 5978 NULL); 5979 if (err && err != -EOPNOTSUPP) 5980 ext4_msg(sb, KERN_WARNING, "discard request in" 5981 " group:%d block:%d count:%lu failed" 5982 " with %d", block_group, bit, count, 5983 err); 5984 } else 5985 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 5986 5987 ext4_lock_group(sb, block_group); 5988 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5989 mb_free_blocks(inode, &e4b, bit, count_clusters); 5990 } 5991 5992 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 5993 ext4_free_group_clusters_set(sb, gdp, ret); 5994 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 5995 ext4_group_desc_csum_set(sb, block_group, gdp); 5996 ext4_unlock_group(sb, block_group); 5997 5998 if (sbi->s_log_groups_per_flex) { 5999 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6000 atomic64_add(count_clusters, 6001 &sbi_array_rcu_deref(sbi, s_flex_groups, 6002 flex_group)->free_clusters); 6003 } 6004 6005 /* 6006 * on a bigalloc file system, defer the s_freeclusters_counter 6007 * update to the caller (ext4_remove_space and friends) so they 6008 * can determine if a cluster freed here should be rereserved 6009 */ 6010 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6011 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6012 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6013 percpu_counter_add(&sbi->s_freeclusters_counter, 6014 count_clusters); 6015 } 6016 6017 ext4_mb_unload_buddy(&e4b); 6018 6019 /* We dirtied the bitmap block */ 6020 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6021 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6022 6023 /* And the group descriptor block */ 6024 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6025 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6026 if (!err) 6027 err = ret; 6028 6029 if (overflow && !err) { 6030 block += count; 6031 count = overflow; 6032 put_bh(bitmap_bh); 6033 goto do_more; 6034 } 6035 error_return: 6036 brelse(bitmap_bh); 6037 ext4_std_error(sb, err); 6038 return; 6039 } 6040 6041 /** 6042 * ext4_group_add_blocks() -- Add given blocks to an existing group 6043 * @handle: handle to this transaction 6044 * @sb: super block 6045 * @block: start physical block to add to the block group 6046 * @count: number of blocks to free 6047 * 6048 * This marks the blocks as free in the bitmap and buddy. 6049 */ 6050 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6051 ext4_fsblk_t block, unsigned long count) 6052 { 6053 struct buffer_head *bitmap_bh = NULL; 6054 struct buffer_head *gd_bh; 6055 ext4_group_t block_group; 6056 ext4_grpblk_t bit; 6057 unsigned int i; 6058 struct ext4_group_desc *desc; 6059 struct ext4_sb_info *sbi = EXT4_SB(sb); 6060 struct ext4_buddy e4b; 6061 int err = 0, ret, free_clusters_count; 6062 ext4_grpblk_t clusters_freed; 6063 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6064 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6065 unsigned long cluster_count = last_cluster - first_cluster + 1; 6066 6067 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6068 6069 if (count == 0) 6070 return 0; 6071 6072 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6073 /* 6074 * Check to see if we are freeing blocks across a group 6075 * boundary. 6076 */ 6077 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6078 ext4_warning(sb, "too many blocks added to group %u", 6079 block_group); 6080 err = -EINVAL; 6081 goto error_return; 6082 } 6083 6084 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6085 if (IS_ERR(bitmap_bh)) { 6086 err = PTR_ERR(bitmap_bh); 6087 bitmap_bh = NULL; 6088 goto error_return; 6089 } 6090 6091 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6092 if (!desc) { 6093 err = -EIO; 6094 goto error_return; 6095 } 6096 6097 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 6098 in_range(ext4_inode_bitmap(sb, desc), block, count) || 6099 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 6100 in_range(block + count - 1, ext4_inode_table(sb, desc), 6101 sbi->s_itb_per_group)) { 6102 ext4_error(sb, "Adding blocks in system zones - " 6103 "Block = %llu, count = %lu", 6104 block, count); 6105 err = -EINVAL; 6106 goto error_return; 6107 } 6108 6109 BUFFER_TRACE(bitmap_bh, "getting write access"); 6110 err = ext4_journal_get_write_access(handle, bitmap_bh); 6111 if (err) 6112 goto error_return; 6113 6114 /* 6115 * We are about to modify some metadata. Call the journal APIs 6116 * to unshare ->b_data if a currently-committing transaction is 6117 * using it 6118 */ 6119 BUFFER_TRACE(gd_bh, "get_write_access"); 6120 err = ext4_journal_get_write_access(handle, gd_bh); 6121 if (err) 6122 goto error_return; 6123 6124 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6125 BUFFER_TRACE(bitmap_bh, "clear bit"); 6126 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6127 ext4_error(sb, "bit already cleared for block %llu", 6128 (ext4_fsblk_t)(block + i)); 6129 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6130 } else { 6131 clusters_freed++; 6132 } 6133 } 6134 6135 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6136 if (err) 6137 goto error_return; 6138 6139 /* 6140 * need to update group_info->bb_free and bitmap 6141 * with group lock held. generate_buddy look at 6142 * them with group lock_held 6143 */ 6144 ext4_lock_group(sb, block_group); 6145 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6146 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6147 free_clusters_count = clusters_freed + 6148 ext4_free_group_clusters(sb, desc); 6149 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6150 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 6151 ext4_group_desc_csum_set(sb, block_group, desc); 6152 ext4_unlock_group(sb, block_group); 6153 percpu_counter_add(&sbi->s_freeclusters_counter, 6154 clusters_freed); 6155 6156 if (sbi->s_log_groups_per_flex) { 6157 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6158 atomic64_add(clusters_freed, 6159 &sbi_array_rcu_deref(sbi, s_flex_groups, 6160 flex_group)->free_clusters); 6161 } 6162 6163 ext4_mb_unload_buddy(&e4b); 6164 6165 /* We dirtied the bitmap block */ 6166 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6167 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6168 6169 /* And the group descriptor block */ 6170 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6171 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6172 if (!err) 6173 err = ret; 6174 6175 error_return: 6176 brelse(bitmap_bh); 6177 ext4_std_error(sb, err); 6178 return err; 6179 } 6180 6181 /** 6182 * ext4_trim_extent -- function to TRIM one single free extent in the group 6183 * @sb: super block for the file system 6184 * @start: starting block of the free extent in the alloc. group 6185 * @count: number of blocks to TRIM 6186 * @group: alloc. group we are working with 6187 * @e4b: ext4 buddy for the group 6188 * 6189 * Trim "count" blocks starting at "start" in the "group". To assure that no 6190 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6191 * be called with under the group lock. 6192 */ 6193 static int ext4_trim_extent(struct super_block *sb, int start, int count, 6194 ext4_group_t group, struct ext4_buddy *e4b) 6195 __releases(bitlock) 6196 __acquires(bitlock) 6197 { 6198 struct ext4_free_extent ex; 6199 int ret = 0; 6200 6201 trace_ext4_trim_extent(sb, group, start, count); 6202 6203 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6204 6205 ex.fe_start = start; 6206 ex.fe_group = group; 6207 ex.fe_len = count; 6208 6209 /* 6210 * Mark blocks used, so no one can reuse them while 6211 * being trimmed. 6212 */ 6213 mb_mark_used(e4b, &ex); 6214 ext4_unlock_group(sb, group); 6215 ret = ext4_issue_discard(sb, group, start, count, NULL); 6216 ext4_lock_group(sb, group); 6217 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6218 return ret; 6219 } 6220 6221 /** 6222 * ext4_trim_all_free -- function to trim all free space in alloc. group 6223 * @sb: super block for file system 6224 * @group: group to be trimmed 6225 * @start: first group block to examine 6226 * @max: last group block to examine 6227 * @minblocks: minimum extent block count 6228 * 6229 * ext4_trim_all_free walks through group's buddy bitmap searching for free 6230 * extents. When the free block is found, ext4_trim_extent is called to TRIM 6231 * the extent. 6232 * 6233 * 6234 * ext4_trim_all_free walks through group's block bitmap searching for free 6235 * extents. When the free extent is found, mark it as used in group buddy 6236 * bitmap. Then issue a TRIM command on this extent and free the extent in 6237 * the group buddy bitmap. This is done until whole group is scanned. 6238 */ 6239 static ext4_grpblk_t 6240 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6241 ext4_grpblk_t start, ext4_grpblk_t max, 6242 ext4_grpblk_t minblocks) 6243 { 6244 void *bitmap; 6245 ext4_grpblk_t next, count = 0, free_count = 0; 6246 struct ext4_buddy e4b; 6247 int ret = 0; 6248 6249 trace_ext4_trim_all_free(sb, group, start, max); 6250 6251 ret = ext4_mb_load_buddy(sb, group, &e4b); 6252 if (ret) { 6253 ext4_warning(sb, "Error %d loading buddy information for %u", 6254 ret, group); 6255 return ret; 6256 } 6257 bitmap = e4b.bd_bitmap; 6258 6259 ext4_lock_group(sb, group); 6260 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 6261 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 6262 goto out; 6263 6264 start = (e4b.bd_info->bb_first_free > start) ? 6265 e4b.bd_info->bb_first_free : start; 6266 6267 while (start <= max) { 6268 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6269 if (start > max) 6270 break; 6271 next = mb_find_next_bit(bitmap, max + 1, start); 6272 6273 if ((next - start) >= minblocks) { 6274 ret = ext4_trim_extent(sb, start, 6275 next - start, group, &e4b); 6276 if (ret && ret != -EOPNOTSUPP) 6277 break; 6278 ret = 0; 6279 count += next - start; 6280 } 6281 free_count += next - start; 6282 start = next + 1; 6283 6284 if (fatal_signal_pending(current)) { 6285 count = -ERESTARTSYS; 6286 break; 6287 } 6288 6289 if (need_resched()) { 6290 ext4_unlock_group(sb, group); 6291 cond_resched(); 6292 ext4_lock_group(sb, group); 6293 } 6294 6295 if ((e4b.bd_info->bb_free - free_count) < minblocks) 6296 break; 6297 } 6298 6299 if (!ret) { 6300 ret = count; 6301 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 6302 } 6303 out: 6304 ext4_unlock_group(sb, group); 6305 ext4_mb_unload_buddy(&e4b); 6306 6307 ext4_debug("trimmed %d blocks in the group %d\n", 6308 count, group); 6309 6310 return ret; 6311 } 6312 6313 /** 6314 * ext4_trim_fs() -- trim ioctl handle function 6315 * @sb: superblock for filesystem 6316 * @range: fstrim_range structure 6317 * 6318 * start: First Byte to trim 6319 * len: number of Bytes to trim from start 6320 * minlen: minimum extent length in Bytes 6321 * ext4_trim_fs goes through all allocation groups containing Bytes from 6322 * start to start+len. For each such a group ext4_trim_all_free function 6323 * is invoked to trim all free space. 6324 */ 6325 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 6326 { 6327 struct ext4_group_info *grp; 6328 ext4_group_t group, first_group, last_group; 6329 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 6330 uint64_t start, end, minlen, trimmed = 0; 6331 ext4_fsblk_t first_data_blk = 6332 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 6333 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 6334 int ret = 0; 6335 6336 start = range->start >> sb->s_blocksize_bits; 6337 end = start + (range->len >> sb->s_blocksize_bits) - 1; 6338 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6339 range->minlen >> sb->s_blocksize_bits); 6340 6341 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 6342 start >= max_blks || 6343 range->len < sb->s_blocksize) 6344 return -EINVAL; 6345 if (end >= max_blks) 6346 end = max_blks - 1; 6347 if (end <= first_data_blk) 6348 goto out; 6349 if (start < first_data_blk) 6350 start = first_data_blk; 6351 6352 /* Determine first and last group to examine based on start and end */ 6353 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 6354 &first_group, &first_cluster); 6355 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 6356 &last_group, &last_cluster); 6357 6358 /* end now represents the last cluster to discard in this group */ 6359 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6360 6361 for (group = first_group; group <= last_group; group++) { 6362 grp = ext4_get_group_info(sb, group); 6363 /* We only do this if the grp has never been initialized */ 6364 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 6365 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 6366 if (ret) 6367 break; 6368 } 6369 6370 /* 6371 * For all the groups except the last one, last cluster will 6372 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 6373 * change it for the last group, note that last_cluster is 6374 * already computed earlier by ext4_get_group_no_and_offset() 6375 */ 6376 if (group == last_group) 6377 end = last_cluster; 6378 6379 if (grp->bb_free >= minlen) { 6380 cnt = ext4_trim_all_free(sb, group, first_cluster, 6381 end, minlen); 6382 if (cnt < 0) { 6383 ret = cnt; 6384 break; 6385 } 6386 trimmed += cnt; 6387 } 6388 6389 /* 6390 * For every group except the first one, we are sure 6391 * that the first cluster to discard will be cluster #0. 6392 */ 6393 first_cluster = 0; 6394 } 6395 6396 if (!ret) 6397 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 6398 6399 out: 6400 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 6401 return ret; 6402 } 6403 6404 /* Iterate all the free extents in the group. */ 6405 int 6406 ext4_mballoc_query_range( 6407 struct super_block *sb, 6408 ext4_group_t group, 6409 ext4_grpblk_t start, 6410 ext4_grpblk_t end, 6411 ext4_mballoc_query_range_fn formatter, 6412 void *priv) 6413 { 6414 void *bitmap; 6415 ext4_grpblk_t next; 6416 struct ext4_buddy e4b; 6417 int error; 6418 6419 error = ext4_mb_load_buddy(sb, group, &e4b); 6420 if (error) 6421 return error; 6422 bitmap = e4b.bd_bitmap; 6423 6424 ext4_lock_group(sb, group); 6425 6426 start = (e4b.bd_info->bb_first_free > start) ? 6427 e4b.bd_info->bb_first_free : start; 6428 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 6429 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6430 6431 while (start <= end) { 6432 start = mb_find_next_zero_bit(bitmap, end + 1, start); 6433 if (start > end) 6434 break; 6435 next = mb_find_next_bit(bitmap, end + 1, start); 6436 6437 ext4_unlock_group(sb, group); 6438 error = formatter(sb, group, start, next - start, priv); 6439 if (error) 6440 goto out_unload; 6441 ext4_lock_group(sb, group); 6442 6443 start = next + 1; 6444 } 6445 6446 ext4_unlock_group(sb, group); 6447 out_unload: 6448 ext4_mb_unload_buddy(&e4b); 6449 6450 return error; 6451 } 6452