xref: /openbmc/linux/fs/ext4/mballoc.c (revision e71383fb9cd15a28d6c01d2c165a96f1c0bcf418)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
144  *
145  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
146  *
147  *    This is an array of lists where in the i-th list there are groups with
148  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
149  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
150  *    Note that we don't bother with a special list for completely empty groups
151  *    so we only have MB_NUM_ORDERS(sb) lists.
152  *
153  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
154  * structures to decide the order in which groups are to be traversed for
155  * fulfilling an allocation request.
156  *
157  * At CR = 0, we look for groups which have the largest_free_order >= the order
158  * of the request. We directly look at the largest free order list in the data
159  * structure (1) above where largest_free_order = order of the request. If that
160  * list is empty, we look at remaining list in the increasing order of
161  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
162  *
163  * At CR = 1, we only consider groups where average fragment size > request
164  * size. So, we lookup a group which has average fragment size just above or
165  * equal to request size using our average fragment size group lists (data
166  * structure 2) in O(1) time.
167  *
168  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
169  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
170  *
171  * The regular allocator (using the buddy cache) supports a few tunables.
172  *
173  * /sys/fs/ext4/<partition>/mb_min_to_scan
174  * /sys/fs/ext4/<partition>/mb_max_to_scan
175  * /sys/fs/ext4/<partition>/mb_order2_req
176  * /sys/fs/ext4/<partition>/mb_linear_limit
177  *
178  * The regular allocator uses buddy scan only if the request len is power of
179  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
180  * value of s_mb_order2_reqs can be tuned via
181  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
182  * stripe size (sbi->s_stripe), we try to search for contiguous block in
183  * stripe size. This should result in better allocation on RAID setups. If
184  * not, we search in the specific group using bitmap for best extents. The
185  * tunable min_to_scan and max_to_scan control the behaviour here.
186  * min_to_scan indicate how long the mballoc __must__ look for a best
187  * extent and max_to_scan indicates how long the mballoc __can__ look for a
188  * best extent in the found extents. Searching for the blocks starts with
189  * the group specified as the goal value in allocation context via
190  * ac_g_ex. Each group is first checked based on the criteria whether it
191  * can be used for allocation. ext4_mb_good_group explains how the groups are
192  * checked.
193  *
194  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
195  * get traversed linearly. That may result in subsequent allocations being not
196  * close to each other. And so, the underlying device may get filled up in a
197  * non-linear fashion. While that may not matter on non-rotational devices, for
198  * rotational devices that may result in higher seek times. "mb_linear_limit"
199  * tells mballoc how many groups mballoc should search linearly before
200  * performing consulting above data structures for more efficient lookups. For
201  * non rotational devices, this value defaults to 0 and for rotational devices
202  * this is set to MB_DEFAULT_LINEAR_LIMIT.
203  *
204  * Both the prealloc space are getting populated as above. So for the first
205  * request we will hit the buddy cache which will result in this prealloc
206  * space getting filled. The prealloc space is then later used for the
207  * subsequent request.
208  */
209 
210 /*
211  * mballoc operates on the following data:
212  *  - on-disk bitmap
213  *  - in-core buddy (actually includes buddy and bitmap)
214  *  - preallocation descriptors (PAs)
215  *
216  * there are two types of preallocations:
217  *  - inode
218  *    assiged to specific inode and can be used for this inode only.
219  *    it describes part of inode's space preallocated to specific
220  *    physical blocks. any block from that preallocated can be used
221  *    independent. the descriptor just tracks number of blocks left
222  *    unused. so, before taking some block from descriptor, one must
223  *    make sure corresponded logical block isn't allocated yet. this
224  *    also means that freeing any block within descriptor's range
225  *    must discard all preallocated blocks.
226  *  - locality group
227  *    assigned to specific locality group which does not translate to
228  *    permanent set of inodes: inode can join and leave group. space
229  *    from this type of preallocation can be used for any inode. thus
230  *    it's consumed from the beginning to the end.
231  *
232  * relation between them can be expressed as:
233  *    in-core buddy = on-disk bitmap + preallocation descriptors
234  *
235  * this mean blocks mballoc considers used are:
236  *  - allocated blocks (persistent)
237  *  - preallocated blocks (non-persistent)
238  *
239  * consistency in mballoc world means that at any time a block is either
240  * free or used in ALL structures. notice: "any time" should not be read
241  * literally -- time is discrete and delimited by locks.
242  *
243  *  to keep it simple, we don't use block numbers, instead we count number of
244  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
245  *
246  * all operations can be expressed as:
247  *  - init buddy:			buddy = on-disk + PAs
248  *  - new PA:				buddy += N; PA = N
249  *  - use inode PA:			on-disk += N; PA -= N
250  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
251  *  - use locality group PA		on-disk += N; PA -= N
252  *  - discard locality group PA		buddy -= PA; PA = 0
253  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
254  *        is used in real operation because we can't know actual used
255  *        bits from PA, only from on-disk bitmap
256  *
257  * if we follow this strict logic, then all operations above should be atomic.
258  * given some of them can block, we'd have to use something like semaphores
259  * killing performance on high-end SMP hardware. let's try to relax it using
260  * the following knowledge:
261  *  1) if buddy is referenced, it's already initialized
262  *  2) while block is used in buddy and the buddy is referenced,
263  *     nobody can re-allocate that block
264  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
265  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
266  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
267  *     block
268  *
269  * so, now we're building a concurrency table:
270  *  - init buddy vs.
271  *    - new PA
272  *      blocks for PA are allocated in the buddy, buddy must be referenced
273  *      until PA is linked to allocation group to avoid concurrent buddy init
274  *    - use inode PA
275  *      we need to make sure that either on-disk bitmap or PA has uptodate data
276  *      given (3) we care that PA-=N operation doesn't interfere with init
277  *    - discard inode PA
278  *      the simplest way would be to have buddy initialized by the discard
279  *    - use locality group PA
280  *      again PA-=N must be serialized with init
281  *    - discard locality group PA
282  *      the simplest way would be to have buddy initialized by the discard
283  *  - new PA vs.
284  *    - use inode PA
285  *      i_data_sem serializes them
286  *    - discard inode PA
287  *      discard process must wait until PA isn't used by another process
288  *    - use locality group PA
289  *      some mutex should serialize them
290  *    - discard locality group PA
291  *      discard process must wait until PA isn't used by another process
292  *  - use inode PA
293  *    - use inode PA
294  *      i_data_sem or another mutex should serializes them
295  *    - discard inode PA
296  *      discard process must wait until PA isn't used by another process
297  *    - use locality group PA
298  *      nothing wrong here -- they're different PAs covering different blocks
299  *    - discard locality group PA
300  *      discard process must wait until PA isn't used by another process
301  *
302  * now we're ready to make few consequences:
303  *  - PA is referenced and while it is no discard is possible
304  *  - PA is referenced until block isn't marked in on-disk bitmap
305  *  - PA changes only after on-disk bitmap
306  *  - discard must not compete with init. either init is done before
307  *    any discard or they're serialized somehow
308  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
309  *
310  * a special case when we've used PA to emptiness. no need to modify buddy
311  * in this case, but we should care about concurrent init
312  *
313  */
314 
315  /*
316  * Logic in few words:
317  *
318  *  - allocation:
319  *    load group
320  *    find blocks
321  *    mark bits in on-disk bitmap
322  *    release group
323  *
324  *  - use preallocation:
325  *    find proper PA (per-inode or group)
326  *    load group
327  *    mark bits in on-disk bitmap
328  *    release group
329  *    release PA
330  *
331  *  - free:
332  *    load group
333  *    mark bits in on-disk bitmap
334  *    release group
335  *
336  *  - discard preallocations in group:
337  *    mark PAs deleted
338  *    move them onto local list
339  *    load on-disk bitmap
340  *    load group
341  *    remove PA from object (inode or locality group)
342  *    mark free blocks in-core
343  *
344  *  - discard inode's preallocations:
345  */
346 
347 /*
348  * Locking rules
349  *
350  * Locks:
351  *  - bitlock on a group	(group)
352  *  - object (inode/locality)	(object)
353  *  - per-pa lock		(pa)
354  *  - cr0 lists lock		(cr0)
355  *  - cr1 tree lock		(cr1)
356  *
357  * Paths:
358  *  - new pa
359  *    object
360  *    group
361  *
362  *  - find and use pa:
363  *    pa
364  *
365  *  - release consumed pa:
366  *    pa
367  *    group
368  *    object
369  *
370  *  - generate in-core bitmap:
371  *    group
372  *        pa
373  *
374  *  - discard all for given object (inode, locality group):
375  *    object
376  *        pa
377  *    group
378  *
379  *  - discard all for given group:
380  *    group
381  *        pa
382  *    group
383  *        object
384  *
385  *  - allocation path (ext4_mb_regular_allocator)
386  *    group
387  *    cr0/cr1
388  */
389 static struct kmem_cache *ext4_pspace_cachep;
390 static struct kmem_cache *ext4_ac_cachep;
391 static struct kmem_cache *ext4_free_data_cachep;
392 
393 /* We create slab caches for groupinfo data structures based on the
394  * superblock block size.  There will be one per mounted filesystem for
395  * each unique s_blocksize_bits */
396 #define NR_GRPINFO_CACHES 8
397 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
398 
399 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
400 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
401 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
402 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
403 };
404 
405 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
406 					ext4_group_t group);
407 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
408 						ext4_group_t group);
409 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
410 
411 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
412 			       ext4_group_t group, int cr);
413 
414 static int ext4_try_to_trim_range(struct super_block *sb,
415 		struct ext4_buddy *e4b, ext4_grpblk_t start,
416 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
417 
418 /*
419  * The algorithm using this percpu seq counter goes below:
420  * 1. We sample the percpu discard_pa_seq counter before trying for block
421  *    allocation in ext4_mb_new_blocks().
422  * 2. We increment this percpu discard_pa_seq counter when we either allocate
423  *    or free these blocks i.e. while marking those blocks as used/free in
424  *    mb_mark_used()/mb_free_blocks().
425  * 3. We also increment this percpu seq counter when we successfully identify
426  *    that the bb_prealloc_list is not empty and hence proceed for discarding
427  *    of those PAs inside ext4_mb_discard_group_preallocations().
428  *
429  * Now to make sure that the regular fast path of block allocation is not
430  * affected, as a small optimization we only sample the percpu seq counter
431  * on that cpu. Only when the block allocation fails and when freed blocks
432  * found were 0, that is when we sample percpu seq counter for all cpus using
433  * below function ext4_get_discard_pa_seq_sum(). This happens after making
434  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
435  */
436 static DEFINE_PER_CPU(u64, discard_pa_seq);
437 static inline u64 ext4_get_discard_pa_seq_sum(void)
438 {
439 	int __cpu;
440 	u64 __seq = 0;
441 
442 	for_each_possible_cpu(__cpu)
443 		__seq += per_cpu(discard_pa_seq, __cpu);
444 	return __seq;
445 }
446 
447 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
448 {
449 #if BITS_PER_LONG == 64
450 	*bit += ((unsigned long) addr & 7UL) << 3;
451 	addr = (void *) ((unsigned long) addr & ~7UL);
452 #elif BITS_PER_LONG == 32
453 	*bit += ((unsigned long) addr & 3UL) << 3;
454 	addr = (void *) ((unsigned long) addr & ~3UL);
455 #else
456 #error "how many bits you are?!"
457 #endif
458 	return addr;
459 }
460 
461 static inline int mb_test_bit(int bit, void *addr)
462 {
463 	/*
464 	 * ext4_test_bit on architecture like powerpc
465 	 * needs unsigned long aligned address
466 	 */
467 	addr = mb_correct_addr_and_bit(&bit, addr);
468 	return ext4_test_bit(bit, addr);
469 }
470 
471 static inline void mb_set_bit(int bit, void *addr)
472 {
473 	addr = mb_correct_addr_and_bit(&bit, addr);
474 	ext4_set_bit(bit, addr);
475 }
476 
477 static inline void mb_clear_bit(int bit, void *addr)
478 {
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	ext4_clear_bit(bit, addr);
481 }
482 
483 static inline int mb_test_and_clear_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	return ext4_test_and_clear_bit(bit, addr);
487 }
488 
489 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
490 {
491 	int fix = 0, ret, tmpmax;
492 	addr = mb_correct_addr_and_bit(&fix, addr);
493 	tmpmax = max + fix;
494 	start += fix;
495 
496 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
497 	if (ret > max)
498 		return max;
499 	return ret;
500 }
501 
502 static inline int mb_find_next_bit(void *addr, int max, int start)
503 {
504 	int fix = 0, ret, tmpmax;
505 	addr = mb_correct_addr_and_bit(&fix, addr);
506 	tmpmax = max + fix;
507 	start += fix;
508 
509 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
510 	if (ret > max)
511 		return max;
512 	return ret;
513 }
514 
515 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
516 {
517 	char *bb;
518 
519 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
520 	BUG_ON(max == NULL);
521 
522 	if (order > e4b->bd_blkbits + 1) {
523 		*max = 0;
524 		return NULL;
525 	}
526 
527 	/* at order 0 we see each particular block */
528 	if (order == 0) {
529 		*max = 1 << (e4b->bd_blkbits + 3);
530 		return e4b->bd_bitmap;
531 	}
532 
533 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
534 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
535 
536 	return bb;
537 }
538 
539 #ifdef DOUBLE_CHECK
540 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
541 			   int first, int count)
542 {
543 	int i;
544 	struct super_block *sb = e4b->bd_sb;
545 
546 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
547 		return;
548 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
549 	for (i = 0; i < count; i++) {
550 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
551 			ext4_fsblk_t blocknr;
552 
553 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
554 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
555 			ext4_grp_locked_error(sb, e4b->bd_group,
556 					      inode ? inode->i_ino : 0,
557 					      blocknr,
558 					      "freeing block already freed "
559 					      "(bit %u)",
560 					      first + i);
561 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
562 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
563 		}
564 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
565 	}
566 }
567 
568 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
569 {
570 	int i;
571 
572 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
573 		return;
574 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
575 	for (i = 0; i < count; i++) {
576 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
577 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
578 	}
579 }
580 
581 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
582 {
583 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
584 		return;
585 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
586 		unsigned char *b1, *b2;
587 		int i;
588 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
589 		b2 = (unsigned char *) bitmap;
590 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
591 			if (b1[i] != b2[i]) {
592 				ext4_msg(e4b->bd_sb, KERN_ERR,
593 					 "corruption in group %u "
594 					 "at byte %u(%u): %x in copy != %x "
595 					 "on disk/prealloc",
596 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
597 				BUG();
598 			}
599 		}
600 	}
601 }
602 
603 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
604 			struct ext4_group_info *grp, ext4_group_t group)
605 {
606 	struct buffer_head *bh;
607 
608 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
609 	if (!grp->bb_bitmap)
610 		return;
611 
612 	bh = ext4_read_block_bitmap(sb, group);
613 	if (IS_ERR_OR_NULL(bh)) {
614 		kfree(grp->bb_bitmap);
615 		grp->bb_bitmap = NULL;
616 		return;
617 	}
618 
619 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
620 	put_bh(bh);
621 }
622 
623 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
624 {
625 	kfree(grp->bb_bitmap);
626 }
627 
628 #else
629 static inline void mb_free_blocks_double(struct inode *inode,
630 				struct ext4_buddy *e4b, int first, int count)
631 {
632 	return;
633 }
634 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
635 						int first, int count)
636 {
637 	return;
638 }
639 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
640 {
641 	return;
642 }
643 
644 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
645 			struct ext4_group_info *grp, ext4_group_t group)
646 {
647 	return;
648 }
649 
650 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
651 {
652 	return;
653 }
654 #endif
655 
656 #ifdef AGGRESSIVE_CHECK
657 
658 #define MB_CHECK_ASSERT(assert)						\
659 do {									\
660 	if (!(assert)) {						\
661 		printk(KERN_EMERG					\
662 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
663 			function, file, line, # assert);		\
664 		BUG();							\
665 	}								\
666 } while (0)
667 
668 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
669 				const char *function, int line)
670 {
671 	struct super_block *sb = e4b->bd_sb;
672 	int order = e4b->bd_blkbits + 1;
673 	int max;
674 	int max2;
675 	int i;
676 	int j;
677 	int k;
678 	int count;
679 	struct ext4_group_info *grp;
680 	int fragments = 0;
681 	int fstart;
682 	struct list_head *cur;
683 	void *buddy;
684 	void *buddy2;
685 
686 	if (e4b->bd_info->bb_check_counter++ % 10)
687 		return 0;
688 
689 	while (order > 1) {
690 		buddy = mb_find_buddy(e4b, order, &max);
691 		MB_CHECK_ASSERT(buddy);
692 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
693 		MB_CHECK_ASSERT(buddy2);
694 		MB_CHECK_ASSERT(buddy != buddy2);
695 		MB_CHECK_ASSERT(max * 2 == max2);
696 
697 		count = 0;
698 		for (i = 0; i < max; i++) {
699 
700 			if (mb_test_bit(i, buddy)) {
701 				/* only single bit in buddy2 may be 0 */
702 				if (!mb_test_bit(i << 1, buddy2)) {
703 					MB_CHECK_ASSERT(
704 						mb_test_bit((i<<1)+1, buddy2));
705 				}
706 				continue;
707 			}
708 
709 			/* both bits in buddy2 must be 1 */
710 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
711 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
712 
713 			for (j = 0; j < (1 << order); j++) {
714 				k = (i * (1 << order)) + j;
715 				MB_CHECK_ASSERT(
716 					!mb_test_bit(k, e4b->bd_bitmap));
717 			}
718 			count++;
719 		}
720 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
721 		order--;
722 	}
723 
724 	fstart = -1;
725 	buddy = mb_find_buddy(e4b, 0, &max);
726 	for (i = 0; i < max; i++) {
727 		if (!mb_test_bit(i, buddy)) {
728 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
729 			if (fstart == -1) {
730 				fragments++;
731 				fstart = i;
732 			}
733 			continue;
734 		}
735 		fstart = -1;
736 		/* check used bits only */
737 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
738 			buddy2 = mb_find_buddy(e4b, j, &max2);
739 			k = i >> j;
740 			MB_CHECK_ASSERT(k < max2);
741 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
742 		}
743 	}
744 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
745 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
746 
747 	grp = ext4_get_group_info(sb, e4b->bd_group);
748 	if (!grp)
749 		return NULL;
750 	list_for_each(cur, &grp->bb_prealloc_list) {
751 		ext4_group_t groupnr;
752 		struct ext4_prealloc_space *pa;
753 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
754 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
755 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
756 		for (i = 0; i < pa->pa_len; i++)
757 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
758 	}
759 	return 0;
760 }
761 #undef MB_CHECK_ASSERT
762 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
763 					__FILE__, __func__, __LINE__)
764 #else
765 #define mb_check_buddy(e4b)
766 #endif
767 
768 /*
769  * Divide blocks started from @first with length @len into
770  * smaller chunks with power of 2 blocks.
771  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
772  * then increase bb_counters[] for corresponded chunk size.
773  */
774 static void ext4_mb_mark_free_simple(struct super_block *sb,
775 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
776 					struct ext4_group_info *grp)
777 {
778 	struct ext4_sb_info *sbi = EXT4_SB(sb);
779 	ext4_grpblk_t min;
780 	ext4_grpblk_t max;
781 	ext4_grpblk_t chunk;
782 	unsigned int border;
783 
784 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
785 
786 	border = 2 << sb->s_blocksize_bits;
787 
788 	while (len > 0) {
789 		/* find how many blocks can be covered since this position */
790 		max = ffs(first | border) - 1;
791 
792 		/* find how many blocks of power 2 we need to mark */
793 		min = fls(len) - 1;
794 
795 		if (max < min)
796 			min = max;
797 		chunk = 1 << min;
798 
799 		/* mark multiblock chunks only */
800 		grp->bb_counters[min]++;
801 		if (min > 0)
802 			mb_clear_bit(first >> min,
803 				     buddy + sbi->s_mb_offsets[min]);
804 
805 		len -= chunk;
806 		first += chunk;
807 	}
808 }
809 
810 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
811 {
812 	int order;
813 
814 	/*
815 	 * We don't bother with a special lists groups with only 1 block free
816 	 * extents and for completely empty groups.
817 	 */
818 	order = fls(len) - 2;
819 	if (order < 0)
820 		return 0;
821 	if (order == MB_NUM_ORDERS(sb))
822 		order--;
823 	return order;
824 }
825 
826 /* Move group to appropriate avg_fragment_size list */
827 static void
828 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
829 {
830 	struct ext4_sb_info *sbi = EXT4_SB(sb);
831 	int new_order;
832 
833 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
834 		return;
835 
836 	new_order = mb_avg_fragment_size_order(sb,
837 					grp->bb_free / grp->bb_fragments);
838 	if (new_order == grp->bb_avg_fragment_size_order)
839 		return;
840 
841 	if (grp->bb_avg_fragment_size_order != -1) {
842 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
843 					grp->bb_avg_fragment_size_order]);
844 		list_del(&grp->bb_avg_fragment_size_node);
845 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
846 					grp->bb_avg_fragment_size_order]);
847 	}
848 	grp->bb_avg_fragment_size_order = new_order;
849 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
850 					grp->bb_avg_fragment_size_order]);
851 	list_add_tail(&grp->bb_avg_fragment_size_node,
852 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
853 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
854 					grp->bb_avg_fragment_size_order]);
855 }
856 
857 /*
858  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
859  * cr level needs an update.
860  */
861 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
862 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
863 {
864 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
865 	struct ext4_group_info *iter, *grp;
866 	int i;
867 
868 	if (ac->ac_status == AC_STATUS_FOUND)
869 		return;
870 
871 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
872 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
873 
874 	grp = NULL;
875 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
876 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
877 			continue;
878 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
879 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
880 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
881 			continue;
882 		}
883 		grp = NULL;
884 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
885 				    bb_largest_free_order_node) {
886 			if (sbi->s_mb_stats)
887 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
888 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
889 				grp = iter;
890 				break;
891 			}
892 		}
893 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
894 		if (grp)
895 			break;
896 	}
897 
898 	if (!grp) {
899 		/* Increment cr and search again */
900 		*new_cr = 1;
901 	} else {
902 		*group = grp->bb_group;
903 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
904 	}
905 }
906 
907 /*
908  * Choose next group by traversing average fragment size list of suitable
909  * order. Updates *new_cr if cr level needs an update.
910  */
911 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
912 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
913 {
914 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
915 	struct ext4_group_info *grp = NULL, *iter;
916 	int i;
917 
918 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
919 		if (sbi->s_mb_stats)
920 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
921 	}
922 
923 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
924 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
925 		if (list_empty(&sbi->s_mb_avg_fragment_size[i]))
926 			continue;
927 		read_lock(&sbi->s_mb_avg_fragment_size_locks[i]);
928 		if (list_empty(&sbi->s_mb_avg_fragment_size[i])) {
929 			read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
930 			continue;
931 		}
932 		list_for_each_entry(iter, &sbi->s_mb_avg_fragment_size[i],
933 				    bb_avg_fragment_size_node) {
934 			if (sbi->s_mb_stats)
935 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
936 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 1))) {
937 				grp = iter;
938 				break;
939 			}
940 		}
941 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
942 		if (grp)
943 			break;
944 	}
945 
946 	if (grp) {
947 		*group = grp->bb_group;
948 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
949 	} else {
950 		*new_cr = 2;
951 	}
952 }
953 
954 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
955 {
956 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
957 		return 0;
958 	if (ac->ac_criteria >= 2)
959 		return 0;
960 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
961 		return 0;
962 	return 1;
963 }
964 
965 /*
966  * Return next linear group for allocation. If linear traversal should not be
967  * performed, this function just returns the same group
968  */
969 static int
970 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
971 {
972 	if (!should_optimize_scan(ac))
973 		goto inc_and_return;
974 
975 	if (ac->ac_groups_linear_remaining) {
976 		ac->ac_groups_linear_remaining--;
977 		goto inc_and_return;
978 	}
979 
980 	return group;
981 inc_and_return:
982 	/*
983 	 * Artificially restricted ngroups for non-extent
984 	 * files makes group > ngroups possible on first loop.
985 	 */
986 	return group + 1 >= ngroups ? 0 : group + 1;
987 }
988 
989 /*
990  * ext4_mb_choose_next_group: choose next group for allocation.
991  *
992  * @ac        Allocation Context
993  * @new_cr    This is an output parameter. If the there is no good group
994  *            available at current CR level, this field is updated to indicate
995  *            the new cr level that should be used.
996  * @group     This is an input / output parameter. As an input it indicates the
997  *            next group that the allocator intends to use for allocation. As
998  *            output, this field indicates the next group that should be used as
999  *            determined by the optimization functions.
1000  * @ngroups   Total number of groups
1001  */
1002 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1003 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1004 {
1005 	*new_cr = ac->ac_criteria;
1006 
1007 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1008 		*group = next_linear_group(ac, *group, ngroups);
1009 		return;
1010 	}
1011 
1012 	if (*new_cr == 0) {
1013 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1014 	} else if (*new_cr == 1) {
1015 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1016 	} else {
1017 		/*
1018 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1019 		 * bb_free. But until that happens, we should never come here.
1020 		 */
1021 		WARN_ON(1);
1022 	}
1023 }
1024 
1025 /*
1026  * Cache the order of the largest free extent we have available in this block
1027  * group.
1028  */
1029 static void
1030 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1031 {
1032 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1033 	int i;
1034 
1035 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1036 		if (grp->bb_counters[i] > 0)
1037 			break;
1038 	/* No need to move between order lists? */
1039 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1040 	    i == grp->bb_largest_free_order) {
1041 		grp->bb_largest_free_order = i;
1042 		return;
1043 	}
1044 
1045 	if (grp->bb_largest_free_order >= 0) {
1046 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1047 					      grp->bb_largest_free_order]);
1048 		list_del_init(&grp->bb_largest_free_order_node);
1049 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1050 					      grp->bb_largest_free_order]);
1051 	}
1052 	grp->bb_largest_free_order = i;
1053 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1054 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1055 					      grp->bb_largest_free_order]);
1056 		list_add_tail(&grp->bb_largest_free_order_node,
1057 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1058 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1059 					      grp->bb_largest_free_order]);
1060 	}
1061 }
1062 
1063 static noinline_for_stack
1064 void ext4_mb_generate_buddy(struct super_block *sb,
1065 			    void *buddy, void *bitmap, ext4_group_t group,
1066 			    struct ext4_group_info *grp)
1067 {
1068 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1069 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1070 	ext4_grpblk_t i = 0;
1071 	ext4_grpblk_t first;
1072 	ext4_grpblk_t len;
1073 	unsigned free = 0;
1074 	unsigned fragments = 0;
1075 	unsigned long long period = get_cycles();
1076 
1077 	/* initialize buddy from bitmap which is aggregation
1078 	 * of on-disk bitmap and preallocations */
1079 	i = mb_find_next_zero_bit(bitmap, max, 0);
1080 	grp->bb_first_free = i;
1081 	while (i < max) {
1082 		fragments++;
1083 		first = i;
1084 		i = mb_find_next_bit(bitmap, max, i);
1085 		len = i - first;
1086 		free += len;
1087 		if (len > 1)
1088 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1089 		else
1090 			grp->bb_counters[0]++;
1091 		if (i < max)
1092 			i = mb_find_next_zero_bit(bitmap, max, i);
1093 	}
1094 	grp->bb_fragments = fragments;
1095 
1096 	if (free != grp->bb_free) {
1097 		ext4_grp_locked_error(sb, group, 0, 0,
1098 				      "block bitmap and bg descriptor "
1099 				      "inconsistent: %u vs %u free clusters",
1100 				      free, grp->bb_free);
1101 		/*
1102 		 * If we intend to continue, we consider group descriptor
1103 		 * corrupt and update bb_free using bitmap value
1104 		 */
1105 		grp->bb_free = free;
1106 		ext4_mark_group_bitmap_corrupted(sb, group,
1107 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1108 	}
1109 	mb_set_largest_free_order(sb, grp);
1110 	mb_update_avg_fragment_size(sb, grp);
1111 
1112 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1113 
1114 	period = get_cycles() - period;
1115 	atomic_inc(&sbi->s_mb_buddies_generated);
1116 	atomic64_add(period, &sbi->s_mb_generation_time);
1117 }
1118 
1119 /* The buddy information is attached the buddy cache inode
1120  * for convenience. The information regarding each group
1121  * is loaded via ext4_mb_load_buddy. The information involve
1122  * block bitmap and buddy information. The information are
1123  * stored in the inode as
1124  *
1125  * {                        page                        }
1126  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1127  *
1128  *
1129  * one block each for bitmap and buddy information.
1130  * So for each group we take up 2 blocks. A page can
1131  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1132  * So it can have information regarding groups_per_page which
1133  * is blocks_per_page/2
1134  *
1135  * Locking note:  This routine takes the block group lock of all groups
1136  * for this page; do not hold this lock when calling this routine!
1137  */
1138 
1139 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1140 {
1141 	ext4_group_t ngroups;
1142 	int blocksize;
1143 	int blocks_per_page;
1144 	int groups_per_page;
1145 	int err = 0;
1146 	int i;
1147 	ext4_group_t first_group, group;
1148 	int first_block;
1149 	struct super_block *sb;
1150 	struct buffer_head *bhs;
1151 	struct buffer_head **bh = NULL;
1152 	struct inode *inode;
1153 	char *data;
1154 	char *bitmap;
1155 	struct ext4_group_info *grinfo;
1156 
1157 	inode = page->mapping->host;
1158 	sb = inode->i_sb;
1159 	ngroups = ext4_get_groups_count(sb);
1160 	blocksize = i_blocksize(inode);
1161 	blocks_per_page = PAGE_SIZE / blocksize;
1162 
1163 	mb_debug(sb, "init page %lu\n", page->index);
1164 
1165 	groups_per_page = blocks_per_page >> 1;
1166 	if (groups_per_page == 0)
1167 		groups_per_page = 1;
1168 
1169 	/* allocate buffer_heads to read bitmaps */
1170 	if (groups_per_page > 1) {
1171 		i = sizeof(struct buffer_head *) * groups_per_page;
1172 		bh = kzalloc(i, gfp);
1173 		if (bh == NULL)
1174 			return -ENOMEM;
1175 	} else
1176 		bh = &bhs;
1177 
1178 	first_group = page->index * blocks_per_page / 2;
1179 
1180 	/* read all groups the page covers into the cache */
1181 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1182 		if (group >= ngroups)
1183 			break;
1184 
1185 		grinfo = ext4_get_group_info(sb, group);
1186 		if (!grinfo)
1187 			continue;
1188 		/*
1189 		 * If page is uptodate then we came here after online resize
1190 		 * which added some new uninitialized group info structs, so
1191 		 * we must skip all initialized uptodate buddies on the page,
1192 		 * which may be currently in use by an allocating task.
1193 		 */
1194 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1195 			bh[i] = NULL;
1196 			continue;
1197 		}
1198 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1199 		if (IS_ERR(bh[i])) {
1200 			err = PTR_ERR(bh[i]);
1201 			bh[i] = NULL;
1202 			goto out;
1203 		}
1204 		mb_debug(sb, "read bitmap for group %u\n", group);
1205 	}
1206 
1207 	/* wait for I/O completion */
1208 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1209 		int err2;
1210 
1211 		if (!bh[i])
1212 			continue;
1213 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1214 		if (!err)
1215 			err = err2;
1216 	}
1217 
1218 	first_block = page->index * blocks_per_page;
1219 	for (i = 0; i < blocks_per_page; i++) {
1220 		group = (first_block + i) >> 1;
1221 		if (group >= ngroups)
1222 			break;
1223 
1224 		if (!bh[group - first_group])
1225 			/* skip initialized uptodate buddy */
1226 			continue;
1227 
1228 		if (!buffer_verified(bh[group - first_group]))
1229 			/* Skip faulty bitmaps */
1230 			continue;
1231 		err = 0;
1232 
1233 		/*
1234 		 * data carry information regarding this
1235 		 * particular group in the format specified
1236 		 * above
1237 		 *
1238 		 */
1239 		data = page_address(page) + (i * blocksize);
1240 		bitmap = bh[group - first_group]->b_data;
1241 
1242 		/*
1243 		 * We place the buddy block and bitmap block
1244 		 * close together
1245 		 */
1246 		if ((first_block + i) & 1) {
1247 			/* this is block of buddy */
1248 			BUG_ON(incore == NULL);
1249 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1250 				group, page->index, i * blocksize);
1251 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1252 			grinfo = ext4_get_group_info(sb, group);
1253 			if (!grinfo) {
1254 				err = -EFSCORRUPTED;
1255 				goto out;
1256 			}
1257 			grinfo->bb_fragments = 0;
1258 			memset(grinfo->bb_counters, 0,
1259 			       sizeof(*grinfo->bb_counters) *
1260 			       (MB_NUM_ORDERS(sb)));
1261 			/*
1262 			 * incore got set to the group block bitmap below
1263 			 */
1264 			ext4_lock_group(sb, group);
1265 			/* init the buddy */
1266 			memset(data, 0xff, blocksize);
1267 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1268 			ext4_unlock_group(sb, group);
1269 			incore = NULL;
1270 		} else {
1271 			/* this is block of bitmap */
1272 			BUG_ON(incore != NULL);
1273 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1274 				group, page->index, i * blocksize);
1275 			trace_ext4_mb_bitmap_load(sb, group);
1276 
1277 			/* see comments in ext4_mb_put_pa() */
1278 			ext4_lock_group(sb, group);
1279 			memcpy(data, bitmap, blocksize);
1280 
1281 			/* mark all preallocated blks used in in-core bitmap */
1282 			ext4_mb_generate_from_pa(sb, data, group);
1283 			ext4_mb_generate_from_freelist(sb, data, group);
1284 			ext4_unlock_group(sb, group);
1285 
1286 			/* set incore so that the buddy information can be
1287 			 * generated using this
1288 			 */
1289 			incore = data;
1290 		}
1291 	}
1292 	SetPageUptodate(page);
1293 
1294 out:
1295 	if (bh) {
1296 		for (i = 0; i < groups_per_page; i++)
1297 			brelse(bh[i]);
1298 		if (bh != &bhs)
1299 			kfree(bh);
1300 	}
1301 	return err;
1302 }
1303 
1304 /*
1305  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1306  * on the same buddy page doesn't happen whild holding the buddy page lock.
1307  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1308  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1309  */
1310 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1311 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1312 {
1313 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1314 	int block, pnum, poff;
1315 	int blocks_per_page;
1316 	struct page *page;
1317 
1318 	e4b->bd_buddy_page = NULL;
1319 	e4b->bd_bitmap_page = NULL;
1320 
1321 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1322 	/*
1323 	 * the buddy cache inode stores the block bitmap
1324 	 * and buddy information in consecutive blocks.
1325 	 * So for each group we need two blocks.
1326 	 */
1327 	block = group * 2;
1328 	pnum = block / blocks_per_page;
1329 	poff = block % blocks_per_page;
1330 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1331 	if (!page)
1332 		return -ENOMEM;
1333 	BUG_ON(page->mapping != inode->i_mapping);
1334 	e4b->bd_bitmap_page = page;
1335 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1336 
1337 	if (blocks_per_page >= 2) {
1338 		/* buddy and bitmap are on the same page */
1339 		return 0;
1340 	}
1341 
1342 	block++;
1343 	pnum = block / blocks_per_page;
1344 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1345 	if (!page)
1346 		return -ENOMEM;
1347 	BUG_ON(page->mapping != inode->i_mapping);
1348 	e4b->bd_buddy_page = page;
1349 	return 0;
1350 }
1351 
1352 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1353 {
1354 	if (e4b->bd_bitmap_page) {
1355 		unlock_page(e4b->bd_bitmap_page);
1356 		put_page(e4b->bd_bitmap_page);
1357 	}
1358 	if (e4b->bd_buddy_page) {
1359 		unlock_page(e4b->bd_buddy_page);
1360 		put_page(e4b->bd_buddy_page);
1361 	}
1362 }
1363 
1364 /*
1365  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1366  * block group lock of all groups for this page; do not hold the BG lock when
1367  * calling this routine!
1368  */
1369 static noinline_for_stack
1370 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1371 {
1372 
1373 	struct ext4_group_info *this_grp;
1374 	struct ext4_buddy e4b;
1375 	struct page *page;
1376 	int ret = 0;
1377 
1378 	might_sleep();
1379 	mb_debug(sb, "init group %u\n", group);
1380 	this_grp = ext4_get_group_info(sb, group);
1381 	if (!this_grp)
1382 		return -EFSCORRUPTED;
1383 
1384 	/*
1385 	 * This ensures that we don't reinit the buddy cache
1386 	 * page which map to the group from which we are already
1387 	 * allocating. If we are looking at the buddy cache we would
1388 	 * have taken a reference using ext4_mb_load_buddy and that
1389 	 * would have pinned buddy page to page cache.
1390 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1391 	 * page accessed.
1392 	 */
1393 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1394 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1395 		/*
1396 		 * somebody initialized the group
1397 		 * return without doing anything
1398 		 */
1399 		goto err;
1400 	}
1401 
1402 	page = e4b.bd_bitmap_page;
1403 	ret = ext4_mb_init_cache(page, NULL, gfp);
1404 	if (ret)
1405 		goto err;
1406 	if (!PageUptodate(page)) {
1407 		ret = -EIO;
1408 		goto err;
1409 	}
1410 
1411 	if (e4b.bd_buddy_page == NULL) {
1412 		/*
1413 		 * If both the bitmap and buddy are in
1414 		 * the same page we don't need to force
1415 		 * init the buddy
1416 		 */
1417 		ret = 0;
1418 		goto err;
1419 	}
1420 	/* init buddy cache */
1421 	page = e4b.bd_buddy_page;
1422 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1423 	if (ret)
1424 		goto err;
1425 	if (!PageUptodate(page)) {
1426 		ret = -EIO;
1427 		goto err;
1428 	}
1429 err:
1430 	ext4_mb_put_buddy_page_lock(&e4b);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1436  * block group lock of all groups for this page; do not hold the BG lock when
1437  * calling this routine!
1438  */
1439 static noinline_for_stack int
1440 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1441 		       struct ext4_buddy *e4b, gfp_t gfp)
1442 {
1443 	int blocks_per_page;
1444 	int block;
1445 	int pnum;
1446 	int poff;
1447 	struct page *page;
1448 	int ret;
1449 	struct ext4_group_info *grp;
1450 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1451 	struct inode *inode = sbi->s_buddy_cache;
1452 
1453 	might_sleep();
1454 	mb_debug(sb, "load group %u\n", group);
1455 
1456 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1457 	grp = ext4_get_group_info(sb, group);
1458 	if (!grp)
1459 		return -EFSCORRUPTED;
1460 
1461 	e4b->bd_blkbits = sb->s_blocksize_bits;
1462 	e4b->bd_info = grp;
1463 	e4b->bd_sb = sb;
1464 	e4b->bd_group = group;
1465 	e4b->bd_buddy_page = NULL;
1466 	e4b->bd_bitmap_page = NULL;
1467 
1468 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1469 		/*
1470 		 * we need full data about the group
1471 		 * to make a good selection
1472 		 */
1473 		ret = ext4_mb_init_group(sb, group, gfp);
1474 		if (ret)
1475 			return ret;
1476 	}
1477 
1478 	/*
1479 	 * the buddy cache inode stores the block bitmap
1480 	 * and buddy information in consecutive blocks.
1481 	 * So for each group we need two blocks.
1482 	 */
1483 	block = group * 2;
1484 	pnum = block / blocks_per_page;
1485 	poff = block % blocks_per_page;
1486 
1487 	/* we could use find_or_create_page(), but it locks page
1488 	 * what we'd like to avoid in fast path ... */
1489 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1490 	if (page == NULL || !PageUptodate(page)) {
1491 		if (page)
1492 			/*
1493 			 * drop the page reference and try
1494 			 * to get the page with lock. If we
1495 			 * are not uptodate that implies
1496 			 * somebody just created the page but
1497 			 * is yet to initialize the same. So
1498 			 * wait for it to initialize.
1499 			 */
1500 			put_page(page);
1501 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1502 		if (page) {
1503 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1504 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1505 				/* should never happen */
1506 				unlock_page(page);
1507 				ret = -EINVAL;
1508 				goto err;
1509 			}
1510 			if (!PageUptodate(page)) {
1511 				ret = ext4_mb_init_cache(page, NULL, gfp);
1512 				if (ret) {
1513 					unlock_page(page);
1514 					goto err;
1515 				}
1516 				mb_cmp_bitmaps(e4b, page_address(page) +
1517 					       (poff * sb->s_blocksize));
1518 			}
1519 			unlock_page(page);
1520 		}
1521 	}
1522 	if (page == NULL) {
1523 		ret = -ENOMEM;
1524 		goto err;
1525 	}
1526 	if (!PageUptodate(page)) {
1527 		ret = -EIO;
1528 		goto err;
1529 	}
1530 
1531 	/* Pages marked accessed already */
1532 	e4b->bd_bitmap_page = page;
1533 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1534 
1535 	block++;
1536 	pnum = block / blocks_per_page;
1537 	poff = block % blocks_per_page;
1538 
1539 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1540 	if (page == NULL || !PageUptodate(page)) {
1541 		if (page)
1542 			put_page(page);
1543 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1544 		if (page) {
1545 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1546 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1547 				/* should never happen */
1548 				unlock_page(page);
1549 				ret = -EINVAL;
1550 				goto err;
1551 			}
1552 			if (!PageUptodate(page)) {
1553 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1554 							 gfp);
1555 				if (ret) {
1556 					unlock_page(page);
1557 					goto err;
1558 				}
1559 			}
1560 			unlock_page(page);
1561 		}
1562 	}
1563 	if (page == NULL) {
1564 		ret = -ENOMEM;
1565 		goto err;
1566 	}
1567 	if (!PageUptodate(page)) {
1568 		ret = -EIO;
1569 		goto err;
1570 	}
1571 
1572 	/* Pages marked accessed already */
1573 	e4b->bd_buddy_page = page;
1574 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1575 
1576 	return 0;
1577 
1578 err:
1579 	if (page)
1580 		put_page(page);
1581 	if (e4b->bd_bitmap_page)
1582 		put_page(e4b->bd_bitmap_page);
1583 
1584 	e4b->bd_buddy = NULL;
1585 	e4b->bd_bitmap = NULL;
1586 	return ret;
1587 }
1588 
1589 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1590 			      struct ext4_buddy *e4b)
1591 {
1592 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1593 }
1594 
1595 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1596 {
1597 	if (e4b->bd_bitmap_page)
1598 		put_page(e4b->bd_bitmap_page);
1599 	if (e4b->bd_buddy_page)
1600 		put_page(e4b->bd_buddy_page);
1601 }
1602 
1603 
1604 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1605 {
1606 	int order = 1, max;
1607 	void *bb;
1608 
1609 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1610 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1611 
1612 	while (order <= e4b->bd_blkbits + 1) {
1613 		bb = mb_find_buddy(e4b, order, &max);
1614 		if (!mb_test_bit(block >> order, bb)) {
1615 			/* this block is part of buddy of order 'order' */
1616 			return order;
1617 		}
1618 		order++;
1619 	}
1620 	return 0;
1621 }
1622 
1623 static void mb_clear_bits(void *bm, int cur, int len)
1624 {
1625 	__u32 *addr;
1626 
1627 	len = cur + len;
1628 	while (cur < len) {
1629 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1630 			/* fast path: clear whole word at once */
1631 			addr = bm + (cur >> 3);
1632 			*addr = 0;
1633 			cur += 32;
1634 			continue;
1635 		}
1636 		mb_clear_bit(cur, bm);
1637 		cur++;
1638 	}
1639 }
1640 
1641 /* clear bits in given range
1642  * will return first found zero bit if any, -1 otherwise
1643  */
1644 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1645 {
1646 	__u32 *addr;
1647 	int zero_bit = -1;
1648 
1649 	len = cur + len;
1650 	while (cur < len) {
1651 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1652 			/* fast path: clear whole word at once */
1653 			addr = bm + (cur >> 3);
1654 			if (*addr != (__u32)(-1) && zero_bit == -1)
1655 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1656 			*addr = 0;
1657 			cur += 32;
1658 			continue;
1659 		}
1660 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1661 			zero_bit = cur;
1662 		cur++;
1663 	}
1664 
1665 	return zero_bit;
1666 }
1667 
1668 void mb_set_bits(void *bm, int cur, int len)
1669 {
1670 	__u32 *addr;
1671 
1672 	len = cur + len;
1673 	while (cur < len) {
1674 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1675 			/* fast path: set whole word at once */
1676 			addr = bm + (cur >> 3);
1677 			*addr = 0xffffffff;
1678 			cur += 32;
1679 			continue;
1680 		}
1681 		mb_set_bit(cur, bm);
1682 		cur++;
1683 	}
1684 }
1685 
1686 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1687 {
1688 	if (mb_test_bit(*bit + side, bitmap)) {
1689 		mb_clear_bit(*bit, bitmap);
1690 		(*bit) -= side;
1691 		return 1;
1692 	}
1693 	else {
1694 		(*bit) += side;
1695 		mb_set_bit(*bit, bitmap);
1696 		return -1;
1697 	}
1698 }
1699 
1700 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1701 {
1702 	int max;
1703 	int order = 1;
1704 	void *buddy = mb_find_buddy(e4b, order, &max);
1705 
1706 	while (buddy) {
1707 		void *buddy2;
1708 
1709 		/* Bits in range [first; last] are known to be set since
1710 		 * corresponding blocks were allocated. Bits in range
1711 		 * (first; last) will stay set because they form buddies on
1712 		 * upper layer. We just deal with borders if they don't
1713 		 * align with upper layer and then go up.
1714 		 * Releasing entire group is all about clearing
1715 		 * single bit of highest order buddy.
1716 		 */
1717 
1718 		/* Example:
1719 		 * ---------------------------------
1720 		 * |   1   |   1   |   1   |   1   |
1721 		 * ---------------------------------
1722 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1723 		 * ---------------------------------
1724 		 *   0   1   2   3   4   5   6   7
1725 		 *      \_____________________/
1726 		 *
1727 		 * Neither [1] nor [6] is aligned to above layer.
1728 		 * Left neighbour [0] is free, so mark it busy,
1729 		 * decrease bb_counters and extend range to
1730 		 * [0; 6]
1731 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1732 		 * mark [6] free, increase bb_counters and shrink range to
1733 		 * [0; 5].
1734 		 * Then shift range to [0; 2], go up and do the same.
1735 		 */
1736 
1737 
1738 		if (first & 1)
1739 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1740 		if (!(last & 1))
1741 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1742 		if (first > last)
1743 			break;
1744 		order++;
1745 
1746 		buddy2 = mb_find_buddy(e4b, order, &max);
1747 		if (!buddy2) {
1748 			mb_clear_bits(buddy, first, last - first + 1);
1749 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1750 			break;
1751 		}
1752 		first >>= 1;
1753 		last >>= 1;
1754 		buddy = buddy2;
1755 	}
1756 }
1757 
1758 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1759 			   int first, int count)
1760 {
1761 	int left_is_free = 0;
1762 	int right_is_free = 0;
1763 	int block;
1764 	int last = first + count - 1;
1765 	struct super_block *sb = e4b->bd_sb;
1766 
1767 	if (WARN_ON(count == 0))
1768 		return;
1769 	BUG_ON(last >= (sb->s_blocksize << 3));
1770 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1771 	/* Don't bother if the block group is corrupt. */
1772 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1773 		return;
1774 
1775 	mb_check_buddy(e4b);
1776 	mb_free_blocks_double(inode, e4b, first, count);
1777 
1778 	this_cpu_inc(discard_pa_seq);
1779 	e4b->bd_info->bb_free += count;
1780 	if (first < e4b->bd_info->bb_first_free)
1781 		e4b->bd_info->bb_first_free = first;
1782 
1783 	/* access memory sequentially: check left neighbour,
1784 	 * clear range and then check right neighbour
1785 	 */
1786 	if (first != 0)
1787 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1788 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1789 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1790 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1791 
1792 	if (unlikely(block != -1)) {
1793 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1794 		ext4_fsblk_t blocknr;
1795 
1796 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1797 		blocknr += EXT4_C2B(sbi, block);
1798 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1799 			ext4_grp_locked_error(sb, e4b->bd_group,
1800 					      inode ? inode->i_ino : 0,
1801 					      blocknr,
1802 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1803 					      block);
1804 			ext4_mark_group_bitmap_corrupted(
1805 				sb, e4b->bd_group,
1806 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1807 		}
1808 		goto done;
1809 	}
1810 
1811 	/* let's maintain fragments counter */
1812 	if (left_is_free && right_is_free)
1813 		e4b->bd_info->bb_fragments--;
1814 	else if (!left_is_free && !right_is_free)
1815 		e4b->bd_info->bb_fragments++;
1816 
1817 	/* buddy[0] == bd_bitmap is a special case, so handle
1818 	 * it right away and let mb_buddy_mark_free stay free of
1819 	 * zero order checks.
1820 	 * Check if neighbours are to be coaleasced,
1821 	 * adjust bitmap bb_counters and borders appropriately.
1822 	 */
1823 	if (first & 1) {
1824 		first += !left_is_free;
1825 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1826 	}
1827 	if (!(last & 1)) {
1828 		last -= !right_is_free;
1829 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1830 	}
1831 
1832 	if (first <= last)
1833 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1834 
1835 done:
1836 	mb_set_largest_free_order(sb, e4b->bd_info);
1837 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1838 	mb_check_buddy(e4b);
1839 }
1840 
1841 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1842 				int needed, struct ext4_free_extent *ex)
1843 {
1844 	int next = block;
1845 	int max, order;
1846 	void *buddy;
1847 
1848 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1849 	BUG_ON(ex == NULL);
1850 
1851 	buddy = mb_find_buddy(e4b, 0, &max);
1852 	BUG_ON(buddy == NULL);
1853 	BUG_ON(block >= max);
1854 	if (mb_test_bit(block, buddy)) {
1855 		ex->fe_len = 0;
1856 		ex->fe_start = 0;
1857 		ex->fe_group = 0;
1858 		return 0;
1859 	}
1860 
1861 	/* find actual order */
1862 	order = mb_find_order_for_block(e4b, block);
1863 	block = block >> order;
1864 
1865 	ex->fe_len = 1 << order;
1866 	ex->fe_start = block << order;
1867 	ex->fe_group = e4b->bd_group;
1868 
1869 	/* calc difference from given start */
1870 	next = next - ex->fe_start;
1871 	ex->fe_len -= next;
1872 	ex->fe_start += next;
1873 
1874 	while (needed > ex->fe_len &&
1875 	       mb_find_buddy(e4b, order, &max)) {
1876 
1877 		if (block + 1 >= max)
1878 			break;
1879 
1880 		next = (block + 1) * (1 << order);
1881 		if (mb_test_bit(next, e4b->bd_bitmap))
1882 			break;
1883 
1884 		order = mb_find_order_for_block(e4b, next);
1885 
1886 		block = next >> order;
1887 		ex->fe_len += 1 << order;
1888 	}
1889 
1890 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1891 		/* Should never happen! (but apparently sometimes does?!?) */
1892 		WARN_ON(1);
1893 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1894 			"corruption or bug in mb_find_extent "
1895 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1896 			block, order, needed, ex->fe_group, ex->fe_start,
1897 			ex->fe_len, ex->fe_logical);
1898 		ex->fe_len = 0;
1899 		ex->fe_start = 0;
1900 		ex->fe_group = 0;
1901 	}
1902 	return ex->fe_len;
1903 }
1904 
1905 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1906 {
1907 	int ord;
1908 	int mlen = 0;
1909 	int max = 0;
1910 	int cur;
1911 	int start = ex->fe_start;
1912 	int len = ex->fe_len;
1913 	unsigned ret = 0;
1914 	int len0 = len;
1915 	void *buddy;
1916 	bool split = false;
1917 
1918 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1919 	BUG_ON(e4b->bd_group != ex->fe_group);
1920 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1921 	mb_check_buddy(e4b);
1922 	mb_mark_used_double(e4b, start, len);
1923 
1924 	this_cpu_inc(discard_pa_seq);
1925 	e4b->bd_info->bb_free -= len;
1926 	if (e4b->bd_info->bb_first_free == start)
1927 		e4b->bd_info->bb_first_free += len;
1928 
1929 	/* let's maintain fragments counter */
1930 	if (start != 0)
1931 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1932 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1933 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1934 	if (mlen && max)
1935 		e4b->bd_info->bb_fragments++;
1936 	else if (!mlen && !max)
1937 		e4b->bd_info->bb_fragments--;
1938 
1939 	/* let's maintain buddy itself */
1940 	while (len) {
1941 		if (!split)
1942 			ord = mb_find_order_for_block(e4b, start);
1943 
1944 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1945 			/* the whole chunk may be allocated at once! */
1946 			mlen = 1 << ord;
1947 			if (!split)
1948 				buddy = mb_find_buddy(e4b, ord, &max);
1949 			else
1950 				split = false;
1951 			BUG_ON((start >> ord) >= max);
1952 			mb_set_bit(start >> ord, buddy);
1953 			e4b->bd_info->bb_counters[ord]--;
1954 			start += mlen;
1955 			len -= mlen;
1956 			BUG_ON(len < 0);
1957 			continue;
1958 		}
1959 
1960 		/* store for history */
1961 		if (ret == 0)
1962 			ret = len | (ord << 16);
1963 
1964 		/* we have to split large buddy */
1965 		BUG_ON(ord <= 0);
1966 		buddy = mb_find_buddy(e4b, ord, &max);
1967 		mb_set_bit(start >> ord, buddy);
1968 		e4b->bd_info->bb_counters[ord]--;
1969 
1970 		ord--;
1971 		cur = (start >> ord) & ~1U;
1972 		buddy = mb_find_buddy(e4b, ord, &max);
1973 		mb_clear_bit(cur, buddy);
1974 		mb_clear_bit(cur + 1, buddy);
1975 		e4b->bd_info->bb_counters[ord]++;
1976 		e4b->bd_info->bb_counters[ord]++;
1977 		split = true;
1978 	}
1979 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1980 
1981 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
1982 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1983 	mb_check_buddy(e4b);
1984 
1985 	return ret;
1986 }
1987 
1988 /*
1989  * Must be called under group lock!
1990  */
1991 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1992 					struct ext4_buddy *e4b)
1993 {
1994 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1995 	int ret;
1996 
1997 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1998 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1999 
2000 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2001 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2002 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2003 
2004 	/* preallocation can change ac_b_ex, thus we store actually
2005 	 * allocated blocks for history */
2006 	ac->ac_f_ex = ac->ac_b_ex;
2007 
2008 	ac->ac_status = AC_STATUS_FOUND;
2009 	ac->ac_tail = ret & 0xffff;
2010 	ac->ac_buddy = ret >> 16;
2011 
2012 	/*
2013 	 * take the page reference. We want the page to be pinned
2014 	 * so that we don't get a ext4_mb_init_cache_call for this
2015 	 * group until we update the bitmap. That would mean we
2016 	 * double allocate blocks. The reference is dropped
2017 	 * in ext4_mb_release_context
2018 	 */
2019 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2020 	get_page(ac->ac_bitmap_page);
2021 	ac->ac_buddy_page = e4b->bd_buddy_page;
2022 	get_page(ac->ac_buddy_page);
2023 	/* store last allocated for subsequent stream allocation */
2024 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2025 		spin_lock(&sbi->s_md_lock);
2026 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2027 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2028 		spin_unlock(&sbi->s_md_lock);
2029 	}
2030 	/*
2031 	 * As we've just preallocated more space than
2032 	 * user requested originally, we store allocated
2033 	 * space in a special descriptor.
2034 	 */
2035 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2036 		ext4_mb_new_preallocation(ac);
2037 
2038 }
2039 
2040 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2041 					struct ext4_buddy *e4b,
2042 					int finish_group)
2043 {
2044 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2045 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2046 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2047 
2048 	if (ac->ac_status == AC_STATUS_FOUND)
2049 		return;
2050 	/*
2051 	 * We don't want to scan for a whole year
2052 	 */
2053 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2054 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2055 		ac->ac_status = AC_STATUS_BREAK;
2056 		return;
2057 	}
2058 
2059 	/*
2060 	 * Haven't found good chunk so far, let's continue
2061 	 */
2062 	if (bex->fe_len < gex->fe_len)
2063 		return;
2064 
2065 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2066 		ext4_mb_use_best_found(ac, e4b);
2067 }
2068 
2069 /*
2070  * The routine checks whether found extent is good enough. If it is,
2071  * then the extent gets marked used and flag is set to the context
2072  * to stop scanning. Otherwise, the extent is compared with the
2073  * previous found extent and if new one is better, then it's stored
2074  * in the context. Later, the best found extent will be used, if
2075  * mballoc can't find good enough extent.
2076  *
2077  * The algorithm used is roughly as follows:
2078  *
2079  * * If free extent found is exactly as big as goal, then
2080  *   stop the scan and use it immediately
2081  *
2082  * * If free extent found is smaller than goal, then keep retrying
2083  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2084  *   that stop scanning and use whatever we have.
2085  *
2086  * * If free extent found is bigger than goal, then keep retrying
2087  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2088  *   stopping the scan and using the extent.
2089  *
2090  *
2091  * FIXME: real allocation policy is to be designed yet!
2092  */
2093 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2094 					struct ext4_free_extent *ex,
2095 					struct ext4_buddy *e4b)
2096 {
2097 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2098 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2099 
2100 	BUG_ON(ex->fe_len <= 0);
2101 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2102 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2103 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2104 
2105 	ac->ac_found++;
2106 
2107 	/*
2108 	 * The special case - take what you catch first
2109 	 */
2110 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2111 		*bex = *ex;
2112 		ext4_mb_use_best_found(ac, e4b);
2113 		return;
2114 	}
2115 
2116 	/*
2117 	 * Let's check whether the chuck is good enough
2118 	 */
2119 	if (ex->fe_len == gex->fe_len) {
2120 		*bex = *ex;
2121 		ext4_mb_use_best_found(ac, e4b);
2122 		return;
2123 	}
2124 
2125 	/*
2126 	 * If this is first found extent, just store it in the context
2127 	 */
2128 	if (bex->fe_len == 0) {
2129 		*bex = *ex;
2130 		return;
2131 	}
2132 
2133 	/*
2134 	 * If new found extent is better, store it in the context
2135 	 */
2136 	if (bex->fe_len < gex->fe_len) {
2137 		/* if the request isn't satisfied, any found extent
2138 		 * larger than previous best one is better */
2139 		if (ex->fe_len > bex->fe_len)
2140 			*bex = *ex;
2141 	} else if (ex->fe_len > gex->fe_len) {
2142 		/* if the request is satisfied, then we try to find
2143 		 * an extent that still satisfy the request, but is
2144 		 * smaller than previous one */
2145 		if (ex->fe_len < bex->fe_len)
2146 			*bex = *ex;
2147 	}
2148 
2149 	ext4_mb_check_limits(ac, e4b, 0);
2150 }
2151 
2152 static noinline_for_stack
2153 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2154 					struct ext4_buddy *e4b)
2155 {
2156 	struct ext4_free_extent ex = ac->ac_b_ex;
2157 	ext4_group_t group = ex.fe_group;
2158 	int max;
2159 	int err;
2160 
2161 	BUG_ON(ex.fe_len <= 0);
2162 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2163 	if (err)
2164 		return;
2165 
2166 	ext4_lock_group(ac->ac_sb, group);
2167 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2168 
2169 	if (max > 0) {
2170 		ac->ac_b_ex = ex;
2171 		ext4_mb_use_best_found(ac, e4b);
2172 	}
2173 
2174 	ext4_unlock_group(ac->ac_sb, group);
2175 	ext4_mb_unload_buddy(e4b);
2176 }
2177 
2178 static noinline_for_stack
2179 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2180 				struct ext4_buddy *e4b)
2181 {
2182 	ext4_group_t group = ac->ac_g_ex.fe_group;
2183 	int max;
2184 	int err;
2185 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2186 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2187 	struct ext4_free_extent ex;
2188 
2189 	if (!grp)
2190 		return -EFSCORRUPTED;
2191 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2192 		return 0;
2193 	if (grp->bb_free == 0)
2194 		return 0;
2195 
2196 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2197 	if (err)
2198 		return err;
2199 
2200 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2201 		ext4_mb_unload_buddy(e4b);
2202 		return 0;
2203 	}
2204 
2205 	ext4_lock_group(ac->ac_sb, group);
2206 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2207 			     ac->ac_g_ex.fe_len, &ex);
2208 	ex.fe_logical = 0xDEADFA11; /* debug value */
2209 
2210 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2211 		ext4_fsblk_t start;
2212 
2213 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2214 			ex.fe_start;
2215 		/* use do_div to get remainder (would be 64-bit modulo) */
2216 		if (do_div(start, sbi->s_stripe) == 0) {
2217 			ac->ac_found++;
2218 			ac->ac_b_ex = ex;
2219 			ext4_mb_use_best_found(ac, e4b);
2220 		}
2221 	} else if (max >= ac->ac_g_ex.fe_len) {
2222 		BUG_ON(ex.fe_len <= 0);
2223 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2224 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2225 		ac->ac_found++;
2226 		ac->ac_b_ex = ex;
2227 		ext4_mb_use_best_found(ac, e4b);
2228 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2229 		/* Sometimes, caller may want to merge even small
2230 		 * number of blocks to an existing extent */
2231 		BUG_ON(ex.fe_len <= 0);
2232 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2233 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2234 		ac->ac_found++;
2235 		ac->ac_b_ex = ex;
2236 		ext4_mb_use_best_found(ac, e4b);
2237 	}
2238 	ext4_unlock_group(ac->ac_sb, group);
2239 	ext4_mb_unload_buddy(e4b);
2240 
2241 	return 0;
2242 }
2243 
2244 /*
2245  * The routine scans buddy structures (not bitmap!) from given order
2246  * to max order and tries to find big enough chunk to satisfy the req
2247  */
2248 static noinline_for_stack
2249 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2250 					struct ext4_buddy *e4b)
2251 {
2252 	struct super_block *sb = ac->ac_sb;
2253 	struct ext4_group_info *grp = e4b->bd_info;
2254 	void *buddy;
2255 	int i;
2256 	int k;
2257 	int max;
2258 
2259 	BUG_ON(ac->ac_2order <= 0);
2260 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2261 		if (grp->bb_counters[i] == 0)
2262 			continue;
2263 
2264 		buddy = mb_find_buddy(e4b, i, &max);
2265 		if (WARN_RATELIMIT(buddy == NULL,
2266 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2267 			continue;
2268 
2269 		k = mb_find_next_zero_bit(buddy, max, 0);
2270 		if (k >= max) {
2271 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2272 				"%d free clusters of order %d. But found 0",
2273 				grp->bb_counters[i], i);
2274 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2275 					 e4b->bd_group,
2276 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2277 			break;
2278 		}
2279 		ac->ac_found++;
2280 
2281 		ac->ac_b_ex.fe_len = 1 << i;
2282 		ac->ac_b_ex.fe_start = k << i;
2283 		ac->ac_b_ex.fe_group = e4b->bd_group;
2284 
2285 		ext4_mb_use_best_found(ac, e4b);
2286 
2287 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2288 
2289 		if (EXT4_SB(sb)->s_mb_stats)
2290 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2291 
2292 		break;
2293 	}
2294 }
2295 
2296 /*
2297  * The routine scans the group and measures all found extents.
2298  * In order to optimize scanning, caller must pass number of
2299  * free blocks in the group, so the routine can know upper limit.
2300  */
2301 static noinline_for_stack
2302 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2303 					struct ext4_buddy *e4b)
2304 {
2305 	struct super_block *sb = ac->ac_sb;
2306 	void *bitmap = e4b->bd_bitmap;
2307 	struct ext4_free_extent ex;
2308 	int i;
2309 	int free;
2310 
2311 	free = e4b->bd_info->bb_free;
2312 	if (WARN_ON(free <= 0))
2313 		return;
2314 
2315 	i = e4b->bd_info->bb_first_free;
2316 
2317 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2318 		i = mb_find_next_zero_bit(bitmap,
2319 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2320 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2321 			/*
2322 			 * IF we have corrupt bitmap, we won't find any
2323 			 * free blocks even though group info says we
2324 			 * have free blocks
2325 			 */
2326 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2327 					"%d free clusters as per "
2328 					"group info. But bitmap says 0",
2329 					free);
2330 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2331 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2332 			break;
2333 		}
2334 
2335 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2336 		if (WARN_ON(ex.fe_len <= 0))
2337 			break;
2338 		if (free < ex.fe_len) {
2339 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2340 					"%d free clusters as per "
2341 					"group info. But got %d blocks",
2342 					free, ex.fe_len);
2343 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2344 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2345 			/*
2346 			 * The number of free blocks differs. This mostly
2347 			 * indicate that the bitmap is corrupt. So exit
2348 			 * without claiming the space.
2349 			 */
2350 			break;
2351 		}
2352 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2353 		ext4_mb_measure_extent(ac, &ex, e4b);
2354 
2355 		i += ex.fe_len;
2356 		free -= ex.fe_len;
2357 	}
2358 
2359 	ext4_mb_check_limits(ac, e4b, 1);
2360 }
2361 
2362 /*
2363  * This is a special case for storages like raid5
2364  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2365  */
2366 static noinline_for_stack
2367 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2368 				 struct ext4_buddy *e4b)
2369 {
2370 	struct super_block *sb = ac->ac_sb;
2371 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2372 	void *bitmap = e4b->bd_bitmap;
2373 	struct ext4_free_extent ex;
2374 	ext4_fsblk_t first_group_block;
2375 	ext4_fsblk_t a;
2376 	ext4_grpblk_t i;
2377 	int max;
2378 
2379 	BUG_ON(sbi->s_stripe == 0);
2380 
2381 	/* find first stripe-aligned block in group */
2382 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2383 
2384 	a = first_group_block + sbi->s_stripe - 1;
2385 	do_div(a, sbi->s_stripe);
2386 	i = (a * sbi->s_stripe) - first_group_block;
2387 
2388 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2389 		if (!mb_test_bit(i, bitmap)) {
2390 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2391 			if (max >= sbi->s_stripe) {
2392 				ac->ac_found++;
2393 				ex.fe_logical = 0xDEADF00D; /* debug value */
2394 				ac->ac_b_ex = ex;
2395 				ext4_mb_use_best_found(ac, e4b);
2396 				break;
2397 			}
2398 		}
2399 		i += sbi->s_stripe;
2400 	}
2401 }
2402 
2403 /*
2404  * This is also called BEFORE we load the buddy bitmap.
2405  * Returns either 1 or 0 indicating that the group is either suitable
2406  * for the allocation or not.
2407  */
2408 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2409 				ext4_group_t group, int cr)
2410 {
2411 	ext4_grpblk_t free, fragments;
2412 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2413 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2414 
2415 	BUG_ON(cr < 0 || cr >= 4);
2416 
2417 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp) || !grp))
2418 		return false;
2419 
2420 	free = grp->bb_free;
2421 	if (free == 0)
2422 		return false;
2423 
2424 	fragments = grp->bb_fragments;
2425 	if (fragments == 0)
2426 		return false;
2427 
2428 	switch (cr) {
2429 	case 0:
2430 		BUG_ON(ac->ac_2order == 0);
2431 
2432 		/* Avoid using the first bg of a flexgroup for data files */
2433 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2434 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2435 		    ((group % flex_size) == 0))
2436 			return false;
2437 
2438 		if (free < ac->ac_g_ex.fe_len)
2439 			return false;
2440 
2441 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2442 			return true;
2443 
2444 		if (grp->bb_largest_free_order < ac->ac_2order)
2445 			return false;
2446 
2447 		return true;
2448 	case 1:
2449 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2450 			return true;
2451 		break;
2452 	case 2:
2453 		if (free >= ac->ac_g_ex.fe_len)
2454 			return true;
2455 		break;
2456 	case 3:
2457 		return true;
2458 	default:
2459 		BUG();
2460 	}
2461 
2462 	return false;
2463 }
2464 
2465 /*
2466  * This could return negative error code if something goes wrong
2467  * during ext4_mb_init_group(). This should not be called with
2468  * ext4_lock_group() held.
2469  *
2470  * Note: because we are conditionally operating with the group lock in
2471  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2472  * function using __acquire and __release.  This means we need to be
2473  * super careful before messing with the error path handling via "goto
2474  * out"!
2475  */
2476 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2477 				     ext4_group_t group, int cr)
2478 {
2479 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2480 	struct super_block *sb = ac->ac_sb;
2481 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2482 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2483 	ext4_grpblk_t free;
2484 	int ret = 0;
2485 
2486 	if (!grp)
2487 		return -EFSCORRUPTED;
2488 	if (sbi->s_mb_stats)
2489 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2490 	if (should_lock) {
2491 		ext4_lock_group(sb, group);
2492 		__release(ext4_group_lock_ptr(sb, group));
2493 	}
2494 	free = grp->bb_free;
2495 	if (free == 0)
2496 		goto out;
2497 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2498 		goto out;
2499 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2500 		goto out;
2501 	if (should_lock) {
2502 		__acquire(ext4_group_lock_ptr(sb, group));
2503 		ext4_unlock_group(sb, group);
2504 	}
2505 
2506 	/* We only do this if the grp has never been initialized */
2507 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2508 		struct ext4_group_desc *gdp =
2509 			ext4_get_group_desc(sb, group, NULL);
2510 		int ret;
2511 
2512 		/* cr=0/1 is a very optimistic search to find large
2513 		 * good chunks almost for free.  If buddy data is not
2514 		 * ready, then this optimization makes no sense.  But
2515 		 * we never skip the first block group in a flex_bg,
2516 		 * since this gets used for metadata block allocation,
2517 		 * and we want to make sure we locate metadata blocks
2518 		 * in the first block group in the flex_bg if possible.
2519 		 */
2520 		if (cr < 2 &&
2521 		    (!sbi->s_log_groups_per_flex ||
2522 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2523 		    !(ext4_has_group_desc_csum(sb) &&
2524 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2525 			return 0;
2526 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2527 		if (ret)
2528 			return ret;
2529 	}
2530 
2531 	if (should_lock) {
2532 		ext4_lock_group(sb, group);
2533 		__release(ext4_group_lock_ptr(sb, group));
2534 	}
2535 	ret = ext4_mb_good_group(ac, group, cr);
2536 out:
2537 	if (should_lock) {
2538 		__acquire(ext4_group_lock_ptr(sb, group));
2539 		ext4_unlock_group(sb, group);
2540 	}
2541 	return ret;
2542 }
2543 
2544 /*
2545  * Start prefetching @nr block bitmaps starting at @group.
2546  * Return the next group which needs to be prefetched.
2547  */
2548 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2549 			      unsigned int nr, int *cnt)
2550 {
2551 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2552 	struct buffer_head *bh;
2553 	struct blk_plug plug;
2554 
2555 	blk_start_plug(&plug);
2556 	while (nr-- > 0) {
2557 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2558 								  NULL);
2559 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2560 
2561 		/*
2562 		 * Prefetch block groups with free blocks; but don't
2563 		 * bother if it is marked uninitialized on disk, since
2564 		 * it won't require I/O to read.  Also only try to
2565 		 * prefetch once, so we avoid getblk() call, which can
2566 		 * be expensive.
2567 		 */
2568 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2569 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2570 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2571 		    !(ext4_has_group_desc_csum(sb) &&
2572 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2573 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2574 			if (bh && !IS_ERR(bh)) {
2575 				if (!buffer_uptodate(bh) && cnt)
2576 					(*cnt)++;
2577 				brelse(bh);
2578 			}
2579 		}
2580 		if (++group >= ngroups)
2581 			group = 0;
2582 	}
2583 	blk_finish_plug(&plug);
2584 	return group;
2585 }
2586 
2587 /*
2588  * Prefetching reads the block bitmap into the buffer cache; but we
2589  * need to make sure that the buddy bitmap in the page cache has been
2590  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2591  * is not yet completed, or indeed if it was not initiated by
2592  * ext4_mb_prefetch did not start the I/O.
2593  *
2594  * TODO: We should actually kick off the buddy bitmap setup in a work
2595  * queue when the buffer I/O is completed, so that we don't block
2596  * waiting for the block allocation bitmap read to finish when
2597  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2598  */
2599 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2600 			   unsigned int nr)
2601 {
2602 	struct ext4_group_desc *gdp;
2603 	struct ext4_group_info *grp;
2604 
2605 	while (nr-- > 0) {
2606 		if (!group)
2607 			group = ext4_get_groups_count(sb);
2608 		group--;
2609 		gdp = ext4_get_group_desc(sb, group, NULL);
2610 		grp = ext4_get_group_info(sb, group);
2611 
2612 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2613 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2614 		    !(ext4_has_group_desc_csum(sb) &&
2615 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2616 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2617 				break;
2618 		}
2619 	}
2620 }
2621 
2622 static noinline_for_stack int
2623 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2624 {
2625 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2626 	int cr = -1, new_cr;
2627 	int err = 0, first_err = 0;
2628 	unsigned int nr = 0, prefetch_ios = 0;
2629 	struct ext4_sb_info *sbi;
2630 	struct super_block *sb;
2631 	struct ext4_buddy e4b;
2632 	int lost;
2633 
2634 	sb = ac->ac_sb;
2635 	sbi = EXT4_SB(sb);
2636 	ngroups = ext4_get_groups_count(sb);
2637 	/* non-extent files are limited to low blocks/groups */
2638 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2639 		ngroups = sbi->s_blockfile_groups;
2640 
2641 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2642 
2643 	/* first, try the goal */
2644 	err = ext4_mb_find_by_goal(ac, &e4b);
2645 	if (err || ac->ac_status == AC_STATUS_FOUND)
2646 		goto out;
2647 
2648 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2649 		goto out;
2650 
2651 	/*
2652 	 * ac->ac_2order is set only if the fe_len is a power of 2
2653 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2654 	 * try exact allocation using buddy.
2655 	 */
2656 	i = fls(ac->ac_g_ex.fe_len);
2657 	ac->ac_2order = 0;
2658 	/*
2659 	 * We search using buddy data only if the order of the request
2660 	 * is greater than equal to the sbi_s_mb_order2_reqs
2661 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2662 	 * We also support searching for power-of-two requests only for
2663 	 * requests upto maximum buddy size we have constructed.
2664 	 */
2665 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2666 		/*
2667 		 * This should tell if fe_len is exactly power of 2
2668 		 */
2669 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2670 			ac->ac_2order = array_index_nospec(i - 1,
2671 							   MB_NUM_ORDERS(sb));
2672 	}
2673 
2674 	/* if stream allocation is enabled, use global goal */
2675 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2676 		/* TBD: may be hot point */
2677 		spin_lock(&sbi->s_md_lock);
2678 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2679 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2680 		spin_unlock(&sbi->s_md_lock);
2681 	}
2682 
2683 	/* Let's just scan groups to find more-less suitable blocks */
2684 	cr = ac->ac_2order ? 0 : 1;
2685 	/*
2686 	 * cr == 0 try to get exact allocation,
2687 	 * cr == 3  try to get anything
2688 	 */
2689 repeat:
2690 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2691 		ac->ac_criteria = cr;
2692 		/*
2693 		 * searching for the right group start
2694 		 * from the goal value specified
2695 		 */
2696 		group = ac->ac_g_ex.fe_group;
2697 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2698 		prefetch_grp = group;
2699 
2700 		for (i = 0, new_cr = cr; i < ngroups; i++,
2701 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2702 			int ret = 0;
2703 
2704 			cond_resched();
2705 			if (new_cr != cr) {
2706 				cr = new_cr;
2707 				goto repeat;
2708 			}
2709 
2710 			/*
2711 			 * Batch reads of the block allocation bitmaps
2712 			 * to get multiple READs in flight; limit
2713 			 * prefetching at cr=0/1, otherwise mballoc can
2714 			 * spend a lot of time loading imperfect groups
2715 			 */
2716 			if ((prefetch_grp == group) &&
2717 			    (cr > 1 ||
2718 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2719 				unsigned int curr_ios = prefetch_ios;
2720 
2721 				nr = sbi->s_mb_prefetch;
2722 				if (ext4_has_feature_flex_bg(sb)) {
2723 					nr = 1 << sbi->s_log_groups_per_flex;
2724 					nr -= group & (nr - 1);
2725 					nr = min(nr, sbi->s_mb_prefetch);
2726 				}
2727 				prefetch_grp = ext4_mb_prefetch(sb, group,
2728 							nr, &prefetch_ios);
2729 				if (prefetch_ios == curr_ios)
2730 					nr = 0;
2731 			}
2732 
2733 			/* This now checks without needing the buddy page */
2734 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2735 			if (ret <= 0) {
2736 				if (!first_err)
2737 					first_err = ret;
2738 				continue;
2739 			}
2740 
2741 			err = ext4_mb_load_buddy(sb, group, &e4b);
2742 			if (err)
2743 				goto out;
2744 
2745 			ext4_lock_group(sb, group);
2746 
2747 			/*
2748 			 * We need to check again after locking the
2749 			 * block group
2750 			 */
2751 			ret = ext4_mb_good_group(ac, group, cr);
2752 			if (ret == 0) {
2753 				ext4_unlock_group(sb, group);
2754 				ext4_mb_unload_buddy(&e4b);
2755 				continue;
2756 			}
2757 
2758 			ac->ac_groups_scanned++;
2759 			if (cr == 0)
2760 				ext4_mb_simple_scan_group(ac, &e4b);
2761 			else if (cr == 1 && sbi->s_stripe &&
2762 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2763 				ext4_mb_scan_aligned(ac, &e4b);
2764 			else
2765 				ext4_mb_complex_scan_group(ac, &e4b);
2766 
2767 			ext4_unlock_group(sb, group);
2768 			ext4_mb_unload_buddy(&e4b);
2769 
2770 			if (ac->ac_status != AC_STATUS_CONTINUE)
2771 				break;
2772 		}
2773 		/* Processed all groups and haven't found blocks */
2774 		if (sbi->s_mb_stats && i == ngroups)
2775 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2776 	}
2777 
2778 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2779 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2780 		/*
2781 		 * We've been searching too long. Let's try to allocate
2782 		 * the best chunk we've found so far
2783 		 */
2784 		ext4_mb_try_best_found(ac, &e4b);
2785 		if (ac->ac_status != AC_STATUS_FOUND) {
2786 			/*
2787 			 * Someone more lucky has already allocated it.
2788 			 * The only thing we can do is just take first
2789 			 * found block(s)
2790 			 */
2791 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2792 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2793 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2794 				 ac->ac_b_ex.fe_len, lost);
2795 
2796 			ac->ac_b_ex.fe_group = 0;
2797 			ac->ac_b_ex.fe_start = 0;
2798 			ac->ac_b_ex.fe_len = 0;
2799 			ac->ac_status = AC_STATUS_CONTINUE;
2800 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2801 			cr = 3;
2802 			goto repeat;
2803 		}
2804 	}
2805 
2806 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2807 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2808 out:
2809 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2810 		err = first_err;
2811 
2812 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2813 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2814 		 ac->ac_flags, cr, err);
2815 
2816 	if (nr)
2817 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2818 
2819 	return err;
2820 }
2821 
2822 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2823 {
2824 	struct super_block *sb = pde_data(file_inode(seq->file));
2825 	ext4_group_t group;
2826 
2827 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2828 		return NULL;
2829 	group = *pos + 1;
2830 	return (void *) ((unsigned long) group);
2831 }
2832 
2833 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2834 {
2835 	struct super_block *sb = pde_data(file_inode(seq->file));
2836 	ext4_group_t group;
2837 
2838 	++*pos;
2839 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2840 		return NULL;
2841 	group = *pos + 1;
2842 	return (void *) ((unsigned long) group);
2843 }
2844 
2845 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2846 {
2847 	struct super_block *sb = pde_data(file_inode(seq->file));
2848 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2849 	int i;
2850 	int err, buddy_loaded = 0;
2851 	struct ext4_buddy e4b;
2852 	struct ext4_group_info *grinfo;
2853 	unsigned char blocksize_bits = min_t(unsigned char,
2854 					     sb->s_blocksize_bits,
2855 					     EXT4_MAX_BLOCK_LOG_SIZE);
2856 	struct sg {
2857 		struct ext4_group_info info;
2858 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2859 	} sg;
2860 
2861 	group--;
2862 	if (group == 0)
2863 		seq_puts(seq, "#group: free  frags first ["
2864 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2865 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2866 
2867 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2868 		sizeof(struct ext4_group_info);
2869 
2870 	grinfo = ext4_get_group_info(sb, group);
2871 	if (!grinfo)
2872 		return 0;
2873 	/* Load the group info in memory only if not already loaded. */
2874 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2875 		err = ext4_mb_load_buddy(sb, group, &e4b);
2876 		if (err) {
2877 			seq_printf(seq, "#%-5u: I/O error\n", group);
2878 			return 0;
2879 		}
2880 		buddy_loaded = 1;
2881 	}
2882 
2883 	memcpy(&sg, grinfo, i);
2884 
2885 	if (buddy_loaded)
2886 		ext4_mb_unload_buddy(&e4b);
2887 
2888 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2889 			sg.info.bb_fragments, sg.info.bb_first_free);
2890 	for (i = 0; i <= 13; i++)
2891 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2892 				sg.info.bb_counters[i] : 0);
2893 	seq_puts(seq, " ]\n");
2894 
2895 	return 0;
2896 }
2897 
2898 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2899 {
2900 }
2901 
2902 const struct seq_operations ext4_mb_seq_groups_ops = {
2903 	.start  = ext4_mb_seq_groups_start,
2904 	.next   = ext4_mb_seq_groups_next,
2905 	.stop   = ext4_mb_seq_groups_stop,
2906 	.show   = ext4_mb_seq_groups_show,
2907 };
2908 
2909 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2910 {
2911 	struct super_block *sb = seq->private;
2912 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2913 
2914 	seq_puts(seq, "mballoc:\n");
2915 	if (!sbi->s_mb_stats) {
2916 		seq_puts(seq, "\tmb stats collection turned off.\n");
2917 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2918 		return 0;
2919 	}
2920 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2921 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2922 
2923 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
2924 
2925 	seq_puts(seq, "\tcr0_stats:\n");
2926 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2927 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2928 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2929 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2930 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
2931 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2932 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2933 
2934 	seq_puts(seq, "\tcr1_stats:\n");
2935 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2936 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2937 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2938 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2939 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
2940 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2941 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
2942 
2943 	seq_puts(seq, "\tcr2_stats:\n");
2944 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2945 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2946 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2947 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2948 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
2949 
2950 	seq_puts(seq, "\tcr3_stats:\n");
2951 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2952 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2953 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2954 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2955 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
2956 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2957 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2958 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2959 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2960 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2961 
2962 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2963 		   atomic_read(&sbi->s_mb_buddies_generated),
2964 		   ext4_get_groups_count(sb));
2965 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
2966 		   atomic64_read(&sbi->s_mb_generation_time));
2967 	seq_printf(seq, "\tpreallocated: %u\n",
2968 		   atomic_read(&sbi->s_mb_preallocated));
2969 	seq_printf(seq, "\tdiscarded: %u\n",
2970 		   atomic_read(&sbi->s_mb_discarded));
2971 	return 0;
2972 }
2973 
2974 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
2975 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
2976 {
2977 	struct super_block *sb = pde_data(file_inode(seq->file));
2978 	unsigned long position;
2979 
2980 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
2981 		return NULL;
2982 	position = *pos + 1;
2983 	return (void *) ((unsigned long) position);
2984 }
2985 
2986 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
2987 {
2988 	struct super_block *sb = pde_data(file_inode(seq->file));
2989 	unsigned long position;
2990 
2991 	++*pos;
2992 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
2993 		return NULL;
2994 	position = *pos + 1;
2995 	return (void *) ((unsigned long) position);
2996 }
2997 
2998 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
2999 {
3000 	struct super_block *sb = pde_data(file_inode(seq->file));
3001 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3002 	unsigned long position = ((unsigned long) v);
3003 	struct ext4_group_info *grp;
3004 	unsigned int count;
3005 
3006 	position--;
3007 	if (position >= MB_NUM_ORDERS(sb)) {
3008 		position -= MB_NUM_ORDERS(sb);
3009 		if (position == 0)
3010 			seq_puts(seq, "avg_fragment_size_lists:\n");
3011 
3012 		count = 0;
3013 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3014 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3015 				    bb_avg_fragment_size_node)
3016 			count++;
3017 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3018 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3019 					(unsigned int)position, count);
3020 		return 0;
3021 	}
3022 
3023 	if (position == 0) {
3024 		seq_printf(seq, "optimize_scan: %d\n",
3025 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3026 		seq_puts(seq, "max_free_order_lists:\n");
3027 	}
3028 	count = 0;
3029 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3030 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3031 			    bb_largest_free_order_node)
3032 		count++;
3033 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3034 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3035 		   (unsigned int)position, count);
3036 
3037 	return 0;
3038 }
3039 
3040 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3041 {
3042 }
3043 
3044 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3045 	.start  = ext4_mb_seq_structs_summary_start,
3046 	.next   = ext4_mb_seq_structs_summary_next,
3047 	.stop   = ext4_mb_seq_structs_summary_stop,
3048 	.show   = ext4_mb_seq_structs_summary_show,
3049 };
3050 
3051 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3052 {
3053 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3054 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3055 
3056 	BUG_ON(!cachep);
3057 	return cachep;
3058 }
3059 
3060 /*
3061  * Allocate the top-level s_group_info array for the specified number
3062  * of groups
3063  */
3064 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3065 {
3066 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3067 	unsigned size;
3068 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3069 
3070 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3071 		EXT4_DESC_PER_BLOCK_BITS(sb);
3072 	if (size <= sbi->s_group_info_size)
3073 		return 0;
3074 
3075 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3076 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3077 	if (!new_groupinfo) {
3078 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3079 		return -ENOMEM;
3080 	}
3081 	rcu_read_lock();
3082 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3083 	if (old_groupinfo)
3084 		memcpy(new_groupinfo, old_groupinfo,
3085 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3086 	rcu_read_unlock();
3087 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3088 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3089 	if (old_groupinfo)
3090 		ext4_kvfree_array_rcu(old_groupinfo);
3091 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3092 		   sbi->s_group_info_size);
3093 	return 0;
3094 }
3095 
3096 /* Create and initialize ext4_group_info data for the given group. */
3097 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3098 			  struct ext4_group_desc *desc)
3099 {
3100 	int i;
3101 	int metalen = 0;
3102 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3103 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3104 	struct ext4_group_info **meta_group_info;
3105 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3106 
3107 	/*
3108 	 * First check if this group is the first of a reserved block.
3109 	 * If it's true, we have to allocate a new table of pointers
3110 	 * to ext4_group_info structures
3111 	 */
3112 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3113 		metalen = sizeof(*meta_group_info) <<
3114 			EXT4_DESC_PER_BLOCK_BITS(sb);
3115 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3116 		if (meta_group_info == NULL) {
3117 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3118 				 "for a buddy group");
3119 			return -ENOMEM;
3120 		}
3121 		rcu_read_lock();
3122 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3123 		rcu_read_unlock();
3124 	}
3125 
3126 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3127 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3128 
3129 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3130 	if (meta_group_info[i] == NULL) {
3131 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3132 		goto exit_group_info;
3133 	}
3134 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3135 		&(meta_group_info[i]->bb_state));
3136 
3137 	/*
3138 	 * initialize bb_free to be able to skip
3139 	 * empty groups without initialization
3140 	 */
3141 	if (ext4_has_group_desc_csum(sb) &&
3142 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3143 		meta_group_info[i]->bb_free =
3144 			ext4_free_clusters_after_init(sb, group, desc);
3145 	} else {
3146 		meta_group_info[i]->bb_free =
3147 			ext4_free_group_clusters(sb, desc);
3148 	}
3149 
3150 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3151 	init_rwsem(&meta_group_info[i]->alloc_sem);
3152 	meta_group_info[i]->bb_free_root = RB_ROOT;
3153 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3154 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3155 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3156 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3157 	meta_group_info[i]->bb_group = group;
3158 
3159 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3160 	return 0;
3161 
3162 exit_group_info:
3163 	/* If a meta_group_info table has been allocated, release it now */
3164 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3165 		struct ext4_group_info ***group_info;
3166 
3167 		rcu_read_lock();
3168 		group_info = rcu_dereference(sbi->s_group_info);
3169 		kfree(group_info[idx]);
3170 		group_info[idx] = NULL;
3171 		rcu_read_unlock();
3172 	}
3173 	return -ENOMEM;
3174 } /* ext4_mb_add_groupinfo */
3175 
3176 static int ext4_mb_init_backend(struct super_block *sb)
3177 {
3178 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3179 	ext4_group_t i;
3180 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3181 	int err;
3182 	struct ext4_group_desc *desc;
3183 	struct ext4_group_info ***group_info;
3184 	struct kmem_cache *cachep;
3185 
3186 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3187 	if (err)
3188 		return err;
3189 
3190 	sbi->s_buddy_cache = new_inode(sb);
3191 	if (sbi->s_buddy_cache == NULL) {
3192 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3193 		goto err_freesgi;
3194 	}
3195 	/* To avoid potentially colliding with an valid on-disk inode number,
3196 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3197 	 * not in the inode hash, so it should never be found by iget(), but
3198 	 * this will avoid confusion if it ever shows up during debugging. */
3199 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3200 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3201 	for (i = 0; i < ngroups; i++) {
3202 		cond_resched();
3203 		desc = ext4_get_group_desc(sb, i, NULL);
3204 		if (desc == NULL) {
3205 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3206 			goto err_freebuddy;
3207 		}
3208 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3209 			goto err_freebuddy;
3210 	}
3211 
3212 	if (ext4_has_feature_flex_bg(sb)) {
3213 		/* a single flex group is supposed to be read by a single IO.
3214 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3215 		 * unsigned integer, so the maximum shift is 32.
3216 		 */
3217 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3218 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3219 			goto err_freebuddy;
3220 		}
3221 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3222 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3223 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3224 	} else {
3225 		sbi->s_mb_prefetch = 32;
3226 	}
3227 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3228 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3229 	/* now many real IOs to prefetch within a single allocation at cr=0
3230 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3231 	 * load too many groups, at some point we should start to use what
3232 	 * we've got in memory.
3233 	 * with an average random access time 5ms, it'd take a second to get
3234 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3235 	 */
3236 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3237 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3238 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3239 
3240 	return 0;
3241 
3242 err_freebuddy:
3243 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3244 	while (i-- > 0) {
3245 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3246 
3247 		if (grp)
3248 			kmem_cache_free(cachep, grp);
3249 	}
3250 	i = sbi->s_group_info_size;
3251 	rcu_read_lock();
3252 	group_info = rcu_dereference(sbi->s_group_info);
3253 	while (i-- > 0)
3254 		kfree(group_info[i]);
3255 	rcu_read_unlock();
3256 	iput(sbi->s_buddy_cache);
3257 err_freesgi:
3258 	rcu_read_lock();
3259 	kvfree(rcu_dereference(sbi->s_group_info));
3260 	rcu_read_unlock();
3261 	return -ENOMEM;
3262 }
3263 
3264 static void ext4_groupinfo_destroy_slabs(void)
3265 {
3266 	int i;
3267 
3268 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3269 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3270 		ext4_groupinfo_caches[i] = NULL;
3271 	}
3272 }
3273 
3274 static int ext4_groupinfo_create_slab(size_t size)
3275 {
3276 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3277 	int slab_size;
3278 	int blocksize_bits = order_base_2(size);
3279 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3280 	struct kmem_cache *cachep;
3281 
3282 	if (cache_index >= NR_GRPINFO_CACHES)
3283 		return -EINVAL;
3284 
3285 	if (unlikely(cache_index < 0))
3286 		cache_index = 0;
3287 
3288 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3289 	if (ext4_groupinfo_caches[cache_index]) {
3290 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3291 		return 0;	/* Already created */
3292 	}
3293 
3294 	slab_size = offsetof(struct ext4_group_info,
3295 				bb_counters[blocksize_bits + 2]);
3296 
3297 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3298 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3299 					NULL);
3300 
3301 	ext4_groupinfo_caches[cache_index] = cachep;
3302 
3303 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3304 	if (!cachep) {
3305 		printk(KERN_EMERG
3306 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3307 		return -ENOMEM;
3308 	}
3309 
3310 	return 0;
3311 }
3312 
3313 static void ext4_discard_work(struct work_struct *work)
3314 {
3315 	struct ext4_sb_info *sbi = container_of(work,
3316 			struct ext4_sb_info, s_discard_work);
3317 	struct super_block *sb = sbi->s_sb;
3318 	struct ext4_free_data *fd, *nfd;
3319 	struct ext4_buddy e4b;
3320 	struct list_head discard_list;
3321 	ext4_group_t grp, load_grp;
3322 	int err = 0;
3323 
3324 	INIT_LIST_HEAD(&discard_list);
3325 	spin_lock(&sbi->s_md_lock);
3326 	list_splice_init(&sbi->s_discard_list, &discard_list);
3327 	spin_unlock(&sbi->s_md_lock);
3328 
3329 	load_grp = UINT_MAX;
3330 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3331 		/*
3332 		 * If filesystem is umounting or no memory or suffering
3333 		 * from no space, give up the discard
3334 		 */
3335 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3336 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3337 			grp = fd->efd_group;
3338 			if (grp != load_grp) {
3339 				if (load_grp != UINT_MAX)
3340 					ext4_mb_unload_buddy(&e4b);
3341 
3342 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3343 				if (err) {
3344 					kmem_cache_free(ext4_free_data_cachep, fd);
3345 					load_grp = UINT_MAX;
3346 					continue;
3347 				} else {
3348 					load_grp = grp;
3349 				}
3350 			}
3351 
3352 			ext4_lock_group(sb, grp);
3353 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3354 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3355 			ext4_unlock_group(sb, grp);
3356 		}
3357 		kmem_cache_free(ext4_free_data_cachep, fd);
3358 	}
3359 
3360 	if (load_grp != UINT_MAX)
3361 		ext4_mb_unload_buddy(&e4b);
3362 }
3363 
3364 int ext4_mb_init(struct super_block *sb)
3365 {
3366 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3367 	unsigned i, j;
3368 	unsigned offset, offset_incr;
3369 	unsigned max;
3370 	int ret;
3371 
3372 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3373 
3374 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3375 	if (sbi->s_mb_offsets == NULL) {
3376 		ret = -ENOMEM;
3377 		goto out;
3378 	}
3379 
3380 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3381 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3382 	if (sbi->s_mb_maxs == NULL) {
3383 		ret = -ENOMEM;
3384 		goto out;
3385 	}
3386 
3387 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3388 	if (ret < 0)
3389 		goto out;
3390 
3391 	/* order 0 is regular bitmap */
3392 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3393 	sbi->s_mb_offsets[0] = 0;
3394 
3395 	i = 1;
3396 	offset = 0;
3397 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3398 	max = sb->s_blocksize << 2;
3399 	do {
3400 		sbi->s_mb_offsets[i] = offset;
3401 		sbi->s_mb_maxs[i] = max;
3402 		offset += offset_incr;
3403 		offset_incr = offset_incr >> 1;
3404 		max = max >> 1;
3405 		i++;
3406 	} while (i < MB_NUM_ORDERS(sb));
3407 
3408 	sbi->s_mb_avg_fragment_size =
3409 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3410 			GFP_KERNEL);
3411 	if (!sbi->s_mb_avg_fragment_size) {
3412 		ret = -ENOMEM;
3413 		goto out;
3414 	}
3415 	sbi->s_mb_avg_fragment_size_locks =
3416 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3417 			GFP_KERNEL);
3418 	if (!sbi->s_mb_avg_fragment_size_locks) {
3419 		ret = -ENOMEM;
3420 		goto out;
3421 	}
3422 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3423 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3424 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3425 	}
3426 	sbi->s_mb_largest_free_orders =
3427 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3428 			GFP_KERNEL);
3429 	if (!sbi->s_mb_largest_free_orders) {
3430 		ret = -ENOMEM;
3431 		goto out;
3432 	}
3433 	sbi->s_mb_largest_free_orders_locks =
3434 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3435 			GFP_KERNEL);
3436 	if (!sbi->s_mb_largest_free_orders_locks) {
3437 		ret = -ENOMEM;
3438 		goto out;
3439 	}
3440 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3441 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3442 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3443 	}
3444 
3445 	spin_lock_init(&sbi->s_md_lock);
3446 	sbi->s_mb_free_pending = 0;
3447 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3448 	INIT_LIST_HEAD(&sbi->s_discard_list);
3449 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3450 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3451 
3452 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3453 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3454 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3455 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3456 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3457 	/*
3458 	 * The default group preallocation is 512, which for 4k block
3459 	 * sizes translates to 2 megabytes.  However for bigalloc file
3460 	 * systems, this is probably too big (i.e, if the cluster size
3461 	 * is 1 megabyte, then group preallocation size becomes half a
3462 	 * gigabyte!).  As a default, we will keep a two megabyte
3463 	 * group pralloc size for cluster sizes up to 64k, and after
3464 	 * that, we will force a minimum group preallocation size of
3465 	 * 32 clusters.  This translates to 8 megs when the cluster
3466 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3467 	 * which seems reasonable as a default.
3468 	 */
3469 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3470 				       sbi->s_cluster_bits, 32);
3471 	/*
3472 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3473 	 * to the lowest multiple of s_stripe which is bigger than
3474 	 * the s_mb_group_prealloc as determined above. We want
3475 	 * the preallocation size to be an exact multiple of the
3476 	 * RAID stripe size so that preallocations don't fragment
3477 	 * the stripes.
3478 	 */
3479 	if (sbi->s_stripe > 1) {
3480 		sbi->s_mb_group_prealloc = roundup(
3481 			sbi->s_mb_group_prealloc, sbi->s_stripe);
3482 	}
3483 
3484 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3485 	if (sbi->s_locality_groups == NULL) {
3486 		ret = -ENOMEM;
3487 		goto out;
3488 	}
3489 	for_each_possible_cpu(i) {
3490 		struct ext4_locality_group *lg;
3491 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3492 		mutex_init(&lg->lg_mutex);
3493 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3494 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3495 		spin_lock_init(&lg->lg_prealloc_lock);
3496 	}
3497 
3498 	if (bdev_nonrot(sb->s_bdev))
3499 		sbi->s_mb_max_linear_groups = 0;
3500 	else
3501 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3502 	/* init file for buddy data */
3503 	ret = ext4_mb_init_backend(sb);
3504 	if (ret != 0)
3505 		goto out_free_locality_groups;
3506 
3507 	return 0;
3508 
3509 out_free_locality_groups:
3510 	free_percpu(sbi->s_locality_groups);
3511 	sbi->s_locality_groups = NULL;
3512 out:
3513 	kfree(sbi->s_mb_avg_fragment_size);
3514 	kfree(sbi->s_mb_avg_fragment_size_locks);
3515 	kfree(sbi->s_mb_largest_free_orders);
3516 	kfree(sbi->s_mb_largest_free_orders_locks);
3517 	kfree(sbi->s_mb_offsets);
3518 	sbi->s_mb_offsets = NULL;
3519 	kfree(sbi->s_mb_maxs);
3520 	sbi->s_mb_maxs = NULL;
3521 	return ret;
3522 }
3523 
3524 /* need to called with the ext4 group lock held */
3525 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3526 {
3527 	struct ext4_prealloc_space *pa;
3528 	struct list_head *cur, *tmp;
3529 	int count = 0;
3530 
3531 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3532 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3533 		list_del(&pa->pa_group_list);
3534 		count++;
3535 		kmem_cache_free(ext4_pspace_cachep, pa);
3536 	}
3537 	return count;
3538 }
3539 
3540 int ext4_mb_release(struct super_block *sb)
3541 {
3542 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3543 	ext4_group_t i;
3544 	int num_meta_group_infos;
3545 	struct ext4_group_info *grinfo, ***group_info;
3546 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3547 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3548 	int count;
3549 
3550 	if (test_opt(sb, DISCARD)) {
3551 		/*
3552 		 * wait the discard work to drain all of ext4_free_data
3553 		 */
3554 		flush_work(&sbi->s_discard_work);
3555 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3556 	}
3557 
3558 	if (sbi->s_group_info) {
3559 		for (i = 0; i < ngroups; i++) {
3560 			cond_resched();
3561 			grinfo = ext4_get_group_info(sb, i);
3562 			if (!grinfo)
3563 				continue;
3564 			mb_group_bb_bitmap_free(grinfo);
3565 			ext4_lock_group(sb, i);
3566 			count = ext4_mb_cleanup_pa(grinfo);
3567 			if (count)
3568 				mb_debug(sb, "mballoc: %d PAs left\n",
3569 					 count);
3570 			ext4_unlock_group(sb, i);
3571 			kmem_cache_free(cachep, grinfo);
3572 		}
3573 		num_meta_group_infos = (ngroups +
3574 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3575 			EXT4_DESC_PER_BLOCK_BITS(sb);
3576 		rcu_read_lock();
3577 		group_info = rcu_dereference(sbi->s_group_info);
3578 		for (i = 0; i < num_meta_group_infos; i++)
3579 			kfree(group_info[i]);
3580 		kvfree(group_info);
3581 		rcu_read_unlock();
3582 	}
3583 	kfree(sbi->s_mb_avg_fragment_size);
3584 	kfree(sbi->s_mb_avg_fragment_size_locks);
3585 	kfree(sbi->s_mb_largest_free_orders);
3586 	kfree(sbi->s_mb_largest_free_orders_locks);
3587 	kfree(sbi->s_mb_offsets);
3588 	kfree(sbi->s_mb_maxs);
3589 	iput(sbi->s_buddy_cache);
3590 	if (sbi->s_mb_stats) {
3591 		ext4_msg(sb, KERN_INFO,
3592 		       "mballoc: %u blocks %u reqs (%u success)",
3593 				atomic_read(&sbi->s_bal_allocated),
3594 				atomic_read(&sbi->s_bal_reqs),
3595 				atomic_read(&sbi->s_bal_success));
3596 		ext4_msg(sb, KERN_INFO,
3597 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3598 				"%u 2^N hits, %u breaks, %u lost",
3599 				atomic_read(&sbi->s_bal_ex_scanned),
3600 				atomic_read(&sbi->s_bal_groups_scanned),
3601 				atomic_read(&sbi->s_bal_goals),
3602 				atomic_read(&sbi->s_bal_2orders),
3603 				atomic_read(&sbi->s_bal_breaks),
3604 				atomic_read(&sbi->s_mb_lost_chunks));
3605 		ext4_msg(sb, KERN_INFO,
3606 		       "mballoc: %u generated and it took %llu",
3607 				atomic_read(&sbi->s_mb_buddies_generated),
3608 				atomic64_read(&sbi->s_mb_generation_time));
3609 		ext4_msg(sb, KERN_INFO,
3610 		       "mballoc: %u preallocated, %u discarded",
3611 				atomic_read(&sbi->s_mb_preallocated),
3612 				atomic_read(&sbi->s_mb_discarded));
3613 	}
3614 
3615 	free_percpu(sbi->s_locality_groups);
3616 
3617 	return 0;
3618 }
3619 
3620 static inline int ext4_issue_discard(struct super_block *sb,
3621 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3622 		struct bio **biop)
3623 {
3624 	ext4_fsblk_t discard_block;
3625 
3626 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3627 			 ext4_group_first_block_no(sb, block_group));
3628 	count = EXT4_C2B(EXT4_SB(sb), count);
3629 	trace_ext4_discard_blocks(sb,
3630 			(unsigned long long) discard_block, count);
3631 	if (biop) {
3632 		return __blkdev_issue_discard(sb->s_bdev,
3633 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3634 			(sector_t)count << (sb->s_blocksize_bits - 9),
3635 			GFP_NOFS, biop);
3636 	} else
3637 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3638 }
3639 
3640 static void ext4_free_data_in_buddy(struct super_block *sb,
3641 				    struct ext4_free_data *entry)
3642 {
3643 	struct ext4_buddy e4b;
3644 	struct ext4_group_info *db;
3645 	int err, count = 0;
3646 
3647 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3648 		 entry->efd_count, entry->efd_group, entry);
3649 
3650 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3651 	/* we expect to find existing buddy because it's pinned */
3652 	BUG_ON(err != 0);
3653 
3654 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3655 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3656 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3657 
3658 	db = e4b.bd_info;
3659 	/* there are blocks to put in buddy to make them really free */
3660 	count += entry->efd_count;
3661 	ext4_lock_group(sb, entry->efd_group);
3662 	/* Take it out of per group rb tree */
3663 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3664 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3665 
3666 	/*
3667 	 * Clear the trimmed flag for the group so that the next
3668 	 * ext4_trim_fs can trim it.
3669 	 * If the volume is mounted with -o discard, online discard
3670 	 * is supported and the free blocks will be trimmed online.
3671 	 */
3672 	if (!test_opt(sb, DISCARD))
3673 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3674 
3675 	if (!db->bb_free_root.rb_node) {
3676 		/* No more items in the per group rb tree
3677 		 * balance refcounts from ext4_mb_free_metadata()
3678 		 */
3679 		put_page(e4b.bd_buddy_page);
3680 		put_page(e4b.bd_bitmap_page);
3681 	}
3682 	ext4_unlock_group(sb, entry->efd_group);
3683 	ext4_mb_unload_buddy(&e4b);
3684 
3685 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3686 }
3687 
3688 /*
3689  * This function is called by the jbd2 layer once the commit has finished,
3690  * so we know we can free the blocks that were released with that commit.
3691  */
3692 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3693 {
3694 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3695 	struct ext4_free_data *entry, *tmp;
3696 	struct list_head freed_data_list;
3697 	struct list_head *cut_pos = NULL;
3698 	bool wake;
3699 
3700 	INIT_LIST_HEAD(&freed_data_list);
3701 
3702 	spin_lock(&sbi->s_md_lock);
3703 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3704 		if (entry->efd_tid != commit_tid)
3705 			break;
3706 		cut_pos = &entry->efd_list;
3707 	}
3708 	if (cut_pos)
3709 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3710 				  cut_pos);
3711 	spin_unlock(&sbi->s_md_lock);
3712 
3713 	list_for_each_entry(entry, &freed_data_list, efd_list)
3714 		ext4_free_data_in_buddy(sb, entry);
3715 
3716 	if (test_opt(sb, DISCARD)) {
3717 		spin_lock(&sbi->s_md_lock);
3718 		wake = list_empty(&sbi->s_discard_list);
3719 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3720 		spin_unlock(&sbi->s_md_lock);
3721 		if (wake)
3722 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3723 	} else {
3724 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3725 			kmem_cache_free(ext4_free_data_cachep, entry);
3726 	}
3727 }
3728 
3729 int __init ext4_init_mballoc(void)
3730 {
3731 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3732 					SLAB_RECLAIM_ACCOUNT);
3733 	if (ext4_pspace_cachep == NULL)
3734 		goto out;
3735 
3736 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3737 				    SLAB_RECLAIM_ACCOUNT);
3738 	if (ext4_ac_cachep == NULL)
3739 		goto out_pa_free;
3740 
3741 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3742 					   SLAB_RECLAIM_ACCOUNT);
3743 	if (ext4_free_data_cachep == NULL)
3744 		goto out_ac_free;
3745 
3746 	return 0;
3747 
3748 out_ac_free:
3749 	kmem_cache_destroy(ext4_ac_cachep);
3750 out_pa_free:
3751 	kmem_cache_destroy(ext4_pspace_cachep);
3752 out:
3753 	return -ENOMEM;
3754 }
3755 
3756 void ext4_exit_mballoc(void)
3757 {
3758 	/*
3759 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3760 	 * before destroying the slab cache.
3761 	 */
3762 	rcu_barrier();
3763 	kmem_cache_destroy(ext4_pspace_cachep);
3764 	kmem_cache_destroy(ext4_ac_cachep);
3765 	kmem_cache_destroy(ext4_free_data_cachep);
3766 	ext4_groupinfo_destroy_slabs();
3767 }
3768 
3769 
3770 /*
3771  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3772  * Returns 0 if success or error code
3773  */
3774 static noinline_for_stack int
3775 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3776 				handle_t *handle, unsigned int reserv_clstrs)
3777 {
3778 	struct buffer_head *bitmap_bh = NULL;
3779 	struct ext4_group_desc *gdp;
3780 	struct buffer_head *gdp_bh;
3781 	struct ext4_sb_info *sbi;
3782 	struct super_block *sb;
3783 	ext4_fsblk_t block;
3784 	int err, len;
3785 
3786 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3787 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3788 
3789 	sb = ac->ac_sb;
3790 	sbi = EXT4_SB(sb);
3791 
3792 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3793 	if (IS_ERR(bitmap_bh)) {
3794 		return PTR_ERR(bitmap_bh);
3795 	}
3796 
3797 	BUFFER_TRACE(bitmap_bh, "getting write access");
3798 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3799 					    EXT4_JTR_NONE);
3800 	if (err)
3801 		goto out_err;
3802 
3803 	err = -EIO;
3804 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3805 	if (!gdp)
3806 		goto out_err;
3807 
3808 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3809 			ext4_free_group_clusters(sb, gdp));
3810 
3811 	BUFFER_TRACE(gdp_bh, "get_write_access");
3812 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3813 	if (err)
3814 		goto out_err;
3815 
3816 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3817 
3818 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3819 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3820 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3821 			   "fs metadata", block, block+len);
3822 		/* File system mounted not to panic on error
3823 		 * Fix the bitmap and return EFSCORRUPTED
3824 		 * We leak some of the blocks here.
3825 		 */
3826 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3827 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3828 			      ac->ac_b_ex.fe_len);
3829 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3830 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3831 		if (!err)
3832 			err = -EFSCORRUPTED;
3833 		goto out_err;
3834 	}
3835 
3836 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3837 #ifdef AGGRESSIVE_CHECK
3838 	{
3839 		int i;
3840 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3841 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3842 						bitmap_bh->b_data));
3843 		}
3844 	}
3845 #endif
3846 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3847 		      ac->ac_b_ex.fe_len);
3848 	if (ext4_has_group_desc_csum(sb) &&
3849 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3850 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3851 		ext4_free_group_clusters_set(sb, gdp,
3852 					     ext4_free_clusters_after_init(sb,
3853 						ac->ac_b_ex.fe_group, gdp));
3854 	}
3855 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3856 	ext4_free_group_clusters_set(sb, gdp, len);
3857 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
3858 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3859 
3860 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3861 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3862 	/*
3863 	 * Now reduce the dirty block count also. Should not go negative
3864 	 */
3865 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3866 		/* release all the reserved blocks if non delalloc */
3867 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3868 				   reserv_clstrs);
3869 
3870 	if (sbi->s_log_groups_per_flex) {
3871 		ext4_group_t flex_group = ext4_flex_group(sbi,
3872 							  ac->ac_b_ex.fe_group);
3873 		atomic64_sub(ac->ac_b_ex.fe_len,
3874 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3875 						  flex_group)->free_clusters);
3876 	}
3877 
3878 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3879 	if (err)
3880 		goto out_err;
3881 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3882 
3883 out_err:
3884 	brelse(bitmap_bh);
3885 	return err;
3886 }
3887 
3888 /*
3889  * Idempotent helper for Ext4 fast commit replay path to set the state of
3890  * blocks in bitmaps and update counters.
3891  */
3892 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3893 			int len, int state)
3894 {
3895 	struct buffer_head *bitmap_bh = NULL;
3896 	struct ext4_group_desc *gdp;
3897 	struct buffer_head *gdp_bh;
3898 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3899 	ext4_group_t group;
3900 	ext4_grpblk_t blkoff;
3901 	int i, err;
3902 	int already;
3903 	unsigned int clen, clen_changed, thisgrp_len;
3904 
3905 	while (len > 0) {
3906 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3907 
3908 		/*
3909 		 * Check to see if we are freeing blocks across a group
3910 		 * boundary.
3911 		 * In case of flex_bg, this can happen that (block, len) may
3912 		 * span across more than one group. In that case we need to
3913 		 * get the corresponding group metadata to work with.
3914 		 * For this we have goto again loop.
3915 		 */
3916 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
3917 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
3918 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
3919 
3920 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
3921 			ext4_error(sb, "Marking blocks in system zone - "
3922 				   "Block = %llu, len = %u",
3923 				   block, thisgrp_len);
3924 			bitmap_bh = NULL;
3925 			break;
3926 		}
3927 
3928 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3929 		if (IS_ERR(bitmap_bh)) {
3930 			err = PTR_ERR(bitmap_bh);
3931 			bitmap_bh = NULL;
3932 			break;
3933 		}
3934 
3935 		err = -EIO;
3936 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3937 		if (!gdp)
3938 			break;
3939 
3940 		ext4_lock_group(sb, group);
3941 		already = 0;
3942 		for (i = 0; i < clen; i++)
3943 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
3944 					 !state)
3945 				already++;
3946 
3947 		clen_changed = clen - already;
3948 		if (state)
3949 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
3950 		else
3951 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
3952 		if (ext4_has_group_desc_csum(sb) &&
3953 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3954 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3955 			ext4_free_group_clusters_set(sb, gdp,
3956 			     ext4_free_clusters_after_init(sb, group, gdp));
3957 		}
3958 		if (state)
3959 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
3960 		else
3961 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
3962 
3963 		ext4_free_group_clusters_set(sb, gdp, clen);
3964 		ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
3965 		ext4_group_desc_csum_set(sb, group, gdp);
3966 
3967 		ext4_unlock_group(sb, group);
3968 
3969 		if (sbi->s_log_groups_per_flex) {
3970 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
3971 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
3972 						   s_flex_groups, flex_group);
3973 
3974 			if (state)
3975 				atomic64_sub(clen_changed, &fg->free_clusters);
3976 			else
3977 				atomic64_add(clen_changed, &fg->free_clusters);
3978 
3979 		}
3980 
3981 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3982 		if (err)
3983 			break;
3984 		sync_dirty_buffer(bitmap_bh);
3985 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3986 		sync_dirty_buffer(gdp_bh);
3987 		if (err)
3988 			break;
3989 
3990 		block += thisgrp_len;
3991 		len -= thisgrp_len;
3992 		brelse(bitmap_bh);
3993 		BUG_ON(len < 0);
3994 	}
3995 
3996 	if (err)
3997 		brelse(bitmap_bh);
3998 }
3999 
4000 /*
4001  * here we normalize request for locality group
4002  * Group request are normalized to s_mb_group_prealloc, which goes to
4003  * s_strip if we set the same via mount option.
4004  * s_mb_group_prealloc can be configured via
4005  * /sys/fs/ext4/<partition>/mb_group_prealloc
4006  *
4007  * XXX: should we try to preallocate more than the group has now?
4008  */
4009 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4010 {
4011 	struct super_block *sb = ac->ac_sb;
4012 	struct ext4_locality_group *lg = ac->ac_lg;
4013 
4014 	BUG_ON(lg == NULL);
4015 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4016 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4017 }
4018 
4019 /*
4020  * This function returns the next element to look at during inode
4021  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4022  * (ei->i_prealloc_lock)
4023  *
4024  * new_start	The start of the range we want to compare
4025  * cur_start	The existing start that we are comparing against
4026  * node	The node of the rb_tree
4027  */
4028 static inline struct rb_node*
4029 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4030 {
4031 	if (new_start < cur_start)
4032 		return node->rb_left;
4033 	else
4034 		return node->rb_right;
4035 }
4036 
4037 static inline void
4038 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4039 			  ext4_lblk_t start, ext4_lblk_t end)
4040 {
4041 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4042 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4043 	struct ext4_prealloc_space *tmp_pa;
4044 	ext4_lblk_t tmp_pa_start, tmp_pa_end;
4045 	struct rb_node *iter;
4046 
4047 	read_lock(&ei->i_prealloc_lock);
4048 	for (iter = ei->i_prealloc_node.rb_node; iter;
4049 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4050 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4051 				  pa_node.inode_node);
4052 		tmp_pa_start = tmp_pa->pa_lstart;
4053 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4054 
4055 		spin_lock(&tmp_pa->pa_lock);
4056 		if (tmp_pa->pa_deleted == 0)
4057 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4058 		spin_unlock(&tmp_pa->pa_lock);
4059 	}
4060 	read_unlock(&ei->i_prealloc_lock);
4061 }
4062 
4063 /*
4064  * Given an allocation context "ac" and a range "start", "end", check
4065  * and adjust boundaries if the range overlaps with any of the existing
4066  * preallocatoins stored in the corresponding inode of the allocation context.
4067  *
4068  * Parameters:
4069  *	ac			allocation context
4070  *	start			start of the new range
4071  *	end			end of the new range
4072  */
4073 static inline void
4074 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4075 			  ext4_lblk_t *start, ext4_lblk_t *end)
4076 {
4077 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4078 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4079 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4080 	struct rb_node *iter;
4081 	ext4_lblk_t new_start, new_end;
4082 	ext4_lblk_t tmp_pa_start, tmp_pa_end, left_pa_end = -1, right_pa_start = -1;
4083 
4084 	new_start = *start;
4085 	new_end = *end;
4086 
4087 	/*
4088 	 * Adjust the normalized range so that it doesn't overlap with any
4089 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4090 	 * so it doesn't change underneath us.
4091 	 */
4092 	read_lock(&ei->i_prealloc_lock);
4093 
4094 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4095 	for (iter = ei->i_prealloc_node.rb_node; iter;
4096 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4097 					    tmp_pa_start, iter)) {
4098 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4099 				  pa_node.inode_node);
4100 		tmp_pa_start = tmp_pa->pa_lstart;
4101 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4102 
4103 		/* PA must not overlap original request */
4104 		spin_lock(&tmp_pa->pa_lock);
4105 		if (tmp_pa->pa_deleted == 0)
4106 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4107 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4108 		spin_unlock(&tmp_pa->pa_lock);
4109 	}
4110 
4111 	/*
4112 	 * Step 2: check if the found PA is left or right neighbor and
4113 	 * get the other neighbor
4114 	 */
4115 	if (tmp_pa) {
4116 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4117 			struct rb_node *tmp;
4118 
4119 			left_pa = tmp_pa;
4120 			tmp = rb_next(&left_pa->pa_node.inode_node);
4121 			if (tmp) {
4122 				right_pa = rb_entry(tmp,
4123 						    struct ext4_prealloc_space,
4124 						    pa_node.inode_node);
4125 			}
4126 		} else {
4127 			struct rb_node *tmp;
4128 
4129 			right_pa = tmp_pa;
4130 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4131 			if (tmp) {
4132 				left_pa = rb_entry(tmp,
4133 						   struct ext4_prealloc_space,
4134 						   pa_node.inode_node);
4135 			}
4136 		}
4137 	}
4138 
4139 	/* Step 3: get the non deleted neighbors */
4140 	if (left_pa) {
4141 		for (iter = &left_pa->pa_node.inode_node;;
4142 		     iter = rb_prev(iter)) {
4143 			if (!iter) {
4144 				left_pa = NULL;
4145 				break;
4146 			}
4147 
4148 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4149 					  pa_node.inode_node);
4150 			left_pa = tmp_pa;
4151 			spin_lock(&tmp_pa->pa_lock);
4152 			if (tmp_pa->pa_deleted == 0) {
4153 				spin_unlock(&tmp_pa->pa_lock);
4154 				break;
4155 			}
4156 			spin_unlock(&tmp_pa->pa_lock);
4157 		}
4158 	}
4159 
4160 	if (right_pa) {
4161 		for (iter = &right_pa->pa_node.inode_node;;
4162 		     iter = rb_next(iter)) {
4163 			if (!iter) {
4164 				right_pa = NULL;
4165 				break;
4166 			}
4167 
4168 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4169 					  pa_node.inode_node);
4170 			right_pa = tmp_pa;
4171 			spin_lock(&tmp_pa->pa_lock);
4172 			if (tmp_pa->pa_deleted == 0) {
4173 				spin_unlock(&tmp_pa->pa_lock);
4174 				break;
4175 			}
4176 			spin_unlock(&tmp_pa->pa_lock);
4177 		}
4178 	}
4179 
4180 	if (left_pa) {
4181 		left_pa_end =
4182 			left_pa->pa_lstart + EXT4_C2B(sbi, left_pa->pa_len);
4183 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4184 	}
4185 
4186 	if (right_pa) {
4187 		right_pa_start = right_pa->pa_lstart;
4188 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4189 	}
4190 
4191 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4192 	if (left_pa) {
4193 		if (left_pa_end > new_start)
4194 			new_start = left_pa_end;
4195 	}
4196 
4197 	if (right_pa) {
4198 		if (right_pa_start < new_end)
4199 			new_end = right_pa_start;
4200 	}
4201 	read_unlock(&ei->i_prealloc_lock);
4202 
4203 	/* XXX: extra loop to check we really don't overlap preallocations */
4204 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4205 
4206 	*start = new_start;
4207 	*end = new_end;
4208 }
4209 
4210 /*
4211  * Normalization means making request better in terms of
4212  * size and alignment
4213  */
4214 static noinline_for_stack void
4215 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4216 				struct ext4_allocation_request *ar)
4217 {
4218 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4219 	struct ext4_super_block *es = sbi->s_es;
4220 	int bsbits, max;
4221 	ext4_lblk_t end;
4222 	loff_t size, start_off;
4223 	loff_t orig_size __maybe_unused;
4224 	ext4_lblk_t start;
4225 
4226 	/* do normalize only data requests, metadata requests
4227 	   do not need preallocation */
4228 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4229 		return;
4230 
4231 	/* sometime caller may want exact blocks */
4232 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4233 		return;
4234 
4235 	/* caller may indicate that preallocation isn't
4236 	 * required (it's a tail, for example) */
4237 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4238 		return;
4239 
4240 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4241 		ext4_mb_normalize_group_request(ac);
4242 		return ;
4243 	}
4244 
4245 	bsbits = ac->ac_sb->s_blocksize_bits;
4246 
4247 	/* first, let's learn actual file size
4248 	 * given current request is allocated */
4249 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4250 	size = size << bsbits;
4251 	if (size < i_size_read(ac->ac_inode))
4252 		size = i_size_read(ac->ac_inode);
4253 	orig_size = size;
4254 
4255 	/* max size of free chunks */
4256 	max = 2 << bsbits;
4257 
4258 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4259 		(req <= (size) || max <= (chunk_size))
4260 
4261 	/* first, try to predict filesize */
4262 	/* XXX: should this table be tunable? */
4263 	start_off = 0;
4264 	if (size <= 16 * 1024) {
4265 		size = 16 * 1024;
4266 	} else if (size <= 32 * 1024) {
4267 		size = 32 * 1024;
4268 	} else if (size <= 64 * 1024) {
4269 		size = 64 * 1024;
4270 	} else if (size <= 128 * 1024) {
4271 		size = 128 * 1024;
4272 	} else if (size <= 256 * 1024) {
4273 		size = 256 * 1024;
4274 	} else if (size <= 512 * 1024) {
4275 		size = 512 * 1024;
4276 	} else if (size <= 1024 * 1024) {
4277 		size = 1024 * 1024;
4278 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4279 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4280 						(21 - bsbits)) << 21;
4281 		size = 2 * 1024 * 1024;
4282 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4283 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4284 							(22 - bsbits)) << 22;
4285 		size = 4 * 1024 * 1024;
4286 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
4287 					(8<<20)>>bsbits, max, 8 * 1024)) {
4288 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4289 							(23 - bsbits)) << 23;
4290 		size = 8 * 1024 * 1024;
4291 	} else {
4292 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4293 		size	  = (loff_t) EXT4_C2B(sbi,
4294 					      ac->ac_o_ex.fe_len) << bsbits;
4295 	}
4296 	size = size >> bsbits;
4297 	start = start_off >> bsbits;
4298 
4299 	/*
4300 	 * For tiny groups (smaller than 8MB) the chosen allocation
4301 	 * alignment may be larger than group size. Make sure the
4302 	 * alignment does not move allocation to a different group which
4303 	 * makes mballoc fail assertions later.
4304 	 */
4305 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4306 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4307 
4308 	/* don't cover already allocated blocks in selected range */
4309 	if (ar->pleft && start <= ar->lleft) {
4310 		size -= ar->lleft + 1 - start;
4311 		start = ar->lleft + 1;
4312 	}
4313 	if (ar->pright && start + size - 1 >= ar->lright)
4314 		size -= start + size - ar->lright;
4315 
4316 	/*
4317 	 * Trim allocation request for filesystems with artificially small
4318 	 * groups.
4319 	 */
4320 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4321 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4322 
4323 	end = start + size;
4324 
4325 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4326 
4327 	size = end - start;
4328 
4329 	/*
4330 	 * In this function "start" and "size" are normalized for better
4331 	 * alignment and length such that we could preallocate more blocks.
4332 	 * This normalization is done such that original request of
4333 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4334 	 * "size" boundaries.
4335 	 * (Note fe_len can be relaxed since FS block allocation API does not
4336 	 * provide gurantee on number of contiguous blocks allocation since that
4337 	 * depends upon free space left, etc).
4338 	 * In case of inode pa, later we use the allocated blocks
4339 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4340 	 * range of goal/best blocks [start, size] to put it at the
4341 	 * ac_o_ex.fe_logical extent of this inode.
4342 	 * (See ext4_mb_use_inode_pa() for more details)
4343 	 */
4344 	if (start + size <= ac->ac_o_ex.fe_logical ||
4345 			start > ac->ac_o_ex.fe_logical) {
4346 		ext4_msg(ac->ac_sb, KERN_ERR,
4347 			 "start %lu, size %lu, fe_logical %lu",
4348 			 (unsigned long) start, (unsigned long) size,
4349 			 (unsigned long) ac->ac_o_ex.fe_logical);
4350 		BUG();
4351 	}
4352 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4353 
4354 	/* now prepare goal request */
4355 
4356 	/* XXX: is it better to align blocks WRT to logical
4357 	 * placement or satisfy big request as is */
4358 	ac->ac_g_ex.fe_logical = start;
4359 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4360 
4361 	/* define goal start in order to merge */
4362 	if (ar->pright && (ar->lright == (start + size)) &&
4363 	    ar->pright >= size &&
4364 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4365 		/* merge to the right */
4366 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4367 						&ac->ac_g_ex.fe_group,
4368 						&ac->ac_g_ex.fe_start);
4369 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4370 	}
4371 	if (ar->pleft && (ar->lleft + 1 == start) &&
4372 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4373 		/* merge to the left */
4374 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4375 						&ac->ac_g_ex.fe_group,
4376 						&ac->ac_g_ex.fe_start);
4377 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4378 	}
4379 
4380 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4381 		 orig_size, start);
4382 }
4383 
4384 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4385 {
4386 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4387 
4388 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4389 		atomic_inc(&sbi->s_bal_reqs);
4390 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4391 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4392 			atomic_inc(&sbi->s_bal_success);
4393 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4394 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4395 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4396 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4397 			atomic_inc(&sbi->s_bal_goals);
4398 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4399 			atomic_inc(&sbi->s_bal_breaks);
4400 	}
4401 
4402 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4403 		trace_ext4_mballoc_alloc(ac);
4404 	else
4405 		trace_ext4_mballoc_prealloc(ac);
4406 }
4407 
4408 /*
4409  * Called on failure; free up any blocks from the inode PA for this
4410  * context.  We don't need this for MB_GROUP_PA because we only change
4411  * pa_free in ext4_mb_release_context(), but on failure, we've already
4412  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4413  */
4414 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4415 {
4416 	struct ext4_prealloc_space *pa = ac->ac_pa;
4417 	struct ext4_buddy e4b;
4418 	int err;
4419 
4420 	if (pa == NULL) {
4421 		if (ac->ac_f_ex.fe_len == 0)
4422 			return;
4423 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4424 		if (WARN_RATELIMIT(err,
4425 				   "ext4: mb_load_buddy failed (%d)", err))
4426 			/*
4427 			 * This should never happen since we pin the
4428 			 * pages in the ext4_allocation_context so
4429 			 * ext4_mb_load_buddy() should never fail.
4430 			 */
4431 			return;
4432 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4433 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4434 			       ac->ac_f_ex.fe_len);
4435 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4436 		ext4_mb_unload_buddy(&e4b);
4437 		return;
4438 	}
4439 	if (pa->pa_type == MB_INODE_PA) {
4440 		spin_lock(&pa->pa_lock);
4441 		pa->pa_free += ac->ac_b_ex.fe_len;
4442 		spin_unlock(&pa->pa_lock);
4443 	}
4444 }
4445 
4446 /*
4447  * use blocks preallocated to inode
4448  */
4449 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4450 				struct ext4_prealloc_space *pa)
4451 {
4452 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4453 	ext4_fsblk_t start;
4454 	ext4_fsblk_t end;
4455 	int len;
4456 
4457 	/* found preallocated blocks, use them */
4458 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4459 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4460 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4461 	len = EXT4_NUM_B2C(sbi, end - start);
4462 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4463 					&ac->ac_b_ex.fe_start);
4464 	ac->ac_b_ex.fe_len = len;
4465 	ac->ac_status = AC_STATUS_FOUND;
4466 	ac->ac_pa = pa;
4467 
4468 	BUG_ON(start < pa->pa_pstart);
4469 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4470 	BUG_ON(pa->pa_free < len);
4471 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4472 	pa->pa_free -= len;
4473 
4474 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4475 }
4476 
4477 /*
4478  * use blocks preallocated to locality group
4479  */
4480 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4481 				struct ext4_prealloc_space *pa)
4482 {
4483 	unsigned int len = ac->ac_o_ex.fe_len;
4484 
4485 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4486 					&ac->ac_b_ex.fe_group,
4487 					&ac->ac_b_ex.fe_start);
4488 	ac->ac_b_ex.fe_len = len;
4489 	ac->ac_status = AC_STATUS_FOUND;
4490 	ac->ac_pa = pa;
4491 
4492 	/* we don't correct pa_pstart or pa_len here to avoid
4493 	 * possible race when the group is being loaded concurrently
4494 	 * instead we correct pa later, after blocks are marked
4495 	 * in on-disk bitmap -- see ext4_mb_release_context()
4496 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4497 	 */
4498 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4499 		 pa->pa_lstart, len, pa);
4500 }
4501 
4502 /*
4503  * Return the prealloc space that have minimal distance
4504  * from the goal block. @cpa is the prealloc
4505  * space that is having currently known minimal distance
4506  * from the goal block.
4507  */
4508 static struct ext4_prealloc_space *
4509 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4510 			struct ext4_prealloc_space *pa,
4511 			struct ext4_prealloc_space *cpa)
4512 {
4513 	ext4_fsblk_t cur_distance, new_distance;
4514 
4515 	if (cpa == NULL) {
4516 		atomic_inc(&pa->pa_count);
4517 		return pa;
4518 	}
4519 	cur_distance = abs(goal_block - cpa->pa_pstart);
4520 	new_distance = abs(goal_block - pa->pa_pstart);
4521 
4522 	if (cur_distance <= new_distance)
4523 		return cpa;
4524 
4525 	/* drop the previous reference */
4526 	atomic_dec(&cpa->pa_count);
4527 	atomic_inc(&pa->pa_count);
4528 	return pa;
4529 }
4530 
4531 /*
4532  * search goal blocks in preallocated space
4533  */
4534 static noinline_for_stack bool
4535 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4536 {
4537 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4538 	int order, i;
4539 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4540 	struct ext4_locality_group *lg;
4541 	struct ext4_prealloc_space *tmp_pa, *cpa = NULL;
4542 	ext4_lblk_t tmp_pa_start, tmp_pa_end;
4543 	struct rb_node *iter;
4544 	ext4_fsblk_t goal_block;
4545 
4546 	/* only data can be preallocated */
4547 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4548 		return false;
4549 
4550 	/* first, try per-file preallocation */
4551 	read_lock(&ei->i_prealloc_lock);
4552 	for (iter = ei->i_prealloc_node.rb_node; iter;
4553 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4554 					    tmp_pa_start, iter)) {
4555 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4556 				  pa_node.inode_node);
4557 
4558 		/* all fields in this condition don't change,
4559 		 * so we can skip locking for them */
4560 		tmp_pa_start = tmp_pa->pa_lstart;
4561 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4562 
4563 		/* original request start doesn't lie in this PA */
4564 		if (ac->ac_o_ex.fe_logical < tmp_pa_start ||
4565 		    ac->ac_o_ex.fe_logical >= tmp_pa_end)
4566 			continue;
4567 
4568 		/* non-extent files can't have physical blocks past 2^32 */
4569 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4570 		    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4571 		     EXT4_MAX_BLOCK_FILE_PHYS)) {
4572 			/*
4573 			 * Since PAs don't overlap, we won't find any
4574 			 * other PA to satisfy this.
4575 			 */
4576 			break;
4577 		}
4578 
4579 		/* found preallocated blocks, use them */
4580 		spin_lock(&tmp_pa->pa_lock);
4581 		if (tmp_pa->pa_deleted == 0 && tmp_pa->pa_free) {
4582 			atomic_inc(&tmp_pa->pa_count);
4583 			ext4_mb_use_inode_pa(ac, tmp_pa);
4584 			spin_unlock(&tmp_pa->pa_lock);
4585 			ac->ac_criteria = 10;
4586 			read_unlock(&ei->i_prealloc_lock);
4587 			return true;
4588 		}
4589 		spin_unlock(&tmp_pa->pa_lock);
4590 	}
4591 	read_unlock(&ei->i_prealloc_lock);
4592 
4593 	/* can we use group allocation? */
4594 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4595 		return false;
4596 
4597 	/* inode may have no locality group for some reason */
4598 	lg = ac->ac_lg;
4599 	if (lg == NULL)
4600 		return false;
4601 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4602 	if (order > PREALLOC_TB_SIZE - 1)
4603 		/* The max size of hash table is PREALLOC_TB_SIZE */
4604 		order = PREALLOC_TB_SIZE - 1;
4605 
4606 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4607 	/*
4608 	 * search for the prealloc space that is having
4609 	 * minimal distance from the goal block.
4610 	 */
4611 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4612 		rcu_read_lock();
4613 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4614 					pa_node.lg_list) {
4615 			spin_lock(&tmp_pa->pa_lock);
4616 			if (tmp_pa->pa_deleted == 0 &&
4617 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4618 
4619 				cpa = ext4_mb_check_group_pa(goal_block,
4620 								tmp_pa, cpa);
4621 			}
4622 			spin_unlock(&tmp_pa->pa_lock);
4623 		}
4624 		rcu_read_unlock();
4625 	}
4626 	if (cpa) {
4627 		ext4_mb_use_group_pa(ac, cpa);
4628 		ac->ac_criteria = 20;
4629 		return true;
4630 	}
4631 	return false;
4632 }
4633 
4634 /*
4635  * the function goes through all block freed in the group
4636  * but not yet committed and marks them used in in-core bitmap.
4637  * buddy must be generated from this bitmap
4638  * Need to be called with the ext4 group lock held
4639  */
4640 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4641 						ext4_group_t group)
4642 {
4643 	struct rb_node *n;
4644 	struct ext4_group_info *grp;
4645 	struct ext4_free_data *entry;
4646 
4647 	grp = ext4_get_group_info(sb, group);
4648 	if (!grp)
4649 		return;
4650 	n = rb_first(&(grp->bb_free_root));
4651 
4652 	while (n) {
4653 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4654 		mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4655 		n = rb_next(n);
4656 	}
4657 	return;
4658 }
4659 
4660 /*
4661  * the function goes through all preallocation in this group and marks them
4662  * used in in-core bitmap. buddy must be generated from this bitmap
4663  * Need to be called with ext4 group lock held
4664  */
4665 static noinline_for_stack
4666 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4667 					ext4_group_t group)
4668 {
4669 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4670 	struct ext4_prealloc_space *pa;
4671 	struct list_head *cur;
4672 	ext4_group_t groupnr;
4673 	ext4_grpblk_t start;
4674 	int preallocated = 0;
4675 	int len;
4676 
4677 	if (!grp)
4678 		return;
4679 
4680 	/* all form of preallocation discards first load group,
4681 	 * so the only competing code is preallocation use.
4682 	 * we don't need any locking here
4683 	 * notice we do NOT ignore preallocations with pa_deleted
4684 	 * otherwise we could leave used blocks available for
4685 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4686 	 * is dropping preallocation
4687 	 */
4688 	list_for_each(cur, &grp->bb_prealloc_list) {
4689 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4690 		spin_lock(&pa->pa_lock);
4691 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4692 					     &groupnr, &start);
4693 		len = pa->pa_len;
4694 		spin_unlock(&pa->pa_lock);
4695 		if (unlikely(len == 0))
4696 			continue;
4697 		BUG_ON(groupnr != group);
4698 		mb_set_bits(bitmap, start, len);
4699 		preallocated += len;
4700 	}
4701 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4702 }
4703 
4704 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4705 				    struct ext4_prealloc_space *pa)
4706 {
4707 	struct ext4_inode_info *ei;
4708 
4709 	if (pa->pa_deleted) {
4710 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4711 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4712 			     pa->pa_len);
4713 		return;
4714 	}
4715 
4716 	pa->pa_deleted = 1;
4717 
4718 	if (pa->pa_type == MB_INODE_PA) {
4719 		ei = EXT4_I(pa->pa_inode);
4720 		atomic_dec(&ei->i_prealloc_active);
4721 	}
4722 }
4723 
4724 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
4725 {
4726 	BUG_ON(!pa);
4727 	BUG_ON(atomic_read(&pa->pa_count));
4728 	BUG_ON(pa->pa_deleted == 0);
4729 	kmem_cache_free(ext4_pspace_cachep, pa);
4730 }
4731 
4732 static void ext4_mb_pa_callback(struct rcu_head *head)
4733 {
4734 	struct ext4_prealloc_space *pa;
4735 
4736 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4737 	ext4_mb_pa_free(pa);
4738 }
4739 
4740 /*
4741  * drops a reference to preallocated space descriptor
4742  * if this was the last reference and the space is consumed
4743  */
4744 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4745 			struct super_block *sb, struct ext4_prealloc_space *pa)
4746 {
4747 	ext4_group_t grp;
4748 	ext4_fsblk_t grp_blk;
4749 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4750 
4751 	/* in this short window concurrent discard can set pa_deleted */
4752 	spin_lock(&pa->pa_lock);
4753 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4754 		spin_unlock(&pa->pa_lock);
4755 		return;
4756 	}
4757 
4758 	if (pa->pa_deleted == 1) {
4759 		spin_unlock(&pa->pa_lock);
4760 		return;
4761 	}
4762 
4763 	ext4_mb_mark_pa_deleted(sb, pa);
4764 	spin_unlock(&pa->pa_lock);
4765 
4766 	grp_blk = pa->pa_pstart;
4767 	/*
4768 	 * If doing group-based preallocation, pa_pstart may be in the
4769 	 * next group when pa is used up
4770 	 */
4771 	if (pa->pa_type == MB_GROUP_PA)
4772 		grp_blk--;
4773 
4774 	grp = ext4_get_group_number(sb, grp_blk);
4775 
4776 	/*
4777 	 * possible race:
4778 	 *
4779 	 *  P1 (buddy init)			P2 (regular allocation)
4780 	 *					find block B in PA
4781 	 *  copy on-disk bitmap to buddy
4782 	 *  					mark B in on-disk bitmap
4783 	 *					drop PA from group
4784 	 *  mark all PAs in buddy
4785 	 *
4786 	 * thus, P1 initializes buddy with B available. to prevent this
4787 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4788 	 * against that pair
4789 	 */
4790 	ext4_lock_group(sb, grp);
4791 	list_del(&pa->pa_group_list);
4792 	ext4_unlock_group(sb, grp);
4793 
4794 	if (pa->pa_type == MB_INODE_PA) {
4795 		write_lock(pa->pa_node_lock.inode_lock);
4796 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
4797 		write_unlock(pa->pa_node_lock.inode_lock);
4798 		ext4_mb_pa_free(pa);
4799 	} else {
4800 		spin_lock(pa->pa_node_lock.lg_lock);
4801 		list_del_rcu(&pa->pa_node.lg_list);
4802 		spin_unlock(pa->pa_node_lock.lg_lock);
4803 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4804 	}
4805 }
4806 
4807 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
4808 {
4809 	struct rb_node **iter = &root->rb_node, *parent = NULL;
4810 	struct ext4_prealloc_space *iter_pa, *new_pa;
4811 	ext4_lblk_t iter_start, new_start;
4812 
4813 	while (*iter) {
4814 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
4815 				   pa_node.inode_node);
4816 		new_pa = rb_entry(new, struct ext4_prealloc_space,
4817 				   pa_node.inode_node);
4818 		iter_start = iter_pa->pa_lstart;
4819 		new_start = new_pa->pa_lstart;
4820 
4821 		parent = *iter;
4822 		if (new_start < iter_start)
4823 			iter = &((*iter)->rb_left);
4824 		else
4825 			iter = &((*iter)->rb_right);
4826 	}
4827 
4828 	rb_link_node(new, parent, iter);
4829 	rb_insert_color(new, root);
4830 }
4831 
4832 /*
4833  * creates new preallocated space for given inode
4834  */
4835 static noinline_for_stack void
4836 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4837 {
4838 	struct super_block *sb = ac->ac_sb;
4839 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4840 	struct ext4_prealloc_space *pa;
4841 	struct ext4_group_info *grp;
4842 	struct ext4_inode_info *ei;
4843 
4844 	/* preallocate only when found space is larger then requested */
4845 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4846 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4847 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4848 	BUG_ON(ac->ac_pa == NULL);
4849 
4850 	pa = ac->ac_pa;
4851 
4852 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4853 		int new_bex_start;
4854 		int new_bex_end;
4855 
4856 		/* we can't allocate as much as normalizer wants.
4857 		 * so, found space must get proper lstart
4858 		 * to cover original request */
4859 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4860 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4861 
4862 		/*
4863 		 * Use the below logic for adjusting best extent as it keeps
4864 		 * fragmentation in check while ensuring logical range of best
4865 		 * extent doesn't overflow out of goal extent:
4866 		 *
4867 		 * 1. Check if best ex can be kept at end of goal and still
4868 		 *    cover original start
4869 		 * 2. Else, check if best ex can be kept at start of goal and
4870 		 *    still cover original start
4871 		 * 3. Else, keep the best ex at start of original request.
4872 		 */
4873 		new_bex_end = ac->ac_g_ex.fe_logical +
4874 			EXT4_C2B(sbi, ac->ac_g_ex.fe_len);
4875 		new_bex_start = new_bex_end - EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4876 		if (ac->ac_o_ex.fe_logical >= new_bex_start)
4877 			goto adjust_bex;
4878 
4879 		new_bex_start = ac->ac_g_ex.fe_logical;
4880 		new_bex_end =
4881 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4882 		if (ac->ac_o_ex.fe_logical < new_bex_end)
4883 			goto adjust_bex;
4884 
4885 		new_bex_start = ac->ac_o_ex.fe_logical;
4886 		new_bex_end =
4887 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4888 
4889 adjust_bex:
4890 		ac->ac_b_ex.fe_logical = new_bex_start;
4891 
4892 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4893 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4894 		BUG_ON(new_bex_end > (ac->ac_g_ex.fe_logical +
4895 				      EXT4_C2B(sbi, ac->ac_g_ex.fe_len)));
4896 	}
4897 
4898 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4899 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4900 	pa->pa_len = ac->ac_b_ex.fe_len;
4901 	pa->pa_free = pa->pa_len;
4902 	spin_lock_init(&pa->pa_lock);
4903 	INIT_LIST_HEAD(&pa->pa_group_list);
4904 	pa->pa_deleted = 0;
4905 	pa->pa_type = MB_INODE_PA;
4906 
4907 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4908 		 pa->pa_len, pa->pa_lstart);
4909 	trace_ext4_mb_new_inode_pa(ac, pa);
4910 
4911 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4912 	ext4_mb_use_inode_pa(ac, pa);
4913 
4914 	ei = EXT4_I(ac->ac_inode);
4915 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4916 	if (!grp)
4917 		return;
4918 
4919 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
4920 	pa->pa_inode = ac->ac_inode;
4921 
4922 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4923 
4924 	write_lock(pa->pa_node_lock.inode_lock);
4925 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
4926 	write_unlock(pa->pa_node_lock.inode_lock);
4927 	atomic_inc(&ei->i_prealloc_active);
4928 }
4929 
4930 /*
4931  * creates new preallocated space for locality group inodes belongs to
4932  */
4933 static noinline_for_stack void
4934 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4935 {
4936 	struct super_block *sb = ac->ac_sb;
4937 	struct ext4_locality_group *lg;
4938 	struct ext4_prealloc_space *pa;
4939 	struct ext4_group_info *grp;
4940 
4941 	/* preallocate only when found space is larger then requested */
4942 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4943 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4944 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4945 	BUG_ON(ac->ac_pa == NULL);
4946 
4947 	pa = ac->ac_pa;
4948 
4949 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4950 	pa->pa_lstart = pa->pa_pstart;
4951 	pa->pa_len = ac->ac_b_ex.fe_len;
4952 	pa->pa_free = pa->pa_len;
4953 	spin_lock_init(&pa->pa_lock);
4954 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
4955 	INIT_LIST_HEAD(&pa->pa_group_list);
4956 	pa->pa_deleted = 0;
4957 	pa->pa_type = MB_GROUP_PA;
4958 
4959 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4960 		 pa->pa_len, pa->pa_lstart);
4961 	trace_ext4_mb_new_group_pa(ac, pa);
4962 
4963 	ext4_mb_use_group_pa(ac, pa);
4964 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4965 
4966 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4967 	if (!grp)
4968 		return;
4969 	lg = ac->ac_lg;
4970 	BUG_ON(lg == NULL);
4971 
4972 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
4973 	pa->pa_inode = NULL;
4974 
4975 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4976 
4977 	/*
4978 	 * We will later add the new pa to the right bucket
4979 	 * after updating the pa_free in ext4_mb_release_context
4980 	 */
4981 }
4982 
4983 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4984 {
4985 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4986 		ext4_mb_new_group_pa(ac);
4987 	else
4988 		ext4_mb_new_inode_pa(ac);
4989 }
4990 
4991 /*
4992  * finds all unused blocks in on-disk bitmap, frees them in
4993  * in-core bitmap and buddy.
4994  * @pa must be unlinked from inode and group lists, so that
4995  * nobody else can find/use it.
4996  * the caller MUST hold group/inode locks.
4997  * TODO: optimize the case when there are no in-core structures yet
4998  */
4999 static noinline_for_stack int
5000 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5001 			struct ext4_prealloc_space *pa)
5002 {
5003 	struct super_block *sb = e4b->bd_sb;
5004 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5005 	unsigned int end;
5006 	unsigned int next;
5007 	ext4_group_t group;
5008 	ext4_grpblk_t bit;
5009 	unsigned long long grp_blk_start;
5010 	int free = 0;
5011 
5012 	BUG_ON(pa->pa_deleted == 0);
5013 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5014 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5015 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5016 	end = bit + pa->pa_len;
5017 
5018 	while (bit < end) {
5019 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5020 		if (bit >= end)
5021 			break;
5022 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5023 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5024 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5025 			 (unsigned) next - bit, (unsigned) group);
5026 		free += next - bit;
5027 
5028 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5029 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5030 						    EXT4_C2B(sbi, bit)),
5031 					       next - bit);
5032 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5033 		bit = next + 1;
5034 	}
5035 	if (free != pa->pa_free) {
5036 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5037 			 "pa %p: logic %lu, phys. %lu, len %d",
5038 			 pa, (unsigned long) pa->pa_lstart,
5039 			 (unsigned long) pa->pa_pstart,
5040 			 pa->pa_len);
5041 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5042 					free, pa->pa_free);
5043 		/*
5044 		 * pa is already deleted so we use the value obtained
5045 		 * from the bitmap and continue.
5046 		 */
5047 	}
5048 	atomic_add(free, &sbi->s_mb_discarded);
5049 
5050 	return 0;
5051 }
5052 
5053 static noinline_for_stack int
5054 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5055 				struct ext4_prealloc_space *pa)
5056 {
5057 	struct super_block *sb = e4b->bd_sb;
5058 	ext4_group_t group;
5059 	ext4_grpblk_t bit;
5060 
5061 	trace_ext4_mb_release_group_pa(sb, pa);
5062 	BUG_ON(pa->pa_deleted == 0);
5063 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5064 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5065 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5066 			     e4b->bd_group, group, pa->pa_pstart);
5067 		return 0;
5068 	}
5069 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5070 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5071 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5072 
5073 	return 0;
5074 }
5075 
5076 /*
5077  * releases all preallocations in given group
5078  *
5079  * first, we need to decide discard policy:
5080  * - when do we discard
5081  *   1) ENOSPC
5082  * - how many do we discard
5083  *   1) how many requested
5084  */
5085 static noinline_for_stack int
5086 ext4_mb_discard_group_preallocations(struct super_block *sb,
5087 				     ext4_group_t group, int *busy)
5088 {
5089 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5090 	struct buffer_head *bitmap_bh = NULL;
5091 	struct ext4_prealloc_space *pa, *tmp;
5092 	struct list_head list;
5093 	struct ext4_buddy e4b;
5094 	struct ext4_inode_info *ei;
5095 	int err;
5096 	int free = 0;
5097 
5098 	if (!grp)
5099 		return 0;
5100 	mb_debug(sb, "discard preallocation for group %u\n", group);
5101 	if (list_empty(&grp->bb_prealloc_list))
5102 		goto out_dbg;
5103 
5104 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5105 	if (IS_ERR(bitmap_bh)) {
5106 		err = PTR_ERR(bitmap_bh);
5107 		ext4_error_err(sb, -err,
5108 			       "Error %d reading block bitmap for %u",
5109 			       err, group);
5110 		goto out_dbg;
5111 	}
5112 
5113 	err = ext4_mb_load_buddy(sb, group, &e4b);
5114 	if (err) {
5115 		ext4_warning(sb, "Error %d loading buddy information for %u",
5116 			     err, group);
5117 		put_bh(bitmap_bh);
5118 		goto out_dbg;
5119 	}
5120 
5121 	INIT_LIST_HEAD(&list);
5122 	ext4_lock_group(sb, group);
5123 	list_for_each_entry_safe(pa, tmp,
5124 				&grp->bb_prealloc_list, pa_group_list) {
5125 		spin_lock(&pa->pa_lock);
5126 		if (atomic_read(&pa->pa_count)) {
5127 			spin_unlock(&pa->pa_lock);
5128 			*busy = 1;
5129 			continue;
5130 		}
5131 		if (pa->pa_deleted) {
5132 			spin_unlock(&pa->pa_lock);
5133 			continue;
5134 		}
5135 
5136 		/* seems this one can be freed ... */
5137 		ext4_mb_mark_pa_deleted(sb, pa);
5138 
5139 		if (!free)
5140 			this_cpu_inc(discard_pa_seq);
5141 
5142 		/* we can trust pa_free ... */
5143 		free += pa->pa_free;
5144 
5145 		spin_unlock(&pa->pa_lock);
5146 
5147 		list_del(&pa->pa_group_list);
5148 		list_add(&pa->u.pa_tmp_list, &list);
5149 	}
5150 
5151 	/* now free all selected PAs */
5152 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5153 
5154 		/* remove from object (inode or locality group) */
5155 		if (pa->pa_type == MB_GROUP_PA) {
5156 			spin_lock(pa->pa_node_lock.lg_lock);
5157 			list_del_rcu(&pa->pa_node.lg_list);
5158 			spin_unlock(pa->pa_node_lock.lg_lock);
5159 		} else {
5160 			write_lock(pa->pa_node_lock.inode_lock);
5161 			ei = EXT4_I(pa->pa_inode);
5162 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5163 			write_unlock(pa->pa_node_lock.inode_lock);
5164 		}
5165 
5166 		list_del(&pa->u.pa_tmp_list);
5167 
5168 		if (pa->pa_type == MB_GROUP_PA) {
5169 			ext4_mb_release_group_pa(&e4b, pa);
5170 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5171 		} else {
5172 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5173 			ext4_mb_pa_free(pa);
5174 		}
5175 	}
5176 
5177 	ext4_unlock_group(sb, group);
5178 	ext4_mb_unload_buddy(&e4b);
5179 	put_bh(bitmap_bh);
5180 out_dbg:
5181 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5182 		 free, group, grp->bb_free);
5183 	return free;
5184 }
5185 
5186 /*
5187  * releases all non-used preallocated blocks for given inode
5188  *
5189  * It's important to discard preallocations under i_data_sem
5190  * We don't want another block to be served from the prealloc
5191  * space when we are discarding the inode prealloc space.
5192  *
5193  * FIXME!! Make sure it is valid at all the call sites
5194  */
5195 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5196 {
5197 	struct ext4_inode_info *ei = EXT4_I(inode);
5198 	struct super_block *sb = inode->i_sb;
5199 	struct buffer_head *bitmap_bh = NULL;
5200 	struct ext4_prealloc_space *pa, *tmp;
5201 	ext4_group_t group = 0;
5202 	struct list_head list;
5203 	struct ext4_buddy e4b;
5204 	struct rb_node *iter;
5205 	int err;
5206 
5207 	if (!S_ISREG(inode->i_mode)) {
5208 		return;
5209 	}
5210 
5211 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5212 		return;
5213 
5214 	mb_debug(sb, "discard preallocation for inode %lu\n",
5215 		 inode->i_ino);
5216 	trace_ext4_discard_preallocations(inode,
5217 			atomic_read(&ei->i_prealloc_active), needed);
5218 
5219 	INIT_LIST_HEAD(&list);
5220 
5221 	if (needed == 0)
5222 		needed = UINT_MAX;
5223 
5224 repeat:
5225 	/* first, collect all pa's in the inode */
5226 	write_lock(&ei->i_prealloc_lock);
5227 	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5228 	     iter = rb_next(iter)) {
5229 		pa = rb_entry(iter, struct ext4_prealloc_space,
5230 			      pa_node.inode_node);
5231 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5232 
5233 		spin_lock(&pa->pa_lock);
5234 		if (atomic_read(&pa->pa_count)) {
5235 			/* this shouldn't happen often - nobody should
5236 			 * use preallocation while we're discarding it */
5237 			spin_unlock(&pa->pa_lock);
5238 			write_unlock(&ei->i_prealloc_lock);
5239 			ext4_msg(sb, KERN_ERR,
5240 				 "uh-oh! used pa while discarding");
5241 			WARN_ON(1);
5242 			schedule_timeout_uninterruptible(HZ);
5243 			goto repeat;
5244 
5245 		}
5246 		if (pa->pa_deleted == 0) {
5247 			ext4_mb_mark_pa_deleted(sb, pa);
5248 			spin_unlock(&pa->pa_lock);
5249 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5250 			list_add(&pa->u.pa_tmp_list, &list);
5251 			needed--;
5252 			continue;
5253 		}
5254 
5255 		/* someone is deleting pa right now */
5256 		spin_unlock(&pa->pa_lock);
5257 		write_unlock(&ei->i_prealloc_lock);
5258 
5259 		/* we have to wait here because pa_deleted
5260 		 * doesn't mean pa is already unlinked from
5261 		 * the list. as we might be called from
5262 		 * ->clear_inode() the inode will get freed
5263 		 * and concurrent thread which is unlinking
5264 		 * pa from inode's list may access already
5265 		 * freed memory, bad-bad-bad */
5266 
5267 		/* XXX: if this happens too often, we can
5268 		 * add a flag to force wait only in case
5269 		 * of ->clear_inode(), but not in case of
5270 		 * regular truncate */
5271 		schedule_timeout_uninterruptible(HZ);
5272 		goto repeat;
5273 	}
5274 	write_unlock(&ei->i_prealloc_lock);
5275 
5276 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5277 		BUG_ON(pa->pa_type != MB_INODE_PA);
5278 		group = ext4_get_group_number(sb, pa->pa_pstart);
5279 
5280 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5281 					     GFP_NOFS|__GFP_NOFAIL);
5282 		if (err) {
5283 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5284 				       err, group);
5285 			continue;
5286 		}
5287 
5288 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5289 		if (IS_ERR(bitmap_bh)) {
5290 			err = PTR_ERR(bitmap_bh);
5291 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5292 				       err, group);
5293 			ext4_mb_unload_buddy(&e4b);
5294 			continue;
5295 		}
5296 
5297 		ext4_lock_group(sb, group);
5298 		list_del(&pa->pa_group_list);
5299 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5300 		ext4_unlock_group(sb, group);
5301 
5302 		ext4_mb_unload_buddy(&e4b);
5303 		put_bh(bitmap_bh);
5304 
5305 		list_del(&pa->u.pa_tmp_list);
5306 		ext4_mb_pa_free(pa);
5307 	}
5308 }
5309 
5310 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5311 {
5312 	struct ext4_prealloc_space *pa;
5313 
5314 	BUG_ON(ext4_pspace_cachep == NULL);
5315 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5316 	if (!pa)
5317 		return -ENOMEM;
5318 	atomic_set(&pa->pa_count, 1);
5319 	ac->ac_pa = pa;
5320 	return 0;
5321 }
5322 
5323 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5324 {
5325 	struct ext4_prealloc_space *pa = ac->ac_pa;
5326 
5327 	BUG_ON(!pa);
5328 	ac->ac_pa = NULL;
5329 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5330 	/*
5331 	 * current function is only called due to an error or due to
5332 	 * len of found blocks < len of requested blocks hence the PA has not
5333 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5334 	 */
5335 	pa->pa_deleted = 1;
5336 	ext4_mb_pa_free(pa);
5337 }
5338 
5339 #ifdef CONFIG_EXT4_DEBUG
5340 static inline void ext4_mb_show_pa(struct super_block *sb)
5341 {
5342 	ext4_group_t i, ngroups;
5343 
5344 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5345 		return;
5346 
5347 	ngroups = ext4_get_groups_count(sb);
5348 	mb_debug(sb, "groups: ");
5349 	for (i = 0; i < ngroups; i++) {
5350 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5351 		struct ext4_prealloc_space *pa;
5352 		ext4_grpblk_t start;
5353 		struct list_head *cur;
5354 
5355 		if (!grp)
5356 			continue;
5357 		ext4_lock_group(sb, i);
5358 		list_for_each(cur, &grp->bb_prealloc_list) {
5359 			pa = list_entry(cur, struct ext4_prealloc_space,
5360 					pa_group_list);
5361 			spin_lock(&pa->pa_lock);
5362 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5363 						     NULL, &start);
5364 			spin_unlock(&pa->pa_lock);
5365 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5366 				 pa->pa_len);
5367 		}
5368 		ext4_unlock_group(sb, i);
5369 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5370 			 grp->bb_fragments);
5371 	}
5372 }
5373 
5374 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5375 {
5376 	struct super_block *sb = ac->ac_sb;
5377 
5378 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5379 		return;
5380 
5381 	mb_debug(sb, "Can't allocate:"
5382 			" Allocation context details:");
5383 	mb_debug(sb, "status %u flags 0x%x",
5384 			ac->ac_status, ac->ac_flags);
5385 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5386 			"goal %lu/%lu/%lu@%lu, "
5387 			"best %lu/%lu/%lu@%lu cr %d",
5388 			(unsigned long)ac->ac_o_ex.fe_group,
5389 			(unsigned long)ac->ac_o_ex.fe_start,
5390 			(unsigned long)ac->ac_o_ex.fe_len,
5391 			(unsigned long)ac->ac_o_ex.fe_logical,
5392 			(unsigned long)ac->ac_g_ex.fe_group,
5393 			(unsigned long)ac->ac_g_ex.fe_start,
5394 			(unsigned long)ac->ac_g_ex.fe_len,
5395 			(unsigned long)ac->ac_g_ex.fe_logical,
5396 			(unsigned long)ac->ac_b_ex.fe_group,
5397 			(unsigned long)ac->ac_b_ex.fe_start,
5398 			(unsigned long)ac->ac_b_ex.fe_len,
5399 			(unsigned long)ac->ac_b_ex.fe_logical,
5400 			(int)ac->ac_criteria);
5401 	mb_debug(sb, "%u found", ac->ac_found);
5402 	ext4_mb_show_pa(sb);
5403 }
5404 #else
5405 static inline void ext4_mb_show_pa(struct super_block *sb)
5406 {
5407 	return;
5408 }
5409 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5410 {
5411 	ext4_mb_show_pa(ac->ac_sb);
5412 	return;
5413 }
5414 #endif
5415 
5416 /*
5417  * We use locality group preallocation for small size file. The size of the
5418  * file is determined by the current size or the resulting size after
5419  * allocation which ever is larger
5420  *
5421  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5422  */
5423 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5424 {
5425 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5426 	int bsbits = ac->ac_sb->s_blocksize_bits;
5427 	loff_t size, isize;
5428 	bool inode_pa_eligible, group_pa_eligible;
5429 
5430 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5431 		return;
5432 
5433 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5434 		return;
5435 
5436 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5437 	inode_pa_eligible = true;
5438 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5439 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5440 		>> bsbits;
5441 
5442 	/* No point in using inode preallocation for closed files */
5443 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5444 	    !inode_is_open_for_write(ac->ac_inode))
5445 		inode_pa_eligible = false;
5446 
5447 	size = max(size, isize);
5448 	/* Don't use group allocation for large files */
5449 	if (size > sbi->s_mb_stream_request)
5450 		group_pa_eligible = false;
5451 
5452 	if (!group_pa_eligible) {
5453 		if (inode_pa_eligible)
5454 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5455 		else
5456 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5457 		return;
5458 	}
5459 
5460 	BUG_ON(ac->ac_lg != NULL);
5461 	/*
5462 	 * locality group prealloc space are per cpu. The reason for having
5463 	 * per cpu locality group is to reduce the contention between block
5464 	 * request from multiple CPUs.
5465 	 */
5466 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5467 
5468 	/* we're going to use group allocation */
5469 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5470 
5471 	/* serialize all allocations in the group */
5472 	mutex_lock(&ac->ac_lg->lg_mutex);
5473 }
5474 
5475 static noinline_for_stack void
5476 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5477 				struct ext4_allocation_request *ar)
5478 {
5479 	struct super_block *sb = ar->inode->i_sb;
5480 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5481 	struct ext4_super_block *es = sbi->s_es;
5482 	ext4_group_t group;
5483 	unsigned int len;
5484 	ext4_fsblk_t goal;
5485 	ext4_grpblk_t block;
5486 
5487 	/* we can't allocate > group size */
5488 	len = ar->len;
5489 
5490 	/* just a dirty hack to filter too big requests  */
5491 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5492 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5493 
5494 	/* start searching from the goal */
5495 	goal = ar->goal;
5496 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5497 			goal >= ext4_blocks_count(es))
5498 		goal = le32_to_cpu(es->s_first_data_block);
5499 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5500 
5501 	/* set up allocation goals */
5502 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5503 	ac->ac_status = AC_STATUS_CONTINUE;
5504 	ac->ac_sb = sb;
5505 	ac->ac_inode = ar->inode;
5506 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5507 	ac->ac_o_ex.fe_group = group;
5508 	ac->ac_o_ex.fe_start = block;
5509 	ac->ac_o_ex.fe_len = len;
5510 	ac->ac_g_ex = ac->ac_o_ex;
5511 	ac->ac_flags = ar->flags;
5512 
5513 	/* we have to define context: we'll work with a file or
5514 	 * locality group. this is a policy, actually */
5515 	ext4_mb_group_or_file(ac);
5516 
5517 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5518 			"left: %u/%u, right %u/%u to %swritable\n",
5519 			(unsigned) ar->len, (unsigned) ar->logical,
5520 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5521 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5522 			(unsigned) ar->lright, (unsigned) ar->pright,
5523 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5524 }
5525 
5526 static noinline_for_stack void
5527 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5528 					struct ext4_locality_group *lg,
5529 					int order, int total_entries)
5530 {
5531 	ext4_group_t group = 0;
5532 	struct ext4_buddy e4b;
5533 	struct list_head discard_list;
5534 	struct ext4_prealloc_space *pa, *tmp;
5535 
5536 	mb_debug(sb, "discard locality group preallocation\n");
5537 
5538 	INIT_LIST_HEAD(&discard_list);
5539 
5540 	spin_lock(&lg->lg_prealloc_lock);
5541 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5542 				pa_node.lg_list,
5543 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5544 		spin_lock(&pa->pa_lock);
5545 		if (atomic_read(&pa->pa_count)) {
5546 			/*
5547 			 * This is the pa that we just used
5548 			 * for block allocation. So don't
5549 			 * free that
5550 			 */
5551 			spin_unlock(&pa->pa_lock);
5552 			continue;
5553 		}
5554 		if (pa->pa_deleted) {
5555 			spin_unlock(&pa->pa_lock);
5556 			continue;
5557 		}
5558 		/* only lg prealloc space */
5559 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5560 
5561 		/* seems this one can be freed ... */
5562 		ext4_mb_mark_pa_deleted(sb, pa);
5563 		spin_unlock(&pa->pa_lock);
5564 
5565 		list_del_rcu(&pa->pa_node.lg_list);
5566 		list_add(&pa->u.pa_tmp_list, &discard_list);
5567 
5568 		total_entries--;
5569 		if (total_entries <= 5) {
5570 			/*
5571 			 * we want to keep only 5 entries
5572 			 * allowing it to grow to 8. This
5573 			 * mak sure we don't call discard
5574 			 * soon for this list.
5575 			 */
5576 			break;
5577 		}
5578 	}
5579 	spin_unlock(&lg->lg_prealloc_lock);
5580 
5581 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5582 		int err;
5583 
5584 		group = ext4_get_group_number(sb, pa->pa_pstart);
5585 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5586 					     GFP_NOFS|__GFP_NOFAIL);
5587 		if (err) {
5588 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5589 				       err, group);
5590 			continue;
5591 		}
5592 		ext4_lock_group(sb, group);
5593 		list_del(&pa->pa_group_list);
5594 		ext4_mb_release_group_pa(&e4b, pa);
5595 		ext4_unlock_group(sb, group);
5596 
5597 		ext4_mb_unload_buddy(&e4b);
5598 		list_del(&pa->u.pa_tmp_list);
5599 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5600 	}
5601 }
5602 
5603 /*
5604  * We have incremented pa_count. So it cannot be freed at this
5605  * point. Also we hold lg_mutex. So no parallel allocation is
5606  * possible from this lg. That means pa_free cannot be updated.
5607  *
5608  * A parallel ext4_mb_discard_group_preallocations is possible.
5609  * which can cause the lg_prealloc_list to be updated.
5610  */
5611 
5612 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5613 {
5614 	int order, added = 0, lg_prealloc_count = 1;
5615 	struct super_block *sb = ac->ac_sb;
5616 	struct ext4_locality_group *lg = ac->ac_lg;
5617 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5618 
5619 	order = fls(pa->pa_free) - 1;
5620 	if (order > PREALLOC_TB_SIZE - 1)
5621 		/* The max size of hash table is PREALLOC_TB_SIZE */
5622 		order = PREALLOC_TB_SIZE - 1;
5623 	/* Add the prealloc space to lg */
5624 	spin_lock(&lg->lg_prealloc_lock);
5625 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5626 				pa_node.lg_list,
5627 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5628 		spin_lock(&tmp_pa->pa_lock);
5629 		if (tmp_pa->pa_deleted) {
5630 			spin_unlock(&tmp_pa->pa_lock);
5631 			continue;
5632 		}
5633 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5634 			/* Add to the tail of the previous entry */
5635 			list_add_tail_rcu(&pa->pa_node.lg_list,
5636 						&tmp_pa->pa_node.lg_list);
5637 			added = 1;
5638 			/*
5639 			 * we want to count the total
5640 			 * number of entries in the list
5641 			 */
5642 		}
5643 		spin_unlock(&tmp_pa->pa_lock);
5644 		lg_prealloc_count++;
5645 	}
5646 	if (!added)
5647 		list_add_tail_rcu(&pa->pa_node.lg_list,
5648 					&lg->lg_prealloc_list[order]);
5649 	spin_unlock(&lg->lg_prealloc_lock);
5650 
5651 	/* Now trim the list to be not more than 8 elements */
5652 	if (lg_prealloc_count > 8) {
5653 		ext4_mb_discard_lg_preallocations(sb, lg,
5654 						  order, lg_prealloc_count);
5655 		return;
5656 	}
5657 	return ;
5658 }
5659 
5660 /*
5661  * release all resource we used in allocation
5662  */
5663 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5664 {
5665 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5666 	struct ext4_prealloc_space *pa = ac->ac_pa;
5667 	if (pa) {
5668 		if (pa->pa_type == MB_GROUP_PA) {
5669 			/* see comment in ext4_mb_use_group_pa() */
5670 			spin_lock(&pa->pa_lock);
5671 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5672 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5673 			pa->pa_free -= ac->ac_b_ex.fe_len;
5674 			pa->pa_len -= ac->ac_b_ex.fe_len;
5675 			spin_unlock(&pa->pa_lock);
5676 
5677 			/*
5678 			 * We want to add the pa to the right bucket.
5679 			 * Remove it from the list and while adding
5680 			 * make sure the list to which we are adding
5681 			 * doesn't grow big.
5682 			 */
5683 			if (likely(pa->pa_free)) {
5684 				spin_lock(pa->pa_node_lock.lg_lock);
5685 				list_del_rcu(&pa->pa_node.lg_list);
5686 				spin_unlock(pa->pa_node_lock.lg_lock);
5687 				ext4_mb_add_n_trim(ac);
5688 			}
5689 		}
5690 
5691 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5692 	}
5693 	if (ac->ac_bitmap_page)
5694 		put_page(ac->ac_bitmap_page);
5695 	if (ac->ac_buddy_page)
5696 		put_page(ac->ac_buddy_page);
5697 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5698 		mutex_unlock(&ac->ac_lg->lg_mutex);
5699 	ext4_mb_collect_stats(ac);
5700 	return 0;
5701 }
5702 
5703 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5704 {
5705 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5706 	int ret;
5707 	int freed = 0, busy = 0;
5708 	int retry = 0;
5709 
5710 	trace_ext4_mb_discard_preallocations(sb, needed);
5711 
5712 	if (needed == 0)
5713 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5714  repeat:
5715 	for (i = 0; i < ngroups && needed > 0; i++) {
5716 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5717 		freed += ret;
5718 		needed -= ret;
5719 		cond_resched();
5720 	}
5721 
5722 	if (needed > 0 && busy && ++retry < 3) {
5723 		busy = 0;
5724 		goto repeat;
5725 	}
5726 
5727 	return freed;
5728 }
5729 
5730 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5731 			struct ext4_allocation_context *ac, u64 *seq)
5732 {
5733 	int freed;
5734 	u64 seq_retry = 0;
5735 	bool ret = false;
5736 
5737 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5738 	if (freed) {
5739 		ret = true;
5740 		goto out_dbg;
5741 	}
5742 	seq_retry = ext4_get_discard_pa_seq_sum();
5743 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5744 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5745 		*seq = seq_retry;
5746 		ret = true;
5747 	}
5748 
5749 out_dbg:
5750 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5751 	return ret;
5752 }
5753 
5754 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5755 				struct ext4_allocation_request *ar, int *errp);
5756 
5757 /*
5758  * Main entry point into mballoc to allocate blocks
5759  * it tries to use preallocation first, then falls back
5760  * to usual allocation
5761  */
5762 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5763 				struct ext4_allocation_request *ar, int *errp)
5764 {
5765 	struct ext4_allocation_context *ac = NULL;
5766 	struct ext4_sb_info *sbi;
5767 	struct super_block *sb;
5768 	ext4_fsblk_t block = 0;
5769 	unsigned int inquota = 0;
5770 	unsigned int reserv_clstrs = 0;
5771 	int retries = 0;
5772 	u64 seq;
5773 
5774 	might_sleep();
5775 	sb = ar->inode->i_sb;
5776 	sbi = EXT4_SB(sb);
5777 
5778 	trace_ext4_request_blocks(ar);
5779 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
5780 		return ext4_mb_new_blocks_simple(handle, ar, errp);
5781 
5782 	/* Allow to use superuser reservation for quota file */
5783 	if (ext4_is_quota_file(ar->inode))
5784 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5785 
5786 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5787 		/* Without delayed allocation we need to verify
5788 		 * there is enough free blocks to do block allocation
5789 		 * and verify allocation doesn't exceed the quota limits.
5790 		 */
5791 		while (ar->len &&
5792 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5793 
5794 			/* let others to free the space */
5795 			cond_resched();
5796 			ar->len = ar->len >> 1;
5797 		}
5798 		if (!ar->len) {
5799 			ext4_mb_show_pa(sb);
5800 			*errp = -ENOSPC;
5801 			return 0;
5802 		}
5803 		reserv_clstrs = ar->len;
5804 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5805 			dquot_alloc_block_nofail(ar->inode,
5806 						 EXT4_C2B(sbi, ar->len));
5807 		} else {
5808 			while (ar->len &&
5809 				dquot_alloc_block(ar->inode,
5810 						  EXT4_C2B(sbi, ar->len))) {
5811 
5812 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5813 				ar->len--;
5814 			}
5815 		}
5816 		inquota = ar->len;
5817 		if (ar->len == 0) {
5818 			*errp = -EDQUOT;
5819 			goto out;
5820 		}
5821 	}
5822 
5823 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5824 	if (!ac) {
5825 		ar->len = 0;
5826 		*errp = -ENOMEM;
5827 		goto out;
5828 	}
5829 
5830 	ext4_mb_initialize_context(ac, ar);
5831 
5832 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5833 	seq = this_cpu_read(discard_pa_seq);
5834 	if (!ext4_mb_use_preallocated(ac)) {
5835 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5836 		ext4_mb_normalize_request(ac, ar);
5837 
5838 		*errp = ext4_mb_pa_alloc(ac);
5839 		if (*errp)
5840 			goto errout;
5841 repeat:
5842 		/* allocate space in core */
5843 		*errp = ext4_mb_regular_allocator(ac);
5844 		/*
5845 		 * pa allocated above is added to grp->bb_prealloc_list only
5846 		 * when we were able to allocate some block i.e. when
5847 		 * ac->ac_status == AC_STATUS_FOUND.
5848 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5849 		 * So we have to free this pa here itself.
5850 		 */
5851 		if (*errp) {
5852 			ext4_mb_pa_put_free(ac);
5853 			ext4_discard_allocated_blocks(ac);
5854 			goto errout;
5855 		}
5856 		if (ac->ac_status == AC_STATUS_FOUND &&
5857 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5858 			ext4_mb_pa_put_free(ac);
5859 	}
5860 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5861 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5862 		if (*errp) {
5863 			ext4_discard_allocated_blocks(ac);
5864 			goto errout;
5865 		} else {
5866 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5867 			ar->len = ac->ac_b_ex.fe_len;
5868 		}
5869 	} else {
5870 		if (++retries < 3 &&
5871 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5872 			goto repeat;
5873 		/*
5874 		 * If block allocation fails then the pa allocated above
5875 		 * needs to be freed here itself.
5876 		 */
5877 		ext4_mb_pa_put_free(ac);
5878 		*errp = -ENOSPC;
5879 	}
5880 
5881 	if (*errp) {
5882 errout:
5883 		ac->ac_b_ex.fe_len = 0;
5884 		ar->len = 0;
5885 		ext4_mb_show_ac(ac);
5886 	}
5887 	ext4_mb_release_context(ac);
5888 	kmem_cache_free(ext4_ac_cachep, ac);
5889 out:
5890 	if (inquota && ar->len < inquota)
5891 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5892 	if (!ar->len) {
5893 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5894 			/* release all the reserved blocks if non delalloc */
5895 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5896 						reserv_clstrs);
5897 	}
5898 
5899 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5900 
5901 	return block;
5902 }
5903 
5904 /*
5905  * We can merge two free data extents only if the physical blocks
5906  * are contiguous, AND the extents were freed by the same transaction,
5907  * AND the blocks are associated with the same group.
5908  */
5909 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5910 					struct ext4_free_data *entry,
5911 					struct ext4_free_data *new_entry,
5912 					struct rb_root *entry_rb_root)
5913 {
5914 	if ((entry->efd_tid != new_entry->efd_tid) ||
5915 	    (entry->efd_group != new_entry->efd_group))
5916 		return;
5917 	if (entry->efd_start_cluster + entry->efd_count ==
5918 	    new_entry->efd_start_cluster) {
5919 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5920 		new_entry->efd_count += entry->efd_count;
5921 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5922 		   entry->efd_start_cluster) {
5923 		new_entry->efd_count += entry->efd_count;
5924 	} else
5925 		return;
5926 	spin_lock(&sbi->s_md_lock);
5927 	list_del(&entry->efd_list);
5928 	spin_unlock(&sbi->s_md_lock);
5929 	rb_erase(&entry->efd_node, entry_rb_root);
5930 	kmem_cache_free(ext4_free_data_cachep, entry);
5931 }
5932 
5933 static noinline_for_stack void
5934 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5935 		      struct ext4_free_data *new_entry)
5936 {
5937 	ext4_group_t group = e4b->bd_group;
5938 	ext4_grpblk_t cluster;
5939 	ext4_grpblk_t clusters = new_entry->efd_count;
5940 	struct ext4_free_data *entry;
5941 	struct ext4_group_info *db = e4b->bd_info;
5942 	struct super_block *sb = e4b->bd_sb;
5943 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5944 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5945 	struct rb_node *parent = NULL, *new_node;
5946 
5947 	BUG_ON(!ext4_handle_valid(handle));
5948 	BUG_ON(e4b->bd_bitmap_page == NULL);
5949 	BUG_ON(e4b->bd_buddy_page == NULL);
5950 
5951 	new_node = &new_entry->efd_node;
5952 	cluster = new_entry->efd_start_cluster;
5953 
5954 	if (!*n) {
5955 		/* first free block exent. We need to
5956 		   protect buddy cache from being freed,
5957 		 * otherwise we'll refresh it from
5958 		 * on-disk bitmap and lose not-yet-available
5959 		 * blocks */
5960 		get_page(e4b->bd_buddy_page);
5961 		get_page(e4b->bd_bitmap_page);
5962 	}
5963 	while (*n) {
5964 		parent = *n;
5965 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5966 		if (cluster < entry->efd_start_cluster)
5967 			n = &(*n)->rb_left;
5968 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5969 			n = &(*n)->rb_right;
5970 		else {
5971 			ext4_grp_locked_error(sb, group, 0,
5972 				ext4_group_first_block_no(sb, group) +
5973 				EXT4_C2B(sbi, cluster),
5974 				"Block already on to-be-freed list");
5975 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5976 			return;
5977 		}
5978 	}
5979 
5980 	rb_link_node(new_node, parent, n);
5981 	rb_insert_color(new_node, &db->bb_free_root);
5982 
5983 	/* Now try to see the extent can be merged to left and right */
5984 	node = rb_prev(new_node);
5985 	if (node) {
5986 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5987 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5988 					    &(db->bb_free_root));
5989 	}
5990 
5991 	node = rb_next(new_node);
5992 	if (node) {
5993 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5994 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5995 					    &(db->bb_free_root));
5996 	}
5997 
5998 	spin_lock(&sbi->s_md_lock);
5999 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6000 	sbi->s_mb_free_pending += clusters;
6001 	spin_unlock(&sbi->s_md_lock);
6002 }
6003 
6004 /*
6005  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6006  * linearly starting at the goal block and also excludes the blocks which
6007  * are going to be in use after fast commit replay.
6008  */
6009 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
6010 				struct ext4_allocation_request *ar, int *errp)
6011 {
6012 	struct buffer_head *bitmap_bh;
6013 	struct super_block *sb = ar->inode->i_sb;
6014 	ext4_group_t group;
6015 	ext4_grpblk_t blkoff;
6016 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6017 	ext4_grpblk_t i = 0;
6018 	ext4_fsblk_t goal, block;
6019 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
6020 
6021 	goal = ar->goal;
6022 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6023 			goal >= ext4_blocks_count(es))
6024 		goal = le32_to_cpu(es->s_first_data_block);
6025 
6026 	ar->len = 0;
6027 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6028 	for (; group < ext4_get_groups_count(sb); group++) {
6029 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6030 		if (IS_ERR(bitmap_bh)) {
6031 			*errp = PTR_ERR(bitmap_bh);
6032 			pr_warn("Failed to read block bitmap\n");
6033 			return 0;
6034 		}
6035 
6036 		while (1) {
6037 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6038 						blkoff);
6039 			if (i >= max)
6040 				break;
6041 			if (ext4_fc_replay_check_excluded(sb,
6042 				ext4_group_first_block_no(sb, group) + i)) {
6043 				blkoff = i + 1;
6044 			} else
6045 				break;
6046 		}
6047 		brelse(bitmap_bh);
6048 		if (i < max)
6049 			break;
6050 
6051 		blkoff = 0;
6052 	}
6053 
6054 	if (group >= ext4_get_groups_count(sb) || i >= max) {
6055 		*errp = -ENOSPC;
6056 		return 0;
6057 	}
6058 
6059 	block = ext4_group_first_block_no(sb, group) + i;
6060 	ext4_mb_mark_bb(sb, block, 1, 1);
6061 	ar->len = 1;
6062 
6063 	return block;
6064 }
6065 
6066 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6067 					unsigned long count)
6068 {
6069 	struct buffer_head *bitmap_bh;
6070 	struct super_block *sb = inode->i_sb;
6071 	struct ext4_group_desc *gdp;
6072 	struct buffer_head *gdp_bh;
6073 	ext4_group_t group;
6074 	ext4_grpblk_t blkoff;
6075 	int already_freed = 0, err, i;
6076 
6077 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6078 	bitmap_bh = ext4_read_block_bitmap(sb, group);
6079 	if (IS_ERR(bitmap_bh)) {
6080 		pr_warn("Failed to read block bitmap\n");
6081 		return;
6082 	}
6083 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6084 	if (!gdp)
6085 		goto err_out;
6086 
6087 	for (i = 0; i < count; i++) {
6088 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6089 			already_freed++;
6090 	}
6091 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6092 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6093 	if (err)
6094 		goto err_out;
6095 	ext4_free_group_clusters_set(
6096 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
6097 		count - already_freed);
6098 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6099 	ext4_group_desc_csum_set(sb, group, gdp);
6100 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6101 	sync_dirty_buffer(bitmap_bh);
6102 	sync_dirty_buffer(gdp_bh);
6103 
6104 err_out:
6105 	brelse(bitmap_bh);
6106 }
6107 
6108 /**
6109  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6110  *			Used by ext4_free_blocks()
6111  * @handle:		handle for this transaction
6112  * @inode:		inode
6113  * @block:		starting physical block to be freed
6114  * @count:		number of blocks to be freed
6115  * @flags:		flags used by ext4_free_blocks
6116  */
6117 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6118 			       ext4_fsblk_t block, unsigned long count,
6119 			       int flags)
6120 {
6121 	struct buffer_head *bitmap_bh = NULL;
6122 	struct super_block *sb = inode->i_sb;
6123 	struct ext4_group_desc *gdp;
6124 	struct ext4_group_info *grp;
6125 	unsigned int overflow;
6126 	ext4_grpblk_t bit;
6127 	struct buffer_head *gd_bh;
6128 	ext4_group_t block_group;
6129 	struct ext4_sb_info *sbi;
6130 	struct ext4_buddy e4b;
6131 	unsigned int count_clusters;
6132 	int err = 0;
6133 	int ret;
6134 
6135 	sbi = EXT4_SB(sb);
6136 
6137 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6138 	    !ext4_inode_block_valid(inode, block, count)) {
6139 		ext4_error(sb, "Freeing blocks in system zone - "
6140 			   "Block = %llu, count = %lu", block, count);
6141 		/* err = 0. ext4_std_error should be a no op */
6142 		goto error_return;
6143 	}
6144 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6145 
6146 do_more:
6147 	overflow = 0;
6148 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6149 
6150 	grp = ext4_get_group_info(sb, block_group);
6151 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6152 		return;
6153 
6154 	/*
6155 	 * Check to see if we are freeing blocks across a group
6156 	 * boundary.
6157 	 */
6158 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6159 		overflow = EXT4_C2B(sbi, bit) + count -
6160 			EXT4_BLOCKS_PER_GROUP(sb);
6161 		count -= overflow;
6162 		/* The range changed so it's no longer validated */
6163 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6164 	}
6165 	count_clusters = EXT4_NUM_B2C(sbi, count);
6166 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6167 	if (IS_ERR(bitmap_bh)) {
6168 		err = PTR_ERR(bitmap_bh);
6169 		bitmap_bh = NULL;
6170 		goto error_return;
6171 	}
6172 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6173 	if (!gdp) {
6174 		err = -EIO;
6175 		goto error_return;
6176 	}
6177 
6178 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6179 	    !ext4_inode_block_valid(inode, block, count)) {
6180 		ext4_error(sb, "Freeing blocks in system zone - "
6181 			   "Block = %llu, count = %lu", block, count);
6182 		/* err = 0. ext4_std_error should be a no op */
6183 		goto error_return;
6184 	}
6185 
6186 	BUFFER_TRACE(bitmap_bh, "getting write access");
6187 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6188 					    EXT4_JTR_NONE);
6189 	if (err)
6190 		goto error_return;
6191 
6192 	/*
6193 	 * We are about to modify some metadata.  Call the journal APIs
6194 	 * to unshare ->b_data if a currently-committing transaction is
6195 	 * using it
6196 	 */
6197 	BUFFER_TRACE(gd_bh, "get_write_access");
6198 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6199 	if (err)
6200 		goto error_return;
6201 #ifdef AGGRESSIVE_CHECK
6202 	{
6203 		int i;
6204 		for (i = 0; i < count_clusters; i++)
6205 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6206 	}
6207 #endif
6208 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6209 
6210 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6211 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6212 				     GFP_NOFS|__GFP_NOFAIL);
6213 	if (err)
6214 		goto error_return;
6215 
6216 	/*
6217 	 * We need to make sure we don't reuse the freed block until after the
6218 	 * transaction is committed. We make an exception if the inode is to be
6219 	 * written in writeback mode since writeback mode has weak data
6220 	 * consistency guarantees.
6221 	 */
6222 	if (ext4_handle_valid(handle) &&
6223 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6224 	     !ext4_should_writeback_data(inode))) {
6225 		struct ext4_free_data *new_entry;
6226 		/*
6227 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6228 		 * to fail.
6229 		 */
6230 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6231 				GFP_NOFS|__GFP_NOFAIL);
6232 		new_entry->efd_start_cluster = bit;
6233 		new_entry->efd_group = block_group;
6234 		new_entry->efd_count = count_clusters;
6235 		new_entry->efd_tid = handle->h_transaction->t_tid;
6236 
6237 		ext4_lock_group(sb, block_group);
6238 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6239 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6240 	} else {
6241 		/* need to update group_info->bb_free and bitmap
6242 		 * with group lock held. generate_buddy look at
6243 		 * them with group lock_held
6244 		 */
6245 		if (test_opt(sb, DISCARD)) {
6246 			err = ext4_issue_discard(sb, block_group, bit, count,
6247 						 NULL);
6248 			if (err && err != -EOPNOTSUPP)
6249 				ext4_msg(sb, KERN_WARNING, "discard request in"
6250 					 " group:%u block:%d count:%lu failed"
6251 					 " with %d", block_group, bit, count,
6252 					 err);
6253 		} else
6254 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6255 
6256 		ext4_lock_group(sb, block_group);
6257 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6258 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6259 	}
6260 
6261 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6262 	ext4_free_group_clusters_set(sb, gdp, ret);
6263 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6264 	ext4_group_desc_csum_set(sb, block_group, gdp);
6265 	ext4_unlock_group(sb, block_group);
6266 
6267 	if (sbi->s_log_groups_per_flex) {
6268 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6269 		atomic64_add(count_clusters,
6270 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6271 						  flex_group)->free_clusters);
6272 	}
6273 
6274 	/*
6275 	 * on a bigalloc file system, defer the s_freeclusters_counter
6276 	 * update to the caller (ext4_remove_space and friends) so they
6277 	 * can determine if a cluster freed here should be rereserved
6278 	 */
6279 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6280 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6281 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6282 		percpu_counter_add(&sbi->s_freeclusters_counter,
6283 				   count_clusters);
6284 	}
6285 
6286 	ext4_mb_unload_buddy(&e4b);
6287 
6288 	/* We dirtied the bitmap block */
6289 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6290 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6291 
6292 	/* And the group descriptor block */
6293 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6294 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6295 	if (!err)
6296 		err = ret;
6297 
6298 	if (overflow && !err) {
6299 		block += count;
6300 		count = overflow;
6301 		put_bh(bitmap_bh);
6302 		/* The range changed so it's no longer validated */
6303 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6304 		goto do_more;
6305 	}
6306 error_return:
6307 	brelse(bitmap_bh);
6308 	ext4_std_error(sb, err);
6309 	return;
6310 }
6311 
6312 /**
6313  * ext4_free_blocks() -- Free given blocks and update quota
6314  * @handle:		handle for this transaction
6315  * @inode:		inode
6316  * @bh:			optional buffer of the block to be freed
6317  * @block:		starting physical block to be freed
6318  * @count:		number of blocks to be freed
6319  * @flags:		flags used by ext4_free_blocks
6320  */
6321 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6322 		      struct buffer_head *bh, ext4_fsblk_t block,
6323 		      unsigned long count, int flags)
6324 {
6325 	struct super_block *sb = inode->i_sb;
6326 	unsigned int overflow;
6327 	struct ext4_sb_info *sbi;
6328 
6329 	sbi = EXT4_SB(sb);
6330 
6331 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6332 		ext4_free_blocks_simple(inode, block, count);
6333 		return;
6334 	}
6335 
6336 	might_sleep();
6337 	if (bh) {
6338 		if (block)
6339 			BUG_ON(block != bh->b_blocknr);
6340 		else
6341 			block = bh->b_blocknr;
6342 	}
6343 
6344 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6345 	    !ext4_inode_block_valid(inode, block, count)) {
6346 		ext4_error(sb, "Freeing blocks not in datazone - "
6347 			   "block = %llu, count = %lu", block, count);
6348 		return;
6349 	}
6350 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6351 
6352 	ext4_debug("freeing block %llu\n", block);
6353 	trace_ext4_free_blocks(inode, block, count, flags);
6354 
6355 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6356 		BUG_ON(count > 1);
6357 
6358 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6359 			    inode, bh, block);
6360 	}
6361 
6362 	/*
6363 	 * If the extent to be freed does not begin on a cluster
6364 	 * boundary, we need to deal with partial clusters at the
6365 	 * beginning and end of the extent.  Normally we will free
6366 	 * blocks at the beginning or the end unless we are explicitly
6367 	 * requested to avoid doing so.
6368 	 */
6369 	overflow = EXT4_PBLK_COFF(sbi, block);
6370 	if (overflow) {
6371 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6372 			overflow = sbi->s_cluster_ratio - overflow;
6373 			block += overflow;
6374 			if (count > overflow)
6375 				count -= overflow;
6376 			else
6377 				return;
6378 		} else {
6379 			block -= overflow;
6380 			count += overflow;
6381 		}
6382 		/* The range changed so it's no longer validated */
6383 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6384 	}
6385 	overflow = EXT4_LBLK_COFF(sbi, count);
6386 	if (overflow) {
6387 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6388 			if (count > overflow)
6389 				count -= overflow;
6390 			else
6391 				return;
6392 		} else
6393 			count += sbi->s_cluster_ratio - overflow;
6394 		/* The range changed so it's no longer validated */
6395 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6396 	}
6397 
6398 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6399 		int i;
6400 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6401 
6402 		for (i = 0; i < count; i++) {
6403 			cond_resched();
6404 			if (is_metadata)
6405 				bh = sb_find_get_block(inode->i_sb, block + i);
6406 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6407 		}
6408 	}
6409 
6410 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6411 	return;
6412 }
6413 
6414 /**
6415  * ext4_group_add_blocks() -- Add given blocks to an existing group
6416  * @handle:			handle to this transaction
6417  * @sb:				super block
6418  * @block:			start physical block to add to the block group
6419  * @count:			number of blocks to free
6420  *
6421  * This marks the blocks as free in the bitmap and buddy.
6422  */
6423 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6424 			 ext4_fsblk_t block, unsigned long count)
6425 {
6426 	struct buffer_head *bitmap_bh = NULL;
6427 	struct buffer_head *gd_bh;
6428 	ext4_group_t block_group;
6429 	ext4_grpblk_t bit;
6430 	unsigned int i;
6431 	struct ext4_group_desc *desc;
6432 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6433 	struct ext4_buddy e4b;
6434 	int err = 0, ret, free_clusters_count;
6435 	ext4_grpblk_t clusters_freed;
6436 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6437 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6438 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6439 
6440 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6441 
6442 	if (count == 0)
6443 		return 0;
6444 
6445 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6446 	/*
6447 	 * Check to see if we are freeing blocks across a group
6448 	 * boundary.
6449 	 */
6450 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6451 		ext4_warning(sb, "too many blocks added to group %u",
6452 			     block_group);
6453 		err = -EINVAL;
6454 		goto error_return;
6455 	}
6456 
6457 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6458 	if (IS_ERR(bitmap_bh)) {
6459 		err = PTR_ERR(bitmap_bh);
6460 		bitmap_bh = NULL;
6461 		goto error_return;
6462 	}
6463 
6464 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6465 	if (!desc) {
6466 		err = -EIO;
6467 		goto error_return;
6468 	}
6469 
6470 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6471 		ext4_error(sb, "Adding blocks in system zones - "
6472 			   "Block = %llu, count = %lu",
6473 			   block, count);
6474 		err = -EINVAL;
6475 		goto error_return;
6476 	}
6477 
6478 	BUFFER_TRACE(bitmap_bh, "getting write access");
6479 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6480 					    EXT4_JTR_NONE);
6481 	if (err)
6482 		goto error_return;
6483 
6484 	/*
6485 	 * We are about to modify some metadata.  Call the journal APIs
6486 	 * to unshare ->b_data if a currently-committing transaction is
6487 	 * using it
6488 	 */
6489 	BUFFER_TRACE(gd_bh, "get_write_access");
6490 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6491 	if (err)
6492 		goto error_return;
6493 
6494 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6495 		BUFFER_TRACE(bitmap_bh, "clear bit");
6496 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6497 			ext4_error(sb, "bit already cleared for block %llu",
6498 				   (ext4_fsblk_t)(block + i));
6499 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6500 		} else {
6501 			clusters_freed++;
6502 		}
6503 	}
6504 
6505 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6506 	if (err)
6507 		goto error_return;
6508 
6509 	/*
6510 	 * need to update group_info->bb_free and bitmap
6511 	 * with group lock held. generate_buddy look at
6512 	 * them with group lock_held
6513 	 */
6514 	ext4_lock_group(sb, block_group);
6515 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6516 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6517 	free_clusters_count = clusters_freed +
6518 		ext4_free_group_clusters(sb, desc);
6519 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6520 	ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6521 	ext4_group_desc_csum_set(sb, block_group, desc);
6522 	ext4_unlock_group(sb, block_group);
6523 	percpu_counter_add(&sbi->s_freeclusters_counter,
6524 			   clusters_freed);
6525 
6526 	if (sbi->s_log_groups_per_flex) {
6527 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6528 		atomic64_add(clusters_freed,
6529 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6530 						  flex_group)->free_clusters);
6531 	}
6532 
6533 	ext4_mb_unload_buddy(&e4b);
6534 
6535 	/* We dirtied the bitmap block */
6536 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6537 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6538 
6539 	/* And the group descriptor block */
6540 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6541 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6542 	if (!err)
6543 		err = ret;
6544 
6545 error_return:
6546 	brelse(bitmap_bh);
6547 	ext4_std_error(sb, err);
6548 	return err;
6549 }
6550 
6551 /**
6552  * ext4_trim_extent -- function to TRIM one single free extent in the group
6553  * @sb:		super block for the file system
6554  * @start:	starting block of the free extent in the alloc. group
6555  * @count:	number of blocks to TRIM
6556  * @e4b:	ext4 buddy for the group
6557  *
6558  * Trim "count" blocks starting at "start" in the "group". To assure that no
6559  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6560  * be called with under the group lock.
6561  */
6562 static int ext4_trim_extent(struct super_block *sb,
6563 		int start, int count, struct ext4_buddy *e4b)
6564 __releases(bitlock)
6565 __acquires(bitlock)
6566 {
6567 	struct ext4_free_extent ex;
6568 	ext4_group_t group = e4b->bd_group;
6569 	int ret = 0;
6570 
6571 	trace_ext4_trim_extent(sb, group, start, count);
6572 
6573 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6574 
6575 	ex.fe_start = start;
6576 	ex.fe_group = group;
6577 	ex.fe_len = count;
6578 
6579 	/*
6580 	 * Mark blocks used, so no one can reuse them while
6581 	 * being trimmed.
6582 	 */
6583 	mb_mark_used(e4b, &ex);
6584 	ext4_unlock_group(sb, group);
6585 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6586 	ext4_lock_group(sb, group);
6587 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6588 	return ret;
6589 }
6590 
6591 static int ext4_try_to_trim_range(struct super_block *sb,
6592 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6593 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6594 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6595 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6596 {
6597 	ext4_grpblk_t next, count, free_count;
6598 	void *bitmap;
6599 
6600 	bitmap = e4b->bd_bitmap;
6601 	start = (e4b->bd_info->bb_first_free > start) ?
6602 		e4b->bd_info->bb_first_free : start;
6603 	count = 0;
6604 	free_count = 0;
6605 
6606 	while (start <= max) {
6607 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6608 		if (start > max)
6609 			break;
6610 		next = mb_find_next_bit(bitmap, max + 1, start);
6611 
6612 		if ((next - start) >= minblocks) {
6613 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6614 
6615 			if (ret && ret != -EOPNOTSUPP)
6616 				break;
6617 			count += next - start;
6618 		}
6619 		free_count += next - start;
6620 		start = next + 1;
6621 
6622 		if (fatal_signal_pending(current)) {
6623 			count = -ERESTARTSYS;
6624 			break;
6625 		}
6626 
6627 		if (need_resched()) {
6628 			ext4_unlock_group(sb, e4b->bd_group);
6629 			cond_resched();
6630 			ext4_lock_group(sb, e4b->bd_group);
6631 		}
6632 
6633 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6634 			break;
6635 	}
6636 
6637 	return count;
6638 }
6639 
6640 /**
6641  * ext4_trim_all_free -- function to trim all free space in alloc. group
6642  * @sb:			super block for file system
6643  * @group:		group to be trimmed
6644  * @start:		first group block to examine
6645  * @max:		last group block to examine
6646  * @minblocks:		minimum extent block count
6647  * @set_trimmed:	set the trimmed flag if at least one block is trimmed
6648  *
6649  * ext4_trim_all_free walks through group's block bitmap searching for free
6650  * extents. When the free extent is found, mark it as used in group buddy
6651  * bitmap. Then issue a TRIM command on this extent and free the extent in
6652  * the group buddy bitmap.
6653  */
6654 static ext4_grpblk_t
6655 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6656 		   ext4_grpblk_t start, ext4_grpblk_t max,
6657 		   ext4_grpblk_t minblocks, bool set_trimmed)
6658 {
6659 	struct ext4_buddy e4b;
6660 	int ret;
6661 
6662 	trace_ext4_trim_all_free(sb, group, start, max);
6663 
6664 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6665 	if (ret) {
6666 		ext4_warning(sb, "Error %d loading buddy information for %u",
6667 			     ret, group);
6668 		return ret;
6669 	}
6670 
6671 	ext4_lock_group(sb, group);
6672 
6673 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6674 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
6675 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6676 		if (ret >= 0 && set_trimmed)
6677 			EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6678 	} else {
6679 		ret = 0;
6680 	}
6681 
6682 	ext4_unlock_group(sb, group);
6683 	ext4_mb_unload_buddy(&e4b);
6684 
6685 	ext4_debug("trimmed %d blocks in the group %d\n",
6686 		ret, group);
6687 
6688 	return ret;
6689 }
6690 
6691 /**
6692  * ext4_trim_fs() -- trim ioctl handle function
6693  * @sb:			superblock for filesystem
6694  * @range:		fstrim_range structure
6695  *
6696  * start:	First Byte to trim
6697  * len:		number of Bytes to trim from start
6698  * minlen:	minimum extent length in Bytes
6699  * ext4_trim_fs goes through all allocation groups containing Bytes from
6700  * start to start+len. For each such a group ext4_trim_all_free function
6701  * is invoked to trim all free space.
6702  */
6703 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6704 {
6705 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6706 	struct ext4_group_info *grp;
6707 	ext4_group_t group, first_group, last_group;
6708 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6709 	uint64_t start, end, minlen, trimmed = 0;
6710 	ext4_fsblk_t first_data_blk =
6711 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6712 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6713 	bool whole_group, eof = false;
6714 	int ret = 0;
6715 
6716 	start = range->start >> sb->s_blocksize_bits;
6717 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6718 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6719 			      range->minlen >> sb->s_blocksize_bits);
6720 
6721 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6722 	    start >= max_blks ||
6723 	    range->len < sb->s_blocksize)
6724 		return -EINVAL;
6725 	/* No point to try to trim less than discard granularity */
6726 	if (range->minlen < discard_granularity) {
6727 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6728 				discard_granularity >> sb->s_blocksize_bits);
6729 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6730 			goto out;
6731 	}
6732 	if (end >= max_blks - 1) {
6733 		end = max_blks - 1;
6734 		eof = true;
6735 	}
6736 	if (end <= first_data_blk)
6737 		goto out;
6738 	if (start < first_data_blk)
6739 		start = first_data_blk;
6740 
6741 	/* Determine first and last group to examine based on start and end */
6742 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6743 				     &first_group, &first_cluster);
6744 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6745 				     &last_group, &last_cluster);
6746 
6747 	/* end now represents the last cluster to discard in this group */
6748 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6749 	whole_group = true;
6750 
6751 	for (group = first_group; group <= last_group; group++) {
6752 		grp = ext4_get_group_info(sb, group);
6753 		if (!grp)
6754 			continue;
6755 		/* We only do this if the grp has never been initialized */
6756 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6757 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6758 			if (ret)
6759 				break;
6760 		}
6761 
6762 		/*
6763 		 * For all the groups except the last one, last cluster will
6764 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6765 		 * change it for the last group, note that last_cluster is
6766 		 * already computed earlier by ext4_get_group_no_and_offset()
6767 		 */
6768 		if (group == last_group) {
6769 			end = last_cluster;
6770 			whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6771 		}
6772 		if (grp->bb_free >= minlen) {
6773 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6774 						 end, minlen, whole_group);
6775 			if (cnt < 0) {
6776 				ret = cnt;
6777 				break;
6778 			}
6779 			trimmed += cnt;
6780 		}
6781 
6782 		/*
6783 		 * For every group except the first one, we are sure
6784 		 * that the first cluster to discard will be cluster #0.
6785 		 */
6786 		first_cluster = 0;
6787 	}
6788 
6789 	if (!ret)
6790 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6791 
6792 out:
6793 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6794 	return ret;
6795 }
6796 
6797 /* Iterate all the free extents in the group. */
6798 int
6799 ext4_mballoc_query_range(
6800 	struct super_block		*sb,
6801 	ext4_group_t			group,
6802 	ext4_grpblk_t			start,
6803 	ext4_grpblk_t			end,
6804 	ext4_mballoc_query_range_fn	formatter,
6805 	void				*priv)
6806 {
6807 	void				*bitmap;
6808 	ext4_grpblk_t			next;
6809 	struct ext4_buddy		e4b;
6810 	int				error;
6811 
6812 	error = ext4_mb_load_buddy(sb, group, &e4b);
6813 	if (error)
6814 		return error;
6815 	bitmap = e4b.bd_bitmap;
6816 
6817 	ext4_lock_group(sb, group);
6818 
6819 	start = (e4b.bd_info->bb_first_free > start) ?
6820 		e4b.bd_info->bb_first_free : start;
6821 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6822 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6823 
6824 	while (start <= end) {
6825 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6826 		if (start > end)
6827 			break;
6828 		next = mb_find_next_bit(bitmap, end + 1, start);
6829 
6830 		ext4_unlock_group(sb, group);
6831 		error = formatter(sb, group, start, next - start, priv);
6832 		if (error)
6833 			goto out_unload;
6834 		ext4_lock_group(sb, group);
6835 
6836 		start = next + 1;
6837 	}
6838 
6839 	ext4_unlock_group(sb, group);
6840 out_unload:
6841 	ext4_mb_unload_buddy(&e4b);
6842 
6843 	return error;
6844 }
6845