xref: /openbmc/linux/fs/ext4/mballoc.c (revision df3305156f989339529b3d6744b898d498fb1f7b)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30 
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33 
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37 
38 /*
39  * MUSTDO:
40  *   - test ext4_ext_search_left() and ext4_ext_search_right()
41  *   - search for metadata in few groups
42  *
43  * TODO v4:
44  *   - normalization should take into account whether file is still open
45  *   - discard preallocations if no free space left (policy?)
46  *   - don't normalize tails
47  *   - quota
48  *   - reservation for superuser
49  *
50  * TODO v3:
51  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
52  *   - track min/max extents in each group for better group selection
53  *   - mb_mark_used() may allocate chunk right after splitting buddy
54  *   - tree of groups sorted by number of free blocks
55  *   - error handling
56  */
57 
58 /*
59  * The allocation request involve request for multiple number of blocks
60  * near to the goal(block) value specified.
61  *
62  * During initialization phase of the allocator we decide to use the
63  * group preallocation or inode preallocation depending on the size of
64  * the file. The size of the file could be the resulting file size we
65  * would have after allocation, or the current file size, which ever
66  * is larger. If the size is less than sbi->s_mb_stream_request we
67  * select to use the group preallocation. The default value of
68  * s_mb_stream_request is 16 blocks. This can also be tuned via
69  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70  * terms of number of blocks.
71  *
72  * The main motivation for having small file use group preallocation is to
73  * ensure that we have small files closer together on the disk.
74  *
75  * First stage the allocator looks at the inode prealloc list,
76  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77  * spaces for this particular inode. The inode prealloc space is
78  * represented as:
79  *
80  * pa_lstart -> the logical start block for this prealloc space
81  * pa_pstart -> the physical start block for this prealloc space
82  * pa_len    -> length for this prealloc space (in clusters)
83  * pa_free   ->  free space available in this prealloc space (in clusters)
84  *
85  * The inode preallocation space is used looking at the _logical_ start
86  * block. If only the logical file block falls within the range of prealloc
87  * space we will consume the particular prealloc space. This makes sure that
88  * we have contiguous physical blocks representing the file blocks
89  *
90  * The important thing to be noted in case of inode prealloc space is that
91  * we don't modify the values associated to inode prealloc space except
92  * pa_free.
93  *
94  * If we are not able to find blocks in the inode prealloc space and if we
95  * have the group allocation flag set then we look at the locality group
96  * prealloc space. These are per CPU prealloc list represented as
97  *
98  * ext4_sb_info.s_locality_groups[smp_processor_id()]
99  *
100  * The reason for having a per cpu locality group is to reduce the contention
101  * between CPUs. It is possible to get scheduled at this point.
102  *
103  * The locality group prealloc space is used looking at whether we have
104  * enough free space (pa_free) within the prealloc space.
105  *
106  * If we can't allocate blocks via inode prealloc or/and locality group
107  * prealloc then we look at the buddy cache. The buddy cache is represented
108  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109  * mapped to the buddy and bitmap information regarding different
110  * groups. The buddy information is attached to buddy cache inode so that
111  * we can access them through the page cache. The information regarding
112  * each group is loaded via ext4_mb_load_buddy.  The information involve
113  * block bitmap and buddy information. The information are stored in the
114  * inode as:
115  *
116  *  {                        page                        }
117  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118  *
119  *
120  * one block each for bitmap and buddy information.  So for each group we
121  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122  * blocksize) blocks.  So it can have information regarding groups_per_page
123  * which is blocks_per_page/2
124  *
125  * The buddy cache inode is not stored on disk. The inode is thrown
126  * away when the filesystem is unmounted.
127  *
128  * We look for count number of blocks in the buddy cache. If we were able
129  * to locate that many free blocks we return with additional information
130  * regarding rest of the contiguous physical block available
131  *
132  * Before allocating blocks via buddy cache we normalize the request
133  * blocks. This ensure we ask for more blocks that we needed. The extra
134  * blocks that we get after allocation is added to the respective prealloc
135  * list. In case of inode preallocation we follow a list of heuristics
136  * based on file size. This can be found in ext4_mb_normalize_request. If
137  * we are doing a group prealloc we try to normalize the request to
138  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
139  * dependent on the cluster size; for non-bigalloc file systems, it is
140  * 512 blocks. This can be tuned via
141  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142  * terms of number of blocks. If we have mounted the file system with -O
143  * stripe=<value> option the group prealloc request is normalized to the
144  * the smallest multiple of the stripe value (sbi->s_stripe) which is
145  * greater than the default mb_group_prealloc.
146  *
147  * The regular allocator (using the buddy cache) supports a few tunables.
148  *
149  * /sys/fs/ext4/<partition>/mb_min_to_scan
150  * /sys/fs/ext4/<partition>/mb_max_to_scan
151  * /sys/fs/ext4/<partition>/mb_order2_req
152  *
153  * The regular allocator uses buddy scan only if the request len is power of
154  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155  * value of s_mb_order2_reqs can be tuned via
156  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
157  * stripe size (sbi->s_stripe), we try to search for contiguous block in
158  * stripe size. This should result in better allocation on RAID setups. If
159  * not, we search in the specific group using bitmap for best extents. The
160  * tunable min_to_scan and max_to_scan control the behaviour here.
161  * min_to_scan indicate how long the mballoc __must__ look for a best
162  * extent and max_to_scan indicates how long the mballoc __can__ look for a
163  * best extent in the found extents. Searching for the blocks starts with
164  * the group specified as the goal value in allocation context via
165  * ac_g_ex. Each group is first checked based on the criteria whether it
166  * can be used for allocation. ext4_mb_good_group explains how the groups are
167  * checked.
168  *
169  * Both the prealloc space are getting populated as above. So for the first
170  * request we will hit the buddy cache which will result in this prealloc
171  * space getting filled. The prealloc space is then later used for the
172  * subsequent request.
173  */
174 
175 /*
176  * mballoc operates on the following data:
177  *  - on-disk bitmap
178  *  - in-core buddy (actually includes buddy and bitmap)
179  *  - preallocation descriptors (PAs)
180  *
181  * there are two types of preallocations:
182  *  - inode
183  *    assiged to specific inode and can be used for this inode only.
184  *    it describes part of inode's space preallocated to specific
185  *    physical blocks. any block from that preallocated can be used
186  *    independent. the descriptor just tracks number of blocks left
187  *    unused. so, before taking some block from descriptor, one must
188  *    make sure corresponded logical block isn't allocated yet. this
189  *    also means that freeing any block within descriptor's range
190  *    must discard all preallocated blocks.
191  *  - locality group
192  *    assigned to specific locality group which does not translate to
193  *    permanent set of inodes: inode can join and leave group. space
194  *    from this type of preallocation can be used for any inode. thus
195  *    it's consumed from the beginning to the end.
196  *
197  * relation between them can be expressed as:
198  *    in-core buddy = on-disk bitmap + preallocation descriptors
199  *
200  * this mean blocks mballoc considers used are:
201  *  - allocated blocks (persistent)
202  *  - preallocated blocks (non-persistent)
203  *
204  * consistency in mballoc world means that at any time a block is either
205  * free or used in ALL structures. notice: "any time" should not be read
206  * literally -- time is discrete and delimited by locks.
207  *
208  *  to keep it simple, we don't use block numbers, instead we count number of
209  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210  *
211  * all operations can be expressed as:
212  *  - init buddy:			buddy = on-disk + PAs
213  *  - new PA:				buddy += N; PA = N
214  *  - use inode PA:			on-disk += N; PA -= N
215  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
216  *  - use locality group PA		on-disk += N; PA -= N
217  *  - discard locality group PA		buddy -= PA; PA = 0
218  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219  *        is used in real operation because we can't know actual used
220  *        bits from PA, only from on-disk bitmap
221  *
222  * if we follow this strict logic, then all operations above should be atomic.
223  * given some of them can block, we'd have to use something like semaphores
224  * killing performance on high-end SMP hardware. let's try to relax it using
225  * the following knowledge:
226  *  1) if buddy is referenced, it's already initialized
227  *  2) while block is used in buddy and the buddy is referenced,
228  *     nobody can re-allocate that block
229  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
231  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232  *     block
233  *
234  * so, now we're building a concurrency table:
235  *  - init buddy vs.
236  *    - new PA
237  *      blocks for PA are allocated in the buddy, buddy must be referenced
238  *      until PA is linked to allocation group to avoid concurrent buddy init
239  *    - use inode PA
240  *      we need to make sure that either on-disk bitmap or PA has uptodate data
241  *      given (3) we care that PA-=N operation doesn't interfere with init
242  *    - discard inode PA
243  *      the simplest way would be to have buddy initialized by the discard
244  *    - use locality group PA
245  *      again PA-=N must be serialized with init
246  *    - discard locality group PA
247  *      the simplest way would be to have buddy initialized by the discard
248  *  - new PA vs.
249  *    - use inode PA
250  *      i_data_sem serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      some mutex should serialize them
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *  - use inode PA
258  *    - use inode PA
259  *      i_data_sem or another mutex should serializes them
260  *    - discard inode PA
261  *      discard process must wait until PA isn't used by another process
262  *    - use locality group PA
263  *      nothing wrong here -- they're different PAs covering different blocks
264  *    - discard locality group PA
265  *      discard process must wait until PA isn't used by another process
266  *
267  * now we're ready to make few consequences:
268  *  - PA is referenced and while it is no discard is possible
269  *  - PA is referenced until block isn't marked in on-disk bitmap
270  *  - PA changes only after on-disk bitmap
271  *  - discard must not compete with init. either init is done before
272  *    any discard or they're serialized somehow
273  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
274  *
275  * a special case when we've used PA to emptiness. no need to modify buddy
276  * in this case, but we should care about concurrent init
277  *
278  */
279 
280  /*
281  * Logic in few words:
282  *
283  *  - allocation:
284  *    load group
285  *    find blocks
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - use preallocation:
290  *    find proper PA (per-inode or group)
291  *    load group
292  *    mark bits in on-disk bitmap
293  *    release group
294  *    release PA
295  *
296  *  - free:
297  *    load group
298  *    mark bits in on-disk bitmap
299  *    release group
300  *
301  *  - discard preallocations in group:
302  *    mark PAs deleted
303  *    move them onto local list
304  *    load on-disk bitmap
305  *    load group
306  *    remove PA from object (inode or locality group)
307  *    mark free blocks in-core
308  *
309  *  - discard inode's preallocations:
310  */
311 
312 /*
313  * Locking rules
314  *
315  * Locks:
316  *  - bitlock on a group	(group)
317  *  - object (inode/locality)	(object)
318  *  - per-pa lock		(pa)
319  *
320  * Paths:
321  *  - new pa
322  *    object
323  *    group
324  *
325  *  - find and use pa:
326  *    pa
327  *
328  *  - release consumed pa:
329  *    pa
330  *    group
331  *    object
332  *
333  *  - generate in-core bitmap:
334  *    group
335  *        pa
336  *
337  *  - discard all for given object (inode, locality group):
338  *    object
339  *        pa
340  *    group
341  *
342  *  - discard all for given group:
343  *    group
344  *        pa
345  *    group
346  *        object
347  *
348  */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352 
353 /* We create slab caches for groupinfo data structures based on the
354  * superblock block size.  There will be one per mounted filesystem for
355  * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358 
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364 
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 					ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 						ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 				struct ext4_journal_cb_entry *jce, int rc);
371 
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 	*bit += ((unsigned long) addr & 7UL) << 3;
376 	addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 	*bit += ((unsigned long) addr & 3UL) << 3;
379 	addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 	return addr;
384 }
385 
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 	/*
389 	 * ext4_test_bit on architecture like powerpc
390 	 * needs unsigned long aligned address
391 	 */
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	return ext4_test_bit(bit, addr);
394 }
395 
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	ext4_set_bit(bit, addr);
400 }
401 
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 	addr = mb_correct_addr_and_bit(&bit, addr);
405 	ext4_clear_bit(bit, addr);
406 }
407 
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 	addr = mb_correct_addr_and_bit(&bit, addr);
411 	return ext4_test_and_clear_bit(bit, addr);
412 }
413 
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 	int fix = 0, ret, tmpmax;
430 	addr = mb_correct_addr_and_bit(&fix, addr);
431 	tmpmax = max + fix;
432 	start += fix;
433 
434 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 	if (ret > max)
436 		return max;
437 	return ret;
438 }
439 
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 	char *bb;
443 
444 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 	BUG_ON(max == NULL);
446 
447 	if (order > e4b->bd_blkbits + 1) {
448 		*max = 0;
449 		return NULL;
450 	}
451 
452 	/* at order 0 we see each particular block */
453 	if (order == 0) {
454 		*max = 1 << (e4b->bd_blkbits + 3);
455 		return e4b->bd_bitmap;
456 	}
457 
458 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460 
461 	return bb;
462 }
463 
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 			   int first, int count)
467 {
468 	int i;
469 	struct super_block *sb = e4b->bd_sb;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 			ext4_fsblk_t blocknr;
477 
478 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 			ext4_grp_locked_error(sb, e4b->bd_group,
481 					      inode ? inode->i_ino : 0,
482 					      blocknr,
483 					      "freeing block already freed "
484 					      "(bit %u)",
485 					      first + i);
486 		}
487 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 	int i;
494 
495 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 		return;
497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 	for (i = 0; i < count; i++) {
499 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 		unsigned char *b1, *b2;
508 		int i;
509 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 		b2 = (unsigned char *) bitmap;
511 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 			if (b1[i] != b2[i]) {
513 				ext4_msg(e4b->bd_sb, KERN_ERR,
514 					 "corruption in group %u "
515 					 "at byte %u(%u): %x in copy != %x "
516 					 "on disk/prealloc",
517 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 				BUG();
519 			}
520 		}
521 	}
522 }
523 
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 				struct ext4_buddy *e4b, int first, int count)
527 {
528 	return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 						int first, int count)
532 {
533 	return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 	return;
538 }
539 #endif
540 
541 #ifdef AGGRESSIVE_CHECK
542 
543 #define MB_CHECK_ASSERT(assert)						\
544 do {									\
545 	if (!(assert)) {						\
546 		printk(KERN_EMERG					\
547 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
548 			function, file, line, # assert);		\
549 		BUG();							\
550 	}								\
551 } while (0)
552 
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 				const char *function, int line)
555 {
556 	struct super_block *sb = e4b->bd_sb;
557 	int order = e4b->bd_blkbits + 1;
558 	int max;
559 	int max2;
560 	int i;
561 	int j;
562 	int k;
563 	int count;
564 	struct ext4_group_info *grp;
565 	int fragments = 0;
566 	int fstart;
567 	struct list_head *cur;
568 	void *buddy;
569 	void *buddy2;
570 
571 	{
572 		static int mb_check_counter;
573 		if (mb_check_counter++ % 100 != 0)
574 			return 0;
575 	}
576 
577 	while (order > 1) {
578 		buddy = mb_find_buddy(e4b, order, &max);
579 		MB_CHECK_ASSERT(buddy);
580 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 		MB_CHECK_ASSERT(buddy2);
582 		MB_CHECK_ASSERT(buddy != buddy2);
583 		MB_CHECK_ASSERT(max * 2 == max2);
584 
585 		count = 0;
586 		for (i = 0; i < max; i++) {
587 
588 			if (mb_test_bit(i, buddy)) {
589 				/* only single bit in buddy2 may be 1 */
590 				if (!mb_test_bit(i << 1, buddy2)) {
591 					MB_CHECK_ASSERT(
592 						mb_test_bit((i<<1)+1, buddy2));
593 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 					MB_CHECK_ASSERT(
595 						mb_test_bit(i << 1, buddy2));
596 				}
597 				continue;
598 			}
599 
600 			/* both bits in buddy2 must be 1 */
601 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603 
604 			for (j = 0; j < (1 << order); j++) {
605 				k = (i * (1 << order)) + j;
606 				MB_CHECK_ASSERT(
607 					!mb_test_bit(k, e4b->bd_bitmap));
608 			}
609 			count++;
610 		}
611 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 		order--;
613 	}
614 
615 	fstart = -1;
616 	buddy = mb_find_buddy(e4b, 0, &max);
617 	for (i = 0; i < max; i++) {
618 		if (!mb_test_bit(i, buddy)) {
619 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 			if (fstart == -1) {
621 				fragments++;
622 				fstart = i;
623 			}
624 			continue;
625 		}
626 		fstart = -1;
627 		/* check used bits only */
628 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 			buddy2 = mb_find_buddy(e4b, j, &max2);
630 			k = i >> j;
631 			MB_CHECK_ASSERT(k < max2);
632 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 		}
634 	}
635 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637 
638 	grp = ext4_get_group_info(sb, e4b->bd_group);
639 	list_for_each(cur, &grp->bb_prealloc_list) {
640 		ext4_group_t groupnr;
641 		struct ext4_prealloc_space *pa;
642 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 		for (i = 0; i < pa->pa_len; i++)
646 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 	}
648 	return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
652 					__FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656 
657 /*
658  * Divide blocks started from @first with length @len into
659  * smaller chunks with power of 2 blocks.
660  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661  * then increase bb_counters[] for corresponded chunk size.
662  */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 					struct ext4_group_info *grp)
666 {
667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
668 	ext4_grpblk_t min;
669 	ext4_grpblk_t max;
670 	ext4_grpblk_t chunk;
671 	unsigned short border;
672 
673 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674 
675 	border = 2 << sb->s_blocksize_bits;
676 
677 	while (len > 0) {
678 		/* find how many blocks can be covered since this position */
679 		max = ffs(first | border) - 1;
680 
681 		/* find how many blocks of power 2 we need to mark */
682 		min = fls(len) - 1;
683 
684 		if (max < min)
685 			min = max;
686 		chunk = 1 << min;
687 
688 		/* mark multiblock chunks only */
689 		grp->bb_counters[min]++;
690 		if (min > 0)
691 			mb_clear_bit(first >> min,
692 				     buddy + sbi->s_mb_offsets[min]);
693 
694 		len -= chunk;
695 		first += chunk;
696 	}
697 }
698 
699 /*
700  * Cache the order of the largest free extent we have available in this block
701  * group.
702  */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 	int i;
707 	int bits;
708 
709 	grp->bb_largest_free_order = -1; /* uninit */
710 
711 	bits = sb->s_blocksize_bits + 1;
712 	for (i = bits; i >= 0; i--) {
713 		if (grp->bb_counters[i] > 0) {
714 			grp->bb_largest_free_order = i;
715 			break;
716 		}
717 	}
718 }
719 
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 				void *buddy, void *bitmap, ext4_group_t group)
723 {
724 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 	struct ext4_sb_info *sbi = EXT4_SB(sb);
726 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 	ext4_grpblk_t i = 0;
728 	ext4_grpblk_t first;
729 	ext4_grpblk_t len;
730 	unsigned free = 0;
731 	unsigned fragments = 0;
732 	unsigned long long period = get_cycles();
733 
734 	/* initialize buddy from bitmap which is aggregation
735 	 * of on-disk bitmap and preallocations */
736 	i = mb_find_next_zero_bit(bitmap, max, 0);
737 	grp->bb_first_free = i;
738 	while (i < max) {
739 		fragments++;
740 		first = i;
741 		i = mb_find_next_bit(bitmap, max, i);
742 		len = i - first;
743 		free += len;
744 		if (len > 1)
745 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 		else
747 			grp->bb_counters[0]++;
748 		if (i < max)
749 			i = mb_find_next_zero_bit(bitmap, max, i);
750 	}
751 	grp->bb_fragments = fragments;
752 
753 	if (free != grp->bb_free) {
754 		ext4_grp_locked_error(sb, group, 0, 0,
755 				      "block bitmap and bg descriptor "
756 				      "inconsistent: %u vs %u free clusters",
757 				      free, grp->bb_free);
758 		/*
759 		 * If we intend to continue, we consider group descriptor
760 		 * corrupt and update bb_free using bitmap value
761 		 */
762 		grp->bb_free = free;
763 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 			percpu_counter_sub(&sbi->s_freeclusters_counter,
765 					   grp->bb_free);
766 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
767 	}
768 	mb_set_largest_free_order(sb, grp);
769 
770 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
771 
772 	period = get_cycles() - period;
773 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 	EXT4_SB(sb)->s_mb_buddies_generated++;
775 	EXT4_SB(sb)->s_mb_generation_time += period;
776 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
777 }
778 
779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
780 {
781 	int count;
782 	int order = 1;
783 	void *buddy;
784 
785 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 		ext4_set_bits(buddy, 0, count);
787 	}
788 	e4b->bd_info->bb_fragments = 0;
789 	memset(e4b->bd_info->bb_counters, 0,
790 		sizeof(*e4b->bd_info->bb_counters) *
791 		(e4b->bd_sb->s_blocksize_bits + 2));
792 
793 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 		e4b->bd_bitmap, e4b->bd_group);
795 }
796 
797 /* The buddy information is attached the buddy cache inode
798  * for convenience. The information regarding each group
799  * is loaded via ext4_mb_load_buddy. The information involve
800  * block bitmap and buddy information. The information are
801  * stored in the inode as
802  *
803  * {                        page                        }
804  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
805  *
806  *
807  * one block each for bitmap and buddy information.
808  * So for each group we take up 2 blocks. A page can
809  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
810  * So it can have information regarding groups_per_page which
811  * is blocks_per_page/2
812  *
813  * Locking note:  This routine takes the block group lock of all groups
814  * for this page; do not hold this lock when calling this routine!
815  */
816 
817 static int ext4_mb_init_cache(struct page *page, char *incore)
818 {
819 	ext4_group_t ngroups;
820 	int blocksize;
821 	int blocks_per_page;
822 	int groups_per_page;
823 	int err = 0;
824 	int i;
825 	ext4_group_t first_group, group;
826 	int first_block;
827 	struct super_block *sb;
828 	struct buffer_head *bhs;
829 	struct buffer_head **bh = NULL;
830 	struct inode *inode;
831 	char *data;
832 	char *bitmap;
833 	struct ext4_group_info *grinfo;
834 
835 	mb_debug(1, "init page %lu\n", page->index);
836 
837 	inode = page->mapping->host;
838 	sb = inode->i_sb;
839 	ngroups = ext4_get_groups_count(sb);
840 	blocksize = 1 << inode->i_blkbits;
841 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
842 
843 	groups_per_page = blocks_per_page >> 1;
844 	if (groups_per_page == 0)
845 		groups_per_page = 1;
846 
847 	/* allocate buffer_heads to read bitmaps */
848 	if (groups_per_page > 1) {
849 		i = sizeof(struct buffer_head *) * groups_per_page;
850 		bh = kzalloc(i, GFP_NOFS);
851 		if (bh == NULL) {
852 			err = -ENOMEM;
853 			goto out;
854 		}
855 	} else
856 		bh = &bhs;
857 
858 	first_group = page->index * blocks_per_page / 2;
859 
860 	/* read all groups the page covers into the cache */
861 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 		if (group >= ngroups)
863 			break;
864 
865 		grinfo = ext4_get_group_info(sb, group);
866 		/*
867 		 * If page is uptodate then we came here after online resize
868 		 * which added some new uninitialized group info structs, so
869 		 * we must skip all initialized uptodate buddies on the page,
870 		 * which may be currently in use by an allocating task.
871 		 */
872 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 			bh[i] = NULL;
874 			continue;
875 		}
876 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 			err = -ENOMEM;
878 			goto out;
879 		}
880 		mb_debug(1, "read bitmap for group %u\n", group);
881 	}
882 
883 	/* wait for I/O completion */
884 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
886 			err = -EIO;
887 			goto out;
888 		}
889 	}
890 
891 	first_block = page->index * blocks_per_page;
892 	for (i = 0; i < blocks_per_page; i++) {
893 		group = (first_block + i) >> 1;
894 		if (group >= ngroups)
895 			break;
896 
897 		if (!bh[group - first_group])
898 			/* skip initialized uptodate buddy */
899 			continue;
900 
901 		/*
902 		 * data carry information regarding this
903 		 * particular group in the format specified
904 		 * above
905 		 *
906 		 */
907 		data = page_address(page) + (i * blocksize);
908 		bitmap = bh[group - first_group]->b_data;
909 
910 		/*
911 		 * We place the buddy block and bitmap block
912 		 * close together
913 		 */
914 		if ((first_block + i) & 1) {
915 			/* this is block of buddy */
916 			BUG_ON(incore == NULL);
917 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 				group, page->index, i * blocksize);
919 			trace_ext4_mb_buddy_bitmap_load(sb, group);
920 			grinfo = ext4_get_group_info(sb, group);
921 			grinfo->bb_fragments = 0;
922 			memset(grinfo->bb_counters, 0,
923 			       sizeof(*grinfo->bb_counters) *
924 				(sb->s_blocksize_bits+2));
925 			/*
926 			 * incore got set to the group block bitmap below
927 			 */
928 			ext4_lock_group(sb, group);
929 			/* init the buddy */
930 			memset(data, 0xff, blocksize);
931 			ext4_mb_generate_buddy(sb, data, incore, group);
932 			ext4_unlock_group(sb, group);
933 			incore = NULL;
934 		} else {
935 			/* this is block of bitmap */
936 			BUG_ON(incore != NULL);
937 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 				group, page->index, i * blocksize);
939 			trace_ext4_mb_bitmap_load(sb, group);
940 
941 			/* see comments in ext4_mb_put_pa() */
942 			ext4_lock_group(sb, group);
943 			memcpy(data, bitmap, blocksize);
944 
945 			/* mark all preallocated blks used in in-core bitmap */
946 			ext4_mb_generate_from_pa(sb, data, group);
947 			ext4_mb_generate_from_freelist(sb, data, group);
948 			ext4_unlock_group(sb, group);
949 
950 			/* set incore so that the buddy information can be
951 			 * generated using this
952 			 */
953 			incore = data;
954 		}
955 	}
956 	SetPageUptodate(page);
957 
958 out:
959 	if (bh) {
960 		for (i = 0; i < groups_per_page; i++)
961 			brelse(bh[i]);
962 		if (bh != &bhs)
963 			kfree(bh);
964 	}
965 	return err;
966 }
967 
968 /*
969  * Lock the buddy and bitmap pages. This make sure other parallel init_group
970  * on the same buddy page doesn't happen whild holding the buddy page lock.
971  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
973  */
974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
975 		ext4_group_t group, struct ext4_buddy *e4b)
976 {
977 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
978 	int block, pnum, poff;
979 	int blocks_per_page;
980 	struct page *page;
981 
982 	e4b->bd_buddy_page = NULL;
983 	e4b->bd_bitmap_page = NULL;
984 
985 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
986 	/*
987 	 * the buddy cache inode stores the block bitmap
988 	 * and buddy information in consecutive blocks.
989 	 * So for each group we need two blocks.
990 	 */
991 	block = group * 2;
992 	pnum = block / blocks_per_page;
993 	poff = block % blocks_per_page;
994 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
995 	if (!page)
996 		return -ENOMEM;
997 	BUG_ON(page->mapping != inode->i_mapping);
998 	e4b->bd_bitmap_page = page;
999 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000 
1001 	if (blocks_per_page >= 2) {
1002 		/* buddy and bitmap are on the same page */
1003 		return 0;
1004 	}
1005 
1006 	block++;
1007 	pnum = block / blocks_per_page;
1008 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1009 	if (!page)
1010 		return -ENOMEM;
1011 	BUG_ON(page->mapping != inode->i_mapping);
1012 	e4b->bd_buddy_page = page;
1013 	return 0;
1014 }
1015 
1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1017 {
1018 	if (e4b->bd_bitmap_page) {
1019 		unlock_page(e4b->bd_bitmap_page);
1020 		page_cache_release(e4b->bd_bitmap_page);
1021 	}
1022 	if (e4b->bd_buddy_page) {
1023 		unlock_page(e4b->bd_buddy_page);
1024 		page_cache_release(e4b->bd_buddy_page);
1025 	}
1026 }
1027 
1028 /*
1029  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1030  * block group lock of all groups for this page; do not hold the BG lock when
1031  * calling this routine!
1032  */
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1035 {
1036 
1037 	struct ext4_group_info *this_grp;
1038 	struct ext4_buddy e4b;
1039 	struct page *page;
1040 	int ret = 0;
1041 
1042 	might_sleep();
1043 	mb_debug(1, "init group %u\n", group);
1044 	this_grp = ext4_get_group_info(sb, group);
1045 	/*
1046 	 * This ensures that we don't reinit the buddy cache
1047 	 * page which map to the group from which we are already
1048 	 * allocating. If we are looking at the buddy cache we would
1049 	 * have taken a reference using ext4_mb_load_buddy and that
1050 	 * would have pinned buddy page to page cache.
1051 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 	 * page accessed.
1053 	 */
1054 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1055 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1056 		/*
1057 		 * somebody initialized the group
1058 		 * return without doing anything
1059 		 */
1060 		goto err;
1061 	}
1062 
1063 	page = e4b.bd_bitmap_page;
1064 	ret = ext4_mb_init_cache(page, NULL);
1065 	if (ret)
1066 		goto err;
1067 	if (!PageUptodate(page)) {
1068 		ret = -EIO;
1069 		goto err;
1070 	}
1071 
1072 	if (e4b.bd_buddy_page == NULL) {
1073 		/*
1074 		 * If both the bitmap and buddy are in
1075 		 * the same page we don't need to force
1076 		 * init the buddy
1077 		 */
1078 		ret = 0;
1079 		goto err;
1080 	}
1081 	/* init buddy cache */
1082 	page = e4b.bd_buddy_page;
1083 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1084 	if (ret)
1085 		goto err;
1086 	if (!PageUptodate(page)) {
1087 		ret = -EIO;
1088 		goto err;
1089 	}
1090 err:
1091 	ext4_mb_put_buddy_page_lock(&e4b);
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1097  * block group lock of all groups for this page; do not hold the BG lock when
1098  * calling this routine!
1099  */
1100 static noinline_for_stack int
1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1102 					struct ext4_buddy *e4b)
1103 {
1104 	int blocks_per_page;
1105 	int block;
1106 	int pnum;
1107 	int poff;
1108 	struct page *page;
1109 	int ret;
1110 	struct ext4_group_info *grp;
1111 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1112 	struct inode *inode = sbi->s_buddy_cache;
1113 
1114 	might_sleep();
1115 	mb_debug(1, "load group %u\n", group);
1116 
1117 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1118 	grp = ext4_get_group_info(sb, group);
1119 
1120 	e4b->bd_blkbits = sb->s_blocksize_bits;
1121 	e4b->bd_info = grp;
1122 	e4b->bd_sb = sb;
1123 	e4b->bd_group = group;
1124 	e4b->bd_buddy_page = NULL;
1125 	e4b->bd_bitmap_page = NULL;
1126 
1127 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1128 		/*
1129 		 * we need full data about the group
1130 		 * to make a good selection
1131 		 */
1132 		ret = ext4_mb_init_group(sb, group);
1133 		if (ret)
1134 			return ret;
1135 	}
1136 
1137 	/*
1138 	 * the buddy cache inode stores the block bitmap
1139 	 * and buddy information in consecutive blocks.
1140 	 * So for each group we need two blocks.
1141 	 */
1142 	block = group * 2;
1143 	pnum = block / blocks_per_page;
1144 	poff = block % blocks_per_page;
1145 
1146 	/* we could use find_or_create_page(), but it locks page
1147 	 * what we'd like to avoid in fast path ... */
1148 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1149 	if (page == NULL || !PageUptodate(page)) {
1150 		if (page)
1151 			/*
1152 			 * drop the page reference and try
1153 			 * to get the page with lock. If we
1154 			 * are not uptodate that implies
1155 			 * somebody just created the page but
1156 			 * is yet to initialize the same. So
1157 			 * wait for it to initialize.
1158 			 */
1159 			page_cache_release(page);
1160 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1161 		if (page) {
1162 			BUG_ON(page->mapping != inode->i_mapping);
1163 			if (!PageUptodate(page)) {
1164 				ret = ext4_mb_init_cache(page, NULL);
1165 				if (ret) {
1166 					unlock_page(page);
1167 					goto err;
1168 				}
1169 				mb_cmp_bitmaps(e4b, page_address(page) +
1170 					       (poff * sb->s_blocksize));
1171 			}
1172 			unlock_page(page);
1173 		}
1174 	}
1175 	if (page == NULL) {
1176 		ret = -ENOMEM;
1177 		goto err;
1178 	}
1179 	if (!PageUptodate(page)) {
1180 		ret = -EIO;
1181 		goto err;
1182 	}
1183 
1184 	/* Pages marked accessed already */
1185 	e4b->bd_bitmap_page = page;
1186 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1187 
1188 	block++;
1189 	pnum = block / blocks_per_page;
1190 	poff = block % blocks_per_page;
1191 
1192 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1193 	if (page == NULL || !PageUptodate(page)) {
1194 		if (page)
1195 			page_cache_release(page);
1196 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1197 		if (page) {
1198 			BUG_ON(page->mapping != inode->i_mapping);
1199 			if (!PageUptodate(page)) {
1200 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1201 				if (ret) {
1202 					unlock_page(page);
1203 					goto err;
1204 				}
1205 			}
1206 			unlock_page(page);
1207 		}
1208 	}
1209 	if (page == NULL) {
1210 		ret = -ENOMEM;
1211 		goto err;
1212 	}
1213 	if (!PageUptodate(page)) {
1214 		ret = -EIO;
1215 		goto err;
1216 	}
1217 
1218 	/* Pages marked accessed already */
1219 	e4b->bd_buddy_page = page;
1220 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 
1222 	BUG_ON(e4b->bd_bitmap_page == NULL);
1223 	BUG_ON(e4b->bd_buddy_page == NULL);
1224 
1225 	return 0;
1226 
1227 err:
1228 	if (page)
1229 		page_cache_release(page);
1230 	if (e4b->bd_bitmap_page)
1231 		page_cache_release(e4b->bd_bitmap_page);
1232 	if (e4b->bd_buddy_page)
1233 		page_cache_release(e4b->bd_buddy_page);
1234 	e4b->bd_buddy = NULL;
1235 	e4b->bd_bitmap = NULL;
1236 	return ret;
1237 }
1238 
1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1240 {
1241 	if (e4b->bd_bitmap_page)
1242 		page_cache_release(e4b->bd_bitmap_page);
1243 	if (e4b->bd_buddy_page)
1244 		page_cache_release(e4b->bd_buddy_page);
1245 }
1246 
1247 
1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1249 {
1250 	int order = 1;
1251 	void *bb;
1252 
1253 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1254 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1255 
1256 	bb = e4b->bd_buddy;
1257 	while (order <= e4b->bd_blkbits + 1) {
1258 		block = block >> 1;
1259 		if (!mb_test_bit(block, bb)) {
1260 			/* this block is part of buddy of order 'order' */
1261 			return order;
1262 		}
1263 		bb += 1 << (e4b->bd_blkbits - order);
1264 		order++;
1265 	}
1266 	return 0;
1267 }
1268 
1269 static void mb_clear_bits(void *bm, int cur, int len)
1270 {
1271 	__u32 *addr;
1272 
1273 	len = cur + len;
1274 	while (cur < len) {
1275 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1276 			/* fast path: clear whole word at once */
1277 			addr = bm + (cur >> 3);
1278 			*addr = 0;
1279 			cur += 32;
1280 			continue;
1281 		}
1282 		mb_clear_bit(cur, bm);
1283 		cur++;
1284 	}
1285 }
1286 
1287 /* clear bits in given range
1288  * will return first found zero bit if any, -1 otherwise
1289  */
1290 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1291 {
1292 	__u32 *addr;
1293 	int zero_bit = -1;
1294 
1295 	len = cur + len;
1296 	while (cur < len) {
1297 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1298 			/* fast path: clear whole word at once */
1299 			addr = bm + (cur >> 3);
1300 			if (*addr != (__u32)(-1) && zero_bit == -1)
1301 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1302 			*addr = 0;
1303 			cur += 32;
1304 			continue;
1305 		}
1306 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1307 			zero_bit = cur;
1308 		cur++;
1309 	}
1310 
1311 	return zero_bit;
1312 }
1313 
1314 void ext4_set_bits(void *bm, int cur, int len)
1315 {
1316 	__u32 *addr;
1317 
1318 	len = cur + len;
1319 	while (cur < len) {
1320 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1321 			/* fast path: set whole word at once */
1322 			addr = bm + (cur >> 3);
1323 			*addr = 0xffffffff;
1324 			cur += 32;
1325 			continue;
1326 		}
1327 		mb_set_bit(cur, bm);
1328 		cur++;
1329 	}
1330 }
1331 
1332 /*
1333  * _________________________________________________________________ */
1334 
1335 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1336 {
1337 	if (mb_test_bit(*bit + side, bitmap)) {
1338 		mb_clear_bit(*bit, bitmap);
1339 		(*bit) -= side;
1340 		return 1;
1341 	}
1342 	else {
1343 		(*bit) += side;
1344 		mb_set_bit(*bit, bitmap);
1345 		return -1;
1346 	}
1347 }
1348 
1349 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1350 {
1351 	int max;
1352 	int order = 1;
1353 	void *buddy = mb_find_buddy(e4b, order, &max);
1354 
1355 	while (buddy) {
1356 		void *buddy2;
1357 
1358 		/* Bits in range [first; last] are known to be set since
1359 		 * corresponding blocks were allocated. Bits in range
1360 		 * (first; last) will stay set because they form buddies on
1361 		 * upper layer. We just deal with borders if they don't
1362 		 * align with upper layer and then go up.
1363 		 * Releasing entire group is all about clearing
1364 		 * single bit of highest order buddy.
1365 		 */
1366 
1367 		/* Example:
1368 		 * ---------------------------------
1369 		 * |   1   |   1   |   1   |   1   |
1370 		 * ---------------------------------
1371 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1372 		 * ---------------------------------
1373 		 *   0   1   2   3   4   5   6   7
1374 		 *      \_____________________/
1375 		 *
1376 		 * Neither [1] nor [6] is aligned to above layer.
1377 		 * Left neighbour [0] is free, so mark it busy,
1378 		 * decrease bb_counters and extend range to
1379 		 * [0; 6]
1380 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1381 		 * mark [6] free, increase bb_counters and shrink range to
1382 		 * [0; 5].
1383 		 * Then shift range to [0; 2], go up and do the same.
1384 		 */
1385 
1386 
1387 		if (first & 1)
1388 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1389 		if (!(last & 1))
1390 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1391 		if (first > last)
1392 			break;
1393 		order++;
1394 
1395 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1396 			mb_clear_bits(buddy, first, last - first + 1);
1397 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1398 			break;
1399 		}
1400 		first >>= 1;
1401 		last >>= 1;
1402 		buddy = buddy2;
1403 	}
1404 }
1405 
1406 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1407 			   int first, int count)
1408 {
1409 	int left_is_free = 0;
1410 	int right_is_free = 0;
1411 	int block;
1412 	int last = first + count - 1;
1413 	struct super_block *sb = e4b->bd_sb;
1414 
1415 	if (WARN_ON(count == 0))
1416 		return;
1417 	BUG_ON(last >= (sb->s_blocksize << 3));
1418 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1419 	/* Don't bother if the block group is corrupt. */
1420 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1421 		return;
1422 
1423 	mb_check_buddy(e4b);
1424 	mb_free_blocks_double(inode, e4b, first, count);
1425 
1426 	e4b->bd_info->bb_free += count;
1427 	if (first < e4b->bd_info->bb_first_free)
1428 		e4b->bd_info->bb_first_free = first;
1429 
1430 	/* access memory sequentially: check left neighbour,
1431 	 * clear range and then check right neighbour
1432 	 */
1433 	if (first != 0)
1434 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1435 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1436 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1437 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1438 
1439 	if (unlikely(block != -1)) {
1440 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1441 		ext4_fsblk_t blocknr;
1442 
1443 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1444 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1445 		ext4_grp_locked_error(sb, e4b->bd_group,
1446 				      inode ? inode->i_ino : 0,
1447 				      blocknr,
1448 				      "freeing already freed block "
1449 				      "(bit %u); block bitmap corrupt.",
1450 				      block);
1451 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1452 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1453 					   e4b->bd_info->bb_free);
1454 		/* Mark the block group as corrupt. */
1455 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1456 			&e4b->bd_info->bb_state);
1457 		mb_regenerate_buddy(e4b);
1458 		goto done;
1459 	}
1460 
1461 	/* let's maintain fragments counter */
1462 	if (left_is_free && right_is_free)
1463 		e4b->bd_info->bb_fragments--;
1464 	else if (!left_is_free && !right_is_free)
1465 		e4b->bd_info->bb_fragments++;
1466 
1467 	/* buddy[0] == bd_bitmap is a special case, so handle
1468 	 * it right away and let mb_buddy_mark_free stay free of
1469 	 * zero order checks.
1470 	 * Check if neighbours are to be coaleasced,
1471 	 * adjust bitmap bb_counters and borders appropriately.
1472 	 */
1473 	if (first & 1) {
1474 		first += !left_is_free;
1475 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1476 	}
1477 	if (!(last & 1)) {
1478 		last -= !right_is_free;
1479 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1480 	}
1481 
1482 	if (first <= last)
1483 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1484 
1485 done:
1486 	mb_set_largest_free_order(sb, e4b->bd_info);
1487 	mb_check_buddy(e4b);
1488 }
1489 
1490 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1491 				int needed, struct ext4_free_extent *ex)
1492 {
1493 	int next = block;
1494 	int max, order;
1495 	void *buddy;
1496 
1497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1498 	BUG_ON(ex == NULL);
1499 
1500 	buddy = mb_find_buddy(e4b, 0, &max);
1501 	BUG_ON(buddy == NULL);
1502 	BUG_ON(block >= max);
1503 	if (mb_test_bit(block, buddy)) {
1504 		ex->fe_len = 0;
1505 		ex->fe_start = 0;
1506 		ex->fe_group = 0;
1507 		return 0;
1508 	}
1509 
1510 	/* find actual order */
1511 	order = mb_find_order_for_block(e4b, block);
1512 	block = block >> order;
1513 
1514 	ex->fe_len = 1 << order;
1515 	ex->fe_start = block << order;
1516 	ex->fe_group = e4b->bd_group;
1517 
1518 	/* calc difference from given start */
1519 	next = next - ex->fe_start;
1520 	ex->fe_len -= next;
1521 	ex->fe_start += next;
1522 
1523 	while (needed > ex->fe_len &&
1524 	       mb_find_buddy(e4b, order, &max)) {
1525 
1526 		if (block + 1 >= max)
1527 			break;
1528 
1529 		next = (block + 1) * (1 << order);
1530 		if (mb_test_bit(next, e4b->bd_bitmap))
1531 			break;
1532 
1533 		order = mb_find_order_for_block(e4b, next);
1534 
1535 		block = next >> order;
1536 		ex->fe_len += 1 << order;
1537 	}
1538 
1539 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1540 	return ex->fe_len;
1541 }
1542 
1543 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1544 {
1545 	int ord;
1546 	int mlen = 0;
1547 	int max = 0;
1548 	int cur;
1549 	int start = ex->fe_start;
1550 	int len = ex->fe_len;
1551 	unsigned ret = 0;
1552 	int len0 = len;
1553 	void *buddy;
1554 
1555 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1556 	BUG_ON(e4b->bd_group != ex->fe_group);
1557 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1558 	mb_check_buddy(e4b);
1559 	mb_mark_used_double(e4b, start, len);
1560 
1561 	e4b->bd_info->bb_free -= len;
1562 	if (e4b->bd_info->bb_first_free == start)
1563 		e4b->bd_info->bb_first_free += len;
1564 
1565 	/* let's maintain fragments counter */
1566 	if (start != 0)
1567 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1568 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1569 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1570 	if (mlen && max)
1571 		e4b->bd_info->bb_fragments++;
1572 	else if (!mlen && !max)
1573 		e4b->bd_info->bb_fragments--;
1574 
1575 	/* let's maintain buddy itself */
1576 	while (len) {
1577 		ord = mb_find_order_for_block(e4b, start);
1578 
1579 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1580 			/* the whole chunk may be allocated at once! */
1581 			mlen = 1 << ord;
1582 			buddy = mb_find_buddy(e4b, ord, &max);
1583 			BUG_ON((start >> ord) >= max);
1584 			mb_set_bit(start >> ord, buddy);
1585 			e4b->bd_info->bb_counters[ord]--;
1586 			start += mlen;
1587 			len -= mlen;
1588 			BUG_ON(len < 0);
1589 			continue;
1590 		}
1591 
1592 		/* store for history */
1593 		if (ret == 0)
1594 			ret = len | (ord << 16);
1595 
1596 		/* we have to split large buddy */
1597 		BUG_ON(ord <= 0);
1598 		buddy = mb_find_buddy(e4b, ord, &max);
1599 		mb_set_bit(start >> ord, buddy);
1600 		e4b->bd_info->bb_counters[ord]--;
1601 
1602 		ord--;
1603 		cur = (start >> ord) & ~1U;
1604 		buddy = mb_find_buddy(e4b, ord, &max);
1605 		mb_clear_bit(cur, buddy);
1606 		mb_clear_bit(cur + 1, buddy);
1607 		e4b->bd_info->bb_counters[ord]++;
1608 		e4b->bd_info->bb_counters[ord]++;
1609 	}
1610 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1611 
1612 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1613 	mb_check_buddy(e4b);
1614 
1615 	return ret;
1616 }
1617 
1618 /*
1619  * Must be called under group lock!
1620  */
1621 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1622 					struct ext4_buddy *e4b)
1623 {
1624 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1625 	int ret;
1626 
1627 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1628 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1629 
1630 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1631 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1632 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1633 
1634 	/* preallocation can change ac_b_ex, thus we store actually
1635 	 * allocated blocks for history */
1636 	ac->ac_f_ex = ac->ac_b_ex;
1637 
1638 	ac->ac_status = AC_STATUS_FOUND;
1639 	ac->ac_tail = ret & 0xffff;
1640 	ac->ac_buddy = ret >> 16;
1641 
1642 	/*
1643 	 * take the page reference. We want the page to be pinned
1644 	 * so that we don't get a ext4_mb_init_cache_call for this
1645 	 * group until we update the bitmap. That would mean we
1646 	 * double allocate blocks. The reference is dropped
1647 	 * in ext4_mb_release_context
1648 	 */
1649 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1650 	get_page(ac->ac_bitmap_page);
1651 	ac->ac_buddy_page = e4b->bd_buddy_page;
1652 	get_page(ac->ac_buddy_page);
1653 	/* store last allocated for subsequent stream allocation */
1654 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1655 		spin_lock(&sbi->s_md_lock);
1656 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1657 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1658 		spin_unlock(&sbi->s_md_lock);
1659 	}
1660 }
1661 
1662 /*
1663  * regular allocator, for general purposes allocation
1664  */
1665 
1666 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1667 					struct ext4_buddy *e4b,
1668 					int finish_group)
1669 {
1670 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1671 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1672 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1673 	struct ext4_free_extent ex;
1674 	int max;
1675 
1676 	if (ac->ac_status == AC_STATUS_FOUND)
1677 		return;
1678 	/*
1679 	 * We don't want to scan for a whole year
1680 	 */
1681 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1682 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1683 		ac->ac_status = AC_STATUS_BREAK;
1684 		return;
1685 	}
1686 
1687 	/*
1688 	 * Haven't found good chunk so far, let's continue
1689 	 */
1690 	if (bex->fe_len < gex->fe_len)
1691 		return;
1692 
1693 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1694 			&& bex->fe_group == e4b->bd_group) {
1695 		/* recheck chunk's availability - we don't know
1696 		 * when it was found (within this lock-unlock
1697 		 * period or not) */
1698 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1699 		if (max >= gex->fe_len) {
1700 			ext4_mb_use_best_found(ac, e4b);
1701 			return;
1702 		}
1703 	}
1704 }
1705 
1706 /*
1707  * The routine checks whether found extent is good enough. If it is,
1708  * then the extent gets marked used and flag is set to the context
1709  * to stop scanning. Otherwise, the extent is compared with the
1710  * previous found extent and if new one is better, then it's stored
1711  * in the context. Later, the best found extent will be used, if
1712  * mballoc can't find good enough extent.
1713  *
1714  * FIXME: real allocation policy is to be designed yet!
1715  */
1716 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1717 					struct ext4_free_extent *ex,
1718 					struct ext4_buddy *e4b)
1719 {
1720 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1721 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1722 
1723 	BUG_ON(ex->fe_len <= 0);
1724 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1725 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1726 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1727 
1728 	ac->ac_found++;
1729 
1730 	/*
1731 	 * The special case - take what you catch first
1732 	 */
1733 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1734 		*bex = *ex;
1735 		ext4_mb_use_best_found(ac, e4b);
1736 		return;
1737 	}
1738 
1739 	/*
1740 	 * Let's check whether the chuck is good enough
1741 	 */
1742 	if (ex->fe_len == gex->fe_len) {
1743 		*bex = *ex;
1744 		ext4_mb_use_best_found(ac, e4b);
1745 		return;
1746 	}
1747 
1748 	/*
1749 	 * If this is first found extent, just store it in the context
1750 	 */
1751 	if (bex->fe_len == 0) {
1752 		*bex = *ex;
1753 		return;
1754 	}
1755 
1756 	/*
1757 	 * If new found extent is better, store it in the context
1758 	 */
1759 	if (bex->fe_len < gex->fe_len) {
1760 		/* if the request isn't satisfied, any found extent
1761 		 * larger than previous best one is better */
1762 		if (ex->fe_len > bex->fe_len)
1763 			*bex = *ex;
1764 	} else if (ex->fe_len > gex->fe_len) {
1765 		/* if the request is satisfied, then we try to find
1766 		 * an extent that still satisfy the request, but is
1767 		 * smaller than previous one */
1768 		if (ex->fe_len < bex->fe_len)
1769 			*bex = *ex;
1770 	}
1771 
1772 	ext4_mb_check_limits(ac, e4b, 0);
1773 }
1774 
1775 static noinline_for_stack
1776 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1777 					struct ext4_buddy *e4b)
1778 {
1779 	struct ext4_free_extent ex = ac->ac_b_ex;
1780 	ext4_group_t group = ex.fe_group;
1781 	int max;
1782 	int err;
1783 
1784 	BUG_ON(ex.fe_len <= 0);
1785 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1786 	if (err)
1787 		return err;
1788 
1789 	ext4_lock_group(ac->ac_sb, group);
1790 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1791 
1792 	if (max > 0) {
1793 		ac->ac_b_ex = ex;
1794 		ext4_mb_use_best_found(ac, e4b);
1795 	}
1796 
1797 	ext4_unlock_group(ac->ac_sb, group);
1798 	ext4_mb_unload_buddy(e4b);
1799 
1800 	return 0;
1801 }
1802 
1803 static noinline_for_stack
1804 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1805 				struct ext4_buddy *e4b)
1806 {
1807 	ext4_group_t group = ac->ac_g_ex.fe_group;
1808 	int max;
1809 	int err;
1810 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1811 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1812 	struct ext4_free_extent ex;
1813 
1814 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1815 		return 0;
1816 	if (grp->bb_free == 0)
1817 		return 0;
1818 
1819 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1820 	if (err)
1821 		return err;
1822 
1823 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1824 		ext4_mb_unload_buddy(e4b);
1825 		return 0;
1826 	}
1827 
1828 	ext4_lock_group(ac->ac_sb, group);
1829 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1830 			     ac->ac_g_ex.fe_len, &ex);
1831 	ex.fe_logical = 0xDEADFA11; /* debug value */
1832 
1833 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1834 		ext4_fsblk_t start;
1835 
1836 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1837 			ex.fe_start;
1838 		/* use do_div to get remainder (would be 64-bit modulo) */
1839 		if (do_div(start, sbi->s_stripe) == 0) {
1840 			ac->ac_found++;
1841 			ac->ac_b_ex = ex;
1842 			ext4_mb_use_best_found(ac, e4b);
1843 		}
1844 	} else if (max >= ac->ac_g_ex.fe_len) {
1845 		BUG_ON(ex.fe_len <= 0);
1846 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1847 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1848 		ac->ac_found++;
1849 		ac->ac_b_ex = ex;
1850 		ext4_mb_use_best_found(ac, e4b);
1851 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1852 		/* Sometimes, caller may want to merge even small
1853 		 * number of blocks to an existing extent */
1854 		BUG_ON(ex.fe_len <= 0);
1855 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1856 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1857 		ac->ac_found++;
1858 		ac->ac_b_ex = ex;
1859 		ext4_mb_use_best_found(ac, e4b);
1860 	}
1861 	ext4_unlock_group(ac->ac_sb, group);
1862 	ext4_mb_unload_buddy(e4b);
1863 
1864 	return 0;
1865 }
1866 
1867 /*
1868  * The routine scans buddy structures (not bitmap!) from given order
1869  * to max order and tries to find big enough chunk to satisfy the req
1870  */
1871 static noinline_for_stack
1872 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1873 					struct ext4_buddy *e4b)
1874 {
1875 	struct super_block *sb = ac->ac_sb;
1876 	struct ext4_group_info *grp = e4b->bd_info;
1877 	void *buddy;
1878 	int i;
1879 	int k;
1880 	int max;
1881 
1882 	BUG_ON(ac->ac_2order <= 0);
1883 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1884 		if (grp->bb_counters[i] == 0)
1885 			continue;
1886 
1887 		buddy = mb_find_buddy(e4b, i, &max);
1888 		BUG_ON(buddy == NULL);
1889 
1890 		k = mb_find_next_zero_bit(buddy, max, 0);
1891 		BUG_ON(k >= max);
1892 
1893 		ac->ac_found++;
1894 
1895 		ac->ac_b_ex.fe_len = 1 << i;
1896 		ac->ac_b_ex.fe_start = k << i;
1897 		ac->ac_b_ex.fe_group = e4b->bd_group;
1898 
1899 		ext4_mb_use_best_found(ac, e4b);
1900 
1901 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1902 
1903 		if (EXT4_SB(sb)->s_mb_stats)
1904 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1905 
1906 		break;
1907 	}
1908 }
1909 
1910 /*
1911  * The routine scans the group and measures all found extents.
1912  * In order to optimize scanning, caller must pass number of
1913  * free blocks in the group, so the routine can know upper limit.
1914  */
1915 static noinline_for_stack
1916 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1917 					struct ext4_buddy *e4b)
1918 {
1919 	struct super_block *sb = ac->ac_sb;
1920 	void *bitmap = e4b->bd_bitmap;
1921 	struct ext4_free_extent ex;
1922 	int i;
1923 	int free;
1924 
1925 	free = e4b->bd_info->bb_free;
1926 	BUG_ON(free <= 0);
1927 
1928 	i = e4b->bd_info->bb_first_free;
1929 
1930 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1931 		i = mb_find_next_zero_bit(bitmap,
1932 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1933 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1934 			/*
1935 			 * IF we have corrupt bitmap, we won't find any
1936 			 * free blocks even though group info says we
1937 			 * we have free blocks
1938 			 */
1939 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1940 					"%d free clusters as per "
1941 					"group info. But bitmap says 0",
1942 					free);
1943 			break;
1944 		}
1945 
1946 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1947 		BUG_ON(ex.fe_len <= 0);
1948 		if (free < ex.fe_len) {
1949 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1950 					"%d free clusters as per "
1951 					"group info. But got %d blocks",
1952 					free, ex.fe_len);
1953 			/*
1954 			 * The number of free blocks differs. This mostly
1955 			 * indicate that the bitmap is corrupt. So exit
1956 			 * without claiming the space.
1957 			 */
1958 			break;
1959 		}
1960 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1961 		ext4_mb_measure_extent(ac, &ex, e4b);
1962 
1963 		i += ex.fe_len;
1964 		free -= ex.fe_len;
1965 	}
1966 
1967 	ext4_mb_check_limits(ac, e4b, 1);
1968 }
1969 
1970 /*
1971  * This is a special case for storages like raid5
1972  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1973  */
1974 static noinline_for_stack
1975 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1976 				 struct ext4_buddy *e4b)
1977 {
1978 	struct super_block *sb = ac->ac_sb;
1979 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1980 	void *bitmap = e4b->bd_bitmap;
1981 	struct ext4_free_extent ex;
1982 	ext4_fsblk_t first_group_block;
1983 	ext4_fsblk_t a;
1984 	ext4_grpblk_t i;
1985 	int max;
1986 
1987 	BUG_ON(sbi->s_stripe == 0);
1988 
1989 	/* find first stripe-aligned block in group */
1990 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1991 
1992 	a = first_group_block + sbi->s_stripe - 1;
1993 	do_div(a, sbi->s_stripe);
1994 	i = (a * sbi->s_stripe) - first_group_block;
1995 
1996 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1997 		if (!mb_test_bit(i, bitmap)) {
1998 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1999 			if (max >= sbi->s_stripe) {
2000 				ac->ac_found++;
2001 				ex.fe_logical = 0xDEADF00D; /* debug value */
2002 				ac->ac_b_ex = ex;
2003 				ext4_mb_use_best_found(ac, e4b);
2004 				break;
2005 			}
2006 		}
2007 		i += sbi->s_stripe;
2008 	}
2009 }
2010 
2011 /* This is now called BEFORE we load the buddy bitmap. */
2012 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2013 				ext4_group_t group, int cr)
2014 {
2015 	unsigned free, fragments;
2016 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2017 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2018 
2019 	BUG_ON(cr < 0 || cr >= 4);
2020 
2021 	free = grp->bb_free;
2022 	if (free == 0)
2023 		return 0;
2024 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2025 		return 0;
2026 
2027 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2028 		return 0;
2029 
2030 	/* We only do this if the grp has never been initialized */
2031 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2032 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2033 		if (ret)
2034 			return 0;
2035 	}
2036 
2037 	fragments = grp->bb_fragments;
2038 	if (fragments == 0)
2039 		return 0;
2040 
2041 	switch (cr) {
2042 	case 0:
2043 		BUG_ON(ac->ac_2order == 0);
2044 
2045 		/* Avoid using the first bg of a flexgroup for data files */
2046 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2047 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2048 		    ((group % flex_size) == 0))
2049 			return 0;
2050 
2051 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2052 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2053 			return 1;
2054 
2055 		if (grp->bb_largest_free_order < ac->ac_2order)
2056 			return 0;
2057 
2058 		return 1;
2059 	case 1:
2060 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2061 			return 1;
2062 		break;
2063 	case 2:
2064 		if (free >= ac->ac_g_ex.fe_len)
2065 			return 1;
2066 		break;
2067 	case 3:
2068 		return 1;
2069 	default:
2070 		BUG();
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 static noinline_for_stack int
2077 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2078 {
2079 	ext4_group_t ngroups, group, i;
2080 	int cr;
2081 	int err = 0;
2082 	struct ext4_sb_info *sbi;
2083 	struct super_block *sb;
2084 	struct ext4_buddy e4b;
2085 
2086 	sb = ac->ac_sb;
2087 	sbi = EXT4_SB(sb);
2088 	ngroups = ext4_get_groups_count(sb);
2089 	/* non-extent files are limited to low blocks/groups */
2090 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2091 		ngroups = sbi->s_blockfile_groups;
2092 
2093 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2094 
2095 	/* first, try the goal */
2096 	err = ext4_mb_find_by_goal(ac, &e4b);
2097 	if (err || ac->ac_status == AC_STATUS_FOUND)
2098 		goto out;
2099 
2100 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2101 		goto out;
2102 
2103 	/*
2104 	 * ac->ac2_order is set only if the fe_len is a power of 2
2105 	 * if ac2_order is set we also set criteria to 0 so that we
2106 	 * try exact allocation using buddy.
2107 	 */
2108 	i = fls(ac->ac_g_ex.fe_len);
2109 	ac->ac_2order = 0;
2110 	/*
2111 	 * We search using buddy data only if the order of the request
2112 	 * is greater than equal to the sbi_s_mb_order2_reqs
2113 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2114 	 */
2115 	if (i >= sbi->s_mb_order2_reqs) {
2116 		/*
2117 		 * This should tell if fe_len is exactly power of 2
2118 		 */
2119 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2120 			ac->ac_2order = i - 1;
2121 	}
2122 
2123 	/* if stream allocation is enabled, use global goal */
2124 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2125 		/* TBD: may be hot point */
2126 		spin_lock(&sbi->s_md_lock);
2127 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2128 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2129 		spin_unlock(&sbi->s_md_lock);
2130 	}
2131 
2132 	/* Let's just scan groups to find more-less suitable blocks */
2133 	cr = ac->ac_2order ? 0 : 1;
2134 	/*
2135 	 * cr == 0 try to get exact allocation,
2136 	 * cr == 3  try to get anything
2137 	 */
2138 repeat:
2139 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2140 		ac->ac_criteria = cr;
2141 		/*
2142 		 * searching for the right group start
2143 		 * from the goal value specified
2144 		 */
2145 		group = ac->ac_g_ex.fe_group;
2146 
2147 		for (i = 0; i < ngroups; group++, i++) {
2148 			cond_resched();
2149 			/*
2150 			 * Artificially restricted ngroups for non-extent
2151 			 * files makes group > ngroups possible on first loop.
2152 			 */
2153 			if (group >= ngroups)
2154 				group = 0;
2155 
2156 			/* This now checks without needing the buddy page */
2157 			if (!ext4_mb_good_group(ac, group, cr))
2158 				continue;
2159 
2160 			err = ext4_mb_load_buddy(sb, group, &e4b);
2161 			if (err)
2162 				goto out;
2163 
2164 			ext4_lock_group(sb, group);
2165 
2166 			/*
2167 			 * We need to check again after locking the
2168 			 * block group
2169 			 */
2170 			if (!ext4_mb_good_group(ac, group, cr)) {
2171 				ext4_unlock_group(sb, group);
2172 				ext4_mb_unload_buddy(&e4b);
2173 				continue;
2174 			}
2175 
2176 			ac->ac_groups_scanned++;
2177 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2178 				ext4_mb_simple_scan_group(ac, &e4b);
2179 			else if (cr == 1 && sbi->s_stripe &&
2180 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2181 				ext4_mb_scan_aligned(ac, &e4b);
2182 			else
2183 				ext4_mb_complex_scan_group(ac, &e4b);
2184 
2185 			ext4_unlock_group(sb, group);
2186 			ext4_mb_unload_buddy(&e4b);
2187 
2188 			if (ac->ac_status != AC_STATUS_CONTINUE)
2189 				break;
2190 		}
2191 	}
2192 
2193 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2194 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2195 		/*
2196 		 * We've been searching too long. Let's try to allocate
2197 		 * the best chunk we've found so far
2198 		 */
2199 
2200 		ext4_mb_try_best_found(ac, &e4b);
2201 		if (ac->ac_status != AC_STATUS_FOUND) {
2202 			/*
2203 			 * Someone more lucky has already allocated it.
2204 			 * The only thing we can do is just take first
2205 			 * found block(s)
2206 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2207 			 */
2208 			ac->ac_b_ex.fe_group = 0;
2209 			ac->ac_b_ex.fe_start = 0;
2210 			ac->ac_b_ex.fe_len = 0;
2211 			ac->ac_status = AC_STATUS_CONTINUE;
2212 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2213 			cr = 3;
2214 			atomic_inc(&sbi->s_mb_lost_chunks);
2215 			goto repeat;
2216 		}
2217 	}
2218 out:
2219 	return err;
2220 }
2221 
2222 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2223 {
2224 	struct super_block *sb = seq->private;
2225 	ext4_group_t group;
2226 
2227 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2228 		return NULL;
2229 	group = *pos + 1;
2230 	return (void *) ((unsigned long) group);
2231 }
2232 
2233 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2234 {
2235 	struct super_block *sb = seq->private;
2236 	ext4_group_t group;
2237 
2238 	++*pos;
2239 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2240 		return NULL;
2241 	group = *pos + 1;
2242 	return (void *) ((unsigned long) group);
2243 }
2244 
2245 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2246 {
2247 	struct super_block *sb = seq->private;
2248 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2249 	int i;
2250 	int err, buddy_loaded = 0;
2251 	struct ext4_buddy e4b;
2252 	struct ext4_group_info *grinfo;
2253 	struct sg {
2254 		struct ext4_group_info info;
2255 		ext4_grpblk_t counters[16];
2256 	} sg;
2257 
2258 	group--;
2259 	if (group == 0)
2260 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2261 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2262 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2263 			   "group", "free", "frags", "first",
2264 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2265 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2266 
2267 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2268 		sizeof(struct ext4_group_info);
2269 	grinfo = ext4_get_group_info(sb, group);
2270 	/* Load the group info in memory only if not already loaded. */
2271 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2272 		err = ext4_mb_load_buddy(sb, group, &e4b);
2273 		if (err) {
2274 			seq_printf(seq, "#%-5u: I/O error\n", group);
2275 			return 0;
2276 		}
2277 		buddy_loaded = 1;
2278 	}
2279 
2280 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2281 
2282 	if (buddy_loaded)
2283 		ext4_mb_unload_buddy(&e4b);
2284 
2285 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2286 			sg.info.bb_fragments, sg.info.bb_first_free);
2287 	for (i = 0; i <= 13; i++)
2288 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2289 				sg.info.bb_counters[i] : 0);
2290 	seq_printf(seq, " ]\n");
2291 
2292 	return 0;
2293 }
2294 
2295 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2296 {
2297 }
2298 
2299 static const struct seq_operations ext4_mb_seq_groups_ops = {
2300 	.start  = ext4_mb_seq_groups_start,
2301 	.next   = ext4_mb_seq_groups_next,
2302 	.stop   = ext4_mb_seq_groups_stop,
2303 	.show   = ext4_mb_seq_groups_show,
2304 };
2305 
2306 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2307 {
2308 	struct super_block *sb = PDE_DATA(inode);
2309 	int rc;
2310 
2311 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2312 	if (rc == 0) {
2313 		struct seq_file *m = file->private_data;
2314 		m->private = sb;
2315 	}
2316 	return rc;
2317 
2318 }
2319 
2320 static const struct file_operations ext4_mb_seq_groups_fops = {
2321 	.owner		= THIS_MODULE,
2322 	.open		= ext4_mb_seq_groups_open,
2323 	.read		= seq_read,
2324 	.llseek		= seq_lseek,
2325 	.release	= seq_release,
2326 };
2327 
2328 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2329 {
2330 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2331 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2332 
2333 	BUG_ON(!cachep);
2334 	return cachep;
2335 }
2336 
2337 /*
2338  * Allocate the top-level s_group_info array for the specified number
2339  * of groups
2340  */
2341 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2342 {
2343 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2344 	unsigned size;
2345 	struct ext4_group_info ***new_groupinfo;
2346 
2347 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2348 		EXT4_DESC_PER_BLOCK_BITS(sb);
2349 	if (size <= sbi->s_group_info_size)
2350 		return 0;
2351 
2352 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2353 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2354 	if (!new_groupinfo) {
2355 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2356 		return -ENOMEM;
2357 	}
2358 	if (sbi->s_group_info) {
2359 		memcpy(new_groupinfo, sbi->s_group_info,
2360 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2361 		kvfree(sbi->s_group_info);
2362 	}
2363 	sbi->s_group_info = new_groupinfo;
2364 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2365 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2366 		   sbi->s_group_info_size);
2367 	return 0;
2368 }
2369 
2370 /* Create and initialize ext4_group_info data for the given group. */
2371 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2372 			  struct ext4_group_desc *desc)
2373 {
2374 	int i;
2375 	int metalen = 0;
2376 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2377 	struct ext4_group_info **meta_group_info;
2378 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2379 
2380 	/*
2381 	 * First check if this group is the first of a reserved block.
2382 	 * If it's true, we have to allocate a new table of pointers
2383 	 * to ext4_group_info structures
2384 	 */
2385 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2386 		metalen = sizeof(*meta_group_info) <<
2387 			EXT4_DESC_PER_BLOCK_BITS(sb);
2388 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2389 		if (meta_group_info == NULL) {
2390 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2391 				 "for a buddy group");
2392 			goto exit_meta_group_info;
2393 		}
2394 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2395 			meta_group_info;
2396 	}
2397 
2398 	meta_group_info =
2399 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2400 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2401 
2402 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2403 	if (meta_group_info[i] == NULL) {
2404 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2405 		goto exit_group_info;
2406 	}
2407 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2408 		&(meta_group_info[i]->bb_state));
2409 
2410 	/*
2411 	 * initialize bb_free to be able to skip
2412 	 * empty groups without initialization
2413 	 */
2414 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2415 		meta_group_info[i]->bb_free =
2416 			ext4_free_clusters_after_init(sb, group, desc);
2417 	} else {
2418 		meta_group_info[i]->bb_free =
2419 			ext4_free_group_clusters(sb, desc);
2420 	}
2421 
2422 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2423 	init_rwsem(&meta_group_info[i]->alloc_sem);
2424 	meta_group_info[i]->bb_free_root = RB_ROOT;
2425 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2426 
2427 #ifdef DOUBLE_CHECK
2428 	{
2429 		struct buffer_head *bh;
2430 		meta_group_info[i]->bb_bitmap =
2431 			kmalloc(sb->s_blocksize, GFP_NOFS);
2432 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2433 		bh = ext4_read_block_bitmap(sb, group);
2434 		BUG_ON(bh == NULL);
2435 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2436 			sb->s_blocksize);
2437 		put_bh(bh);
2438 	}
2439 #endif
2440 
2441 	return 0;
2442 
2443 exit_group_info:
2444 	/* If a meta_group_info table has been allocated, release it now */
2445 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2446 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2447 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2448 	}
2449 exit_meta_group_info:
2450 	return -ENOMEM;
2451 } /* ext4_mb_add_groupinfo */
2452 
2453 static int ext4_mb_init_backend(struct super_block *sb)
2454 {
2455 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2456 	ext4_group_t i;
2457 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2458 	int err;
2459 	struct ext4_group_desc *desc;
2460 	struct kmem_cache *cachep;
2461 
2462 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2463 	if (err)
2464 		return err;
2465 
2466 	sbi->s_buddy_cache = new_inode(sb);
2467 	if (sbi->s_buddy_cache == NULL) {
2468 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2469 		goto err_freesgi;
2470 	}
2471 	/* To avoid potentially colliding with an valid on-disk inode number,
2472 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2473 	 * not in the inode hash, so it should never be found by iget(), but
2474 	 * this will avoid confusion if it ever shows up during debugging. */
2475 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2476 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2477 	for (i = 0; i < ngroups; i++) {
2478 		desc = ext4_get_group_desc(sb, i, NULL);
2479 		if (desc == NULL) {
2480 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2481 			goto err_freebuddy;
2482 		}
2483 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2484 			goto err_freebuddy;
2485 	}
2486 
2487 	return 0;
2488 
2489 err_freebuddy:
2490 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2491 	while (i-- > 0)
2492 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2493 	i = sbi->s_group_info_size;
2494 	while (i-- > 0)
2495 		kfree(sbi->s_group_info[i]);
2496 	iput(sbi->s_buddy_cache);
2497 err_freesgi:
2498 	kvfree(sbi->s_group_info);
2499 	return -ENOMEM;
2500 }
2501 
2502 static void ext4_groupinfo_destroy_slabs(void)
2503 {
2504 	int i;
2505 
2506 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2507 		if (ext4_groupinfo_caches[i])
2508 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2509 		ext4_groupinfo_caches[i] = NULL;
2510 	}
2511 }
2512 
2513 static int ext4_groupinfo_create_slab(size_t size)
2514 {
2515 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2516 	int slab_size;
2517 	int blocksize_bits = order_base_2(size);
2518 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2519 	struct kmem_cache *cachep;
2520 
2521 	if (cache_index >= NR_GRPINFO_CACHES)
2522 		return -EINVAL;
2523 
2524 	if (unlikely(cache_index < 0))
2525 		cache_index = 0;
2526 
2527 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2528 	if (ext4_groupinfo_caches[cache_index]) {
2529 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2530 		return 0;	/* Already created */
2531 	}
2532 
2533 	slab_size = offsetof(struct ext4_group_info,
2534 				bb_counters[blocksize_bits + 2]);
2535 
2536 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2537 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2538 					NULL);
2539 
2540 	ext4_groupinfo_caches[cache_index] = cachep;
2541 
2542 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2543 	if (!cachep) {
2544 		printk(KERN_EMERG
2545 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2546 		return -ENOMEM;
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 int ext4_mb_init(struct super_block *sb)
2553 {
2554 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2555 	unsigned i, j;
2556 	unsigned offset;
2557 	unsigned max;
2558 	int ret;
2559 
2560 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2561 
2562 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2563 	if (sbi->s_mb_offsets == NULL) {
2564 		ret = -ENOMEM;
2565 		goto out;
2566 	}
2567 
2568 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2569 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2570 	if (sbi->s_mb_maxs == NULL) {
2571 		ret = -ENOMEM;
2572 		goto out;
2573 	}
2574 
2575 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2576 	if (ret < 0)
2577 		goto out;
2578 
2579 	/* order 0 is regular bitmap */
2580 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2581 	sbi->s_mb_offsets[0] = 0;
2582 
2583 	i = 1;
2584 	offset = 0;
2585 	max = sb->s_blocksize << 2;
2586 	do {
2587 		sbi->s_mb_offsets[i] = offset;
2588 		sbi->s_mb_maxs[i] = max;
2589 		offset += 1 << (sb->s_blocksize_bits - i);
2590 		max = max >> 1;
2591 		i++;
2592 	} while (i <= sb->s_blocksize_bits + 1);
2593 
2594 	spin_lock_init(&sbi->s_md_lock);
2595 	spin_lock_init(&sbi->s_bal_lock);
2596 
2597 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2598 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2599 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2600 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2601 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2602 	/*
2603 	 * The default group preallocation is 512, which for 4k block
2604 	 * sizes translates to 2 megabytes.  However for bigalloc file
2605 	 * systems, this is probably too big (i.e, if the cluster size
2606 	 * is 1 megabyte, then group preallocation size becomes half a
2607 	 * gigabyte!).  As a default, we will keep a two megabyte
2608 	 * group pralloc size for cluster sizes up to 64k, and after
2609 	 * that, we will force a minimum group preallocation size of
2610 	 * 32 clusters.  This translates to 8 megs when the cluster
2611 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2612 	 * which seems reasonable as a default.
2613 	 */
2614 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2615 				       sbi->s_cluster_bits, 32);
2616 	/*
2617 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2618 	 * to the lowest multiple of s_stripe which is bigger than
2619 	 * the s_mb_group_prealloc as determined above. We want
2620 	 * the preallocation size to be an exact multiple of the
2621 	 * RAID stripe size so that preallocations don't fragment
2622 	 * the stripes.
2623 	 */
2624 	if (sbi->s_stripe > 1) {
2625 		sbi->s_mb_group_prealloc = roundup(
2626 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2627 	}
2628 
2629 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2630 	if (sbi->s_locality_groups == NULL) {
2631 		ret = -ENOMEM;
2632 		goto out;
2633 	}
2634 	for_each_possible_cpu(i) {
2635 		struct ext4_locality_group *lg;
2636 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2637 		mutex_init(&lg->lg_mutex);
2638 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2639 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2640 		spin_lock_init(&lg->lg_prealloc_lock);
2641 	}
2642 
2643 	/* init file for buddy data */
2644 	ret = ext4_mb_init_backend(sb);
2645 	if (ret != 0)
2646 		goto out_free_locality_groups;
2647 
2648 	if (sbi->s_proc)
2649 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2650 				 &ext4_mb_seq_groups_fops, sb);
2651 
2652 	return 0;
2653 
2654 out_free_locality_groups:
2655 	free_percpu(sbi->s_locality_groups);
2656 	sbi->s_locality_groups = NULL;
2657 out:
2658 	kfree(sbi->s_mb_offsets);
2659 	sbi->s_mb_offsets = NULL;
2660 	kfree(sbi->s_mb_maxs);
2661 	sbi->s_mb_maxs = NULL;
2662 	return ret;
2663 }
2664 
2665 /* need to called with the ext4 group lock held */
2666 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2667 {
2668 	struct ext4_prealloc_space *pa;
2669 	struct list_head *cur, *tmp;
2670 	int count = 0;
2671 
2672 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2673 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2674 		list_del(&pa->pa_group_list);
2675 		count++;
2676 		kmem_cache_free(ext4_pspace_cachep, pa);
2677 	}
2678 	if (count)
2679 		mb_debug(1, "mballoc: %u PAs left\n", count);
2680 
2681 }
2682 
2683 int ext4_mb_release(struct super_block *sb)
2684 {
2685 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2686 	ext4_group_t i;
2687 	int num_meta_group_infos;
2688 	struct ext4_group_info *grinfo;
2689 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2690 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2691 
2692 	if (sbi->s_proc)
2693 		remove_proc_entry("mb_groups", sbi->s_proc);
2694 
2695 	if (sbi->s_group_info) {
2696 		for (i = 0; i < ngroups; i++) {
2697 			grinfo = ext4_get_group_info(sb, i);
2698 #ifdef DOUBLE_CHECK
2699 			kfree(grinfo->bb_bitmap);
2700 #endif
2701 			ext4_lock_group(sb, i);
2702 			ext4_mb_cleanup_pa(grinfo);
2703 			ext4_unlock_group(sb, i);
2704 			kmem_cache_free(cachep, grinfo);
2705 		}
2706 		num_meta_group_infos = (ngroups +
2707 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2708 			EXT4_DESC_PER_BLOCK_BITS(sb);
2709 		for (i = 0; i < num_meta_group_infos; i++)
2710 			kfree(sbi->s_group_info[i]);
2711 		kvfree(sbi->s_group_info);
2712 	}
2713 	kfree(sbi->s_mb_offsets);
2714 	kfree(sbi->s_mb_maxs);
2715 	iput(sbi->s_buddy_cache);
2716 	if (sbi->s_mb_stats) {
2717 		ext4_msg(sb, KERN_INFO,
2718 		       "mballoc: %u blocks %u reqs (%u success)",
2719 				atomic_read(&sbi->s_bal_allocated),
2720 				atomic_read(&sbi->s_bal_reqs),
2721 				atomic_read(&sbi->s_bal_success));
2722 		ext4_msg(sb, KERN_INFO,
2723 		      "mballoc: %u extents scanned, %u goal hits, "
2724 				"%u 2^N hits, %u breaks, %u lost",
2725 				atomic_read(&sbi->s_bal_ex_scanned),
2726 				atomic_read(&sbi->s_bal_goals),
2727 				atomic_read(&sbi->s_bal_2orders),
2728 				atomic_read(&sbi->s_bal_breaks),
2729 				atomic_read(&sbi->s_mb_lost_chunks));
2730 		ext4_msg(sb, KERN_INFO,
2731 		       "mballoc: %lu generated and it took %Lu",
2732 				sbi->s_mb_buddies_generated,
2733 				sbi->s_mb_generation_time);
2734 		ext4_msg(sb, KERN_INFO,
2735 		       "mballoc: %u preallocated, %u discarded",
2736 				atomic_read(&sbi->s_mb_preallocated),
2737 				atomic_read(&sbi->s_mb_discarded));
2738 	}
2739 
2740 	free_percpu(sbi->s_locality_groups);
2741 
2742 	return 0;
2743 }
2744 
2745 static inline int ext4_issue_discard(struct super_block *sb,
2746 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2747 {
2748 	ext4_fsblk_t discard_block;
2749 
2750 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2751 			 ext4_group_first_block_no(sb, block_group));
2752 	count = EXT4_C2B(EXT4_SB(sb), count);
2753 	trace_ext4_discard_blocks(sb,
2754 			(unsigned long long) discard_block, count);
2755 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2756 }
2757 
2758 /*
2759  * This function is called by the jbd2 layer once the commit has finished,
2760  * so we know we can free the blocks that were released with that commit.
2761  */
2762 static void ext4_free_data_callback(struct super_block *sb,
2763 				    struct ext4_journal_cb_entry *jce,
2764 				    int rc)
2765 {
2766 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2767 	struct ext4_buddy e4b;
2768 	struct ext4_group_info *db;
2769 	int err, count = 0, count2 = 0;
2770 
2771 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2772 		 entry->efd_count, entry->efd_group, entry);
2773 
2774 	if (test_opt(sb, DISCARD)) {
2775 		err = ext4_issue_discard(sb, entry->efd_group,
2776 					 entry->efd_start_cluster,
2777 					 entry->efd_count);
2778 		if (err && err != -EOPNOTSUPP)
2779 			ext4_msg(sb, KERN_WARNING, "discard request in"
2780 				 " group:%d block:%d count:%d failed"
2781 				 " with %d", entry->efd_group,
2782 				 entry->efd_start_cluster,
2783 				 entry->efd_count, err);
2784 	}
2785 
2786 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2787 	/* we expect to find existing buddy because it's pinned */
2788 	BUG_ON(err != 0);
2789 
2790 
2791 	db = e4b.bd_info;
2792 	/* there are blocks to put in buddy to make them really free */
2793 	count += entry->efd_count;
2794 	count2++;
2795 	ext4_lock_group(sb, entry->efd_group);
2796 	/* Take it out of per group rb tree */
2797 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2798 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2799 
2800 	/*
2801 	 * Clear the trimmed flag for the group so that the next
2802 	 * ext4_trim_fs can trim it.
2803 	 * If the volume is mounted with -o discard, online discard
2804 	 * is supported and the free blocks will be trimmed online.
2805 	 */
2806 	if (!test_opt(sb, DISCARD))
2807 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2808 
2809 	if (!db->bb_free_root.rb_node) {
2810 		/* No more items in the per group rb tree
2811 		 * balance refcounts from ext4_mb_free_metadata()
2812 		 */
2813 		page_cache_release(e4b.bd_buddy_page);
2814 		page_cache_release(e4b.bd_bitmap_page);
2815 	}
2816 	ext4_unlock_group(sb, entry->efd_group);
2817 	kmem_cache_free(ext4_free_data_cachep, entry);
2818 	ext4_mb_unload_buddy(&e4b);
2819 
2820 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2821 }
2822 
2823 int __init ext4_init_mballoc(void)
2824 {
2825 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2826 					SLAB_RECLAIM_ACCOUNT);
2827 	if (ext4_pspace_cachep == NULL)
2828 		return -ENOMEM;
2829 
2830 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2831 				    SLAB_RECLAIM_ACCOUNT);
2832 	if (ext4_ac_cachep == NULL) {
2833 		kmem_cache_destroy(ext4_pspace_cachep);
2834 		return -ENOMEM;
2835 	}
2836 
2837 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2838 					   SLAB_RECLAIM_ACCOUNT);
2839 	if (ext4_free_data_cachep == NULL) {
2840 		kmem_cache_destroy(ext4_pspace_cachep);
2841 		kmem_cache_destroy(ext4_ac_cachep);
2842 		return -ENOMEM;
2843 	}
2844 	return 0;
2845 }
2846 
2847 void ext4_exit_mballoc(void)
2848 {
2849 	/*
2850 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2851 	 * before destroying the slab cache.
2852 	 */
2853 	rcu_barrier();
2854 	kmem_cache_destroy(ext4_pspace_cachep);
2855 	kmem_cache_destroy(ext4_ac_cachep);
2856 	kmem_cache_destroy(ext4_free_data_cachep);
2857 	ext4_groupinfo_destroy_slabs();
2858 }
2859 
2860 
2861 /*
2862  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2863  * Returns 0 if success or error code
2864  */
2865 static noinline_for_stack int
2866 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2867 				handle_t *handle, unsigned int reserv_clstrs)
2868 {
2869 	struct buffer_head *bitmap_bh = NULL;
2870 	struct ext4_group_desc *gdp;
2871 	struct buffer_head *gdp_bh;
2872 	struct ext4_sb_info *sbi;
2873 	struct super_block *sb;
2874 	ext4_fsblk_t block;
2875 	int err, len;
2876 
2877 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2878 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2879 
2880 	sb = ac->ac_sb;
2881 	sbi = EXT4_SB(sb);
2882 
2883 	err = -EIO;
2884 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2885 	if (!bitmap_bh)
2886 		goto out_err;
2887 
2888 	BUFFER_TRACE(bitmap_bh, "getting write access");
2889 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2890 	if (err)
2891 		goto out_err;
2892 
2893 	err = -EIO;
2894 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2895 	if (!gdp)
2896 		goto out_err;
2897 
2898 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2899 			ext4_free_group_clusters(sb, gdp));
2900 
2901 	BUFFER_TRACE(gdp_bh, "get_write_access");
2902 	err = ext4_journal_get_write_access(handle, gdp_bh);
2903 	if (err)
2904 		goto out_err;
2905 
2906 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2907 
2908 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2909 	if (!ext4_data_block_valid(sbi, block, len)) {
2910 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2911 			   "fs metadata", block, block+len);
2912 		/* File system mounted not to panic on error
2913 		 * Fix the bitmap and repeat the block allocation
2914 		 * We leak some of the blocks here.
2915 		 */
2916 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2917 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2918 			      ac->ac_b_ex.fe_len);
2919 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2920 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2921 		if (!err)
2922 			err = -EAGAIN;
2923 		goto out_err;
2924 	}
2925 
2926 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2927 #ifdef AGGRESSIVE_CHECK
2928 	{
2929 		int i;
2930 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2931 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2932 						bitmap_bh->b_data));
2933 		}
2934 	}
2935 #endif
2936 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2937 		      ac->ac_b_ex.fe_len);
2938 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2939 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2940 		ext4_free_group_clusters_set(sb, gdp,
2941 					     ext4_free_clusters_after_init(sb,
2942 						ac->ac_b_ex.fe_group, gdp));
2943 	}
2944 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2945 	ext4_free_group_clusters_set(sb, gdp, len);
2946 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2947 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2948 
2949 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2950 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2951 	/*
2952 	 * Now reduce the dirty block count also. Should not go negative
2953 	 */
2954 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2955 		/* release all the reserved blocks if non delalloc */
2956 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2957 				   reserv_clstrs);
2958 
2959 	if (sbi->s_log_groups_per_flex) {
2960 		ext4_group_t flex_group = ext4_flex_group(sbi,
2961 							  ac->ac_b_ex.fe_group);
2962 		atomic64_sub(ac->ac_b_ex.fe_len,
2963 			     &sbi->s_flex_groups[flex_group].free_clusters);
2964 	}
2965 
2966 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2967 	if (err)
2968 		goto out_err;
2969 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2970 
2971 out_err:
2972 	brelse(bitmap_bh);
2973 	return err;
2974 }
2975 
2976 /*
2977  * here we normalize request for locality group
2978  * Group request are normalized to s_mb_group_prealloc, which goes to
2979  * s_strip if we set the same via mount option.
2980  * s_mb_group_prealloc can be configured via
2981  * /sys/fs/ext4/<partition>/mb_group_prealloc
2982  *
2983  * XXX: should we try to preallocate more than the group has now?
2984  */
2985 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2986 {
2987 	struct super_block *sb = ac->ac_sb;
2988 	struct ext4_locality_group *lg = ac->ac_lg;
2989 
2990 	BUG_ON(lg == NULL);
2991 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2992 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2993 		current->pid, ac->ac_g_ex.fe_len);
2994 }
2995 
2996 /*
2997  * Normalization means making request better in terms of
2998  * size and alignment
2999  */
3000 static noinline_for_stack void
3001 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3002 				struct ext4_allocation_request *ar)
3003 {
3004 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3005 	int bsbits, max;
3006 	ext4_lblk_t end;
3007 	loff_t size, start_off;
3008 	loff_t orig_size __maybe_unused;
3009 	ext4_lblk_t start;
3010 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3011 	struct ext4_prealloc_space *pa;
3012 
3013 	/* do normalize only data requests, metadata requests
3014 	   do not need preallocation */
3015 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3016 		return;
3017 
3018 	/* sometime caller may want exact blocks */
3019 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3020 		return;
3021 
3022 	/* caller may indicate that preallocation isn't
3023 	 * required (it's a tail, for example) */
3024 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3025 		return;
3026 
3027 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3028 		ext4_mb_normalize_group_request(ac);
3029 		return ;
3030 	}
3031 
3032 	bsbits = ac->ac_sb->s_blocksize_bits;
3033 
3034 	/* first, let's learn actual file size
3035 	 * given current request is allocated */
3036 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3037 	size = size << bsbits;
3038 	if (size < i_size_read(ac->ac_inode))
3039 		size = i_size_read(ac->ac_inode);
3040 	orig_size = size;
3041 
3042 	/* max size of free chunks */
3043 	max = 2 << bsbits;
3044 
3045 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3046 		(req <= (size) || max <= (chunk_size))
3047 
3048 	/* first, try to predict filesize */
3049 	/* XXX: should this table be tunable? */
3050 	start_off = 0;
3051 	if (size <= 16 * 1024) {
3052 		size = 16 * 1024;
3053 	} else if (size <= 32 * 1024) {
3054 		size = 32 * 1024;
3055 	} else if (size <= 64 * 1024) {
3056 		size = 64 * 1024;
3057 	} else if (size <= 128 * 1024) {
3058 		size = 128 * 1024;
3059 	} else if (size <= 256 * 1024) {
3060 		size = 256 * 1024;
3061 	} else if (size <= 512 * 1024) {
3062 		size = 512 * 1024;
3063 	} else if (size <= 1024 * 1024) {
3064 		size = 1024 * 1024;
3065 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3066 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3067 						(21 - bsbits)) << 21;
3068 		size = 2 * 1024 * 1024;
3069 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3070 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3071 							(22 - bsbits)) << 22;
3072 		size = 4 * 1024 * 1024;
3073 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3074 					(8<<20)>>bsbits, max, 8 * 1024)) {
3075 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3076 							(23 - bsbits)) << 23;
3077 		size = 8 * 1024 * 1024;
3078 	} else {
3079 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3080 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3081 					      ac->ac_o_ex.fe_len) << bsbits;
3082 	}
3083 	size = size >> bsbits;
3084 	start = start_off >> bsbits;
3085 
3086 	/* don't cover already allocated blocks in selected range */
3087 	if (ar->pleft && start <= ar->lleft) {
3088 		size -= ar->lleft + 1 - start;
3089 		start = ar->lleft + 1;
3090 	}
3091 	if (ar->pright && start + size - 1 >= ar->lright)
3092 		size -= start + size - ar->lright;
3093 
3094 	end = start + size;
3095 
3096 	/* check we don't cross already preallocated blocks */
3097 	rcu_read_lock();
3098 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3099 		ext4_lblk_t pa_end;
3100 
3101 		if (pa->pa_deleted)
3102 			continue;
3103 		spin_lock(&pa->pa_lock);
3104 		if (pa->pa_deleted) {
3105 			spin_unlock(&pa->pa_lock);
3106 			continue;
3107 		}
3108 
3109 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3110 						  pa->pa_len);
3111 
3112 		/* PA must not overlap original request */
3113 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3114 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3115 
3116 		/* skip PAs this normalized request doesn't overlap with */
3117 		if (pa->pa_lstart >= end || pa_end <= start) {
3118 			spin_unlock(&pa->pa_lock);
3119 			continue;
3120 		}
3121 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3122 
3123 		/* adjust start or end to be adjacent to this pa */
3124 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3125 			BUG_ON(pa_end < start);
3126 			start = pa_end;
3127 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3128 			BUG_ON(pa->pa_lstart > end);
3129 			end = pa->pa_lstart;
3130 		}
3131 		spin_unlock(&pa->pa_lock);
3132 	}
3133 	rcu_read_unlock();
3134 	size = end - start;
3135 
3136 	/* XXX: extra loop to check we really don't overlap preallocations */
3137 	rcu_read_lock();
3138 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3139 		ext4_lblk_t pa_end;
3140 
3141 		spin_lock(&pa->pa_lock);
3142 		if (pa->pa_deleted == 0) {
3143 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3144 							  pa->pa_len);
3145 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3146 		}
3147 		spin_unlock(&pa->pa_lock);
3148 	}
3149 	rcu_read_unlock();
3150 
3151 	if (start + size <= ac->ac_o_ex.fe_logical &&
3152 			start > ac->ac_o_ex.fe_logical) {
3153 		ext4_msg(ac->ac_sb, KERN_ERR,
3154 			 "start %lu, size %lu, fe_logical %lu",
3155 			 (unsigned long) start, (unsigned long) size,
3156 			 (unsigned long) ac->ac_o_ex.fe_logical);
3157 		BUG();
3158 	}
3159 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3160 
3161 	/* now prepare goal request */
3162 
3163 	/* XXX: is it better to align blocks WRT to logical
3164 	 * placement or satisfy big request as is */
3165 	ac->ac_g_ex.fe_logical = start;
3166 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3167 
3168 	/* define goal start in order to merge */
3169 	if (ar->pright && (ar->lright == (start + size))) {
3170 		/* merge to the right */
3171 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3172 						&ac->ac_f_ex.fe_group,
3173 						&ac->ac_f_ex.fe_start);
3174 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3175 	}
3176 	if (ar->pleft && (ar->lleft + 1 == start)) {
3177 		/* merge to the left */
3178 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3179 						&ac->ac_f_ex.fe_group,
3180 						&ac->ac_f_ex.fe_start);
3181 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3182 	}
3183 
3184 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3185 		(unsigned) orig_size, (unsigned) start);
3186 }
3187 
3188 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3189 {
3190 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3191 
3192 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3193 		atomic_inc(&sbi->s_bal_reqs);
3194 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3195 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3196 			atomic_inc(&sbi->s_bal_success);
3197 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3198 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3199 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3200 			atomic_inc(&sbi->s_bal_goals);
3201 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3202 			atomic_inc(&sbi->s_bal_breaks);
3203 	}
3204 
3205 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3206 		trace_ext4_mballoc_alloc(ac);
3207 	else
3208 		trace_ext4_mballoc_prealloc(ac);
3209 }
3210 
3211 /*
3212  * Called on failure; free up any blocks from the inode PA for this
3213  * context.  We don't need this for MB_GROUP_PA because we only change
3214  * pa_free in ext4_mb_release_context(), but on failure, we've already
3215  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3216  */
3217 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3218 {
3219 	struct ext4_prealloc_space *pa = ac->ac_pa;
3220 	struct ext4_buddy e4b;
3221 	int err;
3222 
3223 	if (pa == NULL) {
3224 		if (ac->ac_f_ex.fe_len == 0)
3225 			return;
3226 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3227 		if (err) {
3228 			/*
3229 			 * This should never happen since we pin the
3230 			 * pages in the ext4_allocation_context so
3231 			 * ext4_mb_load_buddy() should never fail.
3232 			 */
3233 			WARN(1, "mb_load_buddy failed (%d)", err);
3234 			return;
3235 		}
3236 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3237 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3238 			       ac->ac_f_ex.fe_len);
3239 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3240 		ext4_mb_unload_buddy(&e4b);
3241 		return;
3242 	}
3243 	if (pa->pa_type == MB_INODE_PA)
3244 		pa->pa_free += ac->ac_b_ex.fe_len;
3245 }
3246 
3247 /*
3248  * use blocks preallocated to inode
3249  */
3250 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3251 				struct ext4_prealloc_space *pa)
3252 {
3253 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3254 	ext4_fsblk_t start;
3255 	ext4_fsblk_t end;
3256 	int len;
3257 
3258 	/* found preallocated blocks, use them */
3259 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3260 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3261 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3262 	len = EXT4_NUM_B2C(sbi, end - start);
3263 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3264 					&ac->ac_b_ex.fe_start);
3265 	ac->ac_b_ex.fe_len = len;
3266 	ac->ac_status = AC_STATUS_FOUND;
3267 	ac->ac_pa = pa;
3268 
3269 	BUG_ON(start < pa->pa_pstart);
3270 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3271 	BUG_ON(pa->pa_free < len);
3272 	pa->pa_free -= len;
3273 
3274 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3275 }
3276 
3277 /*
3278  * use blocks preallocated to locality group
3279  */
3280 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3281 				struct ext4_prealloc_space *pa)
3282 {
3283 	unsigned int len = ac->ac_o_ex.fe_len;
3284 
3285 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3286 					&ac->ac_b_ex.fe_group,
3287 					&ac->ac_b_ex.fe_start);
3288 	ac->ac_b_ex.fe_len = len;
3289 	ac->ac_status = AC_STATUS_FOUND;
3290 	ac->ac_pa = pa;
3291 
3292 	/* we don't correct pa_pstart or pa_plen here to avoid
3293 	 * possible race when the group is being loaded concurrently
3294 	 * instead we correct pa later, after blocks are marked
3295 	 * in on-disk bitmap -- see ext4_mb_release_context()
3296 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3297 	 */
3298 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3299 }
3300 
3301 /*
3302  * Return the prealloc space that have minimal distance
3303  * from the goal block. @cpa is the prealloc
3304  * space that is having currently known minimal distance
3305  * from the goal block.
3306  */
3307 static struct ext4_prealloc_space *
3308 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3309 			struct ext4_prealloc_space *pa,
3310 			struct ext4_prealloc_space *cpa)
3311 {
3312 	ext4_fsblk_t cur_distance, new_distance;
3313 
3314 	if (cpa == NULL) {
3315 		atomic_inc(&pa->pa_count);
3316 		return pa;
3317 	}
3318 	cur_distance = abs(goal_block - cpa->pa_pstart);
3319 	new_distance = abs(goal_block - pa->pa_pstart);
3320 
3321 	if (cur_distance <= new_distance)
3322 		return cpa;
3323 
3324 	/* drop the previous reference */
3325 	atomic_dec(&cpa->pa_count);
3326 	atomic_inc(&pa->pa_count);
3327 	return pa;
3328 }
3329 
3330 /*
3331  * search goal blocks in preallocated space
3332  */
3333 static noinline_for_stack int
3334 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3335 {
3336 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3337 	int order, i;
3338 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3339 	struct ext4_locality_group *lg;
3340 	struct ext4_prealloc_space *pa, *cpa = NULL;
3341 	ext4_fsblk_t goal_block;
3342 
3343 	/* only data can be preallocated */
3344 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3345 		return 0;
3346 
3347 	/* first, try per-file preallocation */
3348 	rcu_read_lock();
3349 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3350 
3351 		/* all fields in this condition don't change,
3352 		 * so we can skip locking for them */
3353 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3354 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3355 					       EXT4_C2B(sbi, pa->pa_len)))
3356 			continue;
3357 
3358 		/* non-extent files can't have physical blocks past 2^32 */
3359 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3360 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3361 		     EXT4_MAX_BLOCK_FILE_PHYS))
3362 			continue;
3363 
3364 		/* found preallocated blocks, use them */
3365 		spin_lock(&pa->pa_lock);
3366 		if (pa->pa_deleted == 0 && pa->pa_free) {
3367 			atomic_inc(&pa->pa_count);
3368 			ext4_mb_use_inode_pa(ac, pa);
3369 			spin_unlock(&pa->pa_lock);
3370 			ac->ac_criteria = 10;
3371 			rcu_read_unlock();
3372 			return 1;
3373 		}
3374 		spin_unlock(&pa->pa_lock);
3375 	}
3376 	rcu_read_unlock();
3377 
3378 	/* can we use group allocation? */
3379 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3380 		return 0;
3381 
3382 	/* inode may have no locality group for some reason */
3383 	lg = ac->ac_lg;
3384 	if (lg == NULL)
3385 		return 0;
3386 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3387 	if (order > PREALLOC_TB_SIZE - 1)
3388 		/* The max size of hash table is PREALLOC_TB_SIZE */
3389 		order = PREALLOC_TB_SIZE - 1;
3390 
3391 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3392 	/*
3393 	 * search for the prealloc space that is having
3394 	 * minimal distance from the goal block.
3395 	 */
3396 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3397 		rcu_read_lock();
3398 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3399 					pa_inode_list) {
3400 			spin_lock(&pa->pa_lock);
3401 			if (pa->pa_deleted == 0 &&
3402 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3403 
3404 				cpa = ext4_mb_check_group_pa(goal_block,
3405 								pa, cpa);
3406 			}
3407 			spin_unlock(&pa->pa_lock);
3408 		}
3409 		rcu_read_unlock();
3410 	}
3411 	if (cpa) {
3412 		ext4_mb_use_group_pa(ac, cpa);
3413 		ac->ac_criteria = 20;
3414 		return 1;
3415 	}
3416 	return 0;
3417 }
3418 
3419 /*
3420  * the function goes through all block freed in the group
3421  * but not yet committed and marks them used in in-core bitmap.
3422  * buddy must be generated from this bitmap
3423  * Need to be called with the ext4 group lock held
3424  */
3425 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3426 						ext4_group_t group)
3427 {
3428 	struct rb_node *n;
3429 	struct ext4_group_info *grp;
3430 	struct ext4_free_data *entry;
3431 
3432 	grp = ext4_get_group_info(sb, group);
3433 	n = rb_first(&(grp->bb_free_root));
3434 
3435 	while (n) {
3436 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3437 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3438 		n = rb_next(n);
3439 	}
3440 	return;
3441 }
3442 
3443 /*
3444  * the function goes through all preallocation in this group and marks them
3445  * used in in-core bitmap. buddy must be generated from this bitmap
3446  * Need to be called with ext4 group lock held
3447  */
3448 static noinline_for_stack
3449 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3450 					ext4_group_t group)
3451 {
3452 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3453 	struct ext4_prealloc_space *pa;
3454 	struct list_head *cur;
3455 	ext4_group_t groupnr;
3456 	ext4_grpblk_t start;
3457 	int preallocated = 0;
3458 	int len;
3459 
3460 	/* all form of preallocation discards first load group,
3461 	 * so the only competing code is preallocation use.
3462 	 * we don't need any locking here
3463 	 * notice we do NOT ignore preallocations with pa_deleted
3464 	 * otherwise we could leave used blocks available for
3465 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3466 	 * is dropping preallocation
3467 	 */
3468 	list_for_each(cur, &grp->bb_prealloc_list) {
3469 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3470 		spin_lock(&pa->pa_lock);
3471 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3472 					     &groupnr, &start);
3473 		len = pa->pa_len;
3474 		spin_unlock(&pa->pa_lock);
3475 		if (unlikely(len == 0))
3476 			continue;
3477 		BUG_ON(groupnr != group);
3478 		ext4_set_bits(bitmap, start, len);
3479 		preallocated += len;
3480 	}
3481 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3482 }
3483 
3484 static void ext4_mb_pa_callback(struct rcu_head *head)
3485 {
3486 	struct ext4_prealloc_space *pa;
3487 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3488 
3489 	BUG_ON(atomic_read(&pa->pa_count));
3490 	BUG_ON(pa->pa_deleted == 0);
3491 	kmem_cache_free(ext4_pspace_cachep, pa);
3492 }
3493 
3494 /*
3495  * drops a reference to preallocated space descriptor
3496  * if this was the last reference and the space is consumed
3497  */
3498 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3499 			struct super_block *sb, struct ext4_prealloc_space *pa)
3500 {
3501 	ext4_group_t grp;
3502 	ext4_fsblk_t grp_blk;
3503 
3504 	/* in this short window concurrent discard can set pa_deleted */
3505 	spin_lock(&pa->pa_lock);
3506 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3507 		spin_unlock(&pa->pa_lock);
3508 		return;
3509 	}
3510 
3511 	if (pa->pa_deleted == 1) {
3512 		spin_unlock(&pa->pa_lock);
3513 		return;
3514 	}
3515 
3516 	pa->pa_deleted = 1;
3517 	spin_unlock(&pa->pa_lock);
3518 
3519 	grp_blk = pa->pa_pstart;
3520 	/*
3521 	 * If doing group-based preallocation, pa_pstart may be in the
3522 	 * next group when pa is used up
3523 	 */
3524 	if (pa->pa_type == MB_GROUP_PA)
3525 		grp_blk--;
3526 
3527 	grp = ext4_get_group_number(sb, grp_blk);
3528 
3529 	/*
3530 	 * possible race:
3531 	 *
3532 	 *  P1 (buddy init)			P2 (regular allocation)
3533 	 *					find block B in PA
3534 	 *  copy on-disk bitmap to buddy
3535 	 *  					mark B in on-disk bitmap
3536 	 *					drop PA from group
3537 	 *  mark all PAs in buddy
3538 	 *
3539 	 * thus, P1 initializes buddy with B available. to prevent this
3540 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3541 	 * against that pair
3542 	 */
3543 	ext4_lock_group(sb, grp);
3544 	list_del(&pa->pa_group_list);
3545 	ext4_unlock_group(sb, grp);
3546 
3547 	spin_lock(pa->pa_obj_lock);
3548 	list_del_rcu(&pa->pa_inode_list);
3549 	spin_unlock(pa->pa_obj_lock);
3550 
3551 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3552 }
3553 
3554 /*
3555  * creates new preallocated space for given inode
3556  */
3557 static noinline_for_stack int
3558 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3559 {
3560 	struct super_block *sb = ac->ac_sb;
3561 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3562 	struct ext4_prealloc_space *pa;
3563 	struct ext4_group_info *grp;
3564 	struct ext4_inode_info *ei;
3565 
3566 	/* preallocate only when found space is larger then requested */
3567 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3568 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3569 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3570 
3571 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3572 	if (pa == NULL)
3573 		return -ENOMEM;
3574 
3575 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3576 		int winl;
3577 		int wins;
3578 		int win;
3579 		int offs;
3580 
3581 		/* we can't allocate as much as normalizer wants.
3582 		 * so, found space must get proper lstart
3583 		 * to cover original request */
3584 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3585 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3586 
3587 		/* we're limited by original request in that
3588 		 * logical block must be covered any way
3589 		 * winl is window we can move our chunk within */
3590 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3591 
3592 		/* also, we should cover whole original request */
3593 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3594 
3595 		/* the smallest one defines real window */
3596 		win = min(winl, wins);
3597 
3598 		offs = ac->ac_o_ex.fe_logical %
3599 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3600 		if (offs && offs < win)
3601 			win = offs;
3602 
3603 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3604 			EXT4_NUM_B2C(sbi, win);
3605 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3606 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3607 	}
3608 
3609 	/* preallocation can change ac_b_ex, thus we store actually
3610 	 * allocated blocks for history */
3611 	ac->ac_f_ex = ac->ac_b_ex;
3612 
3613 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3614 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3615 	pa->pa_len = ac->ac_b_ex.fe_len;
3616 	pa->pa_free = pa->pa_len;
3617 	atomic_set(&pa->pa_count, 1);
3618 	spin_lock_init(&pa->pa_lock);
3619 	INIT_LIST_HEAD(&pa->pa_inode_list);
3620 	INIT_LIST_HEAD(&pa->pa_group_list);
3621 	pa->pa_deleted = 0;
3622 	pa->pa_type = MB_INODE_PA;
3623 
3624 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3625 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3626 	trace_ext4_mb_new_inode_pa(ac, pa);
3627 
3628 	ext4_mb_use_inode_pa(ac, pa);
3629 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3630 
3631 	ei = EXT4_I(ac->ac_inode);
3632 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3633 
3634 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3635 	pa->pa_inode = ac->ac_inode;
3636 
3637 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3638 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3639 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3640 
3641 	spin_lock(pa->pa_obj_lock);
3642 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3643 	spin_unlock(pa->pa_obj_lock);
3644 
3645 	return 0;
3646 }
3647 
3648 /*
3649  * creates new preallocated space for locality group inodes belongs to
3650  */
3651 static noinline_for_stack int
3652 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3653 {
3654 	struct super_block *sb = ac->ac_sb;
3655 	struct ext4_locality_group *lg;
3656 	struct ext4_prealloc_space *pa;
3657 	struct ext4_group_info *grp;
3658 
3659 	/* preallocate only when found space is larger then requested */
3660 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3661 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3662 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3663 
3664 	BUG_ON(ext4_pspace_cachep == NULL);
3665 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3666 	if (pa == NULL)
3667 		return -ENOMEM;
3668 
3669 	/* preallocation can change ac_b_ex, thus we store actually
3670 	 * allocated blocks for history */
3671 	ac->ac_f_ex = ac->ac_b_ex;
3672 
3673 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3674 	pa->pa_lstart = pa->pa_pstart;
3675 	pa->pa_len = ac->ac_b_ex.fe_len;
3676 	pa->pa_free = pa->pa_len;
3677 	atomic_set(&pa->pa_count, 1);
3678 	spin_lock_init(&pa->pa_lock);
3679 	INIT_LIST_HEAD(&pa->pa_inode_list);
3680 	INIT_LIST_HEAD(&pa->pa_group_list);
3681 	pa->pa_deleted = 0;
3682 	pa->pa_type = MB_GROUP_PA;
3683 
3684 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3685 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3686 	trace_ext4_mb_new_group_pa(ac, pa);
3687 
3688 	ext4_mb_use_group_pa(ac, pa);
3689 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3690 
3691 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3692 	lg = ac->ac_lg;
3693 	BUG_ON(lg == NULL);
3694 
3695 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3696 	pa->pa_inode = NULL;
3697 
3698 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3699 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3700 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3701 
3702 	/*
3703 	 * We will later add the new pa to the right bucket
3704 	 * after updating the pa_free in ext4_mb_release_context
3705 	 */
3706 	return 0;
3707 }
3708 
3709 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3710 {
3711 	int err;
3712 
3713 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3714 		err = ext4_mb_new_group_pa(ac);
3715 	else
3716 		err = ext4_mb_new_inode_pa(ac);
3717 	return err;
3718 }
3719 
3720 /*
3721  * finds all unused blocks in on-disk bitmap, frees them in
3722  * in-core bitmap and buddy.
3723  * @pa must be unlinked from inode and group lists, so that
3724  * nobody else can find/use it.
3725  * the caller MUST hold group/inode locks.
3726  * TODO: optimize the case when there are no in-core structures yet
3727  */
3728 static noinline_for_stack int
3729 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3730 			struct ext4_prealloc_space *pa)
3731 {
3732 	struct super_block *sb = e4b->bd_sb;
3733 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3734 	unsigned int end;
3735 	unsigned int next;
3736 	ext4_group_t group;
3737 	ext4_grpblk_t bit;
3738 	unsigned long long grp_blk_start;
3739 	int err = 0;
3740 	int free = 0;
3741 
3742 	BUG_ON(pa->pa_deleted == 0);
3743 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3744 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3745 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3746 	end = bit + pa->pa_len;
3747 
3748 	while (bit < end) {
3749 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3750 		if (bit >= end)
3751 			break;
3752 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3753 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3754 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3755 			 (unsigned) next - bit, (unsigned) group);
3756 		free += next - bit;
3757 
3758 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3759 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3760 						    EXT4_C2B(sbi, bit)),
3761 					       next - bit);
3762 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3763 		bit = next + 1;
3764 	}
3765 	if (free != pa->pa_free) {
3766 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3767 			 "pa %p: logic %lu, phys. %lu, len %lu",
3768 			 pa, (unsigned long) pa->pa_lstart,
3769 			 (unsigned long) pa->pa_pstart,
3770 			 (unsigned long) pa->pa_len);
3771 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3772 					free, pa->pa_free);
3773 		/*
3774 		 * pa is already deleted so we use the value obtained
3775 		 * from the bitmap and continue.
3776 		 */
3777 	}
3778 	atomic_add(free, &sbi->s_mb_discarded);
3779 
3780 	return err;
3781 }
3782 
3783 static noinline_for_stack int
3784 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3785 				struct ext4_prealloc_space *pa)
3786 {
3787 	struct super_block *sb = e4b->bd_sb;
3788 	ext4_group_t group;
3789 	ext4_grpblk_t bit;
3790 
3791 	trace_ext4_mb_release_group_pa(sb, pa);
3792 	BUG_ON(pa->pa_deleted == 0);
3793 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3794 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3795 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3796 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3797 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3798 
3799 	return 0;
3800 }
3801 
3802 /*
3803  * releases all preallocations in given group
3804  *
3805  * first, we need to decide discard policy:
3806  * - when do we discard
3807  *   1) ENOSPC
3808  * - how many do we discard
3809  *   1) how many requested
3810  */
3811 static noinline_for_stack int
3812 ext4_mb_discard_group_preallocations(struct super_block *sb,
3813 					ext4_group_t group, int needed)
3814 {
3815 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3816 	struct buffer_head *bitmap_bh = NULL;
3817 	struct ext4_prealloc_space *pa, *tmp;
3818 	struct list_head list;
3819 	struct ext4_buddy e4b;
3820 	int err;
3821 	int busy = 0;
3822 	int free = 0;
3823 
3824 	mb_debug(1, "discard preallocation for group %u\n", group);
3825 
3826 	if (list_empty(&grp->bb_prealloc_list))
3827 		return 0;
3828 
3829 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3830 	if (bitmap_bh == NULL) {
3831 		ext4_error(sb, "Error reading block bitmap for %u", group);
3832 		return 0;
3833 	}
3834 
3835 	err = ext4_mb_load_buddy(sb, group, &e4b);
3836 	if (err) {
3837 		ext4_error(sb, "Error loading buddy information for %u", group);
3838 		put_bh(bitmap_bh);
3839 		return 0;
3840 	}
3841 
3842 	if (needed == 0)
3843 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3844 
3845 	INIT_LIST_HEAD(&list);
3846 repeat:
3847 	ext4_lock_group(sb, group);
3848 	list_for_each_entry_safe(pa, tmp,
3849 				&grp->bb_prealloc_list, pa_group_list) {
3850 		spin_lock(&pa->pa_lock);
3851 		if (atomic_read(&pa->pa_count)) {
3852 			spin_unlock(&pa->pa_lock);
3853 			busy = 1;
3854 			continue;
3855 		}
3856 		if (pa->pa_deleted) {
3857 			spin_unlock(&pa->pa_lock);
3858 			continue;
3859 		}
3860 
3861 		/* seems this one can be freed ... */
3862 		pa->pa_deleted = 1;
3863 
3864 		/* we can trust pa_free ... */
3865 		free += pa->pa_free;
3866 
3867 		spin_unlock(&pa->pa_lock);
3868 
3869 		list_del(&pa->pa_group_list);
3870 		list_add(&pa->u.pa_tmp_list, &list);
3871 	}
3872 
3873 	/* if we still need more blocks and some PAs were used, try again */
3874 	if (free < needed && busy) {
3875 		busy = 0;
3876 		ext4_unlock_group(sb, group);
3877 		cond_resched();
3878 		goto repeat;
3879 	}
3880 
3881 	/* found anything to free? */
3882 	if (list_empty(&list)) {
3883 		BUG_ON(free != 0);
3884 		goto out;
3885 	}
3886 
3887 	/* now free all selected PAs */
3888 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3889 
3890 		/* remove from object (inode or locality group) */
3891 		spin_lock(pa->pa_obj_lock);
3892 		list_del_rcu(&pa->pa_inode_list);
3893 		spin_unlock(pa->pa_obj_lock);
3894 
3895 		if (pa->pa_type == MB_GROUP_PA)
3896 			ext4_mb_release_group_pa(&e4b, pa);
3897 		else
3898 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3899 
3900 		list_del(&pa->u.pa_tmp_list);
3901 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3902 	}
3903 
3904 out:
3905 	ext4_unlock_group(sb, group);
3906 	ext4_mb_unload_buddy(&e4b);
3907 	put_bh(bitmap_bh);
3908 	return free;
3909 }
3910 
3911 /*
3912  * releases all non-used preallocated blocks for given inode
3913  *
3914  * It's important to discard preallocations under i_data_sem
3915  * We don't want another block to be served from the prealloc
3916  * space when we are discarding the inode prealloc space.
3917  *
3918  * FIXME!! Make sure it is valid at all the call sites
3919  */
3920 void ext4_discard_preallocations(struct inode *inode)
3921 {
3922 	struct ext4_inode_info *ei = EXT4_I(inode);
3923 	struct super_block *sb = inode->i_sb;
3924 	struct buffer_head *bitmap_bh = NULL;
3925 	struct ext4_prealloc_space *pa, *tmp;
3926 	ext4_group_t group = 0;
3927 	struct list_head list;
3928 	struct ext4_buddy e4b;
3929 	int err;
3930 
3931 	if (!S_ISREG(inode->i_mode)) {
3932 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3933 		return;
3934 	}
3935 
3936 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3937 	trace_ext4_discard_preallocations(inode);
3938 
3939 	INIT_LIST_HEAD(&list);
3940 
3941 repeat:
3942 	/* first, collect all pa's in the inode */
3943 	spin_lock(&ei->i_prealloc_lock);
3944 	while (!list_empty(&ei->i_prealloc_list)) {
3945 		pa = list_entry(ei->i_prealloc_list.next,
3946 				struct ext4_prealloc_space, pa_inode_list);
3947 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3948 		spin_lock(&pa->pa_lock);
3949 		if (atomic_read(&pa->pa_count)) {
3950 			/* this shouldn't happen often - nobody should
3951 			 * use preallocation while we're discarding it */
3952 			spin_unlock(&pa->pa_lock);
3953 			spin_unlock(&ei->i_prealloc_lock);
3954 			ext4_msg(sb, KERN_ERR,
3955 				 "uh-oh! used pa while discarding");
3956 			WARN_ON(1);
3957 			schedule_timeout_uninterruptible(HZ);
3958 			goto repeat;
3959 
3960 		}
3961 		if (pa->pa_deleted == 0) {
3962 			pa->pa_deleted = 1;
3963 			spin_unlock(&pa->pa_lock);
3964 			list_del_rcu(&pa->pa_inode_list);
3965 			list_add(&pa->u.pa_tmp_list, &list);
3966 			continue;
3967 		}
3968 
3969 		/* someone is deleting pa right now */
3970 		spin_unlock(&pa->pa_lock);
3971 		spin_unlock(&ei->i_prealloc_lock);
3972 
3973 		/* we have to wait here because pa_deleted
3974 		 * doesn't mean pa is already unlinked from
3975 		 * the list. as we might be called from
3976 		 * ->clear_inode() the inode will get freed
3977 		 * and concurrent thread which is unlinking
3978 		 * pa from inode's list may access already
3979 		 * freed memory, bad-bad-bad */
3980 
3981 		/* XXX: if this happens too often, we can
3982 		 * add a flag to force wait only in case
3983 		 * of ->clear_inode(), but not in case of
3984 		 * regular truncate */
3985 		schedule_timeout_uninterruptible(HZ);
3986 		goto repeat;
3987 	}
3988 	spin_unlock(&ei->i_prealloc_lock);
3989 
3990 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3991 		BUG_ON(pa->pa_type != MB_INODE_PA);
3992 		group = ext4_get_group_number(sb, pa->pa_pstart);
3993 
3994 		err = ext4_mb_load_buddy(sb, group, &e4b);
3995 		if (err) {
3996 			ext4_error(sb, "Error loading buddy information for %u",
3997 					group);
3998 			continue;
3999 		}
4000 
4001 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4002 		if (bitmap_bh == NULL) {
4003 			ext4_error(sb, "Error reading block bitmap for %u",
4004 					group);
4005 			ext4_mb_unload_buddy(&e4b);
4006 			continue;
4007 		}
4008 
4009 		ext4_lock_group(sb, group);
4010 		list_del(&pa->pa_group_list);
4011 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4012 		ext4_unlock_group(sb, group);
4013 
4014 		ext4_mb_unload_buddy(&e4b);
4015 		put_bh(bitmap_bh);
4016 
4017 		list_del(&pa->u.pa_tmp_list);
4018 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4019 	}
4020 }
4021 
4022 #ifdef CONFIG_EXT4_DEBUG
4023 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4024 {
4025 	struct super_block *sb = ac->ac_sb;
4026 	ext4_group_t ngroups, i;
4027 
4028 	if (!ext4_mballoc_debug ||
4029 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4030 		return;
4031 
4032 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4033 			" Allocation context details:");
4034 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4035 			ac->ac_status, ac->ac_flags);
4036 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4037 		 	"goal %lu/%lu/%lu@%lu, "
4038 			"best %lu/%lu/%lu@%lu cr %d",
4039 			(unsigned long)ac->ac_o_ex.fe_group,
4040 			(unsigned long)ac->ac_o_ex.fe_start,
4041 			(unsigned long)ac->ac_o_ex.fe_len,
4042 			(unsigned long)ac->ac_o_ex.fe_logical,
4043 			(unsigned long)ac->ac_g_ex.fe_group,
4044 			(unsigned long)ac->ac_g_ex.fe_start,
4045 			(unsigned long)ac->ac_g_ex.fe_len,
4046 			(unsigned long)ac->ac_g_ex.fe_logical,
4047 			(unsigned long)ac->ac_b_ex.fe_group,
4048 			(unsigned long)ac->ac_b_ex.fe_start,
4049 			(unsigned long)ac->ac_b_ex.fe_len,
4050 			(unsigned long)ac->ac_b_ex.fe_logical,
4051 			(int)ac->ac_criteria);
4052 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4053 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4054 	ngroups = ext4_get_groups_count(sb);
4055 	for (i = 0; i < ngroups; i++) {
4056 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4057 		struct ext4_prealloc_space *pa;
4058 		ext4_grpblk_t start;
4059 		struct list_head *cur;
4060 		ext4_lock_group(sb, i);
4061 		list_for_each(cur, &grp->bb_prealloc_list) {
4062 			pa = list_entry(cur, struct ext4_prealloc_space,
4063 					pa_group_list);
4064 			spin_lock(&pa->pa_lock);
4065 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4066 						     NULL, &start);
4067 			spin_unlock(&pa->pa_lock);
4068 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4069 			       start, pa->pa_len);
4070 		}
4071 		ext4_unlock_group(sb, i);
4072 
4073 		if (grp->bb_free == 0)
4074 			continue;
4075 		printk(KERN_ERR "%u: %d/%d \n",
4076 		       i, grp->bb_free, grp->bb_fragments);
4077 	}
4078 	printk(KERN_ERR "\n");
4079 }
4080 #else
4081 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4082 {
4083 	return;
4084 }
4085 #endif
4086 
4087 /*
4088  * We use locality group preallocation for small size file. The size of the
4089  * file is determined by the current size or the resulting size after
4090  * allocation which ever is larger
4091  *
4092  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4093  */
4094 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4095 {
4096 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4097 	int bsbits = ac->ac_sb->s_blocksize_bits;
4098 	loff_t size, isize;
4099 
4100 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4101 		return;
4102 
4103 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4104 		return;
4105 
4106 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4107 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4108 		>> bsbits;
4109 
4110 	if ((size == isize) &&
4111 	    !ext4_fs_is_busy(sbi) &&
4112 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4113 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4114 		return;
4115 	}
4116 
4117 	if (sbi->s_mb_group_prealloc <= 0) {
4118 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4119 		return;
4120 	}
4121 
4122 	/* don't use group allocation for large files */
4123 	size = max(size, isize);
4124 	if (size > sbi->s_mb_stream_request) {
4125 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4126 		return;
4127 	}
4128 
4129 	BUG_ON(ac->ac_lg != NULL);
4130 	/*
4131 	 * locality group prealloc space are per cpu. The reason for having
4132 	 * per cpu locality group is to reduce the contention between block
4133 	 * request from multiple CPUs.
4134 	 */
4135 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4136 
4137 	/* we're going to use group allocation */
4138 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4139 
4140 	/* serialize all allocations in the group */
4141 	mutex_lock(&ac->ac_lg->lg_mutex);
4142 }
4143 
4144 static noinline_for_stack int
4145 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4146 				struct ext4_allocation_request *ar)
4147 {
4148 	struct super_block *sb = ar->inode->i_sb;
4149 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4150 	struct ext4_super_block *es = sbi->s_es;
4151 	ext4_group_t group;
4152 	unsigned int len;
4153 	ext4_fsblk_t goal;
4154 	ext4_grpblk_t block;
4155 
4156 	/* we can't allocate > group size */
4157 	len = ar->len;
4158 
4159 	/* just a dirty hack to filter too big requests  */
4160 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4161 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4162 
4163 	/* start searching from the goal */
4164 	goal = ar->goal;
4165 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4166 			goal >= ext4_blocks_count(es))
4167 		goal = le32_to_cpu(es->s_first_data_block);
4168 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4169 
4170 	/* set up allocation goals */
4171 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4172 	ac->ac_status = AC_STATUS_CONTINUE;
4173 	ac->ac_sb = sb;
4174 	ac->ac_inode = ar->inode;
4175 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4176 	ac->ac_o_ex.fe_group = group;
4177 	ac->ac_o_ex.fe_start = block;
4178 	ac->ac_o_ex.fe_len = len;
4179 	ac->ac_g_ex = ac->ac_o_ex;
4180 	ac->ac_flags = ar->flags;
4181 
4182 	/* we have to define context: we'll we work with a file or
4183 	 * locality group. this is a policy, actually */
4184 	ext4_mb_group_or_file(ac);
4185 
4186 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4187 			"left: %u/%u, right %u/%u to %swritable\n",
4188 			(unsigned) ar->len, (unsigned) ar->logical,
4189 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4190 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4191 			(unsigned) ar->lright, (unsigned) ar->pright,
4192 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4193 	return 0;
4194 
4195 }
4196 
4197 static noinline_for_stack void
4198 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4199 					struct ext4_locality_group *lg,
4200 					int order, int total_entries)
4201 {
4202 	ext4_group_t group = 0;
4203 	struct ext4_buddy e4b;
4204 	struct list_head discard_list;
4205 	struct ext4_prealloc_space *pa, *tmp;
4206 
4207 	mb_debug(1, "discard locality group preallocation\n");
4208 
4209 	INIT_LIST_HEAD(&discard_list);
4210 
4211 	spin_lock(&lg->lg_prealloc_lock);
4212 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4213 						pa_inode_list) {
4214 		spin_lock(&pa->pa_lock);
4215 		if (atomic_read(&pa->pa_count)) {
4216 			/*
4217 			 * This is the pa that we just used
4218 			 * for block allocation. So don't
4219 			 * free that
4220 			 */
4221 			spin_unlock(&pa->pa_lock);
4222 			continue;
4223 		}
4224 		if (pa->pa_deleted) {
4225 			spin_unlock(&pa->pa_lock);
4226 			continue;
4227 		}
4228 		/* only lg prealloc space */
4229 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4230 
4231 		/* seems this one can be freed ... */
4232 		pa->pa_deleted = 1;
4233 		spin_unlock(&pa->pa_lock);
4234 
4235 		list_del_rcu(&pa->pa_inode_list);
4236 		list_add(&pa->u.pa_tmp_list, &discard_list);
4237 
4238 		total_entries--;
4239 		if (total_entries <= 5) {
4240 			/*
4241 			 * we want to keep only 5 entries
4242 			 * allowing it to grow to 8. This
4243 			 * mak sure we don't call discard
4244 			 * soon for this list.
4245 			 */
4246 			break;
4247 		}
4248 	}
4249 	spin_unlock(&lg->lg_prealloc_lock);
4250 
4251 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4252 
4253 		group = ext4_get_group_number(sb, pa->pa_pstart);
4254 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4255 			ext4_error(sb, "Error loading buddy information for %u",
4256 					group);
4257 			continue;
4258 		}
4259 		ext4_lock_group(sb, group);
4260 		list_del(&pa->pa_group_list);
4261 		ext4_mb_release_group_pa(&e4b, pa);
4262 		ext4_unlock_group(sb, group);
4263 
4264 		ext4_mb_unload_buddy(&e4b);
4265 		list_del(&pa->u.pa_tmp_list);
4266 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4267 	}
4268 }
4269 
4270 /*
4271  * We have incremented pa_count. So it cannot be freed at this
4272  * point. Also we hold lg_mutex. So no parallel allocation is
4273  * possible from this lg. That means pa_free cannot be updated.
4274  *
4275  * A parallel ext4_mb_discard_group_preallocations is possible.
4276  * which can cause the lg_prealloc_list to be updated.
4277  */
4278 
4279 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4280 {
4281 	int order, added = 0, lg_prealloc_count = 1;
4282 	struct super_block *sb = ac->ac_sb;
4283 	struct ext4_locality_group *lg = ac->ac_lg;
4284 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4285 
4286 	order = fls(pa->pa_free) - 1;
4287 	if (order > PREALLOC_TB_SIZE - 1)
4288 		/* The max size of hash table is PREALLOC_TB_SIZE */
4289 		order = PREALLOC_TB_SIZE - 1;
4290 	/* Add the prealloc space to lg */
4291 	spin_lock(&lg->lg_prealloc_lock);
4292 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4293 						pa_inode_list) {
4294 		spin_lock(&tmp_pa->pa_lock);
4295 		if (tmp_pa->pa_deleted) {
4296 			spin_unlock(&tmp_pa->pa_lock);
4297 			continue;
4298 		}
4299 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4300 			/* Add to the tail of the previous entry */
4301 			list_add_tail_rcu(&pa->pa_inode_list,
4302 						&tmp_pa->pa_inode_list);
4303 			added = 1;
4304 			/*
4305 			 * we want to count the total
4306 			 * number of entries in the list
4307 			 */
4308 		}
4309 		spin_unlock(&tmp_pa->pa_lock);
4310 		lg_prealloc_count++;
4311 	}
4312 	if (!added)
4313 		list_add_tail_rcu(&pa->pa_inode_list,
4314 					&lg->lg_prealloc_list[order]);
4315 	spin_unlock(&lg->lg_prealloc_lock);
4316 
4317 	/* Now trim the list to be not more than 8 elements */
4318 	if (lg_prealloc_count > 8) {
4319 		ext4_mb_discard_lg_preallocations(sb, lg,
4320 						  order, lg_prealloc_count);
4321 		return;
4322 	}
4323 	return ;
4324 }
4325 
4326 /*
4327  * release all resource we used in allocation
4328  */
4329 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4330 {
4331 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4332 	struct ext4_prealloc_space *pa = ac->ac_pa;
4333 	if (pa) {
4334 		if (pa->pa_type == MB_GROUP_PA) {
4335 			/* see comment in ext4_mb_use_group_pa() */
4336 			spin_lock(&pa->pa_lock);
4337 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4338 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4339 			pa->pa_free -= ac->ac_b_ex.fe_len;
4340 			pa->pa_len -= ac->ac_b_ex.fe_len;
4341 			spin_unlock(&pa->pa_lock);
4342 		}
4343 	}
4344 	if (pa) {
4345 		/*
4346 		 * We want to add the pa to the right bucket.
4347 		 * Remove it from the list and while adding
4348 		 * make sure the list to which we are adding
4349 		 * doesn't grow big.
4350 		 */
4351 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4352 			spin_lock(pa->pa_obj_lock);
4353 			list_del_rcu(&pa->pa_inode_list);
4354 			spin_unlock(pa->pa_obj_lock);
4355 			ext4_mb_add_n_trim(ac);
4356 		}
4357 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4358 	}
4359 	if (ac->ac_bitmap_page)
4360 		page_cache_release(ac->ac_bitmap_page);
4361 	if (ac->ac_buddy_page)
4362 		page_cache_release(ac->ac_buddy_page);
4363 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4364 		mutex_unlock(&ac->ac_lg->lg_mutex);
4365 	ext4_mb_collect_stats(ac);
4366 	return 0;
4367 }
4368 
4369 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4370 {
4371 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4372 	int ret;
4373 	int freed = 0;
4374 
4375 	trace_ext4_mb_discard_preallocations(sb, needed);
4376 	for (i = 0; i < ngroups && needed > 0; i++) {
4377 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4378 		freed += ret;
4379 		needed -= ret;
4380 	}
4381 
4382 	return freed;
4383 }
4384 
4385 /*
4386  * Main entry point into mballoc to allocate blocks
4387  * it tries to use preallocation first, then falls back
4388  * to usual allocation
4389  */
4390 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4391 				struct ext4_allocation_request *ar, int *errp)
4392 {
4393 	int freed;
4394 	struct ext4_allocation_context *ac = NULL;
4395 	struct ext4_sb_info *sbi;
4396 	struct super_block *sb;
4397 	ext4_fsblk_t block = 0;
4398 	unsigned int inquota = 0;
4399 	unsigned int reserv_clstrs = 0;
4400 
4401 	might_sleep();
4402 	sb = ar->inode->i_sb;
4403 	sbi = EXT4_SB(sb);
4404 
4405 	trace_ext4_request_blocks(ar);
4406 
4407 	/* Allow to use superuser reservation for quota file */
4408 	if (IS_NOQUOTA(ar->inode))
4409 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4410 
4411 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4412 		/* Without delayed allocation we need to verify
4413 		 * there is enough free blocks to do block allocation
4414 		 * and verify allocation doesn't exceed the quota limits.
4415 		 */
4416 		while (ar->len &&
4417 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4418 
4419 			/* let others to free the space */
4420 			cond_resched();
4421 			ar->len = ar->len >> 1;
4422 		}
4423 		if (!ar->len) {
4424 			*errp = -ENOSPC;
4425 			return 0;
4426 		}
4427 		reserv_clstrs = ar->len;
4428 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4429 			dquot_alloc_block_nofail(ar->inode,
4430 						 EXT4_C2B(sbi, ar->len));
4431 		} else {
4432 			while (ar->len &&
4433 				dquot_alloc_block(ar->inode,
4434 						  EXT4_C2B(sbi, ar->len))) {
4435 
4436 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4437 				ar->len--;
4438 			}
4439 		}
4440 		inquota = ar->len;
4441 		if (ar->len == 0) {
4442 			*errp = -EDQUOT;
4443 			goto out;
4444 		}
4445 	}
4446 
4447 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4448 	if (!ac) {
4449 		ar->len = 0;
4450 		*errp = -ENOMEM;
4451 		goto out;
4452 	}
4453 
4454 	*errp = ext4_mb_initialize_context(ac, ar);
4455 	if (*errp) {
4456 		ar->len = 0;
4457 		goto out;
4458 	}
4459 
4460 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4461 	if (!ext4_mb_use_preallocated(ac)) {
4462 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4463 		ext4_mb_normalize_request(ac, ar);
4464 repeat:
4465 		/* allocate space in core */
4466 		*errp = ext4_mb_regular_allocator(ac);
4467 		if (*errp)
4468 			goto discard_and_exit;
4469 
4470 		/* as we've just preallocated more space than
4471 		 * user requested originally, we store allocated
4472 		 * space in a special descriptor */
4473 		if (ac->ac_status == AC_STATUS_FOUND &&
4474 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4475 			*errp = ext4_mb_new_preallocation(ac);
4476 		if (*errp) {
4477 		discard_and_exit:
4478 			ext4_discard_allocated_blocks(ac);
4479 			goto errout;
4480 		}
4481 	}
4482 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4483 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4484 		if (*errp == -EAGAIN) {
4485 			/*
4486 			 * drop the reference that we took
4487 			 * in ext4_mb_use_best_found
4488 			 */
4489 			ext4_mb_release_context(ac);
4490 			ac->ac_b_ex.fe_group = 0;
4491 			ac->ac_b_ex.fe_start = 0;
4492 			ac->ac_b_ex.fe_len = 0;
4493 			ac->ac_status = AC_STATUS_CONTINUE;
4494 			goto repeat;
4495 		} else if (*errp) {
4496 			ext4_discard_allocated_blocks(ac);
4497 			goto errout;
4498 		} else {
4499 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4500 			ar->len = ac->ac_b_ex.fe_len;
4501 		}
4502 	} else {
4503 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4504 		if (freed)
4505 			goto repeat;
4506 		*errp = -ENOSPC;
4507 	}
4508 
4509 errout:
4510 	if (*errp) {
4511 		ac->ac_b_ex.fe_len = 0;
4512 		ar->len = 0;
4513 		ext4_mb_show_ac(ac);
4514 	}
4515 	ext4_mb_release_context(ac);
4516 out:
4517 	if (ac)
4518 		kmem_cache_free(ext4_ac_cachep, ac);
4519 	if (inquota && ar->len < inquota)
4520 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4521 	if (!ar->len) {
4522 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4523 			/* release all the reserved blocks if non delalloc */
4524 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4525 						reserv_clstrs);
4526 	}
4527 
4528 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4529 
4530 	return block;
4531 }
4532 
4533 /*
4534  * We can merge two free data extents only if the physical blocks
4535  * are contiguous, AND the extents were freed by the same transaction,
4536  * AND the blocks are associated with the same group.
4537  */
4538 static int can_merge(struct ext4_free_data *entry1,
4539 			struct ext4_free_data *entry2)
4540 {
4541 	if ((entry1->efd_tid == entry2->efd_tid) &&
4542 	    (entry1->efd_group == entry2->efd_group) &&
4543 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4544 		return 1;
4545 	return 0;
4546 }
4547 
4548 static noinline_for_stack int
4549 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4550 		      struct ext4_free_data *new_entry)
4551 {
4552 	ext4_group_t group = e4b->bd_group;
4553 	ext4_grpblk_t cluster;
4554 	struct ext4_free_data *entry;
4555 	struct ext4_group_info *db = e4b->bd_info;
4556 	struct super_block *sb = e4b->bd_sb;
4557 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4558 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4559 	struct rb_node *parent = NULL, *new_node;
4560 
4561 	BUG_ON(!ext4_handle_valid(handle));
4562 	BUG_ON(e4b->bd_bitmap_page == NULL);
4563 	BUG_ON(e4b->bd_buddy_page == NULL);
4564 
4565 	new_node = &new_entry->efd_node;
4566 	cluster = new_entry->efd_start_cluster;
4567 
4568 	if (!*n) {
4569 		/* first free block exent. We need to
4570 		   protect buddy cache from being freed,
4571 		 * otherwise we'll refresh it from
4572 		 * on-disk bitmap and lose not-yet-available
4573 		 * blocks */
4574 		page_cache_get(e4b->bd_buddy_page);
4575 		page_cache_get(e4b->bd_bitmap_page);
4576 	}
4577 	while (*n) {
4578 		parent = *n;
4579 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4580 		if (cluster < entry->efd_start_cluster)
4581 			n = &(*n)->rb_left;
4582 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4583 			n = &(*n)->rb_right;
4584 		else {
4585 			ext4_grp_locked_error(sb, group, 0,
4586 				ext4_group_first_block_no(sb, group) +
4587 				EXT4_C2B(sbi, cluster),
4588 				"Block already on to-be-freed list");
4589 			return 0;
4590 		}
4591 	}
4592 
4593 	rb_link_node(new_node, parent, n);
4594 	rb_insert_color(new_node, &db->bb_free_root);
4595 
4596 	/* Now try to see the extent can be merged to left and right */
4597 	node = rb_prev(new_node);
4598 	if (node) {
4599 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4600 		if (can_merge(entry, new_entry) &&
4601 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4602 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4603 			new_entry->efd_count += entry->efd_count;
4604 			rb_erase(node, &(db->bb_free_root));
4605 			kmem_cache_free(ext4_free_data_cachep, entry);
4606 		}
4607 	}
4608 
4609 	node = rb_next(new_node);
4610 	if (node) {
4611 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4612 		if (can_merge(new_entry, entry) &&
4613 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4614 			new_entry->efd_count += entry->efd_count;
4615 			rb_erase(node, &(db->bb_free_root));
4616 			kmem_cache_free(ext4_free_data_cachep, entry);
4617 		}
4618 	}
4619 	/* Add the extent to transaction's private list */
4620 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4621 				  &new_entry->efd_jce);
4622 	return 0;
4623 }
4624 
4625 /**
4626  * ext4_free_blocks() -- Free given blocks and update quota
4627  * @handle:		handle for this transaction
4628  * @inode:		inode
4629  * @block:		start physical block to free
4630  * @count:		number of blocks to count
4631  * @flags:		flags used by ext4_free_blocks
4632  */
4633 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4634 		      struct buffer_head *bh, ext4_fsblk_t block,
4635 		      unsigned long count, int flags)
4636 {
4637 	struct buffer_head *bitmap_bh = NULL;
4638 	struct super_block *sb = inode->i_sb;
4639 	struct ext4_group_desc *gdp;
4640 	unsigned int overflow;
4641 	ext4_grpblk_t bit;
4642 	struct buffer_head *gd_bh;
4643 	ext4_group_t block_group;
4644 	struct ext4_sb_info *sbi;
4645 	struct ext4_buddy e4b;
4646 	unsigned int count_clusters;
4647 	int err = 0;
4648 	int ret;
4649 
4650 	might_sleep();
4651 	if (bh) {
4652 		if (block)
4653 			BUG_ON(block != bh->b_blocknr);
4654 		else
4655 			block = bh->b_blocknr;
4656 	}
4657 
4658 	sbi = EXT4_SB(sb);
4659 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4660 	    !ext4_data_block_valid(sbi, block, count)) {
4661 		ext4_error(sb, "Freeing blocks not in datazone - "
4662 			   "block = %llu, count = %lu", block, count);
4663 		goto error_return;
4664 	}
4665 
4666 	ext4_debug("freeing block %llu\n", block);
4667 	trace_ext4_free_blocks(inode, block, count, flags);
4668 
4669 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4670 		struct buffer_head *tbh = bh;
4671 		int i;
4672 
4673 		BUG_ON(bh && (count > 1));
4674 
4675 		for (i = 0; i < count; i++) {
4676 			cond_resched();
4677 			if (!bh)
4678 				tbh = sb_find_get_block(inode->i_sb,
4679 							block + i);
4680 			if (!tbh)
4681 				continue;
4682 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4683 				    inode, tbh, block + i);
4684 		}
4685 	}
4686 
4687 	/*
4688 	 * We need to make sure we don't reuse the freed block until
4689 	 * after the transaction is committed, which we can do by
4690 	 * treating the block as metadata, below.  We make an
4691 	 * exception if the inode is to be written in writeback mode
4692 	 * since writeback mode has weak data consistency guarantees.
4693 	 */
4694 	if (!ext4_should_writeback_data(inode))
4695 		flags |= EXT4_FREE_BLOCKS_METADATA;
4696 
4697 	/*
4698 	 * If the extent to be freed does not begin on a cluster
4699 	 * boundary, we need to deal with partial clusters at the
4700 	 * beginning and end of the extent.  Normally we will free
4701 	 * blocks at the beginning or the end unless we are explicitly
4702 	 * requested to avoid doing so.
4703 	 */
4704 	overflow = EXT4_PBLK_COFF(sbi, block);
4705 	if (overflow) {
4706 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4707 			overflow = sbi->s_cluster_ratio - overflow;
4708 			block += overflow;
4709 			if (count > overflow)
4710 				count -= overflow;
4711 			else
4712 				return;
4713 		} else {
4714 			block -= overflow;
4715 			count += overflow;
4716 		}
4717 	}
4718 	overflow = EXT4_LBLK_COFF(sbi, count);
4719 	if (overflow) {
4720 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4721 			if (count > overflow)
4722 				count -= overflow;
4723 			else
4724 				return;
4725 		} else
4726 			count += sbi->s_cluster_ratio - overflow;
4727 	}
4728 
4729 do_more:
4730 	overflow = 0;
4731 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4732 
4733 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4734 			ext4_get_group_info(sb, block_group))))
4735 		return;
4736 
4737 	/*
4738 	 * Check to see if we are freeing blocks across a group
4739 	 * boundary.
4740 	 */
4741 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4742 		overflow = EXT4_C2B(sbi, bit) + count -
4743 			EXT4_BLOCKS_PER_GROUP(sb);
4744 		count -= overflow;
4745 	}
4746 	count_clusters = EXT4_NUM_B2C(sbi, count);
4747 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4748 	if (!bitmap_bh) {
4749 		err = -EIO;
4750 		goto error_return;
4751 	}
4752 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4753 	if (!gdp) {
4754 		err = -EIO;
4755 		goto error_return;
4756 	}
4757 
4758 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4759 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4760 	    in_range(block, ext4_inode_table(sb, gdp),
4761 		     EXT4_SB(sb)->s_itb_per_group) ||
4762 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4763 		     EXT4_SB(sb)->s_itb_per_group)) {
4764 
4765 		ext4_error(sb, "Freeing blocks in system zone - "
4766 			   "Block = %llu, count = %lu", block, count);
4767 		/* err = 0. ext4_std_error should be a no op */
4768 		goto error_return;
4769 	}
4770 
4771 	BUFFER_TRACE(bitmap_bh, "getting write access");
4772 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4773 	if (err)
4774 		goto error_return;
4775 
4776 	/*
4777 	 * We are about to modify some metadata.  Call the journal APIs
4778 	 * to unshare ->b_data if a currently-committing transaction is
4779 	 * using it
4780 	 */
4781 	BUFFER_TRACE(gd_bh, "get_write_access");
4782 	err = ext4_journal_get_write_access(handle, gd_bh);
4783 	if (err)
4784 		goto error_return;
4785 #ifdef AGGRESSIVE_CHECK
4786 	{
4787 		int i;
4788 		for (i = 0; i < count_clusters; i++)
4789 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4790 	}
4791 #endif
4792 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4793 
4794 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4795 	if (err)
4796 		goto error_return;
4797 
4798 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4799 		struct ext4_free_data *new_entry;
4800 		/*
4801 		 * blocks being freed are metadata. these blocks shouldn't
4802 		 * be used until this transaction is committed
4803 		 */
4804 	retry:
4805 		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4806 		if (!new_entry) {
4807 			/*
4808 			 * We use a retry loop because
4809 			 * ext4_free_blocks() is not allowed to fail.
4810 			 */
4811 			cond_resched();
4812 			congestion_wait(BLK_RW_ASYNC, HZ/50);
4813 			goto retry;
4814 		}
4815 		new_entry->efd_start_cluster = bit;
4816 		new_entry->efd_group = block_group;
4817 		new_entry->efd_count = count_clusters;
4818 		new_entry->efd_tid = handle->h_transaction->t_tid;
4819 
4820 		ext4_lock_group(sb, block_group);
4821 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4822 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4823 	} else {
4824 		/* need to update group_info->bb_free and bitmap
4825 		 * with group lock held. generate_buddy look at
4826 		 * them with group lock_held
4827 		 */
4828 		if (test_opt(sb, DISCARD)) {
4829 			err = ext4_issue_discard(sb, block_group, bit, count);
4830 			if (err && err != -EOPNOTSUPP)
4831 				ext4_msg(sb, KERN_WARNING, "discard request in"
4832 					 " group:%d block:%d count:%lu failed"
4833 					 " with %d", block_group, bit, count,
4834 					 err);
4835 		} else
4836 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4837 
4838 		ext4_lock_group(sb, block_group);
4839 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4840 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4841 	}
4842 
4843 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4844 	ext4_free_group_clusters_set(sb, gdp, ret);
4845 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4846 	ext4_group_desc_csum_set(sb, block_group, gdp);
4847 	ext4_unlock_group(sb, block_group);
4848 
4849 	if (sbi->s_log_groups_per_flex) {
4850 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4851 		atomic64_add(count_clusters,
4852 			     &sbi->s_flex_groups[flex_group].free_clusters);
4853 	}
4854 
4855 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4856 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4857 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4858 
4859 	ext4_mb_unload_buddy(&e4b);
4860 
4861 	/* We dirtied the bitmap block */
4862 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4863 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4864 
4865 	/* And the group descriptor block */
4866 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4867 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4868 	if (!err)
4869 		err = ret;
4870 
4871 	if (overflow && !err) {
4872 		block += count;
4873 		count = overflow;
4874 		put_bh(bitmap_bh);
4875 		goto do_more;
4876 	}
4877 error_return:
4878 	brelse(bitmap_bh);
4879 	ext4_std_error(sb, err);
4880 	return;
4881 }
4882 
4883 /**
4884  * ext4_group_add_blocks() -- Add given blocks to an existing group
4885  * @handle:			handle to this transaction
4886  * @sb:				super block
4887  * @block:			start physical block to add to the block group
4888  * @count:			number of blocks to free
4889  *
4890  * This marks the blocks as free in the bitmap and buddy.
4891  */
4892 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4893 			 ext4_fsblk_t block, unsigned long count)
4894 {
4895 	struct buffer_head *bitmap_bh = NULL;
4896 	struct buffer_head *gd_bh;
4897 	ext4_group_t block_group;
4898 	ext4_grpblk_t bit;
4899 	unsigned int i;
4900 	struct ext4_group_desc *desc;
4901 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4902 	struct ext4_buddy e4b;
4903 	int err = 0, ret, blk_free_count;
4904 	ext4_grpblk_t blocks_freed;
4905 
4906 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4907 
4908 	if (count == 0)
4909 		return 0;
4910 
4911 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4912 	/*
4913 	 * Check to see if we are freeing blocks across a group
4914 	 * boundary.
4915 	 */
4916 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4917 		ext4_warning(sb, "too much blocks added to group %u\n",
4918 			     block_group);
4919 		err = -EINVAL;
4920 		goto error_return;
4921 	}
4922 
4923 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4924 	if (!bitmap_bh) {
4925 		err = -EIO;
4926 		goto error_return;
4927 	}
4928 
4929 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4930 	if (!desc) {
4931 		err = -EIO;
4932 		goto error_return;
4933 	}
4934 
4935 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4936 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4937 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4938 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4939 		     sbi->s_itb_per_group)) {
4940 		ext4_error(sb, "Adding blocks in system zones - "
4941 			   "Block = %llu, count = %lu",
4942 			   block, count);
4943 		err = -EINVAL;
4944 		goto error_return;
4945 	}
4946 
4947 	BUFFER_TRACE(bitmap_bh, "getting write access");
4948 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4949 	if (err)
4950 		goto error_return;
4951 
4952 	/*
4953 	 * We are about to modify some metadata.  Call the journal APIs
4954 	 * to unshare ->b_data if a currently-committing transaction is
4955 	 * using it
4956 	 */
4957 	BUFFER_TRACE(gd_bh, "get_write_access");
4958 	err = ext4_journal_get_write_access(handle, gd_bh);
4959 	if (err)
4960 		goto error_return;
4961 
4962 	for (i = 0, blocks_freed = 0; i < count; i++) {
4963 		BUFFER_TRACE(bitmap_bh, "clear bit");
4964 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4965 			ext4_error(sb, "bit already cleared for block %llu",
4966 				   (ext4_fsblk_t)(block + i));
4967 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4968 		} else {
4969 			blocks_freed++;
4970 		}
4971 	}
4972 
4973 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4974 	if (err)
4975 		goto error_return;
4976 
4977 	/*
4978 	 * need to update group_info->bb_free and bitmap
4979 	 * with group lock held. generate_buddy look at
4980 	 * them with group lock_held
4981 	 */
4982 	ext4_lock_group(sb, block_group);
4983 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4984 	mb_free_blocks(NULL, &e4b, bit, count);
4985 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4986 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4987 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4988 	ext4_group_desc_csum_set(sb, block_group, desc);
4989 	ext4_unlock_group(sb, block_group);
4990 	percpu_counter_add(&sbi->s_freeclusters_counter,
4991 			   EXT4_NUM_B2C(sbi, blocks_freed));
4992 
4993 	if (sbi->s_log_groups_per_flex) {
4994 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4995 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4996 			     &sbi->s_flex_groups[flex_group].free_clusters);
4997 	}
4998 
4999 	ext4_mb_unload_buddy(&e4b);
5000 
5001 	/* We dirtied the bitmap block */
5002 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5003 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5004 
5005 	/* And the group descriptor block */
5006 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5007 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5008 	if (!err)
5009 		err = ret;
5010 
5011 error_return:
5012 	brelse(bitmap_bh);
5013 	ext4_std_error(sb, err);
5014 	return err;
5015 }
5016 
5017 /**
5018  * ext4_trim_extent -- function to TRIM one single free extent in the group
5019  * @sb:		super block for the file system
5020  * @start:	starting block of the free extent in the alloc. group
5021  * @count:	number of blocks to TRIM
5022  * @group:	alloc. group we are working with
5023  * @e4b:	ext4 buddy for the group
5024  *
5025  * Trim "count" blocks starting at "start" in the "group". To assure that no
5026  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5027  * be called with under the group lock.
5028  */
5029 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5030 			     ext4_group_t group, struct ext4_buddy *e4b)
5031 __releases(bitlock)
5032 __acquires(bitlock)
5033 {
5034 	struct ext4_free_extent ex;
5035 	int ret = 0;
5036 
5037 	trace_ext4_trim_extent(sb, group, start, count);
5038 
5039 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5040 
5041 	ex.fe_start = start;
5042 	ex.fe_group = group;
5043 	ex.fe_len = count;
5044 
5045 	/*
5046 	 * Mark blocks used, so no one can reuse them while
5047 	 * being trimmed.
5048 	 */
5049 	mb_mark_used(e4b, &ex);
5050 	ext4_unlock_group(sb, group);
5051 	ret = ext4_issue_discard(sb, group, start, count);
5052 	ext4_lock_group(sb, group);
5053 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5054 	return ret;
5055 }
5056 
5057 /**
5058  * ext4_trim_all_free -- function to trim all free space in alloc. group
5059  * @sb:			super block for file system
5060  * @group:		group to be trimmed
5061  * @start:		first group block to examine
5062  * @max:		last group block to examine
5063  * @minblocks:		minimum extent block count
5064  *
5065  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5066  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5067  * the extent.
5068  *
5069  *
5070  * ext4_trim_all_free walks through group's block bitmap searching for free
5071  * extents. When the free extent is found, mark it as used in group buddy
5072  * bitmap. Then issue a TRIM command on this extent and free the extent in
5073  * the group buddy bitmap. This is done until whole group is scanned.
5074  */
5075 static ext4_grpblk_t
5076 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5077 		   ext4_grpblk_t start, ext4_grpblk_t max,
5078 		   ext4_grpblk_t minblocks)
5079 {
5080 	void *bitmap;
5081 	ext4_grpblk_t next, count = 0, free_count = 0;
5082 	struct ext4_buddy e4b;
5083 	int ret = 0;
5084 
5085 	trace_ext4_trim_all_free(sb, group, start, max);
5086 
5087 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5088 	if (ret) {
5089 		ext4_error(sb, "Error in loading buddy "
5090 				"information for %u", group);
5091 		return ret;
5092 	}
5093 	bitmap = e4b.bd_bitmap;
5094 
5095 	ext4_lock_group(sb, group);
5096 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5097 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5098 		goto out;
5099 
5100 	start = (e4b.bd_info->bb_first_free > start) ?
5101 		e4b.bd_info->bb_first_free : start;
5102 
5103 	while (start <= max) {
5104 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5105 		if (start > max)
5106 			break;
5107 		next = mb_find_next_bit(bitmap, max + 1, start);
5108 
5109 		if ((next - start) >= minblocks) {
5110 			ret = ext4_trim_extent(sb, start,
5111 					       next - start, group, &e4b);
5112 			if (ret && ret != -EOPNOTSUPP)
5113 				break;
5114 			ret = 0;
5115 			count += next - start;
5116 		}
5117 		free_count += next - start;
5118 		start = next + 1;
5119 
5120 		if (fatal_signal_pending(current)) {
5121 			count = -ERESTARTSYS;
5122 			break;
5123 		}
5124 
5125 		if (need_resched()) {
5126 			ext4_unlock_group(sb, group);
5127 			cond_resched();
5128 			ext4_lock_group(sb, group);
5129 		}
5130 
5131 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5132 			break;
5133 	}
5134 
5135 	if (!ret) {
5136 		ret = count;
5137 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5138 	}
5139 out:
5140 	ext4_unlock_group(sb, group);
5141 	ext4_mb_unload_buddy(&e4b);
5142 
5143 	ext4_debug("trimmed %d blocks in the group %d\n",
5144 		count, group);
5145 
5146 	return ret;
5147 }
5148 
5149 /**
5150  * ext4_trim_fs() -- trim ioctl handle function
5151  * @sb:			superblock for filesystem
5152  * @range:		fstrim_range structure
5153  *
5154  * start:	First Byte to trim
5155  * len:		number of Bytes to trim from start
5156  * minlen:	minimum extent length in Bytes
5157  * ext4_trim_fs goes through all allocation groups containing Bytes from
5158  * start to start+len. For each such a group ext4_trim_all_free function
5159  * is invoked to trim all free space.
5160  */
5161 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5162 {
5163 	struct ext4_group_info *grp;
5164 	ext4_group_t group, first_group, last_group;
5165 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5166 	uint64_t start, end, minlen, trimmed = 0;
5167 	ext4_fsblk_t first_data_blk =
5168 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5169 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5170 	int ret = 0;
5171 
5172 	start = range->start >> sb->s_blocksize_bits;
5173 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5174 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5175 			      range->minlen >> sb->s_blocksize_bits);
5176 
5177 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5178 	    start >= max_blks ||
5179 	    range->len < sb->s_blocksize)
5180 		return -EINVAL;
5181 	if (end >= max_blks)
5182 		end = max_blks - 1;
5183 	if (end <= first_data_blk)
5184 		goto out;
5185 	if (start < first_data_blk)
5186 		start = first_data_blk;
5187 
5188 	/* Determine first and last group to examine based on start and end */
5189 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5190 				     &first_group, &first_cluster);
5191 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5192 				     &last_group, &last_cluster);
5193 
5194 	/* end now represents the last cluster to discard in this group */
5195 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5196 
5197 	for (group = first_group; group <= last_group; group++) {
5198 		grp = ext4_get_group_info(sb, group);
5199 		/* We only do this if the grp has never been initialized */
5200 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5201 			ret = ext4_mb_init_group(sb, group);
5202 			if (ret)
5203 				break;
5204 		}
5205 
5206 		/*
5207 		 * For all the groups except the last one, last cluster will
5208 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5209 		 * change it for the last group, note that last_cluster is
5210 		 * already computed earlier by ext4_get_group_no_and_offset()
5211 		 */
5212 		if (group == last_group)
5213 			end = last_cluster;
5214 
5215 		if (grp->bb_free >= minlen) {
5216 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5217 						end, minlen);
5218 			if (cnt < 0) {
5219 				ret = cnt;
5220 				break;
5221 			}
5222 			trimmed += cnt;
5223 		}
5224 
5225 		/*
5226 		 * For every group except the first one, we are sure
5227 		 * that the first cluster to discard will be cluster #0.
5228 		 */
5229 		first_cluster = 0;
5230 	}
5231 
5232 	if (!ret)
5233 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5234 
5235 out:
5236 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5237 	return ret;
5238 }
5239