xref: /openbmc/linux/fs/ext4/mballoc.c (revision ea47eed33a3fe3d919e6e3cf4e4eb5507b817188)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/backing-dev.h>
18 #include <trace/events/ext4.h>
19 
20 #ifdef CONFIG_EXT4_DEBUG
21 ushort ext4_mballoc_debug __read_mostly;
22 
23 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
24 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
25 #endif
26 
27 /*
28  * MUSTDO:
29  *   - test ext4_ext_search_left() and ext4_ext_search_right()
30  *   - search for metadata in few groups
31  *
32  * TODO v4:
33  *   - normalization should take into account whether file is still open
34  *   - discard preallocations if no free space left (policy?)
35  *   - don't normalize tails
36  *   - quota
37  *   - reservation for superuser
38  *
39  * TODO v3:
40  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
41  *   - track min/max extents in each group for better group selection
42  *   - mb_mark_used() may allocate chunk right after splitting buddy
43  *   - tree of groups sorted by number of free blocks
44  *   - error handling
45  */
46 
47 /*
48  * The allocation request involve request for multiple number of blocks
49  * near to the goal(block) value specified.
50  *
51  * During initialization phase of the allocator we decide to use the
52  * group preallocation or inode preallocation depending on the size of
53  * the file. The size of the file could be the resulting file size we
54  * would have after allocation, or the current file size, which ever
55  * is larger. If the size is less than sbi->s_mb_stream_request we
56  * select to use the group preallocation. The default value of
57  * s_mb_stream_request is 16 blocks. This can also be tuned via
58  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
59  * terms of number of blocks.
60  *
61  * The main motivation for having small file use group preallocation is to
62  * ensure that we have small files closer together on the disk.
63  *
64  * First stage the allocator looks at the inode prealloc list,
65  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
66  * spaces for this particular inode. The inode prealloc space is
67  * represented as:
68  *
69  * pa_lstart -> the logical start block for this prealloc space
70  * pa_pstart -> the physical start block for this prealloc space
71  * pa_len    -> length for this prealloc space (in clusters)
72  * pa_free   ->  free space available in this prealloc space (in clusters)
73  *
74  * The inode preallocation space is used looking at the _logical_ start
75  * block. If only the logical file block falls within the range of prealloc
76  * space we will consume the particular prealloc space. This makes sure that
77  * we have contiguous physical blocks representing the file blocks
78  *
79  * The important thing to be noted in case of inode prealloc space is that
80  * we don't modify the values associated to inode prealloc space except
81  * pa_free.
82  *
83  * If we are not able to find blocks in the inode prealloc space and if we
84  * have the group allocation flag set then we look at the locality group
85  * prealloc space. These are per CPU prealloc list represented as
86  *
87  * ext4_sb_info.s_locality_groups[smp_processor_id()]
88  *
89  * The reason for having a per cpu locality group is to reduce the contention
90  * between CPUs. It is possible to get scheduled at this point.
91  *
92  * The locality group prealloc space is used looking at whether we have
93  * enough free space (pa_free) within the prealloc space.
94  *
95  * If we can't allocate blocks via inode prealloc or/and locality group
96  * prealloc then we look at the buddy cache. The buddy cache is represented
97  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
98  * mapped to the buddy and bitmap information regarding different
99  * groups. The buddy information is attached to buddy cache inode so that
100  * we can access them through the page cache. The information regarding
101  * each group is loaded via ext4_mb_load_buddy.  The information involve
102  * block bitmap and buddy information. The information are stored in the
103  * inode as:
104  *
105  *  {                        page                        }
106  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
107  *
108  *
109  * one block each for bitmap and buddy information.  So for each group we
110  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
111  * blocksize) blocks.  So it can have information regarding groups_per_page
112  * which is blocks_per_page/2
113  *
114  * The buddy cache inode is not stored on disk. The inode is thrown
115  * away when the filesystem is unmounted.
116  *
117  * We look for count number of blocks in the buddy cache. If we were able
118  * to locate that many free blocks we return with additional information
119  * regarding rest of the contiguous physical block available
120  *
121  * Before allocating blocks via buddy cache we normalize the request
122  * blocks. This ensure we ask for more blocks that we needed. The extra
123  * blocks that we get after allocation is added to the respective prealloc
124  * list. In case of inode preallocation we follow a list of heuristics
125  * based on file size. This can be found in ext4_mb_normalize_request. If
126  * we are doing a group prealloc we try to normalize the request to
127  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
128  * dependent on the cluster size; for non-bigalloc file systems, it is
129  * 512 blocks. This can be tuned via
130  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
131  * terms of number of blocks. If we have mounted the file system with -O
132  * stripe=<value> option the group prealloc request is normalized to the
133  * the smallest multiple of the stripe value (sbi->s_stripe) which is
134  * greater than the default mb_group_prealloc.
135  *
136  * The regular allocator (using the buddy cache) supports a few tunables.
137  *
138  * /sys/fs/ext4/<partition>/mb_min_to_scan
139  * /sys/fs/ext4/<partition>/mb_max_to_scan
140  * /sys/fs/ext4/<partition>/mb_order2_req
141  *
142  * The regular allocator uses buddy scan only if the request len is power of
143  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144  * value of s_mb_order2_reqs can be tuned via
145  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
146  * stripe size (sbi->s_stripe), we try to search for contiguous block in
147  * stripe size. This should result in better allocation on RAID setups. If
148  * not, we search in the specific group using bitmap for best extents. The
149  * tunable min_to_scan and max_to_scan control the behaviour here.
150  * min_to_scan indicate how long the mballoc __must__ look for a best
151  * extent and max_to_scan indicates how long the mballoc __can__ look for a
152  * best extent in the found extents. Searching for the blocks starts with
153  * the group specified as the goal value in allocation context via
154  * ac_g_ex. Each group is first checked based on the criteria whether it
155  * can be used for allocation. ext4_mb_good_group explains how the groups are
156  * checked.
157  *
158  * Both the prealloc space are getting populated as above. So for the first
159  * request we will hit the buddy cache which will result in this prealloc
160  * space getting filled. The prealloc space is then later used for the
161  * subsequent request.
162  */
163 
164 /*
165  * mballoc operates on the following data:
166  *  - on-disk bitmap
167  *  - in-core buddy (actually includes buddy and bitmap)
168  *  - preallocation descriptors (PAs)
169  *
170  * there are two types of preallocations:
171  *  - inode
172  *    assiged to specific inode and can be used for this inode only.
173  *    it describes part of inode's space preallocated to specific
174  *    physical blocks. any block from that preallocated can be used
175  *    independent. the descriptor just tracks number of blocks left
176  *    unused. so, before taking some block from descriptor, one must
177  *    make sure corresponded logical block isn't allocated yet. this
178  *    also means that freeing any block within descriptor's range
179  *    must discard all preallocated blocks.
180  *  - locality group
181  *    assigned to specific locality group which does not translate to
182  *    permanent set of inodes: inode can join and leave group. space
183  *    from this type of preallocation can be used for any inode. thus
184  *    it's consumed from the beginning to the end.
185  *
186  * relation between them can be expressed as:
187  *    in-core buddy = on-disk bitmap + preallocation descriptors
188  *
189  * this mean blocks mballoc considers used are:
190  *  - allocated blocks (persistent)
191  *  - preallocated blocks (non-persistent)
192  *
193  * consistency in mballoc world means that at any time a block is either
194  * free or used in ALL structures. notice: "any time" should not be read
195  * literally -- time is discrete and delimited by locks.
196  *
197  *  to keep it simple, we don't use block numbers, instead we count number of
198  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199  *
200  * all operations can be expressed as:
201  *  - init buddy:			buddy = on-disk + PAs
202  *  - new PA:				buddy += N; PA = N
203  *  - use inode PA:			on-disk += N; PA -= N
204  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
205  *  - use locality group PA		on-disk += N; PA -= N
206  *  - discard locality group PA		buddy -= PA; PA = 0
207  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208  *        is used in real operation because we can't know actual used
209  *        bits from PA, only from on-disk bitmap
210  *
211  * if we follow this strict logic, then all operations above should be atomic.
212  * given some of them can block, we'd have to use something like semaphores
213  * killing performance on high-end SMP hardware. let's try to relax it using
214  * the following knowledge:
215  *  1) if buddy is referenced, it's already initialized
216  *  2) while block is used in buddy and the buddy is referenced,
217  *     nobody can re-allocate that block
218  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
220  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
221  *     block
222  *
223  * so, now we're building a concurrency table:
224  *  - init buddy vs.
225  *    - new PA
226  *      blocks for PA are allocated in the buddy, buddy must be referenced
227  *      until PA is linked to allocation group to avoid concurrent buddy init
228  *    - use inode PA
229  *      we need to make sure that either on-disk bitmap or PA has uptodate data
230  *      given (3) we care that PA-=N operation doesn't interfere with init
231  *    - discard inode PA
232  *      the simplest way would be to have buddy initialized by the discard
233  *    - use locality group PA
234  *      again PA-=N must be serialized with init
235  *    - discard locality group PA
236  *      the simplest way would be to have buddy initialized by the discard
237  *  - new PA vs.
238  *    - use inode PA
239  *      i_data_sem serializes them
240  *    - discard inode PA
241  *      discard process must wait until PA isn't used by another process
242  *    - use locality group PA
243  *      some mutex should serialize them
244  *    - discard locality group PA
245  *      discard process must wait until PA isn't used by another process
246  *  - use inode PA
247  *    - use inode PA
248  *      i_data_sem or another mutex should serializes them
249  *    - discard inode PA
250  *      discard process must wait until PA isn't used by another process
251  *    - use locality group PA
252  *      nothing wrong here -- they're different PAs covering different blocks
253  *    - discard locality group PA
254  *      discard process must wait until PA isn't used by another process
255  *
256  * now we're ready to make few consequences:
257  *  - PA is referenced and while it is no discard is possible
258  *  - PA is referenced until block isn't marked in on-disk bitmap
259  *  - PA changes only after on-disk bitmap
260  *  - discard must not compete with init. either init is done before
261  *    any discard or they're serialized somehow
262  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
263  *
264  * a special case when we've used PA to emptiness. no need to modify buddy
265  * in this case, but we should care about concurrent init
266  *
267  */
268 
269  /*
270  * Logic in few words:
271  *
272  *  - allocation:
273  *    load group
274  *    find blocks
275  *    mark bits in on-disk bitmap
276  *    release group
277  *
278  *  - use preallocation:
279  *    find proper PA (per-inode or group)
280  *    load group
281  *    mark bits in on-disk bitmap
282  *    release group
283  *    release PA
284  *
285  *  - free:
286  *    load group
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - discard preallocations in group:
291  *    mark PAs deleted
292  *    move them onto local list
293  *    load on-disk bitmap
294  *    load group
295  *    remove PA from object (inode or locality group)
296  *    mark free blocks in-core
297  *
298  *  - discard inode's preallocations:
299  */
300 
301 /*
302  * Locking rules
303  *
304  * Locks:
305  *  - bitlock on a group	(group)
306  *  - object (inode/locality)	(object)
307  *  - per-pa lock		(pa)
308  *
309  * Paths:
310  *  - new pa
311  *    object
312  *    group
313  *
314  *  - find and use pa:
315  *    pa
316  *
317  *  - release consumed pa:
318  *    pa
319  *    group
320  *    object
321  *
322  *  - generate in-core bitmap:
323  *    group
324  *        pa
325  *
326  *  - discard all for given object (inode, locality group):
327  *    object
328  *        pa
329  *    group
330  *
331  *  - discard all for given group:
332  *    group
333  *        pa
334  *    group
335  *        object
336  *
337  */
338 static struct kmem_cache *ext4_pspace_cachep;
339 static struct kmem_cache *ext4_ac_cachep;
340 static struct kmem_cache *ext4_free_data_cachep;
341 
342 /* We create slab caches for groupinfo data structures based on the
343  * superblock block size.  There will be one per mounted filesystem for
344  * each unique s_blocksize_bits */
345 #define NR_GRPINFO_CACHES 8
346 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
347 
348 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
349 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
350 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
351 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
352 };
353 
354 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
355 					ext4_group_t group);
356 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
357 						ext4_group_t group);
358 
359 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
360 {
361 #if BITS_PER_LONG == 64
362 	*bit += ((unsigned long) addr & 7UL) << 3;
363 	addr = (void *) ((unsigned long) addr & ~7UL);
364 #elif BITS_PER_LONG == 32
365 	*bit += ((unsigned long) addr & 3UL) << 3;
366 	addr = (void *) ((unsigned long) addr & ~3UL);
367 #else
368 #error "how many bits you are?!"
369 #endif
370 	return addr;
371 }
372 
373 static inline int mb_test_bit(int bit, void *addr)
374 {
375 	/*
376 	 * ext4_test_bit on architecture like powerpc
377 	 * needs unsigned long aligned address
378 	 */
379 	addr = mb_correct_addr_and_bit(&bit, addr);
380 	return ext4_test_bit(bit, addr);
381 }
382 
383 static inline void mb_set_bit(int bit, void *addr)
384 {
385 	addr = mb_correct_addr_and_bit(&bit, addr);
386 	ext4_set_bit(bit, addr);
387 }
388 
389 static inline void mb_clear_bit(int bit, void *addr)
390 {
391 	addr = mb_correct_addr_and_bit(&bit, addr);
392 	ext4_clear_bit(bit, addr);
393 }
394 
395 static inline int mb_test_and_clear_bit(int bit, void *addr)
396 {
397 	addr = mb_correct_addr_and_bit(&bit, addr);
398 	return ext4_test_and_clear_bit(bit, addr);
399 }
400 
401 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
402 {
403 	int fix = 0, ret, tmpmax;
404 	addr = mb_correct_addr_and_bit(&fix, addr);
405 	tmpmax = max + fix;
406 	start += fix;
407 
408 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
409 	if (ret > max)
410 		return max;
411 	return ret;
412 }
413 
414 static inline int mb_find_next_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
427 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
428 {
429 	char *bb;
430 
431 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
432 	BUG_ON(max == NULL);
433 
434 	if (order > e4b->bd_blkbits + 1) {
435 		*max = 0;
436 		return NULL;
437 	}
438 
439 	/* at order 0 we see each particular block */
440 	if (order == 0) {
441 		*max = 1 << (e4b->bd_blkbits + 3);
442 		return e4b->bd_bitmap;
443 	}
444 
445 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
446 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
447 
448 	return bb;
449 }
450 
451 #ifdef DOUBLE_CHECK
452 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
453 			   int first, int count)
454 {
455 	int i;
456 	struct super_block *sb = e4b->bd_sb;
457 
458 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
459 		return;
460 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
461 	for (i = 0; i < count; i++) {
462 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
463 			ext4_fsblk_t blocknr;
464 
465 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
466 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
467 			ext4_grp_locked_error(sb, e4b->bd_group,
468 					      inode ? inode->i_ino : 0,
469 					      blocknr,
470 					      "freeing block already freed "
471 					      "(bit %u)",
472 					      first + i);
473 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
474 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
475 		}
476 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
477 	}
478 }
479 
480 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
481 {
482 	int i;
483 
484 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
485 		return;
486 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
487 	for (i = 0; i < count; i++) {
488 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
489 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
490 	}
491 }
492 
493 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
494 {
495 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
496 		unsigned char *b1, *b2;
497 		int i;
498 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
499 		b2 = (unsigned char *) bitmap;
500 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
501 			if (b1[i] != b2[i]) {
502 				ext4_msg(e4b->bd_sb, KERN_ERR,
503 					 "corruption in group %u "
504 					 "at byte %u(%u): %x in copy != %x "
505 					 "on disk/prealloc",
506 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
507 				BUG();
508 			}
509 		}
510 	}
511 }
512 
513 #else
514 static inline void mb_free_blocks_double(struct inode *inode,
515 				struct ext4_buddy *e4b, int first, int count)
516 {
517 	return;
518 }
519 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
520 						int first, int count)
521 {
522 	return;
523 }
524 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
525 {
526 	return;
527 }
528 #endif
529 
530 #ifdef AGGRESSIVE_CHECK
531 
532 #define MB_CHECK_ASSERT(assert)						\
533 do {									\
534 	if (!(assert)) {						\
535 		printk(KERN_EMERG					\
536 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
537 			function, file, line, # assert);		\
538 		BUG();							\
539 	}								\
540 } while (0)
541 
542 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
543 				const char *function, int line)
544 {
545 	struct super_block *sb = e4b->bd_sb;
546 	int order = e4b->bd_blkbits + 1;
547 	int max;
548 	int max2;
549 	int i;
550 	int j;
551 	int k;
552 	int count;
553 	struct ext4_group_info *grp;
554 	int fragments = 0;
555 	int fstart;
556 	struct list_head *cur;
557 	void *buddy;
558 	void *buddy2;
559 
560 	{
561 		static int mb_check_counter;
562 		if (mb_check_counter++ % 100 != 0)
563 			return 0;
564 	}
565 
566 	while (order > 1) {
567 		buddy = mb_find_buddy(e4b, order, &max);
568 		MB_CHECK_ASSERT(buddy);
569 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
570 		MB_CHECK_ASSERT(buddy2);
571 		MB_CHECK_ASSERT(buddy != buddy2);
572 		MB_CHECK_ASSERT(max * 2 == max2);
573 
574 		count = 0;
575 		for (i = 0; i < max; i++) {
576 
577 			if (mb_test_bit(i, buddy)) {
578 				/* only single bit in buddy2 may be 1 */
579 				if (!mb_test_bit(i << 1, buddy2)) {
580 					MB_CHECK_ASSERT(
581 						mb_test_bit((i<<1)+1, buddy2));
582 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
583 					MB_CHECK_ASSERT(
584 						mb_test_bit(i << 1, buddy2));
585 				}
586 				continue;
587 			}
588 
589 			/* both bits in buddy2 must be 1 */
590 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
591 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
592 
593 			for (j = 0; j < (1 << order); j++) {
594 				k = (i * (1 << order)) + j;
595 				MB_CHECK_ASSERT(
596 					!mb_test_bit(k, e4b->bd_bitmap));
597 			}
598 			count++;
599 		}
600 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
601 		order--;
602 	}
603 
604 	fstart = -1;
605 	buddy = mb_find_buddy(e4b, 0, &max);
606 	for (i = 0; i < max; i++) {
607 		if (!mb_test_bit(i, buddy)) {
608 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
609 			if (fstart == -1) {
610 				fragments++;
611 				fstart = i;
612 			}
613 			continue;
614 		}
615 		fstart = -1;
616 		/* check used bits only */
617 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
618 			buddy2 = mb_find_buddy(e4b, j, &max2);
619 			k = i >> j;
620 			MB_CHECK_ASSERT(k < max2);
621 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
622 		}
623 	}
624 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
625 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
626 
627 	grp = ext4_get_group_info(sb, e4b->bd_group);
628 	list_for_each(cur, &grp->bb_prealloc_list) {
629 		ext4_group_t groupnr;
630 		struct ext4_prealloc_space *pa;
631 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
632 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
633 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
634 		for (i = 0; i < pa->pa_len; i++)
635 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
636 	}
637 	return 0;
638 }
639 #undef MB_CHECK_ASSERT
640 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
641 					__FILE__, __func__, __LINE__)
642 #else
643 #define mb_check_buddy(e4b)
644 #endif
645 
646 /*
647  * Divide blocks started from @first with length @len into
648  * smaller chunks with power of 2 blocks.
649  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
650  * then increase bb_counters[] for corresponded chunk size.
651  */
652 static void ext4_mb_mark_free_simple(struct super_block *sb,
653 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
654 					struct ext4_group_info *grp)
655 {
656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
657 	ext4_grpblk_t min;
658 	ext4_grpblk_t max;
659 	ext4_grpblk_t chunk;
660 	unsigned int border;
661 
662 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
663 
664 	border = 2 << sb->s_blocksize_bits;
665 
666 	while (len > 0) {
667 		/* find how many blocks can be covered since this position */
668 		max = ffs(first | border) - 1;
669 
670 		/* find how many blocks of power 2 we need to mark */
671 		min = fls(len) - 1;
672 
673 		if (max < min)
674 			min = max;
675 		chunk = 1 << min;
676 
677 		/* mark multiblock chunks only */
678 		grp->bb_counters[min]++;
679 		if (min > 0)
680 			mb_clear_bit(first >> min,
681 				     buddy + sbi->s_mb_offsets[min]);
682 
683 		len -= chunk;
684 		first += chunk;
685 	}
686 }
687 
688 /*
689  * Cache the order of the largest free extent we have available in this block
690  * group.
691  */
692 static void
693 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
694 {
695 	int i;
696 	int bits;
697 
698 	grp->bb_largest_free_order = -1; /* uninit */
699 
700 	bits = sb->s_blocksize_bits + 1;
701 	for (i = bits; i >= 0; i--) {
702 		if (grp->bb_counters[i] > 0) {
703 			grp->bb_largest_free_order = i;
704 			break;
705 		}
706 	}
707 }
708 
709 static noinline_for_stack
710 void ext4_mb_generate_buddy(struct super_block *sb,
711 				void *buddy, void *bitmap, ext4_group_t group)
712 {
713 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
714 	struct ext4_sb_info *sbi = EXT4_SB(sb);
715 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
716 	ext4_grpblk_t i = 0;
717 	ext4_grpblk_t first;
718 	ext4_grpblk_t len;
719 	unsigned free = 0;
720 	unsigned fragments = 0;
721 	unsigned long long period = get_cycles();
722 
723 	/* initialize buddy from bitmap which is aggregation
724 	 * of on-disk bitmap and preallocations */
725 	i = mb_find_next_zero_bit(bitmap, max, 0);
726 	grp->bb_first_free = i;
727 	while (i < max) {
728 		fragments++;
729 		first = i;
730 		i = mb_find_next_bit(bitmap, max, i);
731 		len = i - first;
732 		free += len;
733 		if (len > 1)
734 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
735 		else
736 			grp->bb_counters[0]++;
737 		if (i < max)
738 			i = mb_find_next_zero_bit(bitmap, max, i);
739 	}
740 	grp->bb_fragments = fragments;
741 
742 	if (free != grp->bb_free) {
743 		ext4_grp_locked_error(sb, group, 0, 0,
744 				      "block bitmap and bg descriptor "
745 				      "inconsistent: %u vs %u free clusters",
746 				      free, grp->bb_free);
747 		/*
748 		 * If we intend to continue, we consider group descriptor
749 		 * corrupt and update bb_free using bitmap value
750 		 */
751 		grp->bb_free = free;
752 		ext4_mark_group_bitmap_corrupted(sb, group,
753 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
754 	}
755 	mb_set_largest_free_order(sb, grp);
756 
757 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
758 
759 	period = get_cycles() - period;
760 	spin_lock(&sbi->s_bal_lock);
761 	sbi->s_mb_buddies_generated++;
762 	sbi->s_mb_generation_time += period;
763 	spin_unlock(&sbi->s_bal_lock);
764 }
765 
766 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
767 {
768 	int count;
769 	int order = 1;
770 	void *buddy;
771 
772 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
773 		ext4_set_bits(buddy, 0, count);
774 	}
775 	e4b->bd_info->bb_fragments = 0;
776 	memset(e4b->bd_info->bb_counters, 0,
777 		sizeof(*e4b->bd_info->bb_counters) *
778 		(e4b->bd_sb->s_blocksize_bits + 2));
779 
780 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
781 		e4b->bd_bitmap, e4b->bd_group);
782 }
783 
784 /* The buddy information is attached the buddy cache inode
785  * for convenience. The information regarding each group
786  * is loaded via ext4_mb_load_buddy. The information involve
787  * block bitmap and buddy information. The information are
788  * stored in the inode as
789  *
790  * {                        page                        }
791  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
792  *
793  *
794  * one block each for bitmap and buddy information.
795  * So for each group we take up 2 blocks. A page can
796  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
797  * So it can have information regarding groups_per_page which
798  * is blocks_per_page/2
799  *
800  * Locking note:  This routine takes the block group lock of all groups
801  * for this page; do not hold this lock when calling this routine!
802  */
803 
804 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
805 {
806 	ext4_group_t ngroups;
807 	int blocksize;
808 	int blocks_per_page;
809 	int groups_per_page;
810 	int err = 0;
811 	int i;
812 	ext4_group_t first_group, group;
813 	int first_block;
814 	struct super_block *sb;
815 	struct buffer_head *bhs;
816 	struct buffer_head **bh = NULL;
817 	struct inode *inode;
818 	char *data;
819 	char *bitmap;
820 	struct ext4_group_info *grinfo;
821 
822 	mb_debug(1, "init page %lu\n", page->index);
823 
824 	inode = page->mapping->host;
825 	sb = inode->i_sb;
826 	ngroups = ext4_get_groups_count(sb);
827 	blocksize = i_blocksize(inode);
828 	blocks_per_page = PAGE_SIZE / blocksize;
829 
830 	groups_per_page = blocks_per_page >> 1;
831 	if (groups_per_page == 0)
832 		groups_per_page = 1;
833 
834 	/* allocate buffer_heads to read bitmaps */
835 	if (groups_per_page > 1) {
836 		i = sizeof(struct buffer_head *) * groups_per_page;
837 		bh = kzalloc(i, gfp);
838 		if (bh == NULL) {
839 			err = -ENOMEM;
840 			goto out;
841 		}
842 	} else
843 		bh = &bhs;
844 
845 	first_group = page->index * blocks_per_page / 2;
846 
847 	/* read all groups the page covers into the cache */
848 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
849 		if (group >= ngroups)
850 			break;
851 
852 		grinfo = ext4_get_group_info(sb, group);
853 		/*
854 		 * If page is uptodate then we came here after online resize
855 		 * which added some new uninitialized group info structs, so
856 		 * we must skip all initialized uptodate buddies on the page,
857 		 * which may be currently in use by an allocating task.
858 		 */
859 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
860 			bh[i] = NULL;
861 			continue;
862 		}
863 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
864 		if (IS_ERR(bh[i])) {
865 			err = PTR_ERR(bh[i]);
866 			bh[i] = NULL;
867 			goto out;
868 		}
869 		mb_debug(1, "read bitmap for group %u\n", group);
870 	}
871 
872 	/* wait for I/O completion */
873 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
874 		int err2;
875 
876 		if (!bh[i])
877 			continue;
878 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
879 		if (!err)
880 			err = err2;
881 	}
882 
883 	first_block = page->index * blocks_per_page;
884 	for (i = 0; i < blocks_per_page; i++) {
885 		group = (first_block + i) >> 1;
886 		if (group >= ngroups)
887 			break;
888 
889 		if (!bh[group - first_group])
890 			/* skip initialized uptodate buddy */
891 			continue;
892 
893 		if (!buffer_verified(bh[group - first_group]))
894 			/* Skip faulty bitmaps */
895 			continue;
896 		err = 0;
897 
898 		/*
899 		 * data carry information regarding this
900 		 * particular group in the format specified
901 		 * above
902 		 *
903 		 */
904 		data = page_address(page) + (i * blocksize);
905 		bitmap = bh[group - first_group]->b_data;
906 
907 		/*
908 		 * We place the buddy block and bitmap block
909 		 * close together
910 		 */
911 		if ((first_block + i) & 1) {
912 			/* this is block of buddy */
913 			BUG_ON(incore == NULL);
914 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
915 				group, page->index, i * blocksize);
916 			trace_ext4_mb_buddy_bitmap_load(sb, group);
917 			grinfo = ext4_get_group_info(sb, group);
918 			grinfo->bb_fragments = 0;
919 			memset(grinfo->bb_counters, 0,
920 			       sizeof(*grinfo->bb_counters) *
921 				(sb->s_blocksize_bits+2));
922 			/*
923 			 * incore got set to the group block bitmap below
924 			 */
925 			ext4_lock_group(sb, group);
926 			/* init the buddy */
927 			memset(data, 0xff, blocksize);
928 			ext4_mb_generate_buddy(sb, data, incore, group);
929 			ext4_unlock_group(sb, group);
930 			incore = NULL;
931 		} else {
932 			/* this is block of bitmap */
933 			BUG_ON(incore != NULL);
934 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
935 				group, page->index, i * blocksize);
936 			trace_ext4_mb_bitmap_load(sb, group);
937 
938 			/* see comments in ext4_mb_put_pa() */
939 			ext4_lock_group(sb, group);
940 			memcpy(data, bitmap, blocksize);
941 
942 			/* mark all preallocated blks used in in-core bitmap */
943 			ext4_mb_generate_from_pa(sb, data, group);
944 			ext4_mb_generate_from_freelist(sb, data, group);
945 			ext4_unlock_group(sb, group);
946 
947 			/* set incore so that the buddy information can be
948 			 * generated using this
949 			 */
950 			incore = data;
951 		}
952 	}
953 	SetPageUptodate(page);
954 
955 out:
956 	if (bh) {
957 		for (i = 0; i < groups_per_page; i++)
958 			brelse(bh[i]);
959 		if (bh != &bhs)
960 			kfree(bh);
961 	}
962 	return err;
963 }
964 
965 /*
966  * Lock the buddy and bitmap pages. This make sure other parallel init_group
967  * on the same buddy page doesn't happen whild holding the buddy page lock.
968  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
969  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
970  */
971 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
972 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
973 {
974 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
975 	int block, pnum, poff;
976 	int blocks_per_page;
977 	struct page *page;
978 
979 	e4b->bd_buddy_page = NULL;
980 	e4b->bd_bitmap_page = NULL;
981 
982 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
983 	/*
984 	 * the buddy cache inode stores the block bitmap
985 	 * and buddy information in consecutive blocks.
986 	 * So for each group we need two blocks.
987 	 */
988 	block = group * 2;
989 	pnum = block / blocks_per_page;
990 	poff = block % blocks_per_page;
991 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
992 	if (!page)
993 		return -ENOMEM;
994 	BUG_ON(page->mapping != inode->i_mapping);
995 	e4b->bd_bitmap_page = page;
996 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
997 
998 	if (blocks_per_page >= 2) {
999 		/* buddy and bitmap are on the same page */
1000 		return 0;
1001 	}
1002 
1003 	block++;
1004 	pnum = block / blocks_per_page;
1005 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006 	if (!page)
1007 		return -ENOMEM;
1008 	BUG_ON(page->mapping != inode->i_mapping);
1009 	e4b->bd_buddy_page = page;
1010 	return 0;
1011 }
1012 
1013 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1014 {
1015 	if (e4b->bd_bitmap_page) {
1016 		unlock_page(e4b->bd_bitmap_page);
1017 		put_page(e4b->bd_bitmap_page);
1018 	}
1019 	if (e4b->bd_buddy_page) {
1020 		unlock_page(e4b->bd_buddy_page);
1021 		put_page(e4b->bd_buddy_page);
1022 	}
1023 }
1024 
1025 /*
1026  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1027  * block group lock of all groups for this page; do not hold the BG lock when
1028  * calling this routine!
1029  */
1030 static noinline_for_stack
1031 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1032 {
1033 
1034 	struct ext4_group_info *this_grp;
1035 	struct ext4_buddy e4b;
1036 	struct page *page;
1037 	int ret = 0;
1038 
1039 	might_sleep();
1040 	mb_debug(1, "init group %u\n", group);
1041 	this_grp = ext4_get_group_info(sb, group);
1042 	/*
1043 	 * This ensures that we don't reinit the buddy cache
1044 	 * page which map to the group from which we are already
1045 	 * allocating. If we are looking at the buddy cache we would
1046 	 * have taken a reference using ext4_mb_load_buddy and that
1047 	 * would have pinned buddy page to page cache.
1048 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1049 	 * page accessed.
1050 	 */
1051 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1052 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1053 		/*
1054 		 * somebody initialized the group
1055 		 * return without doing anything
1056 		 */
1057 		goto err;
1058 	}
1059 
1060 	page = e4b.bd_bitmap_page;
1061 	ret = ext4_mb_init_cache(page, NULL, gfp);
1062 	if (ret)
1063 		goto err;
1064 	if (!PageUptodate(page)) {
1065 		ret = -EIO;
1066 		goto err;
1067 	}
1068 
1069 	if (e4b.bd_buddy_page == NULL) {
1070 		/*
1071 		 * If both the bitmap and buddy are in
1072 		 * the same page we don't need to force
1073 		 * init the buddy
1074 		 */
1075 		ret = 0;
1076 		goto err;
1077 	}
1078 	/* init buddy cache */
1079 	page = e4b.bd_buddy_page;
1080 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1081 	if (ret)
1082 		goto err;
1083 	if (!PageUptodate(page)) {
1084 		ret = -EIO;
1085 		goto err;
1086 	}
1087 err:
1088 	ext4_mb_put_buddy_page_lock(&e4b);
1089 	return ret;
1090 }
1091 
1092 /*
1093  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1094  * block group lock of all groups for this page; do not hold the BG lock when
1095  * calling this routine!
1096  */
1097 static noinline_for_stack int
1098 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1099 		       struct ext4_buddy *e4b, gfp_t gfp)
1100 {
1101 	int blocks_per_page;
1102 	int block;
1103 	int pnum;
1104 	int poff;
1105 	struct page *page;
1106 	int ret;
1107 	struct ext4_group_info *grp;
1108 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1109 	struct inode *inode = sbi->s_buddy_cache;
1110 
1111 	might_sleep();
1112 	mb_debug(1, "load group %u\n", group);
1113 
1114 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1115 	grp = ext4_get_group_info(sb, group);
1116 
1117 	e4b->bd_blkbits = sb->s_blocksize_bits;
1118 	e4b->bd_info = grp;
1119 	e4b->bd_sb = sb;
1120 	e4b->bd_group = group;
1121 	e4b->bd_buddy_page = NULL;
1122 	e4b->bd_bitmap_page = NULL;
1123 
1124 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1125 		/*
1126 		 * we need full data about the group
1127 		 * to make a good selection
1128 		 */
1129 		ret = ext4_mb_init_group(sb, group, gfp);
1130 		if (ret)
1131 			return ret;
1132 	}
1133 
1134 	/*
1135 	 * the buddy cache inode stores the block bitmap
1136 	 * and buddy information in consecutive blocks.
1137 	 * So for each group we need two blocks.
1138 	 */
1139 	block = group * 2;
1140 	pnum = block / blocks_per_page;
1141 	poff = block % blocks_per_page;
1142 
1143 	/* we could use find_or_create_page(), but it locks page
1144 	 * what we'd like to avoid in fast path ... */
1145 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1146 	if (page == NULL || !PageUptodate(page)) {
1147 		if (page)
1148 			/*
1149 			 * drop the page reference and try
1150 			 * to get the page with lock. If we
1151 			 * are not uptodate that implies
1152 			 * somebody just created the page but
1153 			 * is yet to initialize the same. So
1154 			 * wait for it to initialize.
1155 			 */
1156 			put_page(page);
1157 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1158 		if (page) {
1159 			BUG_ON(page->mapping != inode->i_mapping);
1160 			if (!PageUptodate(page)) {
1161 				ret = ext4_mb_init_cache(page, NULL, gfp);
1162 				if (ret) {
1163 					unlock_page(page);
1164 					goto err;
1165 				}
1166 				mb_cmp_bitmaps(e4b, page_address(page) +
1167 					       (poff * sb->s_blocksize));
1168 			}
1169 			unlock_page(page);
1170 		}
1171 	}
1172 	if (page == NULL) {
1173 		ret = -ENOMEM;
1174 		goto err;
1175 	}
1176 	if (!PageUptodate(page)) {
1177 		ret = -EIO;
1178 		goto err;
1179 	}
1180 
1181 	/* Pages marked accessed already */
1182 	e4b->bd_bitmap_page = page;
1183 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1184 
1185 	block++;
1186 	pnum = block / blocks_per_page;
1187 	poff = block % blocks_per_page;
1188 
1189 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1190 	if (page == NULL || !PageUptodate(page)) {
1191 		if (page)
1192 			put_page(page);
1193 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1194 		if (page) {
1195 			BUG_ON(page->mapping != inode->i_mapping);
1196 			if (!PageUptodate(page)) {
1197 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1198 							 gfp);
1199 				if (ret) {
1200 					unlock_page(page);
1201 					goto err;
1202 				}
1203 			}
1204 			unlock_page(page);
1205 		}
1206 	}
1207 	if (page == NULL) {
1208 		ret = -ENOMEM;
1209 		goto err;
1210 	}
1211 	if (!PageUptodate(page)) {
1212 		ret = -EIO;
1213 		goto err;
1214 	}
1215 
1216 	/* Pages marked accessed already */
1217 	e4b->bd_buddy_page = page;
1218 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1219 
1220 	BUG_ON(e4b->bd_bitmap_page == NULL);
1221 	BUG_ON(e4b->bd_buddy_page == NULL);
1222 
1223 	return 0;
1224 
1225 err:
1226 	if (page)
1227 		put_page(page);
1228 	if (e4b->bd_bitmap_page)
1229 		put_page(e4b->bd_bitmap_page);
1230 	if (e4b->bd_buddy_page)
1231 		put_page(e4b->bd_buddy_page);
1232 	e4b->bd_buddy = NULL;
1233 	e4b->bd_bitmap = NULL;
1234 	return ret;
1235 }
1236 
1237 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1238 			      struct ext4_buddy *e4b)
1239 {
1240 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1241 }
1242 
1243 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1244 {
1245 	if (e4b->bd_bitmap_page)
1246 		put_page(e4b->bd_bitmap_page);
1247 	if (e4b->bd_buddy_page)
1248 		put_page(e4b->bd_buddy_page);
1249 }
1250 
1251 
1252 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1253 {
1254 	int order = 1;
1255 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1256 	void *bb;
1257 
1258 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1259 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1260 
1261 	bb = e4b->bd_buddy;
1262 	while (order <= e4b->bd_blkbits + 1) {
1263 		block = block >> 1;
1264 		if (!mb_test_bit(block, bb)) {
1265 			/* this block is part of buddy of order 'order' */
1266 			return order;
1267 		}
1268 		bb += bb_incr;
1269 		bb_incr >>= 1;
1270 		order++;
1271 	}
1272 	return 0;
1273 }
1274 
1275 static void mb_clear_bits(void *bm, int cur, int len)
1276 {
1277 	__u32 *addr;
1278 
1279 	len = cur + len;
1280 	while (cur < len) {
1281 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1282 			/* fast path: clear whole word at once */
1283 			addr = bm + (cur >> 3);
1284 			*addr = 0;
1285 			cur += 32;
1286 			continue;
1287 		}
1288 		mb_clear_bit(cur, bm);
1289 		cur++;
1290 	}
1291 }
1292 
1293 /* clear bits in given range
1294  * will return first found zero bit if any, -1 otherwise
1295  */
1296 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1297 {
1298 	__u32 *addr;
1299 	int zero_bit = -1;
1300 
1301 	len = cur + len;
1302 	while (cur < len) {
1303 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1304 			/* fast path: clear whole word at once */
1305 			addr = bm + (cur >> 3);
1306 			if (*addr != (__u32)(-1) && zero_bit == -1)
1307 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1308 			*addr = 0;
1309 			cur += 32;
1310 			continue;
1311 		}
1312 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1313 			zero_bit = cur;
1314 		cur++;
1315 	}
1316 
1317 	return zero_bit;
1318 }
1319 
1320 void ext4_set_bits(void *bm, int cur, int len)
1321 {
1322 	__u32 *addr;
1323 
1324 	len = cur + len;
1325 	while (cur < len) {
1326 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1327 			/* fast path: set whole word at once */
1328 			addr = bm + (cur >> 3);
1329 			*addr = 0xffffffff;
1330 			cur += 32;
1331 			continue;
1332 		}
1333 		mb_set_bit(cur, bm);
1334 		cur++;
1335 	}
1336 }
1337 
1338 /*
1339  * _________________________________________________________________ */
1340 
1341 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1342 {
1343 	if (mb_test_bit(*bit + side, bitmap)) {
1344 		mb_clear_bit(*bit, bitmap);
1345 		(*bit) -= side;
1346 		return 1;
1347 	}
1348 	else {
1349 		(*bit) += side;
1350 		mb_set_bit(*bit, bitmap);
1351 		return -1;
1352 	}
1353 }
1354 
1355 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1356 {
1357 	int max;
1358 	int order = 1;
1359 	void *buddy = mb_find_buddy(e4b, order, &max);
1360 
1361 	while (buddy) {
1362 		void *buddy2;
1363 
1364 		/* Bits in range [first; last] are known to be set since
1365 		 * corresponding blocks were allocated. Bits in range
1366 		 * (first; last) will stay set because they form buddies on
1367 		 * upper layer. We just deal with borders if they don't
1368 		 * align with upper layer and then go up.
1369 		 * Releasing entire group is all about clearing
1370 		 * single bit of highest order buddy.
1371 		 */
1372 
1373 		/* Example:
1374 		 * ---------------------------------
1375 		 * |   1   |   1   |   1   |   1   |
1376 		 * ---------------------------------
1377 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1378 		 * ---------------------------------
1379 		 *   0   1   2   3   4   5   6   7
1380 		 *      \_____________________/
1381 		 *
1382 		 * Neither [1] nor [6] is aligned to above layer.
1383 		 * Left neighbour [0] is free, so mark it busy,
1384 		 * decrease bb_counters and extend range to
1385 		 * [0; 6]
1386 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1387 		 * mark [6] free, increase bb_counters and shrink range to
1388 		 * [0; 5].
1389 		 * Then shift range to [0; 2], go up and do the same.
1390 		 */
1391 
1392 
1393 		if (first & 1)
1394 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1395 		if (!(last & 1))
1396 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1397 		if (first > last)
1398 			break;
1399 		order++;
1400 
1401 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1402 			mb_clear_bits(buddy, first, last - first + 1);
1403 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1404 			break;
1405 		}
1406 		first >>= 1;
1407 		last >>= 1;
1408 		buddy = buddy2;
1409 	}
1410 }
1411 
1412 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1413 			   int first, int count)
1414 {
1415 	int left_is_free = 0;
1416 	int right_is_free = 0;
1417 	int block;
1418 	int last = first + count - 1;
1419 	struct super_block *sb = e4b->bd_sb;
1420 
1421 	if (WARN_ON(count == 0))
1422 		return;
1423 	BUG_ON(last >= (sb->s_blocksize << 3));
1424 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1425 	/* Don't bother if the block group is corrupt. */
1426 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1427 		return;
1428 
1429 	mb_check_buddy(e4b);
1430 	mb_free_blocks_double(inode, e4b, first, count);
1431 
1432 	e4b->bd_info->bb_free += count;
1433 	if (first < e4b->bd_info->bb_first_free)
1434 		e4b->bd_info->bb_first_free = first;
1435 
1436 	/* access memory sequentially: check left neighbour,
1437 	 * clear range and then check right neighbour
1438 	 */
1439 	if (first != 0)
1440 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1441 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1442 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1443 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1444 
1445 	if (unlikely(block != -1)) {
1446 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1447 		ext4_fsblk_t blocknr;
1448 
1449 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1450 		blocknr += EXT4_C2B(sbi, block);
1451 		ext4_grp_locked_error(sb, e4b->bd_group,
1452 				      inode ? inode->i_ino : 0,
1453 				      blocknr,
1454 				      "freeing already freed block "
1455 				      "(bit %u); block bitmap corrupt.",
1456 				      block);
1457 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1458 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1459 		mb_regenerate_buddy(e4b);
1460 		goto done;
1461 	}
1462 
1463 	/* let's maintain fragments counter */
1464 	if (left_is_free && right_is_free)
1465 		e4b->bd_info->bb_fragments--;
1466 	else if (!left_is_free && !right_is_free)
1467 		e4b->bd_info->bb_fragments++;
1468 
1469 	/* buddy[0] == bd_bitmap is a special case, so handle
1470 	 * it right away and let mb_buddy_mark_free stay free of
1471 	 * zero order checks.
1472 	 * Check if neighbours are to be coaleasced,
1473 	 * adjust bitmap bb_counters and borders appropriately.
1474 	 */
1475 	if (first & 1) {
1476 		first += !left_is_free;
1477 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1478 	}
1479 	if (!(last & 1)) {
1480 		last -= !right_is_free;
1481 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1482 	}
1483 
1484 	if (first <= last)
1485 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1486 
1487 done:
1488 	mb_set_largest_free_order(sb, e4b->bd_info);
1489 	mb_check_buddy(e4b);
1490 }
1491 
1492 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1493 				int needed, struct ext4_free_extent *ex)
1494 {
1495 	int next = block;
1496 	int max, order;
1497 	void *buddy;
1498 
1499 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1500 	BUG_ON(ex == NULL);
1501 
1502 	buddy = mb_find_buddy(e4b, 0, &max);
1503 	BUG_ON(buddy == NULL);
1504 	BUG_ON(block >= max);
1505 	if (mb_test_bit(block, buddy)) {
1506 		ex->fe_len = 0;
1507 		ex->fe_start = 0;
1508 		ex->fe_group = 0;
1509 		return 0;
1510 	}
1511 
1512 	/* find actual order */
1513 	order = mb_find_order_for_block(e4b, block);
1514 	block = block >> order;
1515 
1516 	ex->fe_len = 1 << order;
1517 	ex->fe_start = block << order;
1518 	ex->fe_group = e4b->bd_group;
1519 
1520 	/* calc difference from given start */
1521 	next = next - ex->fe_start;
1522 	ex->fe_len -= next;
1523 	ex->fe_start += next;
1524 
1525 	while (needed > ex->fe_len &&
1526 	       mb_find_buddy(e4b, order, &max)) {
1527 
1528 		if (block + 1 >= max)
1529 			break;
1530 
1531 		next = (block + 1) * (1 << order);
1532 		if (mb_test_bit(next, e4b->bd_bitmap))
1533 			break;
1534 
1535 		order = mb_find_order_for_block(e4b, next);
1536 
1537 		block = next >> order;
1538 		ex->fe_len += 1 << order;
1539 	}
1540 
1541 	if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) {
1542 		/* Should never happen! (but apparently sometimes does?!?) */
1543 		WARN_ON(1);
1544 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1545 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1546 			   block, order, needed, ex->fe_group, ex->fe_start,
1547 			   ex->fe_len, ex->fe_logical);
1548 		ex->fe_len = 0;
1549 		ex->fe_start = 0;
1550 		ex->fe_group = 0;
1551 	}
1552 	return ex->fe_len;
1553 }
1554 
1555 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1556 {
1557 	int ord;
1558 	int mlen = 0;
1559 	int max = 0;
1560 	int cur;
1561 	int start = ex->fe_start;
1562 	int len = ex->fe_len;
1563 	unsigned ret = 0;
1564 	int len0 = len;
1565 	void *buddy;
1566 
1567 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1568 	BUG_ON(e4b->bd_group != ex->fe_group);
1569 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1570 	mb_check_buddy(e4b);
1571 	mb_mark_used_double(e4b, start, len);
1572 
1573 	e4b->bd_info->bb_free -= len;
1574 	if (e4b->bd_info->bb_first_free == start)
1575 		e4b->bd_info->bb_first_free += len;
1576 
1577 	/* let's maintain fragments counter */
1578 	if (start != 0)
1579 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1580 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1581 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1582 	if (mlen && max)
1583 		e4b->bd_info->bb_fragments++;
1584 	else if (!mlen && !max)
1585 		e4b->bd_info->bb_fragments--;
1586 
1587 	/* let's maintain buddy itself */
1588 	while (len) {
1589 		ord = mb_find_order_for_block(e4b, start);
1590 
1591 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1592 			/* the whole chunk may be allocated at once! */
1593 			mlen = 1 << ord;
1594 			buddy = mb_find_buddy(e4b, ord, &max);
1595 			BUG_ON((start >> ord) >= max);
1596 			mb_set_bit(start >> ord, buddy);
1597 			e4b->bd_info->bb_counters[ord]--;
1598 			start += mlen;
1599 			len -= mlen;
1600 			BUG_ON(len < 0);
1601 			continue;
1602 		}
1603 
1604 		/* store for history */
1605 		if (ret == 0)
1606 			ret = len | (ord << 16);
1607 
1608 		/* we have to split large buddy */
1609 		BUG_ON(ord <= 0);
1610 		buddy = mb_find_buddy(e4b, ord, &max);
1611 		mb_set_bit(start >> ord, buddy);
1612 		e4b->bd_info->bb_counters[ord]--;
1613 
1614 		ord--;
1615 		cur = (start >> ord) & ~1U;
1616 		buddy = mb_find_buddy(e4b, ord, &max);
1617 		mb_clear_bit(cur, buddy);
1618 		mb_clear_bit(cur + 1, buddy);
1619 		e4b->bd_info->bb_counters[ord]++;
1620 		e4b->bd_info->bb_counters[ord]++;
1621 	}
1622 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1623 
1624 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1625 	mb_check_buddy(e4b);
1626 
1627 	return ret;
1628 }
1629 
1630 /*
1631  * Must be called under group lock!
1632  */
1633 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1634 					struct ext4_buddy *e4b)
1635 {
1636 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1637 	int ret;
1638 
1639 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1640 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1641 
1642 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1643 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1644 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1645 
1646 	/* preallocation can change ac_b_ex, thus we store actually
1647 	 * allocated blocks for history */
1648 	ac->ac_f_ex = ac->ac_b_ex;
1649 
1650 	ac->ac_status = AC_STATUS_FOUND;
1651 	ac->ac_tail = ret & 0xffff;
1652 	ac->ac_buddy = ret >> 16;
1653 
1654 	/*
1655 	 * take the page reference. We want the page to be pinned
1656 	 * so that we don't get a ext4_mb_init_cache_call for this
1657 	 * group until we update the bitmap. That would mean we
1658 	 * double allocate blocks. The reference is dropped
1659 	 * in ext4_mb_release_context
1660 	 */
1661 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1662 	get_page(ac->ac_bitmap_page);
1663 	ac->ac_buddy_page = e4b->bd_buddy_page;
1664 	get_page(ac->ac_buddy_page);
1665 	/* store last allocated for subsequent stream allocation */
1666 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1667 		spin_lock(&sbi->s_md_lock);
1668 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1669 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1670 		spin_unlock(&sbi->s_md_lock);
1671 	}
1672 }
1673 
1674 /*
1675  * regular allocator, for general purposes allocation
1676  */
1677 
1678 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1679 					struct ext4_buddy *e4b,
1680 					int finish_group)
1681 {
1682 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1683 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1684 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1685 	struct ext4_free_extent ex;
1686 	int max;
1687 
1688 	if (ac->ac_status == AC_STATUS_FOUND)
1689 		return;
1690 	/*
1691 	 * We don't want to scan for a whole year
1692 	 */
1693 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1694 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1695 		ac->ac_status = AC_STATUS_BREAK;
1696 		return;
1697 	}
1698 
1699 	/*
1700 	 * Haven't found good chunk so far, let's continue
1701 	 */
1702 	if (bex->fe_len < gex->fe_len)
1703 		return;
1704 
1705 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1706 			&& bex->fe_group == e4b->bd_group) {
1707 		/* recheck chunk's availability - we don't know
1708 		 * when it was found (within this lock-unlock
1709 		 * period or not) */
1710 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1711 		if (max >= gex->fe_len) {
1712 			ext4_mb_use_best_found(ac, e4b);
1713 			return;
1714 		}
1715 	}
1716 }
1717 
1718 /*
1719  * The routine checks whether found extent is good enough. If it is,
1720  * then the extent gets marked used and flag is set to the context
1721  * to stop scanning. Otherwise, the extent is compared with the
1722  * previous found extent and if new one is better, then it's stored
1723  * in the context. Later, the best found extent will be used, if
1724  * mballoc can't find good enough extent.
1725  *
1726  * FIXME: real allocation policy is to be designed yet!
1727  */
1728 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1729 					struct ext4_free_extent *ex,
1730 					struct ext4_buddy *e4b)
1731 {
1732 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1733 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1734 
1735 	BUG_ON(ex->fe_len <= 0);
1736 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1737 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1738 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1739 
1740 	ac->ac_found++;
1741 
1742 	/*
1743 	 * The special case - take what you catch first
1744 	 */
1745 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1746 		*bex = *ex;
1747 		ext4_mb_use_best_found(ac, e4b);
1748 		return;
1749 	}
1750 
1751 	/*
1752 	 * Let's check whether the chuck is good enough
1753 	 */
1754 	if (ex->fe_len == gex->fe_len) {
1755 		*bex = *ex;
1756 		ext4_mb_use_best_found(ac, e4b);
1757 		return;
1758 	}
1759 
1760 	/*
1761 	 * If this is first found extent, just store it in the context
1762 	 */
1763 	if (bex->fe_len == 0) {
1764 		*bex = *ex;
1765 		return;
1766 	}
1767 
1768 	/*
1769 	 * If new found extent is better, store it in the context
1770 	 */
1771 	if (bex->fe_len < gex->fe_len) {
1772 		/* if the request isn't satisfied, any found extent
1773 		 * larger than previous best one is better */
1774 		if (ex->fe_len > bex->fe_len)
1775 			*bex = *ex;
1776 	} else if (ex->fe_len > gex->fe_len) {
1777 		/* if the request is satisfied, then we try to find
1778 		 * an extent that still satisfy the request, but is
1779 		 * smaller than previous one */
1780 		if (ex->fe_len < bex->fe_len)
1781 			*bex = *ex;
1782 	}
1783 
1784 	ext4_mb_check_limits(ac, e4b, 0);
1785 }
1786 
1787 static noinline_for_stack
1788 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1789 					struct ext4_buddy *e4b)
1790 {
1791 	struct ext4_free_extent ex = ac->ac_b_ex;
1792 	ext4_group_t group = ex.fe_group;
1793 	int max;
1794 	int err;
1795 
1796 	BUG_ON(ex.fe_len <= 0);
1797 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1798 	if (err)
1799 		return err;
1800 
1801 	ext4_lock_group(ac->ac_sb, group);
1802 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1803 
1804 	if (max > 0) {
1805 		ac->ac_b_ex = ex;
1806 		ext4_mb_use_best_found(ac, e4b);
1807 	}
1808 
1809 	ext4_unlock_group(ac->ac_sb, group);
1810 	ext4_mb_unload_buddy(e4b);
1811 
1812 	return 0;
1813 }
1814 
1815 static noinline_for_stack
1816 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1817 				struct ext4_buddy *e4b)
1818 {
1819 	ext4_group_t group = ac->ac_g_ex.fe_group;
1820 	int max;
1821 	int err;
1822 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1823 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1824 	struct ext4_free_extent ex;
1825 
1826 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1827 		return 0;
1828 	if (grp->bb_free == 0)
1829 		return 0;
1830 
1831 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1832 	if (err)
1833 		return err;
1834 
1835 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1836 		ext4_mb_unload_buddy(e4b);
1837 		return 0;
1838 	}
1839 
1840 	ext4_lock_group(ac->ac_sb, group);
1841 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1842 			     ac->ac_g_ex.fe_len, &ex);
1843 	ex.fe_logical = 0xDEADFA11; /* debug value */
1844 
1845 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1846 		ext4_fsblk_t start;
1847 
1848 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1849 			ex.fe_start;
1850 		/* use do_div to get remainder (would be 64-bit modulo) */
1851 		if (do_div(start, sbi->s_stripe) == 0) {
1852 			ac->ac_found++;
1853 			ac->ac_b_ex = ex;
1854 			ext4_mb_use_best_found(ac, e4b);
1855 		}
1856 	} else if (max >= ac->ac_g_ex.fe_len) {
1857 		BUG_ON(ex.fe_len <= 0);
1858 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1859 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1860 		ac->ac_found++;
1861 		ac->ac_b_ex = ex;
1862 		ext4_mb_use_best_found(ac, e4b);
1863 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1864 		/* Sometimes, caller may want to merge even small
1865 		 * number of blocks to an existing extent */
1866 		BUG_ON(ex.fe_len <= 0);
1867 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1868 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1869 		ac->ac_found++;
1870 		ac->ac_b_ex = ex;
1871 		ext4_mb_use_best_found(ac, e4b);
1872 	}
1873 	ext4_unlock_group(ac->ac_sb, group);
1874 	ext4_mb_unload_buddy(e4b);
1875 
1876 	return 0;
1877 }
1878 
1879 /*
1880  * The routine scans buddy structures (not bitmap!) from given order
1881  * to max order and tries to find big enough chunk to satisfy the req
1882  */
1883 static noinline_for_stack
1884 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1885 					struct ext4_buddy *e4b)
1886 {
1887 	struct super_block *sb = ac->ac_sb;
1888 	struct ext4_group_info *grp = e4b->bd_info;
1889 	void *buddy;
1890 	int i;
1891 	int k;
1892 	int max;
1893 
1894 	BUG_ON(ac->ac_2order <= 0);
1895 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1896 		if (grp->bb_counters[i] == 0)
1897 			continue;
1898 
1899 		buddy = mb_find_buddy(e4b, i, &max);
1900 		BUG_ON(buddy == NULL);
1901 
1902 		k = mb_find_next_zero_bit(buddy, max, 0);
1903 		BUG_ON(k >= max);
1904 
1905 		ac->ac_found++;
1906 
1907 		ac->ac_b_ex.fe_len = 1 << i;
1908 		ac->ac_b_ex.fe_start = k << i;
1909 		ac->ac_b_ex.fe_group = e4b->bd_group;
1910 
1911 		ext4_mb_use_best_found(ac, e4b);
1912 
1913 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1914 
1915 		if (EXT4_SB(sb)->s_mb_stats)
1916 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1917 
1918 		break;
1919 	}
1920 }
1921 
1922 /*
1923  * The routine scans the group and measures all found extents.
1924  * In order to optimize scanning, caller must pass number of
1925  * free blocks in the group, so the routine can know upper limit.
1926  */
1927 static noinline_for_stack
1928 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1929 					struct ext4_buddy *e4b)
1930 {
1931 	struct super_block *sb = ac->ac_sb;
1932 	void *bitmap = e4b->bd_bitmap;
1933 	struct ext4_free_extent ex;
1934 	int i;
1935 	int free;
1936 
1937 	free = e4b->bd_info->bb_free;
1938 	BUG_ON(free <= 0);
1939 
1940 	i = e4b->bd_info->bb_first_free;
1941 
1942 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1943 		i = mb_find_next_zero_bit(bitmap,
1944 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1945 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1946 			/*
1947 			 * IF we have corrupt bitmap, we won't find any
1948 			 * free blocks even though group info says we
1949 			 * we have free blocks
1950 			 */
1951 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1952 					"%d free clusters as per "
1953 					"group info. But bitmap says 0",
1954 					free);
1955 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1956 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1957 			break;
1958 		}
1959 
1960 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1961 		BUG_ON(ex.fe_len <= 0);
1962 		if (free < ex.fe_len) {
1963 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1964 					"%d free clusters as per "
1965 					"group info. But got %d blocks",
1966 					free, ex.fe_len);
1967 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1968 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1969 			/*
1970 			 * The number of free blocks differs. This mostly
1971 			 * indicate that the bitmap is corrupt. So exit
1972 			 * without claiming the space.
1973 			 */
1974 			break;
1975 		}
1976 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1977 		ext4_mb_measure_extent(ac, &ex, e4b);
1978 
1979 		i += ex.fe_len;
1980 		free -= ex.fe_len;
1981 	}
1982 
1983 	ext4_mb_check_limits(ac, e4b, 1);
1984 }
1985 
1986 /*
1987  * This is a special case for storages like raid5
1988  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1989  */
1990 static noinline_for_stack
1991 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1992 				 struct ext4_buddy *e4b)
1993 {
1994 	struct super_block *sb = ac->ac_sb;
1995 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1996 	void *bitmap = e4b->bd_bitmap;
1997 	struct ext4_free_extent ex;
1998 	ext4_fsblk_t first_group_block;
1999 	ext4_fsblk_t a;
2000 	ext4_grpblk_t i;
2001 	int max;
2002 
2003 	BUG_ON(sbi->s_stripe == 0);
2004 
2005 	/* find first stripe-aligned block in group */
2006 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2007 
2008 	a = first_group_block + sbi->s_stripe - 1;
2009 	do_div(a, sbi->s_stripe);
2010 	i = (a * sbi->s_stripe) - first_group_block;
2011 
2012 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2013 		if (!mb_test_bit(i, bitmap)) {
2014 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2015 			if (max >= sbi->s_stripe) {
2016 				ac->ac_found++;
2017 				ex.fe_logical = 0xDEADF00D; /* debug value */
2018 				ac->ac_b_ex = ex;
2019 				ext4_mb_use_best_found(ac, e4b);
2020 				break;
2021 			}
2022 		}
2023 		i += sbi->s_stripe;
2024 	}
2025 }
2026 
2027 /*
2028  * This is now called BEFORE we load the buddy bitmap.
2029  * Returns either 1 or 0 indicating that the group is either suitable
2030  * for the allocation or not. In addition it can also return negative
2031  * error code when something goes wrong.
2032  */
2033 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2034 				ext4_group_t group, int cr)
2035 {
2036 	unsigned free, fragments;
2037 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2038 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2039 
2040 	BUG_ON(cr < 0 || cr >= 4);
2041 
2042 	free = grp->bb_free;
2043 	if (free == 0)
2044 		return 0;
2045 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2046 		return 0;
2047 
2048 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2049 		return 0;
2050 
2051 	/* We only do this if the grp has never been initialized */
2052 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2053 		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2054 		if (ret)
2055 			return ret;
2056 	}
2057 
2058 	fragments = grp->bb_fragments;
2059 	if (fragments == 0)
2060 		return 0;
2061 
2062 	switch (cr) {
2063 	case 0:
2064 		BUG_ON(ac->ac_2order == 0);
2065 
2066 		/* Avoid using the first bg of a flexgroup for data files */
2067 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2068 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2069 		    ((group % flex_size) == 0))
2070 			return 0;
2071 
2072 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2073 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2074 			return 1;
2075 
2076 		if (grp->bb_largest_free_order < ac->ac_2order)
2077 			return 0;
2078 
2079 		return 1;
2080 	case 1:
2081 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2082 			return 1;
2083 		break;
2084 	case 2:
2085 		if (free >= ac->ac_g_ex.fe_len)
2086 			return 1;
2087 		break;
2088 	case 3:
2089 		return 1;
2090 	default:
2091 		BUG();
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 static noinline_for_stack int
2098 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2099 {
2100 	ext4_group_t ngroups, group, i;
2101 	int cr;
2102 	int err = 0, first_err = 0;
2103 	struct ext4_sb_info *sbi;
2104 	struct super_block *sb;
2105 	struct ext4_buddy e4b;
2106 
2107 	sb = ac->ac_sb;
2108 	sbi = EXT4_SB(sb);
2109 	ngroups = ext4_get_groups_count(sb);
2110 	/* non-extent files are limited to low blocks/groups */
2111 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2112 		ngroups = sbi->s_blockfile_groups;
2113 
2114 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2115 
2116 	/* first, try the goal */
2117 	err = ext4_mb_find_by_goal(ac, &e4b);
2118 	if (err || ac->ac_status == AC_STATUS_FOUND)
2119 		goto out;
2120 
2121 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2122 		goto out;
2123 
2124 	/*
2125 	 * ac->ac2_order is set only if the fe_len is a power of 2
2126 	 * if ac2_order is set we also set criteria to 0 so that we
2127 	 * try exact allocation using buddy.
2128 	 */
2129 	i = fls(ac->ac_g_ex.fe_len);
2130 	ac->ac_2order = 0;
2131 	/*
2132 	 * We search using buddy data only if the order of the request
2133 	 * is greater than equal to the sbi_s_mb_order2_reqs
2134 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2135 	 * We also support searching for power-of-two requests only for
2136 	 * requests upto maximum buddy size we have constructed.
2137 	 */
2138 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2139 		/*
2140 		 * This should tell if fe_len is exactly power of 2
2141 		 */
2142 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2143 			ac->ac_2order = i - 1;
2144 	}
2145 
2146 	/* if stream allocation is enabled, use global goal */
2147 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2148 		/* TBD: may be hot point */
2149 		spin_lock(&sbi->s_md_lock);
2150 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2151 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2152 		spin_unlock(&sbi->s_md_lock);
2153 	}
2154 
2155 	/* Let's just scan groups to find more-less suitable blocks */
2156 	cr = ac->ac_2order ? 0 : 1;
2157 	/*
2158 	 * cr == 0 try to get exact allocation,
2159 	 * cr == 3  try to get anything
2160 	 */
2161 repeat:
2162 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2163 		ac->ac_criteria = cr;
2164 		/*
2165 		 * searching for the right group start
2166 		 * from the goal value specified
2167 		 */
2168 		group = ac->ac_g_ex.fe_group;
2169 
2170 		for (i = 0; i < ngroups; group++, i++) {
2171 			int ret = 0;
2172 			cond_resched();
2173 			/*
2174 			 * Artificially restricted ngroups for non-extent
2175 			 * files makes group > ngroups possible on first loop.
2176 			 */
2177 			if (group >= ngroups)
2178 				group = 0;
2179 
2180 			/* This now checks without needing the buddy page */
2181 			ret = ext4_mb_good_group(ac, group, cr);
2182 			if (ret <= 0) {
2183 				if (!first_err)
2184 					first_err = ret;
2185 				continue;
2186 			}
2187 
2188 			err = ext4_mb_load_buddy(sb, group, &e4b);
2189 			if (err)
2190 				goto out;
2191 
2192 			ext4_lock_group(sb, group);
2193 
2194 			/*
2195 			 * We need to check again after locking the
2196 			 * block group
2197 			 */
2198 			ret = ext4_mb_good_group(ac, group, cr);
2199 			if (ret <= 0) {
2200 				ext4_unlock_group(sb, group);
2201 				ext4_mb_unload_buddy(&e4b);
2202 				if (!first_err)
2203 					first_err = ret;
2204 				continue;
2205 			}
2206 
2207 			ac->ac_groups_scanned++;
2208 			if (cr == 0)
2209 				ext4_mb_simple_scan_group(ac, &e4b);
2210 			else if (cr == 1 && sbi->s_stripe &&
2211 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2212 				ext4_mb_scan_aligned(ac, &e4b);
2213 			else
2214 				ext4_mb_complex_scan_group(ac, &e4b);
2215 
2216 			ext4_unlock_group(sb, group);
2217 			ext4_mb_unload_buddy(&e4b);
2218 
2219 			if (ac->ac_status != AC_STATUS_CONTINUE)
2220 				break;
2221 		}
2222 	}
2223 
2224 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2225 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2226 		/*
2227 		 * We've been searching too long. Let's try to allocate
2228 		 * the best chunk we've found so far
2229 		 */
2230 
2231 		ext4_mb_try_best_found(ac, &e4b);
2232 		if (ac->ac_status != AC_STATUS_FOUND) {
2233 			/*
2234 			 * Someone more lucky has already allocated it.
2235 			 * The only thing we can do is just take first
2236 			 * found block(s)
2237 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2238 			 */
2239 			ac->ac_b_ex.fe_group = 0;
2240 			ac->ac_b_ex.fe_start = 0;
2241 			ac->ac_b_ex.fe_len = 0;
2242 			ac->ac_status = AC_STATUS_CONTINUE;
2243 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2244 			cr = 3;
2245 			atomic_inc(&sbi->s_mb_lost_chunks);
2246 			goto repeat;
2247 		}
2248 	}
2249 out:
2250 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2251 		err = first_err;
2252 	return err;
2253 }
2254 
2255 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2256 {
2257 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2258 	ext4_group_t group;
2259 
2260 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2261 		return NULL;
2262 	group = *pos + 1;
2263 	return (void *) ((unsigned long) group);
2264 }
2265 
2266 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2267 {
2268 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2269 	ext4_group_t group;
2270 
2271 	++*pos;
2272 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2273 		return NULL;
2274 	group = *pos + 1;
2275 	return (void *) ((unsigned long) group);
2276 }
2277 
2278 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2279 {
2280 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2281 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2282 	int i;
2283 	int err, buddy_loaded = 0;
2284 	struct ext4_buddy e4b;
2285 	struct ext4_group_info *grinfo;
2286 	unsigned char blocksize_bits = min_t(unsigned char,
2287 					     sb->s_blocksize_bits,
2288 					     EXT4_MAX_BLOCK_LOG_SIZE);
2289 	struct sg {
2290 		struct ext4_group_info info;
2291 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2292 	} sg;
2293 
2294 	group--;
2295 	if (group == 0)
2296 		seq_puts(seq, "#group: free  frags first ["
2297 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2298 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2299 
2300 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2301 		sizeof(struct ext4_group_info);
2302 
2303 	grinfo = ext4_get_group_info(sb, group);
2304 	/* Load the group info in memory only if not already loaded. */
2305 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2306 		err = ext4_mb_load_buddy(sb, group, &e4b);
2307 		if (err) {
2308 			seq_printf(seq, "#%-5u: I/O error\n", group);
2309 			return 0;
2310 		}
2311 		buddy_loaded = 1;
2312 	}
2313 
2314 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2315 
2316 	if (buddy_loaded)
2317 		ext4_mb_unload_buddy(&e4b);
2318 
2319 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2320 			sg.info.bb_fragments, sg.info.bb_first_free);
2321 	for (i = 0; i <= 13; i++)
2322 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2323 				sg.info.bb_counters[i] : 0);
2324 	seq_printf(seq, " ]\n");
2325 
2326 	return 0;
2327 }
2328 
2329 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2330 {
2331 }
2332 
2333 const struct seq_operations ext4_mb_seq_groups_ops = {
2334 	.start  = ext4_mb_seq_groups_start,
2335 	.next   = ext4_mb_seq_groups_next,
2336 	.stop   = ext4_mb_seq_groups_stop,
2337 	.show   = ext4_mb_seq_groups_show,
2338 };
2339 
2340 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2341 {
2342 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2343 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2344 
2345 	BUG_ON(!cachep);
2346 	return cachep;
2347 }
2348 
2349 /*
2350  * Allocate the top-level s_group_info array for the specified number
2351  * of groups
2352  */
2353 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2354 {
2355 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2356 	unsigned size;
2357 	struct ext4_group_info ***new_groupinfo;
2358 
2359 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2360 		EXT4_DESC_PER_BLOCK_BITS(sb);
2361 	if (size <= sbi->s_group_info_size)
2362 		return 0;
2363 
2364 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2365 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2366 	if (!new_groupinfo) {
2367 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2368 		return -ENOMEM;
2369 	}
2370 	if (sbi->s_group_info) {
2371 		memcpy(new_groupinfo, sbi->s_group_info,
2372 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2373 		kvfree(sbi->s_group_info);
2374 	}
2375 	sbi->s_group_info = new_groupinfo;
2376 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2377 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2378 		   sbi->s_group_info_size);
2379 	return 0;
2380 }
2381 
2382 /* Create and initialize ext4_group_info data for the given group. */
2383 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2384 			  struct ext4_group_desc *desc)
2385 {
2386 	int i;
2387 	int metalen = 0;
2388 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2389 	struct ext4_group_info **meta_group_info;
2390 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2391 
2392 	/*
2393 	 * First check if this group is the first of a reserved block.
2394 	 * If it's true, we have to allocate a new table of pointers
2395 	 * to ext4_group_info structures
2396 	 */
2397 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2398 		metalen = sizeof(*meta_group_info) <<
2399 			EXT4_DESC_PER_BLOCK_BITS(sb);
2400 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2401 		if (meta_group_info == NULL) {
2402 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2403 				 "for a buddy group");
2404 			goto exit_meta_group_info;
2405 		}
2406 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2407 			meta_group_info;
2408 	}
2409 
2410 	meta_group_info =
2411 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2412 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2413 
2414 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2415 	if (meta_group_info[i] == NULL) {
2416 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2417 		goto exit_group_info;
2418 	}
2419 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2420 		&(meta_group_info[i]->bb_state));
2421 
2422 	/*
2423 	 * initialize bb_free to be able to skip
2424 	 * empty groups without initialization
2425 	 */
2426 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2427 		meta_group_info[i]->bb_free =
2428 			ext4_free_clusters_after_init(sb, group, desc);
2429 	} else {
2430 		meta_group_info[i]->bb_free =
2431 			ext4_free_group_clusters(sb, desc);
2432 	}
2433 
2434 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2435 	init_rwsem(&meta_group_info[i]->alloc_sem);
2436 	meta_group_info[i]->bb_free_root = RB_ROOT;
2437 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2438 
2439 #ifdef DOUBLE_CHECK
2440 	{
2441 		struct buffer_head *bh;
2442 		meta_group_info[i]->bb_bitmap =
2443 			kmalloc(sb->s_blocksize, GFP_NOFS);
2444 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2445 		bh = ext4_read_block_bitmap(sb, group);
2446 		BUG_ON(IS_ERR_OR_NULL(bh));
2447 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2448 			sb->s_blocksize);
2449 		put_bh(bh);
2450 	}
2451 #endif
2452 
2453 	return 0;
2454 
2455 exit_group_info:
2456 	/* If a meta_group_info table has been allocated, release it now */
2457 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2458 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2459 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2460 	}
2461 exit_meta_group_info:
2462 	return -ENOMEM;
2463 } /* ext4_mb_add_groupinfo */
2464 
2465 static int ext4_mb_init_backend(struct super_block *sb)
2466 {
2467 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2468 	ext4_group_t i;
2469 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2470 	int err;
2471 	struct ext4_group_desc *desc;
2472 	struct kmem_cache *cachep;
2473 
2474 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2475 	if (err)
2476 		return err;
2477 
2478 	sbi->s_buddy_cache = new_inode(sb);
2479 	if (sbi->s_buddy_cache == NULL) {
2480 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2481 		goto err_freesgi;
2482 	}
2483 	/* To avoid potentially colliding with an valid on-disk inode number,
2484 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2485 	 * not in the inode hash, so it should never be found by iget(), but
2486 	 * this will avoid confusion if it ever shows up during debugging. */
2487 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2488 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2489 	for (i = 0; i < ngroups; i++) {
2490 		desc = ext4_get_group_desc(sb, i, NULL);
2491 		if (desc == NULL) {
2492 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2493 			goto err_freebuddy;
2494 		}
2495 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2496 			goto err_freebuddy;
2497 	}
2498 
2499 	return 0;
2500 
2501 err_freebuddy:
2502 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2503 	while (i-- > 0)
2504 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2505 	i = sbi->s_group_info_size;
2506 	while (i-- > 0)
2507 		kfree(sbi->s_group_info[i]);
2508 	iput(sbi->s_buddy_cache);
2509 err_freesgi:
2510 	kvfree(sbi->s_group_info);
2511 	return -ENOMEM;
2512 }
2513 
2514 static void ext4_groupinfo_destroy_slabs(void)
2515 {
2516 	int i;
2517 
2518 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2519 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
2520 		ext4_groupinfo_caches[i] = NULL;
2521 	}
2522 }
2523 
2524 static int ext4_groupinfo_create_slab(size_t size)
2525 {
2526 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2527 	int slab_size;
2528 	int blocksize_bits = order_base_2(size);
2529 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2530 	struct kmem_cache *cachep;
2531 
2532 	if (cache_index >= NR_GRPINFO_CACHES)
2533 		return -EINVAL;
2534 
2535 	if (unlikely(cache_index < 0))
2536 		cache_index = 0;
2537 
2538 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2539 	if (ext4_groupinfo_caches[cache_index]) {
2540 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2541 		return 0;	/* Already created */
2542 	}
2543 
2544 	slab_size = offsetof(struct ext4_group_info,
2545 				bb_counters[blocksize_bits + 2]);
2546 
2547 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2548 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2549 					NULL);
2550 
2551 	ext4_groupinfo_caches[cache_index] = cachep;
2552 
2553 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2554 	if (!cachep) {
2555 		printk(KERN_EMERG
2556 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2557 		return -ENOMEM;
2558 	}
2559 
2560 	return 0;
2561 }
2562 
2563 int ext4_mb_init(struct super_block *sb)
2564 {
2565 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2566 	unsigned i, j;
2567 	unsigned offset, offset_incr;
2568 	unsigned max;
2569 	int ret;
2570 
2571 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2572 
2573 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2574 	if (sbi->s_mb_offsets == NULL) {
2575 		ret = -ENOMEM;
2576 		goto out;
2577 	}
2578 
2579 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2580 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2581 	if (sbi->s_mb_maxs == NULL) {
2582 		ret = -ENOMEM;
2583 		goto out;
2584 	}
2585 
2586 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2587 	if (ret < 0)
2588 		goto out;
2589 
2590 	/* order 0 is regular bitmap */
2591 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2592 	sbi->s_mb_offsets[0] = 0;
2593 
2594 	i = 1;
2595 	offset = 0;
2596 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2597 	max = sb->s_blocksize << 2;
2598 	do {
2599 		sbi->s_mb_offsets[i] = offset;
2600 		sbi->s_mb_maxs[i] = max;
2601 		offset += offset_incr;
2602 		offset_incr = offset_incr >> 1;
2603 		max = max >> 1;
2604 		i++;
2605 	} while (i <= sb->s_blocksize_bits + 1);
2606 
2607 	spin_lock_init(&sbi->s_md_lock);
2608 	spin_lock_init(&sbi->s_bal_lock);
2609 	sbi->s_mb_free_pending = 0;
2610 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2611 
2612 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2613 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2614 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2615 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2616 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2617 	/*
2618 	 * The default group preallocation is 512, which for 4k block
2619 	 * sizes translates to 2 megabytes.  However for bigalloc file
2620 	 * systems, this is probably too big (i.e, if the cluster size
2621 	 * is 1 megabyte, then group preallocation size becomes half a
2622 	 * gigabyte!).  As a default, we will keep a two megabyte
2623 	 * group pralloc size for cluster sizes up to 64k, and after
2624 	 * that, we will force a minimum group preallocation size of
2625 	 * 32 clusters.  This translates to 8 megs when the cluster
2626 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2627 	 * which seems reasonable as a default.
2628 	 */
2629 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2630 				       sbi->s_cluster_bits, 32);
2631 	/*
2632 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2633 	 * to the lowest multiple of s_stripe which is bigger than
2634 	 * the s_mb_group_prealloc as determined above. We want
2635 	 * the preallocation size to be an exact multiple of the
2636 	 * RAID stripe size so that preallocations don't fragment
2637 	 * the stripes.
2638 	 */
2639 	if (sbi->s_stripe > 1) {
2640 		sbi->s_mb_group_prealloc = roundup(
2641 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2642 	}
2643 
2644 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2645 	if (sbi->s_locality_groups == NULL) {
2646 		ret = -ENOMEM;
2647 		goto out;
2648 	}
2649 	for_each_possible_cpu(i) {
2650 		struct ext4_locality_group *lg;
2651 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2652 		mutex_init(&lg->lg_mutex);
2653 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2654 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2655 		spin_lock_init(&lg->lg_prealloc_lock);
2656 	}
2657 
2658 	/* init file for buddy data */
2659 	ret = ext4_mb_init_backend(sb);
2660 	if (ret != 0)
2661 		goto out_free_locality_groups;
2662 
2663 	return 0;
2664 
2665 out_free_locality_groups:
2666 	free_percpu(sbi->s_locality_groups);
2667 	sbi->s_locality_groups = NULL;
2668 out:
2669 	kfree(sbi->s_mb_offsets);
2670 	sbi->s_mb_offsets = NULL;
2671 	kfree(sbi->s_mb_maxs);
2672 	sbi->s_mb_maxs = NULL;
2673 	return ret;
2674 }
2675 
2676 /* need to called with the ext4 group lock held */
2677 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2678 {
2679 	struct ext4_prealloc_space *pa;
2680 	struct list_head *cur, *tmp;
2681 	int count = 0;
2682 
2683 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2684 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2685 		list_del(&pa->pa_group_list);
2686 		count++;
2687 		kmem_cache_free(ext4_pspace_cachep, pa);
2688 	}
2689 	if (count)
2690 		mb_debug(1, "mballoc: %u PAs left\n", count);
2691 
2692 }
2693 
2694 int ext4_mb_release(struct super_block *sb)
2695 {
2696 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2697 	ext4_group_t i;
2698 	int num_meta_group_infos;
2699 	struct ext4_group_info *grinfo;
2700 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2701 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2702 
2703 	if (sbi->s_group_info) {
2704 		for (i = 0; i < ngroups; i++) {
2705 			grinfo = ext4_get_group_info(sb, i);
2706 #ifdef DOUBLE_CHECK
2707 			kfree(grinfo->bb_bitmap);
2708 #endif
2709 			ext4_lock_group(sb, i);
2710 			ext4_mb_cleanup_pa(grinfo);
2711 			ext4_unlock_group(sb, i);
2712 			kmem_cache_free(cachep, grinfo);
2713 		}
2714 		num_meta_group_infos = (ngroups +
2715 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2716 			EXT4_DESC_PER_BLOCK_BITS(sb);
2717 		for (i = 0; i < num_meta_group_infos; i++)
2718 			kfree(sbi->s_group_info[i]);
2719 		kvfree(sbi->s_group_info);
2720 	}
2721 	kfree(sbi->s_mb_offsets);
2722 	kfree(sbi->s_mb_maxs);
2723 	iput(sbi->s_buddy_cache);
2724 	if (sbi->s_mb_stats) {
2725 		ext4_msg(sb, KERN_INFO,
2726 		       "mballoc: %u blocks %u reqs (%u success)",
2727 				atomic_read(&sbi->s_bal_allocated),
2728 				atomic_read(&sbi->s_bal_reqs),
2729 				atomic_read(&sbi->s_bal_success));
2730 		ext4_msg(sb, KERN_INFO,
2731 		      "mballoc: %u extents scanned, %u goal hits, "
2732 				"%u 2^N hits, %u breaks, %u lost",
2733 				atomic_read(&sbi->s_bal_ex_scanned),
2734 				atomic_read(&sbi->s_bal_goals),
2735 				atomic_read(&sbi->s_bal_2orders),
2736 				atomic_read(&sbi->s_bal_breaks),
2737 				atomic_read(&sbi->s_mb_lost_chunks));
2738 		ext4_msg(sb, KERN_INFO,
2739 		       "mballoc: %lu generated and it took %Lu",
2740 				sbi->s_mb_buddies_generated,
2741 				sbi->s_mb_generation_time);
2742 		ext4_msg(sb, KERN_INFO,
2743 		       "mballoc: %u preallocated, %u discarded",
2744 				atomic_read(&sbi->s_mb_preallocated),
2745 				atomic_read(&sbi->s_mb_discarded));
2746 	}
2747 
2748 	free_percpu(sbi->s_locality_groups);
2749 
2750 	return 0;
2751 }
2752 
2753 static inline int ext4_issue_discard(struct super_block *sb,
2754 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2755 		struct bio **biop)
2756 {
2757 	ext4_fsblk_t discard_block;
2758 
2759 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2760 			 ext4_group_first_block_no(sb, block_group));
2761 	count = EXT4_C2B(EXT4_SB(sb), count);
2762 	trace_ext4_discard_blocks(sb,
2763 			(unsigned long long) discard_block, count);
2764 	if (biop) {
2765 		return __blkdev_issue_discard(sb->s_bdev,
2766 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
2767 			(sector_t)count << (sb->s_blocksize_bits - 9),
2768 			GFP_NOFS, 0, biop);
2769 	} else
2770 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2771 }
2772 
2773 static void ext4_free_data_in_buddy(struct super_block *sb,
2774 				    struct ext4_free_data *entry)
2775 {
2776 	struct ext4_buddy e4b;
2777 	struct ext4_group_info *db;
2778 	int err, count = 0, count2 = 0;
2779 
2780 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2781 		 entry->efd_count, entry->efd_group, entry);
2782 
2783 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2784 	/* we expect to find existing buddy because it's pinned */
2785 	BUG_ON(err != 0);
2786 
2787 	spin_lock(&EXT4_SB(sb)->s_md_lock);
2788 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2789 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2790 
2791 	db = e4b.bd_info;
2792 	/* there are blocks to put in buddy to make them really free */
2793 	count += entry->efd_count;
2794 	count2++;
2795 	ext4_lock_group(sb, entry->efd_group);
2796 	/* Take it out of per group rb tree */
2797 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2798 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2799 
2800 	/*
2801 	 * Clear the trimmed flag for the group so that the next
2802 	 * ext4_trim_fs can trim it.
2803 	 * If the volume is mounted with -o discard, online discard
2804 	 * is supported and the free blocks will be trimmed online.
2805 	 */
2806 	if (!test_opt(sb, DISCARD))
2807 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2808 
2809 	if (!db->bb_free_root.rb_node) {
2810 		/* No more items in the per group rb tree
2811 		 * balance refcounts from ext4_mb_free_metadata()
2812 		 */
2813 		put_page(e4b.bd_buddy_page);
2814 		put_page(e4b.bd_bitmap_page);
2815 	}
2816 	ext4_unlock_group(sb, entry->efd_group);
2817 	kmem_cache_free(ext4_free_data_cachep, entry);
2818 	ext4_mb_unload_buddy(&e4b);
2819 
2820 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2821 }
2822 
2823 /*
2824  * This function is called by the jbd2 layer once the commit has finished,
2825  * so we know we can free the blocks that were released with that commit.
2826  */
2827 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2828 {
2829 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2830 	struct ext4_free_data *entry, *tmp;
2831 	struct bio *discard_bio = NULL;
2832 	struct list_head freed_data_list;
2833 	struct list_head *cut_pos = NULL;
2834 	int err;
2835 
2836 	INIT_LIST_HEAD(&freed_data_list);
2837 
2838 	spin_lock(&sbi->s_md_lock);
2839 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2840 		if (entry->efd_tid != commit_tid)
2841 			break;
2842 		cut_pos = &entry->efd_list;
2843 	}
2844 	if (cut_pos)
2845 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2846 				  cut_pos);
2847 	spin_unlock(&sbi->s_md_lock);
2848 
2849 	if (test_opt(sb, DISCARD)) {
2850 		list_for_each_entry(entry, &freed_data_list, efd_list) {
2851 			err = ext4_issue_discard(sb, entry->efd_group,
2852 						 entry->efd_start_cluster,
2853 						 entry->efd_count,
2854 						 &discard_bio);
2855 			if (err && err != -EOPNOTSUPP) {
2856 				ext4_msg(sb, KERN_WARNING, "discard request in"
2857 					 " group:%d block:%d count:%d failed"
2858 					 " with %d", entry->efd_group,
2859 					 entry->efd_start_cluster,
2860 					 entry->efd_count, err);
2861 			} else if (err == -EOPNOTSUPP)
2862 				break;
2863 		}
2864 
2865 		if (discard_bio) {
2866 			submit_bio_wait(discard_bio);
2867 			bio_put(discard_bio);
2868 		}
2869 	}
2870 
2871 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2872 		ext4_free_data_in_buddy(sb, entry);
2873 }
2874 
2875 int __init ext4_init_mballoc(void)
2876 {
2877 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2878 					SLAB_RECLAIM_ACCOUNT);
2879 	if (ext4_pspace_cachep == NULL)
2880 		return -ENOMEM;
2881 
2882 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2883 				    SLAB_RECLAIM_ACCOUNT);
2884 	if (ext4_ac_cachep == NULL) {
2885 		kmem_cache_destroy(ext4_pspace_cachep);
2886 		return -ENOMEM;
2887 	}
2888 
2889 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2890 					   SLAB_RECLAIM_ACCOUNT);
2891 	if (ext4_free_data_cachep == NULL) {
2892 		kmem_cache_destroy(ext4_pspace_cachep);
2893 		kmem_cache_destroy(ext4_ac_cachep);
2894 		return -ENOMEM;
2895 	}
2896 	return 0;
2897 }
2898 
2899 void ext4_exit_mballoc(void)
2900 {
2901 	/*
2902 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2903 	 * before destroying the slab cache.
2904 	 */
2905 	rcu_barrier();
2906 	kmem_cache_destroy(ext4_pspace_cachep);
2907 	kmem_cache_destroy(ext4_ac_cachep);
2908 	kmem_cache_destroy(ext4_free_data_cachep);
2909 	ext4_groupinfo_destroy_slabs();
2910 }
2911 
2912 
2913 /*
2914  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2915  * Returns 0 if success or error code
2916  */
2917 static noinline_for_stack int
2918 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2919 				handle_t *handle, unsigned int reserv_clstrs)
2920 {
2921 	struct buffer_head *bitmap_bh = NULL;
2922 	struct ext4_group_desc *gdp;
2923 	struct buffer_head *gdp_bh;
2924 	struct ext4_sb_info *sbi;
2925 	struct super_block *sb;
2926 	ext4_fsblk_t block;
2927 	int err, len;
2928 
2929 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2930 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2931 
2932 	sb = ac->ac_sb;
2933 	sbi = EXT4_SB(sb);
2934 
2935 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2936 	if (IS_ERR(bitmap_bh)) {
2937 		err = PTR_ERR(bitmap_bh);
2938 		bitmap_bh = NULL;
2939 		goto out_err;
2940 	}
2941 
2942 	BUFFER_TRACE(bitmap_bh, "getting write access");
2943 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2944 	if (err)
2945 		goto out_err;
2946 
2947 	err = -EIO;
2948 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2949 	if (!gdp)
2950 		goto out_err;
2951 
2952 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2953 			ext4_free_group_clusters(sb, gdp));
2954 
2955 	BUFFER_TRACE(gdp_bh, "get_write_access");
2956 	err = ext4_journal_get_write_access(handle, gdp_bh);
2957 	if (err)
2958 		goto out_err;
2959 
2960 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2961 
2962 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2963 	if (!ext4_data_block_valid(sbi, block, len)) {
2964 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2965 			   "fs metadata", block, block+len);
2966 		/* File system mounted not to panic on error
2967 		 * Fix the bitmap and return EFSCORRUPTED
2968 		 * We leak some of the blocks here.
2969 		 */
2970 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2971 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2972 			      ac->ac_b_ex.fe_len);
2973 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2974 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2975 		if (!err)
2976 			err = -EFSCORRUPTED;
2977 		goto out_err;
2978 	}
2979 
2980 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2981 #ifdef AGGRESSIVE_CHECK
2982 	{
2983 		int i;
2984 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2985 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2986 						bitmap_bh->b_data));
2987 		}
2988 	}
2989 #endif
2990 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2991 		      ac->ac_b_ex.fe_len);
2992 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2993 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2994 		ext4_free_group_clusters_set(sb, gdp,
2995 					     ext4_free_clusters_after_init(sb,
2996 						ac->ac_b_ex.fe_group, gdp));
2997 	}
2998 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2999 	ext4_free_group_clusters_set(sb, gdp, len);
3000 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3001 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3002 
3003 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3004 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3005 	/*
3006 	 * Now reduce the dirty block count also. Should not go negative
3007 	 */
3008 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3009 		/* release all the reserved blocks if non delalloc */
3010 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3011 				   reserv_clstrs);
3012 
3013 	if (sbi->s_log_groups_per_flex) {
3014 		ext4_group_t flex_group = ext4_flex_group(sbi,
3015 							  ac->ac_b_ex.fe_group);
3016 		atomic64_sub(ac->ac_b_ex.fe_len,
3017 			     &sbi->s_flex_groups[flex_group].free_clusters);
3018 	}
3019 
3020 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3021 	if (err)
3022 		goto out_err;
3023 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3024 
3025 out_err:
3026 	brelse(bitmap_bh);
3027 	return err;
3028 }
3029 
3030 /*
3031  * here we normalize request for locality group
3032  * Group request are normalized to s_mb_group_prealloc, which goes to
3033  * s_strip if we set the same via mount option.
3034  * s_mb_group_prealloc can be configured via
3035  * /sys/fs/ext4/<partition>/mb_group_prealloc
3036  *
3037  * XXX: should we try to preallocate more than the group has now?
3038  */
3039 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3040 {
3041 	struct super_block *sb = ac->ac_sb;
3042 	struct ext4_locality_group *lg = ac->ac_lg;
3043 
3044 	BUG_ON(lg == NULL);
3045 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3046 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3047 		current->pid, ac->ac_g_ex.fe_len);
3048 }
3049 
3050 /*
3051  * Normalization means making request better in terms of
3052  * size and alignment
3053  */
3054 static noinline_for_stack void
3055 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3056 				struct ext4_allocation_request *ar)
3057 {
3058 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3059 	int bsbits, max;
3060 	ext4_lblk_t end;
3061 	loff_t size, start_off;
3062 	loff_t orig_size __maybe_unused;
3063 	ext4_lblk_t start;
3064 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3065 	struct ext4_prealloc_space *pa;
3066 
3067 	/* do normalize only data requests, metadata requests
3068 	   do not need preallocation */
3069 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3070 		return;
3071 
3072 	/* sometime caller may want exact blocks */
3073 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3074 		return;
3075 
3076 	/* caller may indicate that preallocation isn't
3077 	 * required (it's a tail, for example) */
3078 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3079 		return;
3080 
3081 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3082 		ext4_mb_normalize_group_request(ac);
3083 		return ;
3084 	}
3085 
3086 	bsbits = ac->ac_sb->s_blocksize_bits;
3087 
3088 	/* first, let's learn actual file size
3089 	 * given current request is allocated */
3090 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3091 	size = size << bsbits;
3092 	if (size < i_size_read(ac->ac_inode))
3093 		size = i_size_read(ac->ac_inode);
3094 	orig_size = size;
3095 
3096 	/* max size of free chunks */
3097 	max = 2 << bsbits;
3098 
3099 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3100 		(req <= (size) || max <= (chunk_size))
3101 
3102 	/* first, try to predict filesize */
3103 	/* XXX: should this table be tunable? */
3104 	start_off = 0;
3105 	if (size <= 16 * 1024) {
3106 		size = 16 * 1024;
3107 	} else if (size <= 32 * 1024) {
3108 		size = 32 * 1024;
3109 	} else if (size <= 64 * 1024) {
3110 		size = 64 * 1024;
3111 	} else if (size <= 128 * 1024) {
3112 		size = 128 * 1024;
3113 	} else if (size <= 256 * 1024) {
3114 		size = 256 * 1024;
3115 	} else if (size <= 512 * 1024) {
3116 		size = 512 * 1024;
3117 	} else if (size <= 1024 * 1024) {
3118 		size = 1024 * 1024;
3119 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3120 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3121 						(21 - bsbits)) << 21;
3122 		size = 2 * 1024 * 1024;
3123 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3124 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3125 							(22 - bsbits)) << 22;
3126 		size = 4 * 1024 * 1024;
3127 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3128 					(8<<20)>>bsbits, max, 8 * 1024)) {
3129 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3130 							(23 - bsbits)) << 23;
3131 		size = 8 * 1024 * 1024;
3132 	} else {
3133 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3134 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3135 					      ac->ac_o_ex.fe_len) << bsbits;
3136 	}
3137 	size = size >> bsbits;
3138 	start = start_off >> bsbits;
3139 
3140 	/* don't cover already allocated blocks in selected range */
3141 	if (ar->pleft && start <= ar->lleft) {
3142 		size -= ar->lleft + 1 - start;
3143 		start = ar->lleft + 1;
3144 	}
3145 	if (ar->pright && start + size - 1 >= ar->lright)
3146 		size -= start + size - ar->lright;
3147 
3148 	/*
3149 	 * Trim allocation request for filesystems with artificially small
3150 	 * groups.
3151 	 */
3152 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3153 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3154 
3155 	end = start + size;
3156 
3157 	/* check we don't cross already preallocated blocks */
3158 	rcu_read_lock();
3159 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3160 		ext4_lblk_t pa_end;
3161 
3162 		if (pa->pa_deleted)
3163 			continue;
3164 		spin_lock(&pa->pa_lock);
3165 		if (pa->pa_deleted) {
3166 			spin_unlock(&pa->pa_lock);
3167 			continue;
3168 		}
3169 
3170 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3171 						  pa->pa_len);
3172 
3173 		/* PA must not overlap original request */
3174 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3175 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3176 
3177 		/* skip PAs this normalized request doesn't overlap with */
3178 		if (pa->pa_lstart >= end || pa_end <= start) {
3179 			spin_unlock(&pa->pa_lock);
3180 			continue;
3181 		}
3182 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3183 
3184 		/* adjust start or end to be adjacent to this pa */
3185 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3186 			BUG_ON(pa_end < start);
3187 			start = pa_end;
3188 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3189 			BUG_ON(pa->pa_lstart > end);
3190 			end = pa->pa_lstart;
3191 		}
3192 		spin_unlock(&pa->pa_lock);
3193 	}
3194 	rcu_read_unlock();
3195 	size = end - start;
3196 
3197 	/* XXX: extra loop to check we really don't overlap preallocations */
3198 	rcu_read_lock();
3199 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3200 		ext4_lblk_t pa_end;
3201 
3202 		spin_lock(&pa->pa_lock);
3203 		if (pa->pa_deleted == 0) {
3204 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3205 							  pa->pa_len);
3206 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3207 		}
3208 		spin_unlock(&pa->pa_lock);
3209 	}
3210 	rcu_read_unlock();
3211 
3212 	if (start + size <= ac->ac_o_ex.fe_logical &&
3213 			start > ac->ac_o_ex.fe_logical) {
3214 		ext4_msg(ac->ac_sb, KERN_ERR,
3215 			 "start %lu, size %lu, fe_logical %lu",
3216 			 (unsigned long) start, (unsigned long) size,
3217 			 (unsigned long) ac->ac_o_ex.fe_logical);
3218 		BUG();
3219 	}
3220 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3221 
3222 	/* now prepare goal request */
3223 
3224 	/* XXX: is it better to align blocks WRT to logical
3225 	 * placement or satisfy big request as is */
3226 	ac->ac_g_ex.fe_logical = start;
3227 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3228 
3229 	/* define goal start in order to merge */
3230 	if (ar->pright && (ar->lright == (start + size))) {
3231 		/* merge to the right */
3232 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3233 						&ac->ac_f_ex.fe_group,
3234 						&ac->ac_f_ex.fe_start);
3235 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3236 	}
3237 	if (ar->pleft && (ar->lleft + 1 == start)) {
3238 		/* merge to the left */
3239 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3240 						&ac->ac_f_ex.fe_group,
3241 						&ac->ac_f_ex.fe_start);
3242 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3243 	}
3244 
3245 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3246 		(unsigned) orig_size, (unsigned) start);
3247 }
3248 
3249 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3250 {
3251 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3252 
3253 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3254 		atomic_inc(&sbi->s_bal_reqs);
3255 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3256 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3257 			atomic_inc(&sbi->s_bal_success);
3258 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3259 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3260 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3261 			atomic_inc(&sbi->s_bal_goals);
3262 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3263 			atomic_inc(&sbi->s_bal_breaks);
3264 	}
3265 
3266 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3267 		trace_ext4_mballoc_alloc(ac);
3268 	else
3269 		trace_ext4_mballoc_prealloc(ac);
3270 }
3271 
3272 /*
3273  * Called on failure; free up any blocks from the inode PA for this
3274  * context.  We don't need this for MB_GROUP_PA because we only change
3275  * pa_free in ext4_mb_release_context(), but on failure, we've already
3276  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3277  */
3278 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3279 {
3280 	struct ext4_prealloc_space *pa = ac->ac_pa;
3281 	struct ext4_buddy e4b;
3282 	int err;
3283 
3284 	if (pa == NULL) {
3285 		if (ac->ac_f_ex.fe_len == 0)
3286 			return;
3287 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3288 		if (err) {
3289 			/*
3290 			 * This should never happen since we pin the
3291 			 * pages in the ext4_allocation_context so
3292 			 * ext4_mb_load_buddy() should never fail.
3293 			 */
3294 			WARN(1, "mb_load_buddy failed (%d)", err);
3295 			return;
3296 		}
3297 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3298 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3299 			       ac->ac_f_ex.fe_len);
3300 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3301 		ext4_mb_unload_buddy(&e4b);
3302 		return;
3303 	}
3304 	if (pa->pa_type == MB_INODE_PA)
3305 		pa->pa_free += ac->ac_b_ex.fe_len;
3306 }
3307 
3308 /*
3309  * use blocks preallocated to inode
3310  */
3311 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3312 				struct ext4_prealloc_space *pa)
3313 {
3314 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3315 	ext4_fsblk_t start;
3316 	ext4_fsblk_t end;
3317 	int len;
3318 
3319 	/* found preallocated blocks, use them */
3320 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3321 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3322 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3323 	len = EXT4_NUM_B2C(sbi, end - start);
3324 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3325 					&ac->ac_b_ex.fe_start);
3326 	ac->ac_b_ex.fe_len = len;
3327 	ac->ac_status = AC_STATUS_FOUND;
3328 	ac->ac_pa = pa;
3329 
3330 	BUG_ON(start < pa->pa_pstart);
3331 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3332 	BUG_ON(pa->pa_free < len);
3333 	pa->pa_free -= len;
3334 
3335 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3336 }
3337 
3338 /*
3339  * use blocks preallocated to locality group
3340  */
3341 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3342 				struct ext4_prealloc_space *pa)
3343 {
3344 	unsigned int len = ac->ac_o_ex.fe_len;
3345 
3346 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3347 					&ac->ac_b_ex.fe_group,
3348 					&ac->ac_b_ex.fe_start);
3349 	ac->ac_b_ex.fe_len = len;
3350 	ac->ac_status = AC_STATUS_FOUND;
3351 	ac->ac_pa = pa;
3352 
3353 	/* we don't correct pa_pstart or pa_plen here to avoid
3354 	 * possible race when the group is being loaded concurrently
3355 	 * instead we correct pa later, after blocks are marked
3356 	 * in on-disk bitmap -- see ext4_mb_release_context()
3357 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3358 	 */
3359 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3360 }
3361 
3362 /*
3363  * Return the prealloc space that have minimal distance
3364  * from the goal block. @cpa is the prealloc
3365  * space that is having currently known minimal distance
3366  * from the goal block.
3367  */
3368 static struct ext4_prealloc_space *
3369 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3370 			struct ext4_prealloc_space *pa,
3371 			struct ext4_prealloc_space *cpa)
3372 {
3373 	ext4_fsblk_t cur_distance, new_distance;
3374 
3375 	if (cpa == NULL) {
3376 		atomic_inc(&pa->pa_count);
3377 		return pa;
3378 	}
3379 	cur_distance = abs(goal_block - cpa->pa_pstart);
3380 	new_distance = abs(goal_block - pa->pa_pstart);
3381 
3382 	if (cur_distance <= new_distance)
3383 		return cpa;
3384 
3385 	/* drop the previous reference */
3386 	atomic_dec(&cpa->pa_count);
3387 	atomic_inc(&pa->pa_count);
3388 	return pa;
3389 }
3390 
3391 /*
3392  * search goal blocks in preallocated space
3393  */
3394 static noinline_for_stack int
3395 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3396 {
3397 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3398 	int order, i;
3399 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3400 	struct ext4_locality_group *lg;
3401 	struct ext4_prealloc_space *pa, *cpa = NULL;
3402 	ext4_fsblk_t goal_block;
3403 
3404 	/* only data can be preallocated */
3405 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3406 		return 0;
3407 
3408 	/* first, try per-file preallocation */
3409 	rcu_read_lock();
3410 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3411 
3412 		/* all fields in this condition don't change,
3413 		 * so we can skip locking for them */
3414 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3415 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3416 					       EXT4_C2B(sbi, pa->pa_len)))
3417 			continue;
3418 
3419 		/* non-extent files can't have physical blocks past 2^32 */
3420 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3421 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3422 		     EXT4_MAX_BLOCK_FILE_PHYS))
3423 			continue;
3424 
3425 		/* found preallocated blocks, use them */
3426 		spin_lock(&pa->pa_lock);
3427 		if (pa->pa_deleted == 0 && pa->pa_free) {
3428 			atomic_inc(&pa->pa_count);
3429 			ext4_mb_use_inode_pa(ac, pa);
3430 			spin_unlock(&pa->pa_lock);
3431 			ac->ac_criteria = 10;
3432 			rcu_read_unlock();
3433 			return 1;
3434 		}
3435 		spin_unlock(&pa->pa_lock);
3436 	}
3437 	rcu_read_unlock();
3438 
3439 	/* can we use group allocation? */
3440 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3441 		return 0;
3442 
3443 	/* inode may have no locality group for some reason */
3444 	lg = ac->ac_lg;
3445 	if (lg == NULL)
3446 		return 0;
3447 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3448 	if (order > PREALLOC_TB_SIZE - 1)
3449 		/* The max size of hash table is PREALLOC_TB_SIZE */
3450 		order = PREALLOC_TB_SIZE - 1;
3451 
3452 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3453 	/*
3454 	 * search for the prealloc space that is having
3455 	 * minimal distance from the goal block.
3456 	 */
3457 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3458 		rcu_read_lock();
3459 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3460 					pa_inode_list) {
3461 			spin_lock(&pa->pa_lock);
3462 			if (pa->pa_deleted == 0 &&
3463 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3464 
3465 				cpa = ext4_mb_check_group_pa(goal_block,
3466 								pa, cpa);
3467 			}
3468 			spin_unlock(&pa->pa_lock);
3469 		}
3470 		rcu_read_unlock();
3471 	}
3472 	if (cpa) {
3473 		ext4_mb_use_group_pa(ac, cpa);
3474 		ac->ac_criteria = 20;
3475 		return 1;
3476 	}
3477 	return 0;
3478 }
3479 
3480 /*
3481  * the function goes through all block freed in the group
3482  * but not yet committed and marks them used in in-core bitmap.
3483  * buddy must be generated from this bitmap
3484  * Need to be called with the ext4 group lock held
3485  */
3486 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3487 						ext4_group_t group)
3488 {
3489 	struct rb_node *n;
3490 	struct ext4_group_info *grp;
3491 	struct ext4_free_data *entry;
3492 
3493 	grp = ext4_get_group_info(sb, group);
3494 	n = rb_first(&(grp->bb_free_root));
3495 
3496 	while (n) {
3497 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3498 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3499 		n = rb_next(n);
3500 	}
3501 	return;
3502 }
3503 
3504 /*
3505  * the function goes through all preallocation in this group and marks them
3506  * used in in-core bitmap. buddy must be generated from this bitmap
3507  * Need to be called with ext4 group lock held
3508  */
3509 static noinline_for_stack
3510 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3511 					ext4_group_t group)
3512 {
3513 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3514 	struct ext4_prealloc_space *pa;
3515 	struct list_head *cur;
3516 	ext4_group_t groupnr;
3517 	ext4_grpblk_t start;
3518 	int preallocated = 0;
3519 	int len;
3520 
3521 	/* all form of preallocation discards first load group,
3522 	 * so the only competing code is preallocation use.
3523 	 * we don't need any locking here
3524 	 * notice we do NOT ignore preallocations with pa_deleted
3525 	 * otherwise we could leave used blocks available for
3526 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3527 	 * is dropping preallocation
3528 	 */
3529 	list_for_each(cur, &grp->bb_prealloc_list) {
3530 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3531 		spin_lock(&pa->pa_lock);
3532 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3533 					     &groupnr, &start);
3534 		len = pa->pa_len;
3535 		spin_unlock(&pa->pa_lock);
3536 		if (unlikely(len == 0))
3537 			continue;
3538 		BUG_ON(groupnr != group);
3539 		ext4_set_bits(bitmap, start, len);
3540 		preallocated += len;
3541 	}
3542 	mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3543 }
3544 
3545 static void ext4_mb_pa_callback(struct rcu_head *head)
3546 {
3547 	struct ext4_prealloc_space *pa;
3548 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3549 
3550 	BUG_ON(atomic_read(&pa->pa_count));
3551 	BUG_ON(pa->pa_deleted == 0);
3552 	kmem_cache_free(ext4_pspace_cachep, pa);
3553 }
3554 
3555 /*
3556  * drops a reference to preallocated space descriptor
3557  * if this was the last reference and the space is consumed
3558  */
3559 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3560 			struct super_block *sb, struct ext4_prealloc_space *pa)
3561 {
3562 	ext4_group_t grp;
3563 	ext4_fsblk_t grp_blk;
3564 
3565 	/* in this short window concurrent discard can set pa_deleted */
3566 	spin_lock(&pa->pa_lock);
3567 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3568 		spin_unlock(&pa->pa_lock);
3569 		return;
3570 	}
3571 
3572 	if (pa->pa_deleted == 1) {
3573 		spin_unlock(&pa->pa_lock);
3574 		return;
3575 	}
3576 
3577 	pa->pa_deleted = 1;
3578 	spin_unlock(&pa->pa_lock);
3579 
3580 	grp_blk = pa->pa_pstart;
3581 	/*
3582 	 * If doing group-based preallocation, pa_pstart may be in the
3583 	 * next group when pa is used up
3584 	 */
3585 	if (pa->pa_type == MB_GROUP_PA)
3586 		grp_blk--;
3587 
3588 	grp = ext4_get_group_number(sb, grp_blk);
3589 
3590 	/*
3591 	 * possible race:
3592 	 *
3593 	 *  P1 (buddy init)			P2 (regular allocation)
3594 	 *					find block B in PA
3595 	 *  copy on-disk bitmap to buddy
3596 	 *  					mark B in on-disk bitmap
3597 	 *					drop PA from group
3598 	 *  mark all PAs in buddy
3599 	 *
3600 	 * thus, P1 initializes buddy with B available. to prevent this
3601 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3602 	 * against that pair
3603 	 */
3604 	ext4_lock_group(sb, grp);
3605 	list_del(&pa->pa_group_list);
3606 	ext4_unlock_group(sb, grp);
3607 
3608 	spin_lock(pa->pa_obj_lock);
3609 	list_del_rcu(&pa->pa_inode_list);
3610 	spin_unlock(pa->pa_obj_lock);
3611 
3612 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3613 }
3614 
3615 /*
3616  * creates new preallocated space for given inode
3617  */
3618 static noinline_for_stack int
3619 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3620 {
3621 	struct super_block *sb = ac->ac_sb;
3622 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3623 	struct ext4_prealloc_space *pa;
3624 	struct ext4_group_info *grp;
3625 	struct ext4_inode_info *ei;
3626 
3627 	/* preallocate only when found space is larger then requested */
3628 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3629 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3630 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3631 
3632 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3633 	if (pa == NULL)
3634 		return -ENOMEM;
3635 
3636 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3637 		int winl;
3638 		int wins;
3639 		int win;
3640 		int offs;
3641 
3642 		/* we can't allocate as much as normalizer wants.
3643 		 * so, found space must get proper lstart
3644 		 * to cover original request */
3645 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3646 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3647 
3648 		/* we're limited by original request in that
3649 		 * logical block must be covered any way
3650 		 * winl is window we can move our chunk within */
3651 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3652 
3653 		/* also, we should cover whole original request */
3654 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3655 
3656 		/* the smallest one defines real window */
3657 		win = min(winl, wins);
3658 
3659 		offs = ac->ac_o_ex.fe_logical %
3660 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3661 		if (offs && offs < win)
3662 			win = offs;
3663 
3664 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3665 			EXT4_NUM_B2C(sbi, win);
3666 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3667 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3668 	}
3669 
3670 	/* preallocation can change ac_b_ex, thus we store actually
3671 	 * allocated blocks for history */
3672 	ac->ac_f_ex = ac->ac_b_ex;
3673 
3674 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3675 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3676 	pa->pa_len = ac->ac_b_ex.fe_len;
3677 	pa->pa_free = pa->pa_len;
3678 	atomic_set(&pa->pa_count, 1);
3679 	spin_lock_init(&pa->pa_lock);
3680 	INIT_LIST_HEAD(&pa->pa_inode_list);
3681 	INIT_LIST_HEAD(&pa->pa_group_list);
3682 	pa->pa_deleted = 0;
3683 	pa->pa_type = MB_INODE_PA;
3684 
3685 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3686 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3687 	trace_ext4_mb_new_inode_pa(ac, pa);
3688 
3689 	ext4_mb_use_inode_pa(ac, pa);
3690 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3691 
3692 	ei = EXT4_I(ac->ac_inode);
3693 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3694 
3695 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3696 	pa->pa_inode = ac->ac_inode;
3697 
3698 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3699 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3700 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3701 
3702 	spin_lock(pa->pa_obj_lock);
3703 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3704 	spin_unlock(pa->pa_obj_lock);
3705 
3706 	return 0;
3707 }
3708 
3709 /*
3710  * creates new preallocated space for locality group inodes belongs to
3711  */
3712 static noinline_for_stack int
3713 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3714 {
3715 	struct super_block *sb = ac->ac_sb;
3716 	struct ext4_locality_group *lg;
3717 	struct ext4_prealloc_space *pa;
3718 	struct ext4_group_info *grp;
3719 
3720 	/* preallocate only when found space is larger then requested */
3721 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3722 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3723 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3724 
3725 	BUG_ON(ext4_pspace_cachep == NULL);
3726 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3727 	if (pa == NULL)
3728 		return -ENOMEM;
3729 
3730 	/* preallocation can change ac_b_ex, thus we store actually
3731 	 * allocated blocks for history */
3732 	ac->ac_f_ex = ac->ac_b_ex;
3733 
3734 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3735 	pa->pa_lstart = pa->pa_pstart;
3736 	pa->pa_len = ac->ac_b_ex.fe_len;
3737 	pa->pa_free = pa->pa_len;
3738 	atomic_set(&pa->pa_count, 1);
3739 	spin_lock_init(&pa->pa_lock);
3740 	INIT_LIST_HEAD(&pa->pa_inode_list);
3741 	INIT_LIST_HEAD(&pa->pa_group_list);
3742 	pa->pa_deleted = 0;
3743 	pa->pa_type = MB_GROUP_PA;
3744 
3745 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3746 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3747 	trace_ext4_mb_new_group_pa(ac, pa);
3748 
3749 	ext4_mb_use_group_pa(ac, pa);
3750 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3751 
3752 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3753 	lg = ac->ac_lg;
3754 	BUG_ON(lg == NULL);
3755 
3756 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3757 	pa->pa_inode = NULL;
3758 
3759 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3760 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3761 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3762 
3763 	/*
3764 	 * We will later add the new pa to the right bucket
3765 	 * after updating the pa_free in ext4_mb_release_context
3766 	 */
3767 	return 0;
3768 }
3769 
3770 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3771 {
3772 	int err;
3773 
3774 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3775 		err = ext4_mb_new_group_pa(ac);
3776 	else
3777 		err = ext4_mb_new_inode_pa(ac);
3778 	return err;
3779 }
3780 
3781 /*
3782  * finds all unused blocks in on-disk bitmap, frees them in
3783  * in-core bitmap and buddy.
3784  * @pa must be unlinked from inode and group lists, so that
3785  * nobody else can find/use it.
3786  * the caller MUST hold group/inode locks.
3787  * TODO: optimize the case when there are no in-core structures yet
3788  */
3789 static noinline_for_stack int
3790 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3791 			struct ext4_prealloc_space *pa)
3792 {
3793 	struct super_block *sb = e4b->bd_sb;
3794 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3795 	unsigned int end;
3796 	unsigned int next;
3797 	ext4_group_t group;
3798 	ext4_grpblk_t bit;
3799 	unsigned long long grp_blk_start;
3800 	int err = 0;
3801 	int free = 0;
3802 
3803 	BUG_ON(pa->pa_deleted == 0);
3804 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3805 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3806 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3807 	end = bit + pa->pa_len;
3808 
3809 	while (bit < end) {
3810 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3811 		if (bit >= end)
3812 			break;
3813 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3814 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3815 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3816 			 (unsigned) next - bit, (unsigned) group);
3817 		free += next - bit;
3818 
3819 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3820 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3821 						    EXT4_C2B(sbi, bit)),
3822 					       next - bit);
3823 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3824 		bit = next + 1;
3825 	}
3826 	if (free != pa->pa_free) {
3827 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3828 			 "pa %p: logic %lu, phys. %lu, len %lu",
3829 			 pa, (unsigned long) pa->pa_lstart,
3830 			 (unsigned long) pa->pa_pstart,
3831 			 (unsigned long) pa->pa_len);
3832 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3833 					free, pa->pa_free);
3834 		/*
3835 		 * pa is already deleted so we use the value obtained
3836 		 * from the bitmap and continue.
3837 		 */
3838 	}
3839 	atomic_add(free, &sbi->s_mb_discarded);
3840 
3841 	return err;
3842 }
3843 
3844 static noinline_for_stack int
3845 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3846 				struct ext4_prealloc_space *pa)
3847 {
3848 	struct super_block *sb = e4b->bd_sb;
3849 	ext4_group_t group;
3850 	ext4_grpblk_t bit;
3851 
3852 	trace_ext4_mb_release_group_pa(sb, pa);
3853 	BUG_ON(pa->pa_deleted == 0);
3854 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3855 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3856 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3857 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3858 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3859 
3860 	return 0;
3861 }
3862 
3863 /*
3864  * releases all preallocations in given group
3865  *
3866  * first, we need to decide discard policy:
3867  * - when do we discard
3868  *   1) ENOSPC
3869  * - how many do we discard
3870  *   1) how many requested
3871  */
3872 static noinline_for_stack int
3873 ext4_mb_discard_group_preallocations(struct super_block *sb,
3874 					ext4_group_t group, int needed)
3875 {
3876 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3877 	struct buffer_head *bitmap_bh = NULL;
3878 	struct ext4_prealloc_space *pa, *tmp;
3879 	struct list_head list;
3880 	struct ext4_buddy e4b;
3881 	int err;
3882 	int busy = 0;
3883 	int free = 0;
3884 
3885 	mb_debug(1, "discard preallocation for group %u\n", group);
3886 
3887 	if (list_empty(&grp->bb_prealloc_list))
3888 		return 0;
3889 
3890 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3891 	if (IS_ERR(bitmap_bh)) {
3892 		err = PTR_ERR(bitmap_bh);
3893 		ext4_error(sb, "Error %d reading block bitmap for %u",
3894 			   err, group);
3895 		return 0;
3896 	}
3897 
3898 	err = ext4_mb_load_buddy(sb, group, &e4b);
3899 	if (err) {
3900 		ext4_warning(sb, "Error %d loading buddy information for %u",
3901 			     err, group);
3902 		put_bh(bitmap_bh);
3903 		return 0;
3904 	}
3905 
3906 	if (needed == 0)
3907 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3908 
3909 	INIT_LIST_HEAD(&list);
3910 repeat:
3911 	ext4_lock_group(sb, group);
3912 	list_for_each_entry_safe(pa, tmp,
3913 				&grp->bb_prealloc_list, pa_group_list) {
3914 		spin_lock(&pa->pa_lock);
3915 		if (atomic_read(&pa->pa_count)) {
3916 			spin_unlock(&pa->pa_lock);
3917 			busy = 1;
3918 			continue;
3919 		}
3920 		if (pa->pa_deleted) {
3921 			spin_unlock(&pa->pa_lock);
3922 			continue;
3923 		}
3924 
3925 		/* seems this one can be freed ... */
3926 		pa->pa_deleted = 1;
3927 
3928 		/* we can trust pa_free ... */
3929 		free += pa->pa_free;
3930 
3931 		spin_unlock(&pa->pa_lock);
3932 
3933 		list_del(&pa->pa_group_list);
3934 		list_add(&pa->u.pa_tmp_list, &list);
3935 	}
3936 
3937 	/* if we still need more blocks and some PAs were used, try again */
3938 	if (free < needed && busy) {
3939 		busy = 0;
3940 		ext4_unlock_group(sb, group);
3941 		cond_resched();
3942 		goto repeat;
3943 	}
3944 
3945 	/* found anything to free? */
3946 	if (list_empty(&list)) {
3947 		BUG_ON(free != 0);
3948 		goto out;
3949 	}
3950 
3951 	/* now free all selected PAs */
3952 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3953 
3954 		/* remove from object (inode or locality group) */
3955 		spin_lock(pa->pa_obj_lock);
3956 		list_del_rcu(&pa->pa_inode_list);
3957 		spin_unlock(pa->pa_obj_lock);
3958 
3959 		if (pa->pa_type == MB_GROUP_PA)
3960 			ext4_mb_release_group_pa(&e4b, pa);
3961 		else
3962 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3963 
3964 		list_del(&pa->u.pa_tmp_list);
3965 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3966 	}
3967 
3968 out:
3969 	ext4_unlock_group(sb, group);
3970 	ext4_mb_unload_buddy(&e4b);
3971 	put_bh(bitmap_bh);
3972 	return free;
3973 }
3974 
3975 /*
3976  * releases all non-used preallocated blocks for given inode
3977  *
3978  * It's important to discard preallocations under i_data_sem
3979  * We don't want another block to be served from the prealloc
3980  * space when we are discarding the inode prealloc space.
3981  *
3982  * FIXME!! Make sure it is valid at all the call sites
3983  */
3984 void ext4_discard_preallocations(struct inode *inode)
3985 {
3986 	struct ext4_inode_info *ei = EXT4_I(inode);
3987 	struct super_block *sb = inode->i_sb;
3988 	struct buffer_head *bitmap_bh = NULL;
3989 	struct ext4_prealloc_space *pa, *tmp;
3990 	ext4_group_t group = 0;
3991 	struct list_head list;
3992 	struct ext4_buddy e4b;
3993 	int err;
3994 
3995 	if (!S_ISREG(inode->i_mode)) {
3996 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3997 		return;
3998 	}
3999 
4000 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4001 	trace_ext4_discard_preallocations(inode);
4002 
4003 	INIT_LIST_HEAD(&list);
4004 
4005 repeat:
4006 	/* first, collect all pa's in the inode */
4007 	spin_lock(&ei->i_prealloc_lock);
4008 	while (!list_empty(&ei->i_prealloc_list)) {
4009 		pa = list_entry(ei->i_prealloc_list.next,
4010 				struct ext4_prealloc_space, pa_inode_list);
4011 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4012 		spin_lock(&pa->pa_lock);
4013 		if (atomic_read(&pa->pa_count)) {
4014 			/* this shouldn't happen often - nobody should
4015 			 * use preallocation while we're discarding it */
4016 			spin_unlock(&pa->pa_lock);
4017 			spin_unlock(&ei->i_prealloc_lock);
4018 			ext4_msg(sb, KERN_ERR,
4019 				 "uh-oh! used pa while discarding");
4020 			WARN_ON(1);
4021 			schedule_timeout_uninterruptible(HZ);
4022 			goto repeat;
4023 
4024 		}
4025 		if (pa->pa_deleted == 0) {
4026 			pa->pa_deleted = 1;
4027 			spin_unlock(&pa->pa_lock);
4028 			list_del_rcu(&pa->pa_inode_list);
4029 			list_add(&pa->u.pa_tmp_list, &list);
4030 			continue;
4031 		}
4032 
4033 		/* someone is deleting pa right now */
4034 		spin_unlock(&pa->pa_lock);
4035 		spin_unlock(&ei->i_prealloc_lock);
4036 
4037 		/* we have to wait here because pa_deleted
4038 		 * doesn't mean pa is already unlinked from
4039 		 * the list. as we might be called from
4040 		 * ->clear_inode() the inode will get freed
4041 		 * and concurrent thread which is unlinking
4042 		 * pa from inode's list may access already
4043 		 * freed memory, bad-bad-bad */
4044 
4045 		/* XXX: if this happens too often, we can
4046 		 * add a flag to force wait only in case
4047 		 * of ->clear_inode(), but not in case of
4048 		 * regular truncate */
4049 		schedule_timeout_uninterruptible(HZ);
4050 		goto repeat;
4051 	}
4052 	spin_unlock(&ei->i_prealloc_lock);
4053 
4054 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4055 		BUG_ON(pa->pa_type != MB_INODE_PA);
4056 		group = ext4_get_group_number(sb, pa->pa_pstart);
4057 
4058 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4059 					     GFP_NOFS|__GFP_NOFAIL);
4060 		if (err) {
4061 			ext4_error(sb, "Error %d loading buddy information for %u",
4062 				   err, group);
4063 			continue;
4064 		}
4065 
4066 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4067 		if (IS_ERR(bitmap_bh)) {
4068 			err = PTR_ERR(bitmap_bh);
4069 			ext4_error(sb, "Error %d reading block bitmap for %u",
4070 					err, group);
4071 			ext4_mb_unload_buddy(&e4b);
4072 			continue;
4073 		}
4074 
4075 		ext4_lock_group(sb, group);
4076 		list_del(&pa->pa_group_list);
4077 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4078 		ext4_unlock_group(sb, group);
4079 
4080 		ext4_mb_unload_buddy(&e4b);
4081 		put_bh(bitmap_bh);
4082 
4083 		list_del(&pa->u.pa_tmp_list);
4084 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4085 	}
4086 }
4087 
4088 #ifdef CONFIG_EXT4_DEBUG
4089 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4090 {
4091 	struct super_block *sb = ac->ac_sb;
4092 	ext4_group_t ngroups, i;
4093 
4094 	if (!ext4_mballoc_debug ||
4095 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4096 		return;
4097 
4098 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4099 			" Allocation context details:");
4100 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4101 			ac->ac_status, ac->ac_flags);
4102 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4103 		 	"goal %lu/%lu/%lu@%lu, "
4104 			"best %lu/%lu/%lu@%lu cr %d",
4105 			(unsigned long)ac->ac_o_ex.fe_group,
4106 			(unsigned long)ac->ac_o_ex.fe_start,
4107 			(unsigned long)ac->ac_o_ex.fe_len,
4108 			(unsigned long)ac->ac_o_ex.fe_logical,
4109 			(unsigned long)ac->ac_g_ex.fe_group,
4110 			(unsigned long)ac->ac_g_ex.fe_start,
4111 			(unsigned long)ac->ac_g_ex.fe_len,
4112 			(unsigned long)ac->ac_g_ex.fe_logical,
4113 			(unsigned long)ac->ac_b_ex.fe_group,
4114 			(unsigned long)ac->ac_b_ex.fe_start,
4115 			(unsigned long)ac->ac_b_ex.fe_len,
4116 			(unsigned long)ac->ac_b_ex.fe_logical,
4117 			(int)ac->ac_criteria);
4118 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4119 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4120 	ngroups = ext4_get_groups_count(sb);
4121 	for (i = 0; i < ngroups; i++) {
4122 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4123 		struct ext4_prealloc_space *pa;
4124 		ext4_grpblk_t start;
4125 		struct list_head *cur;
4126 		ext4_lock_group(sb, i);
4127 		list_for_each(cur, &grp->bb_prealloc_list) {
4128 			pa = list_entry(cur, struct ext4_prealloc_space,
4129 					pa_group_list);
4130 			spin_lock(&pa->pa_lock);
4131 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4132 						     NULL, &start);
4133 			spin_unlock(&pa->pa_lock);
4134 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4135 			       start, pa->pa_len);
4136 		}
4137 		ext4_unlock_group(sb, i);
4138 
4139 		if (grp->bb_free == 0)
4140 			continue;
4141 		printk(KERN_ERR "%u: %d/%d \n",
4142 		       i, grp->bb_free, grp->bb_fragments);
4143 	}
4144 	printk(KERN_ERR "\n");
4145 }
4146 #else
4147 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4148 {
4149 	return;
4150 }
4151 #endif
4152 
4153 /*
4154  * We use locality group preallocation for small size file. The size of the
4155  * file is determined by the current size or the resulting size after
4156  * allocation which ever is larger
4157  *
4158  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4159  */
4160 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4161 {
4162 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4163 	int bsbits = ac->ac_sb->s_blocksize_bits;
4164 	loff_t size, isize;
4165 
4166 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4167 		return;
4168 
4169 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4170 		return;
4171 
4172 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4173 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4174 		>> bsbits;
4175 
4176 	if ((size == isize) &&
4177 	    !ext4_fs_is_busy(sbi) &&
4178 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4179 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4180 		return;
4181 	}
4182 
4183 	if (sbi->s_mb_group_prealloc <= 0) {
4184 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4185 		return;
4186 	}
4187 
4188 	/* don't use group allocation for large files */
4189 	size = max(size, isize);
4190 	if (size > sbi->s_mb_stream_request) {
4191 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4192 		return;
4193 	}
4194 
4195 	BUG_ON(ac->ac_lg != NULL);
4196 	/*
4197 	 * locality group prealloc space are per cpu. The reason for having
4198 	 * per cpu locality group is to reduce the contention between block
4199 	 * request from multiple CPUs.
4200 	 */
4201 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4202 
4203 	/* we're going to use group allocation */
4204 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4205 
4206 	/* serialize all allocations in the group */
4207 	mutex_lock(&ac->ac_lg->lg_mutex);
4208 }
4209 
4210 static noinline_for_stack int
4211 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4212 				struct ext4_allocation_request *ar)
4213 {
4214 	struct super_block *sb = ar->inode->i_sb;
4215 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4216 	struct ext4_super_block *es = sbi->s_es;
4217 	ext4_group_t group;
4218 	unsigned int len;
4219 	ext4_fsblk_t goal;
4220 	ext4_grpblk_t block;
4221 
4222 	/* we can't allocate > group size */
4223 	len = ar->len;
4224 
4225 	/* just a dirty hack to filter too big requests  */
4226 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4227 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4228 
4229 	/* start searching from the goal */
4230 	goal = ar->goal;
4231 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4232 			goal >= ext4_blocks_count(es))
4233 		goal = le32_to_cpu(es->s_first_data_block);
4234 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4235 
4236 	/* set up allocation goals */
4237 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4238 	ac->ac_status = AC_STATUS_CONTINUE;
4239 	ac->ac_sb = sb;
4240 	ac->ac_inode = ar->inode;
4241 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4242 	ac->ac_o_ex.fe_group = group;
4243 	ac->ac_o_ex.fe_start = block;
4244 	ac->ac_o_ex.fe_len = len;
4245 	ac->ac_g_ex = ac->ac_o_ex;
4246 	ac->ac_flags = ar->flags;
4247 
4248 	/* we have to define context: we'll we work with a file or
4249 	 * locality group. this is a policy, actually */
4250 	ext4_mb_group_or_file(ac);
4251 
4252 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4253 			"left: %u/%u, right %u/%u to %swritable\n",
4254 			(unsigned) ar->len, (unsigned) ar->logical,
4255 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4256 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4257 			(unsigned) ar->lright, (unsigned) ar->pright,
4258 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4259 	return 0;
4260 
4261 }
4262 
4263 static noinline_for_stack void
4264 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4265 					struct ext4_locality_group *lg,
4266 					int order, int total_entries)
4267 {
4268 	ext4_group_t group = 0;
4269 	struct ext4_buddy e4b;
4270 	struct list_head discard_list;
4271 	struct ext4_prealloc_space *pa, *tmp;
4272 
4273 	mb_debug(1, "discard locality group preallocation\n");
4274 
4275 	INIT_LIST_HEAD(&discard_list);
4276 
4277 	spin_lock(&lg->lg_prealloc_lock);
4278 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4279 						pa_inode_list) {
4280 		spin_lock(&pa->pa_lock);
4281 		if (atomic_read(&pa->pa_count)) {
4282 			/*
4283 			 * This is the pa that we just used
4284 			 * for block allocation. So don't
4285 			 * free that
4286 			 */
4287 			spin_unlock(&pa->pa_lock);
4288 			continue;
4289 		}
4290 		if (pa->pa_deleted) {
4291 			spin_unlock(&pa->pa_lock);
4292 			continue;
4293 		}
4294 		/* only lg prealloc space */
4295 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4296 
4297 		/* seems this one can be freed ... */
4298 		pa->pa_deleted = 1;
4299 		spin_unlock(&pa->pa_lock);
4300 
4301 		list_del_rcu(&pa->pa_inode_list);
4302 		list_add(&pa->u.pa_tmp_list, &discard_list);
4303 
4304 		total_entries--;
4305 		if (total_entries <= 5) {
4306 			/*
4307 			 * we want to keep only 5 entries
4308 			 * allowing it to grow to 8. This
4309 			 * mak sure we don't call discard
4310 			 * soon for this list.
4311 			 */
4312 			break;
4313 		}
4314 	}
4315 	spin_unlock(&lg->lg_prealloc_lock);
4316 
4317 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4318 		int err;
4319 
4320 		group = ext4_get_group_number(sb, pa->pa_pstart);
4321 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4322 					     GFP_NOFS|__GFP_NOFAIL);
4323 		if (err) {
4324 			ext4_error(sb, "Error %d loading buddy information for %u",
4325 				   err, group);
4326 			continue;
4327 		}
4328 		ext4_lock_group(sb, group);
4329 		list_del(&pa->pa_group_list);
4330 		ext4_mb_release_group_pa(&e4b, pa);
4331 		ext4_unlock_group(sb, group);
4332 
4333 		ext4_mb_unload_buddy(&e4b);
4334 		list_del(&pa->u.pa_tmp_list);
4335 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4336 	}
4337 }
4338 
4339 /*
4340  * We have incremented pa_count. So it cannot be freed at this
4341  * point. Also we hold lg_mutex. So no parallel allocation is
4342  * possible from this lg. That means pa_free cannot be updated.
4343  *
4344  * A parallel ext4_mb_discard_group_preallocations is possible.
4345  * which can cause the lg_prealloc_list to be updated.
4346  */
4347 
4348 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4349 {
4350 	int order, added = 0, lg_prealloc_count = 1;
4351 	struct super_block *sb = ac->ac_sb;
4352 	struct ext4_locality_group *lg = ac->ac_lg;
4353 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4354 
4355 	order = fls(pa->pa_free) - 1;
4356 	if (order > PREALLOC_TB_SIZE - 1)
4357 		/* The max size of hash table is PREALLOC_TB_SIZE */
4358 		order = PREALLOC_TB_SIZE - 1;
4359 	/* Add the prealloc space to lg */
4360 	spin_lock(&lg->lg_prealloc_lock);
4361 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4362 						pa_inode_list) {
4363 		spin_lock(&tmp_pa->pa_lock);
4364 		if (tmp_pa->pa_deleted) {
4365 			spin_unlock(&tmp_pa->pa_lock);
4366 			continue;
4367 		}
4368 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4369 			/* Add to the tail of the previous entry */
4370 			list_add_tail_rcu(&pa->pa_inode_list,
4371 						&tmp_pa->pa_inode_list);
4372 			added = 1;
4373 			/*
4374 			 * we want to count the total
4375 			 * number of entries in the list
4376 			 */
4377 		}
4378 		spin_unlock(&tmp_pa->pa_lock);
4379 		lg_prealloc_count++;
4380 	}
4381 	if (!added)
4382 		list_add_tail_rcu(&pa->pa_inode_list,
4383 					&lg->lg_prealloc_list[order]);
4384 	spin_unlock(&lg->lg_prealloc_lock);
4385 
4386 	/* Now trim the list to be not more than 8 elements */
4387 	if (lg_prealloc_count > 8) {
4388 		ext4_mb_discard_lg_preallocations(sb, lg,
4389 						  order, lg_prealloc_count);
4390 		return;
4391 	}
4392 	return ;
4393 }
4394 
4395 /*
4396  * release all resource we used in allocation
4397  */
4398 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4399 {
4400 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4401 	struct ext4_prealloc_space *pa = ac->ac_pa;
4402 	if (pa) {
4403 		if (pa->pa_type == MB_GROUP_PA) {
4404 			/* see comment in ext4_mb_use_group_pa() */
4405 			spin_lock(&pa->pa_lock);
4406 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4407 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4408 			pa->pa_free -= ac->ac_b_ex.fe_len;
4409 			pa->pa_len -= ac->ac_b_ex.fe_len;
4410 			spin_unlock(&pa->pa_lock);
4411 		}
4412 	}
4413 	if (pa) {
4414 		/*
4415 		 * We want to add the pa to the right bucket.
4416 		 * Remove it from the list and while adding
4417 		 * make sure the list to which we are adding
4418 		 * doesn't grow big.
4419 		 */
4420 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4421 			spin_lock(pa->pa_obj_lock);
4422 			list_del_rcu(&pa->pa_inode_list);
4423 			spin_unlock(pa->pa_obj_lock);
4424 			ext4_mb_add_n_trim(ac);
4425 		}
4426 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4427 	}
4428 	if (ac->ac_bitmap_page)
4429 		put_page(ac->ac_bitmap_page);
4430 	if (ac->ac_buddy_page)
4431 		put_page(ac->ac_buddy_page);
4432 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4433 		mutex_unlock(&ac->ac_lg->lg_mutex);
4434 	ext4_mb_collect_stats(ac);
4435 	return 0;
4436 }
4437 
4438 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4439 {
4440 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4441 	int ret;
4442 	int freed = 0;
4443 
4444 	trace_ext4_mb_discard_preallocations(sb, needed);
4445 	for (i = 0; i < ngroups && needed > 0; i++) {
4446 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4447 		freed += ret;
4448 		needed -= ret;
4449 	}
4450 
4451 	return freed;
4452 }
4453 
4454 /*
4455  * Main entry point into mballoc to allocate blocks
4456  * it tries to use preallocation first, then falls back
4457  * to usual allocation
4458  */
4459 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4460 				struct ext4_allocation_request *ar, int *errp)
4461 {
4462 	int freed;
4463 	struct ext4_allocation_context *ac = NULL;
4464 	struct ext4_sb_info *sbi;
4465 	struct super_block *sb;
4466 	ext4_fsblk_t block = 0;
4467 	unsigned int inquota = 0;
4468 	unsigned int reserv_clstrs = 0;
4469 
4470 	might_sleep();
4471 	sb = ar->inode->i_sb;
4472 	sbi = EXT4_SB(sb);
4473 
4474 	trace_ext4_request_blocks(ar);
4475 
4476 	/* Allow to use superuser reservation for quota file */
4477 	if (ext4_is_quota_file(ar->inode))
4478 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4479 
4480 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4481 		/* Without delayed allocation we need to verify
4482 		 * there is enough free blocks to do block allocation
4483 		 * and verify allocation doesn't exceed the quota limits.
4484 		 */
4485 		while (ar->len &&
4486 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4487 
4488 			/* let others to free the space */
4489 			cond_resched();
4490 			ar->len = ar->len >> 1;
4491 		}
4492 		if (!ar->len) {
4493 			*errp = -ENOSPC;
4494 			return 0;
4495 		}
4496 		reserv_clstrs = ar->len;
4497 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4498 			dquot_alloc_block_nofail(ar->inode,
4499 						 EXT4_C2B(sbi, ar->len));
4500 		} else {
4501 			while (ar->len &&
4502 				dquot_alloc_block(ar->inode,
4503 						  EXT4_C2B(sbi, ar->len))) {
4504 
4505 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4506 				ar->len--;
4507 			}
4508 		}
4509 		inquota = ar->len;
4510 		if (ar->len == 0) {
4511 			*errp = -EDQUOT;
4512 			goto out;
4513 		}
4514 	}
4515 
4516 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4517 	if (!ac) {
4518 		ar->len = 0;
4519 		*errp = -ENOMEM;
4520 		goto out;
4521 	}
4522 
4523 	*errp = ext4_mb_initialize_context(ac, ar);
4524 	if (*errp) {
4525 		ar->len = 0;
4526 		goto out;
4527 	}
4528 
4529 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4530 	if (!ext4_mb_use_preallocated(ac)) {
4531 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4532 		ext4_mb_normalize_request(ac, ar);
4533 repeat:
4534 		/* allocate space in core */
4535 		*errp = ext4_mb_regular_allocator(ac);
4536 		if (*errp)
4537 			goto discard_and_exit;
4538 
4539 		/* as we've just preallocated more space than
4540 		 * user requested originally, we store allocated
4541 		 * space in a special descriptor */
4542 		if (ac->ac_status == AC_STATUS_FOUND &&
4543 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4544 			*errp = ext4_mb_new_preallocation(ac);
4545 		if (*errp) {
4546 		discard_and_exit:
4547 			ext4_discard_allocated_blocks(ac);
4548 			goto errout;
4549 		}
4550 	}
4551 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4552 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4553 		if (*errp) {
4554 			ext4_discard_allocated_blocks(ac);
4555 			goto errout;
4556 		} else {
4557 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4558 			ar->len = ac->ac_b_ex.fe_len;
4559 		}
4560 	} else {
4561 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4562 		if (freed)
4563 			goto repeat;
4564 		*errp = -ENOSPC;
4565 	}
4566 
4567 errout:
4568 	if (*errp) {
4569 		ac->ac_b_ex.fe_len = 0;
4570 		ar->len = 0;
4571 		ext4_mb_show_ac(ac);
4572 	}
4573 	ext4_mb_release_context(ac);
4574 out:
4575 	if (ac)
4576 		kmem_cache_free(ext4_ac_cachep, ac);
4577 	if (inquota && ar->len < inquota)
4578 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4579 	if (!ar->len) {
4580 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4581 			/* release all the reserved blocks if non delalloc */
4582 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4583 						reserv_clstrs);
4584 	}
4585 
4586 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4587 
4588 	return block;
4589 }
4590 
4591 /*
4592  * We can merge two free data extents only if the physical blocks
4593  * are contiguous, AND the extents were freed by the same transaction,
4594  * AND the blocks are associated with the same group.
4595  */
4596 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4597 					struct ext4_free_data *entry,
4598 					struct ext4_free_data *new_entry,
4599 					struct rb_root *entry_rb_root)
4600 {
4601 	if ((entry->efd_tid != new_entry->efd_tid) ||
4602 	    (entry->efd_group != new_entry->efd_group))
4603 		return;
4604 	if (entry->efd_start_cluster + entry->efd_count ==
4605 	    new_entry->efd_start_cluster) {
4606 		new_entry->efd_start_cluster = entry->efd_start_cluster;
4607 		new_entry->efd_count += entry->efd_count;
4608 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4609 		   entry->efd_start_cluster) {
4610 		new_entry->efd_count += entry->efd_count;
4611 	} else
4612 		return;
4613 	spin_lock(&sbi->s_md_lock);
4614 	list_del(&entry->efd_list);
4615 	spin_unlock(&sbi->s_md_lock);
4616 	rb_erase(&entry->efd_node, entry_rb_root);
4617 	kmem_cache_free(ext4_free_data_cachep, entry);
4618 }
4619 
4620 static noinline_for_stack int
4621 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4622 		      struct ext4_free_data *new_entry)
4623 {
4624 	ext4_group_t group = e4b->bd_group;
4625 	ext4_grpblk_t cluster;
4626 	ext4_grpblk_t clusters = new_entry->efd_count;
4627 	struct ext4_free_data *entry;
4628 	struct ext4_group_info *db = e4b->bd_info;
4629 	struct super_block *sb = e4b->bd_sb;
4630 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4631 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4632 	struct rb_node *parent = NULL, *new_node;
4633 
4634 	BUG_ON(!ext4_handle_valid(handle));
4635 	BUG_ON(e4b->bd_bitmap_page == NULL);
4636 	BUG_ON(e4b->bd_buddy_page == NULL);
4637 
4638 	new_node = &new_entry->efd_node;
4639 	cluster = new_entry->efd_start_cluster;
4640 
4641 	if (!*n) {
4642 		/* first free block exent. We need to
4643 		   protect buddy cache from being freed,
4644 		 * otherwise we'll refresh it from
4645 		 * on-disk bitmap and lose not-yet-available
4646 		 * blocks */
4647 		get_page(e4b->bd_buddy_page);
4648 		get_page(e4b->bd_bitmap_page);
4649 	}
4650 	while (*n) {
4651 		parent = *n;
4652 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4653 		if (cluster < entry->efd_start_cluster)
4654 			n = &(*n)->rb_left;
4655 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4656 			n = &(*n)->rb_right;
4657 		else {
4658 			ext4_grp_locked_error(sb, group, 0,
4659 				ext4_group_first_block_no(sb, group) +
4660 				EXT4_C2B(sbi, cluster),
4661 				"Block already on to-be-freed list");
4662 			return 0;
4663 		}
4664 	}
4665 
4666 	rb_link_node(new_node, parent, n);
4667 	rb_insert_color(new_node, &db->bb_free_root);
4668 
4669 	/* Now try to see the extent can be merged to left and right */
4670 	node = rb_prev(new_node);
4671 	if (node) {
4672 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4673 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4674 					    &(db->bb_free_root));
4675 	}
4676 
4677 	node = rb_next(new_node);
4678 	if (node) {
4679 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4680 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4681 					    &(db->bb_free_root));
4682 	}
4683 
4684 	spin_lock(&sbi->s_md_lock);
4685 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4686 	sbi->s_mb_free_pending += clusters;
4687 	spin_unlock(&sbi->s_md_lock);
4688 	return 0;
4689 }
4690 
4691 /**
4692  * ext4_free_blocks() -- Free given blocks and update quota
4693  * @handle:		handle for this transaction
4694  * @inode:		inode
4695  * @block:		start physical block to free
4696  * @count:		number of blocks to count
4697  * @flags:		flags used by ext4_free_blocks
4698  */
4699 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4700 		      struct buffer_head *bh, ext4_fsblk_t block,
4701 		      unsigned long count, int flags)
4702 {
4703 	struct buffer_head *bitmap_bh = NULL;
4704 	struct super_block *sb = inode->i_sb;
4705 	struct ext4_group_desc *gdp;
4706 	unsigned int overflow;
4707 	ext4_grpblk_t bit;
4708 	struct buffer_head *gd_bh;
4709 	ext4_group_t block_group;
4710 	struct ext4_sb_info *sbi;
4711 	struct ext4_buddy e4b;
4712 	unsigned int count_clusters;
4713 	int err = 0;
4714 	int ret;
4715 
4716 	might_sleep();
4717 	if (bh) {
4718 		if (block)
4719 			BUG_ON(block != bh->b_blocknr);
4720 		else
4721 			block = bh->b_blocknr;
4722 	}
4723 
4724 	sbi = EXT4_SB(sb);
4725 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4726 	    !ext4_data_block_valid(sbi, block, count)) {
4727 		ext4_error(sb, "Freeing blocks not in datazone - "
4728 			   "block = %llu, count = %lu", block, count);
4729 		goto error_return;
4730 	}
4731 
4732 	ext4_debug("freeing block %llu\n", block);
4733 	trace_ext4_free_blocks(inode, block, count, flags);
4734 
4735 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4736 		BUG_ON(count > 1);
4737 
4738 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4739 			    inode, bh, block);
4740 	}
4741 
4742 	/*
4743 	 * If the extent to be freed does not begin on a cluster
4744 	 * boundary, we need to deal with partial clusters at the
4745 	 * beginning and end of the extent.  Normally we will free
4746 	 * blocks at the beginning or the end unless we are explicitly
4747 	 * requested to avoid doing so.
4748 	 */
4749 	overflow = EXT4_PBLK_COFF(sbi, block);
4750 	if (overflow) {
4751 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4752 			overflow = sbi->s_cluster_ratio - overflow;
4753 			block += overflow;
4754 			if (count > overflow)
4755 				count -= overflow;
4756 			else
4757 				return;
4758 		} else {
4759 			block -= overflow;
4760 			count += overflow;
4761 		}
4762 	}
4763 	overflow = EXT4_LBLK_COFF(sbi, count);
4764 	if (overflow) {
4765 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4766 			if (count > overflow)
4767 				count -= overflow;
4768 			else
4769 				return;
4770 		} else
4771 			count += sbi->s_cluster_ratio - overflow;
4772 	}
4773 
4774 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4775 		int i;
4776 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4777 
4778 		for (i = 0; i < count; i++) {
4779 			cond_resched();
4780 			if (is_metadata)
4781 				bh = sb_find_get_block(inode->i_sb, block + i);
4782 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4783 		}
4784 	}
4785 
4786 do_more:
4787 	overflow = 0;
4788 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4789 
4790 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4791 			ext4_get_group_info(sb, block_group))))
4792 		return;
4793 
4794 	/*
4795 	 * Check to see if we are freeing blocks across a group
4796 	 * boundary.
4797 	 */
4798 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4799 		overflow = EXT4_C2B(sbi, bit) + count -
4800 			EXT4_BLOCKS_PER_GROUP(sb);
4801 		count -= overflow;
4802 	}
4803 	count_clusters = EXT4_NUM_B2C(sbi, count);
4804 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4805 	if (IS_ERR(bitmap_bh)) {
4806 		err = PTR_ERR(bitmap_bh);
4807 		bitmap_bh = NULL;
4808 		goto error_return;
4809 	}
4810 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4811 	if (!gdp) {
4812 		err = -EIO;
4813 		goto error_return;
4814 	}
4815 
4816 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4817 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4818 	    in_range(block, ext4_inode_table(sb, gdp),
4819 		     sbi->s_itb_per_group) ||
4820 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4821 		     sbi->s_itb_per_group)) {
4822 
4823 		ext4_error(sb, "Freeing blocks in system zone - "
4824 			   "Block = %llu, count = %lu", block, count);
4825 		/* err = 0. ext4_std_error should be a no op */
4826 		goto error_return;
4827 	}
4828 
4829 	BUFFER_TRACE(bitmap_bh, "getting write access");
4830 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4831 	if (err)
4832 		goto error_return;
4833 
4834 	/*
4835 	 * We are about to modify some metadata.  Call the journal APIs
4836 	 * to unshare ->b_data if a currently-committing transaction is
4837 	 * using it
4838 	 */
4839 	BUFFER_TRACE(gd_bh, "get_write_access");
4840 	err = ext4_journal_get_write_access(handle, gd_bh);
4841 	if (err)
4842 		goto error_return;
4843 #ifdef AGGRESSIVE_CHECK
4844 	{
4845 		int i;
4846 		for (i = 0; i < count_clusters; i++)
4847 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4848 	}
4849 #endif
4850 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4851 
4852 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4853 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4854 				     GFP_NOFS|__GFP_NOFAIL);
4855 	if (err)
4856 		goto error_return;
4857 
4858 	/*
4859 	 * We need to make sure we don't reuse the freed block until after the
4860 	 * transaction is committed. We make an exception if the inode is to be
4861 	 * written in writeback mode since writeback mode has weak data
4862 	 * consistency guarantees.
4863 	 */
4864 	if (ext4_handle_valid(handle) &&
4865 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4866 	     !ext4_should_writeback_data(inode))) {
4867 		struct ext4_free_data *new_entry;
4868 		/*
4869 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4870 		 * to fail.
4871 		 */
4872 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4873 				GFP_NOFS|__GFP_NOFAIL);
4874 		new_entry->efd_start_cluster = bit;
4875 		new_entry->efd_group = block_group;
4876 		new_entry->efd_count = count_clusters;
4877 		new_entry->efd_tid = handle->h_transaction->t_tid;
4878 
4879 		ext4_lock_group(sb, block_group);
4880 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4881 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4882 	} else {
4883 		/* need to update group_info->bb_free and bitmap
4884 		 * with group lock held. generate_buddy look at
4885 		 * them with group lock_held
4886 		 */
4887 		if (test_opt(sb, DISCARD)) {
4888 			err = ext4_issue_discard(sb, block_group, bit, count,
4889 						 NULL);
4890 			if (err && err != -EOPNOTSUPP)
4891 				ext4_msg(sb, KERN_WARNING, "discard request in"
4892 					 " group:%d block:%d count:%lu failed"
4893 					 " with %d", block_group, bit, count,
4894 					 err);
4895 		} else
4896 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4897 
4898 		ext4_lock_group(sb, block_group);
4899 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4900 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4901 	}
4902 
4903 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4904 	ext4_free_group_clusters_set(sb, gdp, ret);
4905 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4906 	ext4_group_desc_csum_set(sb, block_group, gdp);
4907 	ext4_unlock_group(sb, block_group);
4908 
4909 	if (sbi->s_log_groups_per_flex) {
4910 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4911 		atomic64_add(count_clusters,
4912 			     &sbi->s_flex_groups[flex_group].free_clusters);
4913 	}
4914 
4915 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4916 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4917 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4918 
4919 	ext4_mb_unload_buddy(&e4b);
4920 
4921 	/* We dirtied the bitmap block */
4922 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4923 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4924 
4925 	/* And the group descriptor block */
4926 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4927 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4928 	if (!err)
4929 		err = ret;
4930 
4931 	if (overflow && !err) {
4932 		block += count;
4933 		count = overflow;
4934 		put_bh(bitmap_bh);
4935 		goto do_more;
4936 	}
4937 error_return:
4938 	brelse(bitmap_bh);
4939 	ext4_std_error(sb, err);
4940 	return;
4941 }
4942 
4943 /**
4944  * ext4_group_add_blocks() -- Add given blocks to an existing group
4945  * @handle:			handle to this transaction
4946  * @sb:				super block
4947  * @block:			start physical block to add to the block group
4948  * @count:			number of blocks to free
4949  *
4950  * This marks the blocks as free in the bitmap and buddy.
4951  */
4952 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4953 			 ext4_fsblk_t block, unsigned long count)
4954 {
4955 	struct buffer_head *bitmap_bh = NULL;
4956 	struct buffer_head *gd_bh;
4957 	ext4_group_t block_group;
4958 	ext4_grpblk_t bit;
4959 	unsigned int i;
4960 	struct ext4_group_desc *desc;
4961 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4962 	struct ext4_buddy e4b;
4963 	int err = 0, ret, free_clusters_count;
4964 	ext4_grpblk_t clusters_freed;
4965 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
4966 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
4967 	unsigned long cluster_count = last_cluster - first_cluster + 1;
4968 
4969 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4970 
4971 	if (count == 0)
4972 		return 0;
4973 
4974 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4975 	/*
4976 	 * Check to see if we are freeing blocks across a group
4977 	 * boundary.
4978 	 */
4979 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
4980 		ext4_warning(sb, "too many blocks added to group %u",
4981 			     block_group);
4982 		err = -EINVAL;
4983 		goto error_return;
4984 	}
4985 
4986 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4987 	if (IS_ERR(bitmap_bh)) {
4988 		err = PTR_ERR(bitmap_bh);
4989 		bitmap_bh = NULL;
4990 		goto error_return;
4991 	}
4992 
4993 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4994 	if (!desc) {
4995 		err = -EIO;
4996 		goto error_return;
4997 	}
4998 
4999 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5000 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5001 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5002 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5003 		     sbi->s_itb_per_group)) {
5004 		ext4_error(sb, "Adding blocks in system zones - "
5005 			   "Block = %llu, count = %lu",
5006 			   block, count);
5007 		err = -EINVAL;
5008 		goto error_return;
5009 	}
5010 
5011 	BUFFER_TRACE(bitmap_bh, "getting write access");
5012 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5013 	if (err)
5014 		goto error_return;
5015 
5016 	/*
5017 	 * We are about to modify some metadata.  Call the journal APIs
5018 	 * to unshare ->b_data if a currently-committing transaction is
5019 	 * using it
5020 	 */
5021 	BUFFER_TRACE(gd_bh, "get_write_access");
5022 	err = ext4_journal_get_write_access(handle, gd_bh);
5023 	if (err)
5024 		goto error_return;
5025 
5026 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5027 		BUFFER_TRACE(bitmap_bh, "clear bit");
5028 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5029 			ext4_error(sb, "bit already cleared for block %llu",
5030 				   (ext4_fsblk_t)(block + i));
5031 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5032 		} else {
5033 			clusters_freed++;
5034 		}
5035 	}
5036 
5037 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5038 	if (err)
5039 		goto error_return;
5040 
5041 	/*
5042 	 * need to update group_info->bb_free and bitmap
5043 	 * with group lock held. generate_buddy look at
5044 	 * them with group lock_held
5045 	 */
5046 	ext4_lock_group(sb, block_group);
5047 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5048 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
5049 	free_clusters_count = clusters_freed +
5050 		ext4_free_group_clusters(sb, desc);
5051 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5052 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5053 	ext4_group_desc_csum_set(sb, block_group, desc);
5054 	ext4_unlock_group(sb, block_group);
5055 	percpu_counter_add(&sbi->s_freeclusters_counter,
5056 			   clusters_freed);
5057 
5058 	if (sbi->s_log_groups_per_flex) {
5059 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5060 		atomic64_add(clusters_freed,
5061 			     &sbi->s_flex_groups[flex_group].free_clusters);
5062 	}
5063 
5064 	ext4_mb_unload_buddy(&e4b);
5065 
5066 	/* We dirtied the bitmap block */
5067 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5068 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5069 
5070 	/* And the group descriptor block */
5071 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5072 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5073 	if (!err)
5074 		err = ret;
5075 
5076 error_return:
5077 	brelse(bitmap_bh);
5078 	ext4_std_error(sb, err);
5079 	return err;
5080 }
5081 
5082 /**
5083  * ext4_trim_extent -- function to TRIM one single free extent in the group
5084  * @sb:		super block for the file system
5085  * @start:	starting block of the free extent in the alloc. group
5086  * @count:	number of blocks to TRIM
5087  * @group:	alloc. group we are working with
5088  * @e4b:	ext4 buddy for the group
5089  *
5090  * Trim "count" blocks starting at "start" in the "group". To assure that no
5091  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5092  * be called with under the group lock.
5093  */
5094 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5095 			     ext4_group_t group, struct ext4_buddy *e4b)
5096 __releases(bitlock)
5097 __acquires(bitlock)
5098 {
5099 	struct ext4_free_extent ex;
5100 	int ret = 0;
5101 
5102 	trace_ext4_trim_extent(sb, group, start, count);
5103 
5104 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5105 
5106 	ex.fe_start = start;
5107 	ex.fe_group = group;
5108 	ex.fe_len = count;
5109 
5110 	/*
5111 	 * Mark blocks used, so no one can reuse them while
5112 	 * being trimmed.
5113 	 */
5114 	mb_mark_used(e4b, &ex);
5115 	ext4_unlock_group(sb, group);
5116 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5117 	ext4_lock_group(sb, group);
5118 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5119 	return ret;
5120 }
5121 
5122 /**
5123  * ext4_trim_all_free -- function to trim all free space in alloc. group
5124  * @sb:			super block for file system
5125  * @group:		group to be trimmed
5126  * @start:		first group block to examine
5127  * @max:		last group block to examine
5128  * @minblocks:		minimum extent block count
5129  *
5130  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5131  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5132  * the extent.
5133  *
5134  *
5135  * ext4_trim_all_free walks through group's block bitmap searching for free
5136  * extents. When the free extent is found, mark it as used in group buddy
5137  * bitmap. Then issue a TRIM command on this extent and free the extent in
5138  * the group buddy bitmap. This is done until whole group is scanned.
5139  */
5140 static ext4_grpblk_t
5141 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5142 		   ext4_grpblk_t start, ext4_grpblk_t max,
5143 		   ext4_grpblk_t minblocks)
5144 {
5145 	void *bitmap;
5146 	ext4_grpblk_t next, count = 0, free_count = 0;
5147 	struct ext4_buddy e4b;
5148 	int ret = 0;
5149 
5150 	trace_ext4_trim_all_free(sb, group, start, max);
5151 
5152 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5153 	if (ret) {
5154 		ext4_warning(sb, "Error %d loading buddy information for %u",
5155 			     ret, group);
5156 		return ret;
5157 	}
5158 	bitmap = e4b.bd_bitmap;
5159 
5160 	ext4_lock_group(sb, group);
5161 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5162 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5163 		goto out;
5164 
5165 	start = (e4b.bd_info->bb_first_free > start) ?
5166 		e4b.bd_info->bb_first_free : start;
5167 
5168 	while (start <= max) {
5169 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5170 		if (start > max)
5171 			break;
5172 		next = mb_find_next_bit(bitmap, max + 1, start);
5173 
5174 		if ((next - start) >= minblocks) {
5175 			ret = ext4_trim_extent(sb, start,
5176 					       next - start, group, &e4b);
5177 			if (ret && ret != -EOPNOTSUPP)
5178 				break;
5179 			ret = 0;
5180 			count += next - start;
5181 		}
5182 		free_count += next - start;
5183 		start = next + 1;
5184 
5185 		if (fatal_signal_pending(current)) {
5186 			count = -ERESTARTSYS;
5187 			break;
5188 		}
5189 
5190 		if (need_resched()) {
5191 			ext4_unlock_group(sb, group);
5192 			cond_resched();
5193 			ext4_lock_group(sb, group);
5194 		}
5195 
5196 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5197 			break;
5198 	}
5199 
5200 	if (!ret) {
5201 		ret = count;
5202 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5203 	}
5204 out:
5205 	ext4_unlock_group(sb, group);
5206 	ext4_mb_unload_buddy(&e4b);
5207 
5208 	ext4_debug("trimmed %d blocks in the group %d\n",
5209 		count, group);
5210 
5211 	return ret;
5212 }
5213 
5214 /**
5215  * ext4_trim_fs() -- trim ioctl handle function
5216  * @sb:			superblock for filesystem
5217  * @range:		fstrim_range structure
5218  *
5219  * start:	First Byte to trim
5220  * len:		number of Bytes to trim from start
5221  * minlen:	minimum extent length in Bytes
5222  * ext4_trim_fs goes through all allocation groups containing Bytes from
5223  * start to start+len. For each such a group ext4_trim_all_free function
5224  * is invoked to trim all free space.
5225  */
5226 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5227 {
5228 	struct ext4_group_info *grp;
5229 	ext4_group_t group, first_group, last_group;
5230 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5231 	uint64_t start, end, minlen, trimmed = 0;
5232 	ext4_fsblk_t first_data_blk =
5233 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5234 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5235 	int ret = 0;
5236 
5237 	start = range->start >> sb->s_blocksize_bits;
5238 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5239 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5240 			      range->minlen >> sb->s_blocksize_bits);
5241 
5242 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5243 	    start >= max_blks ||
5244 	    range->len < sb->s_blocksize)
5245 		return -EINVAL;
5246 	if (end >= max_blks)
5247 		end = max_blks - 1;
5248 	if (end <= first_data_blk)
5249 		goto out;
5250 	if (start < first_data_blk)
5251 		start = first_data_blk;
5252 
5253 	/* Determine first and last group to examine based on start and end */
5254 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5255 				     &first_group, &first_cluster);
5256 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5257 				     &last_group, &last_cluster);
5258 
5259 	/* end now represents the last cluster to discard in this group */
5260 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5261 
5262 	for (group = first_group; group <= last_group; group++) {
5263 		grp = ext4_get_group_info(sb, group);
5264 		/* We only do this if the grp has never been initialized */
5265 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5266 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5267 			if (ret)
5268 				break;
5269 		}
5270 
5271 		/*
5272 		 * For all the groups except the last one, last cluster will
5273 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5274 		 * change it for the last group, note that last_cluster is
5275 		 * already computed earlier by ext4_get_group_no_and_offset()
5276 		 */
5277 		if (group == last_group)
5278 			end = last_cluster;
5279 
5280 		if (grp->bb_free >= minlen) {
5281 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5282 						end, minlen);
5283 			if (cnt < 0) {
5284 				ret = cnt;
5285 				break;
5286 			}
5287 			trimmed += cnt;
5288 		}
5289 
5290 		/*
5291 		 * For every group except the first one, we are sure
5292 		 * that the first cluster to discard will be cluster #0.
5293 		 */
5294 		first_cluster = 0;
5295 	}
5296 
5297 	if (!ret)
5298 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5299 
5300 out:
5301 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5302 	return ret;
5303 }
5304 
5305 /* Iterate all the free extents in the group. */
5306 int
5307 ext4_mballoc_query_range(
5308 	struct super_block		*sb,
5309 	ext4_group_t			group,
5310 	ext4_grpblk_t			start,
5311 	ext4_grpblk_t			end,
5312 	ext4_mballoc_query_range_fn	formatter,
5313 	void				*priv)
5314 {
5315 	void				*bitmap;
5316 	ext4_grpblk_t			next;
5317 	struct ext4_buddy		e4b;
5318 	int				error;
5319 
5320 	error = ext4_mb_load_buddy(sb, group, &e4b);
5321 	if (error)
5322 		return error;
5323 	bitmap = e4b.bd_bitmap;
5324 
5325 	ext4_lock_group(sb, group);
5326 
5327 	start = (e4b.bd_info->bb_first_free > start) ?
5328 		e4b.bd_info->bb_first_free : start;
5329 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5330 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5331 
5332 	while (start <= end) {
5333 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5334 		if (start > end)
5335 			break;
5336 		next = mb_find_next_bit(bitmap, end + 1, start);
5337 
5338 		ext4_unlock_group(sb, group);
5339 		error = formatter(sb, group, start, next - start, priv);
5340 		if (error)
5341 			goto out_unload;
5342 		ext4_lock_group(sb, group);
5343 
5344 		start = next + 1;
5345 	}
5346 
5347 	ext4_unlock_group(sb, group);
5348 out_unload:
5349 	ext4_mb_unload_buddy(&e4b);
5350 
5351 	return error;
5352 }
5353