1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "mballoc.h" 25 #include <linux/debugfs.h> 26 #include <linux/slab.h> 27 #include <trace/events/ext4.h> 28 29 /* 30 * MUSTDO: 31 * - test ext4_ext_search_left() and ext4_ext_search_right() 32 * - search for metadata in few groups 33 * 34 * TODO v4: 35 * - normalization should take into account whether file is still open 36 * - discard preallocations if no free space left (policy?) 37 * - don't normalize tails 38 * - quota 39 * - reservation for superuser 40 * 41 * TODO v3: 42 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 43 * - track min/max extents in each group for better group selection 44 * - mb_mark_used() may allocate chunk right after splitting buddy 45 * - tree of groups sorted by number of free blocks 46 * - error handling 47 */ 48 49 /* 50 * The allocation request involve request for multiple number of blocks 51 * near to the goal(block) value specified. 52 * 53 * During initialization phase of the allocator we decide to use the 54 * group preallocation or inode preallocation depending on the size of 55 * the file. The size of the file could be the resulting file size we 56 * would have after allocation, or the current file size, which ever 57 * is larger. If the size is less than sbi->s_mb_stream_request we 58 * select to use the group preallocation. The default value of 59 * s_mb_stream_request is 16 blocks. This can also be tuned via 60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 61 * terms of number of blocks. 62 * 63 * The main motivation for having small file use group preallocation is to 64 * ensure that we have small files closer together on the disk. 65 * 66 * First stage the allocator looks at the inode prealloc list, 67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 68 * spaces for this particular inode. The inode prealloc space is 69 * represented as: 70 * 71 * pa_lstart -> the logical start block for this prealloc space 72 * pa_pstart -> the physical start block for this prealloc space 73 * pa_len -> length for this prealloc space 74 * pa_free -> free space available in this prealloc space 75 * 76 * The inode preallocation space is used looking at the _logical_ start 77 * block. If only the logical file block falls within the range of prealloc 78 * space we will consume the particular prealloc space. This make sure that 79 * that the we have contiguous physical blocks representing the file blocks 80 * 81 * The important thing to be noted in case of inode prealloc space is that 82 * we don't modify the values associated to inode prealloc space except 83 * pa_free. 84 * 85 * If we are not able to find blocks in the inode prealloc space and if we 86 * have the group allocation flag set then we look at the locality group 87 * prealloc space. These are per CPU prealloc list repreasented as 88 * 89 * ext4_sb_info.s_locality_groups[smp_processor_id()] 90 * 91 * The reason for having a per cpu locality group is to reduce the contention 92 * between CPUs. It is possible to get scheduled at this point. 93 * 94 * The locality group prealloc space is used looking at whether we have 95 * enough free space (pa_free) withing the prealloc space. 96 * 97 * If we can't allocate blocks via inode prealloc or/and locality group 98 * prealloc then we look at the buddy cache. The buddy cache is represented 99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 100 * mapped to the buddy and bitmap information regarding different 101 * groups. The buddy information is attached to buddy cache inode so that 102 * we can access them through the page cache. The information regarding 103 * each group is loaded via ext4_mb_load_buddy. The information involve 104 * block bitmap and buddy information. The information are stored in the 105 * inode as: 106 * 107 * { page } 108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 109 * 110 * 111 * one block each for bitmap and buddy information. So for each group we 112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 113 * blocksize) blocks. So it can have information regarding groups_per_page 114 * which is blocks_per_page/2 115 * 116 * The buddy cache inode is not stored on disk. The inode is thrown 117 * away when the filesystem is unmounted. 118 * 119 * We look for count number of blocks in the buddy cache. If we were able 120 * to locate that many free blocks we return with additional information 121 * regarding rest of the contiguous physical block available 122 * 123 * Before allocating blocks via buddy cache we normalize the request 124 * blocks. This ensure we ask for more blocks that we needed. The extra 125 * blocks that we get after allocation is added to the respective prealloc 126 * list. In case of inode preallocation we follow a list of heuristics 127 * based on file size. This can be found in ext4_mb_normalize_request. If 128 * we are doing a group prealloc we try to normalize the request to 129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is 130 * 512 blocks. This can be tuned via 131 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in 132 * terms of number of blocks. If we have mounted the file system with -O 133 * stripe=<value> option the group prealloc request is normalized to the 134 * stripe value (sbi->s_stripe) 135 * 136 * The regular allocator(using the buddy cache) supports few tunables. 137 * 138 * /sys/fs/ext4/<partition>/mb_min_to_scan 139 * /sys/fs/ext4/<partition>/mb_max_to_scan 140 * /sys/fs/ext4/<partition>/mb_order2_req 141 * 142 * The regular allocator uses buddy scan only if the request len is power of 143 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 144 * value of s_mb_order2_reqs can be tuned via 145 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 146 * stripe size (sbi->s_stripe), we try to search for contiguous block in 147 * stripe size. This should result in better allocation on RAID setups. If 148 * not, we search in the specific group using bitmap for best extents. The 149 * tunable min_to_scan and max_to_scan control the behaviour here. 150 * min_to_scan indicate how long the mballoc __must__ look for a best 151 * extent and max_to_scan indicates how long the mballoc __can__ look for a 152 * best extent in the found extents. Searching for the blocks starts with 153 * the group specified as the goal value in allocation context via 154 * ac_g_ex. Each group is first checked based on the criteria whether it 155 * can used for allocation. ext4_mb_good_group explains how the groups are 156 * checked. 157 * 158 * Both the prealloc space are getting populated as above. So for the first 159 * request we will hit the buddy cache which will result in this prealloc 160 * space getting filled. The prealloc space is then later used for the 161 * subsequent request. 162 */ 163 164 /* 165 * mballoc operates on the following data: 166 * - on-disk bitmap 167 * - in-core buddy (actually includes buddy and bitmap) 168 * - preallocation descriptors (PAs) 169 * 170 * there are two types of preallocations: 171 * - inode 172 * assiged to specific inode and can be used for this inode only. 173 * it describes part of inode's space preallocated to specific 174 * physical blocks. any block from that preallocated can be used 175 * independent. the descriptor just tracks number of blocks left 176 * unused. so, before taking some block from descriptor, one must 177 * make sure corresponded logical block isn't allocated yet. this 178 * also means that freeing any block within descriptor's range 179 * must discard all preallocated blocks. 180 * - locality group 181 * assigned to specific locality group which does not translate to 182 * permanent set of inodes: inode can join and leave group. space 183 * from this type of preallocation can be used for any inode. thus 184 * it's consumed from the beginning to the end. 185 * 186 * relation between them can be expressed as: 187 * in-core buddy = on-disk bitmap + preallocation descriptors 188 * 189 * this mean blocks mballoc considers used are: 190 * - allocated blocks (persistent) 191 * - preallocated blocks (non-persistent) 192 * 193 * consistency in mballoc world means that at any time a block is either 194 * free or used in ALL structures. notice: "any time" should not be read 195 * literally -- time is discrete and delimited by locks. 196 * 197 * to keep it simple, we don't use block numbers, instead we count number of 198 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 199 * 200 * all operations can be expressed as: 201 * - init buddy: buddy = on-disk + PAs 202 * - new PA: buddy += N; PA = N 203 * - use inode PA: on-disk += N; PA -= N 204 * - discard inode PA buddy -= on-disk - PA; PA = 0 205 * - use locality group PA on-disk += N; PA -= N 206 * - discard locality group PA buddy -= PA; PA = 0 207 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 208 * is used in real operation because we can't know actual used 209 * bits from PA, only from on-disk bitmap 210 * 211 * if we follow this strict logic, then all operations above should be atomic. 212 * given some of them can block, we'd have to use something like semaphores 213 * killing performance on high-end SMP hardware. let's try to relax it using 214 * the following knowledge: 215 * 1) if buddy is referenced, it's already initialized 216 * 2) while block is used in buddy and the buddy is referenced, 217 * nobody can re-allocate that block 218 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 219 * bit set and PA claims same block, it's OK. IOW, one can set bit in 220 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 221 * block 222 * 223 * so, now we're building a concurrency table: 224 * - init buddy vs. 225 * - new PA 226 * blocks for PA are allocated in the buddy, buddy must be referenced 227 * until PA is linked to allocation group to avoid concurrent buddy init 228 * - use inode PA 229 * we need to make sure that either on-disk bitmap or PA has uptodate data 230 * given (3) we care that PA-=N operation doesn't interfere with init 231 * - discard inode PA 232 * the simplest way would be to have buddy initialized by the discard 233 * - use locality group PA 234 * again PA-=N must be serialized with init 235 * - discard locality group PA 236 * the simplest way would be to have buddy initialized by the discard 237 * - new PA vs. 238 * - use inode PA 239 * i_data_sem serializes them 240 * - discard inode PA 241 * discard process must wait until PA isn't used by another process 242 * - use locality group PA 243 * some mutex should serialize them 244 * - discard locality group PA 245 * discard process must wait until PA isn't used by another process 246 * - use inode PA 247 * - use inode PA 248 * i_data_sem or another mutex should serializes them 249 * - discard inode PA 250 * discard process must wait until PA isn't used by another process 251 * - use locality group PA 252 * nothing wrong here -- they're different PAs covering different blocks 253 * - discard locality group PA 254 * discard process must wait until PA isn't used by another process 255 * 256 * now we're ready to make few consequences: 257 * - PA is referenced and while it is no discard is possible 258 * - PA is referenced until block isn't marked in on-disk bitmap 259 * - PA changes only after on-disk bitmap 260 * - discard must not compete with init. either init is done before 261 * any discard or they're serialized somehow 262 * - buddy init as sum of on-disk bitmap and PAs is done atomically 263 * 264 * a special case when we've used PA to emptiness. no need to modify buddy 265 * in this case, but we should care about concurrent init 266 * 267 */ 268 269 /* 270 * Logic in few words: 271 * 272 * - allocation: 273 * load group 274 * find blocks 275 * mark bits in on-disk bitmap 276 * release group 277 * 278 * - use preallocation: 279 * find proper PA (per-inode or group) 280 * load group 281 * mark bits in on-disk bitmap 282 * release group 283 * release PA 284 * 285 * - free: 286 * load group 287 * mark bits in on-disk bitmap 288 * release group 289 * 290 * - discard preallocations in group: 291 * mark PAs deleted 292 * move them onto local list 293 * load on-disk bitmap 294 * load group 295 * remove PA from object (inode or locality group) 296 * mark free blocks in-core 297 * 298 * - discard inode's preallocations: 299 */ 300 301 /* 302 * Locking rules 303 * 304 * Locks: 305 * - bitlock on a group (group) 306 * - object (inode/locality) (object) 307 * - per-pa lock (pa) 308 * 309 * Paths: 310 * - new pa 311 * object 312 * group 313 * 314 * - find and use pa: 315 * pa 316 * 317 * - release consumed pa: 318 * pa 319 * group 320 * object 321 * 322 * - generate in-core bitmap: 323 * group 324 * pa 325 * 326 * - discard all for given object (inode, locality group): 327 * object 328 * pa 329 * group 330 * 331 * - discard all for given group: 332 * group 333 * pa 334 * group 335 * object 336 * 337 */ 338 static struct kmem_cache *ext4_pspace_cachep; 339 static struct kmem_cache *ext4_ac_cachep; 340 static struct kmem_cache *ext4_free_ext_cachep; 341 342 /* We create slab caches for groupinfo data structures based on the 343 * superblock block size. There will be one per mounted filesystem for 344 * each unique s_blocksize_bits */ 345 #define NR_GRPINFO_CACHES 8 346 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 347 348 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 349 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 350 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 351 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 352 }; 353 354 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 355 ext4_group_t group); 356 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 357 ext4_group_t group); 358 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn); 359 360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 361 { 362 #if BITS_PER_LONG == 64 363 *bit += ((unsigned long) addr & 7UL) << 3; 364 addr = (void *) ((unsigned long) addr & ~7UL); 365 #elif BITS_PER_LONG == 32 366 *bit += ((unsigned long) addr & 3UL) << 3; 367 addr = (void *) ((unsigned long) addr & ~3UL); 368 #else 369 #error "how many bits you are?!" 370 #endif 371 return addr; 372 } 373 374 static inline int mb_test_bit(int bit, void *addr) 375 { 376 /* 377 * ext4_test_bit on architecture like powerpc 378 * needs unsigned long aligned address 379 */ 380 addr = mb_correct_addr_and_bit(&bit, addr); 381 return ext4_test_bit(bit, addr); 382 } 383 384 static inline void mb_set_bit(int bit, void *addr) 385 { 386 addr = mb_correct_addr_and_bit(&bit, addr); 387 ext4_set_bit(bit, addr); 388 } 389 390 static inline void mb_clear_bit(int bit, void *addr) 391 { 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 ext4_clear_bit(bit, addr); 394 } 395 396 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 397 { 398 int fix = 0, ret, tmpmax; 399 addr = mb_correct_addr_and_bit(&fix, addr); 400 tmpmax = max + fix; 401 start += fix; 402 403 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 404 if (ret > max) 405 return max; 406 return ret; 407 } 408 409 static inline int mb_find_next_bit(void *addr, int max, int start) 410 { 411 int fix = 0, ret, tmpmax; 412 addr = mb_correct_addr_and_bit(&fix, addr); 413 tmpmax = max + fix; 414 start += fix; 415 416 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 417 if (ret > max) 418 return max; 419 return ret; 420 } 421 422 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 423 { 424 char *bb; 425 426 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 427 BUG_ON(max == NULL); 428 429 if (order > e4b->bd_blkbits + 1) { 430 *max = 0; 431 return NULL; 432 } 433 434 /* at order 0 we see each particular block */ 435 *max = 1 << (e4b->bd_blkbits + 3); 436 if (order == 0) 437 return EXT4_MB_BITMAP(e4b); 438 439 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 440 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 441 442 return bb; 443 } 444 445 #ifdef DOUBLE_CHECK 446 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 447 int first, int count) 448 { 449 int i; 450 struct super_block *sb = e4b->bd_sb; 451 452 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 453 return; 454 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 455 for (i = 0; i < count; i++) { 456 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 457 ext4_fsblk_t blocknr; 458 459 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 460 blocknr += first + i; 461 ext4_grp_locked_error(sb, e4b->bd_group, 462 inode ? inode->i_ino : 0, 463 blocknr, 464 "freeing block already freed " 465 "(bit %u)", 466 first + i); 467 } 468 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 469 } 470 } 471 472 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 473 { 474 int i; 475 476 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 477 return; 478 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 479 for (i = 0; i < count; i++) { 480 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 481 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 482 } 483 } 484 485 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 486 { 487 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 488 unsigned char *b1, *b2; 489 int i; 490 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 491 b2 = (unsigned char *) bitmap; 492 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 493 if (b1[i] != b2[i]) { 494 printk(KERN_ERR "corruption in group %u " 495 "at byte %u(%u): %x in copy != %x " 496 "on disk/prealloc\n", 497 e4b->bd_group, i, i * 8, b1[i], b2[i]); 498 BUG(); 499 } 500 } 501 } 502 } 503 504 #else 505 static inline void mb_free_blocks_double(struct inode *inode, 506 struct ext4_buddy *e4b, int first, int count) 507 { 508 return; 509 } 510 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 511 int first, int count) 512 { 513 return; 514 } 515 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 516 { 517 return; 518 } 519 #endif 520 521 #ifdef AGGRESSIVE_CHECK 522 523 #define MB_CHECK_ASSERT(assert) \ 524 do { \ 525 if (!(assert)) { \ 526 printk(KERN_EMERG \ 527 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 528 function, file, line, # assert); \ 529 BUG(); \ 530 } \ 531 } while (0) 532 533 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 534 const char *function, int line) 535 { 536 struct super_block *sb = e4b->bd_sb; 537 int order = e4b->bd_blkbits + 1; 538 int max; 539 int max2; 540 int i; 541 int j; 542 int k; 543 int count; 544 struct ext4_group_info *grp; 545 int fragments = 0; 546 int fstart; 547 struct list_head *cur; 548 void *buddy; 549 void *buddy2; 550 551 { 552 static int mb_check_counter; 553 if (mb_check_counter++ % 100 != 0) 554 return 0; 555 } 556 557 while (order > 1) { 558 buddy = mb_find_buddy(e4b, order, &max); 559 MB_CHECK_ASSERT(buddy); 560 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 561 MB_CHECK_ASSERT(buddy2); 562 MB_CHECK_ASSERT(buddy != buddy2); 563 MB_CHECK_ASSERT(max * 2 == max2); 564 565 count = 0; 566 for (i = 0; i < max; i++) { 567 568 if (mb_test_bit(i, buddy)) { 569 /* only single bit in buddy2 may be 1 */ 570 if (!mb_test_bit(i << 1, buddy2)) { 571 MB_CHECK_ASSERT( 572 mb_test_bit((i<<1)+1, buddy2)); 573 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 574 MB_CHECK_ASSERT( 575 mb_test_bit(i << 1, buddy2)); 576 } 577 continue; 578 } 579 580 /* both bits in buddy2 must be 0 */ 581 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 582 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 583 584 for (j = 0; j < (1 << order); j++) { 585 k = (i * (1 << order)) + j; 586 MB_CHECK_ASSERT( 587 !mb_test_bit(k, EXT4_MB_BITMAP(e4b))); 588 } 589 count++; 590 } 591 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 592 order--; 593 } 594 595 fstart = -1; 596 buddy = mb_find_buddy(e4b, 0, &max); 597 for (i = 0; i < max; i++) { 598 if (!mb_test_bit(i, buddy)) { 599 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 600 if (fstart == -1) { 601 fragments++; 602 fstart = i; 603 } 604 continue; 605 } 606 fstart = -1; 607 /* check used bits only */ 608 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 609 buddy2 = mb_find_buddy(e4b, j, &max2); 610 k = i >> j; 611 MB_CHECK_ASSERT(k < max2); 612 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 613 } 614 } 615 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 616 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 617 618 grp = ext4_get_group_info(sb, e4b->bd_group); 619 buddy = mb_find_buddy(e4b, 0, &max); 620 list_for_each(cur, &grp->bb_prealloc_list) { 621 ext4_group_t groupnr; 622 struct ext4_prealloc_space *pa; 623 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 624 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 625 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 626 for (i = 0; i < pa->pa_len; i++) 627 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 628 } 629 return 0; 630 } 631 #undef MB_CHECK_ASSERT 632 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 633 __FILE__, __func__, __LINE__) 634 #else 635 #define mb_check_buddy(e4b) 636 #endif 637 638 /* FIXME!! need more doc */ 639 static void ext4_mb_mark_free_simple(struct super_block *sb, 640 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 641 struct ext4_group_info *grp) 642 { 643 struct ext4_sb_info *sbi = EXT4_SB(sb); 644 ext4_grpblk_t min; 645 ext4_grpblk_t max; 646 ext4_grpblk_t chunk; 647 unsigned short border; 648 649 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb)); 650 651 border = 2 << sb->s_blocksize_bits; 652 653 while (len > 0) { 654 /* find how many blocks can be covered since this position */ 655 max = ffs(first | border) - 1; 656 657 /* find how many blocks of power 2 we need to mark */ 658 min = fls(len) - 1; 659 660 if (max < min) 661 min = max; 662 chunk = 1 << min; 663 664 /* mark multiblock chunks only */ 665 grp->bb_counters[min]++; 666 if (min > 0) 667 mb_clear_bit(first >> min, 668 buddy + sbi->s_mb_offsets[min]); 669 670 len -= chunk; 671 first += chunk; 672 } 673 } 674 675 /* 676 * Cache the order of the largest free extent we have available in this block 677 * group. 678 */ 679 static void 680 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 681 { 682 int i; 683 int bits; 684 685 grp->bb_largest_free_order = -1; /* uninit */ 686 687 bits = sb->s_blocksize_bits + 1; 688 for (i = bits; i >= 0; i--) { 689 if (grp->bb_counters[i] > 0) { 690 grp->bb_largest_free_order = i; 691 break; 692 } 693 } 694 } 695 696 static noinline_for_stack 697 void ext4_mb_generate_buddy(struct super_block *sb, 698 void *buddy, void *bitmap, ext4_group_t group) 699 { 700 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 701 ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb); 702 ext4_grpblk_t i = 0; 703 ext4_grpblk_t first; 704 ext4_grpblk_t len; 705 unsigned free = 0; 706 unsigned fragments = 0; 707 unsigned long long period = get_cycles(); 708 709 /* initialize buddy from bitmap which is aggregation 710 * of on-disk bitmap and preallocations */ 711 i = mb_find_next_zero_bit(bitmap, max, 0); 712 grp->bb_first_free = i; 713 while (i < max) { 714 fragments++; 715 first = i; 716 i = mb_find_next_bit(bitmap, max, i); 717 len = i - first; 718 free += len; 719 if (len > 1) 720 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 721 else 722 grp->bb_counters[0]++; 723 if (i < max) 724 i = mb_find_next_zero_bit(bitmap, max, i); 725 } 726 grp->bb_fragments = fragments; 727 728 if (free != grp->bb_free) { 729 ext4_grp_locked_error(sb, group, 0, 0, 730 "%u blocks in bitmap, %u in gd", 731 free, grp->bb_free); 732 /* 733 * If we intent to continue, we consider group descritor 734 * corrupt and update bb_free using bitmap value 735 */ 736 grp->bb_free = free; 737 } 738 mb_set_largest_free_order(sb, grp); 739 740 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 741 742 period = get_cycles() - period; 743 spin_lock(&EXT4_SB(sb)->s_bal_lock); 744 EXT4_SB(sb)->s_mb_buddies_generated++; 745 EXT4_SB(sb)->s_mb_generation_time += period; 746 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 747 } 748 749 /* The buddy information is attached the buddy cache inode 750 * for convenience. The information regarding each group 751 * is loaded via ext4_mb_load_buddy. The information involve 752 * block bitmap and buddy information. The information are 753 * stored in the inode as 754 * 755 * { page } 756 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 757 * 758 * 759 * one block each for bitmap and buddy information. 760 * So for each group we take up 2 blocks. A page can 761 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 762 * So it can have information regarding groups_per_page which 763 * is blocks_per_page/2 764 * 765 * Locking note: This routine takes the block group lock of all groups 766 * for this page; do not hold this lock when calling this routine! 767 */ 768 769 static int ext4_mb_init_cache(struct page *page, char *incore) 770 { 771 ext4_group_t ngroups; 772 int blocksize; 773 int blocks_per_page; 774 int groups_per_page; 775 int err = 0; 776 int i; 777 ext4_group_t first_group; 778 int first_block; 779 struct super_block *sb; 780 struct buffer_head *bhs; 781 struct buffer_head **bh; 782 struct inode *inode; 783 char *data; 784 char *bitmap; 785 786 mb_debug(1, "init page %lu\n", page->index); 787 788 inode = page->mapping->host; 789 sb = inode->i_sb; 790 ngroups = ext4_get_groups_count(sb); 791 blocksize = 1 << inode->i_blkbits; 792 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 793 794 groups_per_page = blocks_per_page >> 1; 795 if (groups_per_page == 0) 796 groups_per_page = 1; 797 798 /* allocate buffer_heads to read bitmaps */ 799 if (groups_per_page > 1) { 800 err = -ENOMEM; 801 i = sizeof(struct buffer_head *) * groups_per_page; 802 bh = kzalloc(i, GFP_NOFS); 803 if (bh == NULL) 804 goto out; 805 } else 806 bh = &bhs; 807 808 first_group = page->index * blocks_per_page / 2; 809 810 /* read all groups the page covers into the cache */ 811 for (i = 0; i < groups_per_page; i++) { 812 struct ext4_group_desc *desc; 813 814 if (first_group + i >= ngroups) 815 break; 816 817 err = -EIO; 818 desc = ext4_get_group_desc(sb, first_group + i, NULL); 819 if (desc == NULL) 820 goto out; 821 822 err = -ENOMEM; 823 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc)); 824 if (bh[i] == NULL) 825 goto out; 826 827 if (bitmap_uptodate(bh[i])) 828 continue; 829 830 lock_buffer(bh[i]); 831 if (bitmap_uptodate(bh[i])) { 832 unlock_buffer(bh[i]); 833 continue; 834 } 835 ext4_lock_group(sb, first_group + i); 836 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 837 ext4_init_block_bitmap(sb, bh[i], 838 first_group + i, desc); 839 set_bitmap_uptodate(bh[i]); 840 set_buffer_uptodate(bh[i]); 841 ext4_unlock_group(sb, first_group + i); 842 unlock_buffer(bh[i]); 843 continue; 844 } 845 ext4_unlock_group(sb, first_group + i); 846 if (buffer_uptodate(bh[i])) { 847 /* 848 * if not uninit if bh is uptodate, 849 * bitmap is also uptodate 850 */ 851 set_bitmap_uptodate(bh[i]); 852 unlock_buffer(bh[i]); 853 continue; 854 } 855 get_bh(bh[i]); 856 /* 857 * submit the buffer_head for read. We can 858 * safely mark the bitmap as uptodate now. 859 * We do it here so the bitmap uptodate bit 860 * get set with buffer lock held. 861 */ 862 set_bitmap_uptodate(bh[i]); 863 bh[i]->b_end_io = end_buffer_read_sync; 864 submit_bh(READ, bh[i]); 865 mb_debug(1, "read bitmap for group %u\n", first_group + i); 866 } 867 868 /* wait for I/O completion */ 869 for (i = 0; i < groups_per_page && bh[i]; i++) 870 wait_on_buffer(bh[i]); 871 872 err = -EIO; 873 for (i = 0; i < groups_per_page && bh[i]; i++) 874 if (!buffer_uptodate(bh[i])) 875 goto out; 876 877 err = 0; 878 first_block = page->index * blocks_per_page; 879 /* init the page */ 880 memset(page_address(page), 0xff, PAGE_CACHE_SIZE); 881 for (i = 0; i < blocks_per_page; i++) { 882 int group; 883 struct ext4_group_info *grinfo; 884 885 group = (first_block + i) >> 1; 886 if (group >= ngroups) 887 break; 888 889 /* 890 * data carry information regarding this 891 * particular group in the format specified 892 * above 893 * 894 */ 895 data = page_address(page) + (i * blocksize); 896 bitmap = bh[group - first_group]->b_data; 897 898 /* 899 * We place the buddy block and bitmap block 900 * close together 901 */ 902 if ((first_block + i) & 1) { 903 /* this is block of buddy */ 904 BUG_ON(incore == NULL); 905 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 906 group, page->index, i * blocksize); 907 trace_ext4_mb_buddy_bitmap_load(sb, group); 908 grinfo = ext4_get_group_info(sb, group); 909 grinfo->bb_fragments = 0; 910 memset(grinfo->bb_counters, 0, 911 sizeof(*grinfo->bb_counters) * 912 (sb->s_blocksize_bits+2)); 913 /* 914 * incore got set to the group block bitmap below 915 */ 916 ext4_lock_group(sb, group); 917 ext4_mb_generate_buddy(sb, data, incore, group); 918 ext4_unlock_group(sb, group); 919 incore = NULL; 920 } else { 921 /* this is block of bitmap */ 922 BUG_ON(incore != NULL); 923 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 924 group, page->index, i * blocksize); 925 trace_ext4_mb_bitmap_load(sb, group); 926 927 /* see comments in ext4_mb_put_pa() */ 928 ext4_lock_group(sb, group); 929 memcpy(data, bitmap, blocksize); 930 931 /* mark all preallocated blks used in in-core bitmap */ 932 ext4_mb_generate_from_pa(sb, data, group); 933 ext4_mb_generate_from_freelist(sb, data, group); 934 ext4_unlock_group(sb, group); 935 936 /* set incore so that the buddy information can be 937 * generated using this 938 */ 939 incore = data; 940 } 941 } 942 SetPageUptodate(page); 943 944 out: 945 if (bh) { 946 for (i = 0; i < groups_per_page && bh[i]; i++) 947 brelse(bh[i]); 948 if (bh != &bhs) 949 kfree(bh); 950 } 951 return err; 952 } 953 954 /* 955 * lock the group_info alloc_sem of all the groups 956 * belonging to the same buddy cache page. This 957 * make sure other parallel operation on the buddy 958 * cache doesn't happen whild holding the buddy cache 959 * lock 960 */ 961 static int ext4_mb_get_buddy_cache_lock(struct super_block *sb, 962 ext4_group_t group) 963 { 964 int i; 965 int block, pnum; 966 int blocks_per_page; 967 int groups_per_page; 968 ext4_group_t ngroups = ext4_get_groups_count(sb); 969 ext4_group_t first_group; 970 struct ext4_group_info *grp; 971 972 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 973 /* 974 * the buddy cache inode stores the block bitmap 975 * and buddy information in consecutive blocks. 976 * So for each group we need two blocks. 977 */ 978 block = group * 2; 979 pnum = block / blocks_per_page; 980 first_group = pnum * blocks_per_page / 2; 981 982 groups_per_page = blocks_per_page >> 1; 983 if (groups_per_page == 0) 984 groups_per_page = 1; 985 /* read all groups the page covers into the cache */ 986 for (i = 0; i < groups_per_page; i++) { 987 988 if ((first_group + i) >= ngroups) 989 break; 990 grp = ext4_get_group_info(sb, first_group + i); 991 /* take all groups write allocation 992 * semaphore. This make sure there is 993 * no block allocation going on in any 994 * of that groups 995 */ 996 down_write_nested(&grp->alloc_sem, i); 997 } 998 return i; 999 } 1000 1001 static void ext4_mb_put_buddy_cache_lock(struct super_block *sb, 1002 ext4_group_t group, int locked_group) 1003 { 1004 int i; 1005 int block, pnum; 1006 int blocks_per_page; 1007 ext4_group_t first_group; 1008 struct ext4_group_info *grp; 1009 1010 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1011 /* 1012 * the buddy cache inode stores the block bitmap 1013 * and buddy information in consecutive blocks. 1014 * So for each group we need two blocks. 1015 */ 1016 block = group * 2; 1017 pnum = block / blocks_per_page; 1018 first_group = pnum * blocks_per_page / 2; 1019 /* release locks on all the groups */ 1020 for (i = 0; i < locked_group; i++) { 1021 1022 grp = ext4_get_group_info(sb, first_group + i); 1023 /* take all groups write allocation 1024 * semaphore. This make sure there is 1025 * no block allocation going on in any 1026 * of that groups 1027 */ 1028 up_write(&grp->alloc_sem); 1029 } 1030 1031 } 1032 1033 /* 1034 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1035 * block group lock of all groups for this page; do not hold the BG lock when 1036 * calling this routine! 1037 */ 1038 static noinline_for_stack 1039 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1040 { 1041 1042 int ret = 0; 1043 void *bitmap; 1044 int blocks_per_page; 1045 int block, pnum, poff; 1046 int num_grp_locked = 0; 1047 struct ext4_group_info *this_grp; 1048 struct ext4_sb_info *sbi = EXT4_SB(sb); 1049 struct inode *inode = sbi->s_buddy_cache; 1050 struct page *page = NULL, *bitmap_page = NULL; 1051 1052 mb_debug(1, "init group %u\n", group); 1053 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1054 this_grp = ext4_get_group_info(sb, group); 1055 /* 1056 * This ensures that we don't reinit the buddy cache 1057 * page which map to the group from which we are already 1058 * allocating. If we are looking at the buddy cache we would 1059 * have taken a reference using ext4_mb_load_buddy and that 1060 * would have taken the alloc_sem lock. 1061 */ 1062 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group); 1063 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) { 1064 /* 1065 * somebody initialized the group 1066 * return without doing anything 1067 */ 1068 ret = 0; 1069 goto err; 1070 } 1071 /* 1072 * the buddy cache inode stores the block bitmap 1073 * and buddy information in consecutive blocks. 1074 * So for each group we need two blocks. 1075 */ 1076 block = group * 2; 1077 pnum = block / blocks_per_page; 1078 poff = block % blocks_per_page; 1079 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1080 if (page) { 1081 BUG_ON(page->mapping != inode->i_mapping); 1082 ret = ext4_mb_init_cache(page, NULL); 1083 if (ret) { 1084 unlock_page(page); 1085 goto err; 1086 } 1087 unlock_page(page); 1088 } 1089 if (page == NULL || !PageUptodate(page)) { 1090 ret = -EIO; 1091 goto err; 1092 } 1093 mark_page_accessed(page); 1094 bitmap_page = page; 1095 bitmap = page_address(page) + (poff * sb->s_blocksize); 1096 1097 /* init buddy cache */ 1098 block++; 1099 pnum = block / blocks_per_page; 1100 poff = block % blocks_per_page; 1101 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1102 if (page == bitmap_page) { 1103 /* 1104 * If both the bitmap and buddy are in 1105 * the same page we don't need to force 1106 * init the buddy 1107 */ 1108 unlock_page(page); 1109 } else if (page) { 1110 BUG_ON(page->mapping != inode->i_mapping); 1111 ret = ext4_mb_init_cache(page, bitmap); 1112 if (ret) { 1113 unlock_page(page); 1114 goto err; 1115 } 1116 unlock_page(page); 1117 } 1118 if (page == NULL || !PageUptodate(page)) { 1119 ret = -EIO; 1120 goto err; 1121 } 1122 mark_page_accessed(page); 1123 err: 1124 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked); 1125 if (bitmap_page) 1126 page_cache_release(bitmap_page); 1127 if (page) 1128 page_cache_release(page); 1129 return ret; 1130 } 1131 1132 /* 1133 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1134 * block group lock of all groups for this page; do not hold the BG lock when 1135 * calling this routine! 1136 */ 1137 static noinline_for_stack int 1138 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1139 struct ext4_buddy *e4b) 1140 { 1141 int blocks_per_page; 1142 int block; 1143 int pnum; 1144 int poff; 1145 struct page *page; 1146 int ret; 1147 struct ext4_group_info *grp; 1148 struct ext4_sb_info *sbi = EXT4_SB(sb); 1149 struct inode *inode = sbi->s_buddy_cache; 1150 1151 mb_debug(1, "load group %u\n", group); 1152 1153 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1154 grp = ext4_get_group_info(sb, group); 1155 1156 e4b->bd_blkbits = sb->s_blocksize_bits; 1157 e4b->bd_info = ext4_get_group_info(sb, group); 1158 e4b->bd_sb = sb; 1159 e4b->bd_group = group; 1160 e4b->bd_buddy_page = NULL; 1161 e4b->bd_bitmap_page = NULL; 1162 e4b->alloc_semp = &grp->alloc_sem; 1163 1164 /* Take the read lock on the group alloc 1165 * sem. This would make sure a parallel 1166 * ext4_mb_init_group happening on other 1167 * groups mapped by the page is blocked 1168 * till we are done with allocation 1169 */ 1170 repeat_load_buddy: 1171 down_read(e4b->alloc_semp); 1172 1173 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1174 /* we need to check for group need init flag 1175 * with alloc_semp held so that we can be sure 1176 * that new blocks didn't get added to the group 1177 * when we are loading the buddy cache 1178 */ 1179 up_read(e4b->alloc_semp); 1180 /* 1181 * we need full data about the group 1182 * to make a good selection 1183 */ 1184 ret = ext4_mb_init_group(sb, group); 1185 if (ret) 1186 return ret; 1187 goto repeat_load_buddy; 1188 } 1189 1190 /* 1191 * the buddy cache inode stores the block bitmap 1192 * and buddy information in consecutive blocks. 1193 * So for each group we need two blocks. 1194 */ 1195 block = group * 2; 1196 pnum = block / blocks_per_page; 1197 poff = block % blocks_per_page; 1198 1199 /* we could use find_or_create_page(), but it locks page 1200 * what we'd like to avoid in fast path ... */ 1201 page = find_get_page(inode->i_mapping, pnum); 1202 if (page == NULL || !PageUptodate(page)) { 1203 if (page) 1204 /* 1205 * drop the page reference and try 1206 * to get the page with lock. If we 1207 * are not uptodate that implies 1208 * somebody just created the page but 1209 * is yet to initialize the same. So 1210 * wait for it to initialize. 1211 */ 1212 page_cache_release(page); 1213 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1214 if (page) { 1215 BUG_ON(page->mapping != inode->i_mapping); 1216 if (!PageUptodate(page)) { 1217 ret = ext4_mb_init_cache(page, NULL); 1218 if (ret) { 1219 unlock_page(page); 1220 goto err; 1221 } 1222 mb_cmp_bitmaps(e4b, page_address(page) + 1223 (poff * sb->s_blocksize)); 1224 } 1225 unlock_page(page); 1226 } 1227 } 1228 if (page == NULL || !PageUptodate(page)) { 1229 ret = -EIO; 1230 goto err; 1231 } 1232 e4b->bd_bitmap_page = page; 1233 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1234 mark_page_accessed(page); 1235 1236 block++; 1237 pnum = block / blocks_per_page; 1238 poff = block % blocks_per_page; 1239 1240 page = find_get_page(inode->i_mapping, pnum); 1241 if (page == NULL || !PageUptodate(page)) { 1242 if (page) 1243 page_cache_release(page); 1244 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1245 if (page) { 1246 BUG_ON(page->mapping != inode->i_mapping); 1247 if (!PageUptodate(page)) { 1248 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1249 if (ret) { 1250 unlock_page(page); 1251 goto err; 1252 } 1253 } 1254 unlock_page(page); 1255 } 1256 } 1257 if (page == NULL || !PageUptodate(page)) { 1258 ret = -EIO; 1259 goto err; 1260 } 1261 e4b->bd_buddy_page = page; 1262 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1263 mark_page_accessed(page); 1264 1265 BUG_ON(e4b->bd_bitmap_page == NULL); 1266 BUG_ON(e4b->bd_buddy_page == NULL); 1267 1268 return 0; 1269 1270 err: 1271 if (e4b->bd_bitmap_page) 1272 page_cache_release(e4b->bd_bitmap_page); 1273 if (e4b->bd_buddy_page) 1274 page_cache_release(e4b->bd_buddy_page); 1275 e4b->bd_buddy = NULL; 1276 e4b->bd_bitmap = NULL; 1277 1278 /* Done with the buddy cache */ 1279 up_read(e4b->alloc_semp); 1280 return ret; 1281 } 1282 1283 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1284 { 1285 if (e4b->bd_bitmap_page) 1286 page_cache_release(e4b->bd_bitmap_page); 1287 if (e4b->bd_buddy_page) 1288 page_cache_release(e4b->bd_buddy_page); 1289 /* Done with the buddy cache */ 1290 if (e4b->alloc_semp) 1291 up_read(e4b->alloc_semp); 1292 } 1293 1294 1295 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1296 { 1297 int order = 1; 1298 void *bb; 1299 1300 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 1301 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1302 1303 bb = EXT4_MB_BUDDY(e4b); 1304 while (order <= e4b->bd_blkbits + 1) { 1305 block = block >> 1; 1306 if (!mb_test_bit(block, bb)) { 1307 /* this block is part of buddy of order 'order' */ 1308 return order; 1309 } 1310 bb += 1 << (e4b->bd_blkbits - order); 1311 order++; 1312 } 1313 return 0; 1314 } 1315 1316 static void mb_clear_bits(void *bm, int cur, int len) 1317 { 1318 __u32 *addr; 1319 1320 len = cur + len; 1321 while (cur < len) { 1322 if ((cur & 31) == 0 && (len - cur) >= 32) { 1323 /* fast path: clear whole word at once */ 1324 addr = bm + (cur >> 3); 1325 *addr = 0; 1326 cur += 32; 1327 continue; 1328 } 1329 mb_clear_bit(cur, bm); 1330 cur++; 1331 } 1332 } 1333 1334 static void mb_set_bits(void *bm, int cur, int len) 1335 { 1336 __u32 *addr; 1337 1338 len = cur + len; 1339 while (cur < len) { 1340 if ((cur & 31) == 0 && (len - cur) >= 32) { 1341 /* fast path: set whole word at once */ 1342 addr = bm + (cur >> 3); 1343 *addr = 0xffffffff; 1344 cur += 32; 1345 continue; 1346 } 1347 mb_set_bit(cur, bm); 1348 cur++; 1349 } 1350 } 1351 1352 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1353 int first, int count) 1354 { 1355 int block = 0; 1356 int max = 0; 1357 int order; 1358 void *buddy; 1359 void *buddy2; 1360 struct super_block *sb = e4b->bd_sb; 1361 1362 BUG_ON(first + count > (sb->s_blocksize << 3)); 1363 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1364 mb_check_buddy(e4b); 1365 mb_free_blocks_double(inode, e4b, first, count); 1366 1367 e4b->bd_info->bb_free += count; 1368 if (first < e4b->bd_info->bb_first_free) 1369 e4b->bd_info->bb_first_free = first; 1370 1371 /* let's maintain fragments counter */ 1372 if (first != 0) 1373 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b)); 1374 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1375 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b)); 1376 if (block && max) 1377 e4b->bd_info->bb_fragments--; 1378 else if (!block && !max) 1379 e4b->bd_info->bb_fragments++; 1380 1381 /* let's maintain buddy itself */ 1382 while (count-- > 0) { 1383 block = first++; 1384 order = 0; 1385 1386 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) { 1387 ext4_fsblk_t blocknr; 1388 1389 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1390 blocknr += block; 1391 ext4_grp_locked_error(sb, e4b->bd_group, 1392 inode ? inode->i_ino : 0, 1393 blocknr, 1394 "freeing already freed block " 1395 "(bit %u)", block); 1396 } 1397 mb_clear_bit(block, EXT4_MB_BITMAP(e4b)); 1398 e4b->bd_info->bb_counters[order]++; 1399 1400 /* start of the buddy */ 1401 buddy = mb_find_buddy(e4b, order, &max); 1402 1403 do { 1404 block &= ~1UL; 1405 if (mb_test_bit(block, buddy) || 1406 mb_test_bit(block + 1, buddy)) 1407 break; 1408 1409 /* both the buddies are free, try to coalesce them */ 1410 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1411 1412 if (!buddy2) 1413 break; 1414 1415 if (order > 0) { 1416 /* for special purposes, we don't set 1417 * free bits in bitmap */ 1418 mb_set_bit(block, buddy); 1419 mb_set_bit(block + 1, buddy); 1420 } 1421 e4b->bd_info->bb_counters[order]--; 1422 e4b->bd_info->bb_counters[order]--; 1423 1424 block = block >> 1; 1425 order++; 1426 e4b->bd_info->bb_counters[order]++; 1427 1428 mb_clear_bit(block, buddy2); 1429 buddy = buddy2; 1430 } while (1); 1431 } 1432 mb_set_largest_free_order(sb, e4b->bd_info); 1433 mb_check_buddy(e4b); 1434 } 1435 1436 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block, 1437 int needed, struct ext4_free_extent *ex) 1438 { 1439 int next = block; 1440 int max; 1441 int ord; 1442 void *buddy; 1443 1444 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1445 BUG_ON(ex == NULL); 1446 1447 buddy = mb_find_buddy(e4b, order, &max); 1448 BUG_ON(buddy == NULL); 1449 BUG_ON(block >= max); 1450 if (mb_test_bit(block, buddy)) { 1451 ex->fe_len = 0; 1452 ex->fe_start = 0; 1453 ex->fe_group = 0; 1454 return 0; 1455 } 1456 1457 /* FIXME dorp order completely ? */ 1458 if (likely(order == 0)) { 1459 /* find actual order */ 1460 order = mb_find_order_for_block(e4b, block); 1461 block = block >> order; 1462 } 1463 1464 ex->fe_len = 1 << order; 1465 ex->fe_start = block << order; 1466 ex->fe_group = e4b->bd_group; 1467 1468 /* calc difference from given start */ 1469 next = next - ex->fe_start; 1470 ex->fe_len -= next; 1471 ex->fe_start += next; 1472 1473 while (needed > ex->fe_len && 1474 (buddy = mb_find_buddy(e4b, order, &max))) { 1475 1476 if (block + 1 >= max) 1477 break; 1478 1479 next = (block + 1) * (1 << order); 1480 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b))) 1481 break; 1482 1483 ord = mb_find_order_for_block(e4b, next); 1484 1485 order = ord; 1486 block = next >> order; 1487 ex->fe_len += 1 << order; 1488 } 1489 1490 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1491 return ex->fe_len; 1492 } 1493 1494 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1495 { 1496 int ord; 1497 int mlen = 0; 1498 int max = 0; 1499 int cur; 1500 int start = ex->fe_start; 1501 int len = ex->fe_len; 1502 unsigned ret = 0; 1503 int len0 = len; 1504 void *buddy; 1505 1506 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1507 BUG_ON(e4b->bd_group != ex->fe_group); 1508 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1509 mb_check_buddy(e4b); 1510 mb_mark_used_double(e4b, start, len); 1511 1512 e4b->bd_info->bb_free -= len; 1513 if (e4b->bd_info->bb_first_free == start) 1514 e4b->bd_info->bb_first_free += len; 1515 1516 /* let's maintain fragments counter */ 1517 if (start != 0) 1518 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b)); 1519 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1520 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b)); 1521 if (mlen && max) 1522 e4b->bd_info->bb_fragments++; 1523 else if (!mlen && !max) 1524 e4b->bd_info->bb_fragments--; 1525 1526 /* let's maintain buddy itself */ 1527 while (len) { 1528 ord = mb_find_order_for_block(e4b, start); 1529 1530 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1531 /* the whole chunk may be allocated at once! */ 1532 mlen = 1 << ord; 1533 buddy = mb_find_buddy(e4b, ord, &max); 1534 BUG_ON((start >> ord) >= max); 1535 mb_set_bit(start >> ord, buddy); 1536 e4b->bd_info->bb_counters[ord]--; 1537 start += mlen; 1538 len -= mlen; 1539 BUG_ON(len < 0); 1540 continue; 1541 } 1542 1543 /* store for history */ 1544 if (ret == 0) 1545 ret = len | (ord << 16); 1546 1547 /* we have to split large buddy */ 1548 BUG_ON(ord <= 0); 1549 buddy = mb_find_buddy(e4b, ord, &max); 1550 mb_set_bit(start >> ord, buddy); 1551 e4b->bd_info->bb_counters[ord]--; 1552 1553 ord--; 1554 cur = (start >> ord) & ~1U; 1555 buddy = mb_find_buddy(e4b, ord, &max); 1556 mb_clear_bit(cur, buddy); 1557 mb_clear_bit(cur + 1, buddy); 1558 e4b->bd_info->bb_counters[ord]++; 1559 e4b->bd_info->bb_counters[ord]++; 1560 } 1561 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1562 1563 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0); 1564 mb_check_buddy(e4b); 1565 1566 return ret; 1567 } 1568 1569 /* 1570 * Must be called under group lock! 1571 */ 1572 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1573 struct ext4_buddy *e4b) 1574 { 1575 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1576 int ret; 1577 1578 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1579 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1580 1581 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1582 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1583 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1584 1585 /* preallocation can change ac_b_ex, thus we store actually 1586 * allocated blocks for history */ 1587 ac->ac_f_ex = ac->ac_b_ex; 1588 1589 ac->ac_status = AC_STATUS_FOUND; 1590 ac->ac_tail = ret & 0xffff; 1591 ac->ac_buddy = ret >> 16; 1592 1593 /* 1594 * take the page reference. We want the page to be pinned 1595 * so that we don't get a ext4_mb_init_cache_call for this 1596 * group until we update the bitmap. That would mean we 1597 * double allocate blocks. The reference is dropped 1598 * in ext4_mb_release_context 1599 */ 1600 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1601 get_page(ac->ac_bitmap_page); 1602 ac->ac_buddy_page = e4b->bd_buddy_page; 1603 get_page(ac->ac_buddy_page); 1604 /* on allocation we use ac to track the held semaphore */ 1605 ac->alloc_semp = e4b->alloc_semp; 1606 e4b->alloc_semp = NULL; 1607 /* store last allocated for subsequent stream allocation */ 1608 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1609 spin_lock(&sbi->s_md_lock); 1610 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1611 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1612 spin_unlock(&sbi->s_md_lock); 1613 } 1614 } 1615 1616 /* 1617 * regular allocator, for general purposes allocation 1618 */ 1619 1620 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1621 struct ext4_buddy *e4b, 1622 int finish_group) 1623 { 1624 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1625 struct ext4_free_extent *bex = &ac->ac_b_ex; 1626 struct ext4_free_extent *gex = &ac->ac_g_ex; 1627 struct ext4_free_extent ex; 1628 int max; 1629 1630 if (ac->ac_status == AC_STATUS_FOUND) 1631 return; 1632 /* 1633 * We don't want to scan for a whole year 1634 */ 1635 if (ac->ac_found > sbi->s_mb_max_to_scan && 1636 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1637 ac->ac_status = AC_STATUS_BREAK; 1638 return; 1639 } 1640 1641 /* 1642 * Haven't found good chunk so far, let's continue 1643 */ 1644 if (bex->fe_len < gex->fe_len) 1645 return; 1646 1647 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1648 && bex->fe_group == e4b->bd_group) { 1649 /* recheck chunk's availability - we don't know 1650 * when it was found (within this lock-unlock 1651 * period or not) */ 1652 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex); 1653 if (max >= gex->fe_len) { 1654 ext4_mb_use_best_found(ac, e4b); 1655 return; 1656 } 1657 } 1658 } 1659 1660 /* 1661 * The routine checks whether found extent is good enough. If it is, 1662 * then the extent gets marked used and flag is set to the context 1663 * to stop scanning. Otherwise, the extent is compared with the 1664 * previous found extent and if new one is better, then it's stored 1665 * in the context. Later, the best found extent will be used, if 1666 * mballoc can't find good enough extent. 1667 * 1668 * FIXME: real allocation policy is to be designed yet! 1669 */ 1670 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1671 struct ext4_free_extent *ex, 1672 struct ext4_buddy *e4b) 1673 { 1674 struct ext4_free_extent *bex = &ac->ac_b_ex; 1675 struct ext4_free_extent *gex = &ac->ac_g_ex; 1676 1677 BUG_ON(ex->fe_len <= 0); 1678 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1679 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1680 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1681 1682 ac->ac_found++; 1683 1684 /* 1685 * The special case - take what you catch first 1686 */ 1687 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1688 *bex = *ex; 1689 ext4_mb_use_best_found(ac, e4b); 1690 return; 1691 } 1692 1693 /* 1694 * Let's check whether the chuck is good enough 1695 */ 1696 if (ex->fe_len == gex->fe_len) { 1697 *bex = *ex; 1698 ext4_mb_use_best_found(ac, e4b); 1699 return; 1700 } 1701 1702 /* 1703 * If this is first found extent, just store it in the context 1704 */ 1705 if (bex->fe_len == 0) { 1706 *bex = *ex; 1707 return; 1708 } 1709 1710 /* 1711 * If new found extent is better, store it in the context 1712 */ 1713 if (bex->fe_len < gex->fe_len) { 1714 /* if the request isn't satisfied, any found extent 1715 * larger than previous best one is better */ 1716 if (ex->fe_len > bex->fe_len) 1717 *bex = *ex; 1718 } else if (ex->fe_len > gex->fe_len) { 1719 /* if the request is satisfied, then we try to find 1720 * an extent that still satisfy the request, but is 1721 * smaller than previous one */ 1722 if (ex->fe_len < bex->fe_len) 1723 *bex = *ex; 1724 } 1725 1726 ext4_mb_check_limits(ac, e4b, 0); 1727 } 1728 1729 static noinline_for_stack 1730 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1731 struct ext4_buddy *e4b) 1732 { 1733 struct ext4_free_extent ex = ac->ac_b_ex; 1734 ext4_group_t group = ex.fe_group; 1735 int max; 1736 int err; 1737 1738 BUG_ON(ex.fe_len <= 0); 1739 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1740 if (err) 1741 return err; 1742 1743 ext4_lock_group(ac->ac_sb, group); 1744 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex); 1745 1746 if (max > 0) { 1747 ac->ac_b_ex = ex; 1748 ext4_mb_use_best_found(ac, e4b); 1749 } 1750 1751 ext4_unlock_group(ac->ac_sb, group); 1752 ext4_mb_unload_buddy(e4b); 1753 1754 return 0; 1755 } 1756 1757 static noinline_for_stack 1758 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1759 struct ext4_buddy *e4b) 1760 { 1761 ext4_group_t group = ac->ac_g_ex.fe_group; 1762 int max; 1763 int err; 1764 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1765 struct ext4_free_extent ex; 1766 1767 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1768 return 0; 1769 1770 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1771 if (err) 1772 return err; 1773 1774 ext4_lock_group(ac->ac_sb, group); 1775 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start, 1776 ac->ac_g_ex.fe_len, &ex); 1777 1778 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1779 ext4_fsblk_t start; 1780 1781 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1782 ex.fe_start; 1783 /* use do_div to get remainder (would be 64-bit modulo) */ 1784 if (do_div(start, sbi->s_stripe) == 0) { 1785 ac->ac_found++; 1786 ac->ac_b_ex = ex; 1787 ext4_mb_use_best_found(ac, e4b); 1788 } 1789 } else if (max >= ac->ac_g_ex.fe_len) { 1790 BUG_ON(ex.fe_len <= 0); 1791 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1792 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1793 ac->ac_found++; 1794 ac->ac_b_ex = ex; 1795 ext4_mb_use_best_found(ac, e4b); 1796 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1797 /* Sometimes, caller may want to merge even small 1798 * number of blocks to an existing extent */ 1799 BUG_ON(ex.fe_len <= 0); 1800 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1801 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1802 ac->ac_found++; 1803 ac->ac_b_ex = ex; 1804 ext4_mb_use_best_found(ac, e4b); 1805 } 1806 ext4_unlock_group(ac->ac_sb, group); 1807 ext4_mb_unload_buddy(e4b); 1808 1809 return 0; 1810 } 1811 1812 /* 1813 * The routine scans buddy structures (not bitmap!) from given order 1814 * to max order and tries to find big enough chunk to satisfy the req 1815 */ 1816 static noinline_for_stack 1817 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1818 struct ext4_buddy *e4b) 1819 { 1820 struct super_block *sb = ac->ac_sb; 1821 struct ext4_group_info *grp = e4b->bd_info; 1822 void *buddy; 1823 int i; 1824 int k; 1825 int max; 1826 1827 BUG_ON(ac->ac_2order <= 0); 1828 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1829 if (grp->bb_counters[i] == 0) 1830 continue; 1831 1832 buddy = mb_find_buddy(e4b, i, &max); 1833 BUG_ON(buddy == NULL); 1834 1835 k = mb_find_next_zero_bit(buddy, max, 0); 1836 BUG_ON(k >= max); 1837 1838 ac->ac_found++; 1839 1840 ac->ac_b_ex.fe_len = 1 << i; 1841 ac->ac_b_ex.fe_start = k << i; 1842 ac->ac_b_ex.fe_group = e4b->bd_group; 1843 1844 ext4_mb_use_best_found(ac, e4b); 1845 1846 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1847 1848 if (EXT4_SB(sb)->s_mb_stats) 1849 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1850 1851 break; 1852 } 1853 } 1854 1855 /* 1856 * The routine scans the group and measures all found extents. 1857 * In order to optimize scanning, caller must pass number of 1858 * free blocks in the group, so the routine can know upper limit. 1859 */ 1860 static noinline_for_stack 1861 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1862 struct ext4_buddy *e4b) 1863 { 1864 struct super_block *sb = ac->ac_sb; 1865 void *bitmap = EXT4_MB_BITMAP(e4b); 1866 struct ext4_free_extent ex; 1867 int i; 1868 int free; 1869 1870 free = e4b->bd_info->bb_free; 1871 BUG_ON(free <= 0); 1872 1873 i = e4b->bd_info->bb_first_free; 1874 1875 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1876 i = mb_find_next_zero_bit(bitmap, 1877 EXT4_BLOCKS_PER_GROUP(sb), i); 1878 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) { 1879 /* 1880 * IF we have corrupt bitmap, we won't find any 1881 * free blocks even though group info says we 1882 * we have free blocks 1883 */ 1884 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1885 "%d free blocks as per " 1886 "group info. But bitmap says 0", 1887 free); 1888 break; 1889 } 1890 1891 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex); 1892 BUG_ON(ex.fe_len <= 0); 1893 if (free < ex.fe_len) { 1894 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1895 "%d free blocks as per " 1896 "group info. But got %d blocks", 1897 free, ex.fe_len); 1898 /* 1899 * The number of free blocks differs. This mostly 1900 * indicate that the bitmap is corrupt. So exit 1901 * without claiming the space. 1902 */ 1903 break; 1904 } 1905 1906 ext4_mb_measure_extent(ac, &ex, e4b); 1907 1908 i += ex.fe_len; 1909 free -= ex.fe_len; 1910 } 1911 1912 ext4_mb_check_limits(ac, e4b, 1); 1913 } 1914 1915 /* 1916 * This is a special case for storages like raid5 1917 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1918 */ 1919 static noinline_for_stack 1920 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1921 struct ext4_buddy *e4b) 1922 { 1923 struct super_block *sb = ac->ac_sb; 1924 struct ext4_sb_info *sbi = EXT4_SB(sb); 1925 void *bitmap = EXT4_MB_BITMAP(e4b); 1926 struct ext4_free_extent ex; 1927 ext4_fsblk_t first_group_block; 1928 ext4_fsblk_t a; 1929 ext4_grpblk_t i; 1930 int max; 1931 1932 BUG_ON(sbi->s_stripe == 0); 1933 1934 /* find first stripe-aligned block in group */ 1935 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1936 1937 a = first_group_block + sbi->s_stripe - 1; 1938 do_div(a, sbi->s_stripe); 1939 i = (a * sbi->s_stripe) - first_group_block; 1940 1941 while (i < EXT4_BLOCKS_PER_GROUP(sb)) { 1942 if (!mb_test_bit(i, bitmap)) { 1943 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex); 1944 if (max >= sbi->s_stripe) { 1945 ac->ac_found++; 1946 ac->ac_b_ex = ex; 1947 ext4_mb_use_best_found(ac, e4b); 1948 break; 1949 } 1950 } 1951 i += sbi->s_stripe; 1952 } 1953 } 1954 1955 /* This is now called BEFORE we load the buddy bitmap. */ 1956 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1957 ext4_group_t group, int cr) 1958 { 1959 unsigned free, fragments; 1960 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1961 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1962 1963 BUG_ON(cr < 0 || cr >= 4); 1964 1965 /* We only do this if the grp has never been initialized */ 1966 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1967 int ret = ext4_mb_init_group(ac->ac_sb, group); 1968 if (ret) 1969 return 0; 1970 } 1971 1972 free = grp->bb_free; 1973 fragments = grp->bb_fragments; 1974 if (free == 0) 1975 return 0; 1976 if (fragments == 0) 1977 return 0; 1978 1979 switch (cr) { 1980 case 0: 1981 BUG_ON(ac->ac_2order == 0); 1982 1983 if (grp->bb_largest_free_order < ac->ac_2order) 1984 return 0; 1985 1986 /* Avoid using the first bg of a flexgroup for data files */ 1987 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1988 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1989 ((group % flex_size) == 0)) 1990 return 0; 1991 1992 return 1; 1993 case 1: 1994 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1995 return 1; 1996 break; 1997 case 2: 1998 if (free >= ac->ac_g_ex.fe_len) 1999 return 1; 2000 break; 2001 case 3: 2002 return 1; 2003 default: 2004 BUG(); 2005 } 2006 2007 return 0; 2008 } 2009 2010 static noinline_for_stack int 2011 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2012 { 2013 ext4_group_t ngroups, group, i; 2014 int cr; 2015 int err = 0; 2016 struct ext4_sb_info *sbi; 2017 struct super_block *sb; 2018 struct ext4_buddy e4b; 2019 2020 sb = ac->ac_sb; 2021 sbi = EXT4_SB(sb); 2022 ngroups = ext4_get_groups_count(sb); 2023 /* non-extent files are limited to low blocks/groups */ 2024 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2025 ngroups = sbi->s_blockfile_groups; 2026 2027 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2028 2029 /* first, try the goal */ 2030 err = ext4_mb_find_by_goal(ac, &e4b); 2031 if (err || ac->ac_status == AC_STATUS_FOUND) 2032 goto out; 2033 2034 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2035 goto out; 2036 2037 /* 2038 * ac->ac2_order is set only if the fe_len is a power of 2 2039 * if ac2_order is set we also set criteria to 0 so that we 2040 * try exact allocation using buddy. 2041 */ 2042 i = fls(ac->ac_g_ex.fe_len); 2043 ac->ac_2order = 0; 2044 /* 2045 * We search using buddy data only if the order of the request 2046 * is greater than equal to the sbi_s_mb_order2_reqs 2047 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2048 */ 2049 if (i >= sbi->s_mb_order2_reqs) { 2050 /* 2051 * This should tell if fe_len is exactly power of 2 2052 */ 2053 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2054 ac->ac_2order = i - 1; 2055 } 2056 2057 /* if stream allocation is enabled, use global goal */ 2058 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2059 /* TBD: may be hot point */ 2060 spin_lock(&sbi->s_md_lock); 2061 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2062 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2063 spin_unlock(&sbi->s_md_lock); 2064 } 2065 2066 /* Let's just scan groups to find more-less suitable blocks */ 2067 cr = ac->ac_2order ? 0 : 1; 2068 /* 2069 * cr == 0 try to get exact allocation, 2070 * cr == 3 try to get anything 2071 */ 2072 repeat: 2073 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2074 ac->ac_criteria = cr; 2075 /* 2076 * searching for the right group start 2077 * from the goal value specified 2078 */ 2079 group = ac->ac_g_ex.fe_group; 2080 2081 for (i = 0; i < ngroups; group++, i++) { 2082 if (group == ngroups) 2083 group = 0; 2084 2085 /* This now checks without needing the buddy page */ 2086 if (!ext4_mb_good_group(ac, group, cr)) 2087 continue; 2088 2089 err = ext4_mb_load_buddy(sb, group, &e4b); 2090 if (err) 2091 goto out; 2092 2093 ext4_lock_group(sb, group); 2094 2095 /* 2096 * We need to check again after locking the 2097 * block group 2098 */ 2099 if (!ext4_mb_good_group(ac, group, cr)) { 2100 ext4_unlock_group(sb, group); 2101 ext4_mb_unload_buddy(&e4b); 2102 continue; 2103 } 2104 2105 ac->ac_groups_scanned++; 2106 if (cr == 0) 2107 ext4_mb_simple_scan_group(ac, &e4b); 2108 else if (cr == 1 && sbi->s_stripe && 2109 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2110 ext4_mb_scan_aligned(ac, &e4b); 2111 else 2112 ext4_mb_complex_scan_group(ac, &e4b); 2113 2114 ext4_unlock_group(sb, group); 2115 ext4_mb_unload_buddy(&e4b); 2116 2117 if (ac->ac_status != AC_STATUS_CONTINUE) 2118 break; 2119 } 2120 } 2121 2122 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2123 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2124 /* 2125 * We've been searching too long. Let's try to allocate 2126 * the best chunk we've found so far 2127 */ 2128 2129 ext4_mb_try_best_found(ac, &e4b); 2130 if (ac->ac_status != AC_STATUS_FOUND) { 2131 /* 2132 * Someone more lucky has already allocated it. 2133 * The only thing we can do is just take first 2134 * found block(s) 2135 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2136 */ 2137 ac->ac_b_ex.fe_group = 0; 2138 ac->ac_b_ex.fe_start = 0; 2139 ac->ac_b_ex.fe_len = 0; 2140 ac->ac_status = AC_STATUS_CONTINUE; 2141 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2142 cr = 3; 2143 atomic_inc(&sbi->s_mb_lost_chunks); 2144 goto repeat; 2145 } 2146 } 2147 out: 2148 return err; 2149 } 2150 2151 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2152 { 2153 struct super_block *sb = seq->private; 2154 ext4_group_t group; 2155 2156 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2157 return NULL; 2158 group = *pos + 1; 2159 return (void *) ((unsigned long) group); 2160 } 2161 2162 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2163 { 2164 struct super_block *sb = seq->private; 2165 ext4_group_t group; 2166 2167 ++*pos; 2168 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2169 return NULL; 2170 group = *pos + 1; 2171 return (void *) ((unsigned long) group); 2172 } 2173 2174 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2175 { 2176 struct super_block *sb = seq->private; 2177 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2178 int i; 2179 int err; 2180 struct ext4_buddy e4b; 2181 struct sg { 2182 struct ext4_group_info info; 2183 ext4_grpblk_t counters[16]; 2184 } sg; 2185 2186 group--; 2187 if (group == 0) 2188 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2189 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2190 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2191 "group", "free", "frags", "first", 2192 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2193 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2194 2195 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2196 sizeof(struct ext4_group_info); 2197 err = ext4_mb_load_buddy(sb, group, &e4b); 2198 if (err) { 2199 seq_printf(seq, "#%-5u: I/O error\n", group); 2200 return 0; 2201 } 2202 ext4_lock_group(sb, group); 2203 memcpy(&sg, ext4_get_group_info(sb, group), i); 2204 ext4_unlock_group(sb, group); 2205 ext4_mb_unload_buddy(&e4b); 2206 2207 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2208 sg.info.bb_fragments, sg.info.bb_first_free); 2209 for (i = 0; i <= 13; i++) 2210 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2211 sg.info.bb_counters[i] : 0); 2212 seq_printf(seq, " ]\n"); 2213 2214 return 0; 2215 } 2216 2217 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2218 { 2219 } 2220 2221 static const struct seq_operations ext4_mb_seq_groups_ops = { 2222 .start = ext4_mb_seq_groups_start, 2223 .next = ext4_mb_seq_groups_next, 2224 .stop = ext4_mb_seq_groups_stop, 2225 .show = ext4_mb_seq_groups_show, 2226 }; 2227 2228 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2229 { 2230 struct super_block *sb = PDE(inode)->data; 2231 int rc; 2232 2233 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2234 if (rc == 0) { 2235 struct seq_file *m = file->private_data; 2236 m->private = sb; 2237 } 2238 return rc; 2239 2240 } 2241 2242 static const struct file_operations ext4_mb_seq_groups_fops = { 2243 .owner = THIS_MODULE, 2244 .open = ext4_mb_seq_groups_open, 2245 .read = seq_read, 2246 .llseek = seq_lseek, 2247 .release = seq_release, 2248 }; 2249 2250 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2251 { 2252 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2253 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2254 2255 BUG_ON(!cachep); 2256 return cachep; 2257 } 2258 2259 /* Create and initialize ext4_group_info data for the given group. */ 2260 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2261 struct ext4_group_desc *desc) 2262 { 2263 int i; 2264 int metalen = 0; 2265 struct ext4_sb_info *sbi = EXT4_SB(sb); 2266 struct ext4_group_info **meta_group_info; 2267 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2268 2269 /* 2270 * First check if this group is the first of a reserved block. 2271 * If it's true, we have to allocate a new table of pointers 2272 * to ext4_group_info structures 2273 */ 2274 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2275 metalen = sizeof(*meta_group_info) << 2276 EXT4_DESC_PER_BLOCK_BITS(sb); 2277 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2278 if (meta_group_info == NULL) { 2279 printk(KERN_ERR "EXT4-fs: can't allocate mem for a " 2280 "buddy group\n"); 2281 goto exit_meta_group_info; 2282 } 2283 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2284 meta_group_info; 2285 } 2286 2287 meta_group_info = 2288 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2289 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2290 2291 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL); 2292 if (meta_group_info[i] == NULL) { 2293 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n"); 2294 goto exit_group_info; 2295 } 2296 memset(meta_group_info[i], 0, kmem_cache_size(cachep)); 2297 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2298 &(meta_group_info[i]->bb_state)); 2299 2300 /* 2301 * initialize bb_free to be able to skip 2302 * empty groups without initialization 2303 */ 2304 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2305 meta_group_info[i]->bb_free = 2306 ext4_free_blocks_after_init(sb, group, desc); 2307 } else { 2308 meta_group_info[i]->bb_free = 2309 ext4_free_blks_count(sb, desc); 2310 } 2311 2312 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2313 init_rwsem(&meta_group_info[i]->alloc_sem); 2314 meta_group_info[i]->bb_free_root = RB_ROOT; 2315 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2316 2317 #ifdef DOUBLE_CHECK 2318 { 2319 struct buffer_head *bh; 2320 meta_group_info[i]->bb_bitmap = 2321 kmalloc(sb->s_blocksize, GFP_KERNEL); 2322 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2323 bh = ext4_read_block_bitmap(sb, group); 2324 BUG_ON(bh == NULL); 2325 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2326 sb->s_blocksize); 2327 put_bh(bh); 2328 } 2329 #endif 2330 2331 return 0; 2332 2333 exit_group_info: 2334 /* If a meta_group_info table has been allocated, release it now */ 2335 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) 2336 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2337 exit_meta_group_info: 2338 return -ENOMEM; 2339 } /* ext4_mb_add_groupinfo */ 2340 2341 static int ext4_mb_init_backend(struct super_block *sb) 2342 { 2343 ext4_group_t ngroups = ext4_get_groups_count(sb); 2344 ext4_group_t i; 2345 struct ext4_sb_info *sbi = EXT4_SB(sb); 2346 struct ext4_super_block *es = sbi->s_es; 2347 int num_meta_group_infos; 2348 int num_meta_group_infos_max; 2349 int array_size; 2350 struct ext4_group_desc *desc; 2351 struct kmem_cache *cachep; 2352 2353 /* This is the number of blocks used by GDT */ 2354 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 2355 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); 2356 2357 /* 2358 * This is the total number of blocks used by GDT including 2359 * the number of reserved blocks for GDT. 2360 * The s_group_info array is allocated with this value 2361 * to allow a clean online resize without a complex 2362 * manipulation of pointer. 2363 * The drawback is the unused memory when no resize 2364 * occurs but it's very low in terms of pages 2365 * (see comments below) 2366 * Need to handle this properly when META_BG resizing is allowed 2367 */ 2368 num_meta_group_infos_max = num_meta_group_infos + 2369 le16_to_cpu(es->s_reserved_gdt_blocks); 2370 2371 /* 2372 * array_size is the size of s_group_info array. We round it 2373 * to the next power of two because this approximation is done 2374 * internally by kmalloc so we can have some more memory 2375 * for free here (e.g. may be used for META_BG resize). 2376 */ 2377 array_size = 1; 2378 while (array_size < sizeof(*sbi->s_group_info) * 2379 num_meta_group_infos_max) 2380 array_size = array_size << 1; 2381 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte 2382 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem. 2383 * So a two level scheme suffices for now. */ 2384 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL); 2385 if (sbi->s_group_info == NULL) { 2386 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n"); 2387 return -ENOMEM; 2388 } 2389 sbi->s_buddy_cache = new_inode(sb); 2390 if (sbi->s_buddy_cache == NULL) { 2391 printk(KERN_ERR "EXT4-fs: can't get new inode\n"); 2392 goto err_freesgi; 2393 } 2394 sbi->s_buddy_cache->i_ino = get_next_ino(); 2395 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2396 for (i = 0; i < ngroups; i++) { 2397 desc = ext4_get_group_desc(sb, i, NULL); 2398 if (desc == NULL) { 2399 printk(KERN_ERR 2400 "EXT4-fs: can't read descriptor %u\n", i); 2401 goto err_freebuddy; 2402 } 2403 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2404 goto err_freebuddy; 2405 } 2406 2407 return 0; 2408 2409 err_freebuddy: 2410 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2411 while (i-- > 0) 2412 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2413 i = num_meta_group_infos; 2414 while (i-- > 0) 2415 kfree(sbi->s_group_info[i]); 2416 iput(sbi->s_buddy_cache); 2417 err_freesgi: 2418 kfree(sbi->s_group_info); 2419 return -ENOMEM; 2420 } 2421 2422 static void ext4_groupinfo_destroy_slabs(void) 2423 { 2424 int i; 2425 2426 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2427 if (ext4_groupinfo_caches[i]) 2428 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2429 ext4_groupinfo_caches[i] = NULL; 2430 } 2431 } 2432 2433 static int ext4_groupinfo_create_slab(size_t size) 2434 { 2435 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2436 int slab_size; 2437 int blocksize_bits = order_base_2(size); 2438 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2439 struct kmem_cache *cachep; 2440 2441 if (cache_index >= NR_GRPINFO_CACHES) 2442 return -EINVAL; 2443 2444 if (unlikely(cache_index < 0)) 2445 cache_index = 0; 2446 2447 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2448 if (ext4_groupinfo_caches[cache_index]) { 2449 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2450 return 0; /* Already created */ 2451 } 2452 2453 slab_size = offsetof(struct ext4_group_info, 2454 bb_counters[blocksize_bits + 2]); 2455 2456 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2457 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2458 NULL); 2459 2460 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2461 if (!cachep) { 2462 printk(KERN_EMERG "EXT4: no memory for groupinfo slab cache\n"); 2463 return -ENOMEM; 2464 } 2465 2466 ext4_groupinfo_caches[cache_index] = cachep; 2467 2468 return 0; 2469 } 2470 2471 int ext4_mb_init(struct super_block *sb, int needs_recovery) 2472 { 2473 struct ext4_sb_info *sbi = EXT4_SB(sb); 2474 unsigned i, j; 2475 unsigned offset; 2476 unsigned max; 2477 int ret; 2478 2479 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2480 2481 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2482 if (sbi->s_mb_offsets == NULL) { 2483 ret = -ENOMEM; 2484 goto out; 2485 } 2486 2487 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2488 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2489 if (sbi->s_mb_maxs == NULL) { 2490 ret = -ENOMEM; 2491 goto out; 2492 } 2493 2494 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2495 if (ret < 0) 2496 goto out; 2497 2498 /* order 0 is regular bitmap */ 2499 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2500 sbi->s_mb_offsets[0] = 0; 2501 2502 i = 1; 2503 offset = 0; 2504 max = sb->s_blocksize << 2; 2505 do { 2506 sbi->s_mb_offsets[i] = offset; 2507 sbi->s_mb_maxs[i] = max; 2508 offset += 1 << (sb->s_blocksize_bits - i); 2509 max = max >> 1; 2510 i++; 2511 } while (i <= sb->s_blocksize_bits + 1); 2512 2513 /* init file for buddy data */ 2514 ret = ext4_mb_init_backend(sb); 2515 if (ret != 0) { 2516 goto out; 2517 } 2518 2519 spin_lock_init(&sbi->s_md_lock); 2520 spin_lock_init(&sbi->s_bal_lock); 2521 2522 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2523 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2524 sbi->s_mb_stats = MB_DEFAULT_STATS; 2525 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2526 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2527 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC; 2528 2529 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2530 if (sbi->s_locality_groups == NULL) { 2531 ret = -ENOMEM; 2532 goto out; 2533 } 2534 for_each_possible_cpu(i) { 2535 struct ext4_locality_group *lg; 2536 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2537 mutex_init(&lg->lg_mutex); 2538 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2539 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2540 spin_lock_init(&lg->lg_prealloc_lock); 2541 } 2542 2543 if (sbi->s_proc) 2544 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2545 &ext4_mb_seq_groups_fops, sb); 2546 2547 if (sbi->s_journal) 2548 sbi->s_journal->j_commit_callback = release_blocks_on_commit; 2549 out: 2550 if (ret) { 2551 kfree(sbi->s_mb_offsets); 2552 kfree(sbi->s_mb_maxs); 2553 } 2554 return ret; 2555 } 2556 2557 /* need to called with the ext4 group lock held */ 2558 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2559 { 2560 struct ext4_prealloc_space *pa; 2561 struct list_head *cur, *tmp; 2562 int count = 0; 2563 2564 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2565 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2566 list_del(&pa->pa_group_list); 2567 count++; 2568 kmem_cache_free(ext4_pspace_cachep, pa); 2569 } 2570 if (count) 2571 mb_debug(1, "mballoc: %u PAs left\n", count); 2572 2573 } 2574 2575 int ext4_mb_release(struct super_block *sb) 2576 { 2577 ext4_group_t ngroups = ext4_get_groups_count(sb); 2578 ext4_group_t i; 2579 int num_meta_group_infos; 2580 struct ext4_group_info *grinfo; 2581 struct ext4_sb_info *sbi = EXT4_SB(sb); 2582 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2583 2584 if (sbi->s_group_info) { 2585 for (i = 0; i < ngroups; i++) { 2586 grinfo = ext4_get_group_info(sb, i); 2587 #ifdef DOUBLE_CHECK 2588 kfree(grinfo->bb_bitmap); 2589 #endif 2590 ext4_lock_group(sb, i); 2591 ext4_mb_cleanup_pa(grinfo); 2592 ext4_unlock_group(sb, i); 2593 kmem_cache_free(cachep, grinfo); 2594 } 2595 num_meta_group_infos = (ngroups + 2596 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2597 EXT4_DESC_PER_BLOCK_BITS(sb); 2598 for (i = 0; i < num_meta_group_infos; i++) 2599 kfree(sbi->s_group_info[i]); 2600 kfree(sbi->s_group_info); 2601 } 2602 kfree(sbi->s_mb_offsets); 2603 kfree(sbi->s_mb_maxs); 2604 if (sbi->s_buddy_cache) 2605 iput(sbi->s_buddy_cache); 2606 if (sbi->s_mb_stats) { 2607 printk(KERN_INFO 2608 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n", 2609 atomic_read(&sbi->s_bal_allocated), 2610 atomic_read(&sbi->s_bal_reqs), 2611 atomic_read(&sbi->s_bal_success)); 2612 printk(KERN_INFO 2613 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, " 2614 "%u 2^N hits, %u breaks, %u lost\n", 2615 atomic_read(&sbi->s_bal_ex_scanned), 2616 atomic_read(&sbi->s_bal_goals), 2617 atomic_read(&sbi->s_bal_2orders), 2618 atomic_read(&sbi->s_bal_breaks), 2619 atomic_read(&sbi->s_mb_lost_chunks)); 2620 printk(KERN_INFO 2621 "EXT4-fs: mballoc: %lu generated and it took %Lu\n", 2622 sbi->s_mb_buddies_generated++, 2623 sbi->s_mb_generation_time); 2624 printk(KERN_INFO 2625 "EXT4-fs: mballoc: %u preallocated, %u discarded\n", 2626 atomic_read(&sbi->s_mb_preallocated), 2627 atomic_read(&sbi->s_mb_discarded)); 2628 } 2629 2630 free_percpu(sbi->s_locality_groups); 2631 if (sbi->s_proc) 2632 remove_proc_entry("mb_groups", sbi->s_proc); 2633 2634 return 0; 2635 } 2636 2637 static inline int ext4_issue_discard(struct super_block *sb, 2638 ext4_group_t block_group, ext4_grpblk_t block, int count) 2639 { 2640 ext4_fsblk_t discard_block; 2641 2642 discard_block = block + ext4_group_first_block_no(sb, block_group); 2643 trace_ext4_discard_blocks(sb, 2644 (unsigned long long) discard_block, count); 2645 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2646 } 2647 2648 /* 2649 * This function is called by the jbd2 layer once the commit has finished, 2650 * so we know we can free the blocks that were released with that commit. 2651 */ 2652 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn) 2653 { 2654 struct super_block *sb = journal->j_private; 2655 struct ext4_buddy e4b; 2656 struct ext4_group_info *db; 2657 int err, ret, count = 0, count2 = 0; 2658 struct ext4_free_data *entry; 2659 struct list_head *l, *ltmp; 2660 2661 list_for_each_safe(l, ltmp, &txn->t_private_list) { 2662 entry = list_entry(l, struct ext4_free_data, list); 2663 2664 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2665 entry->count, entry->group, entry); 2666 2667 if (test_opt(sb, DISCARD)) { 2668 ret = ext4_issue_discard(sb, entry->group, 2669 entry->start_blk, entry->count); 2670 if (unlikely(ret == -EOPNOTSUPP)) { 2671 ext4_warning(sb, "discard not supported, " 2672 "disabling"); 2673 clear_opt(sb, DISCARD); 2674 } 2675 } 2676 2677 err = ext4_mb_load_buddy(sb, entry->group, &e4b); 2678 /* we expect to find existing buddy because it's pinned */ 2679 BUG_ON(err != 0); 2680 2681 db = e4b.bd_info; 2682 /* there are blocks to put in buddy to make them really free */ 2683 count += entry->count; 2684 count2++; 2685 ext4_lock_group(sb, entry->group); 2686 /* Take it out of per group rb tree */ 2687 rb_erase(&entry->node, &(db->bb_free_root)); 2688 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count); 2689 2690 if (!db->bb_free_root.rb_node) { 2691 /* No more items in the per group rb tree 2692 * balance refcounts from ext4_mb_free_metadata() 2693 */ 2694 page_cache_release(e4b.bd_buddy_page); 2695 page_cache_release(e4b.bd_bitmap_page); 2696 } 2697 ext4_unlock_group(sb, entry->group); 2698 kmem_cache_free(ext4_free_ext_cachep, entry); 2699 ext4_mb_unload_buddy(&e4b); 2700 } 2701 2702 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2703 } 2704 2705 #ifdef CONFIG_EXT4_DEBUG 2706 u8 mb_enable_debug __read_mostly; 2707 2708 static struct dentry *debugfs_dir; 2709 static struct dentry *debugfs_debug; 2710 2711 static void __init ext4_create_debugfs_entry(void) 2712 { 2713 debugfs_dir = debugfs_create_dir("ext4", NULL); 2714 if (debugfs_dir) 2715 debugfs_debug = debugfs_create_u8("mballoc-debug", 2716 S_IRUGO | S_IWUSR, 2717 debugfs_dir, 2718 &mb_enable_debug); 2719 } 2720 2721 static void ext4_remove_debugfs_entry(void) 2722 { 2723 debugfs_remove(debugfs_debug); 2724 debugfs_remove(debugfs_dir); 2725 } 2726 2727 #else 2728 2729 static void __init ext4_create_debugfs_entry(void) 2730 { 2731 } 2732 2733 static void ext4_remove_debugfs_entry(void) 2734 { 2735 } 2736 2737 #endif 2738 2739 int __init ext4_init_mballoc(void) 2740 { 2741 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2742 SLAB_RECLAIM_ACCOUNT); 2743 if (ext4_pspace_cachep == NULL) 2744 return -ENOMEM; 2745 2746 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2747 SLAB_RECLAIM_ACCOUNT); 2748 if (ext4_ac_cachep == NULL) { 2749 kmem_cache_destroy(ext4_pspace_cachep); 2750 return -ENOMEM; 2751 } 2752 2753 ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data, 2754 SLAB_RECLAIM_ACCOUNT); 2755 if (ext4_free_ext_cachep == NULL) { 2756 kmem_cache_destroy(ext4_pspace_cachep); 2757 kmem_cache_destroy(ext4_ac_cachep); 2758 return -ENOMEM; 2759 } 2760 ext4_create_debugfs_entry(); 2761 return 0; 2762 } 2763 2764 void ext4_exit_mballoc(void) 2765 { 2766 /* 2767 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2768 * before destroying the slab cache. 2769 */ 2770 rcu_barrier(); 2771 kmem_cache_destroy(ext4_pspace_cachep); 2772 kmem_cache_destroy(ext4_ac_cachep); 2773 kmem_cache_destroy(ext4_free_ext_cachep); 2774 ext4_groupinfo_destroy_slabs(); 2775 ext4_remove_debugfs_entry(); 2776 } 2777 2778 2779 /* 2780 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2781 * Returns 0 if success or error code 2782 */ 2783 static noinline_for_stack int 2784 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2785 handle_t *handle, unsigned int reserv_blks) 2786 { 2787 struct buffer_head *bitmap_bh = NULL; 2788 struct ext4_group_desc *gdp; 2789 struct buffer_head *gdp_bh; 2790 struct ext4_sb_info *sbi; 2791 struct super_block *sb; 2792 ext4_fsblk_t block; 2793 int err, len; 2794 2795 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2796 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2797 2798 sb = ac->ac_sb; 2799 sbi = EXT4_SB(sb); 2800 2801 err = -EIO; 2802 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2803 if (!bitmap_bh) 2804 goto out_err; 2805 2806 err = ext4_journal_get_write_access(handle, bitmap_bh); 2807 if (err) 2808 goto out_err; 2809 2810 err = -EIO; 2811 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2812 if (!gdp) 2813 goto out_err; 2814 2815 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2816 ext4_free_blks_count(sb, gdp)); 2817 2818 err = ext4_journal_get_write_access(handle, gdp_bh); 2819 if (err) 2820 goto out_err; 2821 2822 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2823 2824 len = ac->ac_b_ex.fe_len; 2825 if (!ext4_data_block_valid(sbi, block, len)) { 2826 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2827 "fs metadata\n", block, block+len); 2828 /* File system mounted not to panic on error 2829 * Fix the bitmap and repeat the block allocation 2830 * We leak some of the blocks here. 2831 */ 2832 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2833 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2834 ac->ac_b_ex.fe_len); 2835 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2836 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2837 if (!err) 2838 err = -EAGAIN; 2839 goto out_err; 2840 } 2841 2842 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2843 #ifdef AGGRESSIVE_CHECK 2844 { 2845 int i; 2846 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2847 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2848 bitmap_bh->b_data)); 2849 } 2850 } 2851 #endif 2852 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len); 2853 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2854 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2855 ext4_free_blks_set(sb, gdp, 2856 ext4_free_blocks_after_init(sb, 2857 ac->ac_b_ex.fe_group, gdp)); 2858 } 2859 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len; 2860 ext4_free_blks_set(sb, gdp, len); 2861 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp); 2862 2863 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2864 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len); 2865 /* 2866 * Now reduce the dirty block count also. Should not go negative 2867 */ 2868 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2869 /* release all the reserved blocks if non delalloc */ 2870 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks); 2871 2872 if (sbi->s_log_groups_per_flex) { 2873 ext4_group_t flex_group = ext4_flex_group(sbi, 2874 ac->ac_b_ex.fe_group); 2875 atomic_sub(ac->ac_b_ex.fe_len, 2876 &sbi->s_flex_groups[flex_group].free_blocks); 2877 } 2878 2879 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2880 if (err) 2881 goto out_err; 2882 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2883 2884 out_err: 2885 ext4_mark_super_dirty(sb); 2886 brelse(bitmap_bh); 2887 return err; 2888 } 2889 2890 /* 2891 * here we normalize request for locality group 2892 * Group request are normalized to s_strip size if we set the same via mount 2893 * option. If not we set it to s_mb_group_prealloc which can be configured via 2894 * /sys/fs/ext4/<partition>/mb_group_prealloc 2895 * 2896 * XXX: should we try to preallocate more than the group has now? 2897 */ 2898 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2899 { 2900 struct super_block *sb = ac->ac_sb; 2901 struct ext4_locality_group *lg = ac->ac_lg; 2902 2903 BUG_ON(lg == NULL); 2904 if (EXT4_SB(sb)->s_stripe) 2905 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe; 2906 else 2907 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2908 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2909 current->pid, ac->ac_g_ex.fe_len); 2910 } 2911 2912 /* 2913 * Normalization means making request better in terms of 2914 * size and alignment 2915 */ 2916 static noinline_for_stack void 2917 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2918 struct ext4_allocation_request *ar) 2919 { 2920 int bsbits, max; 2921 ext4_lblk_t end; 2922 loff_t size, orig_size, start_off; 2923 ext4_lblk_t start; 2924 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2925 struct ext4_prealloc_space *pa; 2926 2927 /* do normalize only data requests, metadata requests 2928 do not need preallocation */ 2929 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2930 return; 2931 2932 /* sometime caller may want exact blocks */ 2933 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2934 return; 2935 2936 /* caller may indicate that preallocation isn't 2937 * required (it's a tail, for example) */ 2938 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2939 return; 2940 2941 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2942 ext4_mb_normalize_group_request(ac); 2943 return ; 2944 } 2945 2946 bsbits = ac->ac_sb->s_blocksize_bits; 2947 2948 /* first, let's learn actual file size 2949 * given current request is allocated */ 2950 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 2951 size = size << bsbits; 2952 if (size < i_size_read(ac->ac_inode)) 2953 size = i_size_read(ac->ac_inode); 2954 orig_size = size; 2955 2956 /* max size of free chunks */ 2957 max = 2 << bsbits; 2958 2959 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2960 (req <= (size) || max <= (chunk_size)) 2961 2962 /* first, try to predict filesize */ 2963 /* XXX: should this table be tunable? */ 2964 start_off = 0; 2965 if (size <= 16 * 1024) { 2966 size = 16 * 1024; 2967 } else if (size <= 32 * 1024) { 2968 size = 32 * 1024; 2969 } else if (size <= 64 * 1024) { 2970 size = 64 * 1024; 2971 } else if (size <= 128 * 1024) { 2972 size = 128 * 1024; 2973 } else if (size <= 256 * 1024) { 2974 size = 256 * 1024; 2975 } else if (size <= 512 * 1024) { 2976 size = 512 * 1024; 2977 } else if (size <= 1024 * 1024) { 2978 size = 1024 * 1024; 2979 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2980 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2981 (21 - bsbits)) << 21; 2982 size = 2 * 1024 * 1024; 2983 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 2984 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2985 (22 - bsbits)) << 22; 2986 size = 4 * 1024 * 1024; 2987 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 2988 (8<<20)>>bsbits, max, 8 * 1024)) { 2989 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2990 (23 - bsbits)) << 23; 2991 size = 8 * 1024 * 1024; 2992 } else { 2993 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 2994 size = ac->ac_o_ex.fe_len << bsbits; 2995 } 2996 size = size >> bsbits; 2997 start = start_off >> bsbits; 2998 2999 /* don't cover already allocated blocks in selected range */ 3000 if (ar->pleft && start <= ar->lleft) { 3001 size -= ar->lleft + 1 - start; 3002 start = ar->lleft + 1; 3003 } 3004 if (ar->pright && start + size - 1 >= ar->lright) 3005 size -= start + size - ar->lright; 3006 3007 end = start + size; 3008 3009 /* check we don't cross already preallocated blocks */ 3010 rcu_read_lock(); 3011 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3012 ext4_lblk_t pa_end; 3013 3014 if (pa->pa_deleted) 3015 continue; 3016 spin_lock(&pa->pa_lock); 3017 if (pa->pa_deleted) { 3018 spin_unlock(&pa->pa_lock); 3019 continue; 3020 } 3021 3022 pa_end = pa->pa_lstart + pa->pa_len; 3023 3024 /* PA must not overlap original request */ 3025 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3026 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3027 3028 /* skip PAs this normalized request doesn't overlap with */ 3029 if (pa->pa_lstart >= end || pa_end <= start) { 3030 spin_unlock(&pa->pa_lock); 3031 continue; 3032 } 3033 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3034 3035 /* adjust start or end to be adjacent to this pa */ 3036 if (pa_end <= ac->ac_o_ex.fe_logical) { 3037 BUG_ON(pa_end < start); 3038 start = pa_end; 3039 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3040 BUG_ON(pa->pa_lstart > end); 3041 end = pa->pa_lstart; 3042 } 3043 spin_unlock(&pa->pa_lock); 3044 } 3045 rcu_read_unlock(); 3046 size = end - start; 3047 3048 /* XXX: extra loop to check we really don't overlap preallocations */ 3049 rcu_read_lock(); 3050 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3051 ext4_lblk_t pa_end; 3052 spin_lock(&pa->pa_lock); 3053 if (pa->pa_deleted == 0) { 3054 pa_end = pa->pa_lstart + pa->pa_len; 3055 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3056 } 3057 spin_unlock(&pa->pa_lock); 3058 } 3059 rcu_read_unlock(); 3060 3061 if (start + size <= ac->ac_o_ex.fe_logical && 3062 start > ac->ac_o_ex.fe_logical) { 3063 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n", 3064 (unsigned long) start, (unsigned long) size, 3065 (unsigned long) ac->ac_o_ex.fe_logical); 3066 } 3067 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3068 start > ac->ac_o_ex.fe_logical); 3069 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3070 3071 /* now prepare goal request */ 3072 3073 /* XXX: is it better to align blocks WRT to logical 3074 * placement or satisfy big request as is */ 3075 ac->ac_g_ex.fe_logical = start; 3076 ac->ac_g_ex.fe_len = size; 3077 3078 /* define goal start in order to merge */ 3079 if (ar->pright && (ar->lright == (start + size))) { 3080 /* merge to the right */ 3081 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3082 &ac->ac_f_ex.fe_group, 3083 &ac->ac_f_ex.fe_start); 3084 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3085 } 3086 if (ar->pleft && (ar->lleft + 1 == start)) { 3087 /* merge to the left */ 3088 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3089 &ac->ac_f_ex.fe_group, 3090 &ac->ac_f_ex.fe_start); 3091 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3092 } 3093 3094 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3095 (unsigned) orig_size, (unsigned) start); 3096 } 3097 3098 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3099 { 3100 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3101 3102 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3103 atomic_inc(&sbi->s_bal_reqs); 3104 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3105 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3106 atomic_inc(&sbi->s_bal_success); 3107 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3108 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3109 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3110 atomic_inc(&sbi->s_bal_goals); 3111 if (ac->ac_found > sbi->s_mb_max_to_scan) 3112 atomic_inc(&sbi->s_bal_breaks); 3113 } 3114 3115 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3116 trace_ext4_mballoc_alloc(ac); 3117 else 3118 trace_ext4_mballoc_prealloc(ac); 3119 } 3120 3121 /* 3122 * Called on failure; free up any blocks from the inode PA for this 3123 * context. We don't need this for MB_GROUP_PA because we only change 3124 * pa_free in ext4_mb_release_context(), but on failure, we've already 3125 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3126 */ 3127 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3128 { 3129 struct ext4_prealloc_space *pa = ac->ac_pa; 3130 int len; 3131 3132 if (pa && pa->pa_type == MB_INODE_PA) { 3133 len = ac->ac_b_ex.fe_len; 3134 pa->pa_free += len; 3135 } 3136 3137 } 3138 3139 /* 3140 * use blocks preallocated to inode 3141 */ 3142 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3143 struct ext4_prealloc_space *pa) 3144 { 3145 ext4_fsblk_t start; 3146 ext4_fsblk_t end; 3147 int len; 3148 3149 /* found preallocated blocks, use them */ 3150 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3151 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len); 3152 len = end - start; 3153 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3154 &ac->ac_b_ex.fe_start); 3155 ac->ac_b_ex.fe_len = len; 3156 ac->ac_status = AC_STATUS_FOUND; 3157 ac->ac_pa = pa; 3158 3159 BUG_ON(start < pa->pa_pstart); 3160 BUG_ON(start + len > pa->pa_pstart + pa->pa_len); 3161 BUG_ON(pa->pa_free < len); 3162 pa->pa_free -= len; 3163 3164 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3165 } 3166 3167 /* 3168 * use blocks preallocated to locality group 3169 */ 3170 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3171 struct ext4_prealloc_space *pa) 3172 { 3173 unsigned int len = ac->ac_o_ex.fe_len; 3174 3175 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3176 &ac->ac_b_ex.fe_group, 3177 &ac->ac_b_ex.fe_start); 3178 ac->ac_b_ex.fe_len = len; 3179 ac->ac_status = AC_STATUS_FOUND; 3180 ac->ac_pa = pa; 3181 3182 /* we don't correct pa_pstart or pa_plen here to avoid 3183 * possible race when the group is being loaded concurrently 3184 * instead we correct pa later, after blocks are marked 3185 * in on-disk bitmap -- see ext4_mb_release_context() 3186 * Other CPUs are prevented from allocating from this pa by lg_mutex 3187 */ 3188 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3189 } 3190 3191 /* 3192 * Return the prealloc space that have minimal distance 3193 * from the goal block. @cpa is the prealloc 3194 * space that is having currently known minimal distance 3195 * from the goal block. 3196 */ 3197 static struct ext4_prealloc_space * 3198 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3199 struct ext4_prealloc_space *pa, 3200 struct ext4_prealloc_space *cpa) 3201 { 3202 ext4_fsblk_t cur_distance, new_distance; 3203 3204 if (cpa == NULL) { 3205 atomic_inc(&pa->pa_count); 3206 return pa; 3207 } 3208 cur_distance = abs(goal_block - cpa->pa_pstart); 3209 new_distance = abs(goal_block - pa->pa_pstart); 3210 3211 if (cur_distance < new_distance) 3212 return cpa; 3213 3214 /* drop the previous reference */ 3215 atomic_dec(&cpa->pa_count); 3216 atomic_inc(&pa->pa_count); 3217 return pa; 3218 } 3219 3220 /* 3221 * search goal blocks in preallocated space 3222 */ 3223 static noinline_for_stack int 3224 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3225 { 3226 int order, i; 3227 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3228 struct ext4_locality_group *lg; 3229 struct ext4_prealloc_space *pa, *cpa = NULL; 3230 ext4_fsblk_t goal_block; 3231 3232 /* only data can be preallocated */ 3233 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3234 return 0; 3235 3236 /* first, try per-file preallocation */ 3237 rcu_read_lock(); 3238 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3239 3240 /* all fields in this condition don't change, 3241 * so we can skip locking for them */ 3242 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3243 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len) 3244 continue; 3245 3246 /* non-extent files can't have physical blocks past 2^32 */ 3247 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3248 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS) 3249 continue; 3250 3251 /* found preallocated blocks, use them */ 3252 spin_lock(&pa->pa_lock); 3253 if (pa->pa_deleted == 0 && pa->pa_free) { 3254 atomic_inc(&pa->pa_count); 3255 ext4_mb_use_inode_pa(ac, pa); 3256 spin_unlock(&pa->pa_lock); 3257 ac->ac_criteria = 10; 3258 rcu_read_unlock(); 3259 return 1; 3260 } 3261 spin_unlock(&pa->pa_lock); 3262 } 3263 rcu_read_unlock(); 3264 3265 /* can we use group allocation? */ 3266 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3267 return 0; 3268 3269 /* inode may have no locality group for some reason */ 3270 lg = ac->ac_lg; 3271 if (lg == NULL) 3272 return 0; 3273 order = fls(ac->ac_o_ex.fe_len) - 1; 3274 if (order > PREALLOC_TB_SIZE - 1) 3275 /* The max size of hash table is PREALLOC_TB_SIZE */ 3276 order = PREALLOC_TB_SIZE - 1; 3277 3278 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3279 /* 3280 * search for the prealloc space that is having 3281 * minimal distance from the goal block. 3282 */ 3283 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3284 rcu_read_lock(); 3285 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3286 pa_inode_list) { 3287 spin_lock(&pa->pa_lock); 3288 if (pa->pa_deleted == 0 && 3289 pa->pa_free >= ac->ac_o_ex.fe_len) { 3290 3291 cpa = ext4_mb_check_group_pa(goal_block, 3292 pa, cpa); 3293 } 3294 spin_unlock(&pa->pa_lock); 3295 } 3296 rcu_read_unlock(); 3297 } 3298 if (cpa) { 3299 ext4_mb_use_group_pa(ac, cpa); 3300 ac->ac_criteria = 20; 3301 return 1; 3302 } 3303 return 0; 3304 } 3305 3306 /* 3307 * the function goes through all block freed in the group 3308 * but not yet committed and marks them used in in-core bitmap. 3309 * buddy must be generated from this bitmap 3310 * Need to be called with the ext4 group lock held 3311 */ 3312 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3313 ext4_group_t group) 3314 { 3315 struct rb_node *n; 3316 struct ext4_group_info *grp; 3317 struct ext4_free_data *entry; 3318 3319 grp = ext4_get_group_info(sb, group); 3320 n = rb_first(&(grp->bb_free_root)); 3321 3322 while (n) { 3323 entry = rb_entry(n, struct ext4_free_data, node); 3324 mb_set_bits(bitmap, entry->start_blk, entry->count); 3325 n = rb_next(n); 3326 } 3327 return; 3328 } 3329 3330 /* 3331 * the function goes through all preallocation in this group and marks them 3332 * used in in-core bitmap. buddy must be generated from this bitmap 3333 * Need to be called with ext4 group lock held 3334 */ 3335 static noinline_for_stack 3336 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3337 ext4_group_t group) 3338 { 3339 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3340 struct ext4_prealloc_space *pa; 3341 struct list_head *cur; 3342 ext4_group_t groupnr; 3343 ext4_grpblk_t start; 3344 int preallocated = 0; 3345 int count = 0; 3346 int len; 3347 3348 /* all form of preallocation discards first load group, 3349 * so the only competing code is preallocation use. 3350 * we don't need any locking here 3351 * notice we do NOT ignore preallocations with pa_deleted 3352 * otherwise we could leave used blocks available for 3353 * allocation in buddy when concurrent ext4_mb_put_pa() 3354 * is dropping preallocation 3355 */ 3356 list_for_each(cur, &grp->bb_prealloc_list) { 3357 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3358 spin_lock(&pa->pa_lock); 3359 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3360 &groupnr, &start); 3361 len = pa->pa_len; 3362 spin_unlock(&pa->pa_lock); 3363 if (unlikely(len == 0)) 3364 continue; 3365 BUG_ON(groupnr != group); 3366 mb_set_bits(bitmap, start, len); 3367 preallocated += len; 3368 count++; 3369 } 3370 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3371 } 3372 3373 static void ext4_mb_pa_callback(struct rcu_head *head) 3374 { 3375 struct ext4_prealloc_space *pa; 3376 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3377 kmem_cache_free(ext4_pspace_cachep, pa); 3378 } 3379 3380 /* 3381 * drops a reference to preallocated space descriptor 3382 * if this was the last reference and the space is consumed 3383 */ 3384 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3385 struct super_block *sb, struct ext4_prealloc_space *pa) 3386 { 3387 ext4_group_t grp; 3388 ext4_fsblk_t grp_blk; 3389 3390 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3391 return; 3392 3393 /* in this short window concurrent discard can set pa_deleted */ 3394 spin_lock(&pa->pa_lock); 3395 if (pa->pa_deleted == 1) { 3396 spin_unlock(&pa->pa_lock); 3397 return; 3398 } 3399 3400 pa->pa_deleted = 1; 3401 spin_unlock(&pa->pa_lock); 3402 3403 grp_blk = pa->pa_pstart; 3404 /* 3405 * If doing group-based preallocation, pa_pstart may be in the 3406 * next group when pa is used up 3407 */ 3408 if (pa->pa_type == MB_GROUP_PA) 3409 grp_blk--; 3410 3411 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3412 3413 /* 3414 * possible race: 3415 * 3416 * P1 (buddy init) P2 (regular allocation) 3417 * find block B in PA 3418 * copy on-disk bitmap to buddy 3419 * mark B in on-disk bitmap 3420 * drop PA from group 3421 * mark all PAs in buddy 3422 * 3423 * thus, P1 initializes buddy with B available. to prevent this 3424 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3425 * against that pair 3426 */ 3427 ext4_lock_group(sb, grp); 3428 list_del(&pa->pa_group_list); 3429 ext4_unlock_group(sb, grp); 3430 3431 spin_lock(pa->pa_obj_lock); 3432 list_del_rcu(&pa->pa_inode_list); 3433 spin_unlock(pa->pa_obj_lock); 3434 3435 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3436 } 3437 3438 /* 3439 * creates new preallocated space for given inode 3440 */ 3441 static noinline_for_stack int 3442 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3443 { 3444 struct super_block *sb = ac->ac_sb; 3445 struct ext4_prealloc_space *pa; 3446 struct ext4_group_info *grp; 3447 struct ext4_inode_info *ei; 3448 3449 /* preallocate only when found space is larger then requested */ 3450 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3451 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3452 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3453 3454 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3455 if (pa == NULL) 3456 return -ENOMEM; 3457 3458 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3459 int winl; 3460 int wins; 3461 int win; 3462 int offs; 3463 3464 /* we can't allocate as much as normalizer wants. 3465 * so, found space must get proper lstart 3466 * to cover original request */ 3467 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3468 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3469 3470 /* we're limited by original request in that 3471 * logical block must be covered any way 3472 * winl is window we can move our chunk within */ 3473 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3474 3475 /* also, we should cover whole original request */ 3476 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len; 3477 3478 /* the smallest one defines real window */ 3479 win = min(winl, wins); 3480 3481 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len; 3482 if (offs && offs < win) 3483 win = offs; 3484 3485 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win; 3486 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3487 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3488 } 3489 3490 /* preallocation can change ac_b_ex, thus we store actually 3491 * allocated blocks for history */ 3492 ac->ac_f_ex = ac->ac_b_ex; 3493 3494 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3495 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3496 pa->pa_len = ac->ac_b_ex.fe_len; 3497 pa->pa_free = pa->pa_len; 3498 atomic_set(&pa->pa_count, 1); 3499 spin_lock_init(&pa->pa_lock); 3500 INIT_LIST_HEAD(&pa->pa_inode_list); 3501 INIT_LIST_HEAD(&pa->pa_group_list); 3502 pa->pa_deleted = 0; 3503 pa->pa_type = MB_INODE_PA; 3504 3505 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3506 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3507 trace_ext4_mb_new_inode_pa(ac, pa); 3508 3509 ext4_mb_use_inode_pa(ac, pa); 3510 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3511 3512 ei = EXT4_I(ac->ac_inode); 3513 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3514 3515 pa->pa_obj_lock = &ei->i_prealloc_lock; 3516 pa->pa_inode = ac->ac_inode; 3517 3518 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3519 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3520 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3521 3522 spin_lock(pa->pa_obj_lock); 3523 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3524 spin_unlock(pa->pa_obj_lock); 3525 3526 return 0; 3527 } 3528 3529 /* 3530 * creates new preallocated space for locality group inodes belongs to 3531 */ 3532 static noinline_for_stack int 3533 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3534 { 3535 struct super_block *sb = ac->ac_sb; 3536 struct ext4_locality_group *lg; 3537 struct ext4_prealloc_space *pa; 3538 struct ext4_group_info *grp; 3539 3540 /* preallocate only when found space is larger then requested */ 3541 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3542 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3543 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3544 3545 BUG_ON(ext4_pspace_cachep == NULL); 3546 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3547 if (pa == NULL) 3548 return -ENOMEM; 3549 3550 /* preallocation can change ac_b_ex, thus we store actually 3551 * allocated blocks for history */ 3552 ac->ac_f_ex = ac->ac_b_ex; 3553 3554 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3555 pa->pa_lstart = pa->pa_pstart; 3556 pa->pa_len = ac->ac_b_ex.fe_len; 3557 pa->pa_free = pa->pa_len; 3558 atomic_set(&pa->pa_count, 1); 3559 spin_lock_init(&pa->pa_lock); 3560 INIT_LIST_HEAD(&pa->pa_inode_list); 3561 INIT_LIST_HEAD(&pa->pa_group_list); 3562 pa->pa_deleted = 0; 3563 pa->pa_type = MB_GROUP_PA; 3564 3565 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3566 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3567 trace_ext4_mb_new_group_pa(ac, pa); 3568 3569 ext4_mb_use_group_pa(ac, pa); 3570 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3571 3572 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3573 lg = ac->ac_lg; 3574 BUG_ON(lg == NULL); 3575 3576 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3577 pa->pa_inode = NULL; 3578 3579 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3580 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3581 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3582 3583 /* 3584 * We will later add the new pa to the right bucket 3585 * after updating the pa_free in ext4_mb_release_context 3586 */ 3587 return 0; 3588 } 3589 3590 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3591 { 3592 int err; 3593 3594 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3595 err = ext4_mb_new_group_pa(ac); 3596 else 3597 err = ext4_mb_new_inode_pa(ac); 3598 return err; 3599 } 3600 3601 /* 3602 * finds all unused blocks in on-disk bitmap, frees them in 3603 * in-core bitmap and buddy. 3604 * @pa must be unlinked from inode and group lists, so that 3605 * nobody else can find/use it. 3606 * the caller MUST hold group/inode locks. 3607 * TODO: optimize the case when there are no in-core structures yet 3608 */ 3609 static noinline_for_stack int 3610 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3611 struct ext4_prealloc_space *pa) 3612 { 3613 struct super_block *sb = e4b->bd_sb; 3614 struct ext4_sb_info *sbi = EXT4_SB(sb); 3615 unsigned int end; 3616 unsigned int next; 3617 ext4_group_t group; 3618 ext4_grpblk_t bit; 3619 unsigned long long grp_blk_start; 3620 int err = 0; 3621 int free = 0; 3622 3623 BUG_ON(pa->pa_deleted == 0); 3624 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3625 grp_blk_start = pa->pa_pstart - bit; 3626 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3627 end = bit + pa->pa_len; 3628 3629 while (bit < end) { 3630 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3631 if (bit >= end) 3632 break; 3633 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3634 mb_debug(1, " free preallocated %u/%u in group %u\n", 3635 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3636 (unsigned) next - bit, (unsigned) group); 3637 free += next - bit; 3638 3639 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3640 trace_ext4_mb_release_inode_pa(sb, pa->pa_inode, pa, 3641 grp_blk_start + bit, next - bit); 3642 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3643 bit = next + 1; 3644 } 3645 if (free != pa->pa_free) { 3646 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n", 3647 pa, (unsigned long) pa->pa_lstart, 3648 (unsigned long) pa->pa_pstart, 3649 (unsigned long) pa->pa_len); 3650 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3651 free, pa->pa_free); 3652 /* 3653 * pa is already deleted so we use the value obtained 3654 * from the bitmap and continue. 3655 */ 3656 } 3657 atomic_add(free, &sbi->s_mb_discarded); 3658 3659 return err; 3660 } 3661 3662 static noinline_for_stack int 3663 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3664 struct ext4_prealloc_space *pa) 3665 { 3666 struct super_block *sb = e4b->bd_sb; 3667 ext4_group_t group; 3668 ext4_grpblk_t bit; 3669 3670 trace_ext4_mb_release_group_pa(sb, pa); 3671 BUG_ON(pa->pa_deleted == 0); 3672 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3673 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3674 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3675 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3676 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3677 3678 return 0; 3679 } 3680 3681 /* 3682 * releases all preallocations in given group 3683 * 3684 * first, we need to decide discard policy: 3685 * - when do we discard 3686 * 1) ENOSPC 3687 * - how many do we discard 3688 * 1) how many requested 3689 */ 3690 static noinline_for_stack int 3691 ext4_mb_discard_group_preallocations(struct super_block *sb, 3692 ext4_group_t group, int needed) 3693 { 3694 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3695 struct buffer_head *bitmap_bh = NULL; 3696 struct ext4_prealloc_space *pa, *tmp; 3697 struct list_head list; 3698 struct ext4_buddy e4b; 3699 int err; 3700 int busy = 0; 3701 int free = 0; 3702 3703 mb_debug(1, "discard preallocation for group %u\n", group); 3704 3705 if (list_empty(&grp->bb_prealloc_list)) 3706 return 0; 3707 3708 bitmap_bh = ext4_read_block_bitmap(sb, group); 3709 if (bitmap_bh == NULL) { 3710 ext4_error(sb, "Error reading block bitmap for %u", group); 3711 return 0; 3712 } 3713 3714 err = ext4_mb_load_buddy(sb, group, &e4b); 3715 if (err) { 3716 ext4_error(sb, "Error loading buddy information for %u", group); 3717 put_bh(bitmap_bh); 3718 return 0; 3719 } 3720 3721 if (needed == 0) 3722 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1; 3723 3724 INIT_LIST_HEAD(&list); 3725 repeat: 3726 ext4_lock_group(sb, group); 3727 list_for_each_entry_safe(pa, tmp, 3728 &grp->bb_prealloc_list, pa_group_list) { 3729 spin_lock(&pa->pa_lock); 3730 if (atomic_read(&pa->pa_count)) { 3731 spin_unlock(&pa->pa_lock); 3732 busy = 1; 3733 continue; 3734 } 3735 if (pa->pa_deleted) { 3736 spin_unlock(&pa->pa_lock); 3737 continue; 3738 } 3739 3740 /* seems this one can be freed ... */ 3741 pa->pa_deleted = 1; 3742 3743 /* we can trust pa_free ... */ 3744 free += pa->pa_free; 3745 3746 spin_unlock(&pa->pa_lock); 3747 3748 list_del(&pa->pa_group_list); 3749 list_add(&pa->u.pa_tmp_list, &list); 3750 } 3751 3752 /* if we still need more blocks and some PAs were used, try again */ 3753 if (free < needed && busy) { 3754 busy = 0; 3755 ext4_unlock_group(sb, group); 3756 /* 3757 * Yield the CPU here so that we don't get soft lockup 3758 * in non preempt case. 3759 */ 3760 yield(); 3761 goto repeat; 3762 } 3763 3764 /* found anything to free? */ 3765 if (list_empty(&list)) { 3766 BUG_ON(free != 0); 3767 goto out; 3768 } 3769 3770 /* now free all selected PAs */ 3771 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3772 3773 /* remove from object (inode or locality group) */ 3774 spin_lock(pa->pa_obj_lock); 3775 list_del_rcu(&pa->pa_inode_list); 3776 spin_unlock(pa->pa_obj_lock); 3777 3778 if (pa->pa_type == MB_GROUP_PA) 3779 ext4_mb_release_group_pa(&e4b, pa); 3780 else 3781 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3782 3783 list_del(&pa->u.pa_tmp_list); 3784 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3785 } 3786 3787 out: 3788 ext4_unlock_group(sb, group); 3789 ext4_mb_unload_buddy(&e4b); 3790 put_bh(bitmap_bh); 3791 return free; 3792 } 3793 3794 /* 3795 * releases all non-used preallocated blocks for given inode 3796 * 3797 * It's important to discard preallocations under i_data_sem 3798 * We don't want another block to be served from the prealloc 3799 * space when we are discarding the inode prealloc space. 3800 * 3801 * FIXME!! Make sure it is valid at all the call sites 3802 */ 3803 void ext4_discard_preallocations(struct inode *inode) 3804 { 3805 struct ext4_inode_info *ei = EXT4_I(inode); 3806 struct super_block *sb = inode->i_sb; 3807 struct buffer_head *bitmap_bh = NULL; 3808 struct ext4_prealloc_space *pa, *tmp; 3809 ext4_group_t group = 0; 3810 struct list_head list; 3811 struct ext4_buddy e4b; 3812 int err; 3813 3814 if (!S_ISREG(inode->i_mode)) { 3815 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3816 return; 3817 } 3818 3819 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3820 trace_ext4_discard_preallocations(inode); 3821 3822 INIT_LIST_HEAD(&list); 3823 3824 repeat: 3825 /* first, collect all pa's in the inode */ 3826 spin_lock(&ei->i_prealloc_lock); 3827 while (!list_empty(&ei->i_prealloc_list)) { 3828 pa = list_entry(ei->i_prealloc_list.next, 3829 struct ext4_prealloc_space, pa_inode_list); 3830 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3831 spin_lock(&pa->pa_lock); 3832 if (atomic_read(&pa->pa_count)) { 3833 /* this shouldn't happen often - nobody should 3834 * use preallocation while we're discarding it */ 3835 spin_unlock(&pa->pa_lock); 3836 spin_unlock(&ei->i_prealloc_lock); 3837 printk(KERN_ERR "uh-oh! used pa while discarding\n"); 3838 WARN_ON(1); 3839 schedule_timeout_uninterruptible(HZ); 3840 goto repeat; 3841 3842 } 3843 if (pa->pa_deleted == 0) { 3844 pa->pa_deleted = 1; 3845 spin_unlock(&pa->pa_lock); 3846 list_del_rcu(&pa->pa_inode_list); 3847 list_add(&pa->u.pa_tmp_list, &list); 3848 continue; 3849 } 3850 3851 /* someone is deleting pa right now */ 3852 spin_unlock(&pa->pa_lock); 3853 spin_unlock(&ei->i_prealloc_lock); 3854 3855 /* we have to wait here because pa_deleted 3856 * doesn't mean pa is already unlinked from 3857 * the list. as we might be called from 3858 * ->clear_inode() the inode will get freed 3859 * and concurrent thread which is unlinking 3860 * pa from inode's list may access already 3861 * freed memory, bad-bad-bad */ 3862 3863 /* XXX: if this happens too often, we can 3864 * add a flag to force wait only in case 3865 * of ->clear_inode(), but not in case of 3866 * regular truncate */ 3867 schedule_timeout_uninterruptible(HZ); 3868 goto repeat; 3869 } 3870 spin_unlock(&ei->i_prealloc_lock); 3871 3872 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3873 BUG_ON(pa->pa_type != MB_INODE_PA); 3874 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3875 3876 err = ext4_mb_load_buddy(sb, group, &e4b); 3877 if (err) { 3878 ext4_error(sb, "Error loading buddy information for %u", 3879 group); 3880 continue; 3881 } 3882 3883 bitmap_bh = ext4_read_block_bitmap(sb, group); 3884 if (bitmap_bh == NULL) { 3885 ext4_error(sb, "Error reading block bitmap for %u", 3886 group); 3887 ext4_mb_unload_buddy(&e4b); 3888 continue; 3889 } 3890 3891 ext4_lock_group(sb, group); 3892 list_del(&pa->pa_group_list); 3893 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3894 ext4_unlock_group(sb, group); 3895 3896 ext4_mb_unload_buddy(&e4b); 3897 put_bh(bitmap_bh); 3898 3899 list_del(&pa->u.pa_tmp_list); 3900 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3901 } 3902 } 3903 3904 #ifdef CONFIG_EXT4_DEBUG 3905 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3906 { 3907 struct super_block *sb = ac->ac_sb; 3908 ext4_group_t ngroups, i; 3909 3910 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 3911 return; 3912 3913 printk(KERN_ERR "EXT4-fs: Can't allocate:" 3914 " Allocation context details:\n"); 3915 printk(KERN_ERR "EXT4-fs: status %d flags %d\n", 3916 ac->ac_status, ac->ac_flags); 3917 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, " 3918 "best %lu/%lu/%lu@%lu cr %d\n", 3919 (unsigned long)ac->ac_o_ex.fe_group, 3920 (unsigned long)ac->ac_o_ex.fe_start, 3921 (unsigned long)ac->ac_o_ex.fe_len, 3922 (unsigned long)ac->ac_o_ex.fe_logical, 3923 (unsigned long)ac->ac_g_ex.fe_group, 3924 (unsigned long)ac->ac_g_ex.fe_start, 3925 (unsigned long)ac->ac_g_ex.fe_len, 3926 (unsigned long)ac->ac_g_ex.fe_logical, 3927 (unsigned long)ac->ac_b_ex.fe_group, 3928 (unsigned long)ac->ac_b_ex.fe_start, 3929 (unsigned long)ac->ac_b_ex.fe_len, 3930 (unsigned long)ac->ac_b_ex.fe_logical, 3931 (int)ac->ac_criteria); 3932 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned, 3933 ac->ac_found); 3934 printk(KERN_ERR "EXT4-fs: groups: \n"); 3935 ngroups = ext4_get_groups_count(sb); 3936 for (i = 0; i < ngroups; i++) { 3937 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3938 struct ext4_prealloc_space *pa; 3939 ext4_grpblk_t start; 3940 struct list_head *cur; 3941 ext4_lock_group(sb, i); 3942 list_for_each(cur, &grp->bb_prealloc_list) { 3943 pa = list_entry(cur, struct ext4_prealloc_space, 3944 pa_group_list); 3945 spin_lock(&pa->pa_lock); 3946 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3947 NULL, &start); 3948 spin_unlock(&pa->pa_lock); 3949 printk(KERN_ERR "PA:%u:%d:%u \n", i, 3950 start, pa->pa_len); 3951 } 3952 ext4_unlock_group(sb, i); 3953 3954 if (grp->bb_free == 0) 3955 continue; 3956 printk(KERN_ERR "%u: %d/%d \n", 3957 i, grp->bb_free, grp->bb_fragments); 3958 } 3959 printk(KERN_ERR "\n"); 3960 } 3961 #else 3962 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3963 { 3964 return; 3965 } 3966 #endif 3967 3968 /* 3969 * We use locality group preallocation for small size file. The size of the 3970 * file is determined by the current size or the resulting size after 3971 * allocation which ever is larger 3972 * 3973 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 3974 */ 3975 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3976 { 3977 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3978 int bsbits = ac->ac_sb->s_blocksize_bits; 3979 loff_t size, isize; 3980 3981 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3982 return; 3983 3984 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3985 return; 3986 3987 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 3988 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 3989 >> bsbits; 3990 3991 if ((size == isize) && 3992 !ext4_fs_is_busy(sbi) && 3993 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 3994 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 3995 return; 3996 } 3997 3998 /* don't use group allocation for large files */ 3999 size = max(size, isize); 4000 if (size > sbi->s_mb_stream_request) { 4001 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4002 return; 4003 } 4004 4005 BUG_ON(ac->ac_lg != NULL); 4006 /* 4007 * locality group prealloc space are per cpu. The reason for having 4008 * per cpu locality group is to reduce the contention between block 4009 * request from multiple CPUs. 4010 */ 4011 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 4012 4013 /* we're going to use group allocation */ 4014 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4015 4016 /* serialize all allocations in the group */ 4017 mutex_lock(&ac->ac_lg->lg_mutex); 4018 } 4019 4020 static noinline_for_stack int 4021 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4022 struct ext4_allocation_request *ar) 4023 { 4024 struct super_block *sb = ar->inode->i_sb; 4025 struct ext4_sb_info *sbi = EXT4_SB(sb); 4026 struct ext4_super_block *es = sbi->s_es; 4027 ext4_group_t group; 4028 unsigned int len; 4029 ext4_fsblk_t goal; 4030 ext4_grpblk_t block; 4031 4032 /* we can't allocate > group size */ 4033 len = ar->len; 4034 4035 /* just a dirty hack to filter too big requests */ 4036 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10) 4037 len = EXT4_BLOCKS_PER_GROUP(sb) - 10; 4038 4039 /* start searching from the goal */ 4040 goal = ar->goal; 4041 if (goal < le32_to_cpu(es->s_first_data_block) || 4042 goal >= ext4_blocks_count(es)) 4043 goal = le32_to_cpu(es->s_first_data_block); 4044 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4045 4046 /* set up allocation goals */ 4047 memset(ac, 0, sizeof(struct ext4_allocation_context)); 4048 ac->ac_b_ex.fe_logical = ar->logical; 4049 ac->ac_status = AC_STATUS_CONTINUE; 4050 ac->ac_sb = sb; 4051 ac->ac_inode = ar->inode; 4052 ac->ac_o_ex.fe_logical = ar->logical; 4053 ac->ac_o_ex.fe_group = group; 4054 ac->ac_o_ex.fe_start = block; 4055 ac->ac_o_ex.fe_len = len; 4056 ac->ac_g_ex.fe_logical = ar->logical; 4057 ac->ac_g_ex.fe_group = group; 4058 ac->ac_g_ex.fe_start = block; 4059 ac->ac_g_ex.fe_len = len; 4060 ac->ac_flags = ar->flags; 4061 4062 /* we have to define context: we'll we work with a file or 4063 * locality group. this is a policy, actually */ 4064 ext4_mb_group_or_file(ac); 4065 4066 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4067 "left: %u/%u, right %u/%u to %swritable\n", 4068 (unsigned) ar->len, (unsigned) ar->logical, 4069 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4070 (unsigned) ar->lleft, (unsigned) ar->pleft, 4071 (unsigned) ar->lright, (unsigned) ar->pright, 4072 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4073 return 0; 4074 4075 } 4076 4077 static noinline_for_stack void 4078 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4079 struct ext4_locality_group *lg, 4080 int order, int total_entries) 4081 { 4082 ext4_group_t group = 0; 4083 struct ext4_buddy e4b; 4084 struct list_head discard_list; 4085 struct ext4_prealloc_space *pa, *tmp; 4086 4087 mb_debug(1, "discard locality group preallocation\n"); 4088 4089 INIT_LIST_HEAD(&discard_list); 4090 4091 spin_lock(&lg->lg_prealloc_lock); 4092 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4093 pa_inode_list) { 4094 spin_lock(&pa->pa_lock); 4095 if (atomic_read(&pa->pa_count)) { 4096 /* 4097 * This is the pa that we just used 4098 * for block allocation. So don't 4099 * free that 4100 */ 4101 spin_unlock(&pa->pa_lock); 4102 continue; 4103 } 4104 if (pa->pa_deleted) { 4105 spin_unlock(&pa->pa_lock); 4106 continue; 4107 } 4108 /* only lg prealloc space */ 4109 BUG_ON(pa->pa_type != MB_GROUP_PA); 4110 4111 /* seems this one can be freed ... */ 4112 pa->pa_deleted = 1; 4113 spin_unlock(&pa->pa_lock); 4114 4115 list_del_rcu(&pa->pa_inode_list); 4116 list_add(&pa->u.pa_tmp_list, &discard_list); 4117 4118 total_entries--; 4119 if (total_entries <= 5) { 4120 /* 4121 * we want to keep only 5 entries 4122 * allowing it to grow to 8. This 4123 * mak sure we don't call discard 4124 * soon for this list. 4125 */ 4126 break; 4127 } 4128 } 4129 spin_unlock(&lg->lg_prealloc_lock); 4130 4131 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4132 4133 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4134 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4135 ext4_error(sb, "Error loading buddy information for %u", 4136 group); 4137 continue; 4138 } 4139 ext4_lock_group(sb, group); 4140 list_del(&pa->pa_group_list); 4141 ext4_mb_release_group_pa(&e4b, pa); 4142 ext4_unlock_group(sb, group); 4143 4144 ext4_mb_unload_buddy(&e4b); 4145 list_del(&pa->u.pa_tmp_list); 4146 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4147 } 4148 } 4149 4150 /* 4151 * We have incremented pa_count. So it cannot be freed at this 4152 * point. Also we hold lg_mutex. So no parallel allocation is 4153 * possible from this lg. That means pa_free cannot be updated. 4154 * 4155 * A parallel ext4_mb_discard_group_preallocations is possible. 4156 * which can cause the lg_prealloc_list to be updated. 4157 */ 4158 4159 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4160 { 4161 int order, added = 0, lg_prealloc_count = 1; 4162 struct super_block *sb = ac->ac_sb; 4163 struct ext4_locality_group *lg = ac->ac_lg; 4164 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4165 4166 order = fls(pa->pa_free) - 1; 4167 if (order > PREALLOC_TB_SIZE - 1) 4168 /* The max size of hash table is PREALLOC_TB_SIZE */ 4169 order = PREALLOC_TB_SIZE - 1; 4170 /* Add the prealloc space to lg */ 4171 rcu_read_lock(); 4172 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4173 pa_inode_list) { 4174 spin_lock(&tmp_pa->pa_lock); 4175 if (tmp_pa->pa_deleted) { 4176 spin_unlock(&tmp_pa->pa_lock); 4177 continue; 4178 } 4179 if (!added && pa->pa_free < tmp_pa->pa_free) { 4180 /* Add to the tail of the previous entry */ 4181 list_add_tail_rcu(&pa->pa_inode_list, 4182 &tmp_pa->pa_inode_list); 4183 added = 1; 4184 /* 4185 * we want to count the total 4186 * number of entries in the list 4187 */ 4188 } 4189 spin_unlock(&tmp_pa->pa_lock); 4190 lg_prealloc_count++; 4191 } 4192 if (!added) 4193 list_add_tail_rcu(&pa->pa_inode_list, 4194 &lg->lg_prealloc_list[order]); 4195 rcu_read_unlock(); 4196 4197 /* Now trim the list to be not more than 8 elements */ 4198 if (lg_prealloc_count > 8) { 4199 ext4_mb_discard_lg_preallocations(sb, lg, 4200 order, lg_prealloc_count); 4201 return; 4202 } 4203 return ; 4204 } 4205 4206 /* 4207 * release all resource we used in allocation 4208 */ 4209 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4210 { 4211 struct ext4_prealloc_space *pa = ac->ac_pa; 4212 if (pa) { 4213 if (pa->pa_type == MB_GROUP_PA) { 4214 /* see comment in ext4_mb_use_group_pa() */ 4215 spin_lock(&pa->pa_lock); 4216 pa->pa_pstart += ac->ac_b_ex.fe_len; 4217 pa->pa_lstart += ac->ac_b_ex.fe_len; 4218 pa->pa_free -= ac->ac_b_ex.fe_len; 4219 pa->pa_len -= ac->ac_b_ex.fe_len; 4220 spin_unlock(&pa->pa_lock); 4221 } 4222 } 4223 if (ac->alloc_semp) 4224 up_read(ac->alloc_semp); 4225 if (pa) { 4226 /* 4227 * We want to add the pa to the right bucket. 4228 * Remove it from the list and while adding 4229 * make sure the list to which we are adding 4230 * doesn't grow big. We need to release 4231 * alloc_semp before calling ext4_mb_add_n_trim() 4232 */ 4233 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4234 spin_lock(pa->pa_obj_lock); 4235 list_del_rcu(&pa->pa_inode_list); 4236 spin_unlock(pa->pa_obj_lock); 4237 ext4_mb_add_n_trim(ac); 4238 } 4239 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4240 } 4241 if (ac->ac_bitmap_page) 4242 page_cache_release(ac->ac_bitmap_page); 4243 if (ac->ac_buddy_page) 4244 page_cache_release(ac->ac_buddy_page); 4245 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4246 mutex_unlock(&ac->ac_lg->lg_mutex); 4247 ext4_mb_collect_stats(ac); 4248 return 0; 4249 } 4250 4251 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4252 { 4253 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4254 int ret; 4255 int freed = 0; 4256 4257 trace_ext4_mb_discard_preallocations(sb, needed); 4258 for (i = 0; i < ngroups && needed > 0; i++) { 4259 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4260 freed += ret; 4261 needed -= ret; 4262 } 4263 4264 return freed; 4265 } 4266 4267 /* 4268 * Main entry point into mballoc to allocate blocks 4269 * it tries to use preallocation first, then falls back 4270 * to usual allocation 4271 */ 4272 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4273 struct ext4_allocation_request *ar, int *errp) 4274 { 4275 int freed; 4276 struct ext4_allocation_context *ac = NULL; 4277 struct ext4_sb_info *sbi; 4278 struct super_block *sb; 4279 ext4_fsblk_t block = 0; 4280 unsigned int inquota = 0; 4281 unsigned int reserv_blks = 0; 4282 4283 sb = ar->inode->i_sb; 4284 sbi = EXT4_SB(sb); 4285 4286 trace_ext4_request_blocks(ar); 4287 4288 /* 4289 * For delayed allocation, we could skip the ENOSPC and 4290 * EDQUOT check, as blocks and quotas have been already 4291 * reserved when data being copied into pagecache. 4292 */ 4293 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4294 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4295 else { 4296 /* Without delayed allocation we need to verify 4297 * there is enough free blocks to do block allocation 4298 * and verify allocation doesn't exceed the quota limits. 4299 */ 4300 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) { 4301 /* let others to free the space */ 4302 yield(); 4303 ar->len = ar->len >> 1; 4304 } 4305 if (!ar->len) { 4306 *errp = -ENOSPC; 4307 return 0; 4308 } 4309 reserv_blks = ar->len; 4310 while (ar->len && dquot_alloc_block(ar->inode, ar->len)) { 4311 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4312 ar->len--; 4313 } 4314 inquota = ar->len; 4315 if (ar->len == 0) { 4316 *errp = -EDQUOT; 4317 goto out; 4318 } 4319 } 4320 4321 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4322 if (!ac) { 4323 ar->len = 0; 4324 *errp = -ENOMEM; 4325 goto out; 4326 } 4327 4328 *errp = ext4_mb_initialize_context(ac, ar); 4329 if (*errp) { 4330 ar->len = 0; 4331 goto out; 4332 } 4333 4334 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4335 if (!ext4_mb_use_preallocated(ac)) { 4336 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4337 ext4_mb_normalize_request(ac, ar); 4338 repeat: 4339 /* allocate space in core */ 4340 *errp = ext4_mb_regular_allocator(ac); 4341 if (*errp) 4342 goto errout; 4343 4344 /* as we've just preallocated more space than 4345 * user requested orinally, we store allocated 4346 * space in a special descriptor */ 4347 if (ac->ac_status == AC_STATUS_FOUND && 4348 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4349 ext4_mb_new_preallocation(ac); 4350 } 4351 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4352 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks); 4353 if (*errp == -EAGAIN) { 4354 /* 4355 * drop the reference that we took 4356 * in ext4_mb_use_best_found 4357 */ 4358 ext4_mb_release_context(ac); 4359 ac->ac_b_ex.fe_group = 0; 4360 ac->ac_b_ex.fe_start = 0; 4361 ac->ac_b_ex.fe_len = 0; 4362 ac->ac_status = AC_STATUS_CONTINUE; 4363 goto repeat; 4364 } else if (*errp) 4365 errout: 4366 ext4_discard_allocated_blocks(ac); 4367 else { 4368 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4369 ar->len = ac->ac_b_ex.fe_len; 4370 } 4371 } else { 4372 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4373 if (freed) 4374 goto repeat; 4375 *errp = -ENOSPC; 4376 } 4377 4378 if (*errp) { 4379 ac->ac_b_ex.fe_len = 0; 4380 ar->len = 0; 4381 ext4_mb_show_ac(ac); 4382 } 4383 ext4_mb_release_context(ac); 4384 out: 4385 if (ac) 4386 kmem_cache_free(ext4_ac_cachep, ac); 4387 if (inquota && ar->len < inquota) 4388 dquot_free_block(ar->inode, inquota - ar->len); 4389 if (!ar->len) { 4390 if (!ext4_test_inode_state(ar->inode, 4391 EXT4_STATE_DELALLOC_RESERVED)) 4392 /* release all the reserved blocks if non delalloc */ 4393 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 4394 reserv_blks); 4395 } 4396 4397 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4398 4399 return block; 4400 } 4401 4402 /* 4403 * We can merge two free data extents only if the physical blocks 4404 * are contiguous, AND the extents were freed by the same transaction, 4405 * AND the blocks are associated with the same group. 4406 */ 4407 static int can_merge(struct ext4_free_data *entry1, 4408 struct ext4_free_data *entry2) 4409 { 4410 if ((entry1->t_tid == entry2->t_tid) && 4411 (entry1->group == entry2->group) && 4412 ((entry1->start_blk + entry1->count) == entry2->start_blk)) 4413 return 1; 4414 return 0; 4415 } 4416 4417 static noinline_for_stack int 4418 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4419 struct ext4_free_data *new_entry) 4420 { 4421 ext4_group_t group = e4b->bd_group; 4422 ext4_grpblk_t block; 4423 struct ext4_free_data *entry; 4424 struct ext4_group_info *db = e4b->bd_info; 4425 struct super_block *sb = e4b->bd_sb; 4426 struct ext4_sb_info *sbi = EXT4_SB(sb); 4427 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4428 struct rb_node *parent = NULL, *new_node; 4429 4430 BUG_ON(!ext4_handle_valid(handle)); 4431 BUG_ON(e4b->bd_bitmap_page == NULL); 4432 BUG_ON(e4b->bd_buddy_page == NULL); 4433 4434 new_node = &new_entry->node; 4435 block = new_entry->start_blk; 4436 4437 if (!*n) { 4438 /* first free block exent. We need to 4439 protect buddy cache from being freed, 4440 * otherwise we'll refresh it from 4441 * on-disk bitmap and lose not-yet-available 4442 * blocks */ 4443 page_cache_get(e4b->bd_buddy_page); 4444 page_cache_get(e4b->bd_bitmap_page); 4445 } 4446 while (*n) { 4447 parent = *n; 4448 entry = rb_entry(parent, struct ext4_free_data, node); 4449 if (block < entry->start_blk) 4450 n = &(*n)->rb_left; 4451 else if (block >= (entry->start_blk + entry->count)) 4452 n = &(*n)->rb_right; 4453 else { 4454 ext4_grp_locked_error(sb, group, 0, 4455 ext4_group_first_block_no(sb, group) + block, 4456 "Block already on to-be-freed list"); 4457 return 0; 4458 } 4459 } 4460 4461 rb_link_node(new_node, parent, n); 4462 rb_insert_color(new_node, &db->bb_free_root); 4463 4464 /* Now try to see the extent can be merged to left and right */ 4465 node = rb_prev(new_node); 4466 if (node) { 4467 entry = rb_entry(node, struct ext4_free_data, node); 4468 if (can_merge(entry, new_entry)) { 4469 new_entry->start_blk = entry->start_blk; 4470 new_entry->count += entry->count; 4471 rb_erase(node, &(db->bb_free_root)); 4472 spin_lock(&sbi->s_md_lock); 4473 list_del(&entry->list); 4474 spin_unlock(&sbi->s_md_lock); 4475 kmem_cache_free(ext4_free_ext_cachep, entry); 4476 } 4477 } 4478 4479 node = rb_next(new_node); 4480 if (node) { 4481 entry = rb_entry(node, struct ext4_free_data, node); 4482 if (can_merge(new_entry, entry)) { 4483 new_entry->count += entry->count; 4484 rb_erase(node, &(db->bb_free_root)); 4485 spin_lock(&sbi->s_md_lock); 4486 list_del(&entry->list); 4487 spin_unlock(&sbi->s_md_lock); 4488 kmem_cache_free(ext4_free_ext_cachep, entry); 4489 } 4490 } 4491 /* Add the extent to transaction's private list */ 4492 spin_lock(&sbi->s_md_lock); 4493 list_add(&new_entry->list, &handle->h_transaction->t_private_list); 4494 spin_unlock(&sbi->s_md_lock); 4495 return 0; 4496 } 4497 4498 /** 4499 * ext4_free_blocks() -- Free given blocks and update quota 4500 * @handle: handle for this transaction 4501 * @inode: inode 4502 * @block: start physical block to free 4503 * @count: number of blocks to count 4504 * @metadata: Are these metadata blocks 4505 */ 4506 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4507 struct buffer_head *bh, ext4_fsblk_t block, 4508 unsigned long count, int flags) 4509 { 4510 struct buffer_head *bitmap_bh = NULL; 4511 struct super_block *sb = inode->i_sb; 4512 struct ext4_group_desc *gdp; 4513 unsigned long freed = 0; 4514 unsigned int overflow; 4515 ext4_grpblk_t bit; 4516 struct buffer_head *gd_bh; 4517 ext4_group_t block_group; 4518 struct ext4_sb_info *sbi; 4519 struct ext4_buddy e4b; 4520 int err = 0; 4521 int ret; 4522 4523 if (bh) { 4524 if (block) 4525 BUG_ON(block != bh->b_blocknr); 4526 else 4527 block = bh->b_blocknr; 4528 } 4529 4530 sbi = EXT4_SB(sb); 4531 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4532 !ext4_data_block_valid(sbi, block, count)) { 4533 ext4_error(sb, "Freeing blocks not in datazone - " 4534 "block = %llu, count = %lu", block, count); 4535 goto error_return; 4536 } 4537 4538 ext4_debug("freeing block %llu\n", block); 4539 trace_ext4_free_blocks(inode, block, count, flags); 4540 4541 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4542 struct buffer_head *tbh = bh; 4543 int i; 4544 4545 BUG_ON(bh && (count > 1)); 4546 4547 for (i = 0; i < count; i++) { 4548 if (!bh) 4549 tbh = sb_find_get_block(inode->i_sb, 4550 block + i); 4551 if (unlikely(!tbh)) 4552 continue; 4553 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4554 inode, tbh, block + i); 4555 } 4556 } 4557 4558 /* 4559 * We need to make sure we don't reuse the freed block until 4560 * after the transaction is committed, which we can do by 4561 * treating the block as metadata, below. We make an 4562 * exception if the inode is to be written in writeback mode 4563 * since writeback mode has weak data consistency guarantees. 4564 */ 4565 if (!ext4_should_writeback_data(inode)) 4566 flags |= EXT4_FREE_BLOCKS_METADATA; 4567 4568 do_more: 4569 overflow = 0; 4570 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4571 4572 /* 4573 * Check to see if we are freeing blocks across a group 4574 * boundary. 4575 */ 4576 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4577 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); 4578 count -= overflow; 4579 } 4580 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4581 if (!bitmap_bh) { 4582 err = -EIO; 4583 goto error_return; 4584 } 4585 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4586 if (!gdp) { 4587 err = -EIO; 4588 goto error_return; 4589 } 4590 4591 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4592 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4593 in_range(block, ext4_inode_table(sb, gdp), 4594 EXT4_SB(sb)->s_itb_per_group) || 4595 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4596 EXT4_SB(sb)->s_itb_per_group)) { 4597 4598 ext4_error(sb, "Freeing blocks in system zone - " 4599 "Block = %llu, count = %lu", block, count); 4600 /* err = 0. ext4_std_error should be a no op */ 4601 goto error_return; 4602 } 4603 4604 BUFFER_TRACE(bitmap_bh, "getting write access"); 4605 err = ext4_journal_get_write_access(handle, bitmap_bh); 4606 if (err) 4607 goto error_return; 4608 4609 /* 4610 * We are about to modify some metadata. Call the journal APIs 4611 * to unshare ->b_data if a currently-committing transaction is 4612 * using it 4613 */ 4614 BUFFER_TRACE(gd_bh, "get_write_access"); 4615 err = ext4_journal_get_write_access(handle, gd_bh); 4616 if (err) 4617 goto error_return; 4618 #ifdef AGGRESSIVE_CHECK 4619 { 4620 int i; 4621 for (i = 0; i < count; i++) 4622 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4623 } 4624 #endif 4625 trace_ext4_mballoc_free(sb, inode, block_group, bit, count); 4626 4627 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4628 if (err) 4629 goto error_return; 4630 4631 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4632 struct ext4_free_data *new_entry; 4633 /* 4634 * blocks being freed are metadata. these blocks shouldn't 4635 * be used until this transaction is committed 4636 */ 4637 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS); 4638 if (!new_entry) { 4639 err = -ENOMEM; 4640 goto error_return; 4641 } 4642 new_entry->start_blk = bit; 4643 new_entry->group = block_group; 4644 new_entry->count = count; 4645 new_entry->t_tid = handle->h_transaction->t_tid; 4646 4647 ext4_lock_group(sb, block_group); 4648 mb_clear_bits(bitmap_bh->b_data, bit, count); 4649 ext4_mb_free_metadata(handle, &e4b, new_entry); 4650 } else { 4651 /* need to update group_info->bb_free and bitmap 4652 * with group lock held. generate_buddy look at 4653 * them with group lock_held 4654 */ 4655 ext4_lock_group(sb, block_group); 4656 mb_clear_bits(bitmap_bh->b_data, bit, count); 4657 mb_free_blocks(inode, &e4b, bit, count); 4658 } 4659 4660 ret = ext4_free_blks_count(sb, gdp) + count; 4661 ext4_free_blks_set(sb, gdp, ret); 4662 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); 4663 ext4_unlock_group(sb, block_group); 4664 percpu_counter_add(&sbi->s_freeblocks_counter, count); 4665 4666 if (sbi->s_log_groups_per_flex) { 4667 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4668 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks); 4669 } 4670 4671 ext4_mb_unload_buddy(&e4b); 4672 4673 freed += count; 4674 4675 /* We dirtied the bitmap block */ 4676 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4677 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4678 4679 /* And the group descriptor block */ 4680 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4681 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4682 if (!err) 4683 err = ret; 4684 4685 if (overflow && !err) { 4686 block += count; 4687 count = overflow; 4688 put_bh(bitmap_bh); 4689 goto do_more; 4690 } 4691 ext4_mark_super_dirty(sb); 4692 error_return: 4693 if (freed) 4694 dquot_free_block(inode, freed); 4695 brelse(bitmap_bh); 4696 ext4_std_error(sb, err); 4697 return; 4698 } 4699 4700 /** 4701 * ext4_trim_extent -- function to TRIM one single free extent in the group 4702 * @sb: super block for the file system 4703 * @start: starting block of the free extent in the alloc. group 4704 * @count: number of blocks to TRIM 4705 * @group: alloc. group we are working with 4706 * @e4b: ext4 buddy for the group 4707 * 4708 * Trim "count" blocks starting at "start" in the "group". To assure that no 4709 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4710 * be called with under the group lock. 4711 */ 4712 static int ext4_trim_extent(struct super_block *sb, int start, int count, 4713 ext4_group_t group, struct ext4_buddy *e4b) 4714 { 4715 struct ext4_free_extent ex; 4716 int ret = 0; 4717 4718 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4719 4720 ex.fe_start = start; 4721 ex.fe_group = group; 4722 ex.fe_len = count; 4723 4724 /* 4725 * Mark blocks used, so no one can reuse them while 4726 * being trimmed. 4727 */ 4728 mb_mark_used(e4b, &ex); 4729 ext4_unlock_group(sb, group); 4730 4731 ret = ext4_issue_discard(sb, group, start, count); 4732 4733 ext4_lock_group(sb, group); 4734 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4735 return ret; 4736 } 4737 4738 /** 4739 * ext4_trim_all_free -- function to trim all free space in alloc. group 4740 * @sb: super block for file system 4741 * @e4b: ext4 buddy 4742 * @start: first group block to examine 4743 * @max: last group block to examine 4744 * @minblocks: minimum extent block count 4745 * 4746 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4747 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4748 * the extent. 4749 * 4750 * 4751 * ext4_trim_all_free walks through group's block bitmap searching for free 4752 * extents. When the free extent is found, mark it as used in group buddy 4753 * bitmap. Then issue a TRIM command on this extent and free the extent in 4754 * the group buddy bitmap. This is done until whole group is scanned. 4755 */ 4756 ext4_grpblk_t ext4_trim_all_free(struct super_block *sb, struct ext4_buddy *e4b, 4757 ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks) 4758 { 4759 void *bitmap; 4760 ext4_grpblk_t next, count = 0; 4761 ext4_group_t group; 4762 int ret = 0; 4763 4764 BUG_ON(e4b == NULL); 4765 4766 bitmap = e4b->bd_bitmap; 4767 group = e4b->bd_group; 4768 start = (e4b->bd_info->bb_first_free > start) ? 4769 e4b->bd_info->bb_first_free : start; 4770 ext4_lock_group(sb, group); 4771 4772 while (start < max) { 4773 start = mb_find_next_zero_bit(bitmap, max, start); 4774 if (start >= max) 4775 break; 4776 next = mb_find_next_bit(bitmap, max, start); 4777 4778 if ((next - start) >= minblocks) { 4779 ret = ext4_trim_extent(sb, start, 4780 next - start, group, e4b); 4781 if (ret < 0) 4782 break; 4783 count += next - start; 4784 } 4785 start = next + 1; 4786 4787 if (fatal_signal_pending(current)) { 4788 count = -ERESTARTSYS; 4789 break; 4790 } 4791 4792 if (need_resched()) { 4793 ext4_unlock_group(sb, group); 4794 cond_resched(); 4795 ext4_lock_group(sb, group); 4796 } 4797 4798 if ((e4b->bd_info->bb_free - count) < minblocks) 4799 break; 4800 } 4801 ext4_unlock_group(sb, group); 4802 4803 ext4_debug("trimmed %d blocks in the group %d\n", 4804 count, group); 4805 4806 if (ret < 0) 4807 count = ret; 4808 4809 return count; 4810 } 4811 4812 /** 4813 * ext4_trim_fs() -- trim ioctl handle function 4814 * @sb: superblock for filesystem 4815 * @range: fstrim_range structure 4816 * 4817 * start: First Byte to trim 4818 * len: number of Bytes to trim from start 4819 * minlen: minimum extent length in Bytes 4820 * ext4_trim_fs goes through all allocation groups containing Bytes from 4821 * start to start+len. For each such a group ext4_trim_all_free function 4822 * is invoked to trim all free space. 4823 */ 4824 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 4825 { 4826 struct ext4_buddy e4b; 4827 ext4_group_t first_group, last_group; 4828 ext4_group_t group, ngroups = ext4_get_groups_count(sb); 4829 ext4_grpblk_t cnt = 0, first_block, last_block; 4830 uint64_t start, len, minlen, trimmed; 4831 ext4_fsblk_t first_data_blk = 4832 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 4833 int ret = 0; 4834 4835 start = range->start >> sb->s_blocksize_bits; 4836 len = range->len >> sb->s_blocksize_bits; 4837 minlen = range->minlen >> sb->s_blocksize_bits; 4838 trimmed = 0; 4839 4840 if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb))) 4841 return -EINVAL; 4842 if (start < first_data_blk) { 4843 len -= first_data_blk - start; 4844 start = first_data_blk; 4845 } 4846 4847 /* Determine first and last group to examine based on start and len */ 4848 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 4849 &first_group, &first_block); 4850 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len), 4851 &last_group, &last_block); 4852 last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group; 4853 last_block = EXT4_BLOCKS_PER_GROUP(sb); 4854 4855 if (first_group > last_group) 4856 return -EINVAL; 4857 4858 for (group = first_group; group <= last_group; group++) { 4859 ret = ext4_mb_load_buddy(sb, group, &e4b); 4860 if (ret) { 4861 ext4_error(sb, "Error in loading buddy " 4862 "information for %u", group); 4863 break; 4864 } 4865 4866 if (len >= EXT4_BLOCKS_PER_GROUP(sb)) 4867 len -= (EXT4_BLOCKS_PER_GROUP(sb) - first_block); 4868 else 4869 last_block = first_block + len; 4870 4871 if (e4b.bd_info->bb_free >= minlen) { 4872 cnt = ext4_trim_all_free(sb, &e4b, first_block, 4873 last_block, minlen); 4874 if (cnt < 0) { 4875 ret = cnt; 4876 ext4_mb_unload_buddy(&e4b); 4877 break; 4878 } 4879 } 4880 ext4_mb_unload_buddy(&e4b); 4881 trimmed += cnt; 4882 first_block = 0; 4883 } 4884 range->len = trimmed * sb->s_blocksize; 4885 4886 return ret; 4887 } 4888