1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 /* 22 * MUSTDO: 23 * - test ext4_ext_search_left() and ext4_ext_search_right() 24 * - search for metadata in few groups 25 * 26 * TODO v4: 27 * - normalization should take into account whether file is still open 28 * - discard preallocations if no free space left (policy?) 29 * - don't normalize tails 30 * - quota 31 * - reservation for superuser 32 * 33 * TODO v3: 34 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 35 * - track min/max extents in each group for better group selection 36 * - mb_mark_used() may allocate chunk right after splitting buddy 37 * - tree of groups sorted by number of free blocks 38 * - error handling 39 */ 40 41 /* 42 * The allocation request involve request for multiple number of blocks 43 * near to the goal(block) value specified. 44 * 45 * During initialization phase of the allocator we decide to use the 46 * group preallocation or inode preallocation depending on the size of 47 * the file. The size of the file could be the resulting file size we 48 * would have after allocation, or the current file size, which ever 49 * is larger. If the size is less than sbi->s_mb_stream_request we 50 * select to use the group preallocation. The default value of 51 * s_mb_stream_request is 16 blocks. This can also be tuned via 52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 53 * terms of number of blocks. 54 * 55 * The main motivation for having small file use group preallocation is to 56 * ensure that we have small files closer together on the disk. 57 * 58 * First stage the allocator looks at the inode prealloc list, 59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 60 * spaces for this particular inode. The inode prealloc space is 61 * represented as: 62 * 63 * pa_lstart -> the logical start block for this prealloc space 64 * pa_pstart -> the physical start block for this prealloc space 65 * pa_len -> length for this prealloc space (in clusters) 66 * pa_free -> free space available in this prealloc space (in clusters) 67 * 68 * The inode preallocation space is used looking at the _logical_ start 69 * block. If only the logical file block falls within the range of prealloc 70 * space we will consume the particular prealloc space. This makes sure that 71 * we have contiguous physical blocks representing the file blocks 72 * 73 * The important thing to be noted in case of inode prealloc space is that 74 * we don't modify the values associated to inode prealloc space except 75 * pa_free. 76 * 77 * If we are not able to find blocks in the inode prealloc space and if we 78 * have the group allocation flag set then we look at the locality group 79 * prealloc space. These are per CPU prealloc list represented as 80 * 81 * ext4_sb_info.s_locality_groups[smp_processor_id()] 82 * 83 * The reason for having a per cpu locality group is to reduce the contention 84 * between CPUs. It is possible to get scheduled at this point. 85 * 86 * The locality group prealloc space is used looking at whether we have 87 * enough free space (pa_free) within the prealloc space. 88 * 89 * If we can't allocate blocks via inode prealloc or/and locality group 90 * prealloc then we look at the buddy cache. The buddy cache is represented 91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 92 * mapped to the buddy and bitmap information regarding different 93 * groups. The buddy information is attached to buddy cache inode so that 94 * we can access them through the page cache. The information regarding 95 * each group is loaded via ext4_mb_load_buddy. The information involve 96 * block bitmap and buddy information. The information are stored in the 97 * inode as: 98 * 99 * { page } 100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 101 * 102 * 103 * one block each for bitmap and buddy information. So for each group we 104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 105 * blocksize) blocks. So it can have information regarding groups_per_page 106 * which is blocks_per_page/2 107 * 108 * The buddy cache inode is not stored on disk. The inode is thrown 109 * away when the filesystem is unmounted. 110 * 111 * We look for count number of blocks in the buddy cache. If we were able 112 * to locate that many free blocks we return with additional information 113 * regarding rest of the contiguous physical block available 114 * 115 * Before allocating blocks via buddy cache we normalize the request 116 * blocks. This ensure we ask for more blocks that we needed. The extra 117 * blocks that we get after allocation is added to the respective prealloc 118 * list. In case of inode preallocation we follow a list of heuristics 119 * based on file size. This can be found in ext4_mb_normalize_request. If 120 * we are doing a group prealloc we try to normalize the request to 121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 122 * dependent on the cluster size; for non-bigalloc file systems, it is 123 * 512 blocks. This can be tuned via 124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 125 * terms of number of blocks. If we have mounted the file system with -O 126 * stripe=<value> option the group prealloc request is normalized to the 127 * the smallest multiple of the stripe value (sbi->s_stripe) which is 128 * greater than the default mb_group_prealloc. 129 * 130 * The regular allocator (using the buddy cache) supports a few tunables. 131 * 132 * /sys/fs/ext4/<partition>/mb_min_to_scan 133 * /sys/fs/ext4/<partition>/mb_max_to_scan 134 * /sys/fs/ext4/<partition>/mb_order2_req 135 * 136 * The regular allocator uses buddy scan only if the request len is power of 137 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 138 * value of s_mb_order2_reqs can be tuned via 139 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 140 * stripe size (sbi->s_stripe), we try to search for contiguous block in 141 * stripe size. This should result in better allocation on RAID setups. If 142 * not, we search in the specific group using bitmap for best extents. The 143 * tunable min_to_scan and max_to_scan control the behaviour here. 144 * min_to_scan indicate how long the mballoc __must__ look for a best 145 * extent and max_to_scan indicates how long the mballoc __can__ look for a 146 * best extent in the found extents. Searching for the blocks starts with 147 * the group specified as the goal value in allocation context via 148 * ac_g_ex. Each group is first checked based on the criteria whether it 149 * can be used for allocation. ext4_mb_good_group explains how the groups are 150 * checked. 151 * 152 * Both the prealloc space are getting populated as above. So for the first 153 * request we will hit the buddy cache which will result in this prealloc 154 * space getting filled. The prealloc space is then later used for the 155 * subsequent request. 156 */ 157 158 /* 159 * mballoc operates on the following data: 160 * - on-disk bitmap 161 * - in-core buddy (actually includes buddy and bitmap) 162 * - preallocation descriptors (PAs) 163 * 164 * there are two types of preallocations: 165 * - inode 166 * assiged to specific inode and can be used for this inode only. 167 * it describes part of inode's space preallocated to specific 168 * physical blocks. any block from that preallocated can be used 169 * independent. the descriptor just tracks number of blocks left 170 * unused. so, before taking some block from descriptor, one must 171 * make sure corresponded logical block isn't allocated yet. this 172 * also means that freeing any block within descriptor's range 173 * must discard all preallocated blocks. 174 * - locality group 175 * assigned to specific locality group which does not translate to 176 * permanent set of inodes: inode can join and leave group. space 177 * from this type of preallocation can be used for any inode. thus 178 * it's consumed from the beginning to the end. 179 * 180 * relation between them can be expressed as: 181 * in-core buddy = on-disk bitmap + preallocation descriptors 182 * 183 * this mean blocks mballoc considers used are: 184 * - allocated blocks (persistent) 185 * - preallocated blocks (non-persistent) 186 * 187 * consistency in mballoc world means that at any time a block is either 188 * free or used in ALL structures. notice: "any time" should not be read 189 * literally -- time is discrete and delimited by locks. 190 * 191 * to keep it simple, we don't use block numbers, instead we count number of 192 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 193 * 194 * all operations can be expressed as: 195 * - init buddy: buddy = on-disk + PAs 196 * - new PA: buddy += N; PA = N 197 * - use inode PA: on-disk += N; PA -= N 198 * - discard inode PA buddy -= on-disk - PA; PA = 0 199 * - use locality group PA on-disk += N; PA -= N 200 * - discard locality group PA buddy -= PA; PA = 0 201 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 202 * is used in real operation because we can't know actual used 203 * bits from PA, only from on-disk bitmap 204 * 205 * if we follow this strict logic, then all operations above should be atomic. 206 * given some of them can block, we'd have to use something like semaphores 207 * killing performance on high-end SMP hardware. let's try to relax it using 208 * the following knowledge: 209 * 1) if buddy is referenced, it's already initialized 210 * 2) while block is used in buddy and the buddy is referenced, 211 * nobody can re-allocate that block 212 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 213 * bit set and PA claims same block, it's OK. IOW, one can set bit in 214 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 215 * block 216 * 217 * so, now we're building a concurrency table: 218 * - init buddy vs. 219 * - new PA 220 * blocks for PA are allocated in the buddy, buddy must be referenced 221 * until PA is linked to allocation group to avoid concurrent buddy init 222 * - use inode PA 223 * we need to make sure that either on-disk bitmap or PA has uptodate data 224 * given (3) we care that PA-=N operation doesn't interfere with init 225 * - discard inode PA 226 * the simplest way would be to have buddy initialized by the discard 227 * - use locality group PA 228 * again PA-=N must be serialized with init 229 * - discard locality group PA 230 * the simplest way would be to have buddy initialized by the discard 231 * - new PA vs. 232 * - use inode PA 233 * i_data_sem serializes them 234 * - discard inode PA 235 * discard process must wait until PA isn't used by another process 236 * - use locality group PA 237 * some mutex should serialize them 238 * - discard locality group PA 239 * discard process must wait until PA isn't used by another process 240 * - use inode PA 241 * - use inode PA 242 * i_data_sem or another mutex should serializes them 243 * - discard inode PA 244 * discard process must wait until PA isn't used by another process 245 * - use locality group PA 246 * nothing wrong here -- they're different PAs covering different blocks 247 * - discard locality group PA 248 * discard process must wait until PA isn't used by another process 249 * 250 * now we're ready to make few consequences: 251 * - PA is referenced and while it is no discard is possible 252 * - PA is referenced until block isn't marked in on-disk bitmap 253 * - PA changes only after on-disk bitmap 254 * - discard must not compete with init. either init is done before 255 * any discard or they're serialized somehow 256 * - buddy init as sum of on-disk bitmap and PAs is done atomically 257 * 258 * a special case when we've used PA to emptiness. no need to modify buddy 259 * in this case, but we should care about concurrent init 260 * 261 */ 262 263 /* 264 * Logic in few words: 265 * 266 * - allocation: 267 * load group 268 * find blocks 269 * mark bits in on-disk bitmap 270 * release group 271 * 272 * - use preallocation: 273 * find proper PA (per-inode or group) 274 * load group 275 * mark bits in on-disk bitmap 276 * release group 277 * release PA 278 * 279 * - free: 280 * load group 281 * mark bits in on-disk bitmap 282 * release group 283 * 284 * - discard preallocations in group: 285 * mark PAs deleted 286 * move them onto local list 287 * load on-disk bitmap 288 * load group 289 * remove PA from object (inode or locality group) 290 * mark free blocks in-core 291 * 292 * - discard inode's preallocations: 293 */ 294 295 /* 296 * Locking rules 297 * 298 * Locks: 299 * - bitlock on a group (group) 300 * - object (inode/locality) (object) 301 * - per-pa lock (pa) 302 * 303 * Paths: 304 * - new pa 305 * object 306 * group 307 * 308 * - find and use pa: 309 * pa 310 * 311 * - release consumed pa: 312 * pa 313 * group 314 * object 315 * 316 * - generate in-core bitmap: 317 * group 318 * pa 319 * 320 * - discard all for given object (inode, locality group): 321 * object 322 * pa 323 * group 324 * 325 * - discard all for given group: 326 * group 327 * pa 328 * group 329 * object 330 * 331 */ 332 static struct kmem_cache *ext4_pspace_cachep; 333 static struct kmem_cache *ext4_ac_cachep; 334 static struct kmem_cache *ext4_free_data_cachep; 335 336 /* We create slab caches for groupinfo data structures based on the 337 * superblock block size. There will be one per mounted filesystem for 338 * each unique s_blocksize_bits */ 339 #define NR_GRPINFO_CACHES 8 340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 341 342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 343 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 344 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 345 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 346 }; 347 348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 349 ext4_group_t group); 350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 351 ext4_group_t group); 352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 353 354 /* 355 * The algorithm using this percpu seq counter goes below: 356 * 1. We sample the percpu discard_pa_seq counter before trying for block 357 * allocation in ext4_mb_new_blocks(). 358 * 2. We increment this percpu discard_pa_seq counter when we either allocate 359 * or free these blocks i.e. while marking those blocks as used/free in 360 * mb_mark_used()/mb_free_blocks(). 361 * 3. We also increment this percpu seq counter when we successfully identify 362 * that the bb_prealloc_list is not empty and hence proceed for discarding 363 * of those PAs inside ext4_mb_discard_group_preallocations(). 364 * 365 * Now to make sure that the regular fast path of block allocation is not 366 * affected, as a small optimization we only sample the percpu seq counter 367 * on that cpu. Only when the block allocation fails and when freed blocks 368 * found were 0, that is when we sample percpu seq counter for all cpus using 369 * below function ext4_get_discard_pa_seq_sum(). This happens after making 370 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 371 */ 372 static DEFINE_PER_CPU(u64, discard_pa_seq); 373 static inline u64 ext4_get_discard_pa_seq_sum(void) 374 { 375 int __cpu; 376 u64 __seq = 0; 377 378 for_each_possible_cpu(__cpu) 379 __seq += per_cpu(discard_pa_seq, __cpu); 380 return __seq; 381 } 382 383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 384 { 385 #if BITS_PER_LONG == 64 386 *bit += ((unsigned long) addr & 7UL) << 3; 387 addr = (void *) ((unsigned long) addr & ~7UL); 388 #elif BITS_PER_LONG == 32 389 *bit += ((unsigned long) addr & 3UL) << 3; 390 addr = (void *) ((unsigned long) addr & ~3UL); 391 #else 392 #error "how many bits you are?!" 393 #endif 394 return addr; 395 } 396 397 static inline int mb_test_bit(int bit, void *addr) 398 { 399 /* 400 * ext4_test_bit on architecture like powerpc 401 * needs unsigned long aligned address 402 */ 403 addr = mb_correct_addr_and_bit(&bit, addr); 404 return ext4_test_bit(bit, addr); 405 } 406 407 static inline void mb_set_bit(int bit, void *addr) 408 { 409 addr = mb_correct_addr_and_bit(&bit, addr); 410 ext4_set_bit(bit, addr); 411 } 412 413 static inline void mb_clear_bit(int bit, void *addr) 414 { 415 addr = mb_correct_addr_and_bit(&bit, addr); 416 ext4_clear_bit(bit, addr); 417 } 418 419 static inline int mb_test_and_clear_bit(int bit, void *addr) 420 { 421 addr = mb_correct_addr_and_bit(&bit, addr); 422 return ext4_test_and_clear_bit(bit, addr); 423 } 424 425 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 426 { 427 int fix = 0, ret, tmpmax; 428 addr = mb_correct_addr_and_bit(&fix, addr); 429 tmpmax = max + fix; 430 start += fix; 431 432 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 433 if (ret > max) 434 return max; 435 return ret; 436 } 437 438 static inline int mb_find_next_bit(void *addr, int max, int start) 439 { 440 int fix = 0, ret, tmpmax; 441 addr = mb_correct_addr_and_bit(&fix, addr); 442 tmpmax = max + fix; 443 start += fix; 444 445 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 446 if (ret > max) 447 return max; 448 return ret; 449 } 450 451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 452 { 453 char *bb; 454 455 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 456 BUG_ON(max == NULL); 457 458 if (order > e4b->bd_blkbits + 1) { 459 *max = 0; 460 return NULL; 461 } 462 463 /* at order 0 we see each particular block */ 464 if (order == 0) { 465 *max = 1 << (e4b->bd_blkbits + 3); 466 return e4b->bd_bitmap; 467 } 468 469 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 470 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 471 472 return bb; 473 } 474 475 #ifdef DOUBLE_CHECK 476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 477 int first, int count) 478 { 479 int i; 480 struct super_block *sb = e4b->bd_sb; 481 482 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 483 return; 484 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 485 for (i = 0; i < count; i++) { 486 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 487 ext4_fsblk_t blocknr; 488 489 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 490 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 491 ext4_grp_locked_error(sb, e4b->bd_group, 492 inode ? inode->i_ino : 0, 493 blocknr, 494 "freeing block already freed " 495 "(bit %u)", 496 first + i); 497 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 498 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 499 } 500 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 501 } 502 } 503 504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 505 { 506 int i; 507 508 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 509 return; 510 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 511 for (i = 0; i < count; i++) { 512 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 513 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 514 } 515 } 516 517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 518 { 519 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 520 return; 521 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 522 unsigned char *b1, *b2; 523 int i; 524 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 525 b2 = (unsigned char *) bitmap; 526 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 527 if (b1[i] != b2[i]) { 528 ext4_msg(e4b->bd_sb, KERN_ERR, 529 "corruption in group %u " 530 "at byte %u(%u): %x in copy != %x " 531 "on disk/prealloc", 532 e4b->bd_group, i, i * 8, b1[i], b2[i]); 533 BUG(); 534 } 535 } 536 } 537 } 538 539 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 540 struct ext4_group_info *grp, ext4_group_t group) 541 { 542 struct buffer_head *bh; 543 544 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 545 if (!grp->bb_bitmap) 546 return; 547 548 bh = ext4_read_block_bitmap(sb, group); 549 if (IS_ERR_OR_NULL(bh)) { 550 kfree(grp->bb_bitmap); 551 grp->bb_bitmap = NULL; 552 return; 553 } 554 555 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 556 put_bh(bh); 557 } 558 559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 560 { 561 kfree(grp->bb_bitmap); 562 } 563 564 #else 565 static inline void mb_free_blocks_double(struct inode *inode, 566 struct ext4_buddy *e4b, int first, int count) 567 { 568 return; 569 } 570 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 571 int first, int count) 572 { 573 return; 574 } 575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 576 { 577 return; 578 } 579 580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 581 struct ext4_group_info *grp, ext4_group_t group) 582 { 583 return; 584 } 585 586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 587 { 588 return; 589 } 590 #endif 591 592 #ifdef AGGRESSIVE_CHECK 593 594 #define MB_CHECK_ASSERT(assert) \ 595 do { \ 596 if (!(assert)) { \ 597 printk(KERN_EMERG \ 598 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 599 function, file, line, # assert); \ 600 BUG(); \ 601 } \ 602 } while (0) 603 604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 605 const char *function, int line) 606 { 607 struct super_block *sb = e4b->bd_sb; 608 int order = e4b->bd_blkbits + 1; 609 int max; 610 int max2; 611 int i; 612 int j; 613 int k; 614 int count; 615 struct ext4_group_info *grp; 616 int fragments = 0; 617 int fstart; 618 struct list_head *cur; 619 void *buddy; 620 void *buddy2; 621 622 { 623 static int mb_check_counter; 624 if (mb_check_counter++ % 100 != 0) 625 return 0; 626 } 627 628 while (order > 1) { 629 buddy = mb_find_buddy(e4b, order, &max); 630 MB_CHECK_ASSERT(buddy); 631 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 632 MB_CHECK_ASSERT(buddy2); 633 MB_CHECK_ASSERT(buddy != buddy2); 634 MB_CHECK_ASSERT(max * 2 == max2); 635 636 count = 0; 637 for (i = 0; i < max; i++) { 638 639 if (mb_test_bit(i, buddy)) { 640 /* only single bit in buddy2 may be 1 */ 641 if (!mb_test_bit(i << 1, buddy2)) { 642 MB_CHECK_ASSERT( 643 mb_test_bit((i<<1)+1, buddy2)); 644 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 645 MB_CHECK_ASSERT( 646 mb_test_bit(i << 1, buddy2)); 647 } 648 continue; 649 } 650 651 /* both bits in buddy2 must be 1 */ 652 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 653 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 654 655 for (j = 0; j < (1 << order); j++) { 656 k = (i * (1 << order)) + j; 657 MB_CHECK_ASSERT( 658 !mb_test_bit(k, e4b->bd_bitmap)); 659 } 660 count++; 661 } 662 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 663 order--; 664 } 665 666 fstart = -1; 667 buddy = mb_find_buddy(e4b, 0, &max); 668 for (i = 0; i < max; i++) { 669 if (!mb_test_bit(i, buddy)) { 670 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 671 if (fstart == -1) { 672 fragments++; 673 fstart = i; 674 } 675 continue; 676 } 677 fstart = -1; 678 /* check used bits only */ 679 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 680 buddy2 = mb_find_buddy(e4b, j, &max2); 681 k = i >> j; 682 MB_CHECK_ASSERT(k < max2); 683 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 684 } 685 } 686 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 687 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 688 689 grp = ext4_get_group_info(sb, e4b->bd_group); 690 list_for_each(cur, &grp->bb_prealloc_list) { 691 ext4_group_t groupnr; 692 struct ext4_prealloc_space *pa; 693 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 694 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 695 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 696 for (i = 0; i < pa->pa_len; i++) 697 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 698 } 699 return 0; 700 } 701 #undef MB_CHECK_ASSERT 702 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 703 __FILE__, __func__, __LINE__) 704 #else 705 #define mb_check_buddy(e4b) 706 #endif 707 708 /* 709 * Divide blocks started from @first with length @len into 710 * smaller chunks with power of 2 blocks. 711 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 712 * then increase bb_counters[] for corresponded chunk size. 713 */ 714 static void ext4_mb_mark_free_simple(struct super_block *sb, 715 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 716 struct ext4_group_info *grp) 717 { 718 struct ext4_sb_info *sbi = EXT4_SB(sb); 719 ext4_grpblk_t min; 720 ext4_grpblk_t max; 721 ext4_grpblk_t chunk; 722 unsigned int border; 723 724 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 725 726 border = 2 << sb->s_blocksize_bits; 727 728 while (len > 0) { 729 /* find how many blocks can be covered since this position */ 730 max = ffs(first | border) - 1; 731 732 /* find how many blocks of power 2 we need to mark */ 733 min = fls(len) - 1; 734 735 if (max < min) 736 min = max; 737 chunk = 1 << min; 738 739 /* mark multiblock chunks only */ 740 grp->bb_counters[min]++; 741 if (min > 0) 742 mb_clear_bit(first >> min, 743 buddy + sbi->s_mb_offsets[min]); 744 745 len -= chunk; 746 first += chunk; 747 } 748 } 749 750 /* 751 * Cache the order of the largest free extent we have available in this block 752 * group. 753 */ 754 static void 755 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 756 { 757 int i; 758 int bits; 759 760 grp->bb_largest_free_order = -1; /* uninit */ 761 762 bits = sb->s_blocksize_bits + 1; 763 for (i = bits; i >= 0; i--) { 764 if (grp->bb_counters[i] > 0) { 765 grp->bb_largest_free_order = i; 766 break; 767 } 768 } 769 } 770 771 static noinline_for_stack 772 void ext4_mb_generate_buddy(struct super_block *sb, 773 void *buddy, void *bitmap, ext4_group_t group) 774 { 775 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 776 struct ext4_sb_info *sbi = EXT4_SB(sb); 777 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 778 ext4_grpblk_t i = 0; 779 ext4_grpblk_t first; 780 ext4_grpblk_t len; 781 unsigned free = 0; 782 unsigned fragments = 0; 783 unsigned long long period = get_cycles(); 784 785 /* initialize buddy from bitmap which is aggregation 786 * of on-disk bitmap and preallocations */ 787 i = mb_find_next_zero_bit(bitmap, max, 0); 788 grp->bb_first_free = i; 789 while (i < max) { 790 fragments++; 791 first = i; 792 i = mb_find_next_bit(bitmap, max, i); 793 len = i - first; 794 free += len; 795 if (len > 1) 796 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 797 else 798 grp->bb_counters[0]++; 799 if (i < max) 800 i = mb_find_next_zero_bit(bitmap, max, i); 801 } 802 grp->bb_fragments = fragments; 803 804 if (free != grp->bb_free) { 805 ext4_grp_locked_error(sb, group, 0, 0, 806 "block bitmap and bg descriptor " 807 "inconsistent: %u vs %u free clusters", 808 free, grp->bb_free); 809 /* 810 * If we intend to continue, we consider group descriptor 811 * corrupt and update bb_free using bitmap value 812 */ 813 grp->bb_free = free; 814 ext4_mark_group_bitmap_corrupted(sb, group, 815 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 816 } 817 mb_set_largest_free_order(sb, grp); 818 819 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 820 821 period = get_cycles() - period; 822 spin_lock(&sbi->s_bal_lock); 823 sbi->s_mb_buddies_generated++; 824 sbi->s_mb_generation_time += period; 825 spin_unlock(&sbi->s_bal_lock); 826 } 827 828 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 829 { 830 int count; 831 int order = 1; 832 void *buddy; 833 834 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 835 ext4_set_bits(buddy, 0, count); 836 } 837 e4b->bd_info->bb_fragments = 0; 838 memset(e4b->bd_info->bb_counters, 0, 839 sizeof(*e4b->bd_info->bb_counters) * 840 (e4b->bd_sb->s_blocksize_bits + 2)); 841 842 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 843 e4b->bd_bitmap, e4b->bd_group); 844 } 845 846 /* The buddy information is attached the buddy cache inode 847 * for convenience. The information regarding each group 848 * is loaded via ext4_mb_load_buddy. The information involve 849 * block bitmap and buddy information. The information are 850 * stored in the inode as 851 * 852 * { page } 853 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 854 * 855 * 856 * one block each for bitmap and buddy information. 857 * So for each group we take up 2 blocks. A page can 858 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 859 * So it can have information regarding groups_per_page which 860 * is blocks_per_page/2 861 * 862 * Locking note: This routine takes the block group lock of all groups 863 * for this page; do not hold this lock when calling this routine! 864 */ 865 866 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 867 { 868 ext4_group_t ngroups; 869 int blocksize; 870 int blocks_per_page; 871 int groups_per_page; 872 int err = 0; 873 int i; 874 ext4_group_t first_group, group; 875 int first_block; 876 struct super_block *sb; 877 struct buffer_head *bhs; 878 struct buffer_head **bh = NULL; 879 struct inode *inode; 880 char *data; 881 char *bitmap; 882 struct ext4_group_info *grinfo; 883 884 inode = page->mapping->host; 885 sb = inode->i_sb; 886 ngroups = ext4_get_groups_count(sb); 887 blocksize = i_blocksize(inode); 888 blocks_per_page = PAGE_SIZE / blocksize; 889 890 mb_debug(sb, "init page %lu\n", page->index); 891 892 groups_per_page = blocks_per_page >> 1; 893 if (groups_per_page == 0) 894 groups_per_page = 1; 895 896 /* allocate buffer_heads to read bitmaps */ 897 if (groups_per_page > 1) { 898 i = sizeof(struct buffer_head *) * groups_per_page; 899 bh = kzalloc(i, gfp); 900 if (bh == NULL) { 901 err = -ENOMEM; 902 goto out; 903 } 904 } else 905 bh = &bhs; 906 907 first_group = page->index * blocks_per_page / 2; 908 909 /* read all groups the page covers into the cache */ 910 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 911 if (group >= ngroups) 912 break; 913 914 grinfo = ext4_get_group_info(sb, group); 915 /* 916 * If page is uptodate then we came here after online resize 917 * which added some new uninitialized group info structs, so 918 * we must skip all initialized uptodate buddies on the page, 919 * which may be currently in use by an allocating task. 920 */ 921 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 922 bh[i] = NULL; 923 continue; 924 } 925 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 926 if (IS_ERR(bh[i])) { 927 err = PTR_ERR(bh[i]); 928 bh[i] = NULL; 929 goto out; 930 } 931 mb_debug(sb, "read bitmap for group %u\n", group); 932 } 933 934 /* wait for I/O completion */ 935 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 936 int err2; 937 938 if (!bh[i]) 939 continue; 940 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 941 if (!err) 942 err = err2; 943 } 944 945 first_block = page->index * blocks_per_page; 946 for (i = 0; i < blocks_per_page; i++) { 947 group = (first_block + i) >> 1; 948 if (group >= ngroups) 949 break; 950 951 if (!bh[group - first_group]) 952 /* skip initialized uptodate buddy */ 953 continue; 954 955 if (!buffer_verified(bh[group - first_group])) 956 /* Skip faulty bitmaps */ 957 continue; 958 err = 0; 959 960 /* 961 * data carry information regarding this 962 * particular group in the format specified 963 * above 964 * 965 */ 966 data = page_address(page) + (i * blocksize); 967 bitmap = bh[group - first_group]->b_data; 968 969 /* 970 * We place the buddy block and bitmap block 971 * close together 972 */ 973 if ((first_block + i) & 1) { 974 /* this is block of buddy */ 975 BUG_ON(incore == NULL); 976 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 977 group, page->index, i * blocksize); 978 trace_ext4_mb_buddy_bitmap_load(sb, group); 979 grinfo = ext4_get_group_info(sb, group); 980 grinfo->bb_fragments = 0; 981 memset(grinfo->bb_counters, 0, 982 sizeof(*grinfo->bb_counters) * 983 (sb->s_blocksize_bits+2)); 984 /* 985 * incore got set to the group block bitmap below 986 */ 987 ext4_lock_group(sb, group); 988 /* init the buddy */ 989 memset(data, 0xff, blocksize); 990 ext4_mb_generate_buddy(sb, data, incore, group); 991 ext4_unlock_group(sb, group); 992 incore = NULL; 993 } else { 994 /* this is block of bitmap */ 995 BUG_ON(incore != NULL); 996 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 997 group, page->index, i * blocksize); 998 trace_ext4_mb_bitmap_load(sb, group); 999 1000 /* see comments in ext4_mb_put_pa() */ 1001 ext4_lock_group(sb, group); 1002 memcpy(data, bitmap, blocksize); 1003 1004 /* mark all preallocated blks used in in-core bitmap */ 1005 ext4_mb_generate_from_pa(sb, data, group); 1006 ext4_mb_generate_from_freelist(sb, data, group); 1007 ext4_unlock_group(sb, group); 1008 1009 /* set incore so that the buddy information can be 1010 * generated using this 1011 */ 1012 incore = data; 1013 } 1014 } 1015 SetPageUptodate(page); 1016 1017 out: 1018 if (bh) { 1019 for (i = 0; i < groups_per_page; i++) 1020 brelse(bh[i]); 1021 if (bh != &bhs) 1022 kfree(bh); 1023 } 1024 return err; 1025 } 1026 1027 /* 1028 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1029 * on the same buddy page doesn't happen whild holding the buddy page lock. 1030 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1031 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1032 */ 1033 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1034 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1035 { 1036 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1037 int block, pnum, poff; 1038 int blocks_per_page; 1039 struct page *page; 1040 1041 e4b->bd_buddy_page = NULL; 1042 e4b->bd_bitmap_page = NULL; 1043 1044 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1045 /* 1046 * the buddy cache inode stores the block bitmap 1047 * and buddy information in consecutive blocks. 1048 * So for each group we need two blocks. 1049 */ 1050 block = group * 2; 1051 pnum = block / blocks_per_page; 1052 poff = block % blocks_per_page; 1053 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1054 if (!page) 1055 return -ENOMEM; 1056 BUG_ON(page->mapping != inode->i_mapping); 1057 e4b->bd_bitmap_page = page; 1058 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1059 1060 if (blocks_per_page >= 2) { 1061 /* buddy and bitmap are on the same page */ 1062 return 0; 1063 } 1064 1065 block++; 1066 pnum = block / blocks_per_page; 1067 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1068 if (!page) 1069 return -ENOMEM; 1070 BUG_ON(page->mapping != inode->i_mapping); 1071 e4b->bd_buddy_page = page; 1072 return 0; 1073 } 1074 1075 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1076 { 1077 if (e4b->bd_bitmap_page) { 1078 unlock_page(e4b->bd_bitmap_page); 1079 put_page(e4b->bd_bitmap_page); 1080 } 1081 if (e4b->bd_buddy_page) { 1082 unlock_page(e4b->bd_buddy_page); 1083 put_page(e4b->bd_buddy_page); 1084 } 1085 } 1086 1087 /* 1088 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1089 * block group lock of all groups for this page; do not hold the BG lock when 1090 * calling this routine! 1091 */ 1092 static noinline_for_stack 1093 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1094 { 1095 1096 struct ext4_group_info *this_grp; 1097 struct ext4_buddy e4b; 1098 struct page *page; 1099 int ret = 0; 1100 1101 might_sleep(); 1102 mb_debug(sb, "init group %u\n", group); 1103 this_grp = ext4_get_group_info(sb, group); 1104 /* 1105 * This ensures that we don't reinit the buddy cache 1106 * page which map to the group from which we are already 1107 * allocating. If we are looking at the buddy cache we would 1108 * have taken a reference using ext4_mb_load_buddy and that 1109 * would have pinned buddy page to page cache. 1110 * The call to ext4_mb_get_buddy_page_lock will mark the 1111 * page accessed. 1112 */ 1113 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1114 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1115 /* 1116 * somebody initialized the group 1117 * return without doing anything 1118 */ 1119 goto err; 1120 } 1121 1122 page = e4b.bd_bitmap_page; 1123 ret = ext4_mb_init_cache(page, NULL, gfp); 1124 if (ret) 1125 goto err; 1126 if (!PageUptodate(page)) { 1127 ret = -EIO; 1128 goto err; 1129 } 1130 1131 if (e4b.bd_buddy_page == NULL) { 1132 /* 1133 * If both the bitmap and buddy are in 1134 * the same page we don't need to force 1135 * init the buddy 1136 */ 1137 ret = 0; 1138 goto err; 1139 } 1140 /* init buddy cache */ 1141 page = e4b.bd_buddy_page; 1142 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1143 if (ret) 1144 goto err; 1145 if (!PageUptodate(page)) { 1146 ret = -EIO; 1147 goto err; 1148 } 1149 err: 1150 ext4_mb_put_buddy_page_lock(&e4b); 1151 return ret; 1152 } 1153 1154 /* 1155 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1156 * block group lock of all groups for this page; do not hold the BG lock when 1157 * calling this routine! 1158 */ 1159 static noinline_for_stack int 1160 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1161 struct ext4_buddy *e4b, gfp_t gfp) 1162 { 1163 int blocks_per_page; 1164 int block; 1165 int pnum; 1166 int poff; 1167 struct page *page; 1168 int ret; 1169 struct ext4_group_info *grp; 1170 struct ext4_sb_info *sbi = EXT4_SB(sb); 1171 struct inode *inode = sbi->s_buddy_cache; 1172 1173 might_sleep(); 1174 mb_debug(sb, "load group %u\n", group); 1175 1176 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1177 grp = ext4_get_group_info(sb, group); 1178 1179 e4b->bd_blkbits = sb->s_blocksize_bits; 1180 e4b->bd_info = grp; 1181 e4b->bd_sb = sb; 1182 e4b->bd_group = group; 1183 e4b->bd_buddy_page = NULL; 1184 e4b->bd_bitmap_page = NULL; 1185 1186 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1187 /* 1188 * we need full data about the group 1189 * to make a good selection 1190 */ 1191 ret = ext4_mb_init_group(sb, group, gfp); 1192 if (ret) 1193 return ret; 1194 } 1195 1196 /* 1197 * the buddy cache inode stores the block bitmap 1198 * and buddy information in consecutive blocks. 1199 * So for each group we need two blocks. 1200 */ 1201 block = group * 2; 1202 pnum = block / blocks_per_page; 1203 poff = block % blocks_per_page; 1204 1205 /* we could use find_or_create_page(), but it locks page 1206 * what we'd like to avoid in fast path ... */ 1207 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1208 if (page == NULL || !PageUptodate(page)) { 1209 if (page) 1210 /* 1211 * drop the page reference and try 1212 * to get the page with lock. If we 1213 * are not uptodate that implies 1214 * somebody just created the page but 1215 * is yet to initialize the same. So 1216 * wait for it to initialize. 1217 */ 1218 put_page(page); 1219 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1220 if (page) { 1221 BUG_ON(page->mapping != inode->i_mapping); 1222 if (!PageUptodate(page)) { 1223 ret = ext4_mb_init_cache(page, NULL, gfp); 1224 if (ret) { 1225 unlock_page(page); 1226 goto err; 1227 } 1228 mb_cmp_bitmaps(e4b, page_address(page) + 1229 (poff * sb->s_blocksize)); 1230 } 1231 unlock_page(page); 1232 } 1233 } 1234 if (page == NULL) { 1235 ret = -ENOMEM; 1236 goto err; 1237 } 1238 if (!PageUptodate(page)) { 1239 ret = -EIO; 1240 goto err; 1241 } 1242 1243 /* Pages marked accessed already */ 1244 e4b->bd_bitmap_page = page; 1245 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1246 1247 block++; 1248 pnum = block / blocks_per_page; 1249 poff = block % blocks_per_page; 1250 1251 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1252 if (page == NULL || !PageUptodate(page)) { 1253 if (page) 1254 put_page(page); 1255 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1256 if (page) { 1257 BUG_ON(page->mapping != inode->i_mapping); 1258 if (!PageUptodate(page)) { 1259 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1260 gfp); 1261 if (ret) { 1262 unlock_page(page); 1263 goto err; 1264 } 1265 } 1266 unlock_page(page); 1267 } 1268 } 1269 if (page == NULL) { 1270 ret = -ENOMEM; 1271 goto err; 1272 } 1273 if (!PageUptodate(page)) { 1274 ret = -EIO; 1275 goto err; 1276 } 1277 1278 /* Pages marked accessed already */ 1279 e4b->bd_buddy_page = page; 1280 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1281 1282 return 0; 1283 1284 err: 1285 if (page) 1286 put_page(page); 1287 if (e4b->bd_bitmap_page) 1288 put_page(e4b->bd_bitmap_page); 1289 if (e4b->bd_buddy_page) 1290 put_page(e4b->bd_buddy_page); 1291 e4b->bd_buddy = NULL; 1292 e4b->bd_bitmap = NULL; 1293 return ret; 1294 } 1295 1296 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1297 struct ext4_buddy *e4b) 1298 { 1299 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1300 } 1301 1302 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1303 { 1304 if (e4b->bd_bitmap_page) 1305 put_page(e4b->bd_bitmap_page); 1306 if (e4b->bd_buddy_page) 1307 put_page(e4b->bd_buddy_page); 1308 } 1309 1310 1311 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1312 { 1313 int order = 1; 1314 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1315 void *bb; 1316 1317 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1318 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1319 1320 bb = e4b->bd_buddy; 1321 while (order <= e4b->bd_blkbits + 1) { 1322 block = block >> 1; 1323 if (!mb_test_bit(block, bb)) { 1324 /* this block is part of buddy of order 'order' */ 1325 return order; 1326 } 1327 bb += bb_incr; 1328 bb_incr >>= 1; 1329 order++; 1330 } 1331 return 0; 1332 } 1333 1334 static void mb_clear_bits(void *bm, int cur, int len) 1335 { 1336 __u32 *addr; 1337 1338 len = cur + len; 1339 while (cur < len) { 1340 if ((cur & 31) == 0 && (len - cur) >= 32) { 1341 /* fast path: clear whole word at once */ 1342 addr = bm + (cur >> 3); 1343 *addr = 0; 1344 cur += 32; 1345 continue; 1346 } 1347 mb_clear_bit(cur, bm); 1348 cur++; 1349 } 1350 } 1351 1352 /* clear bits in given range 1353 * will return first found zero bit if any, -1 otherwise 1354 */ 1355 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1356 { 1357 __u32 *addr; 1358 int zero_bit = -1; 1359 1360 len = cur + len; 1361 while (cur < len) { 1362 if ((cur & 31) == 0 && (len - cur) >= 32) { 1363 /* fast path: clear whole word at once */ 1364 addr = bm + (cur >> 3); 1365 if (*addr != (__u32)(-1) && zero_bit == -1) 1366 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1367 *addr = 0; 1368 cur += 32; 1369 continue; 1370 } 1371 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1372 zero_bit = cur; 1373 cur++; 1374 } 1375 1376 return zero_bit; 1377 } 1378 1379 void ext4_set_bits(void *bm, int cur, int len) 1380 { 1381 __u32 *addr; 1382 1383 len = cur + len; 1384 while (cur < len) { 1385 if ((cur & 31) == 0 && (len - cur) >= 32) { 1386 /* fast path: set whole word at once */ 1387 addr = bm + (cur >> 3); 1388 *addr = 0xffffffff; 1389 cur += 32; 1390 continue; 1391 } 1392 mb_set_bit(cur, bm); 1393 cur++; 1394 } 1395 } 1396 1397 /* 1398 * _________________________________________________________________ */ 1399 1400 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1401 { 1402 if (mb_test_bit(*bit + side, bitmap)) { 1403 mb_clear_bit(*bit, bitmap); 1404 (*bit) -= side; 1405 return 1; 1406 } 1407 else { 1408 (*bit) += side; 1409 mb_set_bit(*bit, bitmap); 1410 return -1; 1411 } 1412 } 1413 1414 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1415 { 1416 int max; 1417 int order = 1; 1418 void *buddy = mb_find_buddy(e4b, order, &max); 1419 1420 while (buddy) { 1421 void *buddy2; 1422 1423 /* Bits in range [first; last] are known to be set since 1424 * corresponding blocks were allocated. Bits in range 1425 * (first; last) will stay set because they form buddies on 1426 * upper layer. We just deal with borders if they don't 1427 * align with upper layer and then go up. 1428 * Releasing entire group is all about clearing 1429 * single bit of highest order buddy. 1430 */ 1431 1432 /* Example: 1433 * --------------------------------- 1434 * | 1 | 1 | 1 | 1 | 1435 * --------------------------------- 1436 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1437 * --------------------------------- 1438 * 0 1 2 3 4 5 6 7 1439 * \_____________________/ 1440 * 1441 * Neither [1] nor [6] is aligned to above layer. 1442 * Left neighbour [0] is free, so mark it busy, 1443 * decrease bb_counters and extend range to 1444 * [0; 6] 1445 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1446 * mark [6] free, increase bb_counters and shrink range to 1447 * [0; 5]. 1448 * Then shift range to [0; 2], go up and do the same. 1449 */ 1450 1451 1452 if (first & 1) 1453 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1454 if (!(last & 1)) 1455 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1456 if (first > last) 1457 break; 1458 order++; 1459 1460 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1461 mb_clear_bits(buddy, first, last - first + 1); 1462 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1463 break; 1464 } 1465 first >>= 1; 1466 last >>= 1; 1467 buddy = buddy2; 1468 } 1469 } 1470 1471 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1472 int first, int count) 1473 { 1474 int left_is_free = 0; 1475 int right_is_free = 0; 1476 int block; 1477 int last = first + count - 1; 1478 struct super_block *sb = e4b->bd_sb; 1479 1480 if (WARN_ON(count == 0)) 1481 return; 1482 BUG_ON(last >= (sb->s_blocksize << 3)); 1483 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1484 /* Don't bother if the block group is corrupt. */ 1485 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1486 return; 1487 1488 mb_check_buddy(e4b); 1489 mb_free_blocks_double(inode, e4b, first, count); 1490 1491 this_cpu_inc(discard_pa_seq); 1492 e4b->bd_info->bb_free += count; 1493 if (first < e4b->bd_info->bb_first_free) 1494 e4b->bd_info->bb_first_free = first; 1495 1496 /* access memory sequentially: check left neighbour, 1497 * clear range and then check right neighbour 1498 */ 1499 if (first != 0) 1500 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1501 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1502 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1503 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1504 1505 if (unlikely(block != -1)) { 1506 struct ext4_sb_info *sbi = EXT4_SB(sb); 1507 ext4_fsblk_t blocknr; 1508 1509 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1510 blocknr += EXT4_C2B(sbi, block); 1511 ext4_grp_locked_error(sb, e4b->bd_group, 1512 inode ? inode->i_ino : 0, 1513 blocknr, 1514 "freeing already freed block " 1515 "(bit %u); block bitmap corrupt.", 1516 block); 1517 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1518 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1519 mb_regenerate_buddy(e4b); 1520 goto done; 1521 } 1522 1523 /* let's maintain fragments counter */ 1524 if (left_is_free && right_is_free) 1525 e4b->bd_info->bb_fragments--; 1526 else if (!left_is_free && !right_is_free) 1527 e4b->bd_info->bb_fragments++; 1528 1529 /* buddy[0] == bd_bitmap is a special case, so handle 1530 * it right away and let mb_buddy_mark_free stay free of 1531 * zero order checks. 1532 * Check if neighbours are to be coaleasced, 1533 * adjust bitmap bb_counters and borders appropriately. 1534 */ 1535 if (first & 1) { 1536 first += !left_is_free; 1537 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1538 } 1539 if (!(last & 1)) { 1540 last -= !right_is_free; 1541 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1542 } 1543 1544 if (first <= last) 1545 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1546 1547 done: 1548 mb_set_largest_free_order(sb, e4b->bd_info); 1549 mb_check_buddy(e4b); 1550 } 1551 1552 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1553 int needed, struct ext4_free_extent *ex) 1554 { 1555 int next = block; 1556 int max, order; 1557 void *buddy; 1558 1559 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1560 BUG_ON(ex == NULL); 1561 1562 buddy = mb_find_buddy(e4b, 0, &max); 1563 BUG_ON(buddy == NULL); 1564 BUG_ON(block >= max); 1565 if (mb_test_bit(block, buddy)) { 1566 ex->fe_len = 0; 1567 ex->fe_start = 0; 1568 ex->fe_group = 0; 1569 return 0; 1570 } 1571 1572 /* find actual order */ 1573 order = mb_find_order_for_block(e4b, block); 1574 block = block >> order; 1575 1576 ex->fe_len = 1 << order; 1577 ex->fe_start = block << order; 1578 ex->fe_group = e4b->bd_group; 1579 1580 /* calc difference from given start */ 1581 next = next - ex->fe_start; 1582 ex->fe_len -= next; 1583 ex->fe_start += next; 1584 1585 while (needed > ex->fe_len && 1586 mb_find_buddy(e4b, order, &max)) { 1587 1588 if (block + 1 >= max) 1589 break; 1590 1591 next = (block + 1) * (1 << order); 1592 if (mb_test_bit(next, e4b->bd_bitmap)) 1593 break; 1594 1595 order = mb_find_order_for_block(e4b, next); 1596 1597 block = next >> order; 1598 ex->fe_len += 1 << order; 1599 } 1600 1601 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1602 /* Should never happen! (but apparently sometimes does?!?) */ 1603 WARN_ON(1); 1604 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1605 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1606 block, order, needed, ex->fe_group, ex->fe_start, 1607 ex->fe_len, ex->fe_logical); 1608 ex->fe_len = 0; 1609 ex->fe_start = 0; 1610 ex->fe_group = 0; 1611 } 1612 return ex->fe_len; 1613 } 1614 1615 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1616 { 1617 int ord; 1618 int mlen = 0; 1619 int max = 0; 1620 int cur; 1621 int start = ex->fe_start; 1622 int len = ex->fe_len; 1623 unsigned ret = 0; 1624 int len0 = len; 1625 void *buddy; 1626 1627 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1628 BUG_ON(e4b->bd_group != ex->fe_group); 1629 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1630 mb_check_buddy(e4b); 1631 mb_mark_used_double(e4b, start, len); 1632 1633 this_cpu_inc(discard_pa_seq); 1634 e4b->bd_info->bb_free -= len; 1635 if (e4b->bd_info->bb_first_free == start) 1636 e4b->bd_info->bb_first_free += len; 1637 1638 /* let's maintain fragments counter */ 1639 if (start != 0) 1640 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1641 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1642 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1643 if (mlen && max) 1644 e4b->bd_info->bb_fragments++; 1645 else if (!mlen && !max) 1646 e4b->bd_info->bb_fragments--; 1647 1648 /* let's maintain buddy itself */ 1649 while (len) { 1650 ord = mb_find_order_for_block(e4b, start); 1651 1652 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1653 /* the whole chunk may be allocated at once! */ 1654 mlen = 1 << ord; 1655 buddy = mb_find_buddy(e4b, ord, &max); 1656 BUG_ON((start >> ord) >= max); 1657 mb_set_bit(start >> ord, buddy); 1658 e4b->bd_info->bb_counters[ord]--; 1659 start += mlen; 1660 len -= mlen; 1661 BUG_ON(len < 0); 1662 continue; 1663 } 1664 1665 /* store for history */ 1666 if (ret == 0) 1667 ret = len | (ord << 16); 1668 1669 /* we have to split large buddy */ 1670 BUG_ON(ord <= 0); 1671 buddy = mb_find_buddy(e4b, ord, &max); 1672 mb_set_bit(start >> ord, buddy); 1673 e4b->bd_info->bb_counters[ord]--; 1674 1675 ord--; 1676 cur = (start >> ord) & ~1U; 1677 buddy = mb_find_buddy(e4b, ord, &max); 1678 mb_clear_bit(cur, buddy); 1679 mb_clear_bit(cur + 1, buddy); 1680 e4b->bd_info->bb_counters[ord]++; 1681 e4b->bd_info->bb_counters[ord]++; 1682 } 1683 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1684 1685 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1686 mb_check_buddy(e4b); 1687 1688 return ret; 1689 } 1690 1691 /* 1692 * Must be called under group lock! 1693 */ 1694 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1695 struct ext4_buddy *e4b) 1696 { 1697 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1698 int ret; 1699 1700 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1701 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1702 1703 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1704 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1705 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1706 1707 /* preallocation can change ac_b_ex, thus we store actually 1708 * allocated blocks for history */ 1709 ac->ac_f_ex = ac->ac_b_ex; 1710 1711 ac->ac_status = AC_STATUS_FOUND; 1712 ac->ac_tail = ret & 0xffff; 1713 ac->ac_buddy = ret >> 16; 1714 1715 /* 1716 * take the page reference. We want the page to be pinned 1717 * so that we don't get a ext4_mb_init_cache_call for this 1718 * group until we update the bitmap. That would mean we 1719 * double allocate blocks. The reference is dropped 1720 * in ext4_mb_release_context 1721 */ 1722 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1723 get_page(ac->ac_bitmap_page); 1724 ac->ac_buddy_page = e4b->bd_buddy_page; 1725 get_page(ac->ac_buddy_page); 1726 /* store last allocated for subsequent stream allocation */ 1727 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1728 spin_lock(&sbi->s_md_lock); 1729 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1730 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1731 spin_unlock(&sbi->s_md_lock); 1732 } 1733 /* 1734 * As we've just preallocated more space than 1735 * user requested originally, we store allocated 1736 * space in a special descriptor. 1737 */ 1738 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 1739 ext4_mb_new_preallocation(ac); 1740 1741 } 1742 1743 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1744 struct ext4_buddy *e4b, 1745 int finish_group) 1746 { 1747 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1748 struct ext4_free_extent *bex = &ac->ac_b_ex; 1749 struct ext4_free_extent *gex = &ac->ac_g_ex; 1750 struct ext4_free_extent ex; 1751 int max; 1752 1753 if (ac->ac_status == AC_STATUS_FOUND) 1754 return; 1755 /* 1756 * We don't want to scan for a whole year 1757 */ 1758 if (ac->ac_found > sbi->s_mb_max_to_scan && 1759 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1760 ac->ac_status = AC_STATUS_BREAK; 1761 return; 1762 } 1763 1764 /* 1765 * Haven't found good chunk so far, let's continue 1766 */ 1767 if (bex->fe_len < gex->fe_len) 1768 return; 1769 1770 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1771 && bex->fe_group == e4b->bd_group) { 1772 /* recheck chunk's availability - we don't know 1773 * when it was found (within this lock-unlock 1774 * period or not) */ 1775 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1776 if (max >= gex->fe_len) { 1777 ext4_mb_use_best_found(ac, e4b); 1778 return; 1779 } 1780 } 1781 } 1782 1783 /* 1784 * The routine checks whether found extent is good enough. If it is, 1785 * then the extent gets marked used and flag is set to the context 1786 * to stop scanning. Otherwise, the extent is compared with the 1787 * previous found extent and if new one is better, then it's stored 1788 * in the context. Later, the best found extent will be used, if 1789 * mballoc can't find good enough extent. 1790 * 1791 * FIXME: real allocation policy is to be designed yet! 1792 */ 1793 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1794 struct ext4_free_extent *ex, 1795 struct ext4_buddy *e4b) 1796 { 1797 struct ext4_free_extent *bex = &ac->ac_b_ex; 1798 struct ext4_free_extent *gex = &ac->ac_g_ex; 1799 1800 BUG_ON(ex->fe_len <= 0); 1801 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1802 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1803 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1804 1805 ac->ac_found++; 1806 1807 /* 1808 * The special case - take what you catch first 1809 */ 1810 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1811 *bex = *ex; 1812 ext4_mb_use_best_found(ac, e4b); 1813 return; 1814 } 1815 1816 /* 1817 * Let's check whether the chuck is good enough 1818 */ 1819 if (ex->fe_len == gex->fe_len) { 1820 *bex = *ex; 1821 ext4_mb_use_best_found(ac, e4b); 1822 return; 1823 } 1824 1825 /* 1826 * If this is first found extent, just store it in the context 1827 */ 1828 if (bex->fe_len == 0) { 1829 *bex = *ex; 1830 return; 1831 } 1832 1833 /* 1834 * If new found extent is better, store it in the context 1835 */ 1836 if (bex->fe_len < gex->fe_len) { 1837 /* if the request isn't satisfied, any found extent 1838 * larger than previous best one is better */ 1839 if (ex->fe_len > bex->fe_len) 1840 *bex = *ex; 1841 } else if (ex->fe_len > gex->fe_len) { 1842 /* if the request is satisfied, then we try to find 1843 * an extent that still satisfy the request, but is 1844 * smaller than previous one */ 1845 if (ex->fe_len < bex->fe_len) 1846 *bex = *ex; 1847 } 1848 1849 ext4_mb_check_limits(ac, e4b, 0); 1850 } 1851 1852 static noinline_for_stack 1853 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1854 struct ext4_buddy *e4b) 1855 { 1856 struct ext4_free_extent ex = ac->ac_b_ex; 1857 ext4_group_t group = ex.fe_group; 1858 int max; 1859 int err; 1860 1861 BUG_ON(ex.fe_len <= 0); 1862 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1863 if (err) 1864 return err; 1865 1866 ext4_lock_group(ac->ac_sb, group); 1867 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1868 1869 if (max > 0) { 1870 ac->ac_b_ex = ex; 1871 ext4_mb_use_best_found(ac, e4b); 1872 } 1873 1874 ext4_unlock_group(ac->ac_sb, group); 1875 ext4_mb_unload_buddy(e4b); 1876 1877 return 0; 1878 } 1879 1880 static noinline_for_stack 1881 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1882 struct ext4_buddy *e4b) 1883 { 1884 ext4_group_t group = ac->ac_g_ex.fe_group; 1885 int max; 1886 int err; 1887 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1888 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1889 struct ext4_free_extent ex; 1890 1891 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1892 return 0; 1893 if (grp->bb_free == 0) 1894 return 0; 1895 1896 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1897 if (err) 1898 return err; 1899 1900 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1901 ext4_mb_unload_buddy(e4b); 1902 return 0; 1903 } 1904 1905 ext4_lock_group(ac->ac_sb, group); 1906 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1907 ac->ac_g_ex.fe_len, &ex); 1908 ex.fe_logical = 0xDEADFA11; /* debug value */ 1909 1910 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1911 ext4_fsblk_t start; 1912 1913 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1914 ex.fe_start; 1915 /* use do_div to get remainder (would be 64-bit modulo) */ 1916 if (do_div(start, sbi->s_stripe) == 0) { 1917 ac->ac_found++; 1918 ac->ac_b_ex = ex; 1919 ext4_mb_use_best_found(ac, e4b); 1920 } 1921 } else if (max >= ac->ac_g_ex.fe_len) { 1922 BUG_ON(ex.fe_len <= 0); 1923 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1924 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1925 ac->ac_found++; 1926 ac->ac_b_ex = ex; 1927 ext4_mb_use_best_found(ac, e4b); 1928 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1929 /* Sometimes, caller may want to merge even small 1930 * number of blocks to an existing extent */ 1931 BUG_ON(ex.fe_len <= 0); 1932 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1933 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1934 ac->ac_found++; 1935 ac->ac_b_ex = ex; 1936 ext4_mb_use_best_found(ac, e4b); 1937 } 1938 ext4_unlock_group(ac->ac_sb, group); 1939 ext4_mb_unload_buddy(e4b); 1940 1941 return 0; 1942 } 1943 1944 /* 1945 * The routine scans buddy structures (not bitmap!) from given order 1946 * to max order and tries to find big enough chunk to satisfy the req 1947 */ 1948 static noinline_for_stack 1949 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1950 struct ext4_buddy *e4b) 1951 { 1952 struct super_block *sb = ac->ac_sb; 1953 struct ext4_group_info *grp = e4b->bd_info; 1954 void *buddy; 1955 int i; 1956 int k; 1957 int max; 1958 1959 BUG_ON(ac->ac_2order <= 0); 1960 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1961 if (grp->bb_counters[i] == 0) 1962 continue; 1963 1964 buddy = mb_find_buddy(e4b, i, &max); 1965 BUG_ON(buddy == NULL); 1966 1967 k = mb_find_next_zero_bit(buddy, max, 0); 1968 if (k >= max) { 1969 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 1970 "%d free clusters of order %d. But found 0", 1971 grp->bb_counters[i], i); 1972 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 1973 e4b->bd_group, 1974 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1975 break; 1976 } 1977 ac->ac_found++; 1978 1979 ac->ac_b_ex.fe_len = 1 << i; 1980 ac->ac_b_ex.fe_start = k << i; 1981 ac->ac_b_ex.fe_group = e4b->bd_group; 1982 1983 ext4_mb_use_best_found(ac, e4b); 1984 1985 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 1986 1987 if (EXT4_SB(sb)->s_mb_stats) 1988 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1989 1990 break; 1991 } 1992 } 1993 1994 /* 1995 * The routine scans the group and measures all found extents. 1996 * In order to optimize scanning, caller must pass number of 1997 * free blocks in the group, so the routine can know upper limit. 1998 */ 1999 static noinline_for_stack 2000 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2001 struct ext4_buddy *e4b) 2002 { 2003 struct super_block *sb = ac->ac_sb; 2004 void *bitmap = e4b->bd_bitmap; 2005 struct ext4_free_extent ex; 2006 int i; 2007 int free; 2008 2009 free = e4b->bd_info->bb_free; 2010 if (WARN_ON(free <= 0)) 2011 return; 2012 2013 i = e4b->bd_info->bb_first_free; 2014 2015 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2016 i = mb_find_next_zero_bit(bitmap, 2017 EXT4_CLUSTERS_PER_GROUP(sb), i); 2018 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2019 /* 2020 * IF we have corrupt bitmap, we won't find any 2021 * free blocks even though group info says we 2022 * we have free blocks 2023 */ 2024 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2025 "%d free clusters as per " 2026 "group info. But bitmap says 0", 2027 free); 2028 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2029 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2030 break; 2031 } 2032 2033 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2034 if (WARN_ON(ex.fe_len <= 0)) 2035 break; 2036 if (free < ex.fe_len) { 2037 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2038 "%d free clusters as per " 2039 "group info. But got %d blocks", 2040 free, ex.fe_len); 2041 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2042 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2043 /* 2044 * The number of free blocks differs. This mostly 2045 * indicate that the bitmap is corrupt. So exit 2046 * without claiming the space. 2047 */ 2048 break; 2049 } 2050 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2051 ext4_mb_measure_extent(ac, &ex, e4b); 2052 2053 i += ex.fe_len; 2054 free -= ex.fe_len; 2055 } 2056 2057 ext4_mb_check_limits(ac, e4b, 1); 2058 } 2059 2060 /* 2061 * This is a special case for storages like raid5 2062 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2063 */ 2064 static noinline_for_stack 2065 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2066 struct ext4_buddy *e4b) 2067 { 2068 struct super_block *sb = ac->ac_sb; 2069 struct ext4_sb_info *sbi = EXT4_SB(sb); 2070 void *bitmap = e4b->bd_bitmap; 2071 struct ext4_free_extent ex; 2072 ext4_fsblk_t first_group_block; 2073 ext4_fsblk_t a; 2074 ext4_grpblk_t i; 2075 int max; 2076 2077 BUG_ON(sbi->s_stripe == 0); 2078 2079 /* find first stripe-aligned block in group */ 2080 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2081 2082 a = first_group_block + sbi->s_stripe - 1; 2083 do_div(a, sbi->s_stripe); 2084 i = (a * sbi->s_stripe) - first_group_block; 2085 2086 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2087 if (!mb_test_bit(i, bitmap)) { 2088 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2089 if (max >= sbi->s_stripe) { 2090 ac->ac_found++; 2091 ex.fe_logical = 0xDEADF00D; /* debug value */ 2092 ac->ac_b_ex = ex; 2093 ext4_mb_use_best_found(ac, e4b); 2094 break; 2095 } 2096 } 2097 i += sbi->s_stripe; 2098 } 2099 } 2100 2101 /* 2102 * This is also called BEFORE we load the buddy bitmap. 2103 * Returns either 1 or 0 indicating that the group is either suitable 2104 * for the allocation or not. 2105 */ 2106 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2107 ext4_group_t group, int cr) 2108 { 2109 ext4_grpblk_t free, fragments; 2110 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2111 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2112 2113 BUG_ON(cr < 0 || cr >= 4); 2114 2115 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2116 return false; 2117 2118 free = grp->bb_free; 2119 if (free == 0) 2120 return false; 2121 2122 fragments = grp->bb_fragments; 2123 if (fragments == 0) 2124 return false; 2125 2126 switch (cr) { 2127 case 0: 2128 BUG_ON(ac->ac_2order == 0); 2129 2130 /* Avoid using the first bg of a flexgroup for data files */ 2131 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2132 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2133 ((group % flex_size) == 0)) 2134 return false; 2135 2136 if (free < ac->ac_g_ex.fe_len) 2137 return false; 2138 2139 if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) 2140 return true; 2141 2142 if (grp->bb_largest_free_order < ac->ac_2order) 2143 return false; 2144 2145 return true; 2146 case 1: 2147 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2148 return true; 2149 break; 2150 case 2: 2151 if (free >= ac->ac_g_ex.fe_len) 2152 return true; 2153 break; 2154 case 3: 2155 return true; 2156 default: 2157 BUG(); 2158 } 2159 2160 return false; 2161 } 2162 2163 /* 2164 * This could return negative error code if something goes wrong 2165 * during ext4_mb_init_group(). This should not be called with 2166 * ext4_lock_group() held. 2167 */ 2168 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2169 ext4_group_t group, int cr) 2170 { 2171 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2172 struct super_block *sb = ac->ac_sb; 2173 struct ext4_sb_info *sbi = EXT4_SB(sb); 2174 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2175 ext4_grpblk_t free; 2176 int ret = 0; 2177 2178 if (should_lock) 2179 ext4_lock_group(sb, group); 2180 free = grp->bb_free; 2181 if (free == 0) 2182 goto out; 2183 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2184 goto out; 2185 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2186 goto out; 2187 if (should_lock) 2188 ext4_unlock_group(sb, group); 2189 2190 /* We only do this if the grp has never been initialized */ 2191 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2192 struct ext4_group_desc *gdp = 2193 ext4_get_group_desc(sb, group, NULL); 2194 int ret; 2195 2196 /* cr=0/1 is a very optimistic search to find large 2197 * good chunks almost for free. If buddy data is not 2198 * ready, then this optimization makes no sense. But 2199 * we never skip the first block group in a flex_bg, 2200 * since this gets used for metadata block allocation, 2201 * and we want to make sure we locate metadata blocks 2202 * in the first block group in the flex_bg if possible. 2203 */ 2204 if (cr < 2 && 2205 (!sbi->s_log_groups_per_flex || 2206 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2207 !(ext4_has_group_desc_csum(sb) && 2208 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2209 return 0; 2210 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2211 if (ret) 2212 return ret; 2213 } 2214 2215 if (should_lock) 2216 ext4_lock_group(sb, group); 2217 ret = ext4_mb_good_group(ac, group, cr); 2218 out: 2219 if (should_lock) 2220 ext4_unlock_group(sb, group); 2221 return ret; 2222 } 2223 2224 /* 2225 * Start prefetching @nr block bitmaps starting at @group. 2226 * Return the next group which needs to be prefetched. 2227 */ 2228 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2229 unsigned int nr, int *cnt) 2230 { 2231 ext4_group_t ngroups = ext4_get_groups_count(sb); 2232 struct buffer_head *bh; 2233 struct blk_plug plug; 2234 2235 blk_start_plug(&plug); 2236 while (nr-- > 0) { 2237 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2238 NULL); 2239 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2240 2241 /* 2242 * Prefetch block groups with free blocks; but don't 2243 * bother if it is marked uninitialized on disk, since 2244 * it won't require I/O to read. Also only try to 2245 * prefetch once, so we avoid getblk() call, which can 2246 * be expensive. 2247 */ 2248 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2249 EXT4_MB_GRP_NEED_INIT(grp) && 2250 ext4_free_group_clusters(sb, gdp) > 0 && 2251 !(ext4_has_group_desc_csum(sb) && 2252 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2253 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2254 if (bh && !IS_ERR(bh)) { 2255 if (!buffer_uptodate(bh) && cnt) 2256 (*cnt)++; 2257 brelse(bh); 2258 } 2259 } 2260 if (++group >= ngroups) 2261 group = 0; 2262 } 2263 blk_finish_plug(&plug); 2264 return group; 2265 } 2266 2267 /* 2268 * Prefetching reads the block bitmap into the buffer cache; but we 2269 * need to make sure that the buddy bitmap in the page cache has been 2270 * initialized. Note that ext4_mb_init_group() will block if the I/O 2271 * is not yet completed, or indeed if it was not initiated by 2272 * ext4_mb_prefetch did not start the I/O. 2273 * 2274 * TODO: We should actually kick off the buddy bitmap setup in a work 2275 * queue when the buffer I/O is completed, so that we don't block 2276 * waiting for the block allocation bitmap read to finish when 2277 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2278 */ 2279 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2280 unsigned int nr) 2281 { 2282 while (nr-- > 0) { 2283 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2284 NULL); 2285 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2286 2287 if (!group) 2288 group = ext4_get_groups_count(sb); 2289 group--; 2290 grp = ext4_get_group_info(sb, group); 2291 2292 if (EXT4_MB_GRP_NEED_INIT(grp) && 2293 ext4_free_group_clusters(sb, gdp) > 0 && 2294 !(ext4_has_group_desc_csum(sb) && 2295 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2296 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2297 break; 2298 } 2299 } 2300 } 2301 2302 static noinline_for_stack int 2303 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2304 { 2305 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2306 int cr = -1; 2307 int err = 0, first_err = 0; 2308 unsigned int nr = 0, prefetch_ios = 0; 2309 struct ext4_sb_info *sbi; 2310 struct super_block *sb; 2311 struct ext4_buddy e4b; 2312 int lost; 2313 2314 sb = ac->ac_sb; 2315 sbi = EXT4_SB(sb); 2316 ngroups = ext4_get_groups_count(sb); 2317 /* non-extent files are limited to low blocks/groups */ 2318 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2319 ngroups = sbi->s_blockfile_groups; 2320 2321 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2322 2323 /* first, try the goal */ 2324 err = ext4_mb_find_by_goal(ac, &e4b); 2325 if (err || ac->ac_status == AC_STATUS_FOUND) 2326 goto out; 2327 2328 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2329 goto out; 2330 2331 /* 2332 * ac->ac_2order is set only if the fe_len is a power of 2 2333 * if ac->ac_2order is set we also set criteria to 0 so that we 2334 * try exact allocation using buddy. 2335 */ 2336 i = fls(ac->ac_g_ex.fe_len); 2337 ac->ac_2order = 0; 2338 /* 2339 * We search using buddy data only if the order of the request 2340 * is greater than equal to the sbi_s_mb_order2_reqs 2341 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2342 * We also support searching for power-of-two requests only for 2343 * requests upto maximum buddy size we have constructed. 2344 */ 2345 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2346 /* 2347 * This should tell if fe_len is exactly power of 2 2348 */ 2349 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2350 ac->ac_2order = array_index_nospec(i - 1, 2351 sb->s_blocksize_bits + 2); 2352 } 2353 2354 /* if stream allocation is enabled, use global goal */ 2355 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2356 /* TBD: may be hot point */ 2357 spin_lock(&sbi->s_md_lock); 2358 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2359 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2360 spin_unlock(&sbi->s_md_lock); 2361 } 2362 2363 /* Let's just scan groups to find more-less suitable blocks */ 2364 cr = ac->ac_2order ? 0 : 1; 2365 /* 2366 * cr == 0 try to get exact allocation, 2367 * cr == 3 try to get anything 2368 */ 2369 repeat: 2370 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2371 ac->ac_criteria = cr; 2372 /* 2373 * searching for the right group start 2374 * from the goal value specified 2375 */ 2376 group = ac->ac_g_ex.fe_group; 2377 prefetch_grp = group; 2378 2379 for (i = 0; i < ngroups; group++, i++) { 2380 int ret = 0; 2381 cond_resched(); 2382 /* 2383 * Artificially restricted ngroups for non-extent 2384 * files makes group > ngroups possible on first loop. 2385 */ 2386 if (group >= ngroups) 2387 group = 0; 2388 2389 /* 2390 * Batch reads of the block allocation bitmaps 2391 * to get multiple READs in flight; limit 2392 * prefetching at cr=0/1, otherwise mballoc can 2393 * spend a lot of time loading imperfect groups 2394 */ 2395 if ((prefetch_grp == group) && 2396 (cr > 1 || 2397 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2398 unsigned int curr_ios = prefetch_ios; 2399 2400 nr = sbi->s_mb_prefetch; 2401 if (ext4_has_feature_flex_bg(sb)) { 2402 nr = (group / sbi->s_mb_prefetch) * 2403 sbi->s_mb_prefetch; 2404 nr = nr + sbi->s_mb_prefetch - group; 2405 } 2406 prefetch_grp = ext4_mb_prefetch(sb, group, 2407 nr, &prefetch_ios); 2408 if (prefetch_ios == curr_ios) 2409 nr = 0; 2410 } 2411 2412 /* This now checks without needing the buddy page */ 2413 ret = ext4_mb_good_group_nolock(ac, group, cr); 2414 if (ret <= 0) { 2415 if (!first_err) 2416 first_err = ret; 2417 continue; 2418 } 2419 2420 err = ext4_mb_load_buddy(sb, group, &e4b); 2421 if (err) 2422 goto out; 2423 2424 ext4_lock_group(sb, group); 2425 2426 /* 2427 * We need to check again after locking the 2428 * block group 2429 */ 2430 ret = ext4_mb_good_group(ac, group, cr); 2431 if (ret == 0) { 2432 ext4_unlock_group(sb, group); 2433 ext4_mb_unload_buddy(&e4b); 2434 continue; 2435 } 2436 2437 ac->ac_groups_scanned++; 2438 if (cr == 0) 2439 ext4_mb_simple_scan_group(ac, &e4b); 2440 else if (cr == 1 && sbi->s_stripe && 2441 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2442 ext4_mb_scan_aligned(ac, &e4b); 2443 else 2444 ext4_mb_complex_scan_group(ac, &e4b); 2445 2446 ext4_unlock_group(sb, group); 2447 ext4_mb_unload_buddy(&e4b); 2448 2449 if (ac->ac_status != AC_STATUS_CONTINUE) 2450 break; 2451 } 2452 } 2453 2454 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2455 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2456 /* 2457 * We've been searching too long. Let's try to allocate 2458 * the best chunk we've found so far 2459 */ 2460 ext4_mb_try_best_found(ac, &e4b); 2461 if (ac->ac_status != AC_STATUS_FOUND) { 2462 /* 2463 * Someone more lucky has already allocated it. 2464 * The only thing we can do is just take first 2465 * found block(s) 2466 */ 2467 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2468 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2469 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2470 ac->ac_b_ex.fe_len, lost); 2471 2472 ac->ac_b_ex.fe_group = 0; 2473 ac->ac_b_ex.fe_start = 0; 2474 ac->ac_b_ex.fe_len = 0; 2475 ac->ac_status = AC_STATUS_CONTINUE; 2476 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2477 cr = 3; 2478 goto repeat; 2479 } 2480 } 2481 out: 2482 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2483 err = first_err; 2484 2485 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2486 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2487 ac->ac_flags, cr, err); 2488 2489 if (nr) 2490 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2491 2492 return err; 2493 } 2494 2495 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2496 { 2497 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2498 ext4_group_t group; 2499 2500 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2501 return NULL; 2502 group = *pos + 1; 2503 return (void *) ((unsigned long) group); 2504 } 2505 2506 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2507 { 2508 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2509 ext4_group_t group; 2510 2511 ++*pos; 2512 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2513 return NULL; 2514 group = *pos + 1; 2515 return (void *) ((unsigned long) group); 2516 } 2517 2518 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2519 { 2520 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2521 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2522 int i; 2523 int err, buddy_loaded = 0; 2524 struct ext4_buddy e4b; 2525 struct ext4_group_info *grinfo; 2526 unsigned char blocksize_bits = min_t(unsigned char, 2527 sb->s_blocksize_bits, 2528 EXT4_MAX_BLOCK_LOG_SIZE); 2529 struct sg { 2530 struct ext4_group_info info; 2531 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2532 } sg; 2533 2534 group--; 2535 if (group == 0) 2536 seq_puts(seq, "#group: free frags first [" 2537 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2538 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2539 2540 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2541 sizeof(struct ext4_group_info); 2542 2543 grinfo = ext4_get_group_info(sb, group); 2544 /* Load the group info in memory only if not already loaded. */ 2545 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2546 err = ext4_mb_load_buddy(sb, group, &e4b); 2547 if (err) { 2548 seq_printf(seq, "#%-5u: I/O error\n", group); 2549 return 0; 2550 } 2551 buddy_loaded = 1; 2552 } 2553 2554 memcpy(&sg, ext4_get_group_info(sb, group), i); 2555 2556 if (buddy_loaded) 2557 ext4_mb_unload_buddy(&e4b); 2558 2559 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2560 sg.info.bb_fragments, sg.info.bb_first_free); 2561 for (i = 0; i <= 13; i++) 2562 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2563 sg.info.bb_counters[i] : 0); 2564 seq_puts(seq, " ]\n"); 2565 2566 return 0; 2567 } 2568 2569 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2570 { 2571 } 2572 2573 const struct seq_operations ext4_mb_seq_groups_ops = { 2574 .start = ext4_mb_seq_groups_start, 2575 .next = ext4_mb_seq_groups_next, 2576 .stop = ext4_mb_seq_groups_stop, 2577 .show = ext4_mb_seq_groups_show, 2578 }; 2579 2580 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2581 { 2582 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2583 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2584 2585 BUG_ON(!cachep); 2586 return cachep; 2587 } 2588 2589 /* 2590 * Allocate the top-level s_group_info array for the specified number 2591 * of groups 2592 */ 2593 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2594 { 2595 struct ext4_sb_info *sbi = EXT4_SB(sb); 2596 unsigned size; 2597 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 2598 2599 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2600 EXT4_DESC_PER_BLOCK_BITS(sb); 2601 if (size <= sbi->s_group_info_size) 2602 return 0; 2603 2604 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2605 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2606 if (!new_groupinfo) { 2607 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2608 return -ENOMEM; 2609 } 2610 rcu_read_lock(); 2611 old_groupinfo = rcu_dereference(sbi->s_group_info); 2612 if (old_groupinfo) 2613 memcpy(new_groupinfo, old_groupinfo, 2614 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2615 rcu_read_unlock(); 2616 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 2617 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2618 if (old_groupinfo) 2619 ext4_kvfree_array_rcu(old_groupinfo); 2620 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2621 sbi->s_group_info_size); 2622 return 0; 2623 } 2624 2625 /* Create and initialize ext4_group_info data for the given group. */ 2626 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2627 struct ext4_group_desc *desc) 2628 { 2629 int i; 2630 int metalen = 0; 2631 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2632 struct ext4_sb_info *sbi = EXT4_SB(sb); 2633 struct ext4_group_info **meta_group_info; 2634 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2635 2636 /* 2637 * First check if this group is the first of a reserved block. 2638 * If it's true, we have to allocate a new table of pointers 2639 * to ext4_group_info structures 2640 */ 2641 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2642 metalen = sizeof(*meta_group_info) << 2643 EXT4_DESC_PER_BLOCK_BITS(sb); 2644 meta_group_info = kmalloc(metalen, GFP_NOFS); 2645 if (meta_group_info == NULL) { 2646 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2647 "for a buddy group"); 2648 goto exit_meta_group_info; 2649 } 2650 rcu_read_lock(); 2651 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 2652 rcu_read_unlock(); 2653 } 2654 2655 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 2656 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2657 2658 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2659 if (meta_group_info[i] == NULL) { 2660 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2661 goto exit_group_info; 2662 } 2663 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2664 &(meta_group_info[i]->bb_state)); 2665 2666 /* 2667 * initialize bb_free to be able to skip 2668 * empty groups without initialization 2669 */ 2670 if (ext4_has_group_desc_csum(sb) && 2671 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2672 meta_group_info[i]->bb_free = 2673 ext4_free_clusters_after_init(sb, group, desc); 2674 } else { 2675 meta_group_info[i]->bb_free = 2676 ext4_free_group_clusters(sb, desc); 2677 } 2678 2679 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2680 init_rwsem(&meta_group_info[i]->alloc_sem); 2681 meta_group_info[i]->bb_free_root = RB_ROOT; 2682 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2683 2684 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 2685 return 0; 2686 2687 exit_group_info: 2688 /* If a meta_group_info table has been allocated, release it now */ 2689 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2690 struct ext4_group_info ***group_info; 2691 2692 rcu_read_lock(); 2693 group_info = rcu_dereference(sbi->s_group_info); 2694 kfree(group_info[idx]); 2695 group_info[idx] = NULL; 2696 rcu_read_unlock(); 2697 } 2698 exit_meta_group_info: 2699 return -ENOMEM; 2700 } /* ext4_mb_add_groupinfo */ 2701 2702 static int ext4_mb_init_backend(struct super_block *sb) 2703 { 2704 ext4_group_t ngroups = ext4_get_groups_count(sb); 2705 ext4_group_t i; 2706 struct ext4_sb_info *sbi = EXT4_SB(sb); 2707 int err; 2708 struct ext4_group_desc *desc; 2709 struct ext4_group_info ***group_info; 2710 struct kmem_cache *cachep; 2711 2712 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2713 if (err) 2714 return err; 2715 2716 sbi->s_buddy_cache = new_inode(sb); 2717 if (sbi->s_buddy_cache == NULL) { 2718 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2719 goto err_freesgi; 2720 } 2721 /* To avoid potentially colliding with an valid on-disk inode number, 2722 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2723 * not in the inode hash, so it should never be found by iget(), but 2724 * this will avoid confusion if it ever shows up during debugging. */ 2725 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2726 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2727 for (i = 0; i < ngroups; i++) { 2728 cond_resched(); 2729 desc = ext4_get_group_desc(sb, i, NULL); 2730 if (desc == NULL) { 2731 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2732 goto err_freebuddy; 2733 } 2734 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2735 goto err_freebuddy; 2736 } 2737 2738 if (ext4_has_feature_flex_bg(sb)) { 2739 /* a single flex group is supposed to be read by a single IO */ 2740 sbi->s_mb_prefetch = 1 << sbi->s_es->s_log_groups_per_flex; 2741 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 2742 } else { 2743 sbi->s_mb_prefetch = 32; 2744 } 2745 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 2746 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 2747 /* now many real IOs to prefetch within a single allocation at cr=0 2748 * given cr=0 is an CPU-related optimization we shouldn't try to 2749 * load too many groups, at some point we should start to use what 2750 * we've got in memory. 2751 * with an average random access time 5ms, it'd take a second to get 2752 * 200 groups (* N with flex_bg), so let's make this limit 4 2753 */ 2754 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 2755 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 2756 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 2757 2758 return 0; 2759 2760 err_freebuddy: 2761 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2762 while (i-- > 0) 2763 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2764 i = sbi->s_group_info_size; 2765 rcu_read_lock(); 2766 group_info = rcu_dereference(sbi->s_group_info); 2767 while (i-- > 0) 2768 kfree(group_info[i]); 2769 rcu_read_unlock(); 2770 iput(sbi->s_buddy_cache); 2771 err_freesgi: 2772 rcu_read_lock(); 2773 kvfree(rcu_dereference(sbi->s_group_info)); 2774 rcu_read_unlock(); 2775 return -ENOMEM; 2776 } 2777 2778 static void ext4_groupinfo_destroy_slabs(void) 2779 { 2780 int i; 2781 2782 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2783 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2784 ext4_groupinfo_caches[i] = NULL; 2785 } 2786 } 2787 2788 static int ext4_groupinfo_create_slab(size_t size) 2789 { 2790 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2791 int slab_size; 2792 int blocksize_bits = order_base_2(size); 2793 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2794 struct kmem_cache *cachep; 2795 2796 if (cache_index >= NR_GRPINFO_CACHES) 2797 return -EINVAL; 2798 2799 if (unlikely(cache_index < 0)) 2800 cache_index = 0; 2801 2802 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2803 if (ext4_groupinfo_caches[cache_index]) { 2804 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2805 return 0; /* Already created */ 2806 } 2807 2808 slab_size = offsetof(struct ext4_group_info, 2809 bb_counters[blocksize_bits + 2]); 2810 2811 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2812 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2813 NULL); 2814 2815 ext4_groupinfo_caches[cache_index] = cachep; 2816 2817 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2818 if (!cachep) { 2819 printk(KERN_EMERG 2820 "EXT4-fs: no memory for groupinfo slab cache\n"); 2821 return -ENOMEM; 2822 } 2823 2824 return 0; 2825 } 2826 2827 int ext4_mb_init(struct super_block *sb) 2828 { 2829 struct ext4_sb_info *sbi = EXT4_SB(sb); 2830 unsigned i, j; 2831 unsigned offset, offset_incr; 2832 unsigned max; 2833 int ret; 2834 2835 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2836 2837 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2838 if (sbi->s_mb_offsets == NULL) { 2839 ret = -ENOMEM; 2840 goto out; 2841 } 2842 2843 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2844 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2845 if (sbi->s_mb_maxs == NULL) { 2846 ret = -ENOMEM; 2847 goto out; 2848 } 2849 2850 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2851 if (ret < 0) 2852 goto out; 2853 2854 /* order 0 is regular bitmap */ 2855 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2856 sbi->s_mb_offsets[0] = 0; 2857 2858 i = 1; 2859 offset = 0; 2860 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2861 max = sb->s_blocksize << 2; 2862 do { 2863 sbi->s_mb_offsets[i] = offset; 2864 sbi->s_mb_maxs[i] = max; 2865 offset += offset_incr; 2866 offset_incr = offset_incr >> 1; 2867 max = max >> 1; 2868 i++; 2869 } while (i <= sb->s_blocksize_bits + 1); 2870 2871 spin_lock_init(&sbi->s_md_lock); 2872 spin_lock_init(&sbi->s_bal_lock); 2873 sbi->s_mb_free_pending = 0; 2874 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2875 2876 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2877 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2878 sbi->s_mb_stats = MB_DEFAULT_STATS; 2879 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2880 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2881 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC; 2882 /* 2883 * The default group preallocation is 512, which for 4k block 2884 * sizes translates to 2 megabytes. However for bigalloc file 2885 * systems, this is probably too big (i.e, if the cluster size 2886 * is 1 megabyte, then group preallocation size becomes half a 2887 * gigabyte!). As a default, we will keep a two megabyte 2888 * group pralloc size for cluster sizes up to 64k, and after 2889 * that, we will force a minimum group preallocation size of 2890 * 32 clusters. This translates to 8 megs when the cluster 2891 * size is 256k, and 32 megs when the cluster size is 1 meg, 2892 * which seems reasonable as a default. 2893 */ 2894 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2895 sbi->s_cluster_bits, 32); 2896 /* 2897 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2898 * to the lowest multiple of s_stripe which is bigger than 2899 * the s_mb_group_prealloc as determined above. We want 2900 * the preallocation size to be an exact multiple of the 2901 * RAID stripe size so that preallocations don't fragment 2902 * the stripes. 2903 */ 2904 if (sbi->s_stripe > 1) { 2905 sbi->s_mb_group_prealloc = roundup( 2906 sbi->s_mb_group_prealloc, sbi->s_stripe); 2907 } 2908 2909 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2910 if (sbi->s_locality_groups == NULL) { 2911 ret = -ENOMEM; 2912 goto out; 2913 } 2914 for_each_possible_cpu(i) { 2915 struct ext4_locality_group *lg; 2916 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2917 mutex_init(&lg->lg_mutex); 2918 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2919 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2920 spin_lock_init(&lg->lg_prealloc_lock); 2921 } 2922 2923 /* init file for buddy data */ 2924 ret = ext4_mb_init_backend(sb); 2925 if (ret != 0) 2926 goto out_free_locality_groups; 2927 2928 return 0; 2929 2930 out_free_locality_groups: 2931 free_percpu(sbi->s_locality_groups); 2932 sbi->s_locality_groups = NULL; 2933 out: 2934 kfree(sbi->s_mb_offsets); 2935 sbi->s_mb_offsets = NULL; 2936 kfree(sbi->s_mb_maxs); 2937 sbi->s_mb_maxs = NULL; 2938 return ret; 2939 } 2940 2941 /* need to called with the ext4 group lock held */ 2942 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2943 { 2944 struct ext4_prealloc_space *pa; 2945 struct list_head *cur, *tmp; 2946 int count = 0; 2947 2948 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2949 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2950 list_del(&pa->pa_group_list); 2951 count++; 2952 kmem_cache_free(ext4_pspace_cachep, pa); 2953 } 2954 return count; 2955 } 2956 2957 int ext4_mb_release(struct super_block *sb) 2958 { 2959 ext4_group_t ngroups = ext4_get_groups_count(sb); 2960 ext4_group_t i; 2961 int num_meta_group_infos; 2962 struct ext4_group_info *grinfo, ***group_info; 2963 struct ext4_sb_info *sbi = EXT4_SB(sb); 2964 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2965 int count; 2966 2967 if (sbi->s_group_info) { 2968 for (i = 0; i < ngroups; i++) { 2969 cond_resched(); 2970 grinfo = ext4_get_group_info(sb, i); 2971 mb_group_bb_bitmap_free(grinfo); 2972 ext4_lock_group(sb, i); 2973 count = ext4_mb_cleanup_pa(grinfo); 2974 if (count) 2975 mb_debug(sb, "mballoc: %d PAs left\n", 2976 count); 2977 ext4_unlock_group(sb, i); 2978 kmem_cache_free(cachep, grinfo); 2979 } 2980 num_meta_group_infos = (ngroups + 2981 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2982 EXT4_DESC_PER_BLOCK_BITS(sb); 2983 rcu_read_lock(); 2984 group_info = rcu_dereference(sbi->s_group_info); 2985 for (i = 0; i < num_meta_group_infos; i++) 2986 kfree(group_info[i]); 2987 kvfree(group_info); 2988 rcu_read_unlock(); 2989 } 2990 kfree(sbi->s_mb_offsets); 2991 kfree(sbi->s_mb_maxs); 2992 iput(sbi->s_buddy_cache); 2993 if (sbi->s_mb_stats) { 2994 ext4_msg(sb, KERN_INFO, 2995 "mballoc: %u blocks %u reqs (%u success)", 2996 atomic_read(&sbi->s_bal_allocated), 2997 atomic_read(&sbi->s_bal_reqs), 2998 atomic_read(&sbi->s_bal_success)); 2999 ext4_msg(sb, KERN_INFO, 3000 "mballoc: %u extents scanned, %u goal hits, " 3001 "%u 2^N hits, %u breaks, %u lost", 3002 atomic_read(&sbi->s_bal_ex_scanned), 3003 atomic_read(&sbi->s_bal_goals), 3004 atomic_read(&sbi->s_bal_2orders), 3005 atomic_read(&sbi->s_bal_breaks), 3006 atomic_read(&sbi->s_mb_lost_chunks)); 3007 ext4_msg(sb, KERN_INFO, 3008 "mballoc: %lu generated and it took %Lu", 3009 sbi->s_mb_buddies_generated, 3010 sbi->s_mb_generation_time); 3011 ext4_msg(sb, KERN_INFO, 3012 "mballoc: %u preallocated, %u discarded", 3013 atomic_read(&sbi->s_mb_preallocated), 3014 atomic_read(&sbi->s_mb_discarded)); 3015 } 3016 3017 free_percpu(sbi->s_locality_groups); 3018 3019 return 0; 3020 } 3021 3022 static inline int ext4_issue_discard(struct super_block *sb, 3023 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3024 struct bio **biop) 3025 { 3026 ext4_fsblk_t discard_block; 3027 3028 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3029 ext4_group_first_block_no(sb, block_group)); 3030 count = EXT4_C2B(EXT4_SB(sb), count); 3031 trace_ext4_discard_blocks(sb, 3032 (unsigned long long) discard_block, count); 3033 if (biop) { 3034 return __blkdev_issue_discard(sb->s_bdev, 3035 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3036 (sector_t)count << (sb->s_blocksize_bits - 9), 3037 GFP_NOFS, 0, biop); 3038 } else 3039 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3040 } 3041 3042 static void ext4_free_data_in_buddy(struct super_block *sb, 3043 struct ext4_free_data *entry) 3044 { 3045 struct ext4_buddy e4b; 3046 struct ext4_group_info *db; 3047 int err, count = 0, count2 = 0; 3048 3049 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3050 entry->efd_count, entry->efd_group, entry); 3051 3052 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3053 /* we expect to find existing buddy because it's pinned */ 3054 BUG_ON(err != 0); 3055 3056 spin_lock(&EXT4_SB(sb)->s_md_lock); 3057 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3058 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3059 3060 db = e4b.bd_info; 3061 /* there are blocks to put in buddy to make them really free */ 3062 count += entry->efd_count; 3063 count2++; 3064 ext4_lock_group(sb, entry->efd_group); 3065 /* Take it out of per group rb tree */ 3066 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3067 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3068 3069 /* 3070 * Clear the trimmed flag for the group so that the next 3071 * ext4_trim_fs can trim it. 3072 * If the volume is mounted with -o discard, online discard 3073 * is supported and the free blocks will be trimmed online. 3074 */ 3075 if (!test_opt(sb, DISCARD)) 3076 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3077 3078 if (!db->bb_free_root.rb_node) { 3079 /* No more items in the per group rb tree 3080 * balance refcounts from ext4_mb_free_metadata() 3081 */ 3082 put_page(e4b.bd_buddy_page); 3083 put_page(e4b.bd_bitmap_page); 3084 } 3085 ext4_unlock_group(sb, entry->efd_group); 3086 kmem_cache_free(ext4_free_data_cachep, entry); 3087 ext4_mb_unload_buddy(&e4b); 3088 3089 mb_debug(sb, "freed %d blocks in %d structures\n", count, 3090 count2); 3091 } 3092 3093 /* 3094 * This function is called by the jbd2 layer once the commit has finished, 3095 * so we know we can free the blocks that were released with that commit. 3096 */ 3097 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3098 { 3099 struct ext4_sb_info *sbi = EXT4_SB(sb); 3100 struct ext4_free_data *entry, *tmp; 3101 struct bio *discard_bio = NULL; 3102 struct list_head freed_data_list; 3103 struct list_head *cut_pos = NULL; 3104 int err; 3105 3106 INIT_LIST_HEAD(&freed_data_list); 3107 3108 spin_lock(&sbi->s_md_lock); 3109 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3110 if (entry->efd_tid != commit_tid) 3111 break; 3112 cut_pos = &entry->efd_list; 3113 } 3114 if (cut_pos) 3115 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3116 cut_pos); 3117 spin_unlock(&sbi->s_md_lock); 3118 3119 if (test_opt(sb, DISCARD)) { 3120 list_for_each_entry(entry, &freed_data_list, efd_list) { 3121 err = ext4_issue_discard(sb, entry->efd_group, 3122 entry->efd_start_cluster, 3123 entry->efd_count, 3124 &discard_bio); 3125 if (err && err != -EOPNOTSUPP) { 3126 ext4_msg(sb, KERN_WARNING, "discard request in" 3127 " group:%d block:%d count:%d failed" 3128 " with %d", entry->efd_group, 3129 entry->efd_start_cluster, 3130 entry->efd_count, err); 3131 } else if (err == -EOPNOTSUPP) 3132 break; 3133 } 3134 3135 if (discard_bio) { 3136 submit_bio_wait(discard_bio); 3137 bio_put(discard_bio); 3138 } 3139 } 3140 3141 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3142 ext4_free_data_in_buddy(sb, entry); 3143 } 3144 3145 int __init ext4_init_mballoc(void) 3146 { 3147 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3148 SLAB_RECLAIM_ACCOUNT); 3149 if (ext4_pspace_cachep == NULL) 3150 goto out; 3151 3152 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3153 SLAB_RECLAIM_ACCOUNT); 3154 if (ext4_ac_cachep == NULL) 3155 goto out_pa_free; 3156 3157 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3158 SLAB_RECLAIM_ACCOUNT); 3159 if (ext4_free_data_cachep == NULL) 3160 goto out_ac_free; 3161 3162 return 0; 3163 3164 out_ac_free: 3165 kmem_cache_destroy(ext4_ac_cachep); 3166 out_pa_free: 3167 kmem_cache_destroy(ext4_pspace_cachep); 3168 out: 3169 return -ENOMEM; 3170 } 3171 3172 void ext4_exit_mballoc(void) 3173 { 3174 /* 3175 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3176 * before destroying the slab cache. 3177 */ 3178 rcu_barrier(); 3179 kmem_cache_destroy(ext4_pspace_cachep); 3180 kmem_cache_destroy(ext4_ac_cachep); 3181 kmem_cache_destroy(ext4_free_data_cachep); 3182 ext4_groupinfo_destroy_slabs(); 3183 } 3184 3185 3186 /* 3187 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3188 * Returns 0 if success or error code 3189 */ 3190 static noinline_for_stack int 3191 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3192 handle_t *handle, unsigned int reserv_clstrs) 3193 { 3194 struct buffer_head *bitmap_bh = NULL; 3195 struct ext4_group_desc *gdp; 3196 struct buffer_head *gdp_bh; 3197 struct ext4_sb_info *sbi; 3198 struct super_block *sb; 3199 ext4_fsblk_t block; 3200 int err, len; 3201 3202 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3203 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3204 3205 sb = ac->ac_sb; 3206 sbi = EXT4_SB(sb); 3207 3208 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3209 if (IS_ERR(bitmap_bh)) { 3210 err = PTR_ERR(bitmap_bh); 3211 bitmap_bh = NULL; 3212 goto out_err; 3213 } 3214 3215 BUFFER_TRACE(bitmap_bh, "getting write access"); 3216 err = ext4_journal_get_write_access(handle, bitmap_bh); 3217 if (err) 3218 goto out_err; 3219 3220 err = -EIO; 3221 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3222 if (!gdp) 3223 goto out_err; 3224 3225 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3226 ext4_free_group_clusters(sb, gdp)); 3227 3228 BUFFER_TRACE(gdp_bh, "get_write_access"); 3229 err = ext4_journal_get_write_access(handle, gdp_bh); 3230 if (err) 3231 goto out_err; 3232 3233 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3234 3235 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3236 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 3237 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 3238 "fs metadata", block, block+len); 3239 /* File system mounted not to panic on error 3240 * Fix the bitmap and return EFSCORRUPTED 3241 * We leak some of the blocks here. 3242 */ 3243 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3244 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3245 ac->ac_b_ex.fe_len); 3246 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3247 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3248 if (!err) 3249 err = -EFSCORRUPTED; 3250 goto out_err; 3251 } 3252 3253 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3254 #ifdef AGGRESSIVE_CHECK 3255 { 3256 int i; 3257 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3258 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3259 bitmap_bh->b_data)); 3260 } 3261 } 3262 #endif 3263 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3264 ac->ac_b_ex.fe_len); 3265 if (ext4_has_group_desc_csum(sb) && 3266 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3267 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3268 ext4_free_group_clusters_set(sb, gdp, 3269 ext4_free_clusters_after_init(sb, 3270 ac->ac_b_ex.fe_group, gdp)); 3271 } 3272 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3273 ext4_free_group_clusters_set(sb, gdp, len); 3274 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3275 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3276 3277 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3278 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3279 /* 3280 * Now reduce the dirty block count also. Should not go negative 3281 */ 3282 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3283 /* release all the reserved blocks if non delalloc */ 3284 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3285 reserv_clstrs); 3286 3287 if (sbi->s_log_groups_per_flex) { 3288 ext4_group_t flex_group = ext4_flex_group(sbi, 3289 ac->ac_b_ex.fe_group); 3290 atomic64_sub(ac->ac_b_ex.fe_len, 3291 &sbi_array_rcu_deref(sbi, s_flex_groups, 3292 flex_group)->free_clusters); 3293 } 3294 3295 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3296 if (err) 3297 goto out_err; 3298 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3299 3300 out_err: 3301 brelse(bitmap_bh); 3302 return err; 3303 } 3304 3305 /* 3306 * here we normalize request for locality group 3307 * Group request are normalized to s_mb_group_prealloc, which goes to 3308 * s_strip if we set the same via mount option. 3309 * s_mb_group_prealloc can be configured via 3310 * /sys/fs/ext4/<partition>/mb_group_prealloc 3311 * 3312 * XXX: should we try to preallocate more than the group has now? 3313 */ 3314 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3315 { 3316 struct super_block *sb = ac->ac_sb; 3317 struct ext4_locality_group *lg = ac->ac_lg; 3318 3319 BUG_ON(lg == NULL); 3320 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3321 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 3322 } 3323 3324 /* 3325 * Normalization means making request better in terms of 3326 * size and alignment 3327 */ 3328 static noinline_for_stack void 3329 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3330 struct ext4_allocation_request *ar) 3331 { 3332 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3333 int bsbits, max; 3334 ext4_lblk_t end; 3335 loff_t size, start_off; 3336 loff_t orig_size __maybe_unused; 3337 ext4_lblk_t start; 3338 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3339 struct ext4_prealloc_space *pa; 3340 3341 /* do normalize only data requests, metadata requests 3342 do not need preallocation */ 3343 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3344 return; 3345 3346 /* sometime caller may want exact blocks */ 3347 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3348 return; 3349 3350 /* caller may indicate that preallocation isn't 3351 * required (it's a tail, for example) */ 3352 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3353 return; 3354 3355 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3356 ext4_mb_normalize_group_request(ac); 3357 return ; 3358 } 3359 3360 bsbits = ac->ac_sb->s_blocksize_bits; 3361 3362 /* first, let's learn actual file size 3363 * given current request is allocated */ 3364 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3365 size = size << bsbits; 3366 if (size < i_size_read(ac->ac_inode)) 3367 size = i_size_read(ac->ac_inode); 3368 orig_size = size; 3369 3370 /* max size of free chunks */ 3371 max = 2 << bsbits; 3372 3373 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3374 (req <= (size) || max <= (chunk_size)) 3375 3376 /* first, try to predict filesize */ 3377 /* XXX: should this table be tunable? */ 3378 start_off = 0; 3379 if (size <= 16 * 1024) { 3380 size = 16 * 1024; 3381 } else if (size <= 32 * 1024) { 3382 size = 32 * 1024; 3383 } else if (size <= 64 * 1024) { 3384 size = 64 * 1024; 3385 } else if (size <= 128 * 1024) { 3386 size = 128 * 1024; 3387 } else if (size <= 256 * 1024) { 3388 size = 256 * 1024; 3389 } else if (size <= 512 * 1024) { 3390 size = 512 * 1024; 3391 } else if (size <= 1024 * 1024) { 3392 size = 1024 * 1024; 3393 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3394 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3395 (21 - bsbits)) << 21; 3396 size = 2 * 1024 * 1024; 3397 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3398 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3399 (22 - bsbits)) << 22; 3400 size = 4 * 1024 * 1024; 3401 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3402 (8<<20)>>bsbits, max, 8 * 1024)) { 3403 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3404 (23 - bsbits)) << 23; 3405 size = 8 * 1024 * 1024; 3406 } else { 3407 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3408 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3409 ac->ac_o_ex.fe_len) << bsbits; 3410 } 3411 size = size >> bsbits; 3412 start = start_off >> bsbits; 3413 3414 /* don't cover already allocated blocks in selected range */ 3415 if (ar->pleft && start <= ar->lleft) { 3416 size -= ar->lleft + 1 - start; 3417 start = ar->lleft + 1; 3418 } 3419 if (ar->pright && start + size - 1 >= ar->lright) 3420 size -= start + size - ar->lright; 3421 3422 /* 3423 * Trim allocation request for filesystems with artificially small 3424 * groups. 3425 */ 3426 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3427 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3428 3429 end = start + size; 3430 3431 /* check we don't cross already preallocated blocks */ 3432 rcu_read_lock(); 3433 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3434 ext4_lblk_t pa_end; 3435 3436 if (pa->pa_deleted) 3437 continue; 3438 spin_lock(&pa->pa_lock); 3439 if (pa->pa_deleted) { 3440 spin_unlock(&pa->pa_lock); 3441 continue; 3442 } 3443 3444 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3445 pa->pa_len); 3446 3447 /* PA must not overlap original request */ 3448 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3449 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3450 3451 /* skip PAs this normalized request doesn't overlap with */ 3452 if (pa->pa_lstart >= end || pa_end <= start) { 3453 spin_unlock(&pa->pa_lock); 3454 continue; 3455 } 3456 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3457 3458 /* adjust start or end to be adjacent to this pa */ 3459 if (pa_end <= ac->ac_o_ex.fe_logical) { 3460 BUG_ON(pa_end < start); 3461 start = pa_end; 3462 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3463 BUG_ON(pa->pa_lstart > end); 3464 end = pa->pa_lstart; 3465 } 3466 spin_unlock(&pa->pa_lock); 3467 } 3468 rcu_read_unlock(); 3469 size = end - start; 3470 3471 /* XXX: extra loop to check we really don't overlap preallocations */ 3472 rcu_read_lock(); 3473 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3474 ext4_lblk_t pa_end; 3475 3476 spin_lock(&pa->pa_lock); 3477 if (pa->pa_deleted == 0) { 3478 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3479 pa->pa_len); 3480 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3481 } 3482 spin_unlock(&pa->pa_lock); 3483 } 3484 rcu_read_unlock(); 3485 3486 if (start + size <= ac->ac_o_ex.fe_logical && 3487 start > ac->ac_o_ex.fe_logical) { 3488 ext4_msg(ac->ac_sb, KERN_ERR, 3489 "start %lu, size %lu, fe_logical %lu", 3490 (unsigned long) start, (unsigned long) size, 3491 (unsigned long) ac->ac_o_ex.fe_logical); 3492 BUG(); 3493 } 3494 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3495 3496 /* now prepare goal request */ 3497 3498 /* XXX: is it better to align blocks WRT to logical 3499 * placement or satisfy big request as is */ 3500 ac->ac_g_ex.fe_logical = start; 3501 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3502 3503 /* define goal start in order to merge */ 3504 if (ar->pright && (ar->lright == (start + size))) { 3505 /* merge to the right */ 3506 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3507 &ac->ac_f_ex.fe_group, 3508 &ac->ac_f_ex.fe_start); 3509 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3510 } 3511 if (ar->pleft && (ar->lleft + 1 == start)) { 3512 /* merge to the left */ 3513 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3514 &ac->ac_f_ex.fe_group, 3515 &ac->ac_f_ex.fe_start); 3516 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3517 } 3518 3519 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 3520 orig_size, start); 3521 } 3522 3523 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3524 { 3525 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3526 3527 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3528 atomic_inc(&sbi->s_bal_reqs); 3529 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3530 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3531 atomic_inc(&sbi->s_bal_success); 3532 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3533 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3534 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3535 atomic_inc(&sbi->s_bal_goals); 3536 if (ac->ac_found > sbi->s_mb_max_to_scan) 3537 atomic_inc(&sbi->s_bal_breaks); 3538 } 3539 3540 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3541 trace_ext4_mballoc_alloc(ac); 3542 else 3543 trace_ext4_mballoc_prealloc(ac); 3544 } 3545 3546 /* 3547 * Called on failure; free up any blocks from the inode PA for this 3548 * context. We don't need this for MB_GROUP_PA because we only change 3549 * pa_free in ext4_mb_release_context(), but on failure, we've already 3550 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3551 */ 3552 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3553 { 3554 struct ext4_prealloc_space *pa = ac->ac_pa; 3555 struct ext4_buddy e4b; 3556 int err; 3557 3558 if (pa == NULL) { 3559 if (ac->ac_f_ex.fe_len == 0) 3560 return; 3561 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3562 if (err) { 3563 /* 3564 * This should never happen since we pin the 3565 * pages in the ext4_allocation_context so 3566 * ext4_mb_load_buddy() should never fail. 3567 */ 3568 WARN(1, "mb_load_buddy failed (%d)", err); 3569 return; 3570 } 3571 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3572 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3573 ac->ac_f_ex.fe_len); 3574 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3575 ext4_mb_unload_buddy(&e4b); 3576 return; 3577 } 3578 if (pa->pa_type == MB_INODE_PA) 3579 pa->pa_free += ac->ac_b_ex.fe_len; 3580 } 3581 3582 /* 3583 * use blocks preallocated to inode 3584 */ 3585 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3586 struct ext4_prealloc_space *pa) 3587 { 3588 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3589 ext4_fsblk_t start; 3590 ext4_fsblk_t end; 3591 int len; 3592 3593 /* found preallocated blocks, use them */ 3594 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3595 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3596 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3597 len = EXT4_NUM_B2C(sbi, end - start); 3598 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3599 &ac->ac_b_ex.fe_start); 3600 ac->ac_b_ex.fe_len = len; 3601 ac->ac_status = AC_STATUS_FOUND; 3602 ac->ac_pa = pa; 3603 3604 BUG_ON(start < pa->pa_pstart); 3605 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3606 BUG_ON(pa->pa_free < len); 3607 pa->pa_free -= len; 3608 3609 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 3610 } 3611 3612 /* 3613 * use blocks preallocated to locality group 3614 */ 3615 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3616 struct ext4_prealloc_space *pa) 3617 { 3618 unsigned int len = ac->ac_o_ex.fe_len; 3619 3620 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3621 &ac->ac_b_ex.fe_group, 3622 &ac->ac_b_ex.fe_start); 3623 ac->ac_b_ex.fe_len = len; 3624 ac->ac_status = AC_STATUS_FOUND; 3625 ac->ac_pa = pa; 3626 3627 /* we don't correct pa_pstart or pa_plen here to avoid 3628 * possible race when the group is being loaded concurrently 3629 * instead we correct pa later, after blocks are marked 3630 * in on-disk bitmap -- see ext4_mb_release_context() 3631 * Other CPUs are prevented from allocating from this pa by lg_mutex 3632 */ 3633 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 3634 pa->pa_lstart-len, len, pa); 3635 } 3636 3637 /* 3638 * Return the prealloc space that have minimal distance 3639 * from the goal block. @cpa is the prealloc 3640 * space that is having currently known minimal distance 3641 * from the goal block. 3642 */ 3643 static struct ext4_prealloc_space * 3644 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3645 struct ext4_prealloc_space *pa, 3646 struct ext4_prealloc_space *cpa) 3647 { 3648 ext4_fsblk_t cur_distance, new_distance; 3649 3650 if (cpa == NULL) { 3651 atomic_inc(&pa->pa_count); 3652 return pa; 3653 } 3654 cur_distance = abs(goal_block - cpa->pa_pstart); 3655 new_distance = abs(goal_block - pa->pa_pstart); 3656 3657 if (cur_distance <= new_distance) 3658 return cpa; 3659 3660 /* drop the previous reference */ 3661 atomic_dec(&cpa->pa_count); 3662 atomic_inc(&pa->pa_count); 3663 return pa; 3664 } 3665 3666 /* 3667 * search goal blocks in preallocated space 3668 */ 3669 static noinline_for_stack bool 3670 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3671 { 3672 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3673 int order, i; 3674 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3675 struct ext4_locality_group *lg; 3676 struct ext4_prealloc_space *pa, *cpa = NULL; 3677 ext4_fsblk_t goal_block; 3678 3679 /* only data can be preallocated */ 3680 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3681 return false; 3682 3683 /* first, try per-file preallocation */ 3684 rcu_read_lock(); 3685 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3686 3687 /* all fields in this condition don't change, 3688 * so we can skip locking for them */ 3689 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3690 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3691 EXT4_C2B(sbi, pa->pa_len))) 3692 continue; 3693 3694 /* non-extent files can't have physical blocks past 2^32 */ 3695 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3696 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3697 EXT4_MAX_BLOCK_FILE_PHYS)) 3698 continue; 3699 3700 /* found preallocated blocks, use them */ 3701 spin_lock(&pa->pa_lock); 3702 if (pa->pa_deleted == 0 && pa->pa_free) { 3703 atomic_inc(&pa->pa_count); 3704 ext4_mb_use_inode_pa(ac, pa); 3705 spin_unlock(&pa->pa_lock); 3706 ac->ac_criteria = 10; 3707 rcu_read_unlock(); 3708 return true; 3709 } 3710 spin_unlock(&pa->pa_lock); 3711 } 3712 rcu_read_unlock(); 3713 3714 /* can we use group allocation? */ 3715 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3716 return false; 3717 3718 /* inode may have no locality group for some reason */ 3719 lg = ac->ac_lg; 3720 if (lg == NULL) 3721 return false; 3722 order = fls(ac->ac_o_ex.fe_len) - 1; 3723 if (order > PREALLOC_TB_SIZE - 1) 3724 /* The max size of hash table is PREALLOC_TB_SIZE */ 3725 order = PREALLOC_TB_SIZE - 1; 3726 3727 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3728 /* 3729 * search for the prealloc space that is having 3730 * minimal distance from the goal block. 3731 */ 3732 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3733 rcu_read_lock(); 3734 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3735 pa_inode_list) { 3736 spin_lock(&pa->pa_lock); 3737 if (pa->pa_deleted == 0 && 3738 pa->pa_free >= ac->ac_o_ex.fe_len) { 3739 3740 cpa = ext4_mb_check_group_pa(goal_block, 3741 pa, cpa); 3742 } 3743 spin_unlock(&pa->pa_lock); 3744 } 3745 rcu_read_unlock(); 3746 } 3747 if (cpa) { 3748 ext4_mb_use_group_pa(ac, cpa); 3749 ac->ac_criteria = 20; 3750 return true; 3751 } 3752 return false; 3753 } 3754 3755 /* 3756 * the function goes through all block freed in the group 3757 * but not yet committed and marks them used in in-core bitmap. 3758 * buddy must be generated from this bitmap 3759 * Need to be called with the ext4 group lock held 3760 */ 3761 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3762 ext4_group_t group) 3763 { 3764 struct rb_node *n; 3765 struct ext4_group_info *grp; 3766 struct ext4_free_data *entry; 3767 3768 grp = ext4_get_group_info(sb, group); 3769 n = rb_first(&(grp->bb_free_root)); 3770 3771 while (n) { 3772 entry = rb_entry(n, struct ext4_free_data, efd_node); 3773 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3774 n = rb_next(n); 3775 } 3776 return; 3777 } 3778 3779 /* 3780 * the function goes through all preallocation in this group and marks them 3781 * used in in-core bitmap. buddy must be generated from this bitmap 3782 * Need to be called with ext4 group lock held 3783 */ 3784 static noinline_for_stack 3785 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3786 ext4_group_t group) 3787 { 3788 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3789 struct ext4_prealloc_space *pa; 3790 struct list_head *cur; 3791 ext4_group_t groupnr; 3792 ext4_grpblk_t start; 3793 int preallocated = 0; 3794 int len; 3795 3796 /* all form of preallocation discards first load group, 3797 * so the only competing code is preallocation use. 3798 * we don't need any locking here 3799 * notice we do NOT ignore preallocations with pa_deleted 3800 * otherwise we could leave used blocks available for 3801 * allocation in buddy when concurrent ext4_mb_put_pa() 3802 * is dropping preallocation 3803 */ 3804 list_for_each(cur, &grp->bb_prealloc_list) { 3805 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3806 spin_lock(&pa->pa_lock); 3807 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3808 &groupnr, &start); 3809 len = pa->pa_len; 3810 spin_unlock(&pa->pa_lock); 3811 if (unlikely(len == 0)) 3812 continue; 3813 BUG_ON(groupnr != group); 3814 ext4_set_bits(bitmap, start, len); 3815 preallocated += len; 3816 } 3817 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 3818 } 3819 3820 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 3821 struct ext4_prealloc_space *pa) 3822 { 3823 struct ext4_inode_info *ei; 3824 3825 if (pa->pa_deleted) { 3826 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 3827 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 3828 pa->pa_len); 3829 return; 3830 } 3831 3832 pa->pa_deleted = 1; 3833 3834 if (pa->pa_type == MB_INODE_PA) { 3835 ei = EXT4_I(pa->pa_inode); 3836 atomic_dec(&ei->i_prealloc_active); 3837 } 3838 } 3839 3840 static void ext4_mb_pa_callback(struct rcu_head *head) 3841 { 3842 struct ext4_prealloc_space *pa; 3843 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3844 3845 BUG_ON(atomic_read(&pa->pa_count)); 3846 BUG_ON(pa->pa_deleted == 0); 3847 kmem_cache_free(ext4_pspace_cachep, pa); 3848 } 3849 3850 /* 3851 * drops a reference to preallocated space descriptor 3852 * if this was the last reference and the space is consumed 3853 */ 3854 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3855 struct super_block *sb, struct ext4_prealloc_space *pa) 3856 { 3857 ext4_group_t grp; 3858 ext4_fsblk_t grp_blk; 3859 3860 /* in this short window concurrent discard can set pa_deleted */ 3861 spin_lock(&pa->pa_lock); 3862 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3863 spin_unlock(&pa->pa_lock); 3864 return; 3865 } 3866 3867 if (pa->pa_deleted == 1) { 3868 spin_unlock(&pa->pa_lock); 3869 return; 3870 } 3871 3872 ext4_mb_mark_pa_deleted(sb, pa); 3873 spin_unlock(&pa->pa_lock); 3874 3875 grp_blk = pa->pa_pstart; 3876 /* 3877 * If doing group-based preallocation, pa_pstart may be in the 3878 * next group when pa is used up 3879 */ 3880 if (pa->pa_type == MB_GROUP_PA) 3881 grp_blk--; 3882 3883 grp = ext4_get_group_number(sb, grp_blk); 3884 3885 /* 3886 * possible race: 3887 * 3888 * P1 (buddy init) P2 (regular allocation) 3889 * find block B in PA 3890 * copy on-disk bitmap to buddy 3891 * mark B in on-disk bitmap 3892 * drop PA from group 3893 * mark all PAs in buddy 3894 * 3895 * thus, P1 initializes buddy with B available. to prevent this 3896 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3897 * against that pair 3898 */ 3899 ext4_lock_group(sb, grp); 3900 list_del(&pa->pa_group_list); 3901 ext4_unlock_group(sb, grp); 3902 3903 spin_lock(pa->pa_obj_lock); 3904 list_del_rcu(&pa->pa_inode_list); 3905 spin_unlock(pa->pa_obj_lock); 3906 3907 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3908 } 3909 3910 /* 3911 * creates new preallocated space for given inode 3912 */ 3913 static noinline_for_stack void 3914 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3915 { 3916 struct super_block *sb = ac->ac_sb; 3917 struct ext4_sb_info *sbi = EXT4_SB(sb); 3918 struct ext4_prealloc_space *pa; 3919 struct ext4_group_info *grp; 3920 struct ext4_inode_info *ei; 3921 3922 /* preallocate only when found space is larger then requested */ 3923 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3924 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3925 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3926 BUG_ON(ac->ac_pa == NULL); 3927 3928 pa = ac->ac_pa; 3929 3930 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3931 int winl; 3932 int wins; 3933 int win; 3934 int offs; 3935 3936 /* we can't allocate as much as normalizer wants. 3937 * so, found space must get proper lstart 3938 * to cover original request */ 3939 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3940 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3941 3942 /* we're limited by original request in that 3943 * logical block must be covered any way 3944 * winl is window we can move our chunk within */ 3945 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3946 3947 /* also, we should cover whole original request */ 3948 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3949 3950 /* the smallest one defines real window */ 3951 win = min(winl, wins); 3952 3953 offs = ac->ac_o_ex.fe_logical % 3954 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3955 if (offs && offs < win) 3956 win = offs; 3957 3958 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3959 EXT4_NUM_B2C(sbi, win); 3960 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3961 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3962 } 3963 3964 /* preallocation can change ac_b_ex, thus we store actually 3965 * allocated blocks for history */ 3966 ac->ac_f_ex = ac->ac_b_ex; 3967 3968 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3969 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3970 pa->pa_len = ac->ac_b_ex.fe_len; 3971 pa->pa_free = pa->pa_len; 3972 spin_lock_init(&pa->pa_lock); 3973 INIT_LIST_HEAD(&pa->pa_inode_list); 3974 INIT_LIST_HEAD(&pa->pa_group_list); 3975 pa->pa_deleted = 0; 3976 pa->pa_type = MB_INODE_PA; 3977 3978 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 3979 pa->pa_len, pa->pa_lstart); 3980 trace_ext4_mb_new_inode_pa(ac, pa); 3981 3982 ext4_mb_use_inode_pa(ac, pa); 3983 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3984 3985 ei = EXT4_I(ac->ac_inode); 3986 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3987 3988 pa->pa_obj_lock = &ei->i_prealloc_lock; 3989 pa->pa_inode = ac->ac_inode; 3990 3991 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3992 3993 spin_lock(pa->pa_obj_lock); 3994 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3995 spin_unlock(pa->pa_obj_lock); 3996 atomic_inc(&ei->i_prealloc_active); 3997 } 3998 3999 /* 4000 * creates new preallocated space for locality group inodes belongs to 4001 */ 4002 static noinline_for_stack void 4003 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 4004 { 4005 struct super_block *sb = ac->ac_sb; 4006 struct ext4_locality_group *lg; 4007 struct ext4_prealloc_space *pa; 4008 struct ext4_group_info *grp; 4009 4010 /* preallocate only when found space is larger then requested */ 4011 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4012 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4013 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4014 BUG_ON(ac->ac_pa == NULL); 4015 4016 pa = ac->ac_pa; 4017 4018 /* preallocation can change ac_b_ex, thus we store actually 4019 * allocated blocks for history */ 4020 ac->ac_f_ex = ac->ac_b_ex; 4021 4022 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4023 pa->pa_lstart = pa->pa_pstart; 4024 pa->pa_len = ac->ac_b_ex.fe_len; 4025 pa->pa_free = pa->pa_len; 4026 spin_lock_init(&pa->pa_lock); 4027 INIT_LIST_HEAD(&pa->pa_inode_list); 4028 INIT_LIST_HEAD(&pa->pa_group_list); 4029 pa->pa_deleted = 0; 4030 pa->pa_type = MB_GROUP_PA; 4031 4032 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4033 pa->pa_len, pa->pa_lstart); 4034 trace_ext4_mb_new_group_pa(ac, pa); 4035 4036 ext4_mb_use_group_pa(ac, pa); 4037 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 4038 4039 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4040 lg = ac->ac_lg; 4041 BUG_ON(lg == NULL); 4042 4043 pa->pa_obj_lock = &lg->lg_prealloc_lock; 4044 pa->pa_inode = NULL; 4045 4046 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4047 4048 /* 4049 * We will later add the new pa to the right bucket 4050 * after updating the pa_free in ext4_mb_release_context 4051 */ 4052 } 4053 4054 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 4055 { 4056 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4057 ext4_mb_new_group_pa(ac); 4058 else 4059 ext4_mb_new_inode_pa(ac); 4060 } 4061 4062 /* 4063 * finds all unused blocks in on-disk bitmap, frees them in 4064 * in-core bitmap and buddy. 4065 * @pa must be unlinked from inode and group lists, so that 4066 * nobody else can find/use it. 4067 * the caller MUST hold group/inode locks. 4068 * TODO: optimize the case when there are no in-core structures yet 4069 */ 4070 static noinline_for_stack int 4071 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 4072 struct ext4_prealloc_space *pa) 4073 { 4074 struct super_block *sb = e4b->bd_sb; 4075 struct ext4_sb_info *sbi = EXT4_SB(sb); 4076 unsigned int end; 4077 unsigned int next; 4078 ext4_group_t group; 4079 ext4_grpblk_t bit; 4080 unsigned long long grp_blk_start; 4081 int free = 0; 4082 4083 BUG_ON(pa->pa_deleted == 0); 4084 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4085 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 4086 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4087 end = bit + pa->pa_len; 4088 4089 while (bit < end) { 4090 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 4091 if (bit >= end) 4092 break; 4093 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 4094 mb_debug(sb, "free preallocated %u/%u in group %u\n", 4095 (unsigned) ext4_group_first_block_no(sb, group) + bit, 4096 (unsigned) next - bit, (unsigned) group); 4097 free += next - bit; 4098 4099 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 4100 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 4101 EXT4_C2B(sbi, bit)), 4102 next - bit); 4103 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 4104 bit = next + 1; 4105 } 4106 if (free != pa->pa_free) { 4107 ext4_msg(e4b->bd_sb, KERN_CRIT, 4108 "pa %p: logic %lu, phys. %lu, len %d", 4109 pa, (unsigned long) pa->pa_lstart, 4110 (unsigned long) pa->pa_pstart, 4111 pa->pa_len); 4112 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 4113 free, pa->pa_free); 4114 /* 4115 * pa is already deleted so we use the value obtained 4116 * from the bitmap and continue. 4117 */ 4118 } 4119 atomic_add(free, &sbi->s_mb_discarded); 4120 4121 return 0; 4122 } 4123 4124 static noinline_for_stack int 4125 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 4126 struct ext4_prealloc_space *pa) 4127 { 4128 struct super_block *sb = e4b->bd_sb; 4129 ext4_group_t group; 4130 ext4_grpblk_t bit; 4131 4132 trace_ext4_mb_release_group_pa(sb, pa); 4133 BUG_ON(pa->pa_deleted == 0); 4134 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4135 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4136 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 4137 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 4138 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 4139 4140 return 0; 4141 } 4142 4143 /* 4144 * releases all preallocations in given group 4145 * 4146 * first, we need to decide discard policy: 4147 * - when do we discard 4148 * 1) ENOSPC 4149 * - how many do we discard 4150 * 1) how many requested 4151 */ 4152 static noinline_for_stack int 4153 ext4_mb_discard_group_preallocations(struct super_block *sb, 4154 ext4_group_t group, int needed) 4155 { 4156 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4157 struct buffer_head *bitmap_bh = NULL; 4158 struct ext4_prealloc_space *pa, *tmp; 4159 struct list_head list; 4160 struct ext4_buddy e4b; 4161 int err; 4162 int busy = 0; 4163 int free = 0; 4164 4165 mb_debug(sb, "discard preallocation for group %u\n", group); 4166 if (list_empty(&grp->bb_prealloc_list)) 4167 goto out_dbg; 4168 4169 bitmap_bh = ext4_read_block_bitmap(sb, group); 4170 if (IS_ERR(bitmap_bh)) { 4171 err = PTR_ERR(bitmap_bh); 4172 ext4_error_err(sb, -err, 4173 "Error %d reading block bitmap for %u", 4174 err, group); 4175 goto out_dbg; 4176 } 4177 4178 err = ext4_mb_load_buddy(sb, group, &e4b); 4179 if (err) { 4180 ext4_warning(sb, "Error %d loading buddy information for %u", 4181 err, group); 4182 put_bh(bitmap_bh); 4183 goto out_dbg; 4184 } 4185 4186 if (needed == 0) 4187 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 4188 4189 INIT_LIST_HEAD(&list); 4190 repeat: 4191 ext4_lock_group(sb, group); 4192 this_cpu_inc(discard_pa_seq); 4193 list_for_each_entry_safe(pa, tmp, 4194 &grp->bb_prealloc_list, pa_group_list) { 4195 spin_lock(&pa->pa_lock); 4196 if (atomic_read(&pa->pa_count)) { 4197 spin_unlock(&pa->pa_lock); 4198 busy = 1; 4199 continue; 4200 } 4201 if (pa->pa_deleted) { 4202 spin_unlock(&pa->pa_lock); 4203 continue; 4204 } 4205 4206 /* seems this one can be freed ... */ 4207 ext4_mb_mark_pa_deleted(sb, pa); 4208 4209 /* we can trust pa_free ... */ 4210 free += pa->pa_free; 4211 4212 spin_unlock(&pa->pa_lock); 4213 4214 list_del(&pa->pa_group_list); 4215 list_add(&pa->u.pa_tmp_list, &list); 4216 } 4217 4218 /* if we still need more blocks and some PAs were used, try again */ 4219 if (free < needed && busy) { 4220 busy = 0; 4221 ext4_unlock_group(sb, group); 4222 cond_resched(); 4223 goto repeat; 4224 } 4225 4226 /* found anything to free? */ 4227 if (list_empty(&list)) { 4228 BUG_ON(free != 0); 4229 mb_debug(sb, "Someone else may have freed PA for this group %u\n", 4230 group); 4231 goto out; 4232 } 4233 4234 /* now free all selected PAs */ 4235 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4236 4237 /* remove from object (inode or locality group) */ 4238 spin_lock(pa->pa_obj_lock); 4239 list_del_rcu(&pa->pa_inode_list); 4240 spin_unlock(pa->pa_obj_lock); 4241 4242 if (pa->pa_type == MB_GROUP_PA) 4243 ext4_mb_release_group_pa(&e4b, pa); 4244 else 4245 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4246 4247 list_del(&pa->u.pa_tmp_list); 4248 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4249 } 4250 4251 out: 4252 ext4_unlock_group(sb, group); 4253 ext4_mb_unload_buddy(&e4b); 4254 put_bh(bitmap_bh); 4255 out_dbg: 4256 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 4257 free, group, grp->bb_free); 4258 return free; 4259 } 4260 4261 /* 4262 * releases all non-used preallocated blocks for given inode 4263 * 4264 * It's important to discard preallocations under i_data_sem 4265 * We don't want another block to be served from the prealloc 4266 * space when we are discarding the inode prealloc space. 4267 * 4268 * FIXME!! Make sure it is valid at all the call sites 4269 */ 4270 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 4271 { 4272 struct ext4_inode_info *ei = EXT4_I(inode); 4273 struct super_block *sb = inode->i_sb; 4274 struct buffer_head *bitmap_bh = NULL; 4275 struct ext4_prealloc_space *pa, *tmp; 4276 ext4_group_t group = 0; 4277 struct list_head list; 4278 struct ext4_buddy e4b; 4279 int err; 4280 4281 if (!S_ISREG(inode->i_mode)) { 4282 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4283 return; 4284 } 4285 4286 mb_debug(sb, "discard preallocation for inode %lu\n", 4287 inode->i_ino); 4288 trace_ext4_discard_preallocations(inode, 4289 atomic_read(&ei->i_prealloc_active), needed); 4290 4291 INIT_LIST_HEAD(&list); 4292 4293 if (needed == 0) 4294 needed = UINT_MAX; 4295 4296 repeat: 4297 /* first, collect all pa's in the inode */ 4298 spin_lock(&ei->i_prealloc_lock); 4299 while (!list_empty(&ei->i_prealloc_list) && needed) { 4300 pa = list_entry(ei->i_prealloc_list.prev, 4301 struct ext4_prealloc_space, pa_inode_list); 4302 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4303 spin_lock(&pa->pa_lock); 4304 if (atomic_read(&pa->pa_count)) { 4305 /* this shouldn't happen often - nobody should 4306 * use preallocation while we're discarding it */ 4307 spin_unlock(&pa->pa_lock); 4308 spin_unlock(&ei->i_prealloc_lock); 4309 ext4_msg(sb, KERN_ERR, 4310 "uh-oh! used pa while discarding"); 4311 WARN_ON(1); 4312 schedule_timeout_uninterruptible(HZ); 4313 goto repeat; 4314 4315 } 4316 if (pa->pa_deleted == 0) { 4317 ext4_mb_mark_pa_deleted(sb, pa); 4318 spin_unlock(&pa->pa_lock); 4319 list_del_rcu(&pa->pa_inode_list); 4320 list_add(&pa->u.pa_tmp_list, &list); 4321 needed--; 4322 continue; 4323 } 4324 4325 /* someone is deleting pa right now */ 4326 spin_unlock(&pa->pa_lock); 4327 spin_unlock(&ei->i_prealloc_lock); 4328 4329 /* we have to wait here because pa_deleted 4330 * doesn't mean pa is already unlinked from 4331 * the list. as we might be called from 4332 * ->clear_inode() the inode will get freed 4333 * and concurrent thread which is unlinking 4334 * pa from inode's list may access already 4335 * freed memory, bad-bad-bad */ 4336 4337 /* XXX: if this happens too often, we can 4338 * add a flag to force wait only in case 4339 * of ->clear_inode(), but not in case of 4340 * regular truncate */ 4341 schedule_timeout_uninterruptible(HZ); 4342 goto repeat; 4343 } 4344 spin_unlock(&ei->i_prealloc_lock); 4345 4346 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4347 BUG_ON(pa->pa_type != MB_INODE_PA); 4348 group = ext4_get_group_number(sb, pa->pa_pstart); 4349 4350 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4351 GFP_NOFS|__GFP_NOFAIL); 4352 if (err) { 4353 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4354 err, group); 4355 continue; 4356 } 4357 4358 bitmap_bh = ext4_read_block_bitmap(sb, group); 4359 if (IS_ERR(bitmap_bh)) { 4360 err = PTR_ERR(bitmap_bh); 4361 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 4362 err, group); 4363 ext4_mb_unload_buddy(&e4b); 4364 continue; 4365 } 4366 4367 ext4_lock_group(sb, group); 4368 list_del(&pa->pa_group_list); 4369 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4370 ext4_unlock_group(sb, group); 4371 4372 ext4_mb_unload_buddy(&e4b); 4373 put_bh(bitmap_bh); 4374 4375 list_del(&pa->u.pa_tmp_list); 4376 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4377 } 4378 } 4379 4380 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 4381 { 4382 struct ext4_prealloc_space *pa; 4383 4384 BUG_ON(ext4_pspace_cachep == NULL); 4385 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 4386 if (!pa) 4387 return -ENOMEM; 4388 atomic_set(&pa->pa_count, 1); 4389 ac->ac_pa = pa; 4390 return 0; 4391 } 4392 4393 static void ext4_mb_pa_free(struct ext4_allocation_context *ac) 4394 { 4395 struct ext4_prealloc_space *pa = ac->ac_pa; 4396 4397 BUG_ON(!pa); 4398 ac->ac_pa = NULL; 4399 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 4400 kmem_cache_free(ext4_pspace_cachep, pa); 4401 } 4402 4403 #ifdef CONFIG_EXT4_DEBUG 4404 static inline void ext4_mb_show_pa(struct super_block *sb) 4405 { 4406 ext4_group_t i, ngroups; 4407 4408 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 4409 return; 4410 4411 ngroups = ext4_get_groups_count(sb); 4412 mb_debug(sb, "groups: "); 4413 for (i = 0; i < ngroups; i++) { 4414 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4415 struct ext4_prealloc_space *pa; 4416 ext4_grpblk_t start; 4417 struct list_head *cur; 4418 ext4_lock_group(sb, i); 4419 list_for_each(cur, &grp->bb_prealloc_list) { 4420 pa = list_entry(cur, struct ext4_prealloc_space, 4421 pa_group_list); 4422 spin_lock(&pa->pa_lock); 4423 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4424 NULL, &start); 4425 spin_unlock(&pa->pa_lock); 4426 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 4427 pa->pa_len); 4428 } 4429 ext4_unlock_group(sb, i); 4430 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 4431 grp->bb_fragments); 4432 } 4433 } 4434 4435 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4436 { 4437 struct super_block *sb = ac->ac_sb; 4438 4439 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 4440 return; 4441 4442 mb_debug(sb, "Can't allocate:" 4443 " Allocation context details:"); 4444 mb_debug(sb, "status %u flags 0x%x", 4445 ac->ac_status, ac->ac_flags); 4446 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 4447 "goal %lu/%lu/%lu@%lu, " 4448 "best %lu/%lu/%lu@%lu cr %d", 4449 (unsigned long)ac->ac_o_ex.fe_group, 4450 (unsigned long)ac->ac_o_ex.fe_start, 4451 (unsigned long)ac->ac_o_ex.fe_len, 4452 (unsigned long)ac->ac_o_ex.fe_logical, 4453 (unsigned long)ac->ac_g_ex.fe_group, 4454 (unsigned long)ac->ac_g_ex.fe_start, 4455 (unsigned long)ac->ac_g_ex.fe_len, 4456 (unsigned long)ac->ac_g_ex.fe_logical, 4457 (unsigned long)ac->ac_b_ex.fe_group, 4458 (unsigned long)ac->ac_b_ex.fe_start, 4459 (unsigned long)ac->ac_b_ex.fe_len, 4460 (unsigned long)ac->ac_b_ex.fe_logical, 4461 (int)ac->ac_criteria); 4462 mb_debug(sb, "%u found", ac->ac_found); 4463 ext4_mb_show_pa(sb); 4464 } 4465 #else 4466 static inline void ext4_mb_show_pa(struct super_block *sb) 4467 { 4468 return; 4469 } 4470 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4471 { 4472 ext4_mb_show_pa(ac->ac_sb); 4473 return; 4474 } 4475 #endif 4476 4477 /* 4478 * We use locality group preallocation for small size file. The size of the 4479 * file is determined by the current size or the resulting size after 4480 * allocation which ever is larger 4481 * 4482 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4483 */ 4484 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4485 { 4486 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4487 int bsbits = ac->ac_sb->s_blocksize_bits; 4488 loff_t size, isize; 4489 4490 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4491 return; 4492 4493 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4494 return; 4495 4496 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4497 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4498 >> bsbits; 4499 4500 if ((size == isize) && !ext4_fs_is_busy(sbi) && 4501 !inode_is_open_for_write(ac->ac_inode)) { 4502 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4503 return; 4504 } 4505 4506 if (sbi->s_mb_group_prealloc <= 0) { 4507 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4508 return; 4509 } 4510 4511 /* don't use group allocation for large files */ 4512 size = max(size, isize); 4513 if (size > sbi->s_mb_stream_request) { 4514 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4515 return; 4516 } 4517 4518 BUG_ON(ac->ac_lg != NULL); 4519 /* 4520 * locality group prealloc space are per cpu. The reason for having 4521 * per cpu locality group is to reduce the contention between block 4522 * request from multiple CPUs. 4523 */ 4524 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4525 4526 /* we're going to use group allocation */ 4527 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4528 4529 /* serialize all allocations in the group */ 4530 mutex_lock(&ac->ac_lg->lg_mutex); 4531 } 4532 4533 static noinline_for_stack int 4534 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4535 struct ext4_allocation_request *ar) 4536 { 4537 struct super_block *sb = ar->inode->i_sb; 4538 struct ext4_sb_info *sbi = EXT4_SB(sb); 4539 struct ext4_super_block *es = sbi->s_es; 4540 ext4_group_t group; 4541 unsigned int len; 4542 ext4_fsblk_t goal; 4543 ext4_grpblk_t block; 4544 4545 /* we can't allocate > group size */ 4546 len = ar->len; 4547 4548 /* just a dirty hack to filter too big requests */ 4549 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4550 len = EXT4_CLUSTERS_PER_GROUP(sb); 4551 4552 /* start searching from the goal */ 4553 goal = ar->goal; 4554 if (goal < le32_to_cpu(es->s_first_data_block) || 4555 goal >= ext4_blocks_count(es)) 4556 goal = le32_to_cpu(es->s_first_data_block); 4557 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4558 4559 /* set up allocation goals */ 4560 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4561 ac->ac_status = AC_STATUS_CONTINUE; 4562 ac->ac_sb = sb; 4563 ac->ac_inode = ar->inode; 4564 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4565 ac->ac_o_ex.fe_group = group; 4566 ac->ac_o_ex.fe_start = block; 4567 ac->ac_o_ex.fe_len = len; 4568 ac->ac_g_ex = ac->ac_o_ex; 4569 ac->ac_flags = ar->flags; 4570 4571 /* we have to define context: we'll work with a file or 4572 * locality group. this is a policy, actually */ 4573 ext4_mb_group_or_file(ac); 4574 4575 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 4576 "left: %u/%u, right %u/%u to %swritable\n", 4577 (unsigned) ar->len, (unsigned) ar->logical, 4578 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4579 (unsigned) ar->lleft, (unsigned) ar->pleft, 4580 (unsigned) ar->lright, (unsigned) ar->pright, 4581 inode_is_open_for_write(ar->inode) ? "" : "non-"); 4582 return 0; 4583 4584 } 4585 4586 static noinline_for_stack void 4587 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4588 struct ext4_locality_group *lg, 4589 int order, int total_entries) 4590 { 4591 ext4_group_t group = 0; 4592 struct ext4_buddy e4b; 4593 struct list_head discard_list; 4594 struct ext4_prealloc_space *pa, *tmp; 4595 4596 mb_debug(sb, "discard locality group preallocation\n"); 4597 4598 INIT_LIST_HEAD(&discard_list); 4599 4600 spin_lock(&lg->lg_prealloc_lock); 4601 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4602 pa_inode_list, 4603 lockdep_is_held(&lg->lg_prealloc_lock)) { 4604 spin_lock(&pa->pa_lock); 4605 if (atomic_read(&pa->pa_count)) { 4606 /* 4607 * This is the pa that we just used 4608 * for block allocation. So don't 4609 * free that 4610 */ 4611 spin_unlock(&pa->pa_lock); 4612 continue; 4613 } 4614 if (pa->pa_deleted) { 4615 spin_unlock(&pa->pa_lock); 4616 continue; 4617 } 4618 /* only lg prealloc space */ 4619 BUG_ON(pa->pa_type != MB_GROUP_PA); 4620 4621 /* seems this one can be freed ... */ 4622 ext4_mb_mark_pa_deleted(sb, pa); 4623 spin_unlock(&pa->pa_lock); 4624 4625 list_del_rcu(&pa->pa_inode_list); 4626 list_add(&pa->u.pa_tmp_list, &discard_list); 4627 4628 total_entries--; 4629 if (total_entries <= 5) { 4630 /* 4631 * we want to keep only 5 entries 4632 * allowing it to grow to 8. This 4633 * mak sure we don't call discard 4634 * soon for this list. 4635 */ 4636 break; 4637 } 4638 } 4639 spin_unlock(&lg->lg_prealloc_lock); 4640 4641 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4642 int err; 4643 4644 group = ext4_get_group_number(sb, pa->pa_pstart); 4645 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4646 GFP_NOFS|__GFP_NOFAIL); 4647 if (err) { 4648 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4649 err, group); 4650 continue; 4651 } 4652 ext4_lock_group(sb, group); 4653 list_del(&pa->pa_group_list); 4654 ext4_mb_release_group_pa(&e4b, pa); 4655 ext4_unlock_group(sb, group); 4656 4657 ext4_mb_unload_buddy(&e4b); 4658 list_del(&pa->u.pa_tmp_list); 4659 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4660 } 4661 } 4662 4663 /* 4664 * We have incremented pa_count. So it cannot be freed at this 4665 * point. Also we hold lg_mutex. So no parallel allocation is 4666 * possible from this lg. That means pa_free cannot be updated. 4667 * 4668 * A parallel ext4_mb_discard_group_preallocations is possible. 4669 * which can cause the lg_prealloc_list to be updated. 4670 */ 4671 4672 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4673 { 4674 int order, added = 0, lg_prealloc_count = 1; 4675 struct super_block *sb = ac->ac_sb; 4676 struct ext4_locality_group *lg = ac->ac_lg; 4677 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4678 4679 order = fls(pa->pa_free) - 1; 4680 if (order > PREALLOC_TB_SIZE - 1) 4681 /* The max size of hash table is PREALLOC_TB_SIZE */ 4682 order = PREALLOC_TB_SIZE - 1; 4683 /* Add the prealloc space to lg */ 4684 spin_lock(&lg->lg_prealloc_lock); 4685 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4686 pa_inode_list, 4687 lockdep_is_held(&lg->lg_prealloc_lock)) { 4688 spin_lock(&tmp_pa->pa_lock); 4689 if (tmp_pa->pa_deleted) { 4690 spin_unlock(&tmp_pa->pa_lock); 4691 continue; 4692 } 4693 if (!added && pa->pa_free < tmp_pa->pa_free) { 4694 /* Add to the tail of the previous entry */ 4695 list_add_tail_rcu(&pa->pa_inode_list, 4696 &tmp_pa->pa_inode_list); 4697 added = 1; 4698 /* 4699 * we want to count the total 4700 * number of entries in the list 4701 */ 4702 } 4703 spin_unlock(&tmp_pa->pa_lock); 4704 lg_prealloc_count++; 4705 } 4706 if (!added) 4707 list_add_tail_rcu(&pa->pa_inode_list, 4708 &lg->lg_prealloc_list[order]); 4709 spin_unlock(&lg->lg_prealloc_lock); 4710 4711 /* Now trim the list to be not more than 8 elements */ 4712 if (lg_prealloc_count > 8) { 4713 ext4_mb_discard_lg_preallocations(sb, lg, 4714 order, lg_prealloc_count); 4715 return; 4716 } 4717 return ; 4718 } 4719 4720 /* 4721 * if per-inode prealloc list is too long, trim some PA 4722 */ 4723 static void ext4_mb_trim_inode_pa(struct inode *inode) 4724 { 4725 struct ext4_inode_info *ei = EXT4_I(inode); 4726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4727 int count, delta; 4728 4729 count = atomic_read(&ei->i_prealloc_active); 4730 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1; 4731 if (count > sbi->s_mb_max_inode_prealloc + delta) { 4732 count -= sbi->s_mb_max_inode_prealloc; 4733 ext4_discard_preallocations(inode, count); 4734 } 4735 } 4736 4737 /* 4738 * release all resource we used in allocation 4739 */ 4740 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4741 { 4742 struct inode *inode = ac->ac_inode; 4743 struct ext4_inode_info *ei = EXT4_I(inode); 4744 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4745 struct ext4_prealloc_space *pa = ac->ac_pa; 4746 if (pa) { 4747 if (pa->pa_type == MB_GROUP_PA) { 4748 /* see comment in ext4_mb_use_group_pa() */ 4749 spin_lock(&pa->pa_lock); 4750 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4751 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4752 pa->pa_free -= ac->ac_b_ex.fe_len; 4753 pa->pa_len -= ac->ac_b_ex.fe_len; 4754 spin_unlock(&pa->pa_lock); 4755 4756 /* 4757 * We want to add the pa to the right bucket. 4758 * Remove it from the list and while adding 4759 * make sure the list to which we are adding 4760 * doesn't grow big. 4761 */ 4762 if (likely(pa->pa_free)) { 4763 spin_lock(pa->pa_obj_lock); 4764 list_del_rcu(&pa->pa_inode_list); 4765 spin_unlock(pa->pa_obj_lock); 4766 ext4_mb_add_n_trim(ac); 4767 } 4768 } 4769 4770 if (pa->pa_type == MB_INODE_PA) { 4771 /* 4772 * treat per-inode prealloc list as a lru list, then try 4773 * to trim the least recently used PA. 4774 */ 4775 spin_lock(pa->pa_obj_lock); 4776 list_move(&pa->pa_inode_list, &ei->i_prealloc_list); 4777 spin_unlock(pa->pa_obj_lock); 4778 } 4779 4780 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4781 } 4782 if (ac->ac_bitmap_page) 4783 put_page(ac->ac_bitmap_page); 4784 if (ac->ac_buddy_page) 4785 put_page(ac->ac_buddy_page); 4786 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4787 mutex_unlock(&ac->ac_lg->lg_mutex); 4788 ext4_mb_collect_stats(ac); 4789 ext4_mb_trim_inode_pa(inode); 4790 return 0; 4791 } 4792 4793 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4794 { 4795 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4796 int ret; 4797 int freed = 0; 4798 4799 trace_ext4_mb_discard_preallocations(sb, needed); 4800 for (i = 0; i < ngroups && needed > 0; i++) { 4801 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4802 freed += ret; 4803 needed -= ret; 4804 } 4805 4806 return freed; 4807 } 4808 4809 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 4810 struct ext4_allocation_context *ac, u64 *seq) 4811 { 4812 int freed; 4813 u64 seq_retry = 0; 4814 bool ret = false; 4815 4816 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4817 if (freed) { 4818 ret = true; 4819 goto out_dbg; 4820 } 4821 seq_retry = ext4_get_discard_pa_seq_sum(); 4822 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 4823 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 4824 *seq = seq_retry; 4825 ret = true; 4826 } 4827 4828 out_dbg: 4829 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 4830 return ret; 4831 } 4832 4833 /* 4834 * Main entry point into mballoc to allocate blocks 4835 * it tries to use preallocation first, then falls back 4836 * to usual allocation 4837 */ 4838 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4839 struct ext4_allocation_request *ar, int *errp) 4840 { 4841 struct ext4_allocation_context *ac = NULL; 4842 struct ext4_sb_info *sbi; 4843 struct super_block *sb; 4844 ext4_fsblk_t block = 0; 4845 unsigned int inquota = 0; 4846 unsigned int reserv_clstrs = 0; 4847 u64 seq; 4848 4849 might_sleep(); 4850 sb = ar->inode->i_sb; 4851 sbi = EXT4_SB(sb); 4852 4853 trace_ext4_request_blocks(ar); 4854 4855 /* Allow to use superuser reservation for quota file */ 4856 if (ext4_is_quota_file(ar->inode)) 4857 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4858 4859 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4860 /* Without delayed allocation we need to verify 4861 * there is enough free blocks to do block allocation 4862 * and verify allocation doesn't exceed the quota limits. 4863 */ 4864 while (ar->len && 4865 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4866 4867 /* let others to free the space */ 4868 cond_resched(); 4869 ar->len = ar->len >> 1; 4870 } 4871 if (!ar->len) { 4872 ext4_mb_show_pa(sb); 4873 *errp = -ENOSPC; 4874 return 0; 4875 } 4876 reserv_clstrs = ar->len; 4877 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4878 dquot_alloc_block_nofail(ar->inode, 4879 EXT4_C2B(sbi, ar->len)); 4880 } else { 4881 while (ar->len && 4882 dquot_alloc_block(ar->inode, 4883 EXT4_C2B(sbi, ar->len))) { 4884 4885 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4886 ar->len--; 4887 } 4888 } 4889 inquota = ar->len; 4890 if (ar->len == 0) { 4891 *errp = -EDQUOT; 4892 goto out; 4893 } 4894 } 4895 4896 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4897 if (!ac) { 4898 ar->len = 0; 4899 *errp = -ENOMEM; 4900 goto out; 4901 } 4902 4903 *errp = ext4_mb_initialize_context(ac, ar); 4904 if (*errp) { 4905 ar->len = 0; 4906 goto out; 4907 } 4908 4909 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4910 seq = this_cpu_read(discard_pa_seq); 4911 if (!ext4_mb_use_preallocated(ac)) { 4912 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4913 ext4_mb_normalize_request(ac, ar); 4914 4915 *errp = ext4_mb_pa_alloc(ac); 4916 if (*errp) 4917 goto errout; 4918 repeat: 4919 /* allocate space in core */ 4920 *errp = ext4_mb_regular_allocator(ac); 4921 /* 4922 * pa allocated above is added to grp->bb_prealloc_list only 4923 * when we were able to allocate some block i.e. when 4924 * ac->ac_status == AC_STATUS_FOUND. 4925 * And error from above mean ac->ac_status != AC_STATUS_FOUND 4926 * So we have to free this pa here itself. 4927 */ 4928 if (*errp) { 4929 ext4_mb_pa_free(ac); 4930 ext4_discard_allocated_blocks(ac); 4931 goto errout; 4932 } 4933 if (ac->ac_status == AC_STATUS_FOUND && 4934 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 4935 ext4_mb_pa_free(ac); 4936 } 4937 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4938 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4939 if (*errp) { 4940 ext4_discard_allocated_blocks(ac); 4941 goto errout; 4942 } else { 4943 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4944 ar->len = ac->ac_b_ex.fe_len; 4945 } 4946 } else { 4947 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 4948 goto repeat; 4949 /* 4950 * If block allocation fails then the pa allocated above 4951 * needs to be freed here itself. 4952 */ 4953 ext4_mb_pa_free(ac); 4954 *errp = -ENOSPC; 4955 } 4956 4957 errout: 4958 if (*errp) { 4959 ac->ac_b_ex.fe_len = 0; 4960 ar->len = 0; 4961 ext4_mb_show_ac(ac); 4962 } 4963 ext4_mb_release_context(ac); 4964 out: 4965 if (ac) 4966 kmem_cache_free(ext4_ac_cachep, ac); 4967 if (inquota && ar->len < inquota) 4968 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4969 if (!ar->len) { 4970 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4971 /* release all the reserved blocks if non delalloc */ 4972 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4973 reserv_clstrs); 4974 } 4975 4976 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4977 4978 return block; 4979 } 4980 4981 /* 4982 * We can merge two free data extents only if the physical blocks 4983 * are contiguous, AND the extents were freed by the same transaction, 4984 * AND the blocks are associated with the same group. 4985 */ 4986 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 4987 struct ext4_free_data *entry, 4988 struct ext4_free_data *new_entry, 4989 struct rb_root *entry_rb_root) 4990 { 4991 if ((entry->efd_tid != new_entry->efd_tid) || 4992 (entry->efd_group != new_entry->efd_group)) 4993 return; 4994 if (entry->efd_start_cluster + entry->efd_count == 4995 new_entry->efd_start_cluster) { 4996 new_entry->efd_start_cluster = entry->efd_start_cluster; 4997 new_entry->efd_count += entry->efd_count; 4998 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 4999 entry->efd_start_cluster) { 5000 new_entry->efd_count += entry->efd_count; 5001 } else 5002 return; 5003 spin_lock(&sbi->s_md_lock); 5004 list_del(&entry->efd_list); 5005 spin_unlock(&sbi->s_md_lock); 5006 rb_erase(&entry->efd_node, entry_rb_root); 5007 kmem_cache_free(ext4_free_data_cachep, entry); 5008 } 5009 5010 static noinline_for_stack int 5011 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 5012 struct ext4_free_data *new_entry) 5013 { 5014 ext4_group_t group = e4b->bd_group; 5015 ext4_grpblk_t cluster; 5016 ext4_grpblk_t clusters = new_entry->efd_count; 5017 struct ext4_free_data *entry; 5018 struct ext4_group_info *db = e4b->bd_info; 5019 struct super_block *sb = e4b->bd_sb; 5020 struct ext4_sb_info *sbi = EXT4_SB(sb); 5021 struct rb_node **n = &db->bb_free_root.rb_node, *node; 5022 struct rb_node *parent = NULL, *new_node; 5023 5024 BUG_ON(!ext4_handle_valid(handle)); 5025 BUG_ON(e4b->bd_bitmap_page == NULL); 5026 BUG_ON(e4b->bd_buddy_page == NULL); 5027 5028 new_node = &new_entry->efd_node; 5029 cluster = new_entry->efd_start_cluster; 5030 5031 if (!*n) { 5032 /* first free block exent. We need to 5033 protect buddy cache from being freed, 5034 * otherwise we'll refresh it from 5035 * on-disk bitmap and lose not-yet-available 5036 * blocks */ 5037 get_page(e4b->bd_buddy_page); 5038 get_page(e4b->bd_bitmap_page); 5039 } 5040 while (*n) { 5041 parent = *n; 5042 entry = rb_entry(parent, struct ext4_free_data, efd_node); 5043 if (cluster < entry->efd_start_cluster) 5044 n = &(*n)->rb_left; 5045 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 5046 n = &(*n)->rb_right; 5047 else { 5048 ext4_grp_locked_error(sb, group, 0, 5049 ext4_group_first_block_no(sb, group) + 5050 EXT4_C2B(sbi, cluster), 5051 "Block already on to-be-freed list"); 5052 return 0; 5053 } 5054 } 5055 5056 rb_link_node(new_node, parent, n); 5057 rb_insert_color(new_node, &db->bb_free_root); 5058 5059 /* Now try to see the extent can be merged to left and right */ 5060 node = rb_prev(new_node); 5061 if (node) { 5062 entry = rb_entry(node, struct ext4_free_data, efd_node); 5063 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5064 &(db->bb_free_root)); 5065 } 5066 5067 node = rb_next(new_node); 5068 if (node) { 5069 entry = rb_entry(node, struct ext4_free_data, efd_node); 5070 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5071 &(db->bb_free_root)); 5072 } 5073 5074 spin_lock(&sbi->s_md_lock); 5075 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 5076 sbi->s_mb_free_pending += clusters; 5077 spin_unlock(&sbi->s_md_lock); 5078 return 0; 5079 } 5080 5081 /** 5082 * ext4_free_blocks() -- Free given blocks and update quota 5083 * @handle: handle for this transaction 5084 * @inode: inode 5085 * @bh: optional buffer of the block to be freed 5086 * @block: starting physical block to be freed 5087 * @count: number of blocks to be freed 5088 * @flags: flags used by ext4_free_blocks 5089 */ 5090 void ext4_free_blocks(handle_t *handle, struct inode *inode, 5091 struct buffer_head *bh, ext4_fsblk_t block, 5092 unsigned long count, int flags) 5093 { 5094 struct buffer_head *bitmap_bh = NULL; 5095 struct super_block *sb = inode->i_sb; 5096 struct ext4_group_desc *gdp; 5097 unsigned int overflow; 5098 ext4_grpblk_t bit; 5099 struct buffer_head *gd_bh; 5100 ext4_group_t block_group; 5101 struct ext4_sb_info *sbi; 5102 struct ext4_buddy e4b; 5103 unsigned int count_clusters; 5104 int err = 0; 5105 int ret; 5106 5107 might_sleep(); 5108 if (bh) { 5109 if (block) 5110 BUG_ON(block != bh->b_blocknr); 5111 else 5112 block = bh->b_blocknr; 5113 } 5114 5115 sbi = EXT4_SB(sb); 5116 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5117 !ext4_inode_block_valid(inode, block, count)) { 5118 ext4_error(sb, "Freeing blocks not in datazone - " 5119 "block = %llu, count = %lu", block, count); 5120 goto error_return; 5121 } 5122 5123 ext4_debug("freeing block %llu\n", block); 5124 trace_ext4_free_blocks(inode, block, count, flags); 5125 5126 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5127 BUG_ON(count > 1); 5128 5129 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 5130 inode, bh, block); 5131 } 5132 5133 /* 5134 * If the extent to be freed does not begin on a cluster 5135 * boundary, we need to deal with partial clusters at the 5136 * beginning and end of the extent. Normally we will free 5137 * blocks at the beginning or the end unless we are explicitly 5138 * requested to avoid doing so. 5139 */ 5140 overflow = EXT4_PBLK_COFF(sbi, block); 5141 if (overflow) { 5142 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 5143 overflow = sbi->s_cluster_ratio - overflow; 5144 block += overflow; 5145 if (count > overflow) 5146 count -= overflow; 5147 else 5148 return; 5149 } else { 5150 block -= overflow; 5151 count += overflow; 5152 } 5153 } 5154 overflow = EXT4_LBLK_COFF(sbi, count); 5155 if (overflow) { 5156 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 5157 if (count > overflow) 5158 count -= overflow; 5159 else 5160 return; 5161 } else 5162 count += sbi->s_cluster_ratio - overflow; 5163 } 5164 5165 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5166 int i; 5167 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 5168 5169 for (i = 0; i < count; i++) { 5170 cond_resched(); 5171 if (is_metadata) 5172 bh = sb_find_get_block(inode->i_sb, block + i); 5173 ext4_forget(handle, is_metadata, inode, bh, block + i); 5174 } 5175 } 5176 5177 do_more: 5178 overflow = 0; 5179 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5180 5181 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 5182 ext4_get_group_info(sb, block_group)))) 5183 return; 5184 5185 /* 5186 * Check to see if we are freeing blocks across a group 5187 * boundary. 5188 */ 5189 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 5190 overflow = EXT4_C2B(sbi, bit) + count - 5191 EXT4_BLOCKS_PER_GROUP(sb); 5192 count -= overflow; 5193 } 5194 count_clusters = EXT4_NUM_B2C(sbi, count); 5195 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5196 if (IS_ERR(bitmap_bh)) { 5197 err = PTR_ERR(bitmap_bh); 5198 bitmap_bh = NULL; 5199 goto error_return; 5200 } 5201 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 5202 if (!gdp) { 5203 err = -EIO; 5204 goto error_return; 5205 } 5206 5207 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 5208 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 5209 in_range(block, ext4_inode_table(sb, gdp), 5210 sbi->s_itb_per_group) || 5211 in_range(block + count - 1, ext4_inode_table(sb, gdp), 5212 sbi->s_itb_per_group)) { 5213 5214 ext4_error(sb, "Freeing blocks in system zone - " 5215 "Block = %llu, count = %lu", block, count); 5216 /* err = 0. ext4_std_error should be a no op */ 5217 goto error_return; 5218 } 5219 5220 BUFFER_TRACE(bitmap_bh, "getting write access"); 5221 err = ext4_journal_get_write_access(handle, bitmap_bh); 5222 if (err) 5223 goto error_return; 5224 5225 /* 5226 * We are about to modify some metadata. Call the journal APIs 5227 * to unshare ->b_data if a currently-committing transaction is 5228 * using it 5229 */ 5230 BUFFER_TRACE(gd_bh, "get_write_access"); 5231 err = ext4_journal_get_write_access(handle, gd_bh); 5232 if (err) 5233 goto error_return; 5234 #ifdef AGGRESSIVE_CHECK 5235 { 5236 int i; 5237 for (i = 0; i < count_clusters; i++) 5238 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 5239 } 5240 #endif 5241 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 5242 5243 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 5244 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 5245 GFP_NOFS|__GFP_NOFAIL); 5246 if (err) 5247 goto error_return; 5248 5249 /* 5250 * We need to make sure we don't reuse the freed block until after the 5251 * transaction is committed. We make an exception if the inode is to be 5252 * written in writeback mode since writeback mode has weak data 5253 * consistency guarantees. 5254 */ 5255 if (ext4_handle_valid(handle) && 5256 ((flags & EXT4_FREE_BLOCKS_METADATA) || 5257 !ext4_should_writeback_data(inode))) { 5258 struct ext4_free_data *new_entry; 5259 /* 5260 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 5261 * to fail. 5262 */ 5263 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 5264 GFP_NOFS|__GFP_NOFAIL); 5265 new_entry->efd_start_cluster = bit; 5266 new_entry->efd_group = block_group; 5267 new_entry->efd_count = count_clusters; 5268 new_entry->efd_tid = handle->h_transaction->t_tid; 5269 5270 ext4_lock_group(sb, block_group); 5271 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5272 ext4_mb_free_metadata(handle, &e4b, new_entry); 5273 } else { 5274 /* need to update group_info->bb_free and bitmap 5275 * with group lock held. generate_buddy look at 5276 * them with group lock_held 5277 */ 5278 if (test_opt(sb, DISCARD)) { 5279 err = ext4_issue_discard(sb, block_group, bit, count, 5280 NULL); 5281 if (err && err != -EOPNOTSUPP) 5282 ext4_msg(sb, KERN_WARNING, "discard request in" 5283 " group:%d block:%d count:%lu failed" 5284 " with %d", block_group, bit, count, 5285 err); 5286 } else 5287 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 5288 5289 ext4_lock_group(sb, block_group); 5290 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5291 mb_free_blocks(inode, &e4b, bit, count_clusters); 5292 } 5293 5294 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 5295 ext4_free_group_clusters_set(sb, gdp, ret); 5296 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 5297 ext4_group_desc_csum_set(sb, block_group, gdp); 5298 ext4_unlock_group(sb, block_group); 5299 5300 if (sbi->s_log_groups_per_flex) { 5301 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5302 atomic64_add(count_clusters, 5303 &sbi_array_rcu_deref(sbi, s_flex_groups, 5304 flex_group)->free_clusters); 5305 } 5306 5307 /* 5308 * on a bigalloc file system, defer the s_freeclusters_counter 5309 * update to the caller (ext4_remove_space and friends) so they 5310 * can determine if a cluster freed here should be rereserved 5311 */ 5312 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 5313 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 5314 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 5315 percpu_counter_add(&sbi->s_freeclusters_counter, 5316 count_clusters); 5317 } 5318 5319 ext4_mb_unload_buddy(&e4b); 5320 5321 /* We dirtied the bitmap block */ 5322 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5323 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5324 5325 /* And the group descriptor block */ 5326 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5327 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5328 if (!err) 5329 err = ret; 5330 5331 if (overflow && !err) { 5332 block += count; 5333 count = overflow; 5334 put_bh(bitmap_bh); 5335 goto do_more; 5336 } 5337 error_return: 5338 brelse(bitmap_bh); 5339 ext4_std_error(sb, err); 5340 return; 5341 } 5342 5343 /** 5344 * ext4_group_add_blocks() -- Add given blocks to an existing group 5345 * @handle: handle to this transaction 5346 * @sb: super block 5347 * @block: start physical block to add to the block group 5348 * @count: number of blocks to free 5349 * 5350 * This marks the blocks as free in the bitmap and buddy. 5351 */ 5352 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 5353 ext4_fsblk_t block, unsigned long count) 5354 { 5355 struct buffer_head *bitmap_bh = NULL; 5356 struct buffer_head *gd_bh; 5357 ext4_group_t block_group; 5358 ext4_grpblk_t bit; 5359 unsigned int i; 5360 struct ext4_group_desc *desc; 5361 struct ext4_sb_info *sbi = EXT4_SB(sb); 5362 struct ext4_buddy e4b; 5363 int err = 0, ret, free_clusters_count; 5364 ext4_grpblk_t clusters_freed; 5365 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 5366 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 5367 unsigned long cluster_count = last_cluster - first_cluster + 1; 5368 5369 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 5370 5371 if (count == 0) 5372 return 0; 5373 5374 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5375 /* 5376 * Check to see if we are freeing blocks across a group 5377 * boundary. 5378 */ 5379 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 5380 ext4_warning(sb, "too many blocks added to group %u", 5381 block_group); 5382 err = -EINVAL; 5383 goto error_return; 5384 } 5385 5386 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5387 if (IS_ERR(bitmap_bh)) { 5388 err = PTR_ERR(bitmap_bh); 5389 bitmap_bh = NULL; 5390 goto error_return; 5391 } 5392 5393 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 5394 if (!desc) { 5395 err = -EIO; 5396 goto error_return; 5397 } 5398 5399 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5400 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5401 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5402 in_range(block + count - 1, ext4_inode_table(sb, desc), 5403 sbi->s_itb_per_group)) { 5404 ext4_error(sb, "Adding blocks in system zones - " 5405 "Block = %llu, count = %lu", 5406 block, count); 5407 err = -EINVAL; 5408 goto error_return; 5409 } 5410 5411 BUFFER_TRACE(bitmap_bh, "getting write access"); 5412 err = ext4_journal_get_write_access(handle, bitmap_bh); 5413 if (err) 5414 goto error_return; 5415 5416 /* 5417 * We are about to modify some metadata. Call the journal APIs 5418 * to unshare ->b_data if a currently-committing transaction is 5419 * using it 5420 */ 5421 BUFFER_TRACE(gd_bh, "get_write_access"); 5422 err = ext4_journal_get_write_access(handle, gd_bh); 5423 if (err) 5424 goto error_return; 5425 5426 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 5427 BUFFER_TRACE(bitmap_bh, "clear bit"); 5428 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5429 ext4_error(sb, "bit already cleared for block %llu", 5430 (ext4_fsblk_t)(block + i)); 5431 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5432 } else { 5433 clusters_freed++; 5434 } 5435 } 5436 5437 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5438 if (err) 5439 goto error_return; 5440 5441 /* 5442 * need to update group_info->bb_free and bitmap 5443 * with group lock held. generate_buddy look at 5444 * them with group lock_held 5445 */ 5446 ext4_lock_group(sb, block_group); 5447 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 5448 mb_free_blocks(NULL, &e4b, bit, cluster_count); 5449 free_clusters_count = clusters_freed + 5450 ext4_free_group_clusters(sb, desc); 5451 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 5452 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5453 ext4_group_desc_csum_set(sb, block_group, desc); 5454 ext4_unlock_group(sb, block_group); 5455 percpu_counter_add(&sbi->s_freeclusters_counter, 5456 clusters_freed); 5457 5458 if (sbi->s_log_groups_per_flex) { 5459 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5460 atomic64_add(clusters_freed, 5461 &sbi_array_rcu_deref(sbi, s_flex_groups, 5462 flex_group)->free_clusters); 5463 } 5464 5465 ext4_mb_unload_buddy(&e4b); 5466 5467 /* We dirtied the bitmap block */ 5468 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5469 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5470 5471 /* And the group descriptor block */ 5472 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5473 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5474 if (!err) 5475 err = ret; 5476 5477 error_return: 5478 brelse(bitmap_bh); 5479 ext4_std_error(sb, err); 5480 return err; 5481 } 5482 5483 /** 5484 * ext4_trim_extent -- function to TRIM one single free extent in the group 5485 * @sb: super block for the file system 5486 * @start: starting block of the free extent in the alloc. group 5487 * @count: number of blocks to TRIM 5488 * @group: alloc. group we are working with 5489 * @e4b: ext4 buddy for the group 5490 * 5491 * Trim "count" blocks starting at "start" in the "group". To assure that no 5492 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5493 * be called with under the group lock. 5494 */ 5495 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5496 ext4_group_t group, struct ext4_buddy *e4b) 5497 __releases(bitlock) 5498 __acquires(bitlock) 5499 { 5500 struct ext4_free_extent ex; 5501 int ret = 0; 5502 5503 trace_ext4_trim_extent(sb, group, start, count); 5504 5505 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5506 5507 ex.fe_start = start; 5508 ex.fe_group = group; 5509 ex.fe_len = count; 5510 5511 /* 5512 * Mark blocks used, so no one can reuse them while 5513 * being trimmed. 5514 */ 5515 mb_mark_used(e4b, &ex); 5516 ext4_unlock_group(sb, group); 5517 ret = ext4_issue_discard(sb, group, start, count, NULL); 5518 ext4_lock_group(sb, group); 5519 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5520 return ret; 5521 } 5522 5523 /** 5524 * ext4_trim_all_free -- function to trim all free space in alloc. group 5525 * @sb: super block for file system 5526 * @group: group to be trimmed 5527 * @start: first group block to examine 5528 * @max: last group block to examine 5529 * @minblocks: minimum extent block count 5530 * 5531 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5532 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5533 * the extent. 5534 * 5535 * 5536 * ext4_trim_all_free walks through group's block bitmap searching for free 5537 * extents. When the free extent is found, mark it as used in group buddy 5538 * bitmap. Then issue a TRIM command on this extent and free the extent in 5539 * the group buddy bitmap. This is done until whole group is scanned. 5540 */ 5541 static ext4_grpblk_t 5542 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5543 ext4_grpblk_t start, ext4_grpblk_t max, 5544 ext4_grpblk_t minblocks) 5545 { 5546 void *bitmap; 5547 ext4_grpblk_t next, count = 0, free_count = 0; 5548 struct ext4_buddy e4b; 5549 int ret = 0; 5550 5551 trace_ext4_trim_all_free(sb, group, start, max); 5552 5553 ret = ext4_mb_load_buddy(sb, group, &e4b); 5554 if (ret) { 5555 ext4_warning(sb, "Error %d loading buddy information for %u", 5556 ret, group); 5557 return ret; 5558 } 5559 bitmap = e4b.bd_bitmap; 5560 5561 ext4_lock_group(sb, group); 5562 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5563 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5564 goto out; 5565 5566 start = (e4b.bd_info->bb_first_free > start) ? 5567 e4b.bd_info->bb_first_free : start; 5568 5569 while (start <= max) { 5570 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5571 if (start > max) 5572 break; 5573 next = mb_find_next_bit(bitmap, max + 1, start); 5574 5575 if ((next - start) >= minblocks) { 5576 ret = ext4_trim_extent(sb, start, 5577 next - start, group, &e4b); 5578 if (ret && ret != -EOPNOTSUPP) 5579 break; 5580 ret = 0; 5581 count += next - start; 5582 } 5583 free_count += next - start; 5584 start = next + 1; 5585 5586 if (fatal_signal_pending(current)) { 5587 count = -ERESTARTSYS; 5588 break; 5589 } 5590 5591 if (need_resched()) { 5592 ext4_unlock_group(sb, group); 5593 cond_resched(); 5594 ext4_lock_group(sb, group); 5595 } 5596 5597 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5598 break; 5599 } 5600 5601 if (!ret) { 5602 ret = count; 5603 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5604 } 5605 out: 5606 ext4_unlock_group(sb, group); 5607 ext4_mb_unload_buddy(&e4b); 5608 5609 ext4_debug("trimmed %d blocks in the group %d\n", 5610 count, group); 5611 5612 return ret; 5613 } 5614 5615 /** 5616 * ext4_trim_fs() -- trim ioctl handle function 5617 * @sb: superblock for filesystem 5618 * @range: fstrim_range structure 5619 * 5620 * start: First Byte to trim 5621 * len: number of Bytes to trim from start 5622 * minlen: minimum extent length in Bytes 5623 * ext4_trim_fs goes through all allocation groups containing Bytes from 5624 * start to start+len. For each such a group ext4_trim_all_free function 5625 * is invoked to trim all free space. 5626 */ 5627 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5628 { 5629 struct ext4_group_info *grp; 5630 ext4_group_t group, first_group, last_group; 5631 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5632 uint64_t start, end, minlen, trimmed = 0; 5633 ext4_fsblk_t first_data_blk = 5634 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5635 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5636 int ret = 0; 5637 5638 start = range->start >> sb->s_blocksize_bits; 5639 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5640 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5641 range->minlen >> sb->s_blocksize_bits); 5642 5643 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5644 start >= max_blks || 5645 range->len < sb->s_blocksize) 5646 return -EINVAL; 5647 if (end >= max_blks) 5648 end = max_blks - 1; 5649 if (end <= first_data_blk) 5650 goto out; 5651 if (start < first_data_blk) 5652 start = first_data_blk; 5653 5654 /* Determine first and last group to examine based on start and end */ 5655 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5656 &first_group, &first_cluster); 5657 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5658 &last_group, &last_cluster); 5659 5660 /* end now represents the last cluster to discard in this group */ 5661 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5662 5663 for (group = first_group; group <= last_group; group++) { 5664 grp = ext4_get_group_info(sb, group); 5665 /* We only do this if the grp has never been initialized */ 5666 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5667 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5668 if (ret) 5669 break; 5670 } 5671 5672 /* 5673 * For all the groups except the last one, last cluster will 5674 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5675 * change it for the last group, note that last_cluster is 5676 * already computed earlier by ext4_get_group_no_and_offset() 5677 */ 5678 if (group == last_group) 5679 end = last_cluster; 5680 5681 if (grp->bb_free >= minlen) { 5682 cnt = ext4_trim_all_free(sb, group, first_cluster, 5683 end, minlen); 5684 if (cnt < 0) { 5685 ret = cnt; 5686 break; 5687 } 5688 trimmed += cnt; 5689 } 5690 5691 /* 5692 * For every group except the first one, we are sure 5693 * that the first cluster to discard will be cluster #0. 5694 */ 5695 first_cluster = 0; 5696 } 5697 5698 if (!ret) 5699 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5700 5701 out: 5702 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5703 return ret; 5704 } 5705 5706 /* Iterate all the free extents in the group. */ 5707 int 5708 ext4_mballoc_query_range( 5709 struct super_block *sb, 5710 ext4_group_t group, 5711 ext4_grpblk_t start, 5712 ext4_grpblk_t end, 5713 ext4_mballoc_query_range_fn formatter, 5714 void *priv) 5715 { 5716 void *bitmap; 5717 ext4_grpblk_t next; 5718 struct ext4_buddy e4b; 5719 int error; 5720 5721 error = ext4_mb_load_buddy(sb, group, &e4b); 5722 if (error) 5723 return error; 5724 bitmap = e4b.bd_bitmap; 5725 5726 ext4_lock_group(sb, group); 5727 5728 start = (e4b.bd_info->bb_first_free > start) ? 5729 e4b.bd_info->bb_first_free : start; 5730 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 5731 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5732 5733 while (start <= end) { 5734 start = mb_find_next_zero_bit(bitmap, end + 1, start); 5735 if (start > end) 5736 break; 5737 next = mb_find_next_bit(bitmap, end + 1, start); 5738 5739 ext4_unlock_group(sb, group); 5740 error = formatter(sb, group, start, next - start, priv); 5741 if (error) 5742 goto out_unload; 5743 ext4_lock_group(sb, group); 5744 5745 start = next + 1; 5746 } 5747 5748 ext4_unlock_group(sb, group); 5749 out_unload: 5750 ext4_mb_unload_buddy(&e4b); 5751 5752 return error; 5753 } 5754