xref: /openbmc/linux/fs/ext4/mballoc.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root)
144  *
145  *    Locking: sbi->s_mb_rb_lock (rwlock)
146  *
147  *    This is a red black tree consisting of group infos and the tree is sorted
148  *    by average fragment sizes (which is calculated as ext4_group_info->bb_free
149  *    / ext4_group_info->bb_fragments).
150  *
151  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
152  * structures to decide the order in which groups are to be traversed for
153  * fulfilling an allocation request.
154  *
155  * At CR = 0, we look for groups which have the largest_free_order >= the order
156  * of the request. We directly look at the largest free order list in the data
157  * structure (1) above where largest_free_order = order of the request. If that
158  * list is empty, we look at remaining list in the increasing order of
159  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
160  *
161  * At CR = 1, we only consider groups where average fragment size > request
162  * size. So, we lookup a group which has average fragment size just above or
163  * equal to request size using our rb tree (data structure 2) in O(log N) time.
164  *
165  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
166  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
167  *
168  * The regular allocator (using the buddy cache) supports a few tunables.
169  *
170  * /sys/fs/ext4/<partition>/mb_min_to_scan
171  * /sys/fs/ext4/<partition>/mb_max_to_scan
172  * /sys/fs/ext4/<partition>/mb_order2_req
173  * /sys/fs/ext4/<partition>/mb_linear_limit
174  *
175  * The regular allocator uses buddy scan only if the request len is power of
176  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
177  * value of s_mb_order2_reqs can be tuned via
178  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
179  * stripe size (sbi->s_stripe), we try to search for contiguous block in
180  * stripe size. This should result in better allocation on RAID setups. If
181  * not, we search in the specific group using bitmap for best extents. The
182  * tunable min_to_scan and max_to_scan control the behaviour here.
183  * min_to_scan indicate how long the mballoc __must__ look for a best
184  * extent and max_to_scan indicates how long the mballoc __can__ look for a
185  * best extent in the found extents. Searching for the blocks starts with
186  * the group specified as the goal value in allocation context via
187  * ac_g_ex. Each group is first checked based on the criteria whether it
188  * can be used for allocation. ext4_mb_good_group explains how the groups are
189  * checked.
190  *
191  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
192  * get traversed linearly. That may result in subsequent allocations being not
193  * close to each other. And so, the underlying device may get filled up in a
194  * non-linear fashion. While that may not matter on non-rotational devices, for
195  * rotational devices that may result in higher seek times. "mb_linear_limit"
196  * tells mballoc how many groups mballoc should search linearly before
197  * performing consulting above data structures for more efficient lookups. For
198  * non rotational devices, this value defaults to 0 and for rotational devices
199  * this is set to MB_DEFAULT_LINEAR_LIMIT.
200  *
201  * Both the prealloc space are getting populated as above. So for the first
202  * request we will hit the buddy cache which will result in this prealloc
203  * space getting filled. The prealloc space is then later used for the
204  * subsequent request.
205  */
206 
207 /*
208  * mballoc operates on the following data:
209  *  - on-disk bitmap
210  *  - in-core buddy (actually includes buddy and bitmap)
211  *  - preallocation descriptors (PAs)
212  *
213  * there are two types of preallocations:
214  *  - inode
215  *    assiged to specific inode and can be used for this inode only.
216  *    it describes part of inode's space preallocated to specific
217  *    physical blocks. any block from that preallocated can be used
218  *    independent. the descriptor just tracks number of blocks left
219  *    unused. so, before taking some block from descriptor, one must
220  *    make sure corresponded logical block isn't allocated yet. this
221  *    also means that freeing any block within descriptor's range
222  *    must discard all preallocated blocks.
223  *  - locality group
224  *    assigned to specific locality group which does not translate to
225  *    permanent set of inodes: inode can join and leave group. space
226  *    from this type of preallocation can be used for any inode. thus
227  *    it's consumed from the beginning to the end.
228  *
229  * relation between them can be expressed as:
230  *    in-core buddy = on-disk bitmap + preallocation descriptors
231  *
232  * this mean blocks mballoc considers used are:
233  *  - allocated blocks (persistent)
234  *  - preallocated blocks (non-persistent)
235  *
236  * consistency in mballoc world means that at any time a block is either
237  * free or used in ALL structures. notice: "any time" should not be read
238  * literally -- time is discrete and delimited by locks.
239  *
240  *  to keep it simple, we don't use block numbers, instead we count number of
241  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
242  *
243  * all operations can be expressed as:
244  *  - init buddy:			buddy = on-disk + PAs
245  *  - new PA:				buddy += N; PA = N
246  *  - use inode PA:			on-disk += N; PA -= N
247  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
248  *  - use locality group PA		on-disk += N; PA -= N
249  *  - discard locality group PA		buddy -= PA; PA = 0
250  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
251  *        is used in real operation because we can't know actual used
252  *        bits from PA, only from on-disk bitmap
253  *
254  * if we follow this strict logic, then all operations above should be atomic.
255  * given some of them can block, we'd have to use something like semaphores
256  * killing performance on high-end SMP hardware. let's try to relax it using
257  * the following knowledge:
258  *  1) if buddy is referenced, it's already initialized
259  *  2) while block is used in buddy and the buddy is referenced,
260  *     nobody can re-allocate that block
261  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
262  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
263  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
264  *     block
265  *
266  * so, now we're building a concurrency table:
267  *  - init buddy vs.
268  *    - new PA
269  *      blocks for PA are allocated in the buddy, buddy must be referenced
270  *      until PA is linked to allocation group to avoid concurrent buddy init
271  *    - use inode PA
272  *      we need to make sure that either on-disk bitmap or PA has uptodate data
273  *      given (3) we care that PA-=N operation doesn't interfere with init
274  *    - discard inode PA
275  *      the simplest way would be to have buddy initialized by the discard
276  *    - use locality group PA
277  *      again PA-=N must be serialized with init
278  *    - discard locality group PA
279  *      the simplest way would be to have buddy initialized by the discard
280  *  - new PA vs.
281  *    - use inode PA
282  *      i_data_sem serializes them
283  *    - discard inode PA
284  *      discard process must wait until PA isn't used by another process
285  *    - use locality group PA
286  *      some mutex should serialize them
287  *    - discard locality group PA
288  *      discard process must wait until PA isn't used by another process
289  *  - use inode PA
290  *    - use inode PA
291  *      i_data_sem or another mutex should serializes them
292  *    - discard inode PA
293  *      discard process must wait until PA isn't used by another process
294  *    - use locality group PA
295  *      nothing wrong here -- they're different PAs covering different blocks
296  *    - discard locality group PA
297  *      discard process must wait until PA isn't used by another process
298  *
299  * now we're ready to make few consequences:
300  *  - PA is referenced and while it is no discard is possible
301  *  - PA is referenced until block isn't marked in on-disk bitmap
302  *  - PA changes only after on-disk bitmap
303  *  - discard must not compete with init. either init is done before
304  *    any discard or they're serialized somehow
305  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
306  *
307  * a special case when we've used PA to emptiness. no need to modify buddy
308  * in this case, but we should care about concurrent init
309  *
310  */
311 
312  /*
313  * Logic in few words:
314  *
315  *  - allocation:
316  *    load group
317  *    find blocks
318  *    mark bits in on-disk bitmap
319  *    release group
320  *
321  *  - use preallocation:
322  *    find proper PA (per-inode or group)
323  *    load group
324  *    mark bits in on-disk bitmap
325  *    release group
326  *    release PA
327  *
328  *  - free:
329  *    load group
330  *    mark bits in on-disk bitmap
331  *    release group
332  *
333  *  - discard preallocations in group:
334  *    mark PAs deleted
335  *    move them onto local list
336  *    load on-disk bitmap
337  *    load group
338  *    remove PA from object (inode or locality group)
339  *    mark free blocks in-core
340  *
341  *  - discard inode's preallocations:
342  */
343 
344 /*
345  * Locking rules
346  *
347  * Locks:
348  *  - bitlock on a group	(group)
349  *  - object (inode/locality)	(object)
350  *  - per-pa lock		(pa)
351  *  - cr0 lists lock		(cr0)
352  *  - cr1 tree lock		(cr1)
353  *
354  * Paths:
355  *  - new pa
356  *    object
357  *    group
358  *
359  *  - find and use pa:
360  *    pa
361  *
362  *  - release consumed pa:
363  *    pa
364  *    group
365  *    object
366  *
367  *  - generate in-core bitmap:
368  *    group
369  *        pa
370  *
371  *  - discard all for given object (inode, locality group):
372  *    object
373  *        pa
374  *    group
375  *
376  *  - discard all for given group:
377  *    group
378  *        pa
379  *    group
380  *        object
381  *
382  *  - allocation path (ext4_mb_regular_allocator)
383  *    group
384  *    cr0/cr1
385  */
386 static struct kmem_cache *ext4_pspace_cachep;
387 static struct kmem_cache *ext4_ac_cachep;
388 static struct kmem_cache *ext4_free_data_cachep;
389 
390 /* We create slab caches for groupinfo data structures based on the
391  * superblock block size.  There will be one per mounted filesystem for
392  * each unique s_blocksize_bits */
393 #define NR_GRPINFO_CACHES 8
394 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
395 
396 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
397 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
398 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
399 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
400 };
401 
402 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
403 					ext4_group_t group);
404 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
405 						ext4_group_t group);
406 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
407 
408 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
409 			       ext4_group_t group, int cr);
410 
411 /*
412  * The algorithm using this percpu seq counter goes below:
413  * 1. We sample the percpu discard_pa_seq counter before trying for block
414  *    allocation in ext4_mb_new_blocks().
415  * 2. We increment this percpu discard_pa_seq counter when we either allocate
416  *    or free these blocks i.e. while marking those blocks as used/free in
417  *    mb_mark_used()/mb_free_blocks().
418  * 3. We also increment this percpu seq counter when we successfully identify
419  *    that the bb_prealloc_list is not empty and hence proceed for discarding
420  *    of those PAs inside ext4_mb_discard_group_preallocations().
421  *
422  * Now to make sure that the regular fast path of block allocation is not
423  * affected, as a small optimization we only sample the percpu seq counter
424  * on that cpu. Only when the block allocation fails and when freed blocks
425  * found were 0, that is when we sample percpu seq counter for all cpus using
426  * below function ext4_get_discard_pa_seq_sum(). This happens after making
427  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
428  */
429 static DEFINE_PER_CPU(u64, discard_pa_seq);
430 static inline u64 ext4_get_discard_pa_seq_sum(void)
431 {
432 	int __cpu;
433 	u64 __seq = 0;
434 
435 	for_each_possible_cpu(__cpu)
436 		__seq += per_cpu(discard_pa_seq, __cpu);
437 	return __seq;
438 }
439 
440 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
441 {
442 #if BITS_PER_LONG == 64
443 	*bit += ((unsigned long) addr & 7UL) << 3;
444 	addr = (void *) ((unsigned long) addr & ~7UL);
445 #elif BITS_PER_LONG == 32
446 	*bit += ((unsigned long) addr & 3UL) << 3;
447 	addr = (void *) ((unsigned long) addr & ~3UL);
448 #else
449 #error "how many bits you are?!"
450 #endif
451 	return addr;
452 }
453 
454 static inline int mb_test_bit(int bit, void *addr)
455 {
456 	/*
457 	 * ext4_test_bit on architecture like powerpc
458 	 * needs unsigned long aligned address
459 	 */
460 	addr = mb_correct_addr_and_bit(&bit, addr);
461 	return ext4_test_bit(bit, addr);
462 }
463 
464 static inline void mb_set_bit(int bit, void *addr)
465 {
466 	addr = mb_correct_addr_and_bit(&bit, addr);
467 	ext4_set_bit(bit, addr);
468 }
469 
470 static inline void mb_clear_bit(int bit, void *addr)
471 {
472 	addr = mb_correct_addr_and_bit(&bit, addr);
473 	ext4_clear_bit(bit, addr);
474 }
475 
476 static inline int mb_test_and_clear_bit(int bit, void *addr)
477 {
478 	addr = mb_correct_addr_and_bit(&bit, addr);
479 	return ext4_test_and_clear_bit(bit, addr);
480 }
481 
482 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
483 {
484 	int fix = 0, ret, tmpmax;
485 	addr = mb_correct_addr_and_bit(&fix, addr);
486 	tmpmax = max + fix;
487 	start += fix;
488 
489 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
490 	if (ret > max)
491 		return max;
492 	return ret;
493 }
494 
495 static inline int mb_find_next_bit(void *addr, int max, int start)
496 {
497 	int fix = 0, ret, tmpmax;
498 	addr = mb_correct_addr_and_bit(&fix, addr);
499 	tmpmax = max + fix;
500 	start += fix;
501 
502 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
503 	if (ret > max)
504 		return max;
505 	return ret;
506 }
507 
508 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
509 {
510 	char *bb;
511 
512 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
513 	BUG_ON(max == NULL);
514 
515 	if (order > e4b->bd_blkbits + 1) {
516 		*max = 0;
517 		return NULL;
518 	}
519 
520 	/* at order 0 we see each particular block */
521 	if (order == 0) {
522 		*max = 1 << (e4b->bd_blkbits + 3);
523 		return e4b->bd_bitmap;
524 	}
525 
526 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
527 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
528 
529 	return bb;
530 }
531 
532 #ifdef DOUBLE_CHECK
533 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
534 			   int first, int count)
535 {
536 	int i;
537 	struct super_block *sb = e4b->bd_sb;
538 
539 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
540 		return;
541 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
542 	for (i = 0; i < count; i++) {
543 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
544 			ext4_fsblk_t blocknr;
545 
546 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
547 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
548 			ext4_grp_locked_error(sb, e4b->bd_group,
549 					      inode ? inode->i_ino : 0,
550 					      blocknr,
551 					      "freeing block already freed "
552 					      "(bit %u)",
553 					      first + i);
554 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
555 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
556 		}
557 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
558 	}
559 }
560 
561 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
562 {
563 	int i;
564 
565 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
566 		return;
567 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
568 	for (i = 0; i < count; i++) {
569 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
570 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
571 	}
572 }
573 
574 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
575 {
576 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
577 		return;
578 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
579 		unsigned char *b1, *b2;
580 		int i;
581 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
582 		b2 = (unsigned char *) bitmap;
583 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
584 			if (b1[i] != b2[i]) {
585 				ext4_msg(e4b->bd_sb, KERN_ERR,
586 					 "corruption in group %u "
587 					 "at byte %u(%u): %x in copy != %x "
588 					 "on disk/prealloc",
589 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
590 				BUG();
591 			}
592 		}
593 	}
594 }
595 
596 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
597 			struct ext4_group_info *grp, ext4_group_t group)
598 {
599 	struct buffer_head *bh;
600 
601 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
602 	if (!grp->bb_bitmap)
603 		return;
604 
605 	bh = ext4_read_block_bitmap(sb, group);
606 	if (IS_ERR_OR_NULL(bh)) {
607 		kfree(grp->bb_bitmap);
608 		grp->bb_bitmap = NULL;
609 		return;
610 	}
611 
612 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
613 	put_bh(bh);
614 }
615 
616 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
617 {
618 	kfree(grp->bb_bitmap);
619 }
620 
621 #else
622 static inline void mb_free_blocks_double(struct inode *inode,
623 				struct ext4_buddy *e4b, int first, int count)
624 {
625 	return;
626 }
627 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
628 						int first, int count)
629 {
630 	return;
631 }
632 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
633 {
634 	return;
635 }
636 
637 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
638 			struct ext4_group_info *grp, ext4_group_t group)
639 {
640 	return;
641 }
642 
643 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
644 {
645 	return;
646 }
647 #endif
648 
649 #ifdef AGGRESSIVE_CHECK
650 
651 #define MB_CHECK_ASSERT(assert)						\
652 do {									\
653 	if (!(assert)) {						\
654 		printk(KERN_EMERG					\
655 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
656 			function, file, line, # assert);		\
657 		BUG();							\
658 	}								\
659 } while (0)
660 
661 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
662 				const char *function, int line)
663 {
664 	struct super_block *sb = e4b->bd_sb;
665 	int order = e4b->bd_blkbits + 1;
666 	int max;
667 	int max2;
668 	int i;
669 	int j;
670 	int k;
671 	int count;
672 	struct ext4_group_info *grp;
673 	int fragments = 0;
674 	int fstart;
675 	struct list_head *cur;
676 	void *buddy;
677 	void *buddy2;
678 
679 	if (e4b->bd_info->bb_check_counter++ % 10)
680 		return 0;
681 
682 	while (order > 1) {
683 		buddy = mb_find_buddy(e4b, order, &max);
684 		MB_CHECK_ASSERT(buddy);
685 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
686 		MB_CHECK_ASSERT(buddy2);
687 		MB_CHECK_ASSERT(buddy != buddy2);
688 		MB_CHECK_ASSERT(max * 2 == max2);
689 
690 		count = 0;
691 		for (i = 0; i < max; i++) {
692 
693 			if (mb_test_bit(i, buddy)) {
694 				/* only single bit in buddy2 may be 1 */
695 				if (!mb_test_bit(i << 1, buddy2)) {
696 					MB_CHECK_ASSERT(
697 						mb_test_bit((i<<1)+1, buddy2));
698 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
699 					MB_CHECK_ASSERT(
700 						mb_test_bit(i << 1, buddy2));
701 				}
702 				continue;
703 			}
704 
705 			/* both bits in buddy2 must be 1 */
706 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
707 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
708 
709 			for (j = 0; j < (1 << order); j++) {
710 				k = (i * (1 << order)) + j;
711 				MB_CHECK_ASSERT(
712 					!mb_test_bit(k, e4b->bd_bitmap));
713 			}
714 			count++;
715 		}
716 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
717 		order--;
718 	}
719 
720 	fstart = -1;
721 	buddy = mb_find_buddy(e4b, 0, &max);
722 	for (i = 0; i < max; i++) {
723 		if (!mb_test_bit(i, buddy)) {
724 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
725 			if (fstart == -1) {
726 				fragments++;
727 				fstart = i;
728 			}
729 			continue;
730 		}
731 		fstart = -1;
732 		/* check used bits only */
733 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
734 			buddy2 = mb_find_buddy(e4b, j, &max2);
735 			k = i >> j;
736 			MB_CHECK_ASSERT(k < max2);
737 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
738 		}
739 	}
740 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
741 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
742 
743 	grp = ext4_get_group_info(sb, e4b->bd_group);
744 	list_for_each(cur, &grp->bb_prealloc_list) {
745 		ext4_group_t groupnr;
746 		struct ext4_prealloc_space *pa;
747 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
748 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
749 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
750 		for (i = 0; i < pa->pa_len; i++)
751 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
752 	}
753 	return 0;
754 }
755 #undef MB_CHECK_ASSERT
756 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
757 					__FILE__, __func__, __LINE__)
758 #else
759 #define mb_check_buddy(e4b)
760 #endif
761 
762 /*
763  * Divide blocks started from @first with length @len into
764  * smaller chunks with power of 2 blocks.
765  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
766  * then increase bb_counters[] for corresponded chunk size.
767  */
768 static void ext4_mb_mark_free_simple(struct super_block *sb,
769 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
770 					struct ext4_group_info *grp)
771 {
772 	struct ext4_sb_info *sbi = EXT4_SB(sb);
773 	ext4_grpblk_t min;
774 	ext4_grpblk_t max;
775 	ext4_grpblk_t chunk;
776 	unsigned int border;
777 
778 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
779 
780 	border = 2 << sb->s_blocksize_bits;
781 
782 	while (len > 0) {
783 		/* find how many blocks can be covered since this position */
784 		max = ffs(first | border) - 1;
785 
786 		/* find how many blocks of power 2 we need to mark */
787 		min = fls(len) - 1;
788 
789 		if (max < min)
790 			min = max;
791 		chunk = 1 << min;
792 
793 		/* mark multiblock chunks only */
794 		grp->bb_counters[min]++;
795 		if (min > 0)
796 			mb_clear_bit(first >> min,
797 				     buddy + sbi->s_mb_offsets[min]);
798 
799 		len -= chunk;
800 		first += chunk;
801 	}
802 }
803 
804 static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new,
805 			int (*cmp)(struct rb_node *, struct rb_node *))
806 {
807 	struct rb_node **iter = &root->rb_node, *parent = NULL;
808 
809 	while (*iter) {
810 		parent = *iter;
811 		if (cmp(new, *iter) > 0)
812 			iter = &((*iter)->rb_left);
813 		else
814 			iter = &((*iter)->rb_right);
815 	}
816 
817 	rb_link_node(new, parent, iter);
818 	rb_insert_color(new, root);
819 }
820 
821 static int
822 ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2)
823 {
824 	struct ext4_group_info *grp1 = rb_entry(rb1,
825 						struct ext4_group_info,
826 						bb_avg_fragment_size_rb);
827 	struct ext4_group_info *grp2 = rb_entry(rb2,
828 						struct ext4_group_info,
829 						bb_avg_fragment_size_rb);
830 	int num_frags_1, num_frags_2;
831 
832 	num_frags_1 = grp1->bb_fragments ?
833 		grp1->bb_free / grp1->bb_fragments : 0;
834 	num_frags_2 = grp2->bb_fragments ?
835 		grp2->bb_free / grp2->bb_fragments : 0;
836 
837 	return (num_frags_2 - num_frags_1);
838 }
839 
840 /*
841  * Reinsert grpinfo into the avg_fragment_size tree with new average
842  * fragment size.
843  */
844 static void
845 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
846 {
847 	struct ext4_sb_info *sbi = EXT4_SB(sb);
848 
849 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
850 		return;
851 
852 	write_lock(&sbi->s_mb_rb_lock);
853 	if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) {
854 		rb_erase(&grp->bb_avg_fragment_size_rb,
855 				&sbi->s_mb_avg_fragment_size_root);
856 		RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb);
857 	}
858 
859 	ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root,
860 		&grp->bb_avg_fragment_size_rb,
861 		ext4_mb_avg_fragment_size_cmp);
862 	write_unlock(&sbi->s_mb_rb_lock);
863 }
864 
865 /*
866  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
867  * cr level needs an update.
868  */
869 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
870 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
871 {
872 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
873 	struct ext4_group_info *iter, *grp;
874 	int i;
875 
876 	if (ac->ac_status == AC_STATUS_FOUND)
877 		return;
878 
879 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
880 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
881 
882 	grp = NULL;
883 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
884 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
885 			continue;
886 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
887 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
888 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
889 			continue;
890 		}
891 		grp = NULL;
892 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
893 				    bb_largest_free_order_node) {
894 			if (sbi->s_mb_stats)
895 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
896 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
897 				grp = iter;
898 				break;
899 			}
900 		}
901 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
902 		if (grp)
903 			break;
904 	}
905 
906 	if (!grp) {
907 		/* Increment cr and search again */
908 		*new_cr = 1;
909 	} else {
910 		*group = grp->bb_group;
911 		ac->ac_last_optimal_group = *group;
912 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
913 	}
914 }
915 
916 /*
917  * Choose next group by traversing average fragment size tree. Updates *new_cr
918  * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that
919  * the linear search should continue for one iteration since there's lock
920  * contention on the rb tree lock.
921  */
922 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
923 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
924 {
925 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
926 	int avg_fragment_size, best_so_far;
927 	struct rb_node *node, *found;
928 	struct ext4_group_info *grp;
929 
930 	/*
931 	 * If there is contention on the lock, instead of waiting for the lock
932 	 * to become available, just continue searching lineraly. We'll resume
933 	 * our rb tree search later starting at ac->ac_last_optimal_group.
934 	 */
935 	if (!read_trylock(&sbi->s_mb_rb_lock)) {
936 		ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR;
937 		return;
938 	}
939 
940 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
941 		if (sbi->s_mb_stats)
942 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
943 		/* We have found something at CR 1 in the past */
944 		grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group);
945 		for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL;
946 		     found = rb_next(found)) {
947 			grp = rb_entry(found, struct ext4_group_info,
948 				       bb_avg_fragment_size_rb);
949 			if (sbi->s_mb_stats)
950 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
951 			if (likely(ext4_mb_good_group(ac, grp->bb_group, 1)))
952 				break;
953 		}
954 		goto done;
955 	}
956 
957 	node = sbi->s_mb_avg_fragment_size_root.rb_node;
958 	best_so_far = 0;
959 	found = NULL;
960 
961 	while (node) {
962 		grp = rb_entry(node, struct ext4_group_info,
963 			       bb_avg_fragment_size_rb);
964 		avg_fragment_size = 0;
965 		if (ext4_mb_good_group(ac, grp->bb_group, 1)) {
966 			avg_fragment_size = grp->bb_fragments ?
967 				grp->bb_free / grp->bb_fragments : 0;
968 			if (!best_so_far || avg_fragment_size < best_so_far) {
969 				best_so_far = avg_fragment_size;
970 				found = node;
971 			}
972 		}
973 		if (avg_fragment_size > ac->ac_g_ex.fe_len)
974 			node = node->rb_right;
975 		else
976 			node = node->rb_left;
977 	}
978 
979 done:
980 	if (found) {
981 		grp = rb_entry(found, struct ext4_group_info,
982 			       bb_avg_fragment_size_rb);
983 		*group = grp->bb_group;
984 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
985 	} else {
986 		*new_cr = 2;
987 	}
988 
989 	read_unlock(&sbi->s_mb_rb_lock);
990 	ac->ac_last_optimal_group = *group;
991 }
992 
993 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
994 {
995 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
996 		return 0;
997 	if (ac->ac_criteria >= 2)
998 		return 0;
999 	if (ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1000 		return 0;
1001 	return 1;
1002 }
1003 
1004 /*
1005  * Return next linear group for allocation. If linear traversal should not be
1006  * performed, this function just returns the same group
1007  */
1008 static int
1009 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
1010 {
1011 	if (!should_optimize_scan(ac))
1012 		goto inc_and_return;
1013 
1014 	if (ac->ac_groups_linear_remaining) {
1015 		ac->ac_groups_linear_remaining--;
1016 		goto inc_and_return;
1017 	}
1018 
1019 	if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) {
1020 		ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR;
1021 		goto inc_and_return;
1022 	}
1023 
1024 	return group;
1025 inc_and_return:
1026 	/*
1027 	 * Artificially restricted ngroups for non-extent
1028 	 * files makes group > ngroups possible on first loop.
1029 	 */
1030 	return group + 1 >= ngroups ? 0 : group + 1;
1031 }
1032 
1033 /*
1034  * ext4_mb_choose_next_group: choose next group for allocation.
1035  *
1036  * @ac        Allocation Context
1037  * @new_cr    This is an output parameter. If the there is no good group
1038  *            available at current CR level, this field is updated to indicate
1039  *            the new cr level that should be used.
1040  * @group     This is an input / output parameter. As an input it indicates the
1041  *            next group that the allocator intends to use for allocation. As
1042  *            output, this field indicates the next group that should be used as
1043  *            determined by the optimization functions.
1044  * @ngroups   Total number of groups
1045  */
1046 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1047 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1048 {
1049 	*new_cr = ac->ac_criteria;
1050 
1051 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining)
1052 		return;
1053 
1054 	if (*new_cr == 0) {
1055 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1056 	} else if (*new_cr == 1) {
1057 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1058 	} else {
1059 		/*
1060 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1061 		 * bb_free. But until that happens, we should never come here.
1062 		 */
1063 		WARN_ON(1);
1064 	}
1065 }
1066 
1067 /*
1068  * Cache the order of the largest free extent we have available in this block
1069  * group.
1070  */
1071 static void
1072 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1073 {
1074 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1075 	int i;
1076 
1077 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) {
1078 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1079 					      grp->bb_largest_free_order]);
1080 		list_del_init(&grp->bb_largest_free_order_node);
1081 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1082 					      grp->bb_largest_free_order]);
1083 	}
1084 	grp->bb_largest_free_order = -1; /* uninit */
1085 
1086 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) {
1087 		if (grp->bb_counters[i] > 0) {
1088 			grp->bb_largest_free_order = i;
1089 			break;
1090 		}
1091 	}
1092 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) &&
1093 	    grp->bb_largest_free_order >= 0 && grp->bb_free) {
1094 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1095 					      grp->bb_largest_free_order]);
1096 		list_add_tail(&grp->bb_largest_free_order_node,
1097 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1098 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1099 					      grp->bb_largest_free_order]);
1100 	}
1101 }
1102 
1103 static noinline_for_stack
1104 void ext4_mb_generate_buddy(struct super_block *sb,
1105 				void *buddy, void *bitmap, ext4_group_t group)
1106 {
1107 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1108 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1109 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1110 	ext4_grpblk_t i = 0;
1111 	ext4_grpblk_t first;
1112 	ext4_grpblk_t len;
1113 	unsigned free = 0;
1114 	unsigned fragments = 0;
1115 	unsigned long long period = get_cycles();
1116 
1117 	/* initialize buddy from bitmap which is aggregation
1118 	 * of on-disk bitmap and preallocations */
1119 	i = mb_find_next_zero_bit(bitmap, max, 0);
1120 	grp->bb_first_free = i;
1121 	while (i < max) {
1122 		fragments++;
1123 		first = i;
1124 		i = mb_find_next_bit(bitmap, max, i);
1125 		len = i - first;
1126 		free += len;
1127 		if (len > 1)
1128 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1129 		else
1130 			grp->bb_counters[0]++;
1131 		if (i < max)
1132 			i = mb_find_next_zero_bit(bitmap, max, i);
1133 	}
1134 	grp->bb_fragments = fragments;
1135 
1136 	if (free != grp->bb_free) {
1137 		ext4_grp_locked_error(sb, group, 0, 0,
1138 				      "block bitmap and bg descriptor "
1139 				      "inconsistent: %u vs %u free clusters",
1140 				      free, grp->bb_free);
1141 		/*
1142 		 * If we intend to continue, we consider group descriptor
1143 		 * corrupt and update bb_free using bitmap value
1144 		 */
1145 		grp->bb_free = free;
1146 		ext4_mark_group_bitmap_corrupted(sb, group,
1147 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1148 	}
1149 	mb_set_largest_free_order(sb, grp);
1150 
1151 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1152 
1153 	period = get_cycles() - period;
1154 	atomic_inc(&sbi->s_mb_buddies_generated);
1155 	atomic64_add(period, &sbi->s_mb_generation_time);
1156 	mb_update_avg_fragment_size(sb, grp);
1157 }
1158 
1159 /* The buddy information is attached the buddy cache inode
1160  * for convenience. The information regarding each group
1161  * is loaded via ext4_mb_load_buddy. The information involve
1162  * block bitmap and buddy information. The information are
1163  * stored in the inode as
1164  *
1165  * {                        page                        }
1166  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1167  *
1168  *
1169  * one block each for bitmap and buddy information.
1170  * So for each group we take up 2 blocks. A page can
1171  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1172  * So it can have information regarding groups_per_page which
1173  * is blocks_per_page/2
1174  *
1175  * Locking note:  This routine takes the block group lock of all groups
1176  * for this page; do not hold this lock when calling this routine!
1177  */
1178 
1179 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1180 {
1181 	ext4_group_t ngroups;
1182 	int blocksize;
1183 	int blocks_per_page;
1184 	int groups_per_page;
1185 	int err = 0;
1186 	int i;
1187 	ext4_group_t first_group, group;
1188 	int first_block;
1189 	struct super_block *sb;
1190 	struct buffer_head *bhs;
1191 	struct buffer_head **bh = NULL;
1192 	struct inode *inode;
1193 	char *data;
1194 	char *bitmap;
1195 	struct ext4_group_info *grinfo;
1196 
1197 	inode = page->mapping->host;
1198 	sb = inode->i_sb;
1199 	ngroups = ext4_get_groups_count(sb);
1200 	blocksize = i_blocksize(inode);
1201 	blocks_per_page = PAGE_SIZE / blocksize;
1202 
1203 	mb_debug(sb, "init page %lu\n", page->index);
1204 
1205 	groups_per_page = blocks_per_page >> 1;
1206 	if (groups_per_page == 0)
1207 		groups_per_page = 1;
1208 
1209 	/* allocate buffer_heads to read bitmaps */
1210 	if (groups_per_page > 1) {
1211 		i = sizeof(struct buffer_head *) * groups_per_page;
1212 		bh = kzalloc(i, gfp);
1213 		if (bh == NULL) {
1214 			err = -ENOMEM;
1215 			goto out;
1216 		}
1217 	} else
1218 		bh = &bhs;
1219 
1220 	first_group = page->index * blocks_per_page / 2;
1221 
1222 	/* read all groups the page covers into the cache */
1223 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1224 		if (group >= ngroups)
1225 			break;
1226 
1227 		grinfo = ext4_get_group_info(sb, group);
1228 		/*
1229 		 * If page is uptodate then we came here after online resize
1230 		 * which added some new uninitialized group info structs, so
1231 		 * we must skip all initialized uptodate buddies on the page,
1232 		 * which may be currently in use by an allocating task.
1233 		 */
1234 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1235 			bh[i] = NULL;
1236 			continue;
1237 		}
1238 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1239 		if (IS_ERR(bh[i])) {
1240 			err = PTR_ERR(bh[i]);
1241 			bh[i] = NULL;
1242 			goto out;
1243 		}
1244 		mb_debug(sb, "read bitmap for group %u\n", group);
1245 	}
1246 
1247 	/* wait for I/O completion */
1248 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1249 		int err2;
1250 
1251 		if (!bh[i])
1252 			continue;
1253 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1254 		if (!err)
1255 			err = err2;
1256 	}
1257 
1258 	first_block = page->index * blocks_per_page;
1259 	for (i = 0; i < blocks_per_page; i++) {
1260 		group = (first_block + i) >> 1;
1261 		if (group >= ngroups)
1262 			break;
1263 
1264 		if (!bh[group - first_group])
1265 			/* skip initialized uptodate buddy */
1266 			continue;
1267 
1268 		if (!buffer_verified(bh[group - first_group]))
1269 			/* Skip faulty bitmaps */
1270 			continue;
1271 		err = 0;
1272 
1273 		/*
1274 		 * data carry information regarding this
1275 		 * particular group in the format specified
1276 		 * above
1277 		 *
1278 		 */
1279 		data = page_address(page) + (i * blocksize);
1280 		bitmap = bh[group - first_group]->b_data;
1281 
1282 		/*
1283 		 * We place the buddy block and bitmap block
1284 		 * close together
1285 		 */
1286 		if ((first_block + i) & 1) {
1287 			/* this is block of buddy */
1288 			BUG_ON(incore == NULL);
1289 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1290 				group, page->index, i * blocksize);
1291 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1292 			grinfo = ext4_get_group_info(sb, group);
1293 			grinfo->bb_fragments = 0;
1294 			memset(grinfo->bb_counters, 0,
1295 			       sizeof(*grinfo->bb_counters) *
1296 			       (MB_NUM_ORDERS(sb)));
1297 			/*
1298 			 * incore got set to the group block bitmap below
1299 			 */
1300 			ext4_lock_group(sb, group);
1301 			/* init the buddy */
1302 			memset(data, 0xff, blocksize);
1303 			ext4_mb_generate_buddy(sb, data, incore, group);
1304 			ext4_unlock_group(sb, group);
1305 			incore = NULL;
1306 		} else {
1307 			/* this is block of bitmap */
1308 			BUG_ON(incore != NULL);
1309 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1310 				group, page->index, i * blocksize);
1311 			trace_ext4_mb_bitmap_load(sb, group);
1312 
1313 			/* see comments in ext4_mb_put_pa() */
1314 			ext4_lock_group(sb, group);
1315 			memcpy(data, bitmap, blocksize);
1316 
1317 			/* mark all preallocated blks used in in-core bitmap */
1318 			ext4_mb_generate_from_pa(sb, data, group);
1319 			ext4_mb_generate_from_freelist(sb, data, group);
1320 			ext4_unlock_group(sb, group);
1321 
1322 			/* set incore so that the buddy information can be
1323 			 * generated using this
1324 			 */
1325 			incore = data;
1326 		}
1327 	}
1328 	SetPageUptodate(page);
1329 
1330 out:
1331 	if (bh) {
1332 		for (i = 0; i < groups_per_page; i++)
1333 			brelse(bh[i]);
1334 		if (bh != &bhs)
1335 			kfree(bh);
1336 	}
1337 	return err;
1338 }
1339 
1340 /*
1341  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1342  * on the same buddy page doesn't happen whild holding the buddy page lock.
1343  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1344  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1345  */
1346 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1347 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1348 {
1349 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1350 	int block, pnum, poff;
1351 	int blocks_per_page;
1352 	struct page *page;
1353 
1354 	e4b->bd_buddy_page = NULL;
1355 	e4b->bd_bitmap_page = NULL;
1356 
1357 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1358 	/*
1359 	 * the buddy cache inode stores the block bitmap
1360 	 * and buddy information in consecutive blocks.
1361 	 * So for each group we need two blocks.
1362 	 */
1363 	block = group * 2;
1364 	pnum = block / blocks_per_page;
1365 	poff = block % blocks_per_page;
1366 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1367 	if (!page)
1368 		return -ENOMEM;
1369 	BUG_ON(page->mapping != inode->i_mapping);
1370 	e4b->bd_bitmap_page = page;
1371 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1372 
1373 	if (blocks_per_page >= 2) {
1374 		/* buddy and bitmap are on the same page */
1375 		return 0;
1376 	}
1377 
1378 	block++;
1379 	pnum = block / blocks_per_page;
1380 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1381 	if (!page)
1382 		return -ENOMEM;
1383 	BUG_ON(page->mapping != inode->i_mapping);
1384 	e4b->bd_buddy_page = page;
1385 	return 0;
1386 }
1387 
1388 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1389 {
1390 	if (e4b->bd_bitmap_page) {
1391 		unlock_page(e4b->bd_bitmap_page);
1392 		put_page(e4b->bd_bitmap_page);
1393 	}
1394 	if (e4b->bd_buddy_page) {
1395 		unlock_page(e4b->bd_buddy_page);
1396 		put_page(e4b->bd_buddy_page);
1397 	}
1398 }
1399 
1400 /*
1401  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1402  * block group lock of all groups for this page; do not hold the BG lock when
1403  * calling this routine!
1404  */
1405 static noinline_for_stack
1406 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1407 {
1408 
1409 	struct ext4_group_info *this_grp;
1410 	struct ext4_buddy e4b;
1411 	struct page *page;
1412 	int ret = 0;
1413 
1414 	might_sleep();
1415 	mb_debug(sb, "init group %u\n", group);
1416 	this_grp = ext4_get_group_info(sb, group);
1417 	/*
1418 	 * This ensures that we don't reinit the buddy cache
1419 	 * page which map to the group from which we are already
1420 	 * allocating. If we are looking at the buddy cache we would
1421 	 * have taken a reference using ext4_mb_load_buddy and that
1422 	 * would have pinned buddy page to page cache.
1423 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1424 	 * page accessed.
1425 	 */
1426 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1427 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1428 		/*
1429 		 * somebody initialized the group
1430 		 * return without doing anything
1431 		 */
1432 		goto err;
1433 	}
1434 
1435 	page = e4b.bd_bitmap_page;
1436 	ret = ext4_mb_init_cache(page, NULL, gfp);
1437 	if (ret)
1438 		goto err;
1439 	if (!PageUptodate(page)) {
1440 		ret = -EIO;
1441 		goto err;
1442 	}
1443 
1444 	if (e4b.bd_buddy_page == NULL) {
1445 		/*
1446 		 * If both the bitmap and buddy are in
1447 		 * the same page we don't need to force
1448 		 * init the buddy
1449 		 */
1450 		ret = 0;
1451 		goto err;
1452 	}
1453 	/* init buddy cache */
1454 	page = e4b.bd_buddy_page;
1455 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1456 	if (ret)
1457 		goto err;
1458 	if (!PageUptodate(page)) {
1459 		ret = -EIO;
1460 		goto err;
1461 	}
1462 err:
1463 	ext4_mb_put_buddy_page_lock(&e4b);
1464 	return ret;
1465 }
1466 
1467 /*
1468  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1469  * block group lock of all groups for this page; do not hold the BG lock when
1470  * calling this routine!
1471  */
1472 static noinline_for_stack int
1473 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1474 		       struct ext4_buddy *e4b, gfp_t gfp)
1475 {
1476 	int blocks_per_page;
1477 	int block;
1478 	int pnum;
1479 	int poff;
1480 	struct page *page;
1481 	int ret;
1482 	struct ext4_group_info *grp;
1483 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1484 	struct inode *inode = sbi->s_buddy_cache;
1485 
1486 	might_sleep();
1487 	mb_debug(sb, "load group %u\n", group);
1488 
1489 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1490 	grp = ext4_get_group_info(sb, group);
1491 
1492 	e4b->bd_blkbits = sb->s_blocksize_bits;
1493 	e4b->bd_info = grp;
1494 	e4b->bd_sb = sb;
1495 	e4b->bd_group = group;
1496 	e4b->bd_buddy_page = NULL;
1497 	e4b->bd_bitmap_page = NULL;
1498 
1499 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1500 		/*
1501 		 * we need full data about the group
1502 		 * to make a good selection
1503 		 */
1504 		ret = ext4_mb_init_group(sb, group, gfp);
1505 		if (ret)
1506 			return ret;
1507 	}
1508 
1509 	/*
1510 	 * the buddy cache inode stores the block bitmap
1511 	 * and buddy information in consecutive blocks.
1512 	 * So for each group we need two blocks.
1513 	 */
1514 	block = group * 2;
1515 	pnum = block / blocks_per_page;
1516 	poff = block % blocks_per_page;
1517 
1518 	/* we could use find_or_create_page(), but it locks page
1519 	 * what we'd like to avoid in fast path ... */
1520 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1521 	if (page == NULL || !PageUptodate(page)) {
1522 		if (page)
1523 			/*
1524 			 * drop the page reference and try
1525 			 * to get the page with lock. If we
1526 			 * are not uptodate that implies
1527 			 * somebody just created the page but
1528 			 * is yet to initialize the same. So
1529 			 * wait for it to initialize.
1530 			 */
1531 			put_page(page);
1532 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1533 		if (page) {
1534 			BUG_ON(page->mapping != inode->i_mapping);
1535 			if (!PageUptodate(page)) {
1536 				ret = ext4_mb_init_cache(page, NULL, gfp);
1537 				if (ret) {
1538 					unlock_page(page);
1539 					goto err;
1540 				}
1541 				mb_cmp_bitmaps(e4b, page_address(page) +
1542 					       (poff * sb->s_blocksize));
1543 			}
1544 			unlock_page(page);
1545 		}
1546 	}
1547 	if (page == NULL) {
1548 		ret = -ENOMEM;
1549 		goto err;
1550 	}
1551 	if (!PageUptodate(page)) {
1552 		ret = -EIO;
1553 		goto err;
1554 	}
1555 
1556 	/* Pages marked accessed already */
1557 	e4b->bd_bitmap_page = page;
1558 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1559 
1560 	block++;
1561 	pnum = block / blocks_per_page;
1562 	poff = block % blocks_per_page;
1563 
1564 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1565 	if (page == NULL || !PageUptodate(page)) {
1566 		if (page)
1567 			put_page(page);
1568 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1569 		if (page) {
1570 			BUG_ON(page->mapping != inode->i_mapping);
1571 			if (!PageUptodate(page)) {
1572 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1573 							 gfp);
1574 				if (ret) {
1575 					unlock_page(page);
1576 					goto err;
1577 				}
1578 			}
1579 			unlock_page(page);
1580 		}
1581 	}
1582 	if (page == NULL) {
1583 		ret = -ENOMEM;
1584 		goto err;
1585 	}
1586 	if (!PageUptodate(page)) {
1587 		ret = -EIO;
1588 		goto err;
1589 	}
1590 
1591 	/* Pages marked accessed already */
1592 	e4b->bd_buddy_page = page;
1593 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1594 
1595 	return 0;
1596 
1597 err:
1598 	if (page)
1599 		put_page(page);
1600 	if (e4b->bd_bitmap_page)
1601 		put_page(e4b->bd_bitmap_page);
1602 	if (e4b->bd_buddy_page)
1603 		put_page(e4b->bd_buddy_page);
1604 	e4b->bd_buddy = NULL;
1605 	e4b->bd_bitmap = NULL;
1606 	return ret;
1607 }
1608 
1609 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1610 			      struct ext4_buddy *e4b)
1611 {
1612 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1613 }
1614 
1615 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1616 {
1617 	if (e4b->bd_bitmap_page)
1618 		put_page(e4b->bd_bitmap_page);
1619 	if (e4b->bd_buddy_page)
1620 		put_page(e4b->bd_buddy_page);
1621 }
1622 
1623 
1624 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1625 {
1626 	int order = 1, max;
1627 	void *bb;
1628 
1629 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1630 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1631 
1632 	while (order <= e4b->bd_blkbits + 1) {
1633 		bb = mb_find_buddy(e4b, order, &max);
1634 		if (!mb_test_bit(block >> order, bb)) {
1635 			/* this block is part of buddy of order 'order' */
1636 			return order;
1637 		}
1638 		order++;
1639 	}
1640 	return 0;
1641 }
1642 
1643 static void mb_clear_bits(void *bm, int cur, int len)
1644 {
1645 	__u32 *addr;
1646 
1647 	len = cur + len;
1648 	while (cur < len) {
1649 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1650 			/* fast path: clear whole word at once */
1651 			addr = bm + (cur >> 3);
1652 			*addr = 0;
1653 			cur += 32;
1654 			continue;
1655 		}
1656 		mb_clear_bit(cur, bm);
1657 		cur++;
1658 	}
1659 }
1660 
1661 /* clear bits in given range
1662  * will return first found zero bit if any, -1 otherwise
1663  */
1664 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1665 {
1666 	__u32 *addr;
1667 	int zero_bit = -1;
1668 
1669 	len = cur + len;
1670 	while (cur < len) {
1671 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1672 			/* fast path: clear whole word at once */
1673 			addr = bm + (cur >> 3);
1674 			if (*addr != (__u32)(-1) && zero_bit == -1)
1675 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1676 			*addr = 0;
1677 			cur += 32;
1678 			continue;
1679 		}
1680 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1681 			zero_bit = cur;
1682 		cur++;
1683 	}
1684 
1685 	return zero_bit;
1686 }
1687 
1688 void ext4_set_bits(void *bm, int cur, int len)
1689 {
1690 	__u32 *addr;
1691 
1692 	len = cur + len;
1693 	while (cur < len) {
1694 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1695 			/* fast path: set whole word at once */
1696 			addr = bm + (cur >> 3);
1697 			*addr = 0xffffffff;
1698 			cur += 32;
1699 			continue;
1700 		}
1701 		mb_set_bit(cur, bm);
1702 		cur++;
1703 	}
1704 }
1705 
1706 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1707 {
1708 	if (mb_test_bit(*bit + side, bitmap)) {
1709 		mb_clear_bit(*bit, bitmap);
1710 		(*bit) -= side;
1711 		return 1;
1712 	}
1713 	else {
1714 		(*bit) += side;
1715 		mb_set_bit(*bit, bitmap);
1716 		return -1;
1717 	}
1718 }
1719 
1720 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1721 {
1722 	int max;
1723 	int order = 1;
1724 	void *buddy = mb_find_buddy(e4b, order, &max);
1725 
1726 	while (buddy) {
1727 		void *buddy2;
1728 
1729 		/* Bits in range [first; last] are known to be set since
1730 		 * corresponding blocks were allocated. Bits in range
1731 		 * (first; last) will stay set because they form buddies on
1732 		 * upper layer. We just deal with borders if they don't
1733 		 * align with upper layer and then go up.
1734 		 * Releasing entire group is all about clearing
1735 		 * single bit of highest order buddy.
1736 		 */
1737 
1738 		/* Example:
1739 		 * ---------------------------------
1740 		 * |   1   |   1   |   1   |   1   |
1741 		 * ---------------------------------
1742 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1743 		 * ---------------------------------
1744 		 *   0   1   2   3   4   5   6   7
1745 		 *      \_____________________/
1746 		 *
1747 		 * Neither [1] nor [6] is aligned to above layer.
1748 		 * Left neighbour [0] is free, so mark it busy,
1749 		 * decrease bb_counters and extend range to
1750 		 * [0; 6]
1751 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1752 		 * mark [6] free, increase bb_counters and shrink range to
1753 		 * [0; 5].
1754 		 * Then shift range to [0; 2], go up and do the same.
1755 		 */
1756 
1757 
1758 		if (first & 1)
1759 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1760 		if (!(last & 1))
1761 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1762 		if (first > last)
1763 			break;
1764 		order++;
1765 
1766 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1767 			mb_clear_bits(buddy, first, last - first + 1);
1768 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1769 			break;
1770 		}
1771 		first >>= 1;
1772 		last >>= 1;
1773 		buddy = buddy2;
1774 	}
1775 }
1776 
1777 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1778 			   int first, int count)
1779 {
1780 	int left_is_free = 0;
1781 	int right_is_free = 0;
1782 	int block;
1783 	int last = first + count - 1;
1784 	struct super_block *sb = e4b->bd_sb;
1785 
1786 	if (WARN_ON(count == 0))
1787 		return;
1788 	BUG_ON(last >= (sb->s_blocksize << 3));
1789 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1790 	/* Don't bother if the block group is corrupt. */
1791 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1792 		return;
1793 
1794 	mb_check_buddy(e4b);
1795 	mb_free_blocks_double(inode, e4b, first, count);
1796 
1797 	this_cpu_inc(discard_pa_seq);
1798 	e4b->bd_info->bb_free += count;
1799 	if (first < e4b->bd_info->bb_first_free)
1800 		e4b->bd_info->bb_first_free = first;
1801 
1802 	/* access memory sequentially: check left neighbour,
1803 	 * clear range and then check right neighbour
1804 	 */
1805 	if (first != 0)
1806 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1807 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1808 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1809 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1810 
1811 	if (unlikely(block != -1)) {
1812 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1813 		ext4_fsblk_t blocknr;
1814 
1815 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1816 		blocknr += EXT4_C2B(sbi, block);
1817 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1818 			ext4_grp_locked_error(sb, e4b->bd_group,
1819 					      inode ? inode->i_ino : 0,
1820 					      blocknr,
1821 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1822 					      block);
1823 			ext4_mark_group_bitmap_corrupted(
1824 				sb, e4b->bd_group,
1825 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1826 		}
1827 		goto done;
1828 	}
1829 
1830 	/* let's maintain fragments counter */
1831 	if (left_is_free && right_is_free)
1832 		e4b->bd_info->bb_fragments--;
1833 	else if (!left_is_free && !right_is_free)
1834 		e4b->bd_info->bb_fragments++;
1835 
1836 	/* buddy[0] == bd_bitmap is a special case, so handle
1837 	 * it right away and let mb_buddy_mark_free stay free of
1838 	 * zero order checks.
1839 	 * Check if neighbours are to be coaleasced,
1840 	 * adjust bitmap bb_counters and borders appropriately.
1841 	 */
1842 	if (first & 1) {
1843 		first += !left_is_free;
1844 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1845 	}
1846 	if (!(last & 1)) {
1847 		last -= !right_is_free;
1848 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1849 	}
1850 
1851 	if (first <= last)
1852 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1853 
1854 done:
1855 	mb_set_largest_free_order(sb, e4b->bd_info);
1856 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1857 	mb_check_buddy(e4b);
1858 }
1859 
1860 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1861 				int needed, struct ext4_free_extent *ex)
1862 {
1863 	int next = block;
1864 	int max, order;
1865 	void *buddy;
1866 
1867 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1868 	BUG_ON(ex == NULL);
1869 
1870 	buddy = mb_find_buddy(e4b, 0, &max);
1871 	BUG_ON(buddy == NULL);
1872 	BUG_ON(block >= max);
1873 	if (mb_test_bit(block, buddy)) {
1874 		ex->fe_len = 0;
1875 		ex->fe_start = 0;
1876 		ex->fe_group = 0;
1877 		return 0;
1878 	}
1879 
1880 	/* find actual order */
1881 	order = mb_find_order_for_block(e4b, block);
1882 	block = block >> order;
1883 
1884 	ex->fe_len = 1 << order;
1885 	ex->fe_start = block << order;
1886 	ex->fe_group = e4b->bd_group;
1887 
1888 	/* calc difference from given start */
1889 	next = next - ex->fe_start;
1890 	ex->fe_len -= next;
1891 	ex->fe_start += next;
1892 
1893 	while (needed > ex->fe_len &&
1894 	       mb_find_buddy(e4b, order, &max)) {
1895 
1896 		if (block + 1 >= max)
1897 			break;
1898 
1899 		next = (block + 1) * (1 << order);
1900 		if (mb_test_bit(next, e4b->bd_bitmap))
1901 			break;
1902 
1903 		order = mb_find_order_for_block(e4b, next);
1904 
1905 		block = next >> order;
1906 		ex->fe_len += 1 << order;
1907 	}
1908 
1909 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1910 		/* Should never happen! (but apparently sometimes does?!?) */
1911 		WARN_ON(1);
1912 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1913 			"corruption or bug in mb_find_extent "
1914 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1915 			block, order, needed, ex->fe_group, ex->fe_start,
1916 			ex->fe_len, ex->fe_logical);
1917 		ex->fe_len = 0;
1918 		ex->fe_start = 0;
1919 		ex->fe_group = 0;
1920 	}
1921 	return ex->fe_len;
1922 }
1923 
1924 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1925 {
1926 	int ord;
1927 	int mlen = 0;
1928 	int max = 0;
1929 	int cur;
1930 	int start = ex->fe_start;
1931 	int len = ex->fe_len;
1932 	unsigned ret = 0;
1933 	int len0 = len;
1934 	void *buddy;
1935 
1936 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1937 	BUG_ON(e4b->bd_group != ex->fe_group);
1938 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1939 	mb_check_buddy(e4b);
1940 	mb_mark_used_double(e4b, start, len);
1941 
1942 	this_cpu_inc(discard_pa_seq);
1943 	e4b->bd_info->bb_free -= len;
1944 	if (e4b->bd_info->bb_first_free == start)
1945 		e4b->bd_info->bb_first_free += len;
1946 
1947 	/* let's maintain fragments counter */
1948 	if (start != 0)
1949 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1950 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1951 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1952 	if (mlen && max)
1953 		e4b->bd_info->bb_fragments++;
1954 	else if (!mlen && !max)
1955 		e4b->bd_info->bb_fragments--;
1956 
1957 	/* let's maintain buddy itself */
1958 	while (len) {
1959 		ord = mb_find_order_for_block(e4b, start);
1960 
1961 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1962 			/* the whole chunk may be allocated at once! */
1963 			mlen = 1 << ord;
1964 			buddy = mb_find_buddy(e4b, ord, &max);
1965 			BUG_ON((start >> ord) >= max);
1966 			mb_set_bit(start >> ord, buddy);
1967 			e4b->bd_info->bb_counters[ord]--;
1968 			start += mlen;
1969 			len -= mlen;
1970 			BUG_ON(len < 0);
1971 			continue;
1972 		}
1973 
1974 		/* store for history */
1975 		if (ret == 0)
1976 			ret = len | (ord << 16);
1977 
1978 		/* we have to split large buddy */
1979 		BUG_ON(ord <= 0);
1980 		buddy = mb_find_buddy(e4b, ord, &max);
1981 		mb_set_bit(start >> ord, buddy);
1982 		e4b->bd_info->bb_counters[ord]--;
1983 
1984 		ord--;
1985 		cur = (start >> ord) & ~1U;
1986 		buddy = mb_find_buddy(e4b, ord, &max);
1987 		mb_clear_bit(cur, buddy);
1988 		mb_clear_bit(cur + 1, buddy);
1989 		e4b->bd_info->bb_counters[ord]++;
1990 		e4b->bd_info->bb_counters[ord]++;
1991 	}
1992 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1993 
1994 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
1995 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1996 	mb_check_buddy(e4b);
1997 
1998 	return ret;
1999 }
2000 
2001 /*
2002  * Must be called under group lock!
2003  */
2004 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2005 					struct ext4_buddy *e4b)
2006 {
2007 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2008 	int ret;
2009 
2010 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2011 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2012 
2013 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2014 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2015 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2016 
2017 	/* preallocation can change ac_b_ex, thus we store actually
2018 	 * allocated blocks for history */
2019 	ac->ac_f_ex = ac->ac_b_ex;
2020 
2021 	ac->ac_status = AC_STATUS_FOUND;
2022 	ac->ac_tail = ret & 0xffff;
2023 	ac->ac_buddy = ret >> 16;
2024 
2025 	/*
2026 	 * take the page reference. We want the page to be pinned
2027 	 * so that we don't get a ext4_mb_init_cache_call for this
2028 	 * group until we update the bitmap. That would mean we
2029 	 * double allocate blocks. The reference is dropped
2030 	 * in ext4_mb_release_context
2031 	 */
2032 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2033 	get_page(ac->ac_bitmap_page);
2034 	ac->ac_buddy_page = e4b->bd_buddy_page;
2035 	get_page(ac->ac_buddy_page);
2036 	/* store last allocated for subsequent stream allocation */
2037 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2038 		spin_lock(&sbi->s_md_lock);
2039 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2040 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2041 		spin_unlock(&sbi->s_md_lock);
2042 	}
2043 	/*
2044 	 * As we've just preallocated more space than
2045 	 * user requested originally, we store allocated
2046 	 * space in a special descriptor.
2047 	 */
2048 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2049 		ext4_mb_new_preallocation(ac);
2050 
2051 }
2052 
2053 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2054 					struct ext4_buddy *e4b,
2055 					int finish_group)
2056 {
2057 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2058 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2059 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2060 	struct ext4_free_extent ex;
2061 	int max;
2062 
2063 	if (ac->ac_status == AC_STATUS_FOUND)
2064 		return;
2065 	/*
2066 	 * We don't want to scan for a whole year
2067 	 */
2068 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2069 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2070 		ac->ac_status = AC_STATUS_BREAK;
2071 		return;
2072 	}
2073 
2074 	/*
2075 	 * Haven't found good chunk so far, let's continue
2076 	 */
2077 	if (bex->fe_len < gex->fe_len)
2078 		return;
2079 
2080 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2081 			&& bex->fe_group == e4b->bd_group) {
2082 		/* recheck chunk's availability - we don't know
2083 		 * when it was found (within this lock-unlock
2084 		 * period or not) */
2085 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
2086 		if (max >= gex->fe_len) {
2087 			ext4_mb_use_best_found(ac, e4b);
2088 			return;
2089 		}
2090 	}
2091 }
2092 
2093 /*
2094  * The routine checks whether found extent is good enough. If it is,
2095  * then the extent gets marked used and flag is set to the context
2096  * to stop scanning. Otherwise, the extent is compared with the
2097  * previous found extent and if new one is better, then it's stored
2098  * in the context. Later, the best found extent will be used, if
2099  * mballoc can't find good enough extent.
2100  *
2101  * FIXME: real allocation policy is to be designed yet!
2102  */
2103 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2104 					struct ext4_free_extent *ex,
2105 					struct ext4_buddy *e4b)
2106 {
2107 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2108 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2109 
2110 	BUG_ON(ex->fe_len <= 0);
2111 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2112 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2113 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2114 
2115 	ac->ac_found++;
2116 
2117 	/*
2118 	 * The special case - take what you catch first
2119 	 */
2120 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2121 		*bex = *ex;
2122 		ext4_mb_use_best_found(ac, e4b);
2123 		return;
2124 	}
2125 
2126 	/*
2127 	 * Let's check whether the chuck is good enough
2128 	 */
2129 	if (ex->fe_len == gex->fe_len) {
2130 		*bex = *ex;
2131 		ext4_mb_use_best_found(ac, e4b);
2132 		return;
2133 	}
2134 
2135 	/*
2136 	 * If this is first found extent, just store it in the context
2137 	 */
2138 	if (bex->fe_len == 0) {
2139 		*bex = *ex;
2140 		return;
2141 	}
2142 
2143 	/*
2144 	 * If new found extent is better, store it in the context
2145 	 */
2146 	if (bex->fe_len < gex->fe_len) {
2147 		/* if the request isn't satisfied, any found extent
2148 		 * larger than previous best one is better */
2149 		if (ex->fe_len > bex->fe_len)
2150 			*bex = *ex;
2151 	} else if (ex->fe_len > gex->fe_len) {
2152 		/* if the request is satisfied, then we try to find
2153 		 * an extent that still satisfy the request, but is
2154 		 * smaller than previous one */
2155 		if (ex->fe_len < bex->fe_len)
2156 			*bex = *ex;
2157 	}
2158 
2159 	ext4_mb_check_limits(ac, e4b, 0);
2160 }
2161 
2162 static noinline_for_stack
2163 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2164 					struct ext4_buddy *e4b)
2165 {
2166 	struct ext4_free_extent ex = ac->ac_b_ex;
2167 	ext4_group_t group = ex.fe_group;
2168 	int max;
2169 	int err;
2170 
2171 	BUG_ON(ex.fe_len <= 0);
2172 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2173 	if (err)
2174 		return err;
2175 
2176 	ext4_lock_group(ac->ac_sb, group);
2177 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2178 
2179 	if (max > 0) {
2180 		ac->ac_b_ex = ex;
2181 		ext4_mb_use_best_found(ac, e4b);
2182 	}
2183 
2184 	ext4_unlock_group(ac->ac_sb, group);
2185 	ext4_mb_unload_buddy(e4b);
2186 
2187 	return 0;
2188 }
2189 
2190 static noinline_for_stack
2191 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2192 				struct ext4_buddy *e4b)
2193 {
2194 	ext4_group_t group = ac->ac_g_ex.fe_group;
2195 	int max;
2196 	int err;
2197 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2198 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2199 	struct ext4_free_extent ex;
2200 
2201 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
2202 		return 0;
2203 	if (grp->bb_free == 0)
2204 		return 0;
2205 
2206 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2207 	if (err)
2208 		return err;
2209 
2210 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2211 		ext4_mb_unload_buddy(e4b);
2212 		return 0;
2213 	}
2214 
2215 	ext4_lock_group(ac->ac_sb, group);
2216 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2217 			     ac->ac_g_ex.fe_len, &ex);
2218 	ex.fe_logical = 0xDEADFA11; /* debug value */
2219 
2220 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2221 		ext4_fsblk_t start;
2222 
2223 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2224 			ex.fe_start;
2225 		/* use do_div to get remainder (would be 64-bit modulo) */
2226 		if (do_div(start, sbi->s_stripe) == 0) {
2227 			ac->ac_found++;
2228 			ac->ac_b_ex = ex;
2229 			ext4_mb_use_best_found(ac, e4b);
2230 		}
2231 	} else if (max >= ac->ac_g_ex.fe_len) {
2232 		BUG_ON(ex.fe_len <= 0);
2233 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2234 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2235 		ac->ac_found++;
2236 		ac->ac_b_ex = ex;
2237 		ext4_mb_use_best_found(ac, e4b);
2238 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2239 		/* Sometimes, caller may want to merge even small
2240 		 * number of blocks to an existing extent */
2241 		BUG_ON(ex.fe_len <= 0);
2242 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2243 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2244 		ac->ac_found++;
2245 		ac->ac_b_ex = ex;
2246 		ext4_mb_use_best_found(ac, e4b);
2247 	}
2248 	ext4_unlock_group(ac->ac_sb, group);
2249 	ext4_mb_unload_buddy(e4b);
2250 
2251 	return 0;
2252 }
2253 
2254 /*
2255  * The routine scans buddy structures (not bitmap!) from given order
2256  * to max order and tries to find big enough chunk to satisfy the req
2257  */
2258 static noinline_for_stack
2259 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2260 					struct ext4_buddy *e4b)
2261 {
2262 	struct super_block *sb = ac->ac_sb;
2263 	struct ext4_group_info *grp = e4b->bd_info;
2264 	void *buddy;
2265 	int i;
2266 	int k;
2267 	int max;
2268 
2269 	BUG_ON(ac->ac_2order <= 0);
2270 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2271 		if (grp->bb_counters[i] == 0)
2272 			continue;
2273 
2274 		buddy = mb_find_buddy(e4b, i, &max);
2275 		BUG_ON(buddy == NULL);
2276 
2277 		k = mb_find_next_zero_bit(buddy, max, 0);
2278 		if (k >= max) {
2279 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2280 				"%d free clusters of order %d. But found 0",
2281 				grp->bb_counters[i], i);
2282 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2283 					 e4b->bd_group,
2284 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2285 			break;
2286 		}
2287 		ac->ac_found++;
2288 
2289 		ac->ac_b_ex.fe_len = 1 << i;
2290 		ac->ac_b_ex.fe_start = k << i;
2291 		ac->ac_b_ex.fe_group = e4b->bd_group;
2292 
2293 		ext4_mb_use_best_found(ac, e4b);
2294 
2295 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2296 
2297 		if (EXT4_SB(sb)->s_mb_stats)
2298 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2299 
2300 		break;
2301 	}
2302 }
2303 
2304 /*
2305  * The routine scans the group and measures all found extents.
2306  * In order to optimize scanning, caller must pass number of
2307  * free blocks in the group, so the routine can know upper limit.
2308  */
2309 static noinline_for_stack
2310 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2311 					struct ext4_buddy *e4b)
2312 {
2313 	struct super_block *sb = ac->ac_sb;
2314 	void *bitmap = e4b->bd_bitmap;
2315 	struct ext4_free_extent ex;
2316 	int i;
2317 	int free;
2318 
2319 	free = e4b->bd_info->bb_free;
2320 	if (WARN_ON(free <= 0))
2321 		return;
2322 
2323 	i = e4b->bd_info->bb_first_free;
2324 
2325 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2326 		i = mb_find_next_zero_bit(bitmap,
2327 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2328 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2329 			/*
2330 			 * IF we have corrupt bitmap, we won't find any
2331 			 * free blocks even though group info says we
2332 			 * have free blocks
2333 			 */
2334 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2335 					"%d free clusters as per "
2336 					"group info. But bitmap says 0",
2337 					free);
2338 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2339 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2340 			break;
2341 		}
2342 
2343 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2344 		if (WARN_ON(ex.fe_len <= 0))
2345 			break;
2346 		if (free < ex.fe_len) {
2347 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2348 					"%d free clusters as per "
2349 					"group info. But got %d blocks",
2350 					free, ex.fe_len);
2351 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2352 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2353 			/*
2354 			 * The number of free blocks differs. This mostly
2355 			 * indicate that the bitmap is corrupt. So exit
2356 			 * without claiming the space.
2357 			 */
2358 			break;
2359 		}
2360 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2361 		ext4_mb_measure_extent(ac, &ex, e4b);
2362 
2363 		i += ex.fe_len;
2364 		free -= ex.fe_len;
2365 	}
2366 
2367 	ext4_mb_check_limits(ac, e4b, 1);
2368 }
2369 
2370 /*
2371  * This is a special case for storages like raid5
2372  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2373  */
2374 static noinline_for_stack
2375 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2376 				 struct ext4_buddy *e4b)
2377 {
2378 	struct super_block *sb = ac->ac_sb;
2379 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2380 	void *bitmap = e4b->bd_bitmap;
2381 	struct ext4_free_extent ex;
2382 	ext4_fsblk_t first_group_block;
2383 	ext4_fsblk_t a;
2384 	ext4_grpblk_t i;
2385 	int max;
2386 
2387 	BUG_ON(sbi->s_stripe == 0);
2388 
2389 	/* find first stripe-aligned block in group */
2390 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2391 
2392 	a = first_group_block + sbi->s_stripe - 1;
2393 	do_div(a, sbi->s_stripe);
2394 	i = (a * sbi->s_stripe) - first_group_block;
2395 
2396 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2397 		if (!mb_test_bit(i, bitmap)) {
2398 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2399 			if (max >= sbi->s_stripe) {
2400 				ac->ac_found++;
2401 				ex.fe_logical = 0xDEADF00D; /* debug value */
2402 				ac->ac_b_ex = ex;
2403 				ext4_mb_use_best_found(ac, e4b);
2404 				break;
2405 			}
2406 		}
2407 		i += sbi->s_stripe;
2408 	}
2409 }
2410 
2411 /*
2412  * This is also called BEFORE we load the buddy bitmap.
2413  * Returns either 1 or 0 indicating that the group is either suitable
2414  * for the allocation or not.
2415  */
2416 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2417 				ext4_group_t group, int cr)
2418 {
2419 	ext4_grpblk_t free, fragments;
2420 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2421 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2422 
2423 	BUG_ON(cr < 0 || cr >= 4);
2424 
2425 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2426 		return false;
2427 
2428 	free = grp->bb_free;
2429 	if (free == 0)
2430 		return false;
2431 
2432 	fragments = grp->bb_fragments;
2433 	if (fragments == 0)
2434 		return false;
2435 
2436 	switch (cr) {
2437 	case 0:
2438 		BUG_ON(ac->ac_2order == 0);
2439 
2440 		/* Avoid using the first bg of a flexgroup for data files */
2441 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2442 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2443 		    ((group % flex_size) == 0))
2444 			return false;
2445 
2446 		if (free < ac->ac_g_ex.fe_len)
2447 			return false;
2448 
2449 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2450 			return true;
2451 
2452 		if (grp->bb_largest_free_order < ac->ac_2order)
2453 			return false;
2454 
2455 		return true;
2456 	case 1:
2457 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2458 			return true;
2459 		break;
2460 	case 2:
2461 		if (free >= ac->ac_g_ex.fe_len)
2462 			return true;
2463 		break;
2464 	case 3:
2465 		return true;
2466 	default:
2467 		BUG();
2468 	}
2469 
2470 	return false;
2471 }
2472 
2473 /*
2474  * This could return negative error code if something goes wrong
2475  * during ext4_mb_init_group(). This should not be called with
2476  * ext4_lock_group() held.
2477  */
2478 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2479 				     ext4_group_t group, int cr)
2480 {
2481 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2482 	struct super_block *sb = ac->ac_sb;
2483 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2484 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2485 	ext4_grpblk_t free;
2486 	int ret = 0;
2487 
2488 	if (sbi->s_mb_stats)
2489 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2490 	if (should_lock)
2491 		ext4_lock_group(sb, group);
2492 	free = grp->bb_free;
2493 	if (free == 0)
2494 		goto out;
2495 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2496 		goto out;
2497 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2498 		goto out;
2499 	if (should_lock)
2500 		ext4_unlock_group(sb, group);
2501 
2502 	/* We only do this if the grp has never been initialized */
2503 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2504 		struct ext4_group_desc *gdp =
2505 			ext4_get_group_desc(sb, group, NULL);
2506 		int ret;
2507 
2508 		/* cr=0/1 is a very optimistic search to find large
2509 		 * good chunks almost for free.  If buddy data is not
2510 		 * ready, then this optimization makes no sense.  But
2511 		 * we never skip the first block group in a flex_bg,
2512 		 * since this gets used for metadata block allocation,
2513 		 * and we want to make sure we locate metadata blocks
2514 		 * in the first block group in the flex_bg if possible.
2515 		 */
2516 		if (cr < 2 &&
2517 		    (!sbi->s_log_groups_per_flex ||
2518 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2519 		    !(ext4_has_group_desc_csum(sb) &&
2520 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2521 			return 0;
2522 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2523 		if (ret)
2524 			return ret;
2525 	}
2526 
2527 	if (should_lock)
2528 		ext4_lock_group(sb, group);
2529 	ret = ext4_mb_good_group(ac, group, cr);
2530 out:
2531 	if (should_lock)
2532 		ext4_unlock_group(sb, group);
2533 	return ret;
2534 }
2535 
2536 /*
2537  * Start prefetching @nr block bitmaps starting at @group.
2538  * Return the next group which needs to be prefetched.
2539  */
2540 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2541 			      unsigned int nr, int *cnt)
2542 {
2543 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2544 	struct buffer_head *bh;
2545 	struct blk_plug plug;
2546 
2547 	blk_start_plug(&plug);
2548 	while (nr-- > 0) {
2549 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2550 								  NULL);
2551 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2552 
2553 		/*
2554 		 * Prefetch block groups with free blocks; but don't
2555 		 * bother if it is marked uninitialized on disk, since
2556 		 * it won't require I/O to read.  Also only try to
2557 		 * prefetch once, so we avoid getblk() call, which can
2558 		 * be expensive.
2559 		 */
2560 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2561 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2562 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2563 		    !(ext4_has_group_desc_csum(sb) &&
2564 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2565 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2566 			if (bh && !IS_ERR(bh)) {
2567 				if (!buffer_uptodate(bh) && cnt)
2568 					(*cnt)++;
2569 				brelse(bh);
2570 			}
2571 		}
2572 		if (++group >= ngroups)
2573 			group = 0;
2574 	}
2575 	blk_finish_plug(&plug);
2576 	return group;
2577 }
2578 
2579 /*
2580  * Prefetching reads the block bitmap into the buffer cache; but we
2581  * need to make sure that the buddy bitmap in the page cache has been
2582  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2583  * is not yet completed, or indeed if it was not initiated by
2584  * ext4_mb_prefetch did not start the I/O.
2585  *
2586  * TODO: We should actually kick off the buddy bitmap setup in a work
2587  * queue when the buffer I/O is completed, so that we don't block
2588  * waiting for the block allocation bitmap read to finish when
2589  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2590  */
2591 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2592 			   unsigned int nr)
2593 {
2594 	while (nr-- > 0) {
2595 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2596 								  NULL);
2597 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2598 
2599 		if (!group)
2600 			group = ext4_get_groups_count(sb);
2601 		group--;
2602 		grp = ext4_get_group_info(sb, group);
2603 
2604 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
2605 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2606 		    !(ext4_has_group_desc_csum(sb) &&
2607 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2608 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2609 				break;
2610 		}
2611 	}
2612 }
2613 
2614 static noinline_for_stack int
2615 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2616 {
2617 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2618 	int cr = -1;
2619 	int err = 0, first_err = 0;
2620 	unsigned int nr = 0, prefetch_ios = 0;
2621 	struct ext4_sb_info *sbi;
2622 	struct super_block *sb;
2623 	struct ext4_buddy e4b;
2624 	int lost;
2625 
2626 	sb = ac->ac_sb;
2627 	sbi = EXT4_SB(sb);
2628 	ngroups = ext4_get_groups_count(sb);
2629 	/* non-extent files are limited to low blocks/groups */
2630 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2631 		ngroups = sbi->s_blockfile_groups;
2632 
2633 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2634 
2635 	/* first, try the goal */
2636 	err = ext4_mb_find_by_goal(ac, &e4b);
2637 	if (err || ac->ac_status == AC_STATUS_FOUND)
2638 		goto out;
2639 
2640 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2641 		goto out;
2642 
2643 	/*
2644 	 * ac->ac_2order is set only if the fe_len is a power of 2
2645 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2646 	 * try exact allocation using buddy.
2647 	 */
2648 	i = fls(ac->ac_g_ex.fe_len);
2649 	ac->ac_2order = 0;
2650 	/*
2651 	 * We search using buddy data only if the order of the request
2652 	 * is greater than equal to the sbi_s_mb_order2_reqs
2653 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2654 	 * We also support searching for power-of-two requests only for
2655 	 * requests upto maximum buddy size we have constructed.
2656 	 */
2657 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2658 		/*
2659 		 * This should tell if fe_len is exactly power of 2
2660 		 */
2661 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2662 			ac->ac_2order = array_index_nospec(i - 1,
2663 							   MB_NUM_ORDERS(sb));
2664 	}
2665 
2666 	/* if stream allocation is enabled, use global goal */
2667 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2668 		/* TBD: may be hot point */
2669 		spin_lock(&sbi->s_md_lock);
2670 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2671 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2672 		spin_unlock(&sbi->s_md_lock);
2673 	}
2674 
2675 	/* Let's just scan groups to find more-less suitable blocks */
2676 	cr = ac->ac_2order ? 0 : 1;
2677 	/*
2678 	 * cr == 0 try to get exact allocation,
2679 	 * cr == 3  try to get anything
2680 	 */
2681 repeat:
2682 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2683 		ac->ac_criteria = cr;
2684 		/*
2685 		 * searching for the right group start
2686 		 * from the goal value specified
2687 		 */
2688 		group = ac->ac_g_ex.fe_group;
2689 		ac->ac_last_optimal_group = group;
2690 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2691 		prefetch_grp = group;
2692 
2693 		for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups),
2694 			     i++) {
2695 			int ret = 0, new_cr;
2696 
2697 			cond_resched();
2698 
2699 			ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups);
2700 			if (new_cr != cr) {
2701 				cr = new_cr;
2702 				goto repeat;
2703 			}
2704 
2705 			/*
2706 			 * Batch reads of the block allocation bitmaps
2707 			 * to get multiple READs in flight; limit
2708 			 * prefetching at cr=0/1, otherwise mballoc can
2709 			 * spend a lot of time loading imperfect groups
2710 			 */
2711 			if ((prefetch_grp == group) &&
2712 			    (cr > 1 ||
2713 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2714 				unsigned int curr_ios = prefetch_ios;
2715 
2716 				nr = sbi->s_mb_prefetch;
2717 				if (ext4_has_feature_flex_bg(sb)) {
2718 					nr = 1 << sbi->s_log_groups_per_flex;
2719 					nr -= group & (nr - 1);
2720 					nr = min(nr, sbi->s_mb_prefetch);
2721 				}
2722 				prefetch_grp = ext4_mb_prefetch(sb, group,
2723 							nr, &prefetch_ios);
2724 				if (prefetch_ios == curr_ios)
2725 					nr = 0;
2726 			}
2727 
2728 			/* This now checks without needing the buddy page */
2729 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2730 			if (ret <= 0) {
2731 				if (!first_err)
2732 					first_err = ret;
2733 				continue;
2734 			}
2735 
2736 			err = ext4_mb_load_buddy(sb, group, &e4b);
2737 			if (err)
2738 				goto out;
2739 
2740 			ext4_lock_group(sb, group);
2741 
2742 			/*
2743 			 * We need to check again after locking the
2744 			 * block group
2745 			 */
2746 			ret = ext4_mb_good_group(ac, group, cr);
2747 			if (ret == 0) {
2748 				ext4_unlock_group(sb, group);
2749 				ext4_mb_unload_buddy(&e4b);
2750 				continue;
2751 			}
2752 
2753 			ac->ac_groups_scanned++;
2754 			if (cr == 0)
2755 				ext4_mb_simple_scan_group(ac, &e4b);
2756 			else if (cr == 1 && sbi->s_stripe &&
2757 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2758 				ext4_mb_scan_aligned(ac, &e4b);
2759 			else
2760 				ext4_mb_complex_scan_group(ac, &e4b);
2761 
2762 			ext4_unlock_group(sb, group);
2763 			ext4_mb_unload_buddy(&e4b);
2764 
2765 			if (ac->ac_status != AC_STATUS_CONTINUE)
2766 				break;
2767 		}
2768 		/* Processed all groups and haven't found blocks */
2769 		if (sbi->s_mb_stats && i == ngroups)
2770 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2771 	}
2772 
2773 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2774 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2775 		/*
2776 		 * We've been searching too long. Let's try to allocate
2777 		 * the best chunk we've found so far
2778 		 */
2779 		ext4_mb_try_best_found(ac, &e4b);
2780 		if (ac->ac_status != AC_STATUS_FOUND) {
2781 			/*
2782 			 * Someone more lucky has already allocated it.
2783 			 * The only thing we can do is just take first
2784 			 * found block(s)
2785 			 */
2786 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2787 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2788 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2789 				 ac->ac_b_ex.fe_len, lost);
2790 
2791 			ac->ac_b_ex.fe_group = 0;
2792 			ac->ac_b_ex.fe_start = 0;
2793 			ac->ac_b_ex.fe_len = 0;
2794 			ac->ac_status = AC_STATUS_CONTINUE;
2795 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2796 			cr = 3;
2797 			goto repeat;
2798 		}
2799 	}
2800 
2801 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2802 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2803 out:
2804 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2805 		err = first_err;
2806 
2807 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2808 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2809 		 ac->ac_flags, cr, err);
2810 
2811 	if (nr)
2812 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2813 
2814 	return err;
2815 }
2816 
2817 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2818 {
2819 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2820 	ext4_group_t group;
2821 
2822 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2823 		return NULL;
2824 	group = *pos + 1;
2825 	return (void *) ((unsigned long) group);
2826 }
2827 
2828 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2829 {
2830 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2831 	ext4_group_t group;
2832 
2833 	++*pos;
2834 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2835 		return NULL;
2836 	group = *pos + 1;
2837 	return (void *) ((unsigned long) group);
2838 }
2839 
2840 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2841 {
2842 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2843 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2844 	int i;
2845 	int err, buddy_loaded = 0;
2846 	struct ext4_buddy e4b;
2847 	struct ext4_group_info *grinfo;
2848 	unsigned char blocksize_bits = min_t(unsigned char,
2849 					     sb->s_blocksize_bits,
2850 					     EXT4_MAX_BLOCK_LOG_SIZE);
2851 	struct sg {
2852 		struct ext4_group_info info;
2853 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2854 	} sg;
2855 
2856 	group--;
2857 	if (group == 0)
2858 		seq_puts(seq, "#group: free  frags first ["
2859 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2860 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2861 
2862 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2863 		sizeof(struct ext4_group_info);
2864 
2865 	grinfo = ext4_get_group_info(sb, group);
2866 	/* Load the group info in memory only if not already loaded. */
2867 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2868 		err = ext4_mb_load_buddy(sb, group, &e4b);
2869 		if (err) {
2870 			seq_printf(seq, "#%-5u: I/O error\n", group);
2871 			return 0;
2872 		}
2873 		buddy_loaded = 1;
2874 	}
2875 
2876 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2877 
2878 	if (buddy_loaded)
2879 		ext4_mb_unload_buddy(&e4b);
2880 
2881 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2882 			sg.info.bb_fragments, sg.info.bb_first_free);
2883 	for (i = 0; i <= 13; i++)
2884 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2885 				sg.info.bb_counters[i] : 0);
2886 	seq_puts(seq, " ]\n");
2887 
2888 	return 0;
2889 }
2890 
2891 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2892 {
2893 }
2894 
2895 const struct seq_operations ext4_mb_seq_groups_ops = {
2896 	.start  = ext4_mb_seq_groups_start,
2897 	.next   = ext4_mb_seq_groups_next,
2898 	.stop   = ext4_mb_seq_groups_stop,
2899 	.show   = ext4_mb_seq_groups_show,
2900 };
2901 
2902 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2903 {
2904 	struct super_block *sb = (struct super_block *)seq->private;
2905 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2906 
2907 	seq_puts(seq, "mballoc:\n");
2908 	if (!sbi->s_mb_stats) {
2909 		seq_puts(seq, "\tmb stats collection turned off.\n");
2910 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2911 		return 0;
2912 	}
2913 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2914 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2915 
2916 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
2917 
2918 	seq_puts(seq, "\tcr0_stats:\n");
2919 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2920 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2921 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2922 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2923 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
2924 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2925 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2926 
2927 	seq_puts(seq, "\tcr1_stats:\n");
2928 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2929 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2930 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2931 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2932 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
2933 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2934 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
2935 
2936 	seq_puts(seq, "\tcr2_stats:\n");
2937 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2938 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2939 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2940 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2941 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
2942 
2943 	seq_puts(seq, "\tcr3_stats:\n");
2944 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2945 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2946 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2947 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2948 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
2949 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2950 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2951 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2952 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2953 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2954 
2955 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2956 		   atomic_read(&sbi->s_mb_buddies_generated),
2957 		   ext4_get_groups_count(sb));
2958 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
2959 		   atomic64_read(&sbi->s_mb_generation_time));
2960 	seq_printf(seq, "\tpreallocated: %u\n",
2961 		   atomic_read(&sbi->s_mb_preallocated));
2962 	seq_printf(seq, "\tdiscarded: %u\n",
2963 		   atomic_read(&sbi->s_mb_discarded));
2964 	return 0;
2965 }
2966 
2967 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
2968 {
2969 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2970 	unsigned long position;
2971 
2972 	read_lock(&EXT4_SB(sb)->s_mb_rb_lock);
2973 
2974 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
2975 		return NULL;
2976 	position = *pos + 1;
2977 	return (void *) ((unsigned long) position);
2978 }
2979 
2980 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
2981 {
2982 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2983 	unsigned long position;
2984 
2985 	++*pos;
2986 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
2987 		return NULL;
2988 	position = *pos + 1;
2989 	return (void *) ((unsigned long) position);
2990 }
2991 
2992 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
2993 {
2994 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2995 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2996 	unsigned long position = ((unsigned long) v);
2997 	struct ext4_group_info *grp;
2998 	struct rb_node *n;
2999 	unsigned int count, min, max;
3000 
3001 	position--;
3002 	if (position >= MB_NUM_ORDERS(sb)) {
3003 		seq_puts(seq, "fragment_size_tree:\n");
3004 		n = rb_first(&sbi->s_mb_avg_fragment_size_root);
3005 		if (!n) {
3006 			seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n");
3007 			return 0;
3008 		}
3009 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3010 		min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3011 		count = 1;
3012 		while (rb_next(n)) {
3013 			count++;
3014 			n = rb_next(n);
3015 		}
3016 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3017 		max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3018 
3019 		seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n",
3020 			   min, max, count);
3021 		return 0;
3022 	}
3023 
3024 	if (position == 0) {
3025 		seq_printf(seq, "optimize_scan: %d\n",
3026 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3027 		seq_puts(seq, "max_free_order_lists:\n");
3028 	}
3029 	count = 0;
3030 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3031 			    bb_largest_free_order_node)
3032 		count++;
3033 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3034 		   (unsigned int)position, count);
3035 
3036 	return 0;
3037 }
3038 
3039 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3040 {
3041 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
3042 
3043 	read_unlock(&EXT4_SB(sb)->s_mb_rb_lock);
3044 }
3045 
3046 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3047 	.start  = ext4_mb_seq_structs_summary_start,
3048 	.next   = ext4_mb_seq_structs_summary_next,
3049 	.stop   = ext4_mb_seq_structs_summary_stop,
3050 	.show   = ext4_mb_seq_structs_summary_show,
3051 };
3052 
3053 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3054 {
3055 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3056 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3057 
3058 	BUG_ON(!cachep);
3059 	return cachep;
3060 }
3061 
3062 /*
3063  * Allocate the top-level s_group_info array for the specified number
3064  * of groups
3065  */
3066 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3067 {
3068 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3069 	unsigned size;
3070 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3071 
3072 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3073 		EXT4_DESC_PER_BLOCK_BITS(sb);
3074 	if (size <= sbi->s_group_info_size)
3075 		return 0;
3076 
3077 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3078 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3079 	if (!new_groupinfo) {
3080 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3081 		return -ENOMEM;
3082 	}
3083 	rcu_read_lock();
3084 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3085 	if (old_groupinfo)
3086 		memcpy(new_groupinfo, old_groupinfo,
3087 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3088 	rcu_read_unlock();
3089 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3090 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3091 	if (old_groupinfo)
3092 		ext4_kvfree_array_rcu(old_groupinfo);
3093 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3094 		   sbi->s_group_info_size);
3095 	return 0;
3096 }
3097 
3098 /* Create and initialize ext4_group_info data for the given group. */
3099 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3100 			  struct ext4_group_desc *desc)
3101 {
3102 	int i;
3103 	int metalen = 0;
3104 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3105 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3106 	struct ext4_group_info **meta_group_info;
3107 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3108 
3109 	/*
3110 	 * First check if this group is the first of a reserved block.
3111 	 * If it's true, we have to allocate a new table of pointers
3112 	 * to ext4_group_info structures
3113 	 */
3114 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3115 		metalen = sizeof(*meta_group_info) <<
3116 			EXT4_DESC_PER_BLOCK_BITS(sb);
3117 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3118 		if (meta_group_info == NULL) {
3119 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3120 				 "for a buddy group");
3121 			goto exit_meta_group_info;
3122 		}
3123 		rcu_read_lock();
3124 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3125 		rcu_read_unlock();
3126 	}
3127 
3128 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3129 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3130 
3131 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3132 	if (meta_group_info[i] == NULL) {
3133 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3134 		goto exit_group_info;
3135 	}
3136 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3137 		&(meta_group_info[i]->bb_state));
3138 
3139 	/*
3140 	 * initialize bb_free to be able to skip
3141 	 * empty groups without initialization
3142 	 */
3143 	if (ext4_has_group_desc_csum(sb) &&
3144 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3145 		meta_group_info[i]->bb_free =
3146 			ext4_free_clusters_after_init(sb, group, desc);
3147 	} else {
3148 		meta_group_info[i]->bb_free =
3149 			ext4_free_group_clusters(sb, desc);
3150 	}
3151 
3152 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3153 	init_rwsem(&meta_group_info[i]->alloc_sem);
3154 	meta_group_info[i]->bb_free_root = RB_ROOT;
3155 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3156 	RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb);
3157 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3158 	meta_group_info[i]->bb_group = group;
3159 
3160 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3161 	return 0;
3162 
3163 exit_group_info:
3164 	/* If a meta_group_info table has been allocated, release it now */
3165 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3166 		struct ext4_group_info ***group_info;
3167 
3168 		rcu_read_lock();
3169 		group_info = rcu_dereference(sbi->s_group_info);
3170 		kfree(group_info[idx]);
3171 		group_info[idx] = NULL;
3172 		rcu_read_unlock();
3173 	}
3174 exit_meta_group_info:
3175 	return -ENOMEM;
3176 } /* ext4_mb_add_groupinfo */
3177 
3178 static int ext4_mb_init_backend(struct super_block *sb)
3179 {
3180 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3181 	ext4_group_t i;
3182 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3183 	int err;
3184 	struct ext4_group_desc *desc;
3185 	struct ext4_group_info ***group_info;
3186 	struct kmem_cache *cachep;
3187 
3188 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3189 	if (err)
3190 		return err;
3191 
3192 	sbi->s_buddy_cache = new_inode(sb);
3193 	if (sbi->s_buddy_cache == NULL) {
3194 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3195 		goto err_freesgi;
3196 	}
3197 	/* To avoid potentially colliding with an valid on-disk inode number,
3198 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3199 	 * not in the inode hash, so it should never be found by iget(), but
3200 	 * this will avoid confusion if it ever shows up during debugging. */
3201 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3202 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3203 	for (i = 0; i < ngroups; i++) {
3204 		cond_resched();
3205 		desc = ext4_get_group_desc(sb, i, NULL);
3206 		if (desc == NULL) {
3207 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3208 			goto err_freebuddy;
3209 		}
3210 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3211 			goto err_freebuddy;
3212 	}
3213 
3214 	if (ext4_has_feature_flex_bg(sb)) {
3215 		/* a single flex group is supposed to be read by a single IO.
3216 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3217 		 * unsigned integer, so the maximum shift is 32.
3218 		 */
3219 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3220 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3221 			goto err_freebuddy;
3222 		}
3223 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3224 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3225 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3226 	} else {
3227 		sbi->s_mb_prefetch = 32;
3228 	}
3229 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3230 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3231 	/* now many real IOs to prefetch within a single allocation at cr=0
3232 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3233 	 * load too many groups, at some point we should start to use what
3234 	 * we've got in memory.
3235 	 * with an average random access time 5ms, it'd take a second to get
3236 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3237 	 */
3238 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3239 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3240 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3241 
3242 	return 0;
3243 
3244 err_freebuddy:
3245 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3246 	while (i-- > 0)
3247 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
3248 	i = sbi->s_group_info_size;
3249 	rcu_read_lock();
3250 	group_info = rcu_dereference(sbi->s_group_info);
3251 	while (i-- > 0)
3252 		kfree(group_info[i]);
3253 	rcu_read_unlock();
3254 	iput(sbi->s_buddy_cache);
3255 err_freesgi:
3256 	rcu_read_lock();
3257 	kvfree(rcu_dereference(sbi->s_group_info));
3258 	rcu_read_unlock();
3259 	return -ENOMEM;
3260 }
3261 
3262 static void ext4_groupinfo_destroy_slabs(void)
3263 {
3264 	int i;
3265 
3266 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3267 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3268 		ext4_groupinfo_caches[i] = NULL;
3269 	}
3270 }
3271 
3272 static int ext4_groupinfo_create_slab(size_t size)
3273 {
3274 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3275 	int slab_size;
3276 	int blocksize_bits = order_base_2(size);
3277 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3278 	struct kmem_cache *cachep;
3279 
3280 	if (cache_index >= NR_GRPINFO_CACHES)
3281 		return -EINVAL;
3282 
3283 	if (unlikely(cache_index < 0))
3284 		cache_index = 0;
3285 
3286 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3287 	if (ext4_groupinfo_caches[cache_index]) {
3288 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3289 		return 0;	/* Already created */
3290 	}
3291 
3292 	slab_size = offsetof(struct ext4_group_info,
3293 				bb_counters[blocksize_bits + 2]);
3294 
3295 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3296 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3297 					NULL);
3298 
3299 	ext4_groupinfo_caches[cache_index] = cachep;
3300 
3301 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3302 	if (!cachep) {
3303 		printk(KERN_EMERG
3304 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3305 		return -ENOMEM;
3306 	}
3307 
3308 	return 0;
3309 }
3310 
3311 int ext4_mb_init(struct super_block *sb)
3312 {
3313 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3314 	unsigned i, j;
3315 	unsigned offset, offset_incr;
3316 	unsigned max;
3317 	int ret;
3318 
3319 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3320 
3321 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3322 	if (sbi->s_mb_offsets == NULL) {
3323 		ret = -ENOMEM;
3324 		goto out;
3325 	}
3326 
3327 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3328 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3329 	if (sbi->s_mb_maxs == NULL) {
3330 		ret = -ENOMEM;
3331 		goto out;
3332 	}
3333 
3334 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3335 	if (ret < 0)
3336 		goto out;
3337 
3338 	/* order 0 is regular bitmap */
3339 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3340 	sbi->s_mb_offsets[0] = 0;
3341 
3342 	i = 1;
3343 	offset = 0;
3344 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3345 	max = sb->s_blocksize << 2;
3346 	do {
3347 		sbi->s_mb_offsets[i] = offset;
3348 		sbi->s_mb_maxs[i] = max;
3349 		offset += offset_incr;
3350 		offset_incr = offset_incr >> 1;
3351 		max = max >> 1;
3352 		i++;
3353 	} while (i < MB_NUM_ORDERS(sb));
3354 
3355 	sbi->s_mb_avg_fragment_size_root = RB_ROOT;
3356 	sbi->s_mb_largest_free_orders =
3357 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3358 			GFP_KERNEL);
3359 	if (!sbi->s_mb_largest_free_orders) {
3360 		ret = -ENOMEM;
3361 		goto out;
3362 	}
3363 	sbi->s_mb_largest_free_orders_locks =
3364 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3365 			GFP_KERNEL);
3366 	if (!sbi->s_mb_largest_free_orders_locks) {
3367 		ret = -ENOMEM;
3368 		goto out;
3369 	}
3370 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3371 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3372 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3373 	}
3374 	rwlock_init(&sbi->s_mb_rb_lock);
3375 
3376 	spin_lock_init(&sbi->s_md_lock);
3377 	sbi->s_mb_free_pending = 0;
3378 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3379 
3380 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3381 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3382 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3383 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3384 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3385 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
3386 	/*
3387 	 * The default group preallocation is 512, which for 4k block
3388 	 * sizes translates to 2 megabytes.  However for bigalloc file
3389 	 * systems, this is probably too big (i.e, if the cluster size
3390 	 * is 1 megabyte, then group preallocation size becomes half a
3391 	 * gigabyte!).  As a default, we will keep a two megabyte
3392 	 * group pralloc size for cluster sizes up to 64k, and after
3393 	 * that, we will force a minimum group preallocation size of
3394 	 * 32 clusters.  This translates to 8 megs when the cluster
3395 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3396 	 * which seems reasonable as a default.
3397 	 */
3398 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3399 				       sbi->s_cluster_bits, 32);
3400 	/*
3401 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3402 	 * to the lowest multiple of s_stripe which is bigger than
3403 	 * the s_mb_group_prealloc as determined above. We want
3404 	 * the preallocation size to be an exact multiple of the
3405 	 * RAID stripe size so that preallocations don't fragment
3406 	 * the stripes.
3407 	 */
3408 	if (sbi->s_stripe > 1) {
3409 		sbi->s_mb_group_prealloc = roundup(
3410 			sbi->s_mb_group_prealloc, sbi->s_stripe);
3411 	}
3412 
3413 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3414 	if (sbi->s_locality_groups == NULL) {
3415 		ret = -ENOMEM;
3416 		goto out;
3417 	}
3418 	for_each_possible_cpu(i) {
3419 		struct ext4_locality_group *lg;
3420 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3421 		mutex_init(&lg->lg_mutex);
3422 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3423 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3424 		spin_lock_init(&lg->lg_prealloc_lock);
3425 	}
3426 
3427 	if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev)))
3428 		sbi->s_mb_max_linear_groups = 0;
3429 	else
3430 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3431 	/* init file for buddy data */
3432 	ret = ext4_mb_init_backend(sb);
3433 	if (ret != 0)
3434 		goto out_free_locality_groups;
3435 
3436 	return 0;
3437 
3438 out_free_locality_groups:
3439 	free_percpu(sbi->s_locality_groups);
3440 	sbi->s_locality_groups = NULL;
3441 out:
3442 	kfree(sbi->s_mb_largest_free_orders);
3443 	kfree(sbi->s_mb_largest_free_orders_locks);
3444 	kfree(sbi->s_mb_offsets);
3445 	sbi->s_mb_offsets = NULL;
3446 	kfree(sbi->s_mb_maxs);
3447 	sbi->s_mb_maxs = NULL;
3448 	return ret;
3449 }
3450 
3451 /* need to called with the ext4 group lock held */
3452 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3453 {
3454 	struct ext4_prealloc_space *pa;
3455 	struct list_head *cur, *tmp;
3456 	int count = 0;
3457 
3458 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3459 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3460 		list_del(&pa->pa_group_list);
3461 		count++;
3462 		kmem_cache_free(ext4_pspace_cachep, pa);
3463 	}
3464 	return count;
3465 }
3466 
3467 int ext4_mb_release(struct super_block *sb)
3468 {
3469 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3470 	ext4_group_t i;
3471 	int num_meta_group_infos;
3472 	struct ext4_group_info *grinfo, ***group_info;
3473 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3474 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3475 	int count;
3476 
3477 	if (sbi->s_group_info) {
3478 		for (i = 0; i < ngroups; i++) {
3479 			cond_resched();
3480 			grinfo = ext4_get_group_info(sb, i);
3481 			mb_group_bb_bitmap_free(grinfo);
3482 			ext4_lock_group(sb, i);
3483 			count = ext4_mb_cleanup_pa(grinfo);
3484 			if (count)
3485 				mb_debug(sb, "mballoc: %d PAs left\n",
3486 					 count);
3487 			ext4_unlock_group(sb, i);
3488 			kmem_cache_free(cachep, grinfo);
3489 		}
3490 		num_meta_group_infos = (ngroups +
3491 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3492 			EXT4_DESC_PER_BLOCK_BITS(sb);
3493 		rcu_read_lock();
3494 		group_info = rcu_dereference(sbi->s_group_info);
3495 		for (i = 0; i < num_meta_group_infos; i++)
3496 			kfree(group_info[i]);
3497 		kvfree(group_info);
3498 		rcu_read_unlock();
3499 	}
3500 	kfree(sbi->s_mb_largest_free_orders);
3501 	kfree(sbi->s_mb_largest_free_orders_locks);
3502 	kfree(sbi->s_mb_offsets);
3503 	kfree(sbi->s_mb_maxs);
3504 	iput(sbi->s_buddy_cache);
3505 	if (sbi->s_mb_stats) {
3506 		ext4_msg(sb, KERN_INFO,
3507 		       "mballoc: %u blocks %u reqs (%u success)",
3508 				atomic_read(&sbi->s_bal_allocated),
3509 				atomic_read(&sbi->s_bal_reqs),
3510 				atomic_read(&sbi->s_bal_success));
3511 		ext4_msg(sb, KERN_INFO,
3512 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3513 				"%u 2^N hits, %u breaks, %u lost",
3514 				atomic_read(&sbi->s_bal_ex_scanned),
3515 				atomic_read(&sbi->s_bal_groups_scanned),
3516 				atomic_read(&sbi->s_bal_goals),
3517 				atomic_read(&sbi->s_bal_2orders),
3518 				atomic_read(&sbi->s_bal_breaks),
3519 				atomic_read(&sbi->s_mb_lost_chunks));
3520 		ext4_msg(sb, KERN_INFO,
3521 		       "mballoc: %u generated and it took %llu",
3522 				atomic_read(&sbi->s_mb_buddies_generated),
3523 				atomic64_read(&sbi->s_mb_generation_time));
3524 		ext4_msg(sb, KERN_INFO,
3525 		       "mballoc: %u preallocated, %u discarded",
3526 				atomic_read(&sbi->s_mb_preallocated),
3527 				atomic_read(&sbi->s_mb_discarded));
3528 	}
3529 
3530 	free_percpu(sbi->s_locality_groups);
3531 
3532 	return 0;
3533 }
3534 
3535 static inline int ext4_issue_discard(struct super_block *sb,
3536 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3537 		struct bio **biop)
3538 {
3539 	ext4_fsblk_t discard_block;
3540 
3541 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3542 			 ext4_group_first_block_no(sb, block_group));
3543 	count = EXT4_C2B(EXT4_SB(sb), count);
3544 	trace_ext4_discard_blocks(sb,
3545 			(unsigned long long) discard_block, count);
3546 	if (biop) {
3547 		return __blkdev_issue_discard(sb->s_bdev,
3548 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3549 			(sector_t)count << (sb->s_blocksize_bits - 9),
3550 			GFP_NOFS, 0, biop);
3551 	} else
3552 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3553 }
3554 
3555 static void ext4_free_data_in_buddy(struct super_block *sb,
3556 				    struct ext4_free_data *entry)
3557 {
3558 	struct ext4_buddy e4b;
3559 	struct ext4_group_info *db;
3560 	int err, count = 0, count2 = 0;
3561 
3562 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3563 		 entry->efd_count, entry->efd_group, entry);
3564 
3565 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3566 	/* we expect to find existing buddy because it's pinned */
3567 	BUG_ON(err != 0);
3568 
3569 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3570 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3571 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3572 
3573 	db = e4b.bd_info;
3574 	/* there are blocks to put in buddy to make them really free */
3575 	count += entry->efd_count;
3576 	count2++;
3577 	ext4_lock_group(sb, entry->efd_group);
3578 	/* Take it out of per group rb tree */
3579 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3580 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3581 
3582 	/*
3583 	 * Clear the trimmed flag for the group so that the next
3584 	 * ext4_trim_fs can trim it.
3585 	 * If the volume is mounted with -o discard, online discard
3586 	 * is supported and the free blocks will be trimmed online.
3587 	 */
3588 	if (!test_opt(sb, DISCARD))
3589 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3590 
3591 	if (!db->bb_free_root.rb_node) {
3592 		/* No more items in the per group rb tree
3593 		 * balance refcounts from ext4_mb_free_metadata()
3594 		 */
3595 		put_page(e4b.bd_buddy_page);
3596 		put_page(e4b.bd_bitmap_page);
3597 	}
3598 	ext4_unlock_group(sb, entry->efd_group);
3599 	kmem_cache_free(ext4_free_data_cachep, entry);
3600 	ext4_mb_unload_buddy(&e4b);
3601 
3602 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
3603 		 count2);
3604 }
3605 
3606 /*
3607  * This function is called by the jbd2 layer once the commit has finished,
3608  * so we know we can free the blocks that were released with that commit.
3609  */
3610 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3611 {
3612 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3613 	struct ext4_free_data *entry, *tmp;
3614 	struct bio *discard_bio = NULL;
3615 	struct list_head freed_data_list;
3616 	struct list_head *cut_pos = NULL;
3617 	int err;
3618 
3619 	INIT_LIST_HEAD(&freed_data_list);
3620 
3621 	spin_lock(&sbi->s_md_lock);
3622 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3623 		if (entry->efd_tid != commit_tid)
3624 			break;
3625 		cut_pos = &entry->efd_list;
3626 	}
3627 	if (cut_pos)
3628 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3629 				  cut_pos);
3630 	spin_unlock(&sbi->s_md_lock);
3631 
3632 	if (test_opt(sb, DISCARD)) {
3633 		list_for_each_entry(entry, &freed_data_list, efd_list) {
3634 			err = ext4_issue_discard(sb, entry->efd_group,
3635 						 entry->efd_start_cluster,
3636 						 entry->efd_count,
3637 						 &discard_bio);
3638 			if (err && err != -EOPNOTSUPP) {
3639 				ext4_msg(sb, KERN_WARNING, "discard request in"
3640 					 " group:%d block:%d count:%d failed"
3641 					 " with %d", entry->efd_group,
3642 					 entry->efd_start_cluster,
3643 					 entry->efd_count, err);
3644 			} else if (err == -EOPNOTSUPP)
3645 				break;
3646 		}
3647 
3648 		if (discard_bio) {
3649 			submit_bio_wait(discard_bio);
3650 			bio_put(discard_bio);
3651 		}
3652 	}
3653 
3654 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3655 		ext4_free_data_in_buddy(sb, entry);
3656 }
3657 
3658 int __init ext4_init_mballoc(void)
3659 {
3660 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3661 					SLAB_RECLAIM_ACCOUNT);
3662 	if (ext4_pspace_cachep == NULL)
3663 		goto out;
3664 
3665 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3666 				    SLAB_RECLAIM_ACCOUNT);
3667 	if (ext4_ac_cachep == NULL)
3668 		goto out_pa_free;
3669 
3670 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3671 					   SLAB_RECLAIM_ACCOUNT);
3672 	if (ext4_free_data_cachep == NULL)
3673 		goto out_ac_free;
3674 
3675 	return 0;
3676 
3677 out_ac_free:
3678 	kmem_cache_destroy(ext4_ac_cachep);
3679 out_pa_free:
3680 	kmem_cache_destroy(ext4_pspace_cachep);
3681 out:
3682 	return -ENOMEM;
3683 }
3684 
3685 void ext4_exit_mballoc(void)
3686 {
3687 	/*
3688 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3689 	 * before destroying the slab cache.
3690 	 */
3691 	rcu_barrier();
3692 	kmem_cache_destroy(ext4_pspace_cachep);
3693 	kmem_cache_destroy(ext4_ac_cachep);
3694 	kmem_cache_destroy(ext4_free_data_cachep);
3695 	ext4_groupinfo_destroy_slabs();
3696 }
3697 
3698 
3699 /*
3700  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3701  * Returns 0 if success or error code
3702  */
3703 static noinline_for_stack int
3704 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3705 				handle_t *handle, unsigned int reserv_clstrs)
3706 {
3707 	struct buffer_head *bitmap_bh = NULL;
3708 	struct ext4_group_desc *gdp;
3709 	struct buffer_head *gdp_bh;
3710 	struct ext4_sb_info *sbi;
3711 	struct super_block *sb;
3712 	ext4_fsblk_t block;
3713 	int err, len;
3714 
3715 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3716 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3717 
3718 	sb = ac->ac_sb;
3719 	sbi = EXT4_SB(sb);
3720 
3721 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3722 	if (IS_ERR(bitmap_bh)) {
3723 		err = PTR_ERR(bitmap_bh);
3724 		bitmap_bh = NULL;
3725 		goto out_err;
3726 	}
3727 
3728 	BUFFER_TRACE(bitmap_bh, "getting write access");
3729 	err = ext4_journal_get_write_access(handle, bitmap_bh);
3730 	if (err)
3731 		goto out_err;
3732 
3733 	err = -EIO;
3734 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3735 	if (!gdp)
3736 		goto out_err;
3737 
3738 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3739 			ext4_free_group_clusters(sb, gdp));
3740 
3741 	BUFFER_TRACE(gdp_bh, "get_write_access");
3742 	err = ext4_journal_get_write_access(handle, gdp_bh);
3743 	if (err)
3744 		goto out_err;
3745 
3746 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3747 
3748 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3749 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3750 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3751 			   "fs metadata", block, block+len);
3752 		/* File system mounted not to panic on error
3753 		 * Fix the bitmap and return EFSCORRUPTED
3754 		 * We leak some of the blocks here.
3755 		 */
3756 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3757 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3758 			      ac->ac_b_ex.fe_len);
3759 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3760 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3761 		if (!err)
3762 			err = -EFSCORRUPTED;
3763 		goto out_err;
3764 	}
3765 
3766 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3767 #ifdef AGGRESSIVE_CHECK
3768 	{
3769 		int i;
3770 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3771 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3772 						bitmap_bh->b_data));
3773 		}
3774 	}
3775 #endif
3776 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3777 		      ac->ac_b_ex.fe_len);
3778 	if (ext4_has_group_desc_csum(sb) &&
3779 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3780 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3781 		ext4_free_group_clusters_set(sb, gdp,
3782 					     ext4_free_clusters_after_init(sb,
3783 						ac->ac_b_ex.fe_group, gdp));
3784 	}
3785 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3786 	ext4_free_group_clusters_set(sb, gdp, len);
3787 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3788 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3789 
3790 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3791 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3792 	/*
3793 	 * Now reduce the dirty block count also. Should not go negative
3794 	 */
3795 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3796 		/* release all the reserved blocks if non delalloc */
3797 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3798 				   reserv_clstrs);
3799 
3800 	if (sbi->s_log_groups_per_flex) {
3801 		ext4_group_t flex_group = ext4_flex_group(sbi,
3802 							  ac->ac_b_ex.fe_group);
3803 		atomic64_sub(ac->ac_b_ex.fe_len,
3804 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3805 						  flex_group)->free_clusters);
3806 	}
3807 
3808 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3809 	if (err)
3810 		goto out_err;
3811 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3812 
3813 out_err:
3814 	brelse(bitmap_bh);
3815 	return err;
3816 }
3817 
3818 /*
3819  * Idempotent helper for Ext4 fast commit replay path to set the state of
3820  * blocks in bitmaps and update counters.
3821  */
3822 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3823 			int len, int state)
3824 {
3825 	struct buffer_head *bitmap_bh = NULL;
3826 	struct ext4_group_desc *gdp;
3827 	struct buffer_head *gdp_bh;
3828 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3829 	ext4_group_t group;
3830 	ext4_grpblk_t blkoff;
3831 	int i, clen, err;
3832 	int already;
3833 
3834 	clen = EXT4_B2C(sbi, len);
3835 
3836 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3837 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3838 	if (IS_ERR(bitmap_bh)) {
3839 		err = PTR_ERR(bitmap_bh);
3840 		bitmap_bh = NULL;
3841 		goto out_err;
3842 	}
3843 
3844 	err = -EIO;
3845 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3846 	if (!gdp)
3847 		goto out_err;
3848 
3849 	ext4_lock_group(sb, group);
3850 	already = 0;
3851 	for (i = 0; i < clen; i++)
3852 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
3853 			already++;
3854 
3855 	if (state)
3856 		ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3857 	else
3858 		mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
3859 	if (ext4_has_group_desc_csum(sb) &&
3860 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3861 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3862 		ext4_free_group_clusters_set(sb, gdp,
3863 					     ext4_free_clusters_after_init(sb,
3864 						group, gdp));
3865 	}
3866 	if (state)
3867 		clen = ext4_free_group_clusters(sb, gdp) - clen + already;
3868 	else
3869 		clen = ext4_free_group_clusters(sb, gdp) + clen - already;
3870 
3871 	ext4_free_group_clusters_set(sb, gdp, clen);
3872 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3873 	ext4_group_desc_csum_set(sb, group, gdp);
3874 
3875 	ext4_unlock_group(sb, group);
3876 
3877 	if (sbi->s_log_groups_per_flex) {
3878 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
3879 
3880 		atomic64_sub(len,
3881 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3882 						  flex_group)->free_clusters);
3883 	}
3884 
3885 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3886 	if (err)
3887 		goto out_err;
3888 	sync_dirty_buffer(bitmap_bh);
3889 	err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3890 	sync_dirty_buffer(gdp_bh);
3891 
3892 out_err:
3893 	brelse(bitmap_bh);
3894 }
3895 
3896 /*
3897  * here we normalize request for locality group
3898  * Group request are normalized to s_mb_group_prealloc, which goes to
3899  * s_strip if we set the same via mount option.
3900  * s_mb_group_prealloc can be configured via
3901  * /sys/fs/ext4/<partition>/mb_group_prealloc
3902  *
3903  * XXX: should we try to preallocate more than the group has now?
3904  */
3905 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3906 {
3907 	struct super_block *sb = ac->ac_sb;
3908 	struct ext4_locality_group *lg = ac->ac_lg;
3909 
3910 	BUG_ON(lg == NULL);
3911 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3912 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3913 }
3914 
3915 /*
3916  * Normalization means making request better in terms of
3917  * size and alignment
3918  */
3919 static noinline_for_stack void
3920 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3921 				struct ext4_allocation_request *ar)
3922 {
3923 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3924 	int bsbits, max;
3925 	ext4_lblk_t end;
3926 	loff_t size, start_off;
3927 	loff_t orig_size __maybe_unused;
3928 	ext4_lblk_t start;
3929 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3930 	struct ext4_prealloc_space *pa;
3931 
3932 	/* do normalize only data requests, metadata requests
3933 	   do not need preallocation */
3934 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3935 		return;
3936 
3937 	/* sometime caller may want exact blocks */
3938 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3939 		return;
3940 
3941 	/* caller may indicate that preallocation isn't
3942 	 * required (it's a tail, for example) */
3943 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3944 		return;
3945 
3946 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3947 		ext4_mb_normalize_group_request(ac);
3948 		return ;
3949 	}
3950 
3951 	bsbits = ac->ac_sb->s_blocksize_bits;
3952 
3953 	/* first, let's learn actual file size
3954 	 * given current request is allocated */
3955 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3956 	size = size << bsbits;
3957 	if (size < i_size_read(ac->ac_inode))
3958 		size = i_size_read(ac->ac_inode);
3959 	orig_size = size;
3960 
3961 	/* max size of free chunks */
3962 	max = 2 << bsbits;
3963 
3964 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3965 		(req <= (size) || max <= (chunk_size))
3966 
3967 	/* first, try to predict filesize */
3968 	/* XXX: should this table be tunable? */
3969 	start_off = 0;
3970 	if (size <= 16 * 1024) {
3971 		size = 16 * 1024;
3972 	} else if (size <= 32 * 1024) {
3973 		size = 32 * 1024;
3974 	} else if (size <= 64 * 1024) {
3975 		size = 64 * 1024;
3976 	} else if (size <= 128 * 1024) {
3977 		size = 128 * 1024;
3978 	} else if (size <= 256 * 1024) {
3979 		size = 256 * 1024;
3980 	} else if (size <= 512 * 1024) {
3981 		size = 512 * 1024;
3982 	} else if (size <= 1024 * 1024) {
3983 		size = 1024 * 1024;
3984 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3985 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3986 						(21 - bsbits)) << 21;
3987 		size = 2 * 1024 * 1024;
3988 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3989 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3990 							(22 - bsbits)) << 22;
3991 		size = 4 * 1024 * 1024;
3992 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3993 					(8<<20)>>bsbits, max, 8 * 1024)) {
3994 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3995 							(23 - bsbits)) << 23;
3996 		size = 8 * 1024 * 1024;
3997 	} else {
3998 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3999 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
4000 					      ac->ac_o_ex.fe_len) << bsbits;
4001 	}
4002 	size = size >> bsbits;
4003 	start = start_off >> bsbits;
4004 
4005 	/* don't cover already allocated blocks in selected range */
4006 	if (ar->pleft && start <= ar->lleft) {
4007 		size -= ar->lleft + 1 - start;
4008 		start = ar->lleft + 1;
4009 	}
4010 	if (ar->pright && start + size - 1 >= ar->lright)
4011 		size -= start + size - ar->lright;
4012 
4013 	/*
4014 	 * Trim allocation request for filesystems with artificially small
4015 	 * groups.
4016 	 */
4017 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4018 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4019 
4020 	end = start + size;
4021 
4022 	/* check we don't cross already preallocated blocks */
4023 	rcu_read_lock();
4024 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4025 		ext4_lblk_t pa_end;
4026 
4027 		if (pa->pa_deleted)
4028 			continue;
4029 		spin_lock(&pa->pa_lock);
4030 		if (pa->pa_deleted) {
4031 			spin_unlock(&pa->pa_lock);
4032 			continue;
4033 		}
4034 
4035 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4036 						  pa->pa_len);
4037 
4038 		/* PA must not overlap original request */
4039 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
4040 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
4041 
4042 		/* skip PAs this normalized request doesn't overlap with */
4043 		if (pa->pa_lstart >= end || pa_end <= start) {
4044 			spin_unlock(&pa->pa_lock);
4045 			continue;
4046 		}
4047 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
4048 
4049 		/* adjust start or end to be adjacent to this pa */
4050 		if (pa_end <= ac->ac_o_ex.fe_logical) {
4051 			BUG_ON(pa_end < start);
4052 			start = pa_end;
4053 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4054 			BUG_ON(pa->pa_lstart > end);
4055 			end = pa->pa_lstart;
4056 		}
4057 		spin_unlock(&pa->pa_lock);
4058 	}
4059 	rcu_read_unlock();
4060 	size = end - start;
4061 
4062 	/* XXX: extra loop to check we really don't overlap preallocations */
4063 	rcu_read_lock();
4064 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4065 		ext4_lblk_t pa_end;
4066 
4067 		spin_lock(&pa->pa_lock);
4068 		if (pa->pa_deleted == 0) {
4069 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4070 							  pa->pa_len);
4071 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
4072 		}
4073 		spin_unlock(&pa->pa_lock);
4074 	}
4075 	rcu_read_unlock();
4076 
4077 	if (start + size <= ac->ac_o_ex.fe_logical &&
4078 			start > ac->ac_o_ex.fe_logical) {
4079 		ext4_msg(ac->ac_sb, KERN_ERR,
4080 			 "start %lu, size %lu, fe_logical %lu",
4081 			 (unsigned long) start, (unsigned long) size,
4082 			 (unsigned long) ac->ac_o_ex.fe_logical);
4083 		BUG();
4084 	}
4085 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4086 
4087 	/* now prepare goal request */
4088 
4089 	/* XXX: is it better to align blocks WRT to logical
4090 	 * placement or satisfy big request as is */
4091 	ac->ac_g_ex.fe_logical = start;
4092 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4093 
4094 	/* define goal start in order to merge */
4095 	if (ar->pright && (ar->lright == (start + size))) {
4096 		/* merge to the right */
4097 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4098 						&ac->ac_f_ex.fe_group,
4099 						&ac->ac_f_ex.fe_start);
4100 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4101 	}
4102 	if (ar->pleft && (ar->lleft + 1 == start)) {
4103 		/* merge to the left */
4104 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4105 						&ac->ac_f_ex.fe_group,
4106 						&ac->ac_f_ex.fe_start);
4107 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4108 	}
4109 
4110 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4111 		 orig_size, start);
4112 }
4113 
4114 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4115 {
4116 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4117 
4118 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4119 		atomic_inc(&sbi->s_bal_reqs);
4120 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4121 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4122 			atomic_inc(&sbi->s_bal_success);
4123 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4124 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4125 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4126 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4127 			atomic_inc(&sbi->s_bal_goals);
4128 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4129 			atomic_inc(&sbi->s_bal_breaks);
4130 	}
4131 
4132 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4133 		trace_ext4_mballoc_alloc(ac);
4134 	else
4135 		trace_ext4_mballoc_prealloc(ac);
4136 }
4137 
4138 /*
4139  * Called on failure; free up any blocks from the inode PA for this
4140  * context.  We don't need this for MB_GROUP_PA because we only change
4141  * pa_free in ext4_mb_release_context(), but on failure, we've already
4142  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4143  */
4144 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4145 {
4146 	struct ext4_prealloc_space *pa = ac->ac_pa;
4147 	struct ext4_buddy e4b;
4148 	int err;
4149 
4150 	if (pa == NULL) {
4151 		if (ac->ac_f_ex.fe_len == 0)
4152 			return;
4153 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4154 		if (err) {
4155 			/*
4156 			 * This should never happen since we pin the
4157 			 * pages in the ext4_allocation_context so
4158 			 * ext4_mb_load_buddy() should never fail.
4159 			 */
4160 			WARN(1, "mb_load_buddy failed (%d)", err);
4161 			return;
4162 		}
4163 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4164 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4165 			       ac->ac_f_ex.fe_len);
4166 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4167 		ext4_mb_unload_buddy(&e4b);
4168 		return;
4169 	}
4170 	if (pa->pa_type == MB_INODE_PA)
4171 		pa->pa_free += ac->ac_b_ex.fe_len;
4172 }
4173 
4174 /*
4175  * use blocks preallocated to inode
4176  */
4177 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4178 				struct ext4_prealloc_space *pa)
4179 {
4180 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4181 	ext4_fsblk_t start;
4182 	ext4_fsblk_t end;
4183 	int len;
4184 
4185 	/* found preallocated blocks, use them */
4186 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4187 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4188 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4189 	len = EXT4_NUM_B2C(sbi, end - start);
4190 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4191 					&ac->ac_b_ex.fe_start);
4192 	ac->ac_b_ex.fe_len = len;
4193 	ac->ac_status = AC_STATUS_FOUND;
4194 	ac->ac_pa = pa;
4195 
4196 	BUG_ON(start < pa->pa_pstart);
4197 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4198 	BUG_ON(pa->pa_free < len);
4199 	pa->pa_free -= len;
4200 
4201 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4202 }
4203 
4204 /*
4205  * use blocks preallocated to locality group
4206  */
4207 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4208 				struct ext4_prealloc_space *pa)
4209 {
4210 	unsigned int len = ac->ac_o_ex.fe_len;
4211 
4212 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4213 					&ac->ac_b_ex.fe_group,
4214 					&ac->ac_b_ex.fe_start);
4215 	ac->ac_b_ex.fe_len = len;
4216 	ac->ac_status = AC_STATUS_FOUND;
4217 	ac->ac_pa = pa;
4218 
4219 	/* we don't correct pa_pstart or pa_plen here to avoid
4220 	 * possible race when the group is being loaded concurrently
4221 	 * instead we correct pa later, after blocks are marked
4222 	 * in on-disk bitmap -- see ext4_mb_release_context()
4223 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4224 	 */
4225 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4226 		 pa->pa_lstart-len, len, pa);
4227 }
4228 
4229 /*
4230  * Return the prealloc space that have minimal distance
4231  * from the goal block. @cpa is the prealloc
4232  * space that is having currently known minimal distance
4233  * from the goal block.
4234  */
4235 static struct ext4_prealloc_space *
4236 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4237 			struct ext4_prealloc_space *pa,
4238 			struct ext4_prealloc_space *cpa)
4239 {
4240 	ext4_fsblk_t cur_distance, new_distance;
4241 
4242 	if (cpa == NULL) {
4243 		atomic_inc(&pa->pa_count);
4244 		return pa;
4245 	}
4246 	cur_distance = abs(goal_block - cpa->pa_pstart);
4247 	new_distance = abs(goal_block - pa->pa_pstart);
4248 
4249 	if (cur_distance <= new_distance)
4250 		return cpa;
4251 
4252 	/* drop the previous reference */
4253 	atomic_dec(&cpa->pa_count);
4254 	atomic_inc(&pa->pa_count);
4255 	return pa;
4256 }
4257 
4258 /*
4259  * search goal blocks in preallocated space
4260  */
4261 static noinline_for_stack bool
4262 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4263 {
4264 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4265 	int order, i;
4266 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4267 	struct ext4_locality_group *lg;
4268 	struct ext4_prealloc_space *pa, *cpa = NULL;
4269 	ext4_fsblk_t goal_block;
4270 
4271 	/* only data can be preallocated */
4272 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4273 		return false;
4274 
4275 	/* first, try per-file preallocation */
4276 	rcu_read_lock();
4277 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4278 
4279 		/* all fields in this condition don't change,
4280 		 * so we can skip locking for them */
4281 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
4282 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
4283 					       EXT4_C2B(sbi, pa->pa_len)))
4284 			continue;
4285 
4286 		/* non-extent files can't have physical blocks past 2^32 */
4287 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4288 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
4289 		     EXT4_MAX_BLOCK_FILE_PHYS))
4290 			continue;
4291 
4292 		/* found preallocated blocks, use them */
4293 		spin_lock(&pa->pa_lock);
4294 		if (pa->pa_deleted == 0 && pa->pa_free) {
4295 			atomic_inc(&pa->pa_count);
4296 			ext4_mb_use_inode_pa(ac, pa);
4297 			spin_unlock(&pa->pa_lock);
4298 			ac->ac_criteria = 10;
4299 			rcu_read_unlock();
4300 			return true;
4301 		}
4302 		spin_unlock(&pa->pa_lock);
4303 	}
4304 	rcu_read_unlock();
4305 
4306 	/* can we use group allocation? */
4307 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4308 		return false;
4309 
4310 	/* inode may have no locality group for some reason */
4311 	lg = ac->ac_lg;
4312 	if (lg == NULL)
4313 		return false;
4314 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4315 	if (order > PREALLOC_TB_SIZE - 1)
4316 		/* The max size of hash table is PREALLOC_TB_SIZE */
4317 		order = PREALLOC_TB_SIZE - 1;
4318 
4319 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4320 	/*
4321 	 * search for the prealloc space that is having
4322 	 * minimal distance from the goal block.
4323 	 */
4324 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4325 		rcu_read_lock();
4326 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
4327 					pa_inode_list) {
4328 			spin_lock(&pa->pa_lock);
4329 			if (pa->pa_deleted == 0 &&
4330 					pa->pa_free >= ac->ac_o_ex.fe_len) {
4331 
4332 				cpa = ext4_mb_check_group_pa(goal_block,
4333 								pa, cpa);
4334 			}
4335 			spin_unlock(&pa->pa_lock);
4336 		}
4337 		rcu_read_unlock();
4338 	}
4339 	if (cpa) {
4340 		ext4_mb_use_group_pa(ac, cpa);
4341 		ac->ac_criteria = 20;
4342 		return true;
4343 	}
4344 	return false;
4345 }
4346 
4347 /*
4348  * the function goes through all block freed in the group
4349  * but not yet committed and marks them used in in-core bitmap.
4350  * buddy must be generated from this bitmap
4351  * Need to be called with the ext4 group lock held
4352  */
4353 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4354 						ext4_group_t group)
4355 {
4356 	struct rb_node *n;
4357 	struct ext4_group_info *grp;
4358 	struct ext4_free_data *entry;
4359 
4360 	grp = ext4_get_group_info(sb, group);
4361 	n = rb_first(&(grp->bb_free_root));
4362 
4363 	while (n) {
4364 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4365 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4366 		n = rb_next(n);
4367 	}
4368 	return;
4369 }
4370 
4371 /*
4372  * the function goes through all preallocation in this group and marks them
4373  * used in in-core bitmap. buddy must be generated from this bitmap
4374  * Need to be called with ext4 group lock held
4375  */
4376 static noinline_for_stack
4377 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4378 					ext4_group_t group)
4379 {
4380 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4381 	struct ext4_prealloc_space *pa;
4382 	struct list_head *cur;
4383 	ext4_group_t groupnr;
4384 	ext4_grpblk_t start;
4385 	int preallocated = 0;
4386 	int len;
4387 
4388 	/* all form of preallocation discards first load group,
4389 	 * so the only competing code is preallocation use.
4390 	 * we don't need any locking here
4391 	 * notice we do NOT ignore preallocations with pa_deleted
4392 	 * otherwise we could leave used blocks available for
4393 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4394 	 * is dropping preallocation
4395 	 */
4396 	list_for_each(cur, &grp->bb_prealloc_list) {
4397 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4398 		spin_lock(&pa->pa_lock);
4399 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4400 					     &groupnr, &start);
4401 		len = pa->pa_len;
4402 		spin_unlock(&pa->pa_lock);
4403 		if (unlikely(len == 0))
4404 			continue;
4405 		BUG_ON(groupnr != group);
4406 		ext4_set_bits(bitmap, start, len);
4407 		preallocated += len;
4408 	}
4409 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4410 }
4411 
4412 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4413 				    struct ext4_prealloc_space *pa)
4414 {
4415 	struct ext4_inode_info *ei;
4416 
4417 	if (pa->pa_deleted) {
4418 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4419 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4420 			     pa->pa_len);
4421 		return;
4422 	}
4423 
4424 	pa->pa_deleted = 1;
4425 
4426 	if (pa->pa_type == MB_INODE_PA) {
4427 		ei = EXT4_I(pa->pa_inode);
4428 		atomic_dec(&ei->i_prealloc_active);
4429 	}
4430 }
4431 
4432 static void ext4_mb_pa_callback(struct rcu_head *head)
4433 {
4434 	struct ext4_prealloc_space *pa;
4435 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4436 
4437 	BUG_ON(atomic_read(&pa->pa_count));
4438 	BUG_ON(pa->pa_deleted == 0);
4439 	kmem_cache_free(ext4_pspace_cachep, pa);
4440 }
4441 
4442 /*
4443  * drops a reference to preallocated space descriptor
4444  * if this was the last reference and the space is consumed
4445  */
4446 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4447 			struct super_block *sb, struct ext4_prealloc_space *pa)
4448 {
4449 	ext4_group_t grp;
4450 	ext4_fsblk_t grp_blk;
4451 
4452 	/* in this short window concurrent discard can set pa_deleted */
4453 	spin_lock(&pa->pa_lock);
4454 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4455 		spin_unlock(&pa->pa_lock);
4456 		return;
4457 	}
4458 
4459 	if (pa->pa_deleted == 1) {
4460 		spin_unlock(&pa->pa_lock);
4461 		return;
4462 	}
4463 
4464 	ext4_mb_mark_pa_deleted(sb, pa);
4465 	spin_unlock(&pa->pa_lock);
4466 
4467 	grp_blk = pa->pa_pstart;
4468 	/*
4469 	 * If doing group-based preallocation, pa_pstart may be in the
4470 	 * next group when pa is used up
4471 	 */
4472 	if (pa->pa_type == MB_GROUP_PA)
4473 		grp_blk--;
4474 
4475 	grp = ext4_get_group_number(sb, grp_blk);
4476 
4477 	/*
4478 	 * possible race:
4479 	 *
4480 	 *  P1 (buddy init)			P2 (regular allocation)
4481 	 *					find block B in PA
4482 	 *  copy on-disk bitmap to buddy
4483 	 *  					mark B in on-disk bitmap
4484 	 *					drop PA from group
4485 	 *  mark all PAs in buddy
4486 	 *
4487 	 * thus, P1 initializes buddy with B available. to prevent this
4488 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4489 	 * against that pair
4490 	 */
4491 	ext4_lock_group(sb, grp);
4492 	list_del(&pa->pa_group_list);
4493 	ext4_unlock_group(sb, grp);
4494 
4495 	spin_lock(pa->pa_obj_lock);
4496 	list_del_rcu(&pa->pa_inode_list);
4497 	spin_unlock(pa->pa_obj_lock);
4498 
4499 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4500 }
4501 
4502 /*
4503  * creates new preallocated space for given inode
4504  */
4505 static noinline_for_stack void
4506 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4507 {
4508 	struct super_block *sb = ac->ac_sb;
4509 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4510 	struct ext4_prealloc_space *pa;
4511 	struct ext4_group_info *grp;
4512 	struct ext4_inode_info *ei;
4513 
4514 	/* preallocate only when found space is larger then requested */
4515 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4516 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4517 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4518 	BUG_ON(ac->ac_pa == NULL);
4519 
4520 	pa = ac->ac_pa;
4521 
4522 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4523 		int winl;
4524 		int wins;
4525 		int win;
4526 		int offs;
4527 
4528 		/* we can't allocate as much as normalizer wants.
4529 		 * so, found space must get proper lstart
4530 		 * to cover original request */
4531 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4532 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4533 
4534 		/* we're limited by original request in that
4535 		 * logical block must be covered any way
4536 		 * winl is window we can move our chunk within */
4537 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
4538 
4539 		/* also, we should cover whole original request */
4540 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4541 
4542 		/* the smallest one defines real window */
4543 		win = min(winl, wins);
4544 
4545 		offs = ac->ac_o_ex.fe_logical %
4546 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4547 		if (offs && offs < win)
4548 			win = offs;
4549 
4550 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4551 			EXT4_NUM_B2C(sbi, win);
4552 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4553 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4554 	}
4555 
4556 	/* preallocation can change ac_b_ex, thus we store actually
4557 	 * allocated blocks for history */
4558 	ac->ac_f_ex = ac->ac_b_ex;
4559 
4560 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4561 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4562 	pa->pa_len = ac->ac_b_ex.fe_len;
4563 	pa->pa_free = pa->pa_len;
4564 	spin_lock_init(&pa->pa_lock);
4565 	INIT_LIST_HEAD(&pa->pa_inode_list);
4566 	INIT_LIST_HEAD(&pa->pa_group_list);
4567 	pa->pa_deleted = 0;
4568 	pa->pa_type = MB_INODE_PA;
4569 
4570 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4571 		 pa->pa_len, pa->pa_lstart);
4572 	trace_ext4_mb_new_inode_pa(ac, pa);
4573 
4574 	ext4_mb_use_inode_pa(ac, pa);
4575 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4576 
4577 	ei = EXT4_I(ac->ac_inode);
4578 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4579 
4580 	pa->pa_obj_lock = &ei->i_prealloc_lock;
4581 	pa->pa_inode = ac->ac_inode;
4582 
4583 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4584 
4585 	spin_lock(pa->pa_obj_lock);
4586 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4587 	spin_unlock(pa->pa_obj_lock);
4588 	atomic_inc(&ei->i_prealloc_active);
4589 }
4590 
4591 /*
4592  * creates new preallocated space for locality group inodes belongs to
4593  */
4594 static noinline_for_stack void
4595 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4596 {
4597 	struct super_block *sb = ac->ac_sb;
4598 	struct ext4_locality_group *lg;
4599 	struct ext4_prealloc_space *pa;
4600 	struct ext4_group_info *grp;
4601 
4602 	/* preallocate only when found space is larger then requested */
4603 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4604 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4605 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4606 	BUG_ON(ac->ac_pa == NULL);
4607 
4608 	pa = ac->ac_pa;
4609 
4610 	/* preallocation can change ac_b_ex, thus we store actually
4611 	 * allocated blocks for history */
4612 	ac->ac_f_ex = ac->ac_b_ex;
4613 
4614 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4615 	pa->pa_lstart = pa->pa_pstart;
4616 	pa->pa_len = ac->ac_b_ex.fe_len;
4617 	pa->pa_free = pa->pa_len;
4618 	spin_lock_init(&pa->pa_lock);
4619 	INIT_LIST_HEAD(&pa->pa_inode_list);
4620 	INIT_LIST_HEAD(&pa->pa_group_list);
4621 	pa->pa_deleted = 0;
4622 	pa->pa_type = MB_GROUP_PA;
4623 
4624 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4625 		 pa->pa_len, pa->pa_lstart);
4626 	trace_ext4_mb_new_group_pa(ac, pa);
4627 
4628 	ext4_mb_use_group_pa(ac, pa);
4629 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4630 
4631 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4632 	lg = ac->ac_lg;
4633 	BUG_ON(lg == NULL);
4634 
4635 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
4636 	pa->pa_inode = NULL;
4637 
4638 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4639 
4640 	/*
4641 	 * We will later add the new pa to the right bucket
4642 	 * after updating the pa_free in ext4_mb_release_context
4643 	 */
4644 }
4645 
4646 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4647 {
4648 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4649 		ext4_mb_new_group_pa(ac);
4650 	else
4651 		ext4_mb_new_inode_pa(ac);
4652 }
4653 
4654 /*
4655  * finds all unused blocks in on-disk bitmap, frees them in
4656  * in-core bitmap and buddy.
4657  * @pa must be unlinked from inode and group lists, so that
4658  * nobody else can find/use it.
4659  * the caller MUST hold group/inode locks.
4660  * TODO: optimize the case when there are no in-core structures yet
4661  */
4662 static noinline_for_stack int
4663 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4664 			struct ext4_prealloc_space *pa)
4665 {
4666 	struct super_block *sb = e4b->bd_sb;
4667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4668 	unsigned int end;
4669 	unsigned int next;
4670 	ext4_group_t group;
4671 	ext4_grpblk_t bit;
4672 	unsigned long long grp_blk_start;
4673 	int free = 0;
4674 
4675 	BUG_ON(pa->pa_deleted == 0);
4676 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4677 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4678 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4679 	end = bit + pa->pa_len;
4680 
4681 	while (bit < end) {
4682 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4683 		if (bit >= end)
4684 			break;
4685 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4686 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4687 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4688 			 (unsigned) next - bit, (unsigned) group);
4689 		free += next - bit;
4690 
4691 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4692 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4693 						    EXT4_C2B(sbi, bit)),
4694 					       next - bit);
4695 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4696 		bit = next + 1;
4697 	}
4698 	if (free != pa->pa_free) {
4699 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4700 			 "pa %p: logic %lu, phys. %lu, len %d",
4701 			 pa, (unsigned long) pa->pa_lstart,
4702 			 (unsigned long) pa->pa_pstart,
4703 			 pa->pa_len);
4704 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4705 					free, pa->pa_free);
4706 		/*
4707 		 * pa is already deleted so we use the value obtained
4708 		 * from the bitmap and continue.
4709 		 */
4710 	}
4711 	atomic_add(free, &sbi->s_mb_discarded);
4712 
4713 	return 0;
4714 }
4715 
4716 static noinline_for_stack int
4717 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4718 				struct ext4_prealloc_space *pa)
4719 {
4720 	struct super_block *sb = e4b->bd_sb;
4721 	ext4_group_t group;
4722 	ext4_grpblk_t bit;
4723 
4724 	trace_ext4_mb_release_group_pa(sb, pa);
4725 	BUG_ON(pa->pa_deleted == 0);
4726 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4727 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4728 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4729 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4730 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4731 
4732 	return 0;
4733 }
4734 
4735 /*
4736  * releases all preallocations in given group
4737  *
4738  * first, we need to decide discard policy:
4739  * - when do we discard
4740  *   1) ENOSPC
4741  * - how many do we discard
4742  *   1) how many requested
4743  */
4744 static noinline_for_stack int
4745 ext4_mb_discard_group_preallocations(struct super_block *sb,
4746 					ext4_group_t group, int needed)
4747 {
4748 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4749 	struct buffer_head *bitmap_bh = NULL;
4750 	struct ext4_prealloc_space *pa, *tmp;
4751 	struct list_head list;
4752 	struct ext4_buddy e4b;
4753 	int err;
4754 	int busy = 0;
4755 	int free, free_total = 0;
4756 
4757 	mb_debug(sb, "discard preallocation for group %u\n", group);
4758 	if (list_empty(&grp->bb_prealloc_list))
4759 		goto out_dbg;
4760 
4761 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4762 	if (IS_ERR(bitmap_bh)) {
4763 		err = PTR_ERR(bitmap_bh);
4764 		ext4_error_err(sb, -err,
4765 			       "Error %d reading block bitmap for %u",
4766 			       err, group);
4767 		goto out_dbg;
4768 	}
4769 
4770 	err = ext4_mb_load_buddy(sb, group, &e4b);
4771 	if (err) {
4772 		ext4_warning(sb, "Error %d loading buddy information for %u",
4773 			     err, group);
4774 		put_bh(bitmap_bh);
4775 		goto out_dbg;
4776 	}
4777 
4778 	if (needed == 0)
4779 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4780 
4781 	INIT_LIST_HEAD(&list);
4782 repeat:
4783 	free = 0;
4784 	ext4_lock_group(sb, group);
4785 	list_for_each_entry_safe(pa, tmp,
4786 				&grp->bb_prealloc_list, pa_group_list) {
4787 		spin_lock(&pa->pa_lock);
4788 		if (atomic_read(&pa->pa_count)) {
4789 			spin_unlock(&pa->pa_lock);
4790 			busy = 1;
4791 			continue;
4792 		}
4793 		if (pa->pa_deleted) {
4794 			spin_unlock(&pa->pa_lock);
4795 			continue;
4796 		}
4797 
4798 		/* seems this one can be freed ... */
4799 		ext4_mb_mark_pa_deleted(sb, pa);
4800 
4801 		if (!free)
4802 			this_cpu_inc(discard_pa_seq);
4803 
4804 		/* we can trust pa_free ... */
4805 		free += pa->pa_free;
4806 
4807 		spin_unlock(&pa->pa_lock);
4808 
4809 		list_del(&pa->pa_group_list);
4810 		list_add(&pa->u.pa_tmp_list, &list);
4811 	}
4812 
4813 	/* now free all selected PAs */
4814 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4815 
4816 		/* remove from object (inode or locality group) */
4817 		spin_lock(pa->pa_obj_lock);
4818 		list_del_rcu(&pa->pa_inode_list);
4819 		spin_unlock(pa->pa_obj_lock);
4820 
4821 		if (pa->pa_type == MB_GROUP_PA)
4822 			ext4_mb_release_group_pa(&e4b, pa);
4823 		else
4824 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4825 
4826 		list_del(&pa->u.pa_tmp_list);
4827 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4828 	}
4829 
4830 	free_total += free;
4831 
4832 	/* if we still need more blocks and some PAs were used, try again */
4833 	if (free_total < needed && busy) {
4834 		ext4_unlock_group(sb, group);
4835 		cond_resched();
4836 		busy = 0;
4837 		goto repeat;
4838 	}
4839 	ext4_unlock_group(sb, group);
4840 	ext4_mb_unload_buddy(&e4b);
4841 	put_bh(bitmap_bh);
4842 out_dbg:
4843 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4844 		 free_total, group, grp->bb_free);
4845 	return free_total;
4846 }
4847 
4848 /*
4849  * releases all non-used preallocated blocks for given inode
4850  *
4851  * It's important to discard preallocations under i_data_sem
4852  * We don't want another block to be served from the prealloc
4853  * space when we are discarding the inode prealloc space.
4854  *
4855  * FIXME!! Make sure it is valid at all the call sites
4856  */
4857 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4858 {
4859 	struct ext4_inode_info *ei = EXT4_I(inode);
4860 	struct super_block *sb = inode->i_sb;
4861 	struct buffer_head *bitmap_bh = NULL;
4862 	struct ext4_prealloc_space *pa, *tmp;
4863 	ext4_group_t group = 0;
4864 	struct list_head list;
4865 	struct ext4_buddy e4b;
4866 	int err;
4867 
4868 	if (!S_ISREG(inode->i_mode)) {
4869 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4870 		return;
4871 	}
4872 
4873 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4874 		return;
4875 
4876 	mb_debug(sb, "discard preallocation for inode %lu\n",
4877 		 inode->i_ino);
4878 	trace_ext4_discard_preallocations(inode,
4879 			atomic_read(&ei->i_prealloc_active), needed);
4880 
4881 	INIT_LIST_HEAD(&list);
4882 
4883 	if (needed == 0)
4884 		needed = UINT_MAX;
4885 
4886 repeat:
4887 	/* first, collect all pa's in the inode */
4888 	spin_lock(&ei->i_prealloc_lock);
4889 	while (!list_empty(&ei->i_prealloc_list) && needed) {
4890 		pa = list_entry(ei->i_prealloc_list.prev,
4891 				struct ext4_prealloc_space, pa_inode_list);
4892 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4893 		spin_lock(&pa->pa_lock);
4894 		if (atomic_read(&pa->pa_count)) {
4895 			/* this shouldn't happen often - nobody should
4896 			 * use preallocation while we're discarding it */
4897 			spin_unlock(&pa->pa_lock);
4898 			spin_unlock(&ei->i_prealloc_lock);
4899 			ext4_msg(sb, KERN_ERR,
4900 				 "uh-oh! used pa while discarding");
4901 			WARN_ON(1);
4902 			schedule_timeout_uninterruptible(HZ);
4903 			goto repeat;
4904 
4905 		}
4906 		if (pa->pa_deleted == 0) {
4907 			ext4_mb_mark_pa_deleted(sb, pa);
4908 			spin_unlock(&pa->pa_lock);
4909 			list_del_rcu(&pa->pa_inode_list);
4910 			list_add(&pa->u.pa_tmp_list, &list);
4911 			needed--;
4912 			continue;
4913 		}
4914 
4915 		/* someone is deleting pa right now */
4916 		spin_unlock(&pa->pa_lock);
4917 		spin_unlock(&ei->i_prealloc_lock);
4918 
4919 		/* we have to wait here because pa_deleted
4920 		 * doesn't mean pa is already unlinked from
4921 		 * the list. as we might be called from
4922 		 * ->clear_inode() the inode will get freed
4923 		 * and concurrent thread which is unlinking
4924 		 * pa from inode's list may access already
4925 		 * freed memory, bad-bad-bad */
4926 
4927 		/* XXX: if this happens too often, we can
4928 		 * add a flag to force wait only in case
4929 		 * of ->clear_inode(), but not in case of
4930 		 * regular truncate */
4931 		schedule_timeout_uninterruptible(HZ);
4932 		goto repeat;
4933 	}
4934 	spin_unlock(&ei->i_prealloc_lock);
4935 
4936 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4937 		BUG_ON(pa->pa_type != MB_INODE_PA);
4938 		group = ext4_get_group_number(sb, pa->pa_pstart);
4939 
4940 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4941 					     GFP_NOFS|__GFP_NOFAIL);
4942 		if (err) {
4943 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4944 				       err, group);
4945 			continue;
4946 		}
4947 
4948 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4949 		if (IS_ERR(bitmap_bh)) {
4950 			err = PTR_ERR(bitmap_bh);
4951 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4952 				       err, group);
4953 			ext4_mb_unload_buddy(&e4b);
4954 			continue;
4955 		}
4956 
4957 		ext4_lock_group(sb, group);
4958 		list_del(&pa->pa_group_list);
4959 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4960 		ext4_unlock_group(sb, group);
4961 
4962 		ext4_mb_unload_buddy(&e4b);
4963 		put_bh(bitmap_bh);
4964 
4965 		list_del(&pa->u.pa_tmp_list);
4966 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4967 	}
4968 }
4969 
4970 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4971 {
4972 	struct ext4_prealloc_space *pa;
4973 
4974 	BUG_ON(ext4_pspace_cachep == NULL);
4975 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4976 	if (!pa)
4977 		return -ENOMEM;
4978 	atomic_set(&pa->pa_count, 1);
4979 	ac->ac_pa = pa;
4980 	return 0;
4981 }
4982 
4983 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4984 {
4985 	struct ext4_prealloc_space *pa = ac->ac_pa;
4986 
4987 	BUG_ON(!pa);
4988 	ac->ac_pa = NULL;
4989 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4990 	kmem_cache_free(ext4_pspace_cachep, pa);
4991 }
4992 
4993 #ifdef CONFIG_EXT4_DEBUG
4994 static inline void ext4_mb_show_pa(struct super_block *sb)
4995 {
4996 	ext4_group_t i, ngroups;
4997 
4998 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4999 		return;
5000 
5001 	ngroups = ext4_get_groups_count(sb);
5002 	mb_debug(sb, "groups: ");
5003 	for (i = 0; i < ngroups; i++) {
5004 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5005 		struct ext4_prealloc_space *pa;
5006 		ext4_grpblk_t start;
5007 		struct list_head *cur;
5008 		ext4_lock_group(sb, i);
5009 		list_for_each(cur, &grp->bb_prealloc_list) {
5010 			pa = list_entry(cur, struct ext4_prealloc_space,
5011 					pa_group_list);
5012 			spin_lock(&pa->pa_lock);
5013 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5014 						     NULL, &start);
5015 			spin_unlock(&pa->pa_lock);
5016 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5017 				 pa->pa_len);
5018 		}
5019 		ext4_unlock_group(sb, i);
5020 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5021 			 grp->bb_fragments);
5022 	}
5023 }
5024 
5025 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5026 {
5027 	struct super_block *sb = ac->ac_sb;
5028 
5029 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5030 		return;
5031 
5032 	mb_debug(sb, "Can't allocate:"
5033 			" Allocation context details:");
5034 	mb_debug(sb, "status %u flags 0x%x",
5035 			ac->ac_status, ac->ac_flags);
5036 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5037 			"goal %lu/%lu/%lu@%lu, "
5038 			"best %lu/%lu/%lu@%lu cr %d",
5039 			(unsigned long)ac->ac_o_ex.fe_group,
5040 			(unsigned long)ac->ac_o_ex.fe_start,
5041 			(unsigned long)ac->ac_o_ex.fe_len,
5042 			(unsigned long)ac->ac_o_ex.fe_logical,
5043 			(unsigned long)ac->ac_g_ex.fe_group,
5044 			(unsigned long)ac->ac_g_ex.fe_start,
5045 			(unsigned long)ac->ac_g_ex.fe_len,
5046 			(unsigned long)ac->ac_g_ex.fe_logical,
5047 			(unsigned long)ac->ac_b_ex.fe_group,
5048 			(unsigned long)ac->ac_b_ex.fe_start,
5049 			(unsigned long)ac->ac_b_ex.fe_len,
5050 			(unsigned long)ac->ac_b_ex.fe_logical,
5051 			(int)ac->ac_criteria);
5052 	mb_debug(sb, "%u found", ac->ac_found);
5053 	ext4_mb_show_pa(sb);
5054 }
5055 #else
5056 static inline void ext4_mb_show_pa(struct super_block *sb)
5057 {
5058 	return;
5059 }
5060 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5061 {
5062 	ext4_mb_show_pa(ac->ac_sb);
5063 	return;
5064 }
5065 #endif
5066 
5067 /*
5068  * We use locality group preallocation for small size file. The size of the
5069  * file is determined by the current size or the resulting size after
5070  * allocation which ever is larger
5071  *
5072  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5073  */
5074 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5075 {
5076 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5077 	int bsbits = ac->ac_sb->s_blocksize_bits;
5078 	loff_t size, isize;
5079 
5080 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5081 		return;
5082 
5083 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5084 		return;
5085 
5086 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5087 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5088 		>> bsbits;
5089 
5090 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5091 	    !inode_is_open_for_write(ac->ac_inode)) {
5092 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5093 		return;
5094 	}
5095 
5096 	if (sbi->s_mb_group_prealloc <= 0) {
5097 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5098 		return;
5099 	}
5100 
5101 	/* don't use group allocation for large files */
5102 	size = max(size, isize);
5103 	if (size > sbi->s_mb_stream_request) {
5104 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5105 		return;
5106 	}
5107 
5108 	BUG_ON(ac->ac_lg != NULL);
5109 	/*
5110 	 * locality group prealloc space are per cpu. The reason for having
5111 	 * per cpu locality group is to reduce the contention between block
5112 	 * request from multiple CPUs.
5113 	 */
5114 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5115 
5116 	/* we're going to use group allocation */
5117 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5118 
5119 	/* serialize all allocations in the group */
5120 	mutex_lock(&ac->ac_lg->lg_mutex);
5121 }
5122 
5123 static noinline_for_stack int
5124 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5125 				struct ext4_allocation_request *ar)
5126 {
5127 	struct super_block *sb = ar->inode->i_sb;
5128 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5129 	struct ext4_super_block *es = sbi->s_es;
5130 	ext4_group_t group;
5131 	unsigned int len;
5132 	ext4_fsblk_t goal;
5133 	ext4_grpblk_t block;
5134 
5135 	/* we can't allocate > group size */
5136 	len = ar->len;
5137 
5138 	/* just a dirty hack to filter too big requests  */
5139 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5140 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5141 
5142 	/* start searching from the goal */
5143 	goal = ar->goal;
5144 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5145 			goal >= ext4_blocks_count(es))
5146 		goal = le32_to_cpu(es->s_first_data_block);
5147 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5148 
5149 	/* set up allocation goals */
5150 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5151 	ac->ac_status = AC_STATUS_CONTINUE;
5152 	ac->ac_sb = sb;
5153 	ac->ac_inode = ar->inode;
5154 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5155 	ac->ac_o_ex.fe_group = group;
5156 	ac->ac_o_ex.fe_start = block;
5157 	ac->ac_o_ex.fe_len = len;
5158 	ac->ac_g_ex = ac->ac_o_ex;
5159 	ac->ac_flags = ar->flags;
5160 
5161 	/* we have to define context: we'll work with a file or
5162 	 * locality group. this is a policy, actually */
5163 	ext4_mb_group_or_file(ac);
5164 
5165 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5166 			"left: %u/%u, right %u/%u to %swritable\n",
5167 			(unsigned) ar->len, (unsigned) ar->logical,
5168 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5169 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5170 			(unsigned) ar->lright, (unsigned) ar->pright,
5171 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5172 	return 0;
5173 
5174 }
5175 
5176 static noinline_for_stack void
5177 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5178 					struct ext4_locality_group *lg,
5179 					int order, int total_entries)
5180 {
5181 	ext4_group_t group = 0;
5182 	struct ext4_buddy e4b;
5183 	struct list_head discard_list;
5184 	struct ext4_prealloc_space *pa, *tmp;
5185 
5186 	mb_debug(sb, "discard locality group preallocation\n");
5187 
5188 	INIT_LIST_HEAD(&discard_list);
5189 
5190 	spin_lock(&lg->lg_prealloc_lock);
5191 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5192 				pa_inode_list,
5193 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5194 		spin_lock(&pa->pa_lock);
5195 		if (atomic_read(&pa->pa_count)) {
5196 			/*
5197 			 * This is the pa that we just used
5198 			 * for block allocation. So don't
5199 			 * free that
5200 			 */
5201 			spin_unlock(&pa->pa_lock);
5202 			continue;
5203 		}
5204 		if (pa->pa_deleted) {
5205 			spin_unlock(&pa->pa_lock);
5206 			continue;
5207 		}
5208 		/* only lg prealloc space */
5209 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5210 
5211 		/* seems this one can be freed ... */
5212 		ext4_mb_mark_pa_deleted(sb, pa);
5213 		spin_unlock(&pa->pa_lock);
5214 
5215 		list_del_rcu(&pa->pa_inode_list);
5216 		list_add(&pa->u.pa_tmp_list, &discard_list);
5217 
5218 		total_entries--;
5219 		if (total_entries <= 5) {
5220 			/*
5221 			 * we want to keep only 5 entries
5222 			 * allowing it to grow to 8. This
5223 			 * mak sure we don't call discard
5224 			 * soon for this list.
5225 			 */
5226 			break;
5227 		}
5228 	}
5229 	spin_unlock(&lg->lg_prealloc_lock);
5230 
5231 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5232 		int err;
5233 
5234 		group = ext4_get_group_number(sb, pa->pa_pstart);
5235 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5236 					     GFP_NOFS|__GFP_NOFAIL);
5237 		if (err) {
5238 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5239 				       err, group);
5240 			continue;
5241 		}
5242 		ext4_lock_group(sb, group);
5243 		list_del(&pa->pa_group_list);
5244 		ext4_mb_release_group_pa(&e4b, pa);
5245 		ext4_unlock_group(sb, group);
5246 
5247 		ext4_mb_unload_buddy(&e4b);
5248 		list_del(&pa->u.pa_tmp_list);
5249 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5250 	}
5251 }
5252 
5253 /*
5254  * We have incremented pa_count. So it cannot be freed at this
5255  * point. Also we hold lg_mutex. So no parallel allocation is
5256  * possible from this lg. That means pa_free cannot be updated.
5257  *
5258  * A parallel ext4_mb_discard_group_preallocations is possible.
5259  * which can cause the lg_prealloc_list to be updated.
5260  */
5261 
5262 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5263 {
5264 	int order, added = 0, lg_prealloc_count = 1;
5265 	struct super_block *sb = ac->ac_sb;
5266 	struct ext4_locality_group *lg = ac->ac_lg;
5267 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5268 
5269 	order = fls(pa->pa_free) - 1;
5270 	if (order > PREALLOC_TB_SIZE - 1)
5271 		/* The max size of hash table is PREALLOC_TB_SIZE */
5272 		order = PREALLOC_TB_SIZE - 1;
5273 	/* Add the prealloc space to lg */
5274 	spin_lock(&lg->lg_prealloc_lock);
5275 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5276 				pa_inode_list,
5277 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5278 		spin_lock(&tmp_pa->pa_lock);
5279 		if (tmp_pa->pa_deleted) {
5280 			spin_unlock(&tmp_pa->pa_lock);
5281 			continue;
5282 		}
5283 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5284 			/* Add to the tail of the previous entry */
5285 			list_add_tail_rcu(&pa->pa_inode_list,
5286 						&tmp_pa->pa_inode_list);
5287 			added = 1;
5288 			/*
5289 			 * we want to count the total
5290 			 * number of entries in the list
5291 			 */
5292 		}
5293 		spin_unlock(&tmp_pa->pa_lock);
5294 		lg_prealloc_count++;
5295 	}
5296 	if (!added)
5297 		list_add_tail_rcu(&pa->pa_inode_list,
5298 					&lg->lg_prealloc_list[order]);
5299 	spin_unlock(&lg->lg_prealloc_lock);
5300 
5301 	/* Now trim the list to be not more than 8 elements */
5302 	if (lg_prealloc_count > 8) {
5303 		ext4_mb_discard_lg_preallocations(sb, lg,
5304 						  order, lg_prealloc_count);
5305 		return;
5306 	}
5307 	return ;
5308 }
5309 
5310 /*
5311  * if per-inode prealloc list is too long, trim some PA
5312  */
5313 static void ext4_mb_trim_inode_pa(struct inode *inode)
5314 {
5315 	struct ext4_inode_info *ei = EXT4_I(inode);
5316 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5317 	int count, delta;
5318 
5319 	count = atomic_read(&ei->i_prealloc_active);
5320 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
5321 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
5322 		count -= sbi->s_mb_max_inode_prealloc;
5323 		ext4_discard_preallocations(inode, count);
5324 	}
5325 }
5326 
5327 /*
5328  * release all resource we used in allocation
5329  */
5330 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5331 {
5332 	struct inode *inode = ac->ac_inode;
5333 	struct ext4_inode_info *ei = EXT4_I(inode);
5334 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5335 	struct ext4_prealloc_space *pa = ac->ac_pa;
5336 	if (pa) {
5337 		if (pa->pa_type == MB_GROUP_PA) {
5338 			/* see comment in ext4_mb_use_group_pa() */
5339 			spin_lock(&pa->pa_lock);
5340 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5341 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5342 			pa->pa_free -= ac->ac_b_ex.fe_len;
5343 			pa->pa_len -= ac->ac_b_ex.fe_len;
5344 			spin_unlock(&pa->pa_lock);
5345 
5346 			/*
5347 			 * We want to add the pa to the right bucket.
5348 			 * Remove it from the list and while adding
5349 			 * make sure the list to which we are adding
5350 			 * doesn't grow big.
5351 			 */
5352 			if (likely(pa->pa_free)) {
5353 				spin_lock(pa->pa_obj_lock);
5354 				list_del_rcu(&pa->pa_inode_list);
5355 				spin_unlock(pa->pa_obj_lock);
5356 				ext4_mb_add_n_trim(ac);
5357 			}
5358 		}
5359 
5360 		if (pa->pa_type == MB_INODE_PA) {
5361 			/*
5362 			 * treat per-inode prealloc list as a lru list, then try
5363 			 * to trim the least recently used PA.
5364 			 */
5365 			spin_lock(pa->pa_obj_lock);
5366 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
5367 			spin_unlock(pa->pa_obj_lock);
5368 		}
5369 
5370 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5371 	}
5372 	if (ac->ac_bitmap_page)
5373 		put_page(ac->ac_bitmap_page);
5374 	if (ac->ac_buddy_page)
5375 		put_page(ac->ac_buddy_page);
5376 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5377 		mutex_unlock(&ac->ac_lg->lg_mutex);
5378 	ext4_mb_collect_stats(ac);
5379 	ext4_mb_trim_inode_pa(inode);
5380 	return 0;
5381 }
5382 
5383 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5384 {
5385 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5386 	int ret;
5387 	int freed = 0;
5388 
5389 	trace_ext4_mb_discard_preallocations(sb, needed);
5390 	for (i = 0; i < ngroups && needed > 0; i++) {
5391 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
5392 		freed += ret;
5393 		needed -= ret;
5394 	}
5395 
5396 	return freed;
5397 }
5398 
5399 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5400 			struct ext4_allocation_context *ac, u64 *seq)
5401 {
5402 	int freed;
5403 	u64 seq_retry = 0;
5404 	bool ret = false;
5405 
5406 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5407 	if (freed) {
5408 		ret = true;
5409 		goto out_dbg;
5410 	}
5411 	seq_retry = ext4_get_discard_pa_seq_sum();
5412 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5413 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5414 		*seq = seq_retry;
5415 		ret = true;
5416 	}
5417 
5418 out_dbg:
5419 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5420 	return ret;
5421 }
5422 
5423 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5424 				struct ext4_allocation_request *ar, int *errp);
5425 
5426 /*
5427  * Main entry point into mballoc to allocate blocks
5428  * it tries to use preallocation first, then falls back
5429  * to usual allocation
5430  */
5431 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5432 				struct ext4_allocation_request *ar, int *errp)
5433 {
5434 	struct ext4_allocation_context *ac = NULL;
5435 	struct ext4_sb_info *sbi;
5436 	struct super_block *sb;
5437 	ext4_fsblk_t block = 0;
5438 	unsigned int inquota = 0;
5439 	unsigned int reserv_clstrs = 0;
5440 	u64 seq;
5441 
5442 	might_sleep();
5443 	sb = ar->inode->i_sb;
5444 	sbi = EXT4_SB(sb);
5445 
5446 	trace_ext4_request_blocks(ar);
5447 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
5448 		return ext4_mb_new_blocks_simple(handle, ar, errp);
5449 
5450 	/* Allow to use superuser reservation for quota file */
5451 	if (ext4_is_quota_file(ar->inode))
5452 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5453 
5454 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5455 		/* Without delayed allocation we need to verify
5456 		 * there is enough free blocks to do block allocation
5457 		 * and verify allocation doesn't exceed the quota limits.
5458 		 */
5459 		while (ar->len &&
5460 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5461 
5462 			/* let others to free the space */
5463 			cond_resched();
5464 			ar->len = ar->len >> 1;
5465 		}
5466 		if (!ar->len) {
5467 			ext4_mb_show_pa(sb);
5468 			*errp = -ENOSPC;
5469 			return 0;
5470 		}
5471 		reserv_clstrs = ar->len;
5472 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5473 			dquot_alloc_block_nofail(ar->inode,
5474 						 EXT4_C2B(sbi, ar->len));
5475 		} else {
5476 			while (ar->len &&
5477 				dquot_alloc_block(ar->inode,
5478 						  EXT4_C2B(sbi, ar->len))) {
5479 
5480 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5481 				ar->len--;
5482 			}
5483 		}
5484 		inquota = ar->len;
5485 		if (ar->len == 0) {
5486 			*errp = -EDQUOT;
5487 			goto out;
5488 		}
5489 	}
5490 
5491 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5492 	if (!ac) {
5493 		ar->len = 0;
5494 		*errp = -ENOMEM;
5495 		goto out;
5496 	}
5497 
5498 	*errp = ext4_mb_initialize_context(ac, ar);
5499 	if (*errp) {
5500 		ar->len = 0;
5501 		goto out;
5502 	}
5503 
5504 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5505 	seq = this_cpu_read(discard_pa_seq);
5506 	if (!ext4_mb_use_preallocated(ac)) {
5507 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5508 		ext4_mb_normalize_request(ac, ar);
5509 
5510 		*errp = ext4_mb_pa_alloc(ac);
5511 		if (*errp)
5512 			goto errout;
5513 repeat:
5514 		/* allocate space in core */
5515 		*errp = ext4_mb_regular_allocator(ac);
5516 		/*
5517 		 * pa allocated above is added to grp->bb_prealloc_list only
5518 		 * when we were able to allocate some block i.e. when
5519 		 * ac->ac_status == AC_STATUS_FOUND.
5520 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5521 		 * So we have to free this pa here itself.
5522 		 */
5523 		if (*errp) {
5524 			ext4_mb_pa_free(ac);
5525 			ext4_discard_allocated_blocks(ac);
5526 			goto errout;
5527 		}
5528 		if (ac->ac_status == AC_STATUS_FOUND &&
5529 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5530 			ext4_mb_pa_free(ac);
5531 	}
5532 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5533 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5534 		if (*errp) {
5535 			ext4_discard_allocated_blocks(ac);
5536 			goto errout;
5537 		} else {
5538 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5539 			ar->len = ac->ac_b_ex.fe_len;
5540 		}
5541 	} else {
5542 		if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5543 			goto repeat;
5544 		/*
5545 		 * If block allocation fails then the pa allocated above
5546 		 * needs to be freed here itself.
5547 		 */
5548 		ext4_mb_pa_free(ac);
5549 		*errp = -ENOSPC;
5550 	}
5551 
5552 errout:
5553 	if (*errp) {
5554 		ac->ac_b_ex.fe_len = 0;
5555 		ar->len = 0;
5556 		ext4_mb_show_ac(ac);
5557 	}
5558 	ext4_mb_release_context(ac);
5559 out:
5560 	if (ac)
5561 		kmem_cache_free(ext4_ac_cachep, ac);
5562 	if (inquota && ar->len < inquota)
5563 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5564 	if (!ar->len) {
5565 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5566 			/* release all the reserved blocks if non delalloc */
5567 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5568 						reserv_clstrs);
5569 	}
5570 
5571 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5572 
5573 	return block;
5574 }
5575 
5576 /*
5577  * We can merge two free data extents only if the physical blocks
5578  * are contiguous, AND the extents were freed by the same transaction,
5579  * AND the blocks are associated with the same group.
5580  */
5581 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5582 					struct ext4_free_data *entry,
5583 					struct ext4_free_data *new_entry,
5584 					struct rb_root *entry_rb_root)
5585 {
5586 	if ((entry->efd_tid != new_entry->efd_tid) ||
5587 	    (entry->efd_group != new_entry->efd_group))
5588 		return;
5589 	if (entry->efd_start_cluster + entry->efd_count ==
5590 	    new_entry->efd_start_cluster) {
5591 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5592 		new_entry->efd_count += entry->efd_count;
5593 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5594 		   entry->efd_start_cluster) {
5595 		new_entry->efd_count += entry->efd_count;
5596 	} else
5597 		return;
5598 	spin_lock(&sbi->s_md_lock);
5599 	list_del(&entry->efd_list);
5600 	spin_unlock(&sbi->s_md_lock);
5601 	rb_erase(&entry->efd_node, entry_rb_root);
5602 	kmem_cache_free(ext4_free_data_cachep, entry);
5603 }
5604 
5605 static noinline_for_stack int
5606 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5607 		      struct ext4_free_data *new_entry)
5608 {
5609 	ext4_group_t group = e4b->bd_group;
5610 	ext4_grpblk_t cluster;
5611 	ext4_grpblk_t clusters = new_entry->efd_count;
5612 	struct ext4_free_data *entry;
5613 	struct ext4_group_info *db = e4b->bd_info;
5614 	struct super_block *sb = e4b->bd_sb;
5615 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5616 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5617 	struct rb_node *parent = NULL, *new_node;
5618 
5619 	BUG_ON(!ext4_handle_valid(handle));
5620 	BUG_ON(e4b->bd_bitmap_page == NULL);
5621 	BUG_ON(e4b->bd_buddy_page == NULL);
5622 
5623 	new_node = &new_entry->efd_node;
5624 	cluster = new_entry->efd_start_cluster;
5625 
5626 	if (!*n) {
5627 		/* first free block exent. We need to
5628 		   protect buddy cache from being freed,
5629 		 * otherwise we'll refresh it from
5630 		 * on-disk bitmap and lose not-yet-available
5631 		 * blocks */
5632 		get_page(e4b->bd_buddy_page);
5633 		get_page(e4b->bd_bitmap_page);
5634 	}
5635 	while (*n) {
5636 		parent = *n;
5637 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5638 		if (cluster < entry->efd_start_cluster)
5639 			n = &(*n)->rb_left;
5640 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5641 			n = &(*n)->rb_right;
5642 		else {
5643 			ext4_grp_locked_error(sb, group, 0,
5644 				ext4_group_first_block_no(sb, group) +
5645 				EXT4_C2B(sbi, cluster),
5646 				"Block already on to-be-freed list");
5647 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5648 			return 0;
5649 		}
5650 	}
5651 
5652 	rb_link_node(new_node, parent, n);
5653 	rb_insert_color(new_node, &db->bb_free_root);
5654 
5655 	/* Now try to see the extent can be merged to left and right */
5656 	node = rb_prev(new_node);
5657 	if (node) {
5658 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5659 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5660 					    &(db->bb_free_root));
5661 	}
5662 
5663 	node = rb_next(new_node);
5664 	if (node) {
5665 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5666 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5667 					    &(db->bb_free_root));
5668 	}
5669 
5670 	spin_lock(&sbi->s_md_lock);
5671 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5672 	sbi->s_mb_free_pending += clusters;
5673 	spin_unlock(&sbi->s_md_lock);
5674 	return 0;
5675 }
5676 
5677 /*
5678  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5679  * linearly starting at the goal block and also excludes the blocks which
5680  * are going to be in use after fast commit replay.
5681  */
5682 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5683 				struct ext4_allocation_request *ar, int *errp)
5684 {
5685 	struct buffer_head *bitmap_bh;
5686 	struct super_block *sb = ar->inode->i_sb;
5687 	ext4_group_t group;
5688 	ext4_grpblk_t blkoff;
5689 	int i = sb->s_blocksize;
5690 	ext4_fsblk_t goal, block;
5691 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5692 
5693 	goal = ar->goal;
5694 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5695 			goal >= ext4_blocks_count(es))
5696 		goal = le32_to_cpu(es->s_first_data_block);
5697 
5698 	ar->len = 0;
5699 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5700 	for (; group < ext4_get_groups_count(sb); group++) {
5701 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5702 		if (IS_ERR(bitmap_bh)) {
5703 			*errp = PTR_ERR(bitmap_bh);
5704 			pr_warn("Failed to read block bitmap\n");
5705 			return 0;
5706 		}
5707 
5708 		ext4_get_group_no_and_offset(sb,
5709 			max(ext4_group_first_block_no(sb, group), goal),
5710 			NULL, &blkoff);
5711 		i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize,
5712 						blkoff);
5713 		brelse(bitmap_bh);
5714 		if (i >= sb->s_blocksize)
5715 			continue;
5716 		if (ext4_fc_replay_check_excluded(sb,
5717 			ext4_group_first_block_no(sb, group) + i))
5718 			continue;
5719 		break;
5720 	}
5721 
5722 	if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize)
5723 		return 0;
5724 
5725 	block = ext4_group_first_block_no(sb, group) + i;
5726 	ext4_mb_mark_bb(sb, block, 1, 1);
5727 	ar->len = 1;
5728 
5729 	return block;
5730 }
5731 
5732 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5733 					unsigned long count)
5734 {
5735 	struct buffer_head *bitmap_bh;
5736 	struct super_block *sb = inode->i_sb;
5737 	struct ext4_group_desc *gdp;
5738 	struct buffer_head *gdp_bh;
5739 	ext4_group_t group;
5740 	ext4_grpblk_t blkoff;
5741 	int already_freed = 0, err, i;
5742 
5743 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5744 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5745 	if (IS_ERR(bitmap_bh)) {
5746 		err = PTR_ERR(bitmap_bh);
5747 		pr_warn("Failed to read block bitmap\n");
5748 		return;
5749 	}
5750 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5751 	if (!gdp)
5752 		return;
5753 
5754 	for (i = 0; i < count; i++) {
5755 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5756 			already_freed++;
5757 	}
5758 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5759 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5760 	if (err)
5761 		return;
5762 	ext4_free_group_clusters_set(
5763 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
5764 		count - already_freed);
5765 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5766 	ext4_group_desc_csum_set(sb, group, gdp);
5767 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5768 	sync_dirty_buffer(bitmap_bh);
5769 	sync_dirty_buffer(gdp_bh);
5770 	brelse(bitmap_bh);
5771 }
5772 
5773 /**
5774  * ext4_free_blocks() -- Free given blocks and update quota
5775  * @handle:		handle for this transaction
5776  * @inode:		inode
5777  * @bh:			optional buffer of the block to be freed
5778  * @block:		starting physical block to be freed
5779  * @count:		number of blocks to be freed
5780  * @flags:		flags used by ext4_free_blocks
5781  */
5782 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5783 		      struct buffer_head *bh, ext4_fsblk_t block,
5784 		      unsigned long count, int flags)
5785 {
5786 	struct buffer_head *bitmap_bh = NULL;
5787 	struct super_block *sb = inode->i_sb;
5788 	struct ext4_group_desc *gdp;
5789 	unsigned int overflow;
5790 	ext4_grpblk_t bit;
5791 	struct buffer_head *gd_bh;
5792 	ext4_group_t block_group;
5793 	struct ext4_sb_info *sbi;
5794 	struct ext4_buddy e4b;
5795 	unsigned int count_clusters;
5796 	int err = 0;
5797 	int ret;
5798 
5799 	sbi = EXT4_SB(sb);
5800 
5801 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
5802 		ext4_free_blocks_simple(inode, block, count);
5803 		return;
5804 	}
5805 
5806 	might_sleep();
5807 	if (bh) {
5808 		if (block)
5809 			BUG_ON(block != bh->b_blocknr);
5810 		else
5811 			block = bh->b_blocknr;
5812 	}
5813 
5814 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5815 	    !ext4_inode_block_valid(inode, block, count)) {
5816 		ext4_error(sb, "Freeing blocks not in datazone - "
5817 			   "block = %llu, count = %lu", block, count);
5818 		goto error_return;
5819 	}
5820 
5821 	ext4_debug("freeing block %llu\n", block);
5822 	trace_ext4_free_blocks(inode, block, count, flags);
5823 
5824 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5825 		BUG_ON(count > 1);
5826 
5827 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5828 			    inode, bh, block);
5829 	}
5830 
5831 	/*
5832 	 * If the extent to be freed does not begin on a cluster
5833 	 * boundary, we need to deal with partial clusters at the
5834 	 * beginning and end of the extent.  Normally we will free
5835 	 * blocks at the beginning or the end unless we are explicitly
5836 	 * requested to avoid doing so.
5837 	 */
5838 	overflow = EXT4_PBLK_COFF(sbi, block);
5839 	if (overflow) {
5840 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5841 			overflow = sbi->s_cluster_ratio - overflow;
5842 			block += overflow;
5843 			if (count > overflow)
5844 				count -= overflow;
5845 			else
5846 				return;
5847 		} else {
5848 			block -= overflow;
5849 			count += overflow;
5850 		}
5851 	}
5852 	overflow = EXT4_LBLK_COFF(sbi, count);
5853 	if (overflow) {
5854 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5855 			if (count > overflow)
5856 				count -= overflow;
5857 			else
5858 				return;
5859 		} else
5860 			count += sbi->s_cluster_ratio - overflow;
5861 	}
5862 
5863 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5864 		int i;
5865 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5866 
5867 		for (i = 0; i < count; i++) {
5868 			cond_resched();
5869 			if (is_metadata)
5870 				bh = sb_find_get_block(inode->i_sb, block + i);
5871 			ext4_forget(handle, is_metadata, inode, bh, block + i);
5872 		}
5873 	}
5874 
5875 do_more:
5876 	overflow = 0;
5877 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5878 
5879 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5880 			ext4_get_group_info(sb, block_group))))
5881 		return;
5882 
5883 	/*
5884 	 * Check to see if we are freeing blocks across a group
5885 	 * boundary.
5886 	 */
5887 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5888 		overflow = EXT4_C2B(sbi, bit) + count -
5889 			EXT4_BLOCKS_PER_GROUP(sb);
5890 		count -= overflow;
5891 	}
5892 	count_clusters = EXT4_NUM_B2C(sbi, count);
5893 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5894 	if (IS_ERR(bitmap_bh)) {
5895 		err = PTR_ERR(bitmap_bh);
5896 		bitmap_bh = NULL;
5897 		goto error_return;
5898 	}
5899 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5900 	if (!gdp) {
5901 		err = -EIO;
5902 		goto error_return;
5903 	}
5904 
5905 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5906 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5907 	    in_range(block, ext4_inode_table(sb, gdp),
5908 		     sbi->s_itb_per_group) ||
5909 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
5910 		     sbi->s_itb_per_group)) {
5911 
5912 		ext4_error(sb, "Freeing blocks in system zone - "
5913 			   "Block = %llu, count = %lu", block, count);
5914 		/* err = 0. ext4_std_error should be a no op */
5915 		goto error_return;
5916 	}
5917 
5918 	BUFFER_TRACE(bitmap_bh, "getting write access");
5919 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5920 	if (err)
5921 		goto error_return;
5922 
5923 	/*
5924 	 * We are about to modify some metadata.  Call the journal APIs
5925 	 * to unshare ->b_data if a currently-committing transaction is
5926 	 * using it
5927 	 */
5928 	BUFFER_TRACE(gd_bh, "get_write_access");
5929 	err = ext4_journal_get_write_access(handle, gd_bh);
5930 	if (err)
5931 		goto error_return;
5932 #ifdef AGGRESSIVE_CHECK
5933 	{
5934 		int i;
5935 		for (i = 0; i < count_clusters; i++)
5936 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5937 	}
5938 #endif
5939 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5940 
5941 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5942 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5943 				     GFP_NOFS|__GFP_NOFAIL);
5944 	if (err)
5945 		goto error_return;
5946 
5947 	/*
5948 	 * We need to make sure we don't reuse the freed block until after the
5949 	 * transaction is committed. We make an exception if the inode is to be
5950 	 * written in writeback mode since writeback mode has weak data
5951 	 * consistency guarantees.
5952 	 */
5953 	if (ext4_handle_valid(handle) &&
5954 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5955 	     !ext4_should_writeback_data(inode))) {
5956 		struct ext4_free_data *new_entry;
5957 		/*
5958 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5959 		 * to fail.
5960 		 */
5961 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5962 				GFP_NOFS|__GFP_NOFAIL);
5963 		new_entry->efd_start_cluster = bit;
5964 		new_entry->efd_group = block_group;
5965 		new_entry->efd_count = count_clusters;
5966 		new_entry->efd_tid = handle->h_transaction->t_tid;
5967 
5968 		ext4_lock_group(sb, block_group);
5969 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5970 		ext4_mb_free_metadata(handle, &e4b, new_entry);
5971 	} else {
5972 		/* need to update group_info->bb_free and bitmap
5973 		 * with group lock held. generate_buddy look at
5974 		 * them with group lock_held
5975 		 */
5976 		if (test_opt(sb, DISCARD)) {
5977 			err = ext4_issue_discard(sb, block_group, bit, count,
5978 						 NULL);
5979 			if (err && err != -EOPNOTSUPP)
5980 				ext4_msg(sb, KERN_WARNING, "discard request in"
5981 					 " group:%d block:%d count:%lu failed"
5982 					 " with %d", block_group, bit, count,
5983 					 err);
5984 		} else
5985 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5986 
5987 		ext4_lock_group(sb, block_group);
5988 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5989 		mb_free_blocks(inode, &e4b, bit, count_clusters);
5990 	}
5991 
5992 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5993 	ext4_free_group_clusters_set(sb, gdp, ret);
5994 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5995 	ext4_group_desc_csum_set(sb, block_group, gdp);
5996 	ext4_unlock_group(sb, block_group);
5997 
5998 	if (sbi->s_log_groups_per_flex) {
5999 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6000 		atomic64_add(count_clusters,
6001 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6002 						  flex_group)->free_clusters);
6003 	}
6004 
6005 	/*
6006 	 * on a bigalloc file system, defer the s_freeclusters_counter
6007 	 * update to the caller (ext4_remove_space and friends) so they
6008 	 * can determine if a cluster freed here should be rereserved
6009 	 */
6010 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6011 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6012 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6013 		percpu_counter_add(&sbi->s_freeclusters_counter,
6014 				   count_clusters);
6015 	}
6016 
6017 	ext4_mb_unload_buddy(&e4b);
6018 
6019 	/* We dirtied the bitmap block */
6020 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6021 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6022 
6023 	/* And the group descriptor block */
6024 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6025 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6026 	if (!err)
6027 		err = ret;
6028 
6029 	if (overflow && !err) {
6030 		block += count;
6031 		count = overflow;
6032 		put_bh(bitmap_bh);
6033 		goto do_more;
6034 	}
6035 error_return:
6036 	brelse(bitmap_bh);
6037 	ext4_std_error(sb, err);
6038 	return;
6039 }
6040 
6041 /**
6042  * ext4_group_add_blocks() -- Add given blocks to an existing group
6043  * @handle:			handle to this transaction
6044  * @sb:				super block
6045  * @block:			start physical block to add to the block group
6046  * @count:			number of blocks to free
6047  *
6048  * This marks the blocks as free in the bitmap and buddy.
6049  */
6050 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6051 			 ext4_fsblk_t block, unsigned long count)
6052 {
6053 	struct buffer_head *bitmap_bh = NULL;
6054 	struct buffer_head *gd_bh;
6055 	ext4_group_t block_group;
6056 	ext4_grpblk_t bit;
6057 	unsigned int i;
6058 	struct ext4_group_desc *desc;
6059 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6060 	struct ext4_buddy e4b;
6061 	int err = 0, ret, free_clusters_count;
6062 	ext4_grpblk_t clusters_freed;
6063 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6064 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6065 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6066 
6067 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6068 
6069 	if (count == 0)
6070 		return 0;
6071 
6072 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6073 	/*
6074 	 * Check to see if we are freeing blocks across a group
6075 	 * boundary.
6076 	 */
6077 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6078 		ext4_warning(sb, "too many blocks added to group %u",
6079 			     block_group);
6080 		err = -EINVAL;
6081 		goto error_return;
6082 	}
6083 
6084 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6085 	if (IS_ERR(bitmap_bh)) {
6086 		err = PTR_ERR(bitmap_bh);
6087 		bitmap_bh = NULL;
6088 		goto error_return;
6089 	}
6090 
6091 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6092 	if (!desc) {
6093 		err = -EIO;
6094 		goto error_return;
6095 	}
6096 
6097 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
6098 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
6099 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
6100 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
6101 		     sbi->s_itb_per_group)) {
6102 		ext4_error(sb, "Adding blocks in system zones - "
6103 			   "Block = %llu, count = %lu",
6104 			   block, count);
6105 		err = -EINVAL;
6106 		goto error_return;
6107 	}
6108 
6109 	BUFFER_TRACE(bitmap_bh, "getting write access");
6110 	err = ext4_journal_get_write_access(handle, bitmap_bh);
6111 	if (err)
6112 		goto error_return;
6113 
6114 	/*
6115 	 * We are about to modify some metadata.  Call the journal APIs
6116 	 * to unshare ->b_data if a currently-committing transaction is
6117 	 * using it
6118 	 */
6119 	BUFFER_TRACE(gd_bh, "get_write_access");
6120 	err = ext4_journal_get_write_access(handle, gd_bh);
6121 	if (err)
6122 		goto error_return;
6123 
6124 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6125 		BUFFER_TRACE(bitmap_bh, "clear bit");
6126 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6127 			ext4_error(sb, "bit already cleared for block %llu",
6128 				   (ext4_fsblk_t)(block + i));
6129 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6130 		} else {
6131 			clusters_freed++;
6132 		}
6133 	}
6134 
6135 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6136 	if (err)
6137 		goto error_return;
6138 
6139 	/*
6140 	 * need to update group_info->bb_free and bitmap
6141 	 * with group lock held. generate_buddy look at
6142 	 * them with group lock_held
6143 	 */
6144 	ext4_lock_group(sb, block_group);
6145 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6146 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6147 	free_clusters_count = clusters_freed +
6148 		ext4_free_group_clusters(sb, desc);
6149 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6150 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
6151 	ext4_group_desc_csum_set(sb, block_group, desc);
6152 	ext4_unlock_group(sb, block_group);
6153 	percpu_counter_add(&sbi->s_freeclusters_counter,
6154 			   clusters_freed);
6155 
6156 	if (sbi->s_log_groups_per_flex) {
6157 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6158 		atomic64_add(clusters_freed,
6159 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6160 						  flex_group)->free_clusters);
6161 	}
6162 
6163 	ext4_mb_unload_buddy(&e4b);
6164 
6165 	/* We dirtied the bitmap block */
6166 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6167 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6168 
6169 	/* And the group descriptor block */
6170 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6171 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6172 	if (!err)
6173 		err = ret;
6174 
6175 error_return:
6176 	brelse(bitmap_bh);
6177 	ext4_std_error(sb, err);
6178 	return err;
6179 }
6180 
6181 /**
6182  * ext4_trim_extent -- function to TRIM one single free extent in the group
6183  * @sb:		super block for the file system
6184  * @start:	starting block of the free extent in the alloc. group
6185  * @count:	number of blocks to TRIM
6186  * @group:	alloc. group we are working with
6187  * @e4b:	ext4 buddy for the group
6188  *
6189  * Trim "count" blocks starting at "start" in the "group". To assure that no
6190  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6191  * be called with under the group lock.
6192  */
6193 static int ext4_trim_extent(struct super_block *sb, int start, int count,
6194 			     ext4_group_t group, struct ext4_buddy *e4b)
6195 __releases(bitlock)
6196 __acquires(bitlock)
6197 {
6198 	struct ext4_free_extent ex;
6199 	int ret = 0;
6200 
6201 	trace_ext4_trim_extent(sb, group, start, count);
6202 
6203 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6204 
6205 	ex.fe_start = start;
6206 	ex.fe_group = group;
6207 	ex.fe_len = count;
6208 
6209 	/*
6210 	 * Mark blocks used, so no one can reuse them while
6211 	 * being trimmed.
6212 	 */
6213 	mb_mark_used(e4b, &ex);
6214 	ext4_unlock_group(sb, group);
6215 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6216 	ext4_lock_group(sb, group);
6217 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6218 	return ret;
6219 }
6220 
6221 /**
6222  * ext4_trim_all_free -- function to trim all free space in alloc. group
6223  * @sb:			super block for file system
6224  * @group:		group to be trimmed
6225  * @start:		first group block to examine
6226  * @max:		last group block to examine
6227  * @minblocks:		minimum extent block count
6228  *
6229  * ext4_trim_all_free walks through group's buddy bitmap searching for free
6230  * extents. When the free block is found, ext4_trim_extent is called to TRIM
6231  * the extent.
6232  *
6233  *
6234  * ext4_trim_all_free walks through group's block bitmap searching for free
6235  * extents. When the free extent is found, mark it as used in group buddy
6236  * bitmap. Then issue a TRIM command on this extent and free the extent in
6237  * the group buddy bitmap. This is done until whole group is scanned.
6238  */
6239 static ext4_grpblk_t
6240 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6241 		   ext4_grpblk_t start, ext4_grpblk_t max,
6242 		   ext4_grpblk_t minblocks)
6243 {
6244 	void *bitmap;
6245 	ext4_grpblk_t next, count = 0, free_count = 0;
6246 	struct ext4_buddy e4b;
6247 	int ret = 0;
6248 
6249 	trace_ext4_trim_all_free(sb, group, start, max);
6250 
6251 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6252 	if (ret) {
6253 		ext4_warning(sb, "Error %d loading buddy information for %u",
6254 			     ret, group);
6255 		return ret;
6256 	}
6257 	bitmap = e4b.bd_bitmap;
6258 
6259 	ext4_lock_group(sb, group);
6260 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
6261 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
6262 		goto out;
6263 
6264 	start = (e4b.bd_info->bb_first_free > start) ?
6265 		e4b.bd_info->bb_first_free : start;
6266 
6267 	while (start <= max) {
6268 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6269 		if (start > max)
6270 			break;
6271 		next = mb_find_next_bit(bitmap, max + 1, start);
6272 
6273 		if ((next - start) >= minblocks) {
6274 			ret = ext4_trim_extent(sb, start,
6275 					       next - start, group, &e4b);
6276 			if (ret && ret != -EOPNOTSUPP)
6277 				break;
6278 			ret = 0;
6279 			count += next - start;
6280 		}
6281 		free_count += next - start;
6282 		start = next + 1;
6283 
6284 		if (fatal_signal_pending(current)) {
6285 			count = -ERESTARTSYS;
6286 			break;
6287 		}
6288 
6289 		if (need_resched()) {
6290 			ext4_unlock_group(sb, group);
6291 			cond_resched();
6292 			ext4_lock_group(sb, group);
6293 		}
6294 
6295 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
6296 			break;
6297 	}
6298 
6299 	if (!ret) {
6300 		ret = count;
6301 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6302 	}
6303 out:
6304 	ext4_unlock_group(sb, group);
6305 	ext4_mb_unload_buddy(&e4b);
6306 
6307 	ext4_debug("trimmed %d blocks in the group %d\n",
6308 		count, group);
6309 
6310 	return ret;
6311 }
6312 
6313 /**
6314  * ext4_trim_fs() -- trim ioctl handle function
6315  * @sb:			superblock for filesystem
6316  * @range:		fstrim_range structure
6317  *
6318  * start:	First Byte to trim
6319  * len:		number of Bytes to trim from start
6320  * minlen:	minimum extent length in Bytes
6321  * ext4_trim_fs goes through all allocation groups containing Bytes from
6322  * start to start+len. For each such a group ext4_trim_all_free function
6323  * is invoked to trim all free space.
6324  */
6325 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6326 {
6327 	struct ext4_group_info *grp;
6328 	ext4_group_t group, first_group, last_group;
6329 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6330 	uint64_t start, end, minlen, trimmed = 0;
6331 	ext4_fsblk_t first_data_blk =
6332 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6333 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6334 	int ret = 0;
6335 
6336 	start = range->start >> sb->s_blocksize_bits;
6337 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6338 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6339 			      range->minlen >> sb->s_blocksize_bits);
6340 
6341 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6342 	    start >= max_blks ||
6343 	    range->len < sb->s_blocksize)
6344 		return -EINVAL;
6345 	if (end >= max_blks)
6346 		end = max_blks - 1;
6347 	if (end <= first_data_blk)
6348 		goto out;
6349 	if (start < first_data_blk)
6350 		start = first_data_blk;
6351 
6352 	/* Determine first and last group to examine based on start and end */
6353 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6354 				     &first_group, &first_cluster);
6355 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6356 				     &last_group, &last_cluster);
6357 
6358 	/* end now represents the last cluster to discard in this group */
6359 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6360 
6361 	for (group = first_group; group <= last_group; group++) {
6362 		grp = ext4_get_group_info(sb, group);
6363 		/* We only do this if the grp has never been initialized */
6364 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6365 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6366 			if (ret)
6367 				break;
6368 		}
6369 
6370 		/*
6371 		 * For all the groups except the last one, last cluster will
6372 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6373 		 * change it for the last group, note that last_cluster is
6374 		 * already computed earlier by ext4_get_group_no_and_offset()
6375 		 */
6376 		if (group == last_group)
6377 			end = last_cluster;
6378 
6379 		if (grp->bb_free >= minlen) {
6380 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6381 						end, minlen);
6382 			if (cnt < 0) {
6383 				ret = cnt;
6384 				break;
6385 			}
6386 			trimmed += cnt;
6387 		}
6388 
6389 		/*
6390 		 * For every group except the first one, we are sure
6391 		 * that the first cluster to discard will be cluster #0.
6392 		 */
6393 		first_cluster = 0;
6394 	}
6395 
6396 	if (!ret)
6397 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
6398 
6399 out:
6400 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6401 	return ret;
6402 }
6403 
6404 /* Iterate all the free extents in the group. */
6405 int
6406 ext4_mballoc_query_range(
6407 	struct super_block		*sb,
6408 	ext4_group_t			group,
6409 	ext4_grpblk_t			start,
6410 	ext4_grpblk_t			end,
6411 	ext4_mballoc_query_range_fn	formatter,
6412 	void				*priv)
6413 {
6414 	void				*bitmap;
6415 	ext4_grpblk_t			next;
6416 	struct ext4_buddy		e4b;
6417 	int				error;
6418 
6419 	error = ext4_mb_load_buddy(sb, group, &e4b);
6420 	if (error)
6421 		return error;
6422 	bitmap = e4b.bd_bitmap;
6423 
6424 	ext4_lock_group(sb, group);
6425 
6426 	start = (e4b.bd_info->bb_first_free > start) ?
6427 		e4b.bd_info->bb_first_free : start;
6428 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6429 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6430 
6431 	while (start <= end) {
6432 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6433 		if (start > end)
6434 			break;
6435 		next = mb_find_next_bit(bitmap, end + 1, start);
6436 
6437 		ext4_unlock_group(sb, group);
6438 		error = formatter(sb, group, start, next - start, priv);
6439 		if (error)
6440 			goto out_unload;
6441 		ext4_lock_group(sb, group);
6442 
6443 		start = next + 1;
6444 	}
6445 
6446 	ext4_unlock_group(sb, group);
6447 out_unload:
6448 	ext4_mb_unload_buddy(&e4b);
6449 
6450 	return error;
6451 }
6452