xref: /openbmc/linux/fs/ext4/mballoc.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root)
144  *
145  *    Locking: sbi->s_mb_rb_lock (rwlock)
146  *
147  *    This is a red black tree consisting of group infos and the tree is sorted
148  *    by average fragment sizes (which is calculated as ext4_group_info->bb_free
149  *    / ext4_group_info->bb_fragments).
150  *
151  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
152  * structures to decide the order in which groups are to be traversed for
153  * fulfilling an allocation request.
154  *
155  * At CR = 0, we look for groups which have the largest_free_order >= the order
156  * of the request. We directly look at the largest free order list in the data
157  * structure (1) above where largest_free_order = order of the request. If that
158  * list is empty, we look at remaining list in the increasing order of
159  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
160  *
161  * At CR = 1, we only consider groups where average fragment size > request
162  * size. So, we lookup a group which has average fragment size just above or
163  * equal to request size using our rb tree (data structure 2) in O(log N) time.
164  *
165  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
166  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
167  *
168  * The regular allocator (using the buddy cache) supports a few tunables.
169  *
170  * /sys/fs/ext4/<partition>/mb_min_to_scan
171  * /sys/fs/ext4/<partition>/mb_max_to_scan
172  * /sys/fs/ext4/<partition>/mb_order2_req
173  * /sys/fs/ext4/<partition>/mb_linear_limit
174  *
175  * The regular allocator uses buddy scan only if the request len is power of
176  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
177  * value of s_mb_order2_reqs can be tuned via
178  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
179  * stripe size (sbi->s_stripe), we try to search for contiguous block in
180  * stripe size. This should result in better allocation on RAID setups. If
181  * not, we search in the specific group using bitmap for best extents. The
182  * tunable min_to_scan and max_to_scan control the behaviour here.
183  * min_to_scan indicate how long the mballoc __must__ look for a best
184  * extent and max_to_scan indicates how long the mballoc __can__ look for a
185  * best extent in the found extents. Searching for the blocks starts with
186  * the group specified as the goal value in allocation context via
187  * ac_g_ex. Each group is first checked based on the criteria whether it
188  * can be used for allocation. ext4_mb_good_group explains how the groups are
189  * checked.
190  *
191  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
192  * get traversed linearly. That may result in subsequent allocations being not
193  * close to each other. And so, the underlying device may get filled up in a
194  * non-linear fashion. While that may not matter on non-rotational devices, for
195  * rotational devices that may result in higher seek times. "mb_linear_limit"
196  * tells mballoc how many groups mballoc should search linearly before
197  * performing consulting above data structures for more efficient lookups. For
198  * non rotational devices, this value defaults to 0 and for rotational devices
199  * this is set to MB_DEFAULT_LINEAR_LIMIT.
200  *
201  * Both the prealloc space are getting populated as above. So for the first
202  * request we will hit the buddy cache which will result in this prealloc
203  * space getting filled. The prealloc space is then later used for the
204  * subsequent request.
205  */
206 
207 /*
208  * mballoc operates on the following data:
209  *  - on-disk bitmap
210  *  - in-core buddy (actually includes buddy and bitmap)
211  *  - preallocation descriptors (PAs)
212  *
213  * there are two types of preallocations:
214  *  - inode
215  *    assiged to specific inode and can be used for this inode only.
216  *    it describes part of inode's space preallocated to specific
217  *    physical blocks. any block from that preallocated can be used
218  *    independent. the descriptor just tracks number of blocks left
219  *    unused. so, before taking some block from descriptor, one must
220  *    make sure corresponded logical block isn't allocated yet. this
221  *    also means that freeing any block within descriptor's range
222  *    must discard all preallocated blocks.
223  *  - locality group
224  *    assigned to specific locality group which does not translate to
225  *    permanent set of inodes: inode can join and leave group. space
226  *    from this type of preallocation can be used for any inode. thus
227  *    it's consumed from the beginning to the end.
228  *
229  * relation between them can be expressed as:
230  *    in-core buddy = on-disk bitmap + preallocation descriptors
231  *
232  * this mean blocks mballoc considers used are:
233  *  - allocated blocks (persistent)
234  *  - preallocated blocks (non-persistent)
235  *
236  * consistency in mballoc world means that at any time a block is either
237  * free or used in ALL structures. notice: "any time" should not be read
238  * literally -- time is discrete and delimited by locks.
239  *
240  *  to keep it simple, we don't use block numbers, instead we count number of
241  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
242  *
243  * all operations can be expressed as:
244  *  - init buddy:			buddy = on-disk + PAs
245  *  - new PA:				buddy += N; PA = N
246  *  - use inode PA:			on-disk += N; PA -= N
247  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
248  *  - use locality group PA		on-disk += N; PA -= N
249  *  - discard locality group PA		buddy -= PA; PA = 0
250  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
251  *        is used in real operation because we can't know actual used
252  *        bits from PA, only from on-disk bitmap
253  *
254  * if we follow this strict logic, then all operations above should be atomic.
255  * given some of them can block, we'd have to use something like semaphores
256  * killing performance on high-end SMP hardware. let's try to relax it using
257  * the following knowledge:
258  *  1) if buddy is referenced, it's already initialized
259  *  2) while block is used in buddy and the buddy is referenced,
260  *     nobody can re-allocate that block
261  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
262  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
263  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
264  *     block
265  *
266  * so, now we're building a concurrency table:
267  *  - init buddy vs.
268  *    - new PA
269  *      blocks for PA are allocated in the buddy, buddy must be referenced
270  *      until PA is linked to allocation group to avoid concurrent buddy init
271  *    - use inode PA
272  *      we need to make sure that either on-disk bitmap or PA has uptodate data
273  *      given (3) we care that PA-=N operation doesn't interfere with init
274  *    - discard inode PA
275  *      the simplest way would be to have buddy initialized by the discard
276  *    - use locality group PA
277  *      again PA-=N must be serialized with init
278  *    - discard locality group PA
279  *      the simplest way would be to have buddy initialized by the discard
280  *  - new PA vs.
281  *    - use inode PA
282  *      i_data_sem serializes them
283  *    - discard inode PA
284  *      discard process must wait until PA isn't used by another process
285  *    - use locality group PA
286  *      some mutex should serialize them
287  *    - discard locality group PA
288  *      discard process must wait until PA isn't used by another process
289  *  - use inode PA
290  *    - use inode PA
291  *      i_data_sem or another mutex should serializes them
292  *    - discard inode PA
293  *      discard process must wait until PA isn't used by another process
294  *    - use locality group PA
295  *      nothing wrong here -- they're different PAs covering different blocks
296  *    - discard locality group PA
297  *      discard process must wait until PA isn't used by another process
298  *
299  * now we're ready to make few consequences:
300  *  - PA is referenced and while it is no discard is possible
301  *  - PA is referenced until block isn't marked in on-disk bitmap
302  *  - PA changes only after on-disk bitmap
303  *  - discard must not compete with init. either init is done before
304  *    any discard or they're serialized somehow
305  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
306  *
307  * a special case when we've used PA to emptiness. no need to modify buddy
308  * in this case, but we should care about concurrent init
309  *
310  */
311 
312  /*
313  * Logic in few words:
314  *
315  *  - allocation:
316  *    load group
317  *    find blocks
318  *    mark bits in on-disk bitmap
319  *    release group
320  *
321  *  - use preallocation:
322  *    find proper PA (per-inode or group)
323  *    load group
324  *    mark bits in on-disk bitmap
325  *    release group
326  *    release PA
327  *
328  *  - free:
329  *    load group
330  *    mark bits in on-disk bitmap
331  *    release group
332  *
333  *  - discard preallocations in group:
334  *    mark PAs deleted
335  *    move them onto local list
336  *    load on-disk bitmap
337  *    load group
338  *    remove PA from object (inode or locality group)
339  *    mark free blocks in-core
340  *
341  *  - discard inode's preallocations:
342  */
343 
344 /*
345  * Locking rules
346  *
347  * Locks:
348  *  - bitlock on a group	(group)
349  *  - object (inode/locality)	(object)
350  *  - per-pa lock		(pa)
351  *  - cr0 lists lock		(cr0)
352  *  - cr1 tree lock		(cr1)
353  *
354  * Paths:
355  *  - new pa
356  *    object
357  *    group
358  *
359  *  - find and use pa:
360  *    pa
361  *
362  *  - release consumed pa:
363  *    pa
364  *    group
365  *    object
366  *
367  *  - generate in-core bitmap:
368  *    group
369  *        pa
370  *
371  *  - discard all for given object (inode, locality group):
372  *    object
373  *        pa
374  *    group
375  *
376  *  - discard all for given group:
377  *    group
378  *        pa
379  *    group
380  *        object
381  *
382  *  - allocation path (ext4_mb_regular_allocator)
383  *    group
384  *    cr0/cr1
385  */
386 static struct kmem_cache *ext4_pspace_cachep;
387 static struct kmem_cache *ext4_ac_cachep;
388 static struct kmem_cache *ext4_free_data_cachep;
389 
390 /* We create slab caches for groupinfo data structures based on the
391  * superblock block size.  There will be one per mounted filesystem for
392  * each unique s_blocksize_bits */
393 #define NR_GRPINFO_CACHES 8
394 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
395 
396 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
397 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
398 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
399 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
400 };
401 
402 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
403 					ext4_group_t group);
404 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
405 						ext4_group_t group);
406 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
407 
408 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
409 			       ext4_group_t group, int cr);
410 
411 static int ext4_try_to_trim_range(struct super_block *sb,
412 		struct ext4_buddy *e4b, ext4_grpblk_t start,
413 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
414 
415 /*
416  * The algorithm using this percpu seq counter goes below:
417  * 1. We sample the percpu discard_pa_seq counter before trying for block
418  *    allocation in ext4_mb_new_blocks().
419  * 2. We increment this percpu discard_pa_seq counter when we either allocate
420  *    or free these blocks i.e. while marking those blocks as used/free in
421  *    mb_mark_used()/mb_free_blocks().
422  * 3. We also increment this percpu seq counter when we successfully identify
423  *    that the bb_prealloc_list is not empty and hence proceed for discarding
424  *    of those PAs inside ext4_mb_discard_group_preallocations().
425  *
426  * Now to make sure that the regular fast path of block allocation is not
427  * affected, as a small optimization we only sample the percpu seq counter
428  * on that cpu. Only when the block allocation fails and when freed blocks
429  * found were 0, that is when we sample percpu seq counter for all cpus using
430  * below function ext4_get_discard_pa_seq_sum(). This happens after making
431  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
432  */
433 static DEFINE_PER_CPU(u64, discard_pa_seq);
434 static inline u64 ext4_get_discard_pa_seq_sum(void)
435 {
436 	int __cpu;
437 	u64 __seq = 0;
438 
439 	for_each_possible_cpu(__cpu)
440 		__seq += per_cpu(discard_pa_seq, __cpu);
441 	return __seq;
442 }
443 
444 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
445 {
446 #if BITS_PER_LONG == 64
447 	*bit += ((unsigned long) addr & 7UL) << 3;
448 	addr = (void *) ((unsigned long) addr & ~7UL);
449 #elif BITS_PER_LONG == 32
450 	*bit += ((unsigned long) addr & 3UL) << 3;
451 	addr = (void *) ((unsigned long) addr & ~3UL);
452 #else
453 #error "how many bits you are?!"
454 #endif
455 	return addr;
456 }
457 
458 static inline int mb_test_bit(int bit, void *addr)
459 {
460 	/*
461 	 * ext4_test_bit on architecture like powerpc
462 	 * needs unsigned long aligned address
463 	 */
464 	addr = mb_correct_addr_and_bit(&bit, addr);
465 	return ext4_test_bit(bit, addr);
466 }
467 
468 static inline void mb_set_bit(int bit, void *addr)
469 {
470 	addr = mb_correct_addr_and_bit(&bit, addr);
471 	ext4_set_bit(bit, addr);
472 }
473 
474 static inline void mb_clear_bit(int bit, void *addr)
475 {
476 	addr = mb_correct_addr_and_bit(&bit, addr);
477 	ext4_clear_bit(bit, addr);
478 }
479 
480 static inline int mb_test_and_clear_bit(int bit, void *addr)
481 {
482 	addr = mb_correct_addr_and_bit(&bit, addr);
483 	return ext4_test_and_clear_bit(bit, addr);
484 }
485 
486 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
487 {
488 	int fix = 0, ret, tmpmax;
489 	addr = mb_correct_addr_and_bit(&fix, addr);
490 	tmpmax = max + fix;
491 	start += fix;
492 
493 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
494 	if (ret > max)
495 		return max;
496 	return ret;
497 }
498 
499 static inline int mb_find_next_bit(void *addr, int max, int start)
500 {
501 	int fix = 0, ret, tmpmax;
502 	addr = mb_correct_addr_and_bit(&fix, addr);
503 	tmpmax = max + fix;
504 	start += fix;
505 
506 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
507 	if (ret > max)
508 		return max;
509 	return ret;
510 }
511 
512 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
513 {
514 	char *bb;
515 
516 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
517 	BUG_ON(max == NULL);
518 
519 	if (order > e4b->bd_blkbits + 1) {
520 		*max = 0;
521 		return NULL;
522 	}
523 
524 	/* at order 0 we see each particular block */
525 	if (order == 0) {
526 		*max = 1 << (e4b->bd_blkbits + 3);
527 		return e4b->bd_bitmap;
528 	}
529 
530 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
531 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
532 
533 	return bb;
534 }
535 
536 #ifdef DOUBLE_CHECK
537 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
538 			   int first, int count)
539 {
540 	int i;
541 	struct super_block *sb = e4b->bd_sb;
542 
543 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
544 		return;
545 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
546 	for (i = 0; i < count; i++) {
547 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
548 			ext4_fsblk_t blocknr;
549 
550 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
551 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
552 			ext4_grp_locked_error(sb, e4b->bd_group,
553 					      inode ? inode->i_ino : 0,
554 					      blocknr,
555 					      "freeing block already freed "
556 					      "(bit %u)",
557 					      first + i);
558 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
559 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
560 		}
561 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
562 	}
563 }
564 
565 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
566 {
567 	int i;
568 
569 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
570 		return;
571 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
572 	for (i = 0; i < count; i++) {
573 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
574 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
575 	}
576 }
577 
578 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
579 {
580 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
581 		return;
582 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
583 		unsigned char *b1, *b2;
584 		int i;
585 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
586 		b2 = (unsigned char *) bitmap;
587 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
588 			if (b1[i] != b2[i]) {
589 				ext4_msg(e4b->bd_sb, KERN_ERR,
590 					 "corruption in group %u "
591 					 "at byte %u(%u): %x in copy != %x "
592 					 "on disk/prealloc",
593 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
594 				BUG();
595 			}
596 		}
597 	}
598 }
599 
600 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
601 			struct ext4_group_info *grp, ext4_group_t group)
602 {
603 	struct buffer_head *bh;
604 
605 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
606 	if (!grp->bb_bitmap)
607 		return;
608 
609 	bh = ext4_read_block_bitmap(sb, group);
610 	if (IS_ERR_OR_NULL(bh)) {
611 		kfree(grp->bb_bitmap);
612 		grp->bb_bitmap = NULL;
613 		return;
614 	}
615 
616 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
617 	put_bh(bh);
618 }
619 
620 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
621 {
622 	kfree(grp->bb_bitmap);
623 }
624 
625 #else
626 static inline void mb_free_blocks_double(struct inode *inode,
627 				struct ext4_buddy *e4b, int first, int count)
628 {
629 	return;
630 }
631 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
632 						int first, int count)
633 {
634 	return;
635 }
636 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
637 {
638 	return;
639 }
640 
641 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
642 			struct ext4_group_info *grp, ext4_group_t group)
643 {
644 	return;
645 }
646 
647 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
648 {
649 	return;
650 }
651 #endif
652 
653 #ifdef AGGRESSIVE_CHECK
654 
655 #define MB_CHECK_ASSERT(assert)						\
656 do {									\
657 	if (!(assert)) {						\
658 		printk(KERN_EMERG					\
659 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
660 			function, file, line, # assert);		\
661 		BUG();							\
662 	}								\
663 } while (0)
664 
665 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
666 				const char *function, int line)
667 {
668 	struct super_block *sb = e4b->bd_sb;
669 	int order = e4b->bd_blkbits + 1;
670 	int max;
671 	int max2;
672 	int i;
673 	int j;
674 	int k;
675 	int count;
676 	struct ext4_group_info *grp;
677 	int fragments = 0;
678 	int fstart;
679 	struct list_head *cur;
680 	void *buddy;
681 	void *buddy2;
682 
683 	if (e4b->bd_info->bb_check_counter++ % 10)
684 		return 0;
685 
686 	while (order > 1) {
687 		buddy = mb_find_buddy(e4b, order, &max);
688 		MB_CHECK_ASSERT(buddy);
689 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
690 		MB_CHECK_ASSERT(buddy2);
691 		MB_CHECK_ASSERT(buddy != buddy2);
692 		MB_CHECK_ASSERT(max * 2 == max2);
693 
694 		count = 0;
695 		for (i = 0; i < max; i++) {
696 
697 			if (mb_test_bit(i, buddy)) {
698 				/* only single bit in buddy2 may be 1 */
699 				if (!mb_test_bit(i << 1, buddy2)) {
700 					MB_CHECK_ASSERT(
701 						mb_test_bit((i<<1)+1, buddy2));
702 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
703 					MB_CHECK_ASSERT(
704 						mb_test_bit(i << 1, buddy2));
705 				}
706 				continue;
707 			}
708 
709 			/* both bits in buddy2 must be 1 */
710 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
711 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
712 
713 			for (j = 0; j < (1 << order); j++) {
714 				k = (i * (1 << order)) + j;
715 				MB_CHECK_ASSERT(
716 					!mb_test_bit(k, e4b->bd_bitmap));
717 			}
718 			count++;
719 		}
720 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
721 		order--;
722 	}
723 
724 	fstart = -1;
725 	buddy = mb_find_buddy(e4b, 0, &max);
726 	for (i = 0; i < max; i++) {
727 		if (!mb_test_bit(i, buddy)) {
728 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
729 			if (fstart == -1) {
730 				fragments++;
731 				fstart = i;
732 			}
733 			continue;
734 		}
735 		fstart = -1;
736 		/* check used bits only */
737 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
738 			buddy2 = mb_find_buddy(e4b, j, &max2);
739 			k = i >> j;
740 			MB_CHECK_ASSERT(k < max2);
741 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
742 		}
743 	}
744 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
745 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
746 
747 	grp = ext4_get_group_info(sb, e4b->bd_group);
748 	list_for_each(cur, &grp->bb_prealloc_list) {
749 		ext4_group_t groupnr;
750 		struct ext4_prealloc_space *pa;
751 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
752 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
753 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
754 		for (i = 0; i < pa->pa_len; i++)
755 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
756 	}
757 	return 0;
758 }
759 #undef MB_CHECK_ASSERT
760 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
761 					__FILE__, __func__, __LINE__)
762 #else
763 #define mb_check_buddy(e4b)
764 #endif
765 
766 /*
767  * Divide blocks started from @first with length @len into
768  * smaller chunks with power of 2 blocks.
769  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
770  * then increase bb_counters[] for corresponded chunk size.
771  */
772 static void ext4_mb_mark_free_simple(struct super_block *sb,
773 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
774 					struct ext4_group_info *grp)
775 {
776 	struct ext4_sb_info *sbi = EXT4_SB(sb);
777 	ext4_grpblk_t min;
778 	ext4_grpblk_t max;
779 	ext4_grpblk_t chunk;
780 	unsigned int border;
781 
782 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
783 
784 	border = 2 << sb->s_blocksize_bits;
785 
786 	while (len > 0) {
787 		/* find how many blocks can be covered since this position */
788 		max = ffs(first | border) - 1;
789 
790 		/* find how many blocks of power 2 we need to mark */
791 		min = fls(len) - 1;
792 
793 		if (max < min)
794 			min = max;
795 		chunk = 1 << min;
796 
797 		/* mark multiblock chunks only */
798 		grp->bb_counters[min]++;
799 		if (min > 0)
800 			mb_clear_bit(first >> min,
801 				     buddy + sbi->s_mb_offsets[min]);
802 
803 		len -= chunk;
804 		first += chunk;
805 	}
806 }
807 
808 static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new,
809 			int (*cmp)(struct rb_node *, struct rb_node *))
810 {
811 	struct rb_node **iter = &root->rb_node, *parent = NULL;
812 
813 	while (*iter) {
814 		parent = *iter;
815 		if (cmp(new, *iter) > 0)
816 			iter = &((*iter)->rb_left);
817 		else
818 			iter = &((*iter)->rb_right);
819 	}
820 
821 	rb_link_node(new, parent, iter);
822 	rb_insert_color(new, root);
823 }
824 
825 static int
826 ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2)
827 {
828 	struct ext4_group_info *grp1 = rb_entry(rb1,
829 						struct ext4_group_info,
830 						bb_avg_fragment_size_rb);
831 	struct ext4_group_info *grp2 = rb_entry(rb2,
832 						struct ext4_group_info,
833 						bb_avg_fragment_size_rb);
834 	int num_frags_1, num_frags_2;
835 
836 	num_frags_1 = grp1->bb_fragments ?
837 		grp1->bb_free / grp1->bb_fragments : 0;
838 	num_frags_2 = grp2->bb_fragments ?
839 		grp2->bb_free / grp2->bb_fragments : 0;
840 
841 	return (num_frags_2 - num_frags_1);
842 }
843 
844 /*
845  * Reinsert grpinfo into the avg_fragment_size tree with new average
846  * fragment size.
847  */
848 static void
849 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
850 {
851 	struct ext4_sb_info *sbi = EXT4_SB(sb);
852 
853 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
854 		return;
855 
856 	write_lock(&sbi->s_mb_rb_lock);
857 	if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) {
858 		rb_erase(&grp->bb_avg_fragment_size_rb,
859 				&sbi->s_mb_avg_fragment_size_root);
860 		RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb);
861 	}
862 
863 	ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root,
864 		&grp->bb_avg_fragment_size_rb,
865 		ext4_mb_avg_fragment_size_cmp);
866 	write_unlock(&sbi->s_mb_rb_lock);
867 }
868 
869 /*
870  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
871  * cr level needs an update.
872  */
873 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
874 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
875 {
876 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
877 	struct ext4_group_info *iter, *grp;
878 	int i;
879 
880 	if (ac->ac_status == AC_STATUS_FOUND)
881 		return;
882 
883 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
884 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
885 
886 	grp = NULL;
887 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889 			continue;
890 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893 			continue;
894 		}
895 		grp = NULL;
896 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
897 				    bb_largest_free_order_node) {
898 			if (sbi->s_mb_stats)
899 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
900 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
901 				grp = iter;
902 				break;
903 			}
904 		}
905 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
906 		if (grp)
907 			break;
908 	}
909 
910 	if (!grp) {
911 		/* Increment cr and search again */
912 		*new_cr = 1;
913 	} else {
914 		*group = grp->bb_group;
915 		ac->ac_last_optimal_group = *group;
916 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
917 	}
918 }
919 
920 /*
921  * Choose next group by traversing average fragment size tree. Updates *new_cr
922  * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that
923  * the linear search should continue for one iteration since there's lock
924  * contention on the rb tree lock.
925  */
926 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
927 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
928 {
929 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
930 	int avg_fragment_size, best_so_far;
931 	struct rb_node *node, *found;
932 	struct ext4_group_info *grp;
933 
934 	/*
935 	 * If there is contention on the lock, instead of waiting for the lock
936 	 * to become available, just continue searching lineraly. We'll resume
937 	 * our rb tree search later starting at ac->ac_last_optimal_group.
938 	 */
939 	if (!read_trylock(&sbi->s_mb_rb_lock)) {
940 		ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR;
941 		return;
942 	}
943 
944 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
945 		if (sbi->s_mb_stats)
946 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
947 		/* We have found something at CR 1 in the past */
948 		grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group);
949 		for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL;
950 		     found = rb_next(found)) {
951 			grp = rb_entry(found, struct ext4_group_info,
952 				       bb_avg_fragment_size_rb);
953 			if (sbi->s_mb_stats)
954 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
955 			if (likely(ext4_mb_good_group(ac, grp->bb_group, 1)))
956 				break;
957 		}
958 		goto done;
959 	}
960 
961 	node = sbi->s_mb_avg_fragment_size_root.rb_node;
962 	best_so_far = 0;
963 	found = NULL;
964 
965 	while (node) {
966 		grp = rb_entry(node, struct ext4_group_info,
967 			       bb_avg_fragment_size_rb);
968 		avg_fragment_size = 0;
969 		if (ext4_mb_good_group(ac, grp->bb_group, 1)) {
970 			avg_fragment_size = grp->bb_fragments ?
971 				grp->bb_free / grp->bb_fragments : 0;
972 			if (!best_so_far || avg_fragment_size < best_so_far) {
973 				best_so_far = avg_fragment_size;
974 				found = node;
975 			}
976 		}
977 		if (avg_fragment_size > ac->ac_g_ex.fe_len)
978 			node = node->rb_right;
979 		else
980 			node = node->rb_left;
981 	}
982 
983 done:
984 	if (found) {
985 		grp = rb_entry(found, struct ext4_group_info,
986 			       bb_avg_fragment_size_rb);
987 		*group = grp->bb_group;
988 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
989 	} else {
990 		*new_cr = 2;
991 	}
992 
993 	read_unlock(&sbi->s_mb_rb_lock);
994 	ac->ac_last_optimal_group = *group;
995 }
996 
997 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
998 {
999 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1000 		return 0;
1001 	if (ac->ac_criteria >= 2)
1002 		return 0;
1003 	if (ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1004 		return 0;
1005 	return 1;
1006 }
1007 
1008 /*
1009  * Return next linear group for allocation. If linear traversal should not be
1010  * performed, this function just returns the same group
1011  */
1012 static int
1013 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
1014 {
1015 	if (!should_optimize_scan(ac))
1016 		goto inc_and_return;
1017 
1018 	if (ac->ac_groups_linear_remaining) {
1019 		ac->ac_groups_linear_remaining--;
1020 		goto inc_and_return;
1021 	}
1022 
1023 	if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) {
1024 		ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR;
1025 		goto inc_and_return;
1026 	}
1027 
1028 	return group;
1029 inc_and_return:
1030 	/*
1031 	 * Artificially restricted ngroups for non-extent
1032 	 * files makes group > ngroups possible on first loop.
1033 	 */
1034 	return group + 1 >= ngroups ? 0 : group + 1;
1035 }
1036 
1037 /*
1038  * ext4_mb_choose_next_group: choose next group for allocation.
1039  *
1040  * @ac        Allocation Context
1041  * @new_cr    This is an output parameter. If the there is no good group
1042  *            available at current CR level, this field is updated to indicate
1043  *            the new cr level that should be used.
1044  * @group     This is an input / output parameter. As an input it indicates the
1045  *            next group that the allocator intends to use for allocation. As
1046  *            output, this field indicates the next group that should be used as
1047  *            determined by the optimization functions.
1048  * @ngroups   Total number of groups
1049  */
1050 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1051 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1052 {
1053 	*new_cr = ac->ac_criteria;
1054 
1055 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining)
1056 		return;
1057 
1058 	if (*new_cr == 0) {
1059 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1060 	} else if (*new_cr == 1) {
1061 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1062 	} else {
1063 		/*
1064 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1065 		 * bb_free. But until that happens, we should never come here.
1066 		 */
1067 		WARN_ON(1);
1068 	}
1069 }
1070 
1071 /*
1072  * Cache the order of the largest free extent we have available in this block
1073  * group.
1074  */
1075 static void
1076 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1077 {
1078 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1079 	int i;
1080 
1081 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) {
1082 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1083 					      grp->bb_largest_free_order]);
1084 		list_del_init(&grp->bb_largest_free_order_node);
1085 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1086 					      grp->bb_largest_free_order]);
1087 	}
1088 	grp->bb_largest_free_order = -1; /* uninit */
1089 
1090 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) {
1091 		if (grp->bb_counters[i] > 0) {
1092 			grp->bb_largest_free_order = i;
1093 			break;
1094 		}
1095 	}
1096 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) &&
1097 	    grp->bb_largest_free_order >= 0 && grp->bb_free) {
1098 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1099 					      grp->bb_largest_free_order]);
1100 		list_add_tail(&grp->bb_largest_free_order_node,
1101 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1102 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1103 					      grp->bb_largest_free_order]);
1104 	}
1105 }
1106 
1107 static noinline_for_stack
1108 void ext4_mb_generate_buddy(struct super_block *sb,
1109 				void *buddy, void *bitmap, ext4_group_t group)
1110 {
1111 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1112 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1113 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1114 	ext4_grpblk_t i = 0;
1115 	ext4_grpblk_t first;
1116 	ext4_grpblk_t len;
1117 	unsigned free = 0;
1118 	unsigned fragments = 0;
1119 	unsigned long long period = get_cycles();
1120 
1121 	/* initialize buddy from bitmap which is aggregation
1122 	 * of on-disk bitmap and preallocations */
1123 	i = mb_find_next_zero_bit(bitmap, max, 0);
1124 	grp->bb_first_free = i;
1125 	while (i < max) {
1126 		fragments++;
1127 		first = i;
1128 		i = mb_find_next_bit(bitmap, max, i);
1129 		len = i - first;
1130 		free += len;
1131 		if (len > 1)
1132 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1133 		else
1134 			grp->bb_counters[0]++;
1135 		if (i < max)
1136 			i = mb_find_next_zero_bit(bitmap, max, i);
1137 	}
1138 	grp->bb_fragments = fragments;
1139 
1140 	if (free != grp->bb_free) {
1141 		ext4_grp_locked_error(sb, group, 0, 0,
1142 				      "block bitmap and bg descriptor "
1143 				      "inconsistent: %u vs %u free clusters",
1144 				      free, grp->bb_free);
1145 		/*
1146 		 * If we intend to continue, we consider group descriptor
1147 		 * corrupt and update bb_free using bitmap value
1148 		 */
1149 		grp->bb_free = free;
1150 		ext4_mark_group_bitmap_corrupted(sb, group,
1151 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1152 	}
1153 	mb_set_largest_free_order(sb, grp);
1154 
1155 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1156 
1157 	period = get_cycles() - period;
1158 	atomic_inc(&sbi->s_mb_buddies_generated);
1159 	atomic64_add(period, &sbi->s_mb_generation_time);
1160 	mb_update_avg_fragment_size(sb, grp);
1161 }
1162 
1163 /* The buddy information is attached the buddy cache inode
1164  * for convenience. The information regarding each group
1165  * is loaded via ext4_mb_load_buddy. The information involve
1166  * block bitmap and buddy information. The information are
1167  * stored in the inode as
1168  *
1169  * {                        page                        }
1170  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1171  *
1172  *
1173  * one block each for bitmap and buddy information.
1174  * So for each group we take up 2 blocks. A page can
1175  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1176  * So it can have information regarding groups_per_page which
1177  * is blocks_per_page/2
1178  *
1179  * Locking note:  This routine takes the block group lock of all groups
1180  * for this page; do not hold this lock when calling this routine!
1181  */
1182 
1183 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1184 {
1185 	ext4_group_t ngroups;
1186 	int blocksize;
1187 	int blocks_per_page;
1188 	int groups_per_page;
1189 	int err = 0;
1190 	int i;
1191 	ext4_group_t first_group, group;
1192 	int first_block;
1193 	struct super_block *sb;
1194 	struct buffer_head *bhs;
1195 	struct buffer_head **bh = NULL;
1196 	struct inode *inode;
1197 	char *data;
1198 	char *bitmap;
1199 	struct ext4_group_info *grinfo;
1200 
1201 	inode = page->mapping->host;
1202 	sb = inode->i_sb;
1203 	ngroups = ext4_get_groups_count(sb);
1204 	blocksize = i_blocksize(inode);
1205 	blocks_per_page = PAGE_SIZE / blocksize;
1206 
1207 	mb_debug(sb, "init page %lu\n", page->index);
1208 
1209 	groups_per_page = blocks_per_page >> 1;
1210 	if (groups_per_page == 0)
1211 		groups_per_page = 1;
1212 
1213 	/* allocate buffer_heads to read bitmaps */
1214 	if (groups_per_page > 1) {
1215 		i = sizeof(struct buffer_head *) * groups_per_page;
1216 		bh = kzalloc(i, gfp);
1217 		if (bh == NULL) {
1218 			err = -ENOMEM;
1219 			goto out;
1220 		}
1221 	} else
1222 		bh = &bhs;
1223 
1224 	first_group = page->index * blocks_per_page / 2;
1225 
1226 	/* read all groups the page covers into the cache */
1227 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1228 		if (group >= ngroups)
1229 			break;
1230 
1231 		grinfo = ext4_get_group_info(sb, group);
1232 		/*
1233 		 * If page is uptodate then we came here after online resize
1234 		 * which added some new uninitialized group info structs, so
1235 		 * we must skip all initialized uptodate buddies on the page,
1236 		 * which may be currently in use by an allocating task.
1237 		 */
1238 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1239 			bh[i] = NULL;
1240 			continue;
1241 		}
1242 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1243 		if (IS_ERR(bh[i])) {
1244 			err = PTR_ERR(bh[i]);
1245 			bh[i] = NULL;
1246 			goto out;
1247 		}
1248 		mb_debug(sb, "read bitmap for group %u\n", group);
1249 	}
1250 
1251 	/* wait for I/O completion */
1252 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1253 		int err2;
1254 
1255 		if (!bh[i])
1256 			continue;
1257 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1258 		if (!err)
1259 			err = err2;
1260 	}
1261 
1262 	first_block = page->index * blocks_per_page;
1263 	for (i = 0; i < blocks_per_page; i++) {
1264 		group = (first_block + i) >> 1;
1265 		if (group >= ngroups)
1266 			break;
1267 
1268 		if (!bh[group - first_group])
1269 			/* skip initialized uptodate buddy */
1270 			continue;
1271 
1272 		if (!buffer_verified(bh[group - first_group]))
1273 			/* Skip faulty bitmaps */
1274 			continue;
1275 		err = 0;
1276 
1277 		/*
1278 		 * data carry information regarding this
1279 		 * particular group in the format specified
1280 		 * above
1281 		 *
1282 		 */
1283 		data = page_address(page) + (i * blocksize);
1284 		bitmap = bh[group - first_group]->b_data;
1285 
1286 		/*
1287 		 * We place the buddy block and bitmap block
1288 		 * close together
1289 		 */
1290 		if ((first_block + i) & 1) {
1291 			/* this is block of buddy */
1292 			BUG_ON(incore == NULL);
1293 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1294 				group, page->index, i * blocksize);
1295 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1296 			grinfo = ext4_get_group_info(sb, group);
1297 			grinfo->bb_fragments = 0;
1298 			memset(grinfo->bb_counters, 0,
1299 			       sizeof(*grinfo->bb_counters) *
1300 			       (MB_NUM_ORDERS(sb)));
1301 			/*
1302 			 * incore got set to the group block bitmap below
1303 			 */
1304 			ext4_lock_group(sb, group);
1305 			/* init the buddy */
1306 			memset(data, 0xff, blocksize);
1307 			ext4_mb_generate_buddy(sb, data, incore, group);
1308 			ext4_unlock_group(sb, group);
1309 			incore = NULL;
1310 		} else {
1311 			/* this is block of bitmap */
1312 			BUG_ON(incore != NULL);
1313 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1314 				group, page->index, i * blocksize);
1315 			trace_ext4_mb_bitmap_load(sb, group);
1316 
1317 			/* see comments in ext4_mb_put_pa() */
1318 			ext4_lock_group(sb, group);
1319 			memcpy(data, bitmap, blocksize);
1320 
1321 			/* mark all preallocated blks used in in-core bitmap */
1322 			ext4_mb_generate_from_pa(sb, data, group);
1323 			ext4_mb_generate_from_freelist(sb, data, group);
1324 			ext4_unlock_group(sb, group);
1325 
1326 			/* set incore so that the buddy information can be
1327 			 * generated using this
1328 			 */
1329 			incore = data;
1330 		}
1331 	}
1332 	SetPageUptodate(page);
1333 
1334 out:
1335 	if (bh) {
1336 		for (i = 0; i < groups_per_page; i++)
1337 			brelse(bh[i]);
1338 		if (bh != &bhs)
1339 			kfree(bh);
1340 	}
1341 	return err;
1342 }
1343 
1344 /*
1345  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1346  * on the same buddy page doesn't happen whild holding the buddy page lock.
1347  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1348  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1349  */
1350 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1351 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1352 {
1353 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1354 	int block, pnum, poff;
1355 	int blocks_per_page;
1356 	struct page *page;
1357 
1358 	e4b->bd_buddy_page = NULL;
1359 	e4b->bd_bitmap_page = NULL;
1360 
1361 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1362 	/*
1363 	 * the buddy cache inode stores the block bitmap
1364 	 * and buddy information in consecutive blocks.
1365 	 * So for each group we need two blocks.
1366 	 */
1367 	block = group * 2;
1368 	pnum = block / blocks_per_page;
1369 	poff = block % blocks_per_page;
1370 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1371 	if (!page)
1372 		return -ENOMEM;
1373 	BUG_ON(page->mapping != inode->i_mapping);
1374 	e4b->bd_bitmap_page = page;
1375 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1376 
1377 	if (blocks_per_page >= 2) {
1378 		/* buddy and bitmap are on the same page */
1379 		return 0;
1380 	}
1381 
1382 	block++;
1383 	pnum = block / blocks_per_page;
1384 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1385 	if (!page)
1386 		return -ENOMEM;
1387 	BUG_ON(page->mapping != inode->i_mapping);
1388 	e4b->bd_buddy_page = page;
1389 	return 0;
1390 }
1391 
1392 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1393 {
1394 	if (e4b->bd_bitmap_page) {
1395 		unlock_page(e4b->bd_bitmap_page);
1396 		put_page(e4b->bd_bitmap_page);
1397 	}
1398 	if (e4b->bd_buddy_page) {
1399 		unlock_page(e4b->bd_buddy_page);
1400 		put_page(e4b->bd_buddy_page);
1401 	}
1402 }
1403 
1404 /*
1405  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1406  * block group lock of all groups for this page; do not hold the BG lock when
1407  * calling this routine!
1408  */
1409 static noinline_for_stack
1410 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1411 {
1412 
1413 	struct ext4_group_info *this_grp;
1414 	struct ext4_buddy e4b;
1415 	struct page *page;
1416 	int ret = 0;
1417 
1418 	might_sleep();
1419 	mb_debug(sb, "init group %u\n", group);
1420 	this_grp = ext4_get_group_info(sb, group);
1421 	/*
1422 	 * This ensures that we don't reinit the buddy cache
1423 	 * page which map to the group from which we are already
1424 	 * allocating. If we are looking at the buddy cache we would
1425 	 * have taken a reference using ext4_mb_load_buddy and that
1426 	 * would have pinned buddy page to page cache.
1427 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1428 	 * page accessed.
1429 	 */
1430 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1431 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1432 		/*
1433 		 * somebody initialized the group
1434 		 * return without doing anything
1435 		 */
1436 		goto err;
1437 	}
1438 
1439 	page = e4b.bd_bitmap_page;
1440 	ret = ext4_mb_init_cache(page, NULL, gfp);
1441 	if (ret)
1442 		goto err;
1443 	if (!PageUptodate(page)) {
1444 		ret = -EIO;
1445 		goto err;
1446 	}
1447 
1448 	if (e4b.bd_buddy_page == NULL) {
1449 		/*
1450 		 * If both the bitmap and buddy are in
1451 		 * the same page we don't need to force
1452 		 * init the buddy
1453 		 */
1454 		ret = 0;
1455 		goto err;
1456 	}
1457 	/* init buddy cache */
1458 	page = e4b.bd_buddy_page;
1459 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1460 	if (ret)
1461 		goto err;
1462 	if (!PageUptodate(page)) {
1463 		ret = -EIO;
1464 		goto err;
1465 	}
1466 err:
1467 	ext4_mb_put_buddy_page_lock(&e4b);
1468 	return ret;
1469 }
1470 
1471 /*
1472  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1473  * block group lock of all groups for this page; do not hold the BG lock when
1474  * calling this routine!
1475  */
1476 static noinline_for_stack int
1477 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1478 		       struct ext4_buddy *e4b, gfp_t gfp)
1479 {
1480 	int blocks_per_page;
1481 	int block;
1482 	int pnum;
1483 	int poff;
1484 	struct page *page;
1485 	int ret;
1486 	struct ext4_group_info *grp;
1487 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1488 	struct inode *inode = sbi->s_buddy_cache;
1489 
1490 	might_sleep();
1491 	mb_debug(sb, "load group %u\n", group);
1492 
1493 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1494 	grp = ext4_get_group_info(sb, group);
1495 
1496 	e4b->bd_blkbits = sb->s_blocksize_bits;
1497 	e4b->bd_info = grp;
1498 	e4b->bd_sb = sb;
1499 	e4b->bd_group = group;
1500 	e4b->bd_buddy_page = NULL;
1501 	e4b->bd_bitmap_page = NULL;
1502 
1503 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1504 		/*
1505 		 * we need full data about the group
1506 		 * to make a good selection
1507 		 */
1508 		ret = ext4_mb_init_group(sb, group, gfp);
1509 		if (ret)
1510 			return ret;
1511 	}
1512 
1513 	/*
1514 	 * the buddy cache inode stores the block bitmap
1515 	 * and buddy information in consecutive blocks.
1516 	 * So for each group we need two blocks.
1517 	 */
1518 	block = group * 2;
1519 	pnum = block / blocks_per_page;
1520 	poff = block % blocks_per_page;
1521 
1522 	/* we could use find_or_create_page(), but it locks page
1523 	 * what we'd like to avoid in fast path ... */
1524 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1525 	if (page == NULL || !PageUptodate(page)) {
1526 		if (page)
1527 			/*
1528 			 * drop the page reference and try
1529 			 * to get the page with lock. If we
1530 			 * are not uptodate that implies
1531 			 * somebody just created the page but
1532 			 * is yet to initialize the same. So
1533 			 * wait for it to initialize.
1534 			 */
1535 			put_page(page);
1536 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1537 		if (page) {
1538 			BUG_ON(page->mapping != inode->i_mapping);
1539 			if (!PageUptodate(page)) {
1540 				ret = ext4_mb_init_cache(page, NULL, gfp);
1541 				if (ret) {
1542 					unlock_page(page);
1543 					goto err;
1544 				}
1545 				mb_cmp_bitmaps(e4b, page_address(page) +
1546 					       (poff * sb->s_blocksize));
1547 			}
1548 			unlock_page(page);
1549 		}
1550 	}
1551 	if (page == NULL) {
1552 		ret = -ENOMEM;
1553 		goto err;
1554 	}
1555 	if (!PageUptodate(page)) {
1556 		ret = -EIO;
1557 		goto err;
1558 	}
1559 
1560 	/* Pages marked accessed already */
1561 	e4b->bd_bitmap_page = page;
1562 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1563 
1564 	block++;
1565 	pnum = block / blocks_per_page;
1566 	poff = block % blocks_per_page;
1567 
1568 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1569 	if (page == NULL || !PageUptodate(page)) {
1570 		if (page)
1571 			put_page(page);
1572 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1573 		if (page) {
1574 			BUG_ON(page->mapping != inode->i_mapping);
1575 			if (!PageUptodate(page)) {
1576 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1577 							 gfp);
1578 				if (ret) {
1579 					unlock_page(page);
1580 					goto err;
1581 				}
1582 			}
1583 			unlock_page(page);
1584 		}
1585 	}
1586 	if (page == NULL) {
1587 		ret = -ENOMEM;
1588 		goto err;
1589 	}
1590 	if (!PageUptodate(page)) {
1591 		ret = -EIO;
1592 		goto err;
1593 	}
1594 
1595 	/* Pages marked accessed already */
1596 	e4b->bd_buddy_page = page;
1597 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1598 
1599 	return 0;
1600 
1601 err:
1602 	if (page)
1603 		put_page(page);
1604 	if (e4b->bd_bitmap_page)
1605 		put_page(e4b->bd_bitmap_page);
1606 	if (e4b->bd_buddy_page)
1607 		put_page(e4b->bd_buddy_page);
1608 	e4b->bd_buddy = NULL;
1609 	e4b->bd_bitmap = NULL;
1610 	return ret;
1611 }
1612 
1613 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1614 			      struct ext4_buddy *e4b)
1615 {
1616 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1617 }
1618 
1619 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1620 {
1621 	if (e4b->bd_bitmap_page)
1622 		put_page(e4b->bd_bitmap_page);
1623 	if (e4b->bd_buddy_page)
1624 		put_page(e4b->bd_buddy_page);
1625 }
1626 
1627 
1628 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1629 {
1630 	int order = 1, max;
1631 	void *bb;
1632 
1633 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1634 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1635 
1636 	while (order <= e4b->bd_blkbits + 1) {
1637 		bb = mb_find_buddy(e4b, order, &max);
1638 		if (!mb_test_bit(block >> order, bb)) {
1639 			/* this block is part of buddy of order 'order' */
1640 			return order;
1641 		}
1642 		order++;
1643 	}
1644 	return 0;
1645 }
1646 
1647 static void mb_clear_bits(void *bm, int cur, int len)
1648 {
1649 	__u32 *addr;
1650 
1651 	len = cur + len;
1652 	while (cur < len) {
1653 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1654 			/* fast path: clear whole word at once */
1655 			addr = bm + (cur >> 3);
1656 			*addr = 0;
1657 			cur += 32;
1658 			continue;
1659 		}
1660 		mb_clear_bit(cur, bm);
1661 		cur++;
1662 	}
1663 }
1664 
1665 /* clear bits in given range
1666  * will return first found zero bit if any, -1 otherwise
1667  */
1668 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1669 {
1670 	__u32 *addr;
1671 	int zero_bit = -1;
1672 
1673 	len = cur + len;
1674 	while (cur < len) {
1675 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1676 			/* fast path: clear whole word at once */
1677 			addr = bm + (cur >> 3);
1678 			if (*addr != (__u32)(-1) && zero_bit == -1)
1679 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1680 			*addr = 0;
1681 			cur += 32;
1682 			continue;
1683 		}
1684 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1685 			zero_bit = cur;
1686 		cur++;
1687 	}
1688 
1689 	return zero_bit;
1690 }
1691 
1692 void ext4_set_bits(void *bm, int cur, int len)
1693 {
1694 	__u32 *addr;
1695 
1696 	len = cur + len;
1697 	while (cur < len) {
1698 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1699 			/* fast path: set whole word at once */
1700 			addr = bm + (cur >> 3);
1701 			*addr = 0xffffffff;
1702 			cur += 32;
1703 			continue;
1704 		}
1705 		mb_set_bit(cur, bm);
1706 		cur++;
1707 	}
1708 }
1709 
1710 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1711 {
1712 	if (mb_test_bit(*bit + side, bitmap)) {
1713 		mb_clear_bit(*bit, bitmap);
1714 		(*bit) -= side;
1715 		return 1;
1716 	}
1717 	else {
1718 		(*bit) += side;
1719 		mb_set_bit(*bit, bitmap);
1720 		return -1;
1721 	}
1722 }
1723 
1724 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1725 {
1726 	int max;
1727 	int order = 1;
1728 	void *buddy = mb_find_buddy(e4b, order, &max);
1729 
1730 	while (buddy) {
1731 		void *buddy2;
1732 
1733 		/* Bits in range [first; last] are known to be set since
1734 		 * corresponding blocks were allocated. Bits in range
1735 		 * (first; last) will stay set because they form buddies on
1736 		 * upper layer. We just deal with borders if they don't
1737 		 * align with upper layer and then go up.
1738 		 * Releasing entire group is all about clearing
1739 		 * single bit of highest order buddy.
1740 		 */
1741 
1742 		/* Example:
1743 		 * ---------------------------------
1744 		 * |   1   |   1   |   1   |   1   |
1745 		 * ---------------------------------
1746 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1747 		 * ---------------------------------
1748 		 *   0   1   2   3   4   5   6   7
1749 		 *      \_____________________/
1750 		 *
1751 		 * Neither [1] nor [6] is aligned to above layer.
1752 		 * Left neighbour [0] is free, so mark it busy,
1753 		 * decrease bb_counters and extend range to
1754 		 * [0; 6]
1755 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1756 		 * mark [6] free, increase bb_counters and shrink range to
1757 		 * [0; 5].
1758 		 * Then shift range to [0; 2], go up and do the same.
1759 		 */
1760 
1761 
1762 		if (first & 1)
1763 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1764 		if (!(last & 1))
1765 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1766 		if (first > last)
1767 			break;
1768 		order++;
1769 
1770 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1771 			mb_clear_bits(buddy, first, last - first + 1);
1772 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1773 			break;
1774 		}
1775 		first >>= 1;
1776 		last >>= 1;
1777 		buddy = buddy2;
1778 	}
1779 }
1780 
1781 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1782 			   int first, int count)
1783 {
1784 	int left_is_free = 0;
1785 	int right_is_free = 0;
1786 	int block;
1787 	int last = first + count - 1;
1788 	struct super_block *sb = e4b->bd_sb;
1789 
1790 	if (WARN_ON(count == 0))
1791 		return;
1792 	BUG_ON(last >= (sb->s_blocksize << 3));
1793 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1794 	/* Don't bother if the block group is corrupt. */
1795 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1796 		return;
1797 
1798 	mb_check_buddy(e4b);
1799 	mb_free_blocks_double(inode, e4b, first, count);
1800 
1801 	this_cpu_inc(discard_pa_seq);
1802 	e4b->bd_info->bb_free += count;
1803 	if (first < e4b->bd_info->bb_first_free)
1804 		e4b->bd_info->bb_first_free = first;
1805 
1806 	/* access memory sequentially: check left neighbour,
1807 	 * clear range and then check right neighbour
1808 	 */
1809 	if (first != 0)
1810 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1811 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1812 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1813 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1814 
1815 	if (unlikely(block != -1)) {
1816 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1817 		ext4_fsblk_t blocknr;
1818 
1819 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1820 		blocknr += EXT4_C2B(sbi, block);
1821 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1822 			ext4_grp_locked_error(sb, e4b->bd_group,
1823 					      inode ? inode->i_ino : 0,
1824 					      blocknr,
1825 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1826 					      block);
1827 			ext4_mark_group_bitmap_corrupted(
1828 				sb, e4b->bd_group,
1829 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1830 		}
1831 		goto done;
1832 	}
1833 
1834 	/* let's maintain fragments counter */
1835 	if (left_is_free && right_is_free)
1836 		e4b->bd_info->bb_fragments--;
1837 	else if (!left_is_free && !right_is_free)
1838 		e4b->bd_info->bb_fragments++;
1839 
1840 	/* buddy[0] == bd_bitmap is a special case, so handle
1841 	 * it right away and let mb_buddy_mark_free stay free of
1842 	 * zero order checks.
1843 	 * Check if neighbours are to be coaleasced,
1844 	 * adjust bitmap bb_counters and borders appropriately.
1845 	 */
1846 	if (first & 1) {
1847 		first += !left_is_free;
1848 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1849 	}
1850 	if (!(last & 1)) {
1851 		last -= !right_is_free;
1852 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1853 	}
1854 
1855 	if (first <= last)
1856 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1857 
1858 done:
1859 	mb_set_largest_free_order(sb, e4b->bd_info);
1860 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1861 	mb_check_buddy(e4b);
1862 }
1863 
1864 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1865 				int needed, struct ext4_free_extent *ex)
1866 {
1867 	int next = block;
1868 	int max, order;
1869 	void *buddy;
1870 
1871 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1872 	BUG_ON(ex == NULL);
1873 
1874 	buddy = mb_find_buddy(e4b, 0, &max);
1875 	BUG_ON(buddy == NULL);
1876 	BUG_ON(block >= max);
1877 	if (mb_test_bit(block, buddy)) {
1878 		ex->fe_len = 0;
1879 		ex->fe_start = 0;
1880 		ex->fe_group = 0;
1881 		return 0;
1882 	}
1883 
1884 	/* find actual order */
1885 	order = mb_find_order_for_block(e4b, block);
1886 	block = block >> order;
1887 
1888 	ex->fe_len = 1 << order;
1889 	ex->fe_start = block << order;
1890 	ex->fe_group = e4b->bd_group;
1891 
1892 	/* calc difference from given start */
1893 	next = next - ex->fe_start;
1894 	ex->fe_len -= next;
1895 	ex->fe_start += next;
1896 
1897 	while (needed > ex->fe_len &&
1898 	       mb_find_buddy(e4b, order, &max)) {
1899 
1900 		if (block + 1 >= max)
1901 			break;
1902 
1903 		next = (block + 1) * (1 << order);
1904 		if (mb_test_bit(next, e4b->bd_bitmap))
1905 			break;
1906 
1907 		order = mb_find_order_for_block(e4b, next);
1908 
1909 		block = next >> order;
1910 		ex->fe_len += 1 << order;
1911 	}
1912 
1913 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1914 		/* Should never happen! (but apparently sometimes does?!?) */
1915 		WARN_ON(1);
1916 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1917 			"corruption or bug in mb_find_extent "
1918 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1919 			block, order, needed, ex->fe_group, ex->fe_start,
1920 			ex->fe_len, ex->fe_logical);
1921 		ex->fe_len = 0;
1922 		ex->fe_start = 0;
1923 		ex->fe_group = 0;
1924 	}
1925 	return ex->fe_len;
1926 }
1927 
1928 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1929 {
1930 	int ord;
1931 	int mlen = 0;
1932 	int max = 0;
1933 	int cur;
1934 	int start = ex->fe_start;
1935 	int len = ex->fe_len;
1936 	unsigned ret = 0;
1937 	int len0 = len;
1938 	void *buddy;
1939 
1940 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1941 	BUG_ON(e4b->bd_group != ex->fe_group);
1942 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1943 	mb_check_buddy(e4b);
1944 	mb_mark_used_double(e4b, start, len);
1945 
1946 	this_cpu_inc(discard_pa_seq);
1947 	e4b->bd_info->bb_free -= len;
1948 	if (e4b->bd_info->bb_first_free == start)
1949 		e4b->bd_info->bb_first_free += len;
1950 
1951 	/* let's maintain fragments counter */
1952 	if (start != 0)
1953 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1954 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1955 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1956 	if (mlen && max)
1957 		e4b->bd_info->bb_fragments++;
1958 	else if (!mlen && !max)
1959 		e4b->bd_info->bb_fragments--;
1960 
1961 	/* let's maintain buddy itself */
1962 	while (len) {
1963 		ord = mb_find_order_for_block(e4b, start);
1964 
1965 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1966 			/* the whole chunk may be allocated at once! */
1967 			mlen = 1 << ord;
1968 			buddy = mb_find_buddy(e4b, ord, &max);
1969 			BUG_ON((start >> ord) >= max);
1970 			mb_set_bit(start >> ord, buddy);
1971 			e4b->bd_info->bb_counters[ord]--;
1972 			start += mlen;
1973 			len -= mlen;
1974 			BUG_ON(len < 0);
1975 			continue;
1976 		}
1977 
1978 		/* store for history */
1979 		if (ret == 0)
1980 			ret = len | (ord << 16);
1981 
1982 		/* we have to split large buddy */
1983 		BUG_ON(ord <= 0);
1984 		buddy = mb_find_buddy(e4b, ord, &max);
1985 		mb_set_bit(start >> ord, buddy);
1986 		e4b->bd_info->bb_counters[ord]--;
1987 
1988 		ord--;
1989 		cur = (start >> ord) & ~1U;
1990 		buddy = mb_find_buddy(e4b, ord, &max);
1991 		mb_clear_bit(cur, buddy);
1992 		mb_clear_bit(cur + 1, buddy);
1993 		e4b->bd_info->bb_counters[ord]++;
1994 		e4b->bd_info->bb_counters[ord]++;
1995 	}
1996 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1997 
1998 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
1999 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2000 	mb_check_buddy(e4b);
2001 
2002 	return ret;
2003 }
2004 
2005 /*
2006  * Must be called under group lock!
2007  */
2008 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2009 					struct ext4_buddy *e4b)
2010 {
2011 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2012 	int ret;
2013 
2014 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2015 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2016 
2017 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2018 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2019 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2020 
2021 	/* preallocation can change ac_b_ex, thus we store actually
2022 	 * allocated blocks for history */
2023 	ac->ac_f_ex = ac->ac_b_ex;
2024 
2025 	ac->ac_status = AC_STATUS_FOUND;
2026 	ac->ac_tail = ret & 0xffff;
2027 	ac->ac_buddy = ret >> 16;
2028 
2029 	/*
2030 	 * take the page reference. We want the page to be pinned
2031 	 * so that we don't get a ext4_mb_init_cache_call for this
2032 	 * group until we update the bitmap. That would mean we
2033 	 * double allocate blocks. The reference is dropped
2034 	 * in ext4_mb_release_context
2035 	 */
2036 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2037 	get_page(ac->ac_bitmap_page);
2038 	ac->ac_buddy_page = e4b->bd_buddy_page;
2039 	get_page(ac->ac_buddy_page);
2040 	/* store last allocated for subsequent stream allocation */
2041 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2042 		spin_lock(&sbi->s_md_lock);
2043 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2044 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2045 		spin_unlock(&sbi->s_md_lock);
2046 	}
2047 	/*
2048 	 * As we've just preallocated more space than
2049 	 * user requested originally, we store allocated
2050 	 * space in a special descriptor.
2051 	 */
2052 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2053 		ext4_mb_new_preallocation(ac);
2054 
2055 }
2056 
2057 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2058 					struct ext4_buddy *e4b,
2059 					int finish_group)
2060 {
2061 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2062 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2063 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2064 	struct ext4_free_extent ex;
2065 	int max;
2066 
2067 	if (ac->ac_status == AC_STATUS_FOUND)
2068 		return;
2069 	/*
2070 	 * We don't want to scan for a whole year
2071 	 */
2072 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2073 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2074 		ac->ac_status = AC_STATUS_BREAK;
2075 		return;
2076 	}
2077 
2078 	/*
2079 	 * Haven't found good chunk so far, let's continue
2080 	 */
2081 	if (bex->fe_len < gex->fe_len)
2082 		return;
2083 
2084 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2085 			&& bex->fe_group == e4b->bd_group) {
2086 		/* recheck chunk's availability - we don't know
2087 		 * when it was found (within this lock-unlock
2088 		 * period or not) */
2089 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
2090 		if (max >= gex->fe_len) {
2091 			ext4_mb_use_best_found(ac, e4b);
2092 			return;
2093 		}
2094 	}
2095 }
2096 
2097 /*
2098  * The routine checks whether found extent is good enough. If it is,
2099  * then the extent gets marked used and flag is set to the context
2100  * to stop scanning. Otherwise, the extent is compared with the
2101  * previous found extent and if new one is better, then it's stored
2102  * in the context. Later, the best found extent will be used, if
2103  * mballoc can't find good enough extent.
2104  *
2105  * FIXME: real allocation policy is to be designed yet!
2106  */
2107 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2108 					struct ext4_free_extent *ex,
2109 					struct ext4_buddy *e4b)
2110 {
2111 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2112 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2113 
2114 	BUG_ON(ex->fe_len <= 0);
2115 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2116 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2117 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2118 
2119 	ac->ac_found++;
2120 
2121 	/*
2122 	 * The special case - take what you catch first
2123 	 */
2124 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2125 		*bex = *ex;
2126 		ext4_mb_use_best_found(ac, e4b);
2127 		return;
2128 	}
2129 
2130 	/*
2131 	 * Let's check whether the chuck is good enough
2132 	 */
2133 	if (ex->fe_len == gex->fe_len) {
2134 		*bex = *ex;
2135 		ext4_mb_use_best_found(ac, e4b);
2136 		return;
2137 	}
2138 
2139 	/*
2140 	 * If this is first found extent, just store it in the context
2141 	 */
2142 	if (bex->fe_len == 0) {
2143 		*bex = *ex;
2144 		return;
2145 	}
2146 
2147 	/*
2148 	 * If new found extent is better, store it in the context
2149 	 */
2150 	if (bex->fe_len < gex->fe_len) {
2151 		/* if the request isn't satisfied, any found extent
2152 		 * larger than previous best one is better */
2153 		if (ex->fe_len > bex->fe_len)
2154 			*bex = *ex;
2155 	} else if (ex->fe_len > gex->fe_len) {
2156 		/* if the request is satisfied, then we try to find
2157 		 * an extent that still satisfy the request, but is
2158 		 * smaller than previous one */
2159 		if (ex->fe_len < bex->fe_len)
2160 			*bex = *ex;
2161 	}
2162 
2163 	ext4_mb_check_limits(ac, e4b, 0);
2164 }
2165 
2166 static noinline_for_stack
2167 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2168 					struct ext4_buddy *e4b)
2169 {
2170 	struct ext4_free_extent ex = ac->ac_b_ex;
2171 	ext4_group_t group = ex.fe_group;
2172 	int max;
2173 	int err;
2174 
2175 	BUG_ON(ex.fe_len <= 0);
2176 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2177 	if (err)
2178 		return err;
2179 
2180 	ext4_lock_group(ac->ac_sb, group);
2181 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2182 
2183 	if (max > 0) {
2184 		ac->ac_b_ex = ex;
2185 		ext4_mb_use_best_found(ac, e4b);
2186 	}
2187 
2188 	ext4_unlock_group(ac->ac_sb, group);
2189 	ext4_mb_unload_buddy(e4b);
2190 
2191 	return 0;
2192 }
2193 
2194 static noinline_for_stack
2195 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2196 				struct ext4_buddy *e4b)
2197 {
2198 	ext4_group_t group = ac->ac_g_ex.fe_group;
2199 	int max;
2200 	int err;
2201 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2202 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2203 	struct ext4_free_extent ex;
2204 
2205 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
2206 		return 0;
2207 	if (grp->bb_free == 0)
2208 		return 0;
2209 
2210 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2211 	if (err)
2212 		return err;
2213 
2214 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2215 		ext4_mb_unload_buddy(e4b);
2216 		return 0;
2217 	}
2218 
2219 	ext4_lock_group(ac->ac_sb, group);
2220 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2221 			     ac->ac_g_ex.fe_len, &ex);
2222 	ex.fe_logical = 0xDEADFA11; /* debug value */
2223 
2224 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2225 		ext4_fsblk_t start;
2226 
2227 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2228 			ex.fe_start;
2229 		/* use do_div to get remainder (would be 64-bit modulo) */
2230 		if (do_div(start, sbi->s_stripe) == 0) {
2231 			ac->ac_found++;
2232 			ac->ac_b_ex = ex;
2233 			ext4_mb_use_best_found(ac, e4b);
2234 		}
2235 	} else if (max >= ac->ac_g_ex.fe_len) {
2236 		BUG_ON(ex.fe_len <= 0);
2237 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2238 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2239 		ac->ac_found++;
2240 		ac->ac_b_ex = ex;
2241 		ext4_mb_use_best_found(ac, e4b);
2242 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2243 		/* Sometimes, caller may want to merge even small
2244 		 * number of blocks to an existing extent */
2245 		BUG_ON(ex.fe_len <= 0);
2246 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2247 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2248 		ac->ac_found++;
2249 		ac->ac_b_ex = ex;
2250 		ext4_mb_use_best_found(ac, e4b);
2251 	}
2252 	ext4_unlock_group(ac->ac_sb, group);
2253 	ext4_mb_unload_buddy(e4b);
2254 
2255 	return 0;
2256 }
2257 
2258 /*
2259  * The routine scans buddy structures (not bitmap!) from given order
2260  * to max order and tries to find big enough chunk to satisfy the req
2261  */
2262 static noinline_for_stack
2263 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2264 					struct ext4_buddy *e4b)
2265 {
2266 	struct super_block *sb = ac->ac_sb;
2267 	struct ext4_group_info *grp = e4b->bd_info;
2268 	void *buddy;
2269 	int i;
2270 	int k;
2271 	int max;
2272 
2273 	BUG_ON(ac->ac_2order <= 0);
2274 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2275 		if (grp->bb_counters[i] == 0)
2276 			continue;
2277 
2278 		buddy = mb_find_buddy(e4b, i, &max);
2279 		BUG_ON(buddy == NULL);
2280 
2281 		k = mb_find_next_zero_bit(buddy, max, 0);
2282 		if (k >= max) {
2283 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2284 				"%d free clusters of order %d. But found 0",
2285 				grp->bb_counters[i], i);
2286 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2287 					 e4b->bd_group,
2288 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2289 			break;
2290 		}
2291 		ac->ac_found++;
2292 
2293 		ac->ac_b_ex.fe_len = 1 << i;
2294 		ac->ac_b_ex.fe_start = k << i;
2295 		ac->ac_b_ex.fe_group = e4b->bd_group;
2296 
2297 		ext4_mb_use_best_found(ac, e4b);
2298 
2299 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2300 
2301 		if (EXT4_SB(sb)->s_mb_stats)
2302 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2303 
2304 		break;
2305 	}
2306 }
2307 
2308 /*
2309  * The routine scans the group and measures all found extents.
2310  * In order to optimize scanning, caller must pass number of
2311  * free blocks in the group, so the routine can know upper limit.
2312  */
2313 static noinline_for_stack
2314 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2315 					struct ext4_buddy *e4b)
2316 {
2317 	struct super_block *sb = ac->ac_sb;
2318 	void *bitmap = e4b->bd_bitmap;
2319 	struct ext4_free_extent ex;
2320 	int i;
2321 	int free;
2322 
2323 	free = e4b->bd_info->bb_free;
2324 	if (WARN_ON(free <= 0))
2325 		return;
2326 
2327 	i = e4b->bd_info->bb_first_free;
2328 
2329 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2330 		i = mb_find_next_zero_bit(bitmap,
2331 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2332 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2333 			/*
2334 			 * IF we have corrupt bitmap, we won't find any
2335 			 * free blocks even though group info says we
2336 			 * have free blocks
2337 			 */
2338 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2339 					"%d free clusters as per "
2340 					"group info. But bitmap says 0",
2341 					free);
2342 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2343 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2344 			break;
2345 		}
2346 
2347 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2348 		if (WARN_ON(ex.fe_len <= 0))
2349 			break;
2350 		if (free < ex.fe_len) {
2351 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2352 					"%d free clusters as per "
2353 					"group info. But got %d blocks",
2354 					free, ex.fe_len);
2355 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2356 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2357 			/*
2358 			 * The number of free blocks differs. This mostly
2359 			 * indicate that the bitmap is corrupt. So exit
2360 			 * without claiming the space.
2361 			 */
2362 			break;
2363 		}
2364 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2365 		ext4_mb_measure_extent(ac, &ex, e4b);
2366 
2367 		i += ex.fe_len;
2368 		free -= ex.fe_len;
2369 	}
2370 
2371 	ext4_mb_check_limits(ac, e4b, 1);
2372 }
2373 
2374 /*
2375  * This is a special case for storages like raid5
2376  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2377  */
2378 static noinline_for_stack
2379 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2380 				 struct ext4_buddy *e4b)
2381 {
2382 	struct super_block *sb = ac->ac_sb;
2383 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2384 	void *bitmap = e4b->bd_bitmap;
2385 	struct ext4_free_extent ex;
2386 	ext4_fsblk_t first_group_block;
2387 	ext4_fsblk_t a;
2388 	ext4_grpblk_t i;
2389 	int max;
2390 
2391 	BUG_ON(sbi->s_stripe == 0);
2392 
2393 	/* find first stripe-aligned block in group */
2394 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2395 
2396 	a = first_group_block + sbi->s_stripe - 1;
2397 	do_div(a, sbi->s_stripe);
2398 	i = (a * sbi->s_stripe) - first_group_block;
2399 
2400 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2401 		if (!mb_test_bit(i, bitmap)) {
2402 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2403 			if (max >= sbi->s_stripe) {
2404 				ac->ac_found++;
2405 				ex.fe_logical = 0xDEADF00D; /* debug value */
2406 				ac->ac_b_ex = ex;
2407 				ext4_mb_use_best_found(ac, e4b);
2408 				break;
2409 			}
2410 		}
2411 		i += sbi->s_stripe;
2412 	}
2413 }
2414 
2415 /*
2416  * This is also called BEFORE we load the buddy bitmap.
2417  * Returns either 1 or 0 indicating that the group is either suitable
2418  * for the allocation or not.
2419  */
2420 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2421 				ext4_group_t group, int cr)
2422 {
2423 	ext4_grpblk_t free, fragments;
2424 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2425 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2426 
2427 	BUG_ON(cr < 0 || cr >= 4);
2428 
2429 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2430 		return false;
2431 
2432 	free = grp->bb_free;
2433 	if (free == 0)
2434 		return false;
2435 
2436 	fragments = grp->bb_fragments;
2437 	if (fragments == 0)
2438 		return false;
2439 
2440 	switch (cr) {
2441 	case 0:
2442 		BUG_ON(ac->ac_2order == 0);
2443 
2444 		/* Avoid using the first bg of a flexgroup for data files */
2445 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2446 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2447 		    ((group % flex_size) == 0))
2448 			return false;
2449 
2450 		if (free < ac->ac_g_ex.fe_len)
2451 			return false;
2452 
2453 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2454 			return true;
2455 
2456 		if (grp->bb_largest_free_order < ac->ac_2order)
2457 			return false;
2458 
2459 		return true;
2460 	case 1:
2461 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2462 			return true;
2463 		break;
2464 	case 2:
2465 		if (free >= ac->ac_g_ex.fe_len)
2466 			return true;
2467 		break;
2468 	case 3:
2469 		return true;
2470 	default:
2471 		BUG();
2472 	}
2473 
2474 	return false;
2475 }
2476 
2477 /*
2478  * This could return negative error code if something goes wrong
2479  * during ext4_mb_init_group(). This should not be called with
2480  * ext4_lock_group() held.
2481  *
2482  * Note: because we are conditionally operating with the group lock in
2483  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2484  * function using __acquire and __release.  This means we need to be
2485  * super careful before messing with the error path handling via "goto
2486  * out"!
2487  */
2488 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2489 				     ext4_group_t group, int cr)
2490 {
2491 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2492 	struct super_block *sb = ac->ac_sb;
2493 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2494 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2495 	ext4_grpblk_t free;
2496 	int ret = 0;
2497 
2498 	if (sbi->s_mb_stats)
2499 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2500 	if (should_lock) {
2501 		ext4_lock_group(sb, group);
2502 		__release(ext4_group_lock_ptr(sb, group));
2503 	}
2504 	free = grp->bb_free;
2505 	if (free == 0)
2506 		goto out;
2507 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2508 		goto out;
2509 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2510 		goto out;
2511 	if (should_lock) {
2512 		__acquire(ext4_group_lock_ptr(sb, group));
2513 		ext4_unlock_group(sb, group);
2514 	}
2515 
2516 	/* We only do this if the grp has never been initialized */
2517 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2518 		struct ext4_group_desc *gdp =
2519 			ext4_get_group_desc(sb, group, NULL);
2520 		int ret;
2521 
2522 		/* cr=0/1 is a very optimistic search to find large
2523 		 * good chunks almost for free.  If buddy data is not
2524 		 * ready, then this optimization makes no sense.  But
2525 		 * we never skip the first block group in a flex_bg,
2526 		 * since this gets used for metadata block allocation,
2527 		 * and we want to make sure we locate metadata blocks
2528 		 * in the first block group in the flex_bg if possible.
2529 		 */
2530 		if (cr < 2 &&
2531 		    (!sbi->s_log_groups_per_flex ||
2532 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2533 		    !(ext4_has_group_desc_csum(sb) &&
2534 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2535 			return 0;
2536 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2537 		if (ret)
2538 			return ret;
2539 	}
2540 
2541 	if (should_lock) {
2542 		ext4_lock_group(sb, group);
2543 		__release(ext4_group_lock_ptr(sb, group));
2544 	}
2545 	ret = ext4_mb_good_group(ac, group, cr);
2546 out:
2547 	if (should_lock) {
2548 		__acquire(ext4_group_lock_ptr(sb, group));
2549 		ext4_unlock_group(sb, group);
2550 	}
2551 	return ret;
2552 }
2553 
2554 /*
2555  * Start prefetching @nr block bitmaps starting at @group.
2556  * Return the next group which needs to be prefetched.
2557  */
2558 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2559 			      unsigned int nr, int *cnt)
2560 {
2561 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2562 	struct buffer_head *bh;
2563 	struct blk_plug plug;
2564 
2565 	blk_start_plug(&plug);
2566 	while (nr-- > 0) {
2567 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2568 								  NULL);
2569 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2570 
2571 		/*
2572 		 * Prefetch block groups with free blocks; but don't
2573 		 * bother if it is marked uninitialized on disk, since
2574 		 * it won't require I/O to read.  Also only try to
2575 		 * prefetch once, so we avoid getblk() call, which can
2576 		 * be expensive.
2577 		 */
2578 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2579 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2580 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2581 		    !(ext4_has_group_desc_csum(sb) &&
2582 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2583 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2584 			if (bh && !IS_ERR(bh)) {
2585 				if (!buffer_uptodate(bh) && cnt)
2586 					(*cnt)++;
2587 				brelse(bh);
2588 			}
2589 		}
2590 		if (++group >= ngroups)
2591 			group = 0;
2592 	}
2593 	blk_finish_plug(&plug);
2594 	return group;
2595 }
2596 
2597 /*
2598  * Prefetching reads the block bitmap into the buffer cache; but we
2599  * need to make sure that the buddy bitmap in the page cache has been
2600  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2601  * is not yet completed, or indeed if it was not initiated by
2602  * ext4_mb_prefetch did not start the I/O.
2603  *
2604  * TODO: We should actually kick off the buddy bitmap setup in a work
2605  * queue when the buffer I/O is completed, so that we don't block
2606  * waiting for the block allocation bitmap read to finish when
2607  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2608  */
2609 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2610 			   unsigned int nr)
2611 {
2612 	while (nr-- > 0) {
2613 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2614 								  NULL);
2615 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2616 
2617 		if (!group)
2618 			group = ext4_get_groups_count(sb);
2619 		group--;
2620 		grp = ext4_get_group_info(sb, group);
2621 
2622 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
2623 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2624 		    !(ext4_has_group_desc_csum(sb) &&
2625 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2626 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2627 				break;
2628 		}
2629 	}
2630 }
2631 
2632 static noinline_for_stack int
2633 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2634 {
2635 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2636 	int cr = -1;
2637 	int err = 0, first_err = 0;
2638 	unsigned int nr = 0, prefetch_ios = 0;
2639 	struct ext4_sb_info *sbi;
2640 	struct super_block *sb;
2641 	struct ext4_buddy e4b;
2642 	int lost;
2643 
2644 	sb = ac->ac_sb;
2645 	sbi = EXT4_SB(sb);
2646 	ngroups = ext4_get_groups_count(sb);
2647 	/* non-extent files are limited to low blocks/groups */
2648 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2649 		ngroups = sbi->s_blockfile_groups;
2650 
2651 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2652 
2653 	/* first, try the goal */
2654 	err = ext4_mb_find_by_goal(ac, &e4b);
2655 	if (err || ac->ac_status == AC_STATUS_FOUND)
2656 		goto out;
2657 
2658 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2659 		goto out;
2660 
2661 	/*
2662 	 * ac->ac_2order is set only if the fe_len is a power of 2
2663 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2664 	 * try exact allocation using buddy.
2665 	 */
2666 	i = fls(ac->ac_g_ex.fe_len);
2667 	ac->ac_2order = 0;
2668 	/*
2669 	 * We search using buddy data only if the order of the request
2670 	 * is greater than equal to the sbi_s_mb_order2_reqs
2671 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2672 	 * We also support searching for power-of-two requests only for
2673 	 * requests upto maximum buddy size we have constructed.
2674 	 */
2675 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2676 		/*
2677 		 * This should tell if fe_len is exactly power of 2
2678 		 */
2679 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2680 			ac->ac_2order = array_index_nospec(i - 1,
2681 							   MB_NUM_ORDERS(sb));
2682 	}
2683 
2684 	/* if stream allocation is enabled, use global goal */
2685 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2686 		/* TBD: may be hot point */
2687 		spin_lock(&sbi->s_md_lock);
2688 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2689 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2690 		spin_unlock(&sbi->s_md_lock);
2691 	}
2692 
2693 	/* Let's just scan groups to find more-less suitable blocks */
2694 	cr = ac->ac_2order ? 0 : 1;
2695 	/*
2696 	 * cr == 0 try to get exact allocation,
2697 	 * cr == 3  try to get anything
2698 	 */
2699 repeat:
2700 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2701 		ac->ac_criteria = cr;
2702 		/*
2703 		 * searching for the right group start
2704 		 * from the goal value specified
2705 		 */
2706 		group = ac->ac_g_ex.fe_group;
2707 		ac->ac_last_optimal_group = group;
2708 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2709 		prefetch_grp = group;
2710 
2711 		for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups),
2712 			     i++) {
2713 			int ret = 0, new_cr;
2714 
2715 			cond_resched();
2716 
2717 			ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups);
2718 			if (new_cr != cr) {
2719 				cr = new_cr;
2720 				goto repeat;
2721 			}
2722 
2723 			/*
2724 			 * Batch reads of the block allocation bitmaps
2725 			 * to get multiple READs in flight; limit
2726 			 * prefetching at cr=0/1, otherwise mballoc can
2727 			 * spend a lot of time loading imperfect groups
2728 			 */
2729 			if ((prefetch_grp == group) &&
2730 			    (cr > 1 ||
2731 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2732 				unsigned int curr_ios = prefetch_ios;
2733 
2734 				nr = sbi->s_mb_prefetch;
2735 				if (ext4_has_feature_flex_bg(sb)) {
2736 					nr = 1 << sbi->s_log_groups_per_flex;
2737 					nr -= group & (nr - 1);
2738 					nr = min(nr, sbi->s_mb_prefetch);
2739 				}
2740 				prefetch_grp = ext4_mb_prefetch(sb, group,
2741 							nr, &prefetch_ios);
2742 				if (prefetch_ios == curr_ios)
2743 					nr = 0;
2744 			}
2745 
2746 			/* This now checks without needing the buddy page */
2747 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2748 			if (ret <= 0) {
2749 				if (!first_err)
2750 					first_err = ret;
2751 				continue;
2752 			}
2753 
2754 			err = ext4_mb_load_buddy(sb, group, &e4b);
2755 			if (err)
2756 				goto out;
2757 
2758 			ext4_lock_group(sb, group);
2759 
2760 			/*
2761 			 * We need to check again after locking the
2762 			 * block group
2763 			 */
2764 			ret = ext4_mb_good_group(ac, group, cr);
2765 			if (ret == 0) {
2766 				ext4_unlock_group(sb, group);
2767 				ext4_mb_unload_buddy(&e4b);
2768 				continue;
2769 			}
2770 
2771 			ac->ac_groups_scanned++;
2772 			if (cr == 0)
2773 				ext4_mb_simple_scan_group(ac, &e4b);
2774 			else if (cr == 1 && sbi->s_stripe &&
2775 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2776 				ext4_mb_scan_aligned(ac, &e4b);
2777 			else
2778 				ext4_mb_complex_scan_group(ac, &e4b);
2779 
2780 			ext4_unlock_group(sb, group);
2781 			ext4_mb_unload_buddy(&e4b);
2782 
2783 			if (ac->ac_status != AC_STATUS_CONTINUE)
2784 				break;
2785 		}
2786 		/* Processed all groups and haven't found blocks */
2787 		if (sbi->s_mb_stats && i == ngroups)
2788 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2789 	}
2790 
2791 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2792 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2793 		/*
2794 		 * We've been searching too long. Let's try to allocate
2795 		 * the best chunk we've found so far
2796 		 */
2797 		ext4_mb_try_best_found(ac, &e4b);
2798 		if (ac->ac_status != AC_STATUS_FOUND) {
2799 			/*
2800 			 * Someone more lucky has already allocated it.
2801 			 * The only thing we can do is just take first
2802 			 * found block(s)
2803 			 */
2804 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2805 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2806 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2807 				 ac->ac_b_ex.fe_len, lost);
2808 
2809 			ac->ac_b_ex.fe_group = 0;
2810 			ac->ac_b_ex.fe_start = 0;
2811 			ac->ac_b_ex.fe_len = 0;
2812 			ac->ac_status = AC_STATUS_CONTINUE;
2813 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2814 			cr = 3;
2815 			goto repeat;
2816 		}
2817 	}
2818 
2819 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2820 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2821 out:
2822 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2823 		err = first_err;
2824 
2825 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2826 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2827 		 ac->ac_flags, cr, err);
2828 
2829 	if (nr)
2830 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2831 
2832 	return err;
2833 }
2834 
2835 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2836 {
2837 	struct super_block *sb = pde_data(file_inode(seq->file));
2838 	ext4_group_t group;
2839 
2840 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2841 		return NULL;
2842 	group = *pos + 1;
2843 	return (void *) ((unsigned long) group);
2844 }
2845 
2846 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2847 {
2848 	struct super_block *sb = pde_data(file_inode(seq->file));
2849 	ext4_group_t group;
2850 
2851 	++*pos;
2852 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2853 		return NULL;
2854 	group = *pos + 1;
2855 	return (void *) ((unsigned long) group);
2856 }
2857 
2858 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2859 {
2860 	struct super_block *sb = pde_data(file_inode(seq->file));
2861 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2862 	int i;
2863 	int err, buddy_loaded = 0;
2864 	struct ext4_buddy e4b;
2865 	struct ext4_group_info *grinfo;
2866 	unsigned char blocksize_bits = min_t(unsigned char,
2867 					     sb->s_blocksize_bits,
2868 					     EXT4_MAX_BLOCK_LOG_SIZE);
2869 	struct sg {
2870 		struct ext4_group_info info;
2871 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2872 	} sg;
2873 
2874 	group--;
2875 	if (group == 0)
2876 		seq_puts(seq, "#group: free  frags first ["
2877 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2878 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2879 
2880 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2881 		sizeof(struct ext4_group_info);
2882 
2883 	grinfo = ext4_get_group_info(sb, group);
2884 	/* Load the group info in memory only if not already loaded. */
2885 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2886 		err = ext4_mb_load_buddy(sb, group, &e4b);
2887 		if (err) {
2888 			seq_printf(seq, "#%-5u: I/O error\n", group);
2889 			return 0;
2890 		}
2891 		buddy_loaded = 1;
2892 	}
2893 
2894 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2895 
2896 	if (buddy_loaded)
2897 		ext4_mb_unload_buddy(&e4b);
2898 
2899 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2900 			sg.info.bb_fragments, sg.info.bb_first_free);
2901 	for (i = 0; i <= 13; i++)
2902 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2903 				sg.info.bb_counters[i] : 0);
2904 	seq_puts(seq, " ]\n");
2905 
2906 	return 0;
2907 }
2908 
2909 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2910 {
2911 }
2912 
2913 const struct seq_operations ext4_mb_seq_groups_ops = {
2914 	.start  = ext4_mb_seq_groups_start,
2915 	.next   = ext4_mb_seq_groups_next,
2916 	.stop   = ext4_mb_seq_groups_stop,
2917 	.show   = ext4_mb_seq_groups_show,
2918 };
2919 
2920 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2921 {
2922 	struct super_block *sb = (struct super_block *)seq->private;
2923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2924 
2925 	seq_puts(seq, "mballoc:\n");
2926 	if (!sbi->s_mb_stats) {
2927 		seq_puts(seq, "\tmb stats collection turned off.\n");
2928 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2929 		return 0;
2930 	}
2931 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2932 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2933 
2934 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
2935 
2936 	seq_puts(seq, "\tcr0_stats:\n");
2937 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2938 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2939 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2940 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2941 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
2942 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2943 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2944 
2945 	seq_puts(seq, "\tcr1_stats:\n");
2946 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2947 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2948 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2949 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2950 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
2951 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2952 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
2953 
2954 	seq_puts(seq, "\tcr2_stats:\n");
2955 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2956 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2957 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2958 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2959 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
2960 
2961 	seq_puts(seq, "\tcr3_stats:\n");
2962 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2963 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2964 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2965 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2966 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
2967 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2968 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2969 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2970 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2971 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2972 
2973 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2974 		   atomic_read(&sbi->s_mb_buddies_generated),
2975 		   ext4_get_groups_count(sb));
2976 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
2977 		   atomic64_read(&sbi->s_mb_generation_time));
2978 	seq_printf(seq, "\tpreallocated: %u\n",
2979 		   atomic_read(&sbi->s_mb_preallocated));
2980 	seq_printf(seq, "\tdiscarded: %u\n",
2981 		   atomic_read(&sbi->s_mb_discarded));
2982 	return 0;
2983 }
2984 
2985 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
2986 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
2987 {
2988 	struct super_block *sb = pde_data(file_inode(seq->file));
2989 	unsigned long position;
2990 
2991 	read_lock(&EXT4_SB(sb)->s_mb_rb_lock);
2992 
2993 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
2994 		return NULL;
2995 	position = *pos + 1;
2996 	return (void *) ((unsigned long) position);
2997 }
2998 
2999 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3000 {
3001 	struct super_block *sb = pde_data(file_inode(seq->file));
3002 	unsigned long position;
3003 
3004 	++*pos;
3005 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
3006 		return NULL;
3007 	position = *pos + 1;
3008 	return (void *) ((unsigned long) position);
3009 }
3010 
3011 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3012 {
3013 	struct super_block *sb = pde_data(file_inode(seq->file));
3014 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3015 	unsigned long position = ((unsigned long) v);
3016 	struct ext4_group_info *grp;
3017 	struct rb_node *n;
3018 	unsigned int count, min, max;
3019 
3020 	position--;
3021 	if (position >= MB_NUM_ORDERS(sb)) {
3022 		seq_puts(seq, "fragment_size_tree:\n");
3023 		n = rb_first(&sbi->s_mb_avg_fragment_size_root);
3024 		if (!n) {
3025 			seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n");
3026 			return 0;
3027 		}
3028 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3029 		min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3030 		count = 1;
3031 		while (rb_next(n)) {
3032 			count++;
3033 			n = rb_next(n);
3034 		}
3035 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3036 		max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3037 
3038 		seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n",
3039 			   min, max, count);
3040 		return 0;
3041 	}
3042 
3043 	if (position == 0) {
3044 		seq_printf(seq, "optimize_scan: %d\n",
3045 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3046 		seq_puts(seq, "max_free_order_lists:\n");
3047 	}
3048 	count = 0;
3049 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3050 			    bb_largest_free_order_node)
3051 		count++;
3052 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3053 		   (unsigned int)position, count);
3054 
3055 	return 0;
3056 }
3057 
3058 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3059 __releases(&EXT4_SB(sb)->s_mb_rb_lock)
3060 {
3061 	struct super_block *sb = pde_data(file_inode(seq->file));
3062 
3063 	read_unlock(&EXT4_SB(sb)->s_mb_rb_lock);
3064 }
3065 
3066 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3067 	.start  = ext4_mb_seq_structs_summary_start,
3068 	.next   = ext4_mb_seq_structs_summary_next,
3069 	.stop   = ext4_mb_seq_structs_summary_stop,
3070 	.show   = ext4_mb_seq_structs_summary_show,
3071 };
3072 
3073 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3074 {
3075 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3076 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3077 
3078 	BUG_ON(!cachep);
3079 	return cachep;
3080 }
3081 
3082 /*
3083  * Allocate the top-level s_group_info array for the specified number
3084  * of groups
3085  */
3086 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3087 {
3088 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3089 	unsigned size;
3090 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3091 
3092 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3093 		EXT4_DESC_PER_BLOCK_BITS(sb);
3094 	if (size <= sbi->s_group_info_size)
3095 		return 0;
3096 
3097 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3098 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3099 	if (!new_groupinfo) {
3100 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3101 		return -ENOMEM;
3102 	}
3103 	rcu_read_lock();
3104 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3105 	if (old_groupinfo)
3106 		memcpy(new_groupinfo, old_groupinfo,
3107 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3108 	rcu_read_unlock();
3109 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3110 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3111 	if (old_groupinfo)
3112 		ext4_kvfree_array_rcu(old_groupinfo);
3113 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3114 		   sbi->s_group_info_size);
3115 	return 0;
3116 }
3117 
3118 /* Create and initialize ext4_group_info data for the given group. */
3119 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3120 			  struct ext4_group_desc *desc)
3121 {
3122 	int i;
3123 	int metalen = 0;
3124 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3125 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3126 	struct ext4_group_info **meta_group_info;
3127 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3128 
3129 	/*
3130 	 * First check if this group is the first of a reserved block.
3131 	 * If it's true, we have to allocate a new table of pointers
3132 	 * to ext4_group_info structures
3133 	 */
3134 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3135 		metalen = sizeof(*meta_group_info) <<
3136 			EXT4_DESC_PER_BLOCK_BITS(sb);
3137 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3138 		if (meta_group_info == NULL) {
3139 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3140 				 "for a buddy group");
3141 			goto exit_meta_group_info;
3142 		}
3143 		rcu_read_lock();
3144 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3145 		rcu_read_unlock();
3146 	}
3147 
3148 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3149 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3150 
3151 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3152 	if (meta_group_info[i] == NULL) {
3153 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3154 		goto exit_group_info;
3155 	}
3156 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3157 		&(meta_group_info[i]->bb_state));
3158 
3159 	/*
3160 	 * initialize bb_free to be able to skip
3161 	 * empty groups without initialization
3162 	 */
3163 	if (ext4_has_group_desc_csum(sb) &&
3164 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3165 		meta_group_info[i]->bb_free =
3166 			ext4_free_clusters_after_init(sb, group, desc);
3167 	} else {
3168 		meta_group_info[i]->bb_free =
3169 			ext4_free_group_clusters(sb, desc);
3170 	}
3171 
3172 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3173 	init_rwsem(&meta_group_info[i]->alloc_sem);
3174 	meta_group_info[i]->bb_free_root = RB_ROOT;
3175 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3176 	RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb);
3177 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3178 	meta_group_info[i]->bb_group = group;
3179 
3180 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3181 	return 0;
3182 
3183 exit_group_info:
3184 	/* If a meta_group_info table has been allocated, release it now */
3185 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3186 		struct ext4_group_info ***group_info;
3187 
3188 		rcu_read_lock();
3189 		group_info = rcu_dereference(sbi->s_group_info);
3190 		kfree(group_info[idx]);
3191 		group_info[idx] = NULL;
3192 		rcu_read_unlock();
3193 	}
3194 exit_meta_group_info:
3195 	return -ENOMEM;
3196 } /* ext4_mb_add_groupinfo */
3197 
3198 static int ext4_mb_init_backend(struct super_block *sb)
3199 {
3200 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3201 	ext4_group_t i;
3202 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3203 	int err;
3204 	struct ext4_group_desc *desc;
3205 	struct ext4_group_info ***group_info;
3206 	struct kmem_cache *cachep;
3207 
3208 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3209 	if (err)
3210 		return err;
3211 
3212 	sbi->s_buddy_cache = new_inode(sb);
3213 	if (sbi->s_buddy_cache == NULL) {
3214 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3215 		goto err_freesgi;
3216 	}
3217 	/* To avoid potentially colliding with an valid on-disk inode number,
3218 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3219 	 * not in the inode hash, so it should never be found by iget(), but
3220 	 * this will avoid confusion if it ever shows up during debugging. */
3221 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3222 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3223 	for (i = 0; i < ngroups; i++) {
3224 		cond_resched();
3225 		desc = ext4_get_group_desc(sb, i, NULL);
3226 		if (desc == NULL) {
3227 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3228 			goto err_freebuddy;
3229 		}
3230 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3231 			goto err_freebuddy;
3232 	}
3233 
3234 	if (ext4_has_feature_flex_bg(sb)) {
3235 		/* a single flex group is supposed to be read by a single IO.
3236 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3237 		 * unsigned integer, so the maximum shift is 32.
3238 		 */
3239 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3240 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3241 			goto err_freebuddy;
3242 		}
3243 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3244 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3245 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3246 	} else {
3247 		sbi->s_mb_prefetch = 32;
3248 	}
3249 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3250 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3251 	/* now many real IOs to prefetch within a single allocation at cr=0
3252 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3253 	 * load too many groups, at some point we should start to use what
3254 	 * we've got in memory.
3255 	 * with an average random access time 5ms, it'd take a second to get
3256 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3257 	 */
3258 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3259 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3260 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3261 
3262 	return 0;
3263 
3264 err_freebuddy:
3265 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3266 	while (i-- > 0)
3267 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
3268 	i = sbi->s_group_info_size;
3269 	rcu_read_lock();
3270 	group_info = rcu_dereference(sbi->s_group_info);
3271 	while (i-- > 0)
3272 		kfree(group_info[i]);
3273 	rcu_read_unlock();
3274 	iput(sbi->s_buddy_cache);
3275 err_freesgi:
3276 	rcu_read_lock();
3277 	kvfree(rcu_dereference(sbi->s_group_info));
3278 	rcu_read_unlock();
3279 	return -ENOMEM;
3280 }
3281 
3282 static void ext4_groupinfo_destroy_slabs(void)
3283 {
3284 	int i;
3285 
3286 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3287 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3288 		ext4_groupinfo_caches[i] = NULL;
3289 	}
3290 }
3291 
3292 static int ext4_groupinfo_create_slab(size_t size)
3293 {
3294 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3295 	int slab_size;
3296 	int blocksize_bits = order_base_2(size);
3297 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3298 	struct kmem_cache *cachep;
3299 
3300 	if (cache_index >= NR_GRPINFO_CACHES)
3301 		return -EINVAL;
3302 
3303 	if (unlikely(cache_index < 0))
3304 		cache_index = 0;
3305 
3306 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3307 	if (ext4_groupinfo_caches[cache_index]) {
3308 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3309 		return 0;	/* Already created */
3310 	}
3311 
3312 	slab_size = offsetof(struct ext4_group_info,
3313 				bb_counters[blocksize_bits + 2]);
3314 
3315 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3316 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3317 					NULL);
3318 
3319 	ext4_groupinfo_caches[cache_index] = cachep;
3320 
3321 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3322 	if (!cachep) {
3323 		printk(KERN_EMERG
3324 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3325 		return -ENOMEM;
3326 	}
3327 
3328 	return 0;
3329 }
3330 
3331 static void ext4_discard_work(struct work_struct *work)
3332 {
3333 	struct ext4_sb_info *sbi = container_of(work,
3334 			struct ext4_sb_info, s_discard_work);
3335 	struct super_block *sb = sbi->s_sb;
3336 	struct ext4_free_data *fd, *nfd;
3337 	struct ext4_buddy e4b;
3338 	struct list_head discard_list;
3339 	ext4_group_t grp, load_grp;
3340 	int err = 0;
3341 
3342 	INIT_LIST_HEAD(&discard_list);
3343 	spin_lock(&sbi->s_md_lock);
3344 	list_splice_init(&sbi->s_discard_list, &discard_list);
3345 	spin_unlock(&sbi->s_md_lock);
3346 
3347 	load_grp = UINT_MAX;
3348 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3349 		/*
3350 		 * If filesystem is umounting or no memory or suffering
3351 		 * from no space, give up the discard
3352 		 */
3353 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3354 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3355 			grp = fd->efd_group;
3356 			if (grp != load_grp) {
3357 				if (load_grp != UINT_MAX)
3358 					ext4_mb_unload_buddy(&e4b);
3359 
3360 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3361 				if (err) {
3362 					kmem_cache_free(ext4_free_data_cachep, fd);
3363 					load_grp = UINT_MAX;
3364 					continue;
3365 				} else {
3366 					load_grp = grp;
3367 				}
3368 			}
3369 
3370 			ext4_lock_group(sb, grp);
3371 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3372 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3373 			ext4_unlock_group(sb, grp);
3374 		}
3375 		kmem_cache_free(ext4_free_data_cachep, fd);
3376 	}
3377 
3378 	if (load_grp != UINT_MAX)
3379 		ext4_mb_unload_buddy(&e4b);
3380 }
3381 
3382 int ext4_mb_init(struct super_block *sb)
3383 {
3384 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3385 	unsigned i, j;
3386 	unsigned offset, offset_incr;
3387 	unsigned max;
3388 	int ret;
3389 
3390 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3391 
3392 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3393 	if (sbi->s_mb_offsets == NULL) {
3394 		ret = -ENOMEM;
3395 		goto out;
3396 	}
3397 
3398 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3399 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3400 	if (sbi->s_mb_maxs == NULL) {
3401 		ret = -ENOMEM;
3402 		goto out;
3403 	}
3404 
3405 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3406 	if (ret < 0)
3407 		goto out;
3408 
3409 	/* order 0 is regular bitmap */
3410 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3411 	sbi->s_mb_offsets[0] = 0;
3412 
3413 	i = 1;
3414 	offset = 0;
3415 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3416 	max = sb->s_blocksize << 2;
3417 	do {
3418 		sbi->s_mb_offsets[i] = offset;
3419 		sbi->s_mb_maxs[i] = max;
3420 		offset += offset_incr;
3421 		offset_incr = offset_incr >> 1;
3422 		max = max >> 1;
3423 		i++;
3424 	} while (i < MB_NUM_ORDERS(sb));
3425 
3426 	sbi->s_mb_avg_fragment_size_root = RB_ROOT;
3427 	sbi->s_mb_largest_free_orders =
3428 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3429 			GFP_KERNEL);
3430 	if (!sbi->s_mb_largest_free_orders) {
3431 		ret = -ENOMEM;
3432 		goto out;
3433 	}
3434 	sbi->s_mb_largest_free_orders_locks =
3435 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3436 			GFP_KERNEL);
3437 	if (!sbi->s_mb_largest_free_orders_locks) {
3438 		ret = -ENOMEM;
3439 		goto out;
3440 	}
3441 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3442 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3443 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3444 	}
3445 	rwlock_init(&sbi->s_mb_rb_lock);
3446 
3447 	spin_lock_init(&sbi->s_md_lock);
3448 	sbi->s_mb_free_pending = 0;
3449 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3450 	INIT_LIST_HEAD(&sbi->s_discard_list);
3451 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3452 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3453 
3454 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3455 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3456 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3457 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3458 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3459 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
3460 	/*
3461 	 * The default group preallocation is 512, which for 4k block
3462 	 * sizes translates to 2 megabytes.  However for bigalloc file
3463 	 * systems, this is probably too big (i.e, if the cluster size
3464 	 * is 1 megabyte, then group preallocation size becomes half a
3465 	 * gigabyte!).  As a default, we will keep a two megabyte
3466 	 * group pralloc size for cluster sizes up to 64k, and after
3467 	 * that, we will force a minimum group preallocation size of
3468 	 * 32 clusters.  This translates to 8 megs when the cluster
3469 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3470 	 * which seems reasonable as a default.
3471 	 */
3472 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3473 				       sbi->s_cluster_bits, 32);
3474 	/*
3475 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3476 	 * to the lowest multiple of s_stripe which is bigger than
3477 	 * the s_mb_group_prealloc as determined above. We want
3478 	 * the preallocation size to be an exact multiple of the
3479 	 * RAID stripe size so that preallocations don't fragment
3480 	 * the stripes.
3481 	 */
3482 	if (sbi->s_stripe > 1) {
3483 		sbi->s_mb_group_prealloc = roundup(
3484 			sbi->s_mb_group_prealloc, sbi->s_stripe);
3485 	}
3486 
3487 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3488 	if (sbi->s_locality_groups == NULL) {
3489 		ret = -ENOMEM;
3490 		goto out;
3491 	}
3492 	for_each_possible_cpu(i) {
3493 		struct ext4_locality_group *lg;
3494 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3495 		mutex_init(&lg->lg_mutex);
3496 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3497 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3498 		spin_lock_init(&lg->lg_prealloc_lock);
3499 	}
3500 
3501 	if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev)))
3502 		sbi->s_mb_max_linear_groups = 0;
3503 	else
3504 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3505 	/* init file for buddy data */
3506 	ret = ext4_mb_init_backend(sb);
3507 	if (ret != 0)
3508 		goto out_free_locality_groups;
3509 
3510 	return 0;
3511 
3512 out_free_locality_groups:
3513 	free_percpu(sbi->s_locality_groups);
3514 	sbi->s_locality_groups = NULL;
3515 out:
3516 	kfree(sbi->s_mb_largest_free_orders);
3517 	kfree(sbi->s_mb_largest_free_orders_locks);
3518 	kfree(sbi->s_mb_offsets);
3519 	sbi->s_mb_offsets = NULL;
3520 	kfree(sbi->s_mb_maxs);
3521 	sbi->s_mb_maxs = NULL;
3522 	return ret;
3523 }
3524 
3525 /* need to called with the ext4 group lock held */
3526 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3527 {
3528 	struct ext4_prealloc_space *pa;
3529 	struct list_head *cur, *tmp;
3530 	int count = 0;
3531 
3532 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3533 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3534 		list_del(&pa->pa_group_list);
3535 		count++;
3536 		kmem_cache_free(ext4_pspace_cachep, pa);
3537 	}
3538 	return count;
3539 }
3540 
3541 int ext4_mb_release(struct super_block *sb)
3542 {
3543 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3544 	ext4_group_t i;
3545 	int num_meta_group_infos;
3546 	struct ext4_group_info *grinfo, ***group_info;
3547 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3548 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3549 	int count;
3550 
3551 	if (test_opt(sb, DISCARD)) {
3552 		/*
3553 		 * wait the discard work to drain all of ext4_free_data
3554 		 */
3555 		flush_work(&sbi->s_discard_work);
3556 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3557 	}
3558 
3559 	if (sbi->s_group_info) {
3560 		for (i = 0; i < ngroups; i++) {
3561 			cond_resched();
3562 			grinfo = ext4_get_group_info(sb, i);
3563 			mb_group_bb_bitmap_free(grinfo);
3564 			ext4_lock_group(sb, i);
3565 			count = ext4_mb_cleanup_pa(grinfo);
3566 			if (count)
3567 				mb_debug(sb, "mballoc: %d PAs left\n",
3568 					 count);
3569 			ext4_unlock_group(sb, i);
3570 			kmem_cache_free(cachep, grinfo);
3571 		}
3572 		num_meta_group_infos = (ngroups +
3573 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3574 			EXT4_DESC_PER_BLOCK_BITS(sb);
3575 		rcu_read_lock();
3576 		group_info = rcu_dereference(sbi->s_group_info);
3577 		for (i = 0; i < num_meta_group_infos; i++)
3578 			kfree(group_info[i]);
3579 		kvfree(group_info);
3580 		rcu_read_unlock();
3581 	}
3582 	kfree(sbi->s_mb_largest_free_orders);
3583 	kfree(sbi->s_mb_largest_free_orders_locks);
3584 	kfree(sbi->s_mb_offsets);
3585 	kfree(sbi->s_mb_maxs);
3586 	iput(sbi->s_buddy_cache);
3587 	if (sbi->s_mb_stats) {
3588 		ext4_msg(sb, KERN_INFO,
3589 		       "mballoc: %u blocks %u reqs (%u success)",
3590 				atomic_read(&sbi->s_bal_allocated),
3591 				atomic_read(&sbi->s_bal_reqs),
3592 				atomic_read(&sbi->s_bal_success));
3593 		ext4_msg(sb, KERN_INFO,
3594 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3595 				"%u 2^N hits, %u breaks, %u lost",
3596 				atomic_read(&sbi->s_bal_ex_scanned),
3597 				atomic_read(&sbi->s_bal_groups_scanned),
3598 				atomic_read(&sbi->s_bal_goals),
3599 				atomic_read(&sbi->s_bal_2orders),
3600 				atomic_read(&sbi->s_bal_breaks),
3601 				atomic_read(&sbi->s_mb_lost_chunks));
3602 		ext4_msg(sb, KERN_INFO,
3603 		       "mballoc: %u generated and it took %llu",
3604 				atomic_read(&sbi->s_mb_buddies_generated),
3605 				atomic64_read(&sbi->s_mb_generation_time));
3606 		ext4_msg(sb, KERN_INFO,
3607 		       "mballoc: %u preallocated, %u discarded",
3608 				atomic_read(&sbi->s_mb_preallocated),
3609 				atomic_read(&sbi->s_mb_discarded));
3610 	}
3611 
3612 	free_percpu(sbi->s_locality_groups);
3613 
3614 	return 0;
3615 }
3616 
3617 static inline int ext4_issue_discard(struct super_block *sb,
3618 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3619 		struct bio **biop)
3620 {
3621 	ext4_fsblk_t discard_block;
3622 
3623 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3624 			 ext4_group_first_block_no(sb, block_group));
3625 	count = EXT4_C2B(EXT4_SB(sb), count);
3626 	trace_ext4_discard_blocks(sb,
3627 			(unsigned long long) discard_block, count);
3628 	if (biop) {
3629 		return __blkdev_issue_discard(sb->s_bdev,
3630 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3631 			(sector_t)count << (sb->s_blocksize_bits - 9),
3632 			GFP_NOFS, 0, biop);
3633 	} else
3634 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3635 }
3636 
3637 static void ext4_free_data_in_buddy(struct super_block *sb,
3638 				    struct ext4_free_data *entry)
3639 {
3640 	struct ext4_buddy e4b;
3641 	struct ext4_group_info *db;
3642 	int err, count = 0, count2 = 0;
3643 
3644 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3645 		 entry->efd_count, entry->efd_group, entry);
3646 
3647 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3648 	/* we expect to find existing buddy because it's pinned */
3649 	BUG_ON(err != 0);
3650 
3651 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3652 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3653 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3654 
3655 	db = e4b.bd_info;
3656 	/* there are blocks to put in buddy to make them really free */
3657 	count += entry->efd_count;
3658 	count2++;
3659 	ext4_lock_group(sb, entry->efd_group);
3660 	/* Take it out of per group rb tree */
3661 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3662 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3663 
3664 	/*
3665 	 * Clear the trimmed flag for the group so that the next
3666 	 * ext4_trim_fs can trim it.
3667 	 * If the volume is mounted with -o discard, online discard
3668 	 * is supported and the free blocks will be trimmed online.
3669 	 */
3670 	if (!test_opt(sb, DISCARD))
3671 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3672 
3673 	if (!db->bb_free_root.rb_node) {
3674 		/* No more items in the per group rb tree
3675 		 * balance refcounts from ext4_mb_free_metadata()
3676 		 */
3677 		put_page(e4b.bd_buddy_page);
3678 		put_page(e4b.bd_bitmap_page);
3679 	}
3680 	ext4_unlock_group(sb, entry->efd_group);
3681 	ext4_mb_unload_buddy(&e4b);
3682 
3683 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
3684 		 count2);
3685 }
3686 
3687 /*
3688  * This function is called by the jbd2 layer once the commit has finished,
3689  * so we know we can free the blocks that were released with that commit.
3690  */
3691 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3692 {
3693 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3694 	struct ext4_free_data *entry, *tmp;
3695 	struct list_head freed_data_list;
3696 	struct list_head *cut_pos = NULL;
3697 	bool wake;
3698 
3699 	INIT_LIST_HEAD(&freed_data_list);
3700 
3701 	spin_lock(&sbi->s_md_lock);
3702 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3703 		if (entry->efd_tid != commit_tid)
3704 			break;
3705 		cut_pos = &entry->efd_list;
3706 	}
3707 	if (cut_pos)
3708 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3709 				  cut_pos);
3710 	spin_unlock(&sbi->s_md_lock);
3711 
3712 	list_for_each_entry(entry, &freed_data_list, efd_list)
3713 		ext4_free_data_in_buddy(sb, entry);
3714 
3715 	if (test_opt(sb, DISCARD)) {
3716 		spin_lock(&sbi->s_md_lock);
3717 		wake = list_empty(&sbi->s_discard_list);
3718 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3719 		spin_unlock(&sbi->s_md_lock);
3720 		if (wake)
3721 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3722 	} else {
3723 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3724 			kmem_cache_free(ext4_free_data_cachep, entry);
3725 	}
3726 }
3727 
3728 int __init ext4_init_mballoc(void)
3729 {
3730 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3731 					SLAB_RECLAIM_ACCOUNT);
3732 	if (ext4_pspace_cachep == NULL)
3733 		goto out;
3734 
3735 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3736 				    SLAB_RECLAIM_ACCOUNT);
3737 	if (ext4_ac_cachep == NULL)
3738 		goto out_pa_free;
3739 
3740 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3741 					   SLAB_RECLAIM_ACCOUNT);
3742 	if (ext4_free_data_cachep == NULL)
3743 		goto out_ac_free;
3744 
3745 	return 0;
3746 
3747 out_ac_free:
3748 	kmem_cache_destroy(ext4_ac_cachep);
3749 out_pa_free:
3750 	kmem_cache_destroy(ext4_pspace_cachep);
3751 out:
3752 	return -ENOMEM;
3753 }
3754 
3755 void ext4_exit_mballoc(void)
3756 {
3757 	/*
3758 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3759 	 * before destroying the slab cache.
3760 	 */
3761 	rcu_barrier();
3762 	kmem_cache_destroy(ext4_pspace_cachep);
3763 	kmem_cache_destroy(ext4_ac_cachep);
3764 	kmem_cache_destroy(ext4_free_data_cachep);
3765 	ext4_groupinfo_destroy_slabs();
3766 }
3767 
3768 
3769 /*
3770  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3771  * Returns 0 if success or error code
3772  */
3773 static noinline_for_stack int
3774 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3775 				handle_t *handle, unsigned int reserv_clstrs)
3776 {
3777 	struct buffer_head *bitmap_bh = NULL;
3778 	struct ext4_group_desc *gdp;
3779 	struct buffer_head *gdp_bh;
3780 	struct ext4_sb_info *sbi;
3781 	struct super_block *sb;
3782 	ext4_fsblk_t block;
3783 	int err, len;
3784 
3785 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3786 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3787 
3788 	sb = ac->ac_sb;
3789 	sbi = EXT4_SB(sb);
3790 
3791 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3792 	if (IS_ERR(bitmap_bh)) {
3793 		err = PTR_ERR(bitmap_bh);
3794 		bitmap_bh = NULL;
3795 		goto out_err;
3796 	}
3797 
3798 	BUFFER_TRACE(bitmap_bh, "getting write access");
3799 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3800 					    EXT4_JTR_NONE);
3801 	if (err)
3802 		goto out_err;
3803 
3804 	err = -EIO;
3805 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3806 	if (!gdp)
3807 		goto out_err;
3808 
3809 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3810 			ext4_free_group_clusters(sb, gdp));
3811 
3812 	BUFFER_TRACE(gdp_bh, "get_write_access");
3813 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3814 	if (err)
3815 		goto out_err;
3816 
3817 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3818 
3819 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3820 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3821 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3822 			   "fs metadata", block, block+len);
3823 		/* File system mounted not to panic on error
3824 		 * Fix the bitmap and return EFSCORRUPTED
3825 		 * We leak some of the blocks here.
3826 		 */
3827 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3828 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3829 			      ac->ac_b_ex.fe_len);
3830 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3831 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3832 		if (!err)
3833 			err = -EFSCORRUPTED;
3834 		goto out_err;
3835 	}
3836 
3837 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3838 #ifdef AGGRESSIVE_CHECK
3839 	{
3840 		int i;
3841 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3842 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3843 						bitmap_bh->b_data));
3844 		}
3845 	}
3846 #endif
3847 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3848 		      ac->ac_b_ex.fe_len);
3849 	if (ext4_has_group_desc_csum(sb) &&
3850 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3851 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3852 		ext4_free_group_clusters_set(sb, gdp,
3853 					     ext4_free_clusters_after_init(sb,
3854 						ac->ac_b_ex.fe_group, gdp));
3855 	}
3856 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3857 	ext4_free_group_clusters_set(sb, gdp, len);
3858 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3859 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3860 
3861 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3862 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3863 	/*
3864 	 * Now reduce the dirty block count also. Should not go negative
3865 	 */
3866 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3867 		/* release all the reserved blocks if non delalloc */
3868 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3869 				   reserv_clstrs);
3870 
3871 	if (sbi->s_log_groups_per_flex) {
3872 		ext4_group_t flex_group = ext4_flex_group(sbi,
3873 							  ac->ac_b_ex.fe_group);
3874 		atomic64_sub(ac->ac_b_ex.fe_len,
3875 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3876 						  flex_group)->free_clusters);
3877 	}
3878 
3879 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3880 	if (err)
3881 		goto out_err;
3882 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3883 
3884 out_err:
3885 	brelse(bitmap_bh);
3886 	return err;
3887 }
3888 
3889 /*
3890  * Idempotent helper for Ext4 fast commit replay path to set the state of
3891  * blocks in bitmaps and update counters.
3892  */
3893 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3894 			int len, int state)
3895 {
3896 	struct buffer_head *bitmap_bh = NULL;
3897 	struct ext4_group_desc *gdp;
3898 	struct buffer_head *gdp_bh;
3899 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3900 	ext4_group_t group;
3901 	ext4_grpblk_t blkoff;
3902 	int i, clen, err;
3903 	int already;
3904 
3905 	clen = EXT4_B2C(sbi, len);
3906 
3907 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3908 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3909 	if (IS_ERR(bitmap_bh)) {
3910 		err = PTR_ERR(bitmap_bh);
3911 		bitmap_bh = NULL;
3912 		goto out_err;
3913 	}
3914 
3915 	err = -EIO;
3916 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3917 	if (!gdp)
3918 		goto out_err;
3919 
3920 	ext4_lock_group(sb, group);
3921 	already = 0;
3922 	for (i = 0; i < clen; i++)
3923 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
3924 			already++;
3925 
3926 	if (state)
3927 		ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3928 	else
3929 		mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
3930 	if (ext4_has_group_desc_csum(sb) &&
3931 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3932 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3933 		ext4_free_group_clusters_set(sb, gdp,
3934 					     ext4_free_clusters_after_init(sb,
3935 						group, gdp));
3936 	}
3937 	if (state)
3938 		clen = ext4_free_group_clusters(sb, gdp) - clen + already;
3939 	else
3940 		clen = ext4_free_group_clusters(sb, gdp) + clen - already;
3941 
3942 	ext4_free_group_clusters_set(sb, gdp, clen);
3943 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3944 	ext4_group_desc_csum_set(sb, group, gdp);
3945 
3946 	ext4_unlock_group(sb, group);
3947 
3948 	if (sbi->s_log_groups_per_flex) {
3949 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
3950 
3951 		atomic64_sub(len,
3952 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3953 						  flex_group)->free_clusters);
3954 	}
3955 
3956 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3957 	if (err)
3958 		goto out_err;
3959 	sync_dirty_buffer(bitmap_bh);
3960 	err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3961 	sync_dirty_buffer(gdp_bh);
3962 
3963 out_err:
3964 	brelse(bitmap_bh);
3965 }
3966 
3967 /*
3968  * here we normalize request for locality group
3969  * Group request are normalized to s_mb_group_prealloc, which goes to
3970  * s_strip if we set the same via mount option.
3971  * s_mb_group_prealloc can be configured via
3972  * /sys/fs/ext4/<partition>/mb_group_prealloc
3973  *
3974  * XXX: should we try to preallocate more than the group has now?
3975  */
3976 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3977 {
3978 	struct super_block *sb = ac->ac_sb;
3979 	struct ext4_locality_group *lg = ac->ac_lg;
3980 
3981 	BUG_ON(lg == NULL);
3982 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3983 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3984 }
3985 
3986 /*
3987  * Normalization means making request better in terms of
3988  * size and alignment
3989  */
3990 static noinline_for_stack void
3991 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3992 				struct ext4_allocation_request *ar)
3993 {
3994 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3995 	int bsbits, max;
3996 	ext4_lblk_t end;
3997 	loff_t size, start_off;
3998 	loff_t orig_size __maybe_unused;
3999 	ext4_lblk_t start;
4000 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4001 	struct ext4_prealloc_space *pa;
4002 
4003 	/* do normalize only data requests, metadata requests
4004 	   do not need preallocation */
4005 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4006 		return;
4007 
4008 	/* sometime caller may want exact blocks */
4009 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4010 		return;
4011 
4012 	/* caller may indicate that preallocation isn't
4013 	 * required (it's a tail, for example) */
4014 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4015 		return;
4016 
4017 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4018 		ext4_mb_normalize_group_request(ac);
4019 		return ;
4020 	}
4021 
4022 	bsbits = ac->ac_sb->s_blocksize_bits;
4023 
4024 	/* first, let's learn actual file size
4025 	 * given current request is allocated */
4026 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4027 	size = size << bsbits;
4028 	if (size < i_size_read(ac->ac_inode))
4029 		size = i_size_read(ac->ac_inode);
4030 	orig_size = size;
4031 
4032 	/* max size of free chunks */
4033 	max = 2 << bsbits;
4034 
4035 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4036 		(req <= (size) || max <= (chunk_size))
4037 
4038 	/* first, try to predict filesize */
4039 	/* XXX: should this table be tunable? */
4040 	start_off = 0;
4041 	if (size <= 16 * 1024) {
4042 		size = 16 * 1024;
4043 	} else if (size <= 32 * 1024) {
4044 		size = 32 * 1024;
4045 	} else if (size <= 64 * 1024) {
4046 		size = 64 * 1024;
4047 	} else if (size <= 128 * 1024) {
4048 		size = 128 * 1024;
4049 	} else if (size <= 256 * 1024) {
4050 		size = 256 * 1024;
4051 	} else if (size <= 512 * 1024) {
4052 		size = 512 * 1024;
4053 	} else if (size <= 1024 * 1024) {
4054 		size = 1024 * 1024;
4055 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4056 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4057 						(21 - bsbits)) << 21;
4058 		size = 2 * 1024 * 1024;
4059 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4060 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4061 							(22 - bsbits)) << 22;
4062 		size = 4 * 1024 * 1024;
4063 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
4064 					(8<<20)>>bsbits, max, 8 * 1024)) {
4065 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4066 							(23 - bsbits)) << 23;
4067 		size = 8 * 1024 * 1024;
4068 	} else {
4069 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4070 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
4071 					      ac->ac_o_ex.fe_len) << bsbits;
4072 	}
4073 	size = size >> bsbits;
4074 	start = start_off >> bsbits;
4075 
4076 	/* don't cover already allocated blocks in selected range */
4077 	if (ar->pleft && start <= ar->lleft) {
4078 		size -= ar->lleft + 1 - start;
4079 		start = ar->lleft + 1;
4080 	}
4081 	if (ar->pright && start + size - 1 >= ar->lright)
4082 		size -= start + size - ar->lright;
4083 
4084 	/*
4085 	 * Trim allocation request for filesystems with artificially small
4086 	 * groups.
4087 	 */
4088 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4089 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4090 
4091 	end = start + size;
4092 
4093 	/* check we don't cross already preallocated blocks */
4094 	rcu_read_lock();
4095 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4096 		ext4_lblk_t pa_end;
4097 
4098 		if (pa->pa_deleted)
4099 			continue;
4100 		spin_lock(&pa->pa_lock);
4101 		if (pa->pa_deleted) {
4102 			spin_unlock(&pa->pa_lock);
4103 			continue;
4104 		}
4105 
4106 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4107 						  pa->pa_len);
4108 
4109 		/* PA must not overlap original request */
4110 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
4111 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
4112 
4113 		/* skip PAs this normalized request doesn't overlap with */
4114 		if (pa->pa_lstart >= end || pa_end <= start) {
4115 			spin_unlock(&pa->pa_lock);
4116 			continue;
4117 		}
4118 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
4119 
4120 		/* adjust start or end to be adjacent to this pa */
4121 		if (pa_end <= ac->ac_o_ex.fe_logical) {
4122 			BUG_ON(pa_end < start);
4123 			start = pa_end;
4124 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4125 			BUG_ON(pa->pa_lstart > end);
4126 			end = pa->pa_lstart;
4127 		}
4128 		spin_unlock(&pa->pa_lock);
4129 	}
4130 	rcu_read_unlock();
4131 	size = end - start;
4132 
4133 	/* XXX: extra loop to check we really don't overlap preallocations */
4134 	rcu_read_lock();
4135 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4136 		ext4_lblk_t pa_end;
4137 
4138 		spin_lock(&pa->pa_lock);
4139 		if (pa->pa_deleted == 0) {
4140 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4141 							  pa->pa_len);
4142 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
4143 		}
4144 		spin_unlock(&pa->pa_lock);
4145 	}
4146 	rcu_read_unlock();
4147 
4148 	if (start + size <= ac->ac_o_ex.fe_logical &&
4149 			start > ac->ac_o_ex.fe_logical) {
4150 		ext4_msg(ac->ac_sb, KERN_ERR,
4151 			 "start %lu, size %lu, fe_logical %lu",
4152 			 (unsigned long) start, (unsigned long) size,
4153 			 (unsigned long) ac->ac_o_ex.fe_logical);
4154 		BUG();
4155 	}
4156 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4157 
4158 	/* now prepare goal request */
4159 
4160 	/* XXX: is it better to align blocks WRT to logical
4161 	 * placement or satisfy big request as is */
4162 	ac->ac_g_ex.fe_logical = start;
4163 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4164 
4165 	/* define goal start in order to merge */
4166 	if (ar->pright && (ar->lright == (start + size))) {
4167 		/* merge to the right */
4168 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4169 						&ac->ac_f_ex.fe_group,
4170 						&ac->ac_f_ex.fe_start);
4171 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4172 	}
4173 	if (ar->pleft && (ar->lleft + 1 == start)) {
4174 		/* merge to the left */
4175 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4176 						&ac->ac_f_ex.fe_group,
4177 						&ac->ac_f_ex.fe_start);
4178 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4179 	}
4180 
4181 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4182 		 orig_size, start);
4183 }
4184 
4185 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4186 {
4187 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4188 
4189 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4190 		atomic_inc(&sbi->s_bal_reqs);
4191 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4192 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4193 			atomic_inc(&sbi->s_bal_success);
4194 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4195 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4196 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4197 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4198 			atomic_inc(&sbi->s_bal_goals);
4199 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4200 			atomic_inc(&sbi->s_bal_breaks);
4201 	}
4202 
4203 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4204 		trace_ext4_mballoc_alloc(ac);
4205 	else
4206 		trace_ext4_mballoc_prealloc(ac);
4207 }
4208 
4209 /*
4210  * Called on failure; free up any blocks from the inode PA for this
4211  * context.  We don't need this for MB_GROUP_PA because we only change
4212  * pa_free in ext4_mb_release_context(), but on failure, we've already
4213  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4214  */
4215 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4216 {
4217 	struct ext4_prealloc_space *pa = ac->ac_pa;
4218 	struct ext4_buddy e4b;
4219 	int err;
4220 
4221 	if (pa == NULL) {
4222 		if (ac->ac_f_ex.fe_len == 0)
4223 			return;
4224 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4225 		if (err) {
4226 			/*
4227 			 * This should never happen since we pin the
4228 			 * pages in the ext4_allocation_context so
4229 			 * ext4_mb_load_buddy() should never fail.
4230 			 */
4231 			WARN(1, "mb_load_buddy failed (%d)", err);
4232 			return;
4233 		}
4234 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4235 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4236 			       ac->ac_f_ex.fe_len);
4237 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4238 		ext4_mb_unload_buddy(&e4b);
4239 		return;
4240 	}
4241 	if (pa->pa_type == MB_INODE_PA)
4242 		pa->pa_free += ac->ac_b_ex.fe_len;
4243 }
4244 
4245 /*
4246  * use blocks preallocated to inode
4247  */
4248 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4249 				struct ext4_prealloc_space *pa)
4250 {
4251 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4252 	ext4_fsblk_t start;
4253 	ext4_fsblk_t end;
4254 	int len;
4255 
4256 	/* found preallocated blocks, use them */
4257 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4258 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4259 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4260 	len = EXT4_NUM_B2C(sbi, end - start);
4261 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4262 					&ac->ac_b_ex.fe_start);
4263 	ac->ac_b_ex.fe_len = len;
4264 	ac->ac_status = AC_STATUS_FOUND;
4265 	ac->ac_pa = pa;
4266 
4267 	BUG_ON(start < pa->pa_pstart);
4268 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4269 	BUG_ON(pa->pa_free < len);
4270 	pa->pa_free -= len;
4271 
4272 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4273 }
4274 
4275 /*
4276  * use blocks preallocated to locality group
4277  */
4278 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4279 				struct ext4_prealloc_space *pa)
4280 {
4281 	unsigned int len = ac->ac_o_ex.fe_len;
4282 
4283 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4284 					&ac->ac_b_ex.fe_group,
4285 					&ac->ac_b_ex.fe_start);
4286 	ac->ac_b_ex.fe_len = len;
4287 	ac->ac_status = AC_STATUS_FOUND;
4288 	ac->ac_pa = pa;
4289 
4290 	/* we don't correct pa_pstart or pa_plen here to avoid
4291 	 * possible race when the group is being loaded concurrently
4292 	 * instead we correct pa later, after blocks are marked
4293 	 * in on-disk bitmap -- see ext4_mb_release_context()
4294 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4295 	 */
4296 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4297 		 pa->pa_lstart-len, len, pa);
4298 }
4299 
4300 /*
4301  * Return the prealloc space that have minimal distance
4302  * from the goal block. @cpa is the prealloc
4303  * space that is having currently known minimal distance
4304  * from the goal block.
4305  */
4306 static struct ext4_prealloc_space *
4307 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4308 			struct ext4_prealloc_space *pa,
4309 			struct ext4_prealloc_space *cpa)
4310 {
4311 	ext4_fsblk_t cur_distance, new_distance;
4312 
4313 	if (cpa == NULL) {
4314 		atomic_inc(&pa->pa_count);
4315 		return pa;
4316 	}
4317 	cur_distance = abs(goal_block - cpa->pa_pstart);
4318 	new_distance = abs(goal_block - pa->pa_pstart);
4319 
4320 	if (cur_distance <= new_distance)
4321 		return cpa;
4322 
4323 	/* drop the previous reference */
4324 	atomic_dec(&cpa->pa_count);
4325 	atomic_inc(&pa->pa_count);
4326 	return pa;
4327 }
4328 
4329 /*
4330  * search goal blocks in preallocated space
4331  */
4332 static noinline_for_stack bool
4333 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4334 {
4335 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4336 	int order, i;
4337 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4338 	struct ext4_locality_group *lg;
4339 	struct ext4_prealloc_space *pa, *cpa = NULL;
4340 	ext4_fsblk_t goal_block;
4341 
4342 	/* only data can be preallocated */
4343 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4344 		return false;
4345 
4346 	/* first, try per-file preallocation */
4347 	rcu_read_lock();
4348 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4349 
4350 		/* all fields in this condition don't change,
4351 		 * so we can skip locking for them */
4352 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
4353 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
4354 					       EXT4_C2B(sbi, pa->pa_len)))
4355 			continue;
4356 
4357 		/* non-extent files can't have physical blocks past 2^32 */
4358 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4359 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
4360 		     EXT4_MAX_BLOCK_FILE_PHYS))
4361 			continue;
4362 
4363 		/* found preallocated blocks, use them */
4364 		spin_lock(&pa->pa_lock);
4365 		if (pa->pa_deleted == 0 && pa->pa_free) {
4366 			atomic_inc(&pa->pa_count);
4367 			ext4_mb_use_inode_pa(ac, pa);
4368 			spin_unlock(&pa->pa_lock);
4369 			ac->ac_criteria = 10;
4370 			rcu_read_unlock();
4371 			return true;
4372 		}
4373 		spin_unlock(&pa->pa_lock);
4374 	}
4375 	rcu_read_unlock();
4376 
4377 	/* can we use group allocation? */
4378 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4379 		return false;
4380 
4381 	/* inode may have no locality group for some reason */
4382 	lg = ac->ac_lg;
4383 	if (lg == NULL)
4384 		return false;
4385 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4386 	if (order > PREALLOC_TB_SIZE - 1)
4387 		/* The max size of hash table is PREALLOC_TB_SIZE */
4388 		order = PREALLOC_TB_SIZE - 1;
4389 
4390 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4391 	/*
4392 	 * search for the prealloc space that is having
4393 	 * minimal distance from the goal block.
4394 	 */
4395 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4396 		rcu_read_lock();
4397 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
4398 					pa_inode_list) {
4399 			spin_lock(&pa->pa_lock);
4400 			if (pa->pa_deleted == 0 &&
4401 					pa->pa_free >= ac->ac_o_ex.fe_len) {
4402 
4403 				cpa = ext4_mb_check_group_pa(goal_block,
4404 								pa, cpa);
4405 			}
4406 			spin_unlock(&pa->pa_lock);
4407 		}
4408 		rcu_read_unlock();
4409 	}
4410 	if (cpa) {
4411 		ext4_mb_use_group_pa(ac, cpa);
4412 		ac->ac_criteria = 20;
4413 		return true;
4414 	}
4415 	return false;
4416 }
4417 
4418 /*
4419  * the function goes through all block freed in the group
4420  * but not yet committed and marks them used in in-core bitmap.
4421  * buddy must be generated from this bitmap
4422  * Need to be called with the ext4 group lock held
4423  */
4424 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4425 						ext4_group_t group)
4426 {
4427 	struct rb_node *n;
4428 	struct ext4_group_info *grp;
4429 	struct ext4_free_data *entry;
4430 
4431 	grp = ext4_get_group_info(sb, group);
4432 	n = rb_first(&(grp->bb_free_root));
4433 
4434 	while (n) {
4435 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4436 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4437 		n = rb_next(n);
4438 	}
4439 	return;
4440 }
4441 
4442 /*
4443  * the function goes through all preallocation in this group and marks them
4444  * used in in-core bitmap. buddy must be generated from this bitmap
4445  * Need to be called with ext4 group lock held
4446  */
4447 static noinline_for_stack
4448 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4449 					ext4_group_t group)
4450 {
4451 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4452 	struct ext4_prealloc_space *pa;
4453 	struct list_head *cur;
4454 	ext4_group_t groupnr;
4455 	ext4_grpblk_t start;
4456 	int preallocated = 0;
4457 	int len;
4458 
4459 	/* all form of preallocation discards first load group,
4460 	 * so the only competing code is preallocation use.
4461 	 * we don't need any locking here
4462 	 * notice we do NOT ignore preallocations with pa_deleted
4463 	 * otherwise we could leave used blocks available for
4464 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4465 	 * is dropping preallocation
4466 	 */
4467 	list_for_each(cur, &grp->bb_prealloc_list) {
4468 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4469 		spin_lock(&pa->pa_lock);
4470 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4471 					     &groupnr, &start);
4472 		len = pa->pa_len;
4473 		spin_unlock(&pa->pa_lock);
4474 		if (unlikely(len == 0))
4475 			continue;
4476 		BUG_ON(groupnr != group);
4477 		ext4_set_bits(bitmap, start, len);
4478 		preallocated += len;
4479 	}
4480 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4481 }
4482 
4483 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4484 				    struct ext4_prealloc_space *pa)
4485 {
4486 	struct ext4_inode_info *ei;
4487 
4488 	if (pa->pa_deleted) {
4489 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4490 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4491 			     pa->pa_len);
4492 		return;
4493 	}
4494 
4495 	pa->pa_deleted = 1;
4496 
4497 	if (pa->pa_type == MB_INODE_PA) {
4498 		ei = EXT4_I(pa->pa_inode);
4499 		atomic_dec(&ei->i_prealloc_active);
4500 	}
4501 }
4502 
4503 static void ext4_mb_pa_callback(struct rcu_head *head)
4504 {
4505 	struct ext4_prealloc_space *pa;
4506 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4507 
4508 	BUG_ON(atomic_read(&pa->pa_count));
4509 	BUG_ON(pa->pa_deleted == 0);
4510 	kmem_cache_free(ext4_pspace_cachep, pa);
4511 }
4512 
4513 /*
4514  * drops a reference to preallocated space descriptor
4515  * if this was the last reference and the space is consumed
4516  */
4517 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4518 			struct super_block *sb, struct ext4_prealloc_space *pa)
4519 {
4520 	ext4_group_t grp;
4521 	ext4_fsblk_t grp_blk;
4522 
4523 	/* in this short window concurrent discard can set pa_deleted */
4524 	spin_lock(&pa->pa_lock);
4525 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4526 		spin_unlock(&pa->pa_lock);
4527 		return;
4528 	}
4529 
4530 	if (pa->pa_deleted == 1) {
4531 		spin_unlock(&pa->pa_lock);
4532 		return;
4533 	}
4534 
4535 	ext4_mb_mark_pa_deleted(sb, pa);
4536 	spin_unlock(&pa->pa_lock);
4537 
4538 	grp_blk = pa->pa_pstart;
4539 	/*
4540 	 * If doing group-based preallocation, pa_pstart may be in the
4541 	 * next group when pa is used up
4542 	 */
4543 	if (pa->pa_type == MB_GROUP_PA)
4544 		grp_blk--;
4545 
4546 	grp = ext4_get_group_number(sb, grp_blk);
4547 
4548 	/*
4549 	 * possible race:
4550 	 *
4551 	 *  P1 (buddy init)			P2 (regular allocation)
4552 	 *					find block B in PA
4553 	 *  copy on-disk bitmap to buddy
4554 	 *  					mark B in on-disk bitmap
4555 	 *					drop PA from group
4556 	 *  mark all PAs in buddy
4557 	 *
4558 	 * thus, P1 initializes buddy with B available. to prevent this
4559 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4560 	 * against that pair
4561 	 */
4562 	ext4_lock_group(sb, grp);
4563 	list_del(&pa->pa_group_list);
4564 	ext4_unlock_group(sb, grp);
4565 
4566 	spin_lock(pa->pa_obj_lock);
4567 	list_del_rcu(&pa->pa_inode_list);
4568 	spin_unlock(pa->pa_obj_lock);
4569 
4570 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4571 }
4572 
4573 /*
4574  * creates new preallocated space for given inode
4575  */
4576 static noinline_for_stack void
4577 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4578 {
4579 	struct super_block *sb = ac->ac_sb;
4580 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4581 	struct ext4_prealloc_space *pa;
4582 	struct ext4_group_info *grp;
4583 	struct ext4_inode_info *ei;
4584 
4585 	/* preallocate only when found space is larger then requested */
4586 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4587 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4588 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4589 	BUG_ON(ac->ac_pa == NULL);
4590 
4591 	pa = ac->ac_pa;
4592 
4593 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4594 		int winl;
4595 		int wins;
4596 		int win;
4597 		int offs;
4598 
4599 		/* we can't allocate as much as normalizer wants.
4600 		 * so, found space must get proper lstart
4601 		 * to cover original request */
4602 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4603 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4604 
4605 		/* we're limited by original request in that
4606 		 * logical block must be covered any way
4607 		 * winl is window we can move our chunk within */
4608 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
4609 
4610 		/* also, we should cover whole original request */
4611 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4612 
4613 		/* the smallest one defines real window */
4614 		win = min(winl, wins);
4615 
4616 		offs = ac->ac_o_ex.fe_logical %
4617 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4618 		if (offs && offs < win)
4619 			win = offs;
4620 
4621 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4622 			EXT4_NUM_B2C(sbi, win);
4623 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4624 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4625 	}
4626 
4627 	/* preallocation can change ac_b_ex, thus we store actually
4628 	 * allocated blocks for history */
4629 	ac->ac_f_ex = ac->ac_b_ex;
4630 
4631 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4632 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4633 	pa->pa_len = ac->ac_b_ex.fe_len;
4634 	pa->pa_free = pa->pa_len;
4635 	spin_lock_init(&pa->pa_lock);
4636 	INIT_LIST_HEAD(&pa->pa_inode_list);
4637 	INIT_LIST_HEAD(&pa->pa_group_list);
4638 	pa->pa_deleted = 0;
4639 	pa->pa_type = MB_INODE_PA;
4640 
4641 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4642 		 pa->pa_len, pa->pa_lstart);
4643 	trace_ext4_mb_new_inode_pa(ac, pa);
4644 
4645 	ext4_mb_use_inode_pa(ac, pa);
4646 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4647 
4648 	ei = EXT4_I(ac->ac_inode);
4649 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4650 
4651 	pa->pa_obj_lock = &ei->i_prealloc_lock;
4652 	pa->pa_inode = ac->ac_inode;
4653 
4654 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4655 
4656 	spin_lock(pa->pa_obj_lock);
4657 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4658 	spin_unlock(pa->pa_obj_lock);
4659 	atomic_inc(&ei->i_prealloc_active);
4660 }
4661 
4662 /*
4663  * creates new preallocated space for locality group inodes belongs to
4664  */
4665 static noinline_for_stack void
4666 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4667 {
4668 	struct super_block *sb = ac->ac_sb;
4669 	struct ext4_locality_group *lg;
4670 	struct ext4_prealloc_space *pa;
4671 	struct ext4_group_info *grp;
4672 
4673 	/* preallocate only when found space is larger then requested */
4674 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4675 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4676 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4677 	BUG_ON(ac->ac_pa == NULL);
4678 
4679 	pa = ac->ac_pa;
4680 
4681 	/* preallocation can change ac_b_ex, thus we store actually
4682 	 * allocated blocks for history */
4683 	ac->ac_f_ex = ac->ac_b_ex;
4684 
4685 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4686 	pa->pa_lstart = pa->pa_pstart;
4687 	pa->pa_len = ac->ac_b_ex.fe_len;
4688 	pa->pa_free = pa->pa_len;
4689 	spin_lock_init(&pa->pa_lock);
4690 	INIT_LIST_HEAD(&pa->pa_inode_list);
4691 	INIT_LIST_HEAD(&pa->pa_group_list);
4692 	pa->pa_deleted = 0;
4693 	pa->pa_type = MB_GROUP_PA;
4694 
4695 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4696 		 pa->pa_len, pa->pa_lstart);
4697 	trace_ext4_mb_new_group_pa(ac, pa);
4698 
4699 	ext4_mb_use_group_pa(ac, pa);
4700 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4701 
4702 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4703 	lg = ac->ac_lg;
4704 	BUG_ON(lg == NULL);
4705 
4706 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
4707 	pa->pa_inode = NULL;
4708 
4709 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4710 
4711 	/*
4712 	 * We will later add the new pa to the right bucket
4713 	 * after updating the pa_free in ext4_mb_release_context
4714 	 */
4715 }
4716 
4717 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4718 {
4719 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4720 		ext4_mb_new_group_pa(ac);
4721 	else
4722 		ext4_mb_new_inode_pa(ac);
4723 }
4724 
4725 /*
4726  * finds all unused blocks in on-disk bitmap, frees them in
4727  * in-core bitmap and buddy.
4728  * @pa must be unlinked from inode and group lists, so that
4729  * nobody else can find/use it.
4730  * the caller MUST hold group/inode locks.
4731  * TODO: optimize the case when there are no in-core structures yet
4732  */
4733 static noinline_for_stack int
4734 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4735 			struct ext4_prealloc_space *pa)
4736 {
4737 	struct super_block *sb = e4b->bd_sb;
4738 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4739 	unsigned int end;
4740 	unsigned int next;
4741 	ext4_group_t group;
4742 	ext4_grpblk_t bit;
4743 	unsigned long long grp_blk_start;
4744 	int free = 0;
4745 
4746 	BUG_ON(pa->pa_deleted == 0);
4747 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4748 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4749 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4750 	end = bit + pa->pa_len;
4751 
4752 	while (bit < end) {
4753 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4754 		if (bit >= end)
4755 			break;
4756 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4757 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4758 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4759 			 (unsigned) next - bit, (unsigned) group);
4760 		free += next - bit;
4761 
4762 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4763 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4764 						    EXT4_C2B(sbi, bit)),
4765 					       next - bit);
4766 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4767 		bit = next + 1;
4768 	}
4769 	if (free != pa->pa_free) {
4770 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4771 			 "pa %p: logic %lu, phys. %lu, len %d",
4772 			 pa, (unsigned long) pa->pa_lstart,
4773 			 (unsigned long) pa->pa_pstart,
4774 			 pa->pa_len);
4775 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4776 					free, pa->pa_free);
4777 		/*
4778 		 * pa is already deleted so we use the value obtained
4779 		 * from the bitmap and continue.
4780 		 */
4781 	}
4782 	atomic_add(free, &sbi->s_mb_discarded);
4783 
4784 	return 0;
4785 }
4786 
4787 static noinline_for_stack int
4788 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4789 				struct ext4_prealloc_space *pa)
4790 {
4791 	struct super_block *sb = e4b->bd_sb;
4792 	ext4_group_t group;
4793 	ext4_grpblk_t bit;
4794 
4795 	trace_ext4_mb_release_group_pa(sb, pa);
4796 	BUG_ON(pa->pa_deleted == 0);
4797 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4798 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4799 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4800 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4801 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4802 
4803 	return 0;
4804 }
4805 
4806 /*
4807  * releases all preallocations in given group
4808  *
4809  * first, we need to decide discard policy:
4810  * - when do we discard
4811  *   1) ENOSPC
4812  * - how many do we discard
4813  *   1) how many requested
4814  */
4815 static noinline_for_stack int
4816 ext4_mb_discard_group_preallocations(struct super_block *sb,
4817 				     ext4_group_t group, int *busy)
4818 {
4819 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4820 	struct buffer_head *bitmap_bh = NULL;
4821 	struct ext4_prealloc_space *pa, *tmp;
4822 	struct list_head list;
4823 	struct ext4_buddy e4b;
4824 	int err;
4825 	int free = 0;
4826 
4827 	mb_debug(sb, "discard preallocation for group %u\n", group);
4828 	if (list_empty(&grp->bb_prealloc_list))
4829 		goto out_dbg;
4830 
4831 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4832 	if (IS_ERR(bitmap_bh)) {
4833 		err = PTR_ERR(bitmap_bh);
4834 		ext4_error_err(sb, -err,
4835 			       "Error %d reading block bitmap for %u",
4836 			       err, group);
4837 		goto out_dbg;
4838 	}
4839 
4840 	err = ext4_mb_load_buddy(sb, group, &e4b);
4841 	if (err) {
4842 		ext4_warning(sb, "Error %d loading buddy information for %u",
4843 			     err, group);
4844 		put_bh(bitmap_bh);
4845 		goto out_dbg;
4846 	}
4847 
4848 	INIT_LIST_HEAD(&list);
4849 	ext4_lock_group(sb, group);
4850 	list_for_each_entry_safe(pa, tmp,
4851 				&grp->bb_prealloc_list, pa_group_list) {
4852 		spin_lock(&pa->pa_lock);
4853 		if (atomic_read(&pa->pa_count)) {
4854 			spin_unlock(&pa->pa_lock);
4855 			*busy = 1;
4856 			continue;
4857 		}
4858 		if (pa->pa_deleted) {
4859 			spin_unlock(&pa->pa_lock);
4860 			continue;
4861 		}
4862 
4863 		/* seems this one can be freed ... */
4864 		ext4_mb_mark_pa_deleted(sb, pa);
4865 
4866 		if (!free)
4867 			this_cpu_inc(discard_pa_seq);
4868 
4869 		/* we can trust pa_free ... */
4870 		free += pa->pa_free;
4871 
4872 		spin_unlock(&pa->pa_lock);
4873 
4874 		list_del(&pa->pa_group_list);
4875 		list_add(&pa->u.pa_tmp_list, &list);
4876 	}
4877 
4878 	/* now free all selected PAs */
4879 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4880 
4881 		/* remove from object (inode or locality group) */
4882 		spin_lock(pa->pa_obj_lock);
4883 		list_del_rcu(&pa->pa_inode_list);
4884 		spin_unlock(pa->pa_obj_lock);
4885 
4886 		if (pa->pa_type == MB_GROUP_PA)
4887 			ext4_mb_release_group_pa(&e4b, pa);
4888 		else
4889 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4890 
4891 		list_del(&pa->u.pa_tmp_list);
4892 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4893 	}
4894 
4895 	ext4_unlock_group(sb, group);
4896 	ext4_mb_unload_buddy(&e4b);
4897 	put_bh(bitmap_bh);
4898 out_dbg:
4899 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4900 		 free, group, grp->bb_free);
4901 	return free;
4902 }
4903 
4904 /*
4905  * releases all non-used preallocated blocks for given inode
4906  *
4907  * It's important to discard preallocations under i_data_sem
4908  * We don't want another block to be served from the prealloc
4909  * space when we are discarding the inode prealloc space.
4910  *
4911  * FIXME!! Make sure it is valid at all the call sites
4912  */
4913 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4914 {
4915 	struct ext4_inode_info *ei = EXT4_I(inode);
4916 	struct super_block *sb = inode->i_sb;
4917 	struct buffer_head *bitmap_bh = NULL;
4918 	struct ext4_prealloc_space *pa, *tmp;
4919 	ext4_group_t group = 0;
4920 	struct list_head list;
4921 	struct ext4_buddy e4b;
4922 	int err;
4923 
4924 	if (!S_ISREG(inode->i_mode)) {
4925 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4926 		return;
4927 	}
4928 
4929 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4930 		return;
4931 
4932 	mb_debug(sb, "discard preallocation for inode %lu\n",
4933 		 inode->i_ino);
4934 	trace_ext4_discard_preallocations(inode,
4935 			atomic_read(&ei->i_prealloc_active), needed);
4936 
4937 	INIT_LIST_HEAD(&list);
4938 
4939 	if (needed == 0)
4940 		needed = UINT_MAX;
4941 
4942 repeat:
4943 	/* first, collect all pa's in the inode */
4944 	spin_lock(&ei->i_prealloc_lock);
4945 	while (!list_empty(&ei->i_prealloc_list) && needed) {
4946 		pa = list_entry(ei->i_prealloc_list.prev,
4947 				struct ext4_prealloc_space, pa_inode_list);
4948 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4949 		spin_lock(&pa->pa_lock);
4950 		if (atomic_read(&pa->pa_count)) {
4951 			/* this shouldn't happen often - nobody should
4952 			 * use preallocation while we're discarding it */
4953 			spin_unlock(&pa->pa_lock);
4954 			spin_unlock(&ei->i_prealloc_lock);
4955 			ext4_msg(sb, KERN_ERR,
4956 				 "uh-oh! used pa while discarding");
4957 			WARN_ON(1);
4958 			schedule_timeout_uninterruptible(HZ);
4959 			goto repeat;
4960 
4961 		}
4962 		if (pa->pa_deleted == 0) {
4963 			ext4_mb_mark_pa_deleted(sb, pa);
4964 			spin_unlock(&pa->pa_lock);
4965 			list_del_rcu(&pa->pa_inode_list);
4966 			list_add(&pa->u.pa_tmp_list, &list);
4967 			needed--;
4968 			continue;
4969 		}
4970 
4971 		/* someone is deleting pa right now */
4972 		spin_unlock(&pa->pa_lock);
4973 		spin_unlock(&ei->i_prealloc_lock);
4974 
4975 		/* we have to wait here because pa_deleted
4976 		 * doesn't mean pa is already unlinked from
4977 		 * the list. as we might be called from
4978 		 * ->clear_inode() the inode will get freed
4979 		 * and concurrent thread which is unlinking
4980 		 * pa from inode's list may access already
4981 		 * freed memory, bad-bad-bad */
4982 
4983 		/* XXX: if this happens too often, we can
4984 		 * add a flag to force wait only in case
4985 		 * of ->clear_inode(), but not in case of
4986 		 * regular truncate */
4987 		schedule_timeout_uninterruptible(HZ);
4988 		goto repeat;
4989 	}
4990 	spin_unlock(&ei->i_prealloc_lock);
4991 
4992 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4993 		BUG_ON(pa->pa_type != MB_INODE_PA);
4994 		group = ext4_get_group_number(sb, pa->pa_pstart);
4995 
4996 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4997 					     GFP_NOFS|__GFP_NOFAIL);
4998 		if (err) {
4999 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5000 				       err, group);
5001 			continue;
5002 		}
5003 
5004 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5005 		if (IS_ERR(bitmap_bh)) {
5006 			err = PTR_ERR(bitmap_bh);
5007 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5008 				       err, group);
5009 			ext4_mb_unload_buddy(&e4b);
5010 			continue;
5011 		}
5012 
5013 		ext4_lock_group(sb, group);
5014 		list_del(&pa->pa_group_list);
5015 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5016 		ext4_unlock_group(sb, group);
5017 
5018 		ext4_mb_unload_buddy(&e4b);
5019 		put_bh(bitmap_bh);
5020 
5021 		list_del(&pa->u.pa_tmp_list);
5022 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5023 	}
5024 }
5025 
5026 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5027 {
5028 	struct ext4_prealloc_space *pa;
5029 
5030 	BUG_ON(ext4_pspace_cachep == NULL);
5031 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5032 	if (!pa)
5033 		return -ENOMEM;
5034 	atomic_set(&pa->pa_count, 1);
5035 	ac->ac_pa = pa;
5036 	return 0;
5037 }
5038 
5039 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
5040 {
5041 	struct ext4_prealloc_space *pa = ac->ac_pa;
5042 
5043 	BUG_ON(!pa);
5044 	ac->ac_pa = NULL;
5045 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5046 	kmem_cache_free(ext4_pspace_cachep, pa);
5047 }
5048 
5049 #ifdef CONFIG_EXT4_DEBUG
5050 static inline void ext4_mb_show_pa(struct super_block *sb)
5051 {
5052 	ext4_group_t i, ngroups;
5053 
5054 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5055 		return;
5056 
5057 	ngroups = ext4_get_groups_count(sb);
5058 	mb_debug(sb, "groups: ");
5059 	for (i = 0; i < ngroups; i++) {
5060 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5061 		struct ext4_prealloc_space *pa;
5062 		ext4_grpblk_t start;
5063 		struct list_head *cur;
5064 		ext4_lock_group(sb, i);
5065 		list_for_each(cur, &grp->bb_prealloc_list) {
5066 			pa = list_entry(cur, struct ext4_prealloc_space,
5067 					pa_group_list);
5068 			spin_lock(&pa->pa_lock);
5069 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5070 						     NULL, &start);
5071 			spin_unlock(&pa->pa_lock);
5072 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5073 				 pa->pa_len);
5074 		}
5075 		ext4_unlock_group(sb, i);
5076 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5077 			 grp->bb_fragments);
5078 	}
5079 }
5080 
5081 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5082 {
5083 	struct super_block *sb = ac->ac_sb;
5084 
5085 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5086 		return;
5087 
5088 	mb_debug(sb, "Can't allocate:"
5089 			" Allocation context details:");
5090 	mb_debug(sb, "status %u flags 0x%x",
5091 			ac->ac_status, ac->ac_flags);
5092 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5093 			"goal %lu/%lu/%lu@%lu, "
5094 			"best %lu/%lu/%lu@%lu cr %d",
5095 			(unsigned long)ac->ac_o_ex.fe_group,
5096 			(unsigned long)ac->ac_o_ex.fe_start,
5097 			(unsigned long)ac->ac_o_ex.fe_len,
5098 			(unsigned long)ac->ac_o_ex.fe_logical,
5099 			(unsigned long)ac->ac_g_ex.fe_group,
5100 			(unsigned long)ac->ac_g_ex.fe_start,
5101 			(unsigned long)ac->ac_g_ex.fe_len,
5102 			(unsigned long)ac->ac_g_ex.fe_logical,
5103 			(unsigned long)ac->ac_b_ex.fe_group,
5104 			(unsigned long)ac->ac_b_ex.fe_start,
5105 			(unsigned long)ac->ac_b_ex.fe_len,
5106 			(unsigned long)ac->ac_b_ex.fe_logical,
5107 			(int)ac->ac_criteria);
5108 	mb_debug(sb, "%u found", ac->ac_found);
5109 	ext4_mb_show_pa(sb);
5110 }
5111 #else
5112 static inline void ext4_mb_show_pa(struct super_block *sb)
5113 {
5114 	return;
5115 }
5116 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5117 {
5118 	ext4_mb_show_pa(ac->ac_sb);
5119 	return;
5120 }
5121 #endif
5122 
5123 /*
5124  * We use locality group preallocation for small size file. The size of the
5125  * file is determined by the current size or the resulting size after
5126  * allocation which ever is larger
5127  *
5128  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5129  */
5130 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5131 {
5132 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5133 	int bsbits = ac->ac_sb->s_blocksize_bits;
5134 	loff_t size, isize;
5135 
5136 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5137 		return;
5138 
5139 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5140 		return;
5141 
5142 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5143 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5144 		>> bsbits;
5145 
5146 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5147 	    !inode_is_open_for_write(ac->ac_inode)) {
5148 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5149 		return;
5150 	}
5151 
5152 	if (sbi->s_mb_group_prealloc <= 0) {
5153 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5154 		return;
5155 	}
5156 
5157 	/* don't use group allocation for large files */
5158 	size = max(size, isize);
5159 	if (size > sbi->s_mb_stream_request) {
5160 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5161 		return;
5162 	}
5163 
5164 	BUG_ON(ac->ac_lg != NULL);
5165 	/*
5166 	 * locality group prealloc space are per cpu. The reason for having
5167 	 * per cpu locality group is to reduce the contention between block
5168 	 * request from multiple CPUs.
5169 	 */
5170 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5171 
5172 	/* we're going to use group allocation */
5173 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5174 
5175 	/* serialize all allocations in the group */
5176 	mutex_lock(&ac->ac_lg->lg_mutex);
5177 }
5178 
5179 static noinline_for_stack int
5180 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5181 				struct ext4_allocation_request *ar)
5182 {
5183 	struct super_block *sb = ar->inode->i_sb;
5184 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5185 	struct ext4_super_block *es = sbi->s_es;
5186 	ext4_group_t group;
5187 	unsigned int len;
5188 	ext4_fsblk_t goal;
5189 	ext4_grpblk_t block;
5190 
5191 	/* we can't allocate > group size */
5192 	len = ar->len;
5193 
5194 	/* just a dirty hack to filter too big requests  */
5195 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5196 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5197 
5198 	/* start searching from the goal */
5199 	goal = ar->goal;
5200 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5201 			goal >= ext4_blocks_count(es))
5202 		goal = le32_to_cpu(es->s_first_data_block);
5203 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5204 
5205 	/* set up allocation goals */
5206 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5207 	ac->ac_status = AC_STATUS_CONTINUE;
5208 	ac->ac_sb = sb;
5209 	ac->ac_inode = ar->inode;
5210 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5211 	ac->ac_o_ex.fe_group = group;
5212 	ac->ac_o_ex.fe_start = block;
5213 	ac->ac_o_ex.fe_len = len;
5214 	ac->ac_g_ex = ac->ac_o_ex;
5215 	ac->ac_flags = ar->flags;
5216 
5217 	/* we have to define context: we'll work with a file or
5218 	 * locality group. this is a policy, actually */
5219 	ext4_mb_group_or_file(ac);
5220 
5221 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5222 			"left: %u/%u, right %u/%u to %swritable\n",
5223 			(unsigned) ar->len, (unsigned) ar->logical,
5224 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5225 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5226 			(unsigned) ar->lright, (unsigned) ar->pright,
5227 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5228 	return 0;
5229 
5230 }
5231 
5232 static noinline_for_stack void
5233 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5234 					struct ext4_locality_group *lg,
5235 					int order, int total_entries)
5236 {
5237 	ext4_group_t group = 0;
5238 	struct ext4_buddy e4b;
5239 	struct list_head discard_list;
5240 	struct ext4_prealloc_space *pa, *tmp;
5241 
5242 	mb_debug(sb, "discard locality group preallocation\n");
5243 
5244 	INIT_LIST_HEAD(&discard_list);
5245 
5246 	spin_lock(&lg->lg_prealloc_lock);
5247 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5248 				pa_inode_list,
5249 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5250 		spin_lock(&pa->pa_lock);
5251 		if (atomic_read(&pa->pa_count)) {
5252 			/*
5253 			 * This is the pa that we just used
5254 			 * for block allocation. So don't
5255 			 * free that
5256 			 */
5257 			spin_unlock(&pa->pa_lock);
5258 			continue;
5259 		}
5260 		if (pa->pa_deleted) {
5261 			spin_unlock(&pa->pa_lock);
5262 			continue;
5263 		}
5264 		/* only lg prealloc space */
5265 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5266 
5267 		/* seems this one can be freed ... */
5268 		ext4_mb_mark_pa_deleted(sb, pa);
5269 		spin_unlock(&pa->pa_lock);
5270 
5271 		list_del_rcu(&pa->pa_inode_list);
5272 		list_add(&pa->u.pa_tmp_list, &discard_list);
5273 
5274 		total_entries--;
5275 		if (total_entries <= 5) {
5276 			/*
5277 			 * we want to keep only 5 entries
5278 			 * allowing it to grow to 8. This
5279 			 * mak sure we don't call discard
5280 			 * soon for this list.
5281 			 */
5282 			break;
5283 		}
5284 	}
5285 	spin_unlock(&lg->lg_prealloc_lock);
5286 
5287 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5288 		int err;
5289 
5290 		group = ext4_get_group_number(sb, pa->pa_pstart);
5291 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5292 					     GFP_NOFS|__GFP_NOFAIL);
5293 		if (err) {
5294 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5295 				       err, group);
5296 			continue;
5297 		}
5298 		ext4_lock_group(sb, group);
5299 		list_del(&pa->pa_group_list);
5300 		ext4_mb_release_group_pa(&e4b, pa);
5301 		ext4_unlock_group(sb, group);
5302 
5303 		ext4_mb_unload_buddy(&e4b);
5304 		list_del(&pa->u.pa_tmp_list);
5305 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5306 	}
5307 }
5308 
5309 /*
5310  * We have incremented pa_count. So it cannot be freed at this
5311  * point. Also we hold lg_mutex. So no parallel allocation is
5312  * possible from this lg. That means pa_free cannot be updated.
5313  *
5314  * A parallel ext4_mb_discard_group_preallocations is possible.
5315  * which can cause the lg_prealloc_list to be updated.
5316  */
5317 
5318 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5319 {
5320 	int order, added = 0, lg_prealloc_count = 1;
5321 	struct super_block *sb = ac->ac_sb;
5322 	struct ext4_locality_group *lg = ac->ac_lg;
5323 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5324 
5325 	order = fls(pa->pa_free) - 1;
5326 	if (order > PREALLOC_TB_SIZE - 1)
5327 		/* The max size of hash table is PREALLOC_TB_SIZE */
5328 		order = PREALLOC_TB_SIZE - 1;
5329 	/* Add the prealloc space to lg */
5330 	spin_lock(&lg->lg_prealloc_lock);
5331 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5332 				pa_inode_list,
5333 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5334 		spin_lock(&tmp_pa->pa_lock);
5335 		if (tmp_pa->pa_deleted) {
5336 			spin_unlock(&tmp_pa->pa_lock);
5337 			continue;
5338 		}
5339 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5340 			/* Add to the tail of the previous entry */
5341 			list_add_tail_rcu(&pa->pa_inode_list,
5342 						&tmp_pa->pa_inode_list);
5343 			added = 1;
5344 			/*
5345 			 * we want to count the total
5346 			 * number of entries in the list
5347 			 */
5348 		}
5349 		spin_unlock(&tmp_pa->pa_lock);
5350 		lg_prealloc_count++;
5351 	}
5352 	if (!added)
5353 		list_add_tail_rcu(&pa->pa_inode_list,
5354 					&lg->lg_prealloc_list[order]);
5355 	spin_unlock(&lg->lg_prealloc_lock);
5356 
5357 	/* Now trim the list to be not more than 8 elements */
5358 	if (lg_prealloc_count > 8) {
5359 		ext4_mb_discard_lg_preallocations(sb, lg,
5360 						  order, lg_prealloc_count);
5361 		return;
5362 	}
5363 	return ;
5364 }
5365 
5366 /*
5367  * if per-inode prealloc list is too long, trim some PA
5368  */
5369 static void ext4_mb_trim_inode_pa(struct inode *inode)
5370 {
5371 	struct ext4_inode_info *ei = EXT4_I(inode);
5372 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5373 	int count, delta;
5374 
5375 	count = atomic_read(&ei->i_prealloc_active);
5376 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
5377 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
5378 		count -= sbi->s_mb_max_inode_prealloc;
5379 		ext4_discard_preallocations(inode, count);
5380 	}
5381 }
5382 
5383 /*
5384  * release all resource we used in allocation
5385  */
5386 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5387 {
5388 	struct inode *inode = ac->ac_inode;
5389 	struct ext4_inode_info *ei = EXT4_I(inode);
5390 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5391 	struct ext4_prealloc_space *pa = ac->ac_pa;
5392 	if (pa) {
5393 		if (pa->pa_type == MB_GROUP_PA) {
5394 			/* see comment in ext4_mb_use_group_pa() */
5395 			spin_lock(&pa->pa_lock);
5396 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5397 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5398 			pa->pa_free -= ac->ac_b_ex.fe_len;
5399 			pa->pa_len -= ac->ac_b_ex.fe_len;
5400 			spin_unlock(&pa->pa_lock);
5401 
5402 			/*
5403 			 * We want to add the pa to the right bucket.
5404 			 * Remove it from the list and while adding
5405 			 * make sure the list to which we are adding
5406 			 * doesn't grow big.
5407 			 */
5408 			if (likely(pa->pa_free)) {
5409 				spin_lock(pa->pa_obj_lock);
5410 				list_del_rcu(&pa->pa_inode_list);
5411 				spin_unlock(pa->pa_obj_lock);
5412 				ext4_mb_add_n_trim(ac);
5413 			}
5414 		}
5415 
5416 		if (pa->pa_type == MB_INODE_PA) {
5417 			/*
5418 			 * treat per-inode prealloc list as a lru list, then try
5419 			 * to trim the least recently used PA.
5420 			 */
5421 			spin_lock(pa->pa_obj_lock);
5422 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
5423 			spin_unlock(pa->pa_obj_lock);
5424 		}
5425 
5426 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5427 	}
5428 	if (ac->ac_bitmap_page)
5429 		put_page(ac->ac_bitmap_page);
5430 	if (ac->ac_buddy_page)
5431 		put_page(ac->ac_buddy_page);
5432 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5433 		mutex_unlock(&ac->ac_lg->lg_mutex);
5434 	ext4_mb_collect_stats(ac);
5435 	ext4_mb_trim_inode_pa(inode);
5436 	return 0;
5437 }
5438 
5439 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5440 {
5441 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5442 	int ret;
5443 	int freed = 0, busy = 0;
5444 	int retry = 0;
5445 
5446 	trace_ext4_mb_discard_preallocations(sb, needed);
5447 
5448 	if (needed == 0)
5449 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5450  repeat:
5451 	for (i = 0; i < ngroups && needed > 0; i++) {
5452 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5453 		freed += ret;
5454 		needed -= ret;
5455 		cond_resched();
5456 	}
5457 
5458 	if (needed > 0 && busy && ++retry < 3) {
5459 		busy = 0;
5460 		goto repeat;
5461 	}
5462 
5463 	return freed;
5464 }
5465 
5466 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5467 			struct ext4_allocation_context *ac, u64 *seq)
5468 {
5469 	int freed;
5470 	u64 seq_retry = 0;
5471 	bool ret = false;
5472 
5473 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5474 	if (freed) {
5475 		ret = true;
5476 		goto out_dbg;
5477 	}
5478 	seq_retry = ext4_get_discard_pa_seq_sum();
5479 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5480 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5481 		*seq = seq_retry;
5482 		ret = true;
5483 	}
5484 
5485 out_dbg:
5486 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5487 	return ret;
5488 }
5489 
5490 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5491 				struct ext4_allocation_request *ar, int *errp);
5492 
5493 /*
5494  * Main entry point into mballoc to allocate blocks
5495  * it tries to use preallocation first, then falls back
5496  * to usual allocation
5497  */
5498 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5499 				struct ext4_allocation_request *ar, int *errp)
5500 {
5501 	struct ext4_allocation_context *ac = NULL;
5502 	struct ext4_sb_info *sbi;
5503 	struct super_block *sb;
5504 	ext4_fsblk_t block = 0;
5505 	unsigned int inquota = 0;
5506 	unsigned int reserv_clstrs = 0;
5507 	u64 seq;
5508 
5509 	might_sleep();
5510 	sb = ar->inode->i_sb;
5511 	sbi = EXT4_SB(sb);
5512 
5513 	trace_ext4_request_blocks(ar);
5514 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
5515 		return ext4_mb_new_blocks_simple(handle, ar, errp);
5516 
5517 	/* Allow to use superuser reservation for quota file */
5518 	if (ext4_is_quota_file(ar->inode))
5519 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5520 
5521 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5522 		/* Without delayed allocation we need to verify
5523 		 * there is enough free blocks to do block allocation
5524 		 * and verify allocation doesn't exceed the quota limits.
5525 		 */
5526 		while (ar->len &&
5527 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5528 
5529 			/* let others to free the space */
5530 			cond_resched();
5531 			ar->len = ar->len >> 1;
5532 		}
5533 		if (!ar->len) {
5534 			ext4_mb_show_pa(sb);
5535 			*errp = -ENOSPC;
5536 			return 0;
5537 		}
5538 		reserv_clstrs = ar->len;
5539 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5540 			dquot_alloc_block_nofail(ar->inode,
5541 						 EXT4_C2B(sbi, ar->len));
5542 		} else {
5543 			while (ar->len &&
5544 				dquot_alloc_block(ar->inode,
5545 						  EXT4_C2B(sbi, ar->len))) {
5546 
5547 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5548 				ar->len--;
5549 			}
5550 		}
5551 		inquota = ar->len;
5552 		if (ar->len == 0) {
5553 			*errp = -EDQUOT;
5554 			goto out;
5555 		}
5556 	}
5557 
5558 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5559 	if (!ac) {
5560 		ar->len = 0;
5561 		*errp = -ENOMEM;
5562 		goto out;
5563 	}
5564 
5565 	*errp = ext4_mb_initialize_context(ac, ar);
5566 	if (*errp) {
5567 		ar->len = 0;
5568 		goto out;
5569 	}
5570 
5571 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5572 	seq = this_cpu_read(discard_pa_seq);
5573 	if (!ext4_mb_use_preallocated(ac)) {
5574 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5575 		ext4_mb_normalize_request(ac, ar);
5576 
5577 		*errp = ext4_mb_pa_alloc(ac);
5578 		if (*errp)
5579 			goto errout;
5580 repeat:
5581 		/* allocate space in core */
5582 		*errp = ext4_mb_regular_allocator(ac);
5583 		/*
5584 		 * pa allocated above is added to grp->bb_prealloc_list only
5585 		 * when we were able to allocate some block i.e. when
5586 		 * ac->ac_status == AC_STATUS_FOUND.
5587 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5588 		 * So we have to free this pa here itself.
5589 		 */
5590 		if (*errp) {
5591 			ext4_mb_pa_free(ac);
5592 			ext4_discard_allocated_blocks(ac);
5593 			goto errout;
5594 		}
5595 		if (ac->ac_status == AC_STATUS_FOUND &&
5596 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5597 			ext4_mb_pa_free(ac);
5598 	}
5599 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5600 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5601 		if (*errp) {
5602 			ext4_discard_allocated_blocks(ac);
5603 			goto errout;
5604 		} else {
5605 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5606 			ar->len = ac->ac_b_ex.fe_len;
5607 		}
5608 	} else {
5609 		if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5610 			goto repeat;
5611 		/*
5612 		 * If block allocation fails then the pa allocated above
5613 		 * needs to be freed here itself.
5614 		 */
5615 		ext4_mb_pa_free(ac);
5616 		*errp = -ENOSPC;
5617 	}
5618 
5619 errout:
5620 	if (*errp) {
5621 		ac->ac_b_ex.fe_len = 0;
5622 		ar->len = 0;
5623 		ext4_mb_show_ac(ac);
5624 	}
5625 	ext4_mb_release_context(ac);
5626 out:
5627 	if (ac)
5628 		kmem_cache_free(ext4_ac_cachep, ac);
5629 	if (inquota && ar->len < inquota)
5630 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5631 	if (!ar->len) {
5632 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5633 			/* release all the reserved blocks if non delalloc */
5634 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5635 						reserv_clstrs);
5636 	}
5637 
5638 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5639 
5640 	return block;
5641 }
5642 
5643 /*
5644  * We can merge two free data extents only if the physical blocks
5645  * are contiguous, AND the extents were freed by the same transaction,
5646  * AND the blocks are associated with the same group.
5647  */
5648 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5649 					struct ext4_free_data *entry,
5650 					struct ext4_free_data *new_entry,
5651 					struct rb_root *entry_rb_root)
5652 {
5653 	if ((entry->efd_tid != new_entry->efd_tid) ||
5654 	    (entry->efd_group != new_entry->efd_group))
5655 		return;
5656 	if (entry->efd_start_cluster + entry->efd_count ==
5657 	    new_entry->efd_start_cluster) {
5658 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5659 		new_entry->efd_count += entry->efd_count;
5660 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5661 		   entry->efd_start_cluster) {
5662 		new_entry->efd_count += entry->efd_count;
5663 	} else
5664 		return;
5665 	spin_lock(&sbi->s_md_lock);
5666 	list_del(&entry->efd_list);
5667 	spin_unlock(&sbi->s_md_lock);
5668 	rb_erase(&entry->efd_node, entry_rb_root);
5669 	kmem_cache_free(ext4_free_data_cachep, entry);
5670 }
5671 
5672 static noinline_for_stack int
5673 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5674 		      struct ext4_free_data *new_entry)
5675 {
5676 	ext4_group_t group = e4b->bd_group;
5677 	ext4_grpblk_t cluster;
5678 	ext4_grpblk_t clusters = new_entry->efd_count;
5679 	struct ext4_free_data *entry;
5680 	struct ext4_group_info *db = e4b->bd_info;
5681 	struct super_block *sb = e4b->bd_sb;
5682 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5683 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5684 	struct rb_node *parent = NULL, *new_node;
5685 
5686 	BUG_ON(!ext4_handle_valid(handle));
5687 	BUG_ON(e4b->bd_bitmap_page == NULL);
5688 	BUG_ON(e4b->bd_buddy_page == NULL);
5689 
5690 	new_node = &new_entry->efd_node;
5691 	cluster = new_entry->efd_start_cluster;
5692 
5693 	if (!*n) {
5694 		/* first free block exent. We need to
5695 		   protect buddy cache from being freed,
5696 		 * otherwise we'll refresh it from
5697 		 * on-disk bitmap and lose not-yet-available
5698 		 * blocks */
5699 		get_page(e4b->bd_buddy_page);
5700 		get_page(e4b->bd_bitmap_page);
5701 	}
5702 	while (*n) {
5703 		parent = *n;
5704 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5705 		if (cluster < entry->efd_start_cluster)
5706 			n = &(*n)->rb_left;
5707 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5708 			n = &(*n)->rb_right;
5709 		else {
5710 			ext4_grp_locked_error(sb, group, 0,
5711 				ext4_group_first_block_no(sb, group) +
5712 				EXT4_C2B(sbi, cluster),
5713 				"Block already on to-be-freed list");
5714 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5715 			return 0;
5716 		}
5717 	}
5718 
5719 	rb_link_node(new_node, parent, n);
5720 	rb_insert_color(new_node, &db->bb_free_root);
5721 
5722 	/* Now try to see the extent can be merged to left and right */
5723 	node = rb_prev(new_node);
5724 	if (node) {
5725 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5726 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5727 					    &(db->bb_free_root));
5728 	}
5729 
5730 	node = rb_next(new_node);
5731 	if (node) {
5732 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5733 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5734 					    &(db->bb_free_root));
5735 	}
5736 
5737 	spin_lock(&sbi->s_md_lock);
5738 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5739 	sbi->s_mb_free_pending += clusters;
5740 	spin_unlock(&sbi->s_md_lock);
5741 	return 0;
5742 }
5743 
5744 /*
5745  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5746  * linearly starting at the goal block and also excludes the blocks which
5747  * are going to be in use after fast commit replay.
5748  */
5749 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5750 				struct ext4_allocation_request *ar, int *errp)
5751 {
5752 	struct buffer_head *bitmap_bh;
5753 	struct super_block *sb = ar->inode->i_sb;
5754 	ext4_group_t group;
5755 	ext4_grpblk_t blkoff;
5756 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
5757 	ext4_grpblk_t i = 0;
5758 	ext4_fsblk_t goal, block;
5759 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5760 
5761 	goal = ar->goal;
5762 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5763 			goal >= ext4_blocks_count(es))
5764 		goal = le32_to_cpu(es->s_first_data_block);
5765 
5766 	ar->len = 0;
5767 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5768 	for (; group < ext4_get_groups_count(sb); group++) {
5769 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5770 		if (IS_ERR(bitmap_bh)) {
5771 			*errp = PTR_ERR(bitmap_bh);
5772 			pr_warn("Failed to read block bitmap\n");
5773 			return 0;
5774 		}
5775 
5776 		ext4_get_group_no_and_offset(sb,
5777 			max(ext4_group_first_block_no(sb, group), goal),
5778 			NULL, &blkoff);
5779 		while (1) {
5780 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
5781 						blkoff);
5782 			if (i >= max)
5783 				break;
5784 			if (ext4_fc_replay_check_excluded(sb,
5785 				ext4_group_first_block_no(sb, group) + i)) {
5786 				blkoff = i + 1;
5787 			} else
5788 				break;
5789 		}
5790 		brelse(bitmap_bh);
5791 		if (i < max)
5792 			break;
5793 	}
5794 
5795 	if (group >= ext4_get_groups_count(sb) || i >= max) {
5796 		*errp = -ENOSPC;
5797 		return 0;
5798 	}
5799 
5800 	block = ext4_group_first_block_no(sb, group) + i;
5801 	ext4_mb_mark_bb(sb, block, 1, 1);
5802 	ar->len = 1;
5803 
5804 	return block;
5805 }
5806 
5807 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5808 					unsigned long count)
5809 {
5810 	struct buffer_head *bitmap_bh;
5811 	struct super_block *sb = inode->i_sb;
5812 	struct ext4_group_desc *gdp;
5813 	struct buffer_head *gdp_bh;
5814 	ext4_group_t group;
5815 	ext4_grpblk_t blkoff;
5816 	int already_freed = 0, err, i;
5817 
5818 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5819 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5820 	if (IS_ERR(bitmap_bh)) {
5821 		err = PTR_ERR(bitmap_bh);
5822 		pr_warn("Failed to read block bitmap\n");
5823 		return;
5824 	}
5825 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5826 	if (!gdp)
5827 		return;
5828 
5829 	for (i = 0; i < count; i++) {
5830 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5831 			already_freed++;
5832 	}
5833 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5834 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5835 	if (err)
5836 		return;
5837 	ext4_free_group_clusters_set(
5838 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
5839 		count - already_freed);
5840 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5841 	ext4_group_desc_csum_set(sb, group, gdp);
5842 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5843 	sync_dirty_buffer(bitmap_bh);
5844 	sync_dirty_buffer(gdp_bh);
5845 	brelse(bitmap_bh);
5846 }
5847 
5848 /**
5849  * ext4_free_blocks() -- Free given blocks and update quota
5850  * @handle:		handle for this transaction
5851  * @inode:		inode
5852  * @bh:			optional buffer of the block to be freed
5853  * @block:		starting physical block to be freed
5854  * @count:		number of blocks to be freed
5855  * @flags:		flags used by ext4_free_blocks
5856  */
5857 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5858 		      struct buffer_head *bh, ext4_fsblk_t block,
5859 		      unsigned long count, int flags)
5860 {
5861 	struct buffer_head *bitmap_bh = NULL;
5862 	struct super_block *sb = inode->i_sb;
5863 	struct ext4_group_desc *gdp;
5864 	unsigned int overflow;
5865 	ext4_grpblk_t bit;
5866 	struct buffer_head *gd_bh;
5867 	ext4_group_t block_group;
5868 	struct ext4_sb_info *sbi;
5869 	struct ext4_buddy e4b;
5870 	unsigned int count_clusters;
5871 	int err = 0;
5872 	int ret;
5873 
5874 	sbi = EXT4_SB(sb);
5875 
5876 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
5877 		ext4_free_blocks_simple(inode, block, count);
5878 		return;
5879 	}
5880 
5881 	might_sleep();
5882 	if (bh) {
5883 		if (block)
5884 			BUG_ON(block != bh->b_blocknr);
5885 		else
5886 			block = bh->b_blocknr;
5887 	}
5888 
5889 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5890 	    !ext4_inode_block_valid(inode, block, count)) {
5891 		ext4_error(sb, "Freeing blocks not in datazone - "
5892 			   "block = %llu, count = %lu", block, count);
5893 		goto error_return;
5894 	}
5895 
5896 	ext4_debug("freeing block %llu\n", block);
5897 	trace_ext4_free_blocks(inode, block, count, flags);
5898 
5899 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5900 		BUG_ON(count > 1);
5901 
5902 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5903 			    inode, bh, block);
5904 	}
5905 
5906 	/*
5907 	 * If the extent to be freed does not begin on a cluster
5908 	 * boundary, we need to deal with partial clusters at the
5909 	 * beginning and end of the extent.  Normally we will free
5910 	 * blocks at the beginning or the end unless we are explicitly
5911 	 * requested to avoid doing so.
5912 	 */
5913 	overflow = EXT4_PBLK_COFF(sbi, block);
5914 	if (overflow) {
5915 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5916 			overflow = sbi->s_cluster_ratio - overflow;
5917 			block += overflow;
5918 			if (count > overflow)
5919 				count -= overflow;
5920 			else
5921 				return;
5922 		} else {
5923 			block -= overflow;
5924 			count += overflow;
5925 		}
5926 	}
5927 	overflow = EXT4_LBLK_COFF(sbi, count);
5928 	if (overflow) {
5929 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5930 			if (count > overflow)
5931 				count -= overflow;
5932 			else
5933 				return;
5934 		} else
5935 			count += sbi->s_cluster_ratio - overflow;
5936 	}
5937 
5938 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5939 		int i;
5940 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5941 
5942 		for (i = 0; i < count; i++) {
5943 			cond_resched();
5944 			if (is_metadata)
5945 				bh = sb_find_get_block(inode->i_sb, block + i);
5946 			ext4_forget(handle, is_metadata, inode, bh, block + i);
5947 		}
5948 	}
5949 
5950 do_more:
5951 	overflow = 0;
5952 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5953 
5954 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5955 			ext4_get_group_info(sb, block_group))))
5956 		return;
5957 
5958 	/*
5959 	 * Check to see if we are freeing blocks across a group
5960 	 * boundary.
5961 	 */
5962 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5963 		overflow = EXT4_C2B(sbi, bit) + count -
5964 			EXT4_BLOCKS_PER_GROUP(sb);
5965 		count -= overflow;
5966 	}
5967 	count_clusters = EXT4_NUM_B2C(sbi, count);
5968 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5969 	if (IS_ERR(bitmap_bh)) {
5970 		err = PTR_ERR(bitmap_bh);
5971 		bitmap_bh = NULL;
5972 		goto error_return;
5973 	}
5974 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5975 	if (!gdp) {
5976 		err = -EIO;
5977 		goto error_return;
5978 	}
5979 
5980 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5981 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5982 	    in_range(block, ext4_inode_table(sb, gdp),
5983 		     sbi->s_itb_per_group) ||
5984 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
5985 		     sbi->s_itb_per_group)) {
5986 
5987 		ext4_error(sb, "Freeing blocks in system zone - "
5988 			   "Block = %llu, count = %lu", block, count);
5989 		/* err = 0. ext4_std_error should be a no op */
5990 		goto error_return;
5991 	}
5992 
5993 	BUFFER_TRACE(bitmap_bh, "getting write access");
5994 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
5995 					    EXT4_JTR_NONE);
5996 	if (err)
5997 		goto error_return;
5998 
5999 	/*
6000 	 * We are about to modify some metadata.  Call the journal APIs
6001 	 * to unshare ->b_data if a currently-committing transaction is
6002 	 * using it
6003 	 */
6004 	BUFFER_TRACE(gd_bh, "get_write_access");
6005 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6006 	if (err)
6007 		goto error_return;
6008 #ifdef AGGRESSIVE_CHECK
6009 	{
6010 		int i;
6011 		for (i = 0; i < count_clusters; i++)
6012 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6013 	}
6014 #endif
6015 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6016 
6017 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6018 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6019 				     GFP_NOFS|__GFP_NOFAIL);
6020 	if (err)
6021 		goto error_return;
6022 
6023 	/*
6024 	 * We need to make sure we don't reuse the freed block until after the
6025 	 * transaction is committed. We make an exception if the inode is to be
6026 	 * written in writeback mode since writeback mode has weak data
6027 	 * consistency guarantees.
6028 	 */
6029 	if (ext4_handle_valid(handle) &&
6030 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6031 	     !ext4_should_writeback_data(inode))) {
6032 		struct ext4_free_data *new_entry;
6033 		/*
6034 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6035 		 * to fail.
6036 		 */
6037 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6038 				GFP_NOFS|__GFP_NOFAIL);
6039 		new_entry->efd_start_cluster = bit;
6040 		new_entry->efd_group = block_group;
6041 		new_entry->efd_count = count_clusters;
6042 		new_entry->efd_tid = handle->h_transaction->t_tid;
6043 
6044 		ext4_lock_group(sb, block_group);
6045 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6046 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6047 	} else {
6048 		/* need to update group_info->bb_free and bitmap
6049 		 * with group lock held. generate_buddy look at
6050 		 * them with group lock_held
6051 		 */
6052 		if (test_opt(sb, DISCARD)) {
6053 			err = ext4_issue_discard(sb, block_group, bit, count,
6054 						 NULL);
6055 			if (err && err != -EOPNOTSUPP)
6056 				ext4_msg(sb, KERN_WARNING, "discard request in"
6057 					 " group:%d block:%d count:%lu failed"
6058 					 " with %d", block_group, bit, count,
6059 					 err);
6060 		} else
6061 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6062 
6063 		ext4_lock_group(sb, block_group);
6064 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6065 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6066 	}
6067 
6068 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6069 	ext4_free_group_clusters_set(sb, gdp, ret);
6070 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
6071 	ext4_group_desc_csum_set(sb, block_group, gdp);
6072 	ext4_unlock_group(sb, block_group);
6073 
6074 	if (sbi->s_log_groups_per_flex) {
6075 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6076 		atomic64_add(count_clusters,
6077 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6078 						  flex_group)->free_clusters);
6079 	}
6080 
6081 	/*
6082 	 * on a bigalloc file system, defer the s_freeclusters_counter
6083 	 * update to the caller (ext4_remove_space and friends) so they
6084 	 * can determine if a cluster freed here should be rereserved
6085 	 */
6086 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6087 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6088 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6089 		percpu_counter_add(&sbi->s_freeclusters_counter,
6090 				   count_clusters);
6091 	}
6092 
6093 	ext4_mb_unload_buddy(&e4b);
6094 
6095 	/* We dirtied the bitmap block */
6096 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6097 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6098 
6099 	/* And the group descriptor block */
6100 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6101 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6102 	if (!err)
6103 		err = ret;
6104 
6105 	if (overflow && !err) {
6106 		block += count;
6107 		count = overflow;
6108 		put_bh(bitmap_bh);
6109 		goto do_more;
6110 	}
6111 error_return:
6112 	brelse(bitmap_bh);
6113 	ext4_std_error(sb, err);
6114 	return;
6115 }
6116 
6117 /**
6118  * ext4_group_add_blocks() -- Add given blocks to an existing group
6119  * @handle:			handle to this transaction
6120  * @sb:				super block
6121  * @block:			start physical block to add to the block group
6122  * @count:			number of blocks to free
6123  *
6124  * This marks the blocks as free in the bitmap and buddy.
6125  */
6126 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6127 			 ext4_fsblk_t block, unsigned long count)
6128 {
6129 	struct buffer_head *bitmap_bh = NULL;
6130 	struct buffer_head *gd_bh;
6131 	ext4_group_t block_group;
6132 	ext4_grpblk_t bit;
6133 	unsigned int i;
6134 	struct ext4_group_desc *desc;
6135 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6136 	struct ext4_buddy e4b;
6137 	int err = 0, ret, free_clusters_count;
6138 	ext4_grpblk_t clusters_freed;
6139 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6140 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6141 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6142 
6143 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6144 
6145 	if (count == 0)
6146 		return 0;
6147 
6148 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6149 	/*
6150 	 * Check to see if we are freeing blocks across a group
6151 	 * boundary.
6152 	 */
6153 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6154 		ext4_warning(sb, "too many blocks added to group %u",
6155 			     block_group);
6156 		err = -EINVAL;
6157 		goto error_return;
6158 	}
6159 
6160 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6161 	if (IS_ERR(bitmap_bh)) {
6162 		err = PTR_ERR(bitmap_bh);
6163 		bitmap_bh = NULL;
6164 		goto error_return;
6165 	}
6166 
6167 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6168 	if (!desc) {
6169 		err = -EIO;
6170 		goto error_return;
6171 	}
6172 
6173 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
6174 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
6175 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
6176 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
6177 		     sbi->s_itb_per_group)) {
6178 		ext4_error(sb, "Adding blocks in system zones - "
6179 			   "Block = %llu, count = %lu",
6180 			   block, count);
6181 		err = -EINVAL;
6182 		goto error_return;
6183 	}
6184 
6185 	BUFFER_TRACE(bitmap_bh, "getting write access");
6186 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6187 					    EXT4_JTR_NONE);
6188 	if (err)
6189 		goto error_return;
6190 
6191 	/*
6192 	 * We are about to modify some metadata.  Call the journal APIs
6193 	 * to unshare ->b_data if a currently-committing transaction is
6194 	 * using it
6195 	 */
6196 	BUFFER_TRACE(gd_bh, "get_write_access");
6197 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6198 	if (err)
6199 		goto error_return;
6200 
6201 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6202 		BUFFER_TRACE(bitmap_bh, "clear bit");
6203 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6204 			ext4_error(sb, "bit already cleared for block %llu",
6205 				   (ext4_fsblk_t)(block + i));
6206 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6207 		} else {
6208 			clusters_freed++;
6209 		}
6210 	}
6211 
6212 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6213 	if (err)
6214 		goto error_return;
6215 
6216 	/*
6217 	 * need to update group_info->bb_free and bitmap
6218 	 * with group lock held. generate_buddy look at
6219 	 * them with group lock_held
6220 	 */
6221 	ext4_lock_group(sb, block_group);
6222 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6223 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6224 	free_clusters_count = clusters_freed +
6225 		ext4_free_group_clusters(sb, desc);
6226 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6227 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
6228 	ext4_group_desc_csum_set(sb, block_group, desc);
6229 	ext4_unlock_group(sb, block_group);
6230 	percpu_counter_add(&sbi->s_freeclusters_counter,
6231 			   clusters_freed);
6232 
6233 	if (sbi->s_log_groups_per_flex) {
6234 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6235 		atomic64_add(clusters_freed,
6236 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6237 						  flex_group)->free_clusters);
6238 	}
6239 
6240 	ext4_mb_unload_buddy(&e4b);
6241 
6242 	/* We dirtied the bitmap block */
6243 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6244 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6245 
6246 	/* And the group descriptor block */
6247 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6248 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6249 	if (!err)
6250 		err = ret;
6251 
6252 error_return:
6253 	brelse(bitmap_bh);
6254 	ext4_std_error(sb, err);
6255 	return err;
6256 }
6257 
6258 /**
6259  * ext4_trim_extent -- function to TRIM one single free extent in the group
6260  * @sb:		super block for the file system
6261  * @start:	starting block of the free extent in the alloc. group
6262  * @count:	number of blocks to TRIM
6263  * @e4b:	ext4 buddy for the group
6264  *
6265  * Trim "count" blocks starting at "start" in the "group". To assure that no
6266  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6267  * be called with under the group lock.
6268  */
6269 static int ext4_trim_extent(struct super_block *sb,
6270 		int start, int count, struct ext4_buddy *e4b)
6271 __releases(bitlock)
6272 __acquires(bitlock)
6273 {
6274 	struct ext4_free_extent ex;
6275 	ext4_group_t group = e4b->bd_group;
6276 	int ret = 0;
6277 
6278 	trace_ext4_trim_extent(sb, group, start, count);
6279 
6280 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6281 
6282 	ex.fe_start = start;
6283 	ex.fe_group = group;
6284 	ex.fe_len = count;
6285 
6286 	/*
6287 	 * Mark blocks used, so no one can reuse them while
6288 	 * being trimmed.
6289 	 */
6290 	mb_mark_used(e4b, &ex);
6291 	ext4_unlock_group(sb, group);
6292 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6293 	ext4_lock_group(sb, group);
6294 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6295 	return ret;
6296 }
6297 
6298 static int ext4_try_to_trim_range(struct super_block *sb,
6299 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6300 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6301 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6302 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6303 {
6304 	ext4_grpblk_t next, count, free_count;
6305 	void *bitmap;
6306 
6307 	bitmap = e4b->bd_bitmap;
6308 	start = (e4b->bd_info->bb_first_free > start) ?
6309 		e4b->bd_info->bb_first_free : start;
6310 	count = 0;
6311 	free_count = 0;
6312 
6313 	while (start <= max) {
6314 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6315 		if (start > max)
6316 			break;
6317 		next = mb_find_next_bit(bitmap, max + 1, start);
6318 
6319 		if ((next - start) >= minblocks) {
6320 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6321 
6322 			if (ret && ret != -EOPNOTSUPP)
6323 				break;
6324 			count += next - start;
6325 		}
6326 		free_count += next - start;
6327 		start = next + 1;
6328 
6329 		if (fatal_signal_pending(current)) {
6330 			count = -ERESTARTSYS;
6331 			break;
6332 		}
6333 
6334 		if (need_resched()) {
6335 			ext4_unlock_group(sb, e4b->bd_group);
6336 			cond_resched();
6337 			ext4_lock_group(sb, e4b->bd_group);
6338 		}
6339 
6340 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6341 			break;
6342 	}
6343 
6344 	return count;
6345 }
6346 
6347 /**
6348  * ext4_trim_all_free -- function to trim all free space in alloc. group
6349  * @sb:			super block for file system
6350  * @group:		group to be trimmed
6351  * @start:		first group block to examine
6352  * @max:		last group block to examine
6353  * @minblocks:		minimum extent block count
6354  *
6355  * ext4_trim_all_free walks through group's block bitmap searching for free
6356  * extents. When the free extent is found, mark it as used in group buddy
6357  * bitmap. Then issue a TRIM command on this extent and free the extent in
6358  * the group buddy bitmap.
6359  */
6360 static ext4_grpblk_t
6361 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6362 		   ext4_grpblk_t start, ext4_grpblk_t max,
6363 		   ext4_grpblk_t minblocks)
6364 {
6365 	struct ext4_buddy e4b;
6366 	int ret;
6367 
6368 	trace_ext4_trim_all_free(sb, group, start, max);
6369 
6370 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6371 	if (ret) {
6372 		ext4_warning(sb, "Error %d loading buddy information for %u",
6373 			     ret, group);
6374 		return ret;
6375 	}
6376 
6377 	ext4_lock_group(sb, group);
6378 
6379 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6380 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
6381 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6382 		if (ret >= 0)
6383 			EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6384 	} else {
6385 		ret = 0;
6386 	}
6387 
6388 	ext4_unlock_group(sb, group);
6389 	ext4_mb_unload_buddy(&e4b);
6390 
6391 	ext4_debug("trimmed %d blocks in the group %d\n",
6392 		ret, group);
6393 
6394 	return ret;
6395 }
6396 
6397 /**
6398  * ext4_trim_fs() -- trim ioctl handle function
6399  * @sb:			superblock for filesystem
6400  * @range:		fstrim_range structure
6401  *
6402  * start:	First Byte to trim
6403  * len:		number of Bytes to trim from start
6404  * minlen:	minimum extent length in Bytes
6405  * ext4_trim_fs goes through all allocation groups containing Bytes from
6406  * start to start+len. For each such a group ext4_trim_all_free function
6407  * is invoked to trim all free space.
6408  */
6409 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6410 {
6411 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
6412 	struct ext4_group_info *grp;
6413 	ext4_group_t group, first_group, last_group;
6414 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6415 	uint64_t start, end, minlen, trimmed = 0;
6416 	ext4_fsblk_t first_data_blk =
6417 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6418 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6419 	int ret = 0;
6420 
6421 	start = range->start >> sb->s_blocksize_bits;
6422 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6423 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6424 			      range->minlen >> sb->s_blocksize_bits);
6425 
6426 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6427 	    start >= max_blks ||
6428 	    range->len < sb->s_blocksize)
6429 		return -EINVAL;
6430 	/* No point to try to trim less than discard granularity */
6431 	if (range->minlen < q->limits.discard_granularity) {
6432 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6433 			q->limits.discard_granularity >> sb->s_blocksize_bits);
6434 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6435 			goto out;
6436 	}
6437 	if (end >= max_blks)
6438 		end = max_blks - 1;
6439 	if (end <= first_data_blk)
6440 		goto out;
6441 	if (start < first_data_blk)
6442 		start = first_data_blk;
6443 
6444 	/* Determine first and last group to examine based on start and end */
6445 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6446 				     &first_group, &first_cluster);
6447 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6448 				     &last_group, &last_cluster);
6449 
6450 	/* end now represents the last cluster to discard in this group */
6451 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6452 
6453 	for (group = first_group; group <= last_group; group++) {
6454 		grp = ext4_get_group_info(sb, group);
6455 		/* We only do this if the grp has never been initialized */
6456 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6457 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6458 			if (ret)
6459 				break;
6460 		}
6461 
6462 		/*
6463 		 * For all the groups except the last one, last cluster will
6464 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6465 		 * change it for the last group, note that last_cluster is
6466 		 * already computed earlier by ext4_get_group_no_and_offset()
6467 		 */
6468 		if (group == last_group)
6469 			end = last_cluster;
6470 
6471 		if (grp->bb_free >= minlen) {
6472 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6473 						end, minlen);
6474 			if (cnt < 0) {
6475 				ret = cnt;
6476 				break;
6477 			}
6478 			trimmed += cnt;
6479 		}
6480 
6481 		/*
6482 		 * For every group except the first one, we are sure
6483 		 * that the first cluster to discard will be cluster #0.
6484 		 */
6485 		first_cluster = 0;
6486 	}
6487 
6488 	if (!ret)
6489 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6490 
6491 out:
6492 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6493 	return ret;
6494 }
6495 
6496 /* Iterate all the free extents in the group. */
6497 int
6498 ext4_mballoc_query_range(
6499 	struct super_block		*sb,
6500 	ext4_group_t			group,
6501 	ext4_grpblk_t			start,
6502 	ext4_grpblk_t			end,
6503 	ext4_mballoc_query_range_fn	formatter,
6504 	void				*priv)
6505 {
6506 	void				*bitmap;
6507 	ext4_grpblk_t			next;
6508 	struct ext4_buddy		e4b;
6509 	int				error;
6510 
6511 	error = ext4_mb_load_buddy(sb, group, &e4b);
6512 	if (error)
6513 		return error;
6514 	bitmap = e4b.bd_bitmap;
6515 
6516 	ext4_lock_group(sb, group);
6517 
6518 	start = (e4b.bd_info->bb_first_free > start) ?
6519 		e4b.bd_info->bb_first_free : start;
6520 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6521 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6522 
6523 	while (start <= end) {
6524 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6525 		if (start > end)
6526 			break;
6527 		next = mb_find_next_bit(bitmap, end + 1, start);
6528 
6529 		ext4_unlock_group(sb, group);
6530 		error = formatter(sb, group, start, next - start, priv);
6531 		if (error)
6532 			goto out_unload;
6533 		ext4_lock_group(sb, group);
6534 
6535 		start = next + 1;
6536 	}
6537 
6538 	ext4_unlock_group(sb, group);
6539 out_unload:
6540 	ext4_mb_unload_buddy(&e4b);
6541 
6542 	return error;
6543 }
6544