xref: /openbmc/linux/fs/ext4/mballoc.c (revision c88c157d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
144  *
145  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
146  *
147  *    This is an array of lists where in the i-th list there are groups with
148  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
149  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
150  *    Note that we don't bother with a special list for completely empty groups
151  *    so we only have MB_NUM_ORDERS(sb) lists.
152  *
153  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
154  * structures to decide the order in which groups are to be traversed for
155  * fulfilling an allocation request.
156  *
157  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
158  * >= the order of the request. We directly look at the largest free order list
159  * in the data structure (1) above where largest_free_order = order of the
160  * request. If that list is empty, we look at remaining list in the increasing
161  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
162  * lookup in O(1) time.
163  *
164  * At CR_GOAL_LEN_FAST, we only consider groups where
165  * average fragment size > request size. So, we lookup a group which has average
166  * fragment size just above or equal to request size using our average fragment
167  * size group lists (data structure 2) in O(1) time.
168  *
169  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
170  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
171  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
172  * fragment size > goal length. So before falling to the slower
173  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
174  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
175  * enough average fragment size. This increases the chances of finding a
176  * suitable block group in O(1) time and results in faster allocation at the
177  * cost of reduced size of allocation.
178  *
179  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
180  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
181  * CR_GOAL_LEN_FAST phase.
182  *
183  * The regular allocator (using the buddy cache) supports a few tunables.
184  *
185  * /sys/fs/ext4/<partition>/mb_min_to_scan
186  * /sys/fs/ext4/<partition>/mb_max_to_scan
187  * /sys/fs/ext4/<partition>/mb_order2_req
188  * /sys/fs/ext4/<partition>/mb_linear_limit
189  *
190  * The regular allocator uses buddy scan only if the request len is power of
191  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
192  * value of s_mb_order2_reqs can be tuned via
193  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
194  * stripe size (sbi->s_stripe), we try to search for contiguous block in
195  * stripe size. This should result in better allocation on RAID setups. If
196  * not, we search in the specific group using bitmap for best extents. The
197  * tunable min_to_scan and max_to_scan control the behaviour here.
198  * min_to_scan indicate how long the mballoc __must__ look for a best
199  * extent and max_to_scan indicates how long the mballoc __can__ look for a
200  * best extent in the found extents. Searching for the blocks starts with
201  * the group specified as the goal value in allocation context via
202  * ac_g_ex. Each group is first checked based on the criteria whether it
203  * can be used for allocation. ext4_mb_good_group explains how the groups are
204  * checked.
205  *
206  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
207  * get traversed linearly. That may result in subsequent allocations being not
208  * close to each other. And so, the underlying device may get filled up in a
209  * non-linear fashion. While that may not matter on non-rotational devices, for
210  * rotational devices that may result in higher seek times. "mb_linear_limit"
211  * tells mballoc how many groups mballoc should search linearly before
212  * performing consulting above data structures for more efficient lookups. For
213  * non rotational devices, this value defaults to 0 and for rotational devices
214  * this is set to MB_DEFAULT_LINEAR_LIMIT.
215  *
216  * Both the prealloc space are getting populated as above. So for the first
217  * request we will hit the buddy cache which will result in this prealloc
218  * space getting filled. The prealloc space is then later used for the
219  * subsequent request.
220  */
221 
222 /*
223  * mballoc operates on the following data:
224  *  - on-disk bitmap
225  *  - in-core buddy (actually includes buddy and bitmap)
226  *  - preallocation descriptors (PAs)
227  *
228  * there are two types of preallocations:
229  *  - inode
230  *    assiged to specific inode and can be used for this inode only.
231  *    it describes part of inode's space preallocated to specific
232  *    physical blocks. any block from that preallocated can be used
233  *    independent. the descriptor just tracks number of blocks left
234  *    unused. so, before taking some block from descriptor, one must
235  *    make sure corresponded logical block isn't allocated yet. this
236  *    also means that freeing any block within descriptor's range
237  *    must discard all preallocated blocks.
238  *  - locality group
239  *    assigned to specific locality group which does not translate to
240  *    permanent set of inodes: inode can join and leave group. space
241  *    from this type of preallocation can be used for any inode. thus
242  *    it's consumed from the beginning to the end.
243  *
244  * relation between them can be expressed as:
245  *    in-core buddy = on-disk bitmap + preallocation descriptors
246  *
247  * this mean blocks mballoc considers used are:
248  *  - allocated blocks (persistent)
249  *  - preallocated blocks (non-persistent)
250  *
251  * consistency in mballoc world means that at any time a block is either
252  * free or used in ALL structures. notice: "any time" should not be read
253  * literally -- time is discrete and delimited by locks.
254  *
255  *  to keep it simple, we don't use block numbers, instead we count number of
256  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
257  *
258  * all operations can be expressed as:
259  *  - init buddy:			buddy = on-disk + PAs
260  *  - new PA:				buddy += N; PA = N
261  *  - use inode PA:			on-disk += N; PA -= N
262  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
263  *  - use locality group PA		on-disk += N; PA -= N
264  *  - discard locality group PA		buddy -= PA; PA = 0
265  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
266  *        is used in real operation because we can't know actual used
267  *        bits from PA, only from on-disk bitmap
268  *
269  * if we follow this strict logic, then all operations above should be atomic.
270  * given some of them can block, we'd have to use something like semaphores
271  * killing performance on high-end SMP hardware. let's try to relax it using
272  * the following knowledge:
273  *  1) if buddy is referenced, it's already initialized
274  *  2) while block is used in buddy and the buddy is referenced,
275  *     nobody can re-allocate that block
276  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
277  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
278  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
279  *     block
280  *
281  * so, now we're building a concurrency table:
282  *  - init buddy vs.
283  *    - new PA
284  *      blocks for PA are allocated in the buddy, buddy must be referenced
285  *      until PA is linked to allocation group to avoid concurrent buddy init
286  *    - use inode PA
287  *      we need to make sure that either on-disk bitmap or PA has uptodate data
288  *      given (3) we care that PA-=N operation doesn't interfere with init
289  *    - discard inode PA
290  *      the simplest way would be to have buddy initialized by the discard
291  *    - use locality group PA
292  *      again PA-=N must be serialized with init
293  *    - discard locality group PA
294  *      the simplest way would be to have buddy initialized by the discard
295  *  - new PA vs.
296  *    - use inode PA
297  *      i_data_sem serializes them
298  *    - discard inode PA
299  *      discard process must wait until PA isn't used by another process
300  *    - use locality group PA
301  *      some mutex should serialize them
302  *    - discard locality group PA
303  *      discard process must wait until PA isn't used by another process
304  *  - use inode PA
305  *    - use inode PA
306  *      i_data_sem or another mutex should serializes them
307  *    - discard inode PA
308  *      discard process must wait until PA isn't used by another process
309  *    - use locality group PA
310  *      nothing wrong here -- they're different PAs covering different blocks
311  *    - discard locality group PA
312  *      discard process must wait until PA isn't used by another process
313  *
314  * now we're ready to make few consequences:
315  *  - PA is referenced and while it is no discard is possible
316  *  - PA is referenced until block isn't marked in on-disk bitmap
317  *  - PA changes only after on-disk bitmap
318  *  - discard must not compete with init. either init is done before
319  *    any discard or they're serialized somehow
320  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
321  *
322  * a special case when we've used PA to emptiness. no need to modify buddy
323  * in this case, but we should care about concurrent init
324  *
325  */
326 
327  /*
328  * Logic in few words:
329  *
330  *  - allocation:
331  *    load group
332  *    find blocks
333  *    mark bits in on-disk bitmap
334  *    release group
335  *
336  *  - use preallocation:
337  *    find proper PA (per-inode or group)
338  *    load group
339  *    mark bits in on-disk bitmap
340  *    release group
341  *    release PA
342  *
343  *  - free:
344  *    load group
345  *    mark bits in on-disk bitmap
346  *    release group
347  *
348  *  - discard preallocations in group:
349  *    mark PAs deleted
350  *    move them onto local list
351  *    load on-disk bitmap
352  *    load group
353  *    remove PA from object (inode or locality group)
354  *    mark free blocks in-core
355  *
356  *  - discard inode's preallocations:
357  */
358 
359 /*
360  * Locking rules
361  *
362  * Locks:
363  *  - bitlock on a group	(group)
364  *  - object (inode/locality)	(object)
365  *  - per-pa lock		(pa)
366  *  - cr_power2_aligned lists lock	(cr_power2_aligned)
367  *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
368  *
369  * Paths:
370  *  - new pa
371  *    object
372  *    group
373  *
374  *  - find and use pa:
375  *    pa
376  *
377  *  - release consumed pa:
378  *    pa
379  *    group
380  *    object
381  *
382  *  - generate in-core bitmap:
383  *    group
384  *        pa
385  *
386  *  - discard all for given object (inode, locality group):
387  *    object
388  *        pa
389  *    group
390  *
391  *  - discard all for given group:
392  *    group
393  *        pa
394  *    group
395  *        object
396  *
397  *  - allocation path (ext4_mb_regular_allocator)
398  *    group
399  *    cr_power2_aligned/cr_goal_len_fast
400  */
401 static struct kmem_cache *ext4_pspace_cachep;
402 static struct kmem_cache *ext4_ac_cachep;
403 static struct kmem_cache *ext4_free_data_cachep;
404 
405 /* We create slab caches for groupinfo data structures based on the
406  * superblock block size.  There will be one per mounted filesystem for
407  * each unique s_blocksize_bits */
408 #define NR_GRPINFO_CACHES 8
409 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
410 
411 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
412 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
413 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
414 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
415 };
416 
417 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
418 					ext4_group_t group);
419 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
420 						ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422 
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424 			       ext4_group_t group, enum criteria cr);
425 
426 static int ext4_try_to_trim_range(struct super_block *sb,
427 		struct ext4_buddy *e4b, ext4_grpblk_t start,
428 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
429 
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451 	int __cpu;
452 	u64 __seq = 0;
453 
454 	for_each_possible_cpu(__cpu)
455 		__seq += per_cpu(discard_pa_seq, __cpu);
456 	return __seq;
457 }
458 
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462 	*bit += ((unsigned long) addr & 7UL) << 3;
463 	addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465 	*bit += ((unsigned long) addr & 3UL) << 3;
466 	addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470 	return addr;
471 }
472 
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475 	/*
476 	 * ext4_test_bit on architecture like powerpc
477 	 * needs unsigned long aligned address
478 	 */
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	return ext4_test_bit(bit, addr);
481 }
482 
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	ext4_set_bit(bit, addr);
487 }
488 
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491 	addr = mb_correct_addr_and_bit(&bit, addr);
492 	ext4_clear_bit(bit, addr);
493 }
494 
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497 	addr = mb_correct_addr_and_bit(&bit, addr);
498 	return ext4_test_and_clear_bit(bit, addr);
499 }
500 
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503 	int fix = 0, ret, tmpmax;
504 	addr = mb_correct_addr_and_bit(&fix, addr);
505 	tmpmax = max + fix;
506 	start += fix;
507 
508 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509 	if (ret > max)
510 		return max;
511 	return ret;
512 }
513 
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516 	int fix = 0, ret, tmpmax;
517 	addr = mb_correct_addr_and_bit(&fix, addr);
518 	tmpmax = max + fix;
519 	start += fix;
520 
521 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522 	if (ret > max)
523 		return max;
524 	return ret;
525 }
526 
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529 	char *bb;
530 
531 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532 	BUG_ON(max == NULL);
533 
534 	if (order > e4b->bd_blkbits + 1) {
535 		*max = 0;
536 		return NULL;
537 	}
538 
539 	/* at order 0 we see each particular block */
540 	if (order == 0) {
541 		*max = 1 << (e4b->bd_blkbits + 3);
542 		return e4b->bd_bitmap;
543 	}
544 
545 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547 
548 	return bb;
549 }
550 
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553 			   int first, int count)
554 {
555 	int i;
556 	struct super_block *sb = e4b->bd_sb;
557 
558 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559 		return;
560 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561 	for (i = 0; i < count; i++) {
562 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563 			ext4_fsblk_t blocknr;
564 
565 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567 			ext4_grp_locked_error(sb, e4b->bd_group,
568 					      inode ? inode->i_ino : 0,
569 					      blocknr,
570 					      "freeing block already freed "
571 					      "(bit %u)",
572 					      first + i);
573 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
574 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
575 		}
576 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577 	}
578 }
579 
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582 	int i;
583 
584 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585 		return;
586 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587 	for (i = 0; i < count; i++) {
588 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590 	}
591 }
592 
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596 		return;
597 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598 		unsigned char *b1, *b2;
599 		int i;
600 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601 		b2 = (unsigned char *) bitmap;
602 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603 			if (b1[i] != b2[i]) {
604 				ext4_msg(e4b->bd_sb, KERN_ERR,
605 					 "corruption in group %u "
606 					 "at byte %u(%u): %x in copy != %x "
607 					 "on disk/prealloc",
608 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
609 				BUG();
610 			}
611 		}
612 	}
613 }
614 
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616 			struct ext4_group_info *grp, ext4_group_t group)
617 {
618 	struct buffer_head *bh;
619 
620 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621 	if (!grp->bb_bitmap)
622 		return;
623 
624 	bh = ext4_read_block_bitmap(sb, group);
625 	if (IS_ERR_OR_NULL(bh)) {
626 		kfree(grp->bb_bitmap);
627 		grp->bb_bitmap = NULL;
628 		return;
629 	}
630 
631 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632 	put_bh(bh);
633 }
634 
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637 	kfree(grp->bb_bitmap);
638 }
639 
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642 				struct ext4_buddy *e4b, int first, int count)
643 {
644 	return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647 						int first, int count)
648 {
649 	return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653 	return;
654 }
655 
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657 			struct ext4_group_info *grp, ext4_group_t group)
658 {
659 	return;
660 }
661 
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664 	return;
665 }
666 #endif
667 
668 #ifdef AGGRESSIVE_CHECK
669 
670 #define MB_CHECK_ASSERT(assert)						\
671 do {									\
672 	if (!(assert)) {						\
673 		printk(KERN_EMERG					\
674 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
675 			function, file, line, # assert);		\
676 		BUG();							\
677 	}								\
678 } while (0)
679 
680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681 				const char *function, int line)
682 {
683 	struct super_block *sb = e4b->bd_sb;
684 	int order = e4b->bd_blkbits + 1;
685 	int max;
686 	int max2;
687 	int i;
688 	int j;
689 	int k;
690 	int count;
691 	struct ext4_group_info *grp;
692 	int fragments = 0;
693 	int fstart;
694 	struct list_head *cur;
695 	void *buddy;
696 	void *buddy2;
697 
698 	if (e4b->bd_info->bb_check_counter++ % 10)
699 		return 0;
700 
701 	while (order > 1) {
702 		buddy = mb_find_buddy(e4b, order, &max);
703 		MB_CHECK_ASSERT(buddy);
704 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705 		MB_CHECK_ASSERT(buddy2);
706 		MB_CHECK_ASSERT(buddy != buddy2);
707 		MB_CHECK_ASSERT(max * 2 == max2);
708 
709 		count = 0;
710 		for (i = 0; i < max; i++) {
711 
712 			if (mb_test_bit(i, buddy)) {
713 				/* only single bit in buddy2 may be 0 */
714 				if (!mb_test_bit(i << 1, buddy2)) {
715 					MB_CHECK_ASSERT(
716 						mb_test_bit((i<<1)+1, buddy2));
717 				}
718 				continue;
719 			}
720 
721 			/* both bits in buddy2 must be 1 */
722 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724 
725 			for (j = 0; j < (1 << order); j++) {
726 				k = (i * (1 << order)) + j;
727 				MB_CHECK_ASSERT(
728 					!mb_test_bit(k, e4b->bd_bitmap));
729 			}
730 			count++;
731 		}
732 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733 		order--;
734 	}
735 
736 	fstart = -1;
737 	buddy = mb_find_buddy(e4b, 0, &max);
738 	for (i = 0; i < max; i++) {
739 		if (!mb_test_bit(i, buddy)) {
740 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741 			if (fstart == -1) {
742 				fragments++;
743 				fstart = i;
744 			}
745 			continue;
746 		}
747 		fstart = -1;
748 		/* check used bits only */
749 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750 			buddy2 = mb_find_buddy(e4b, j, &max2);
751 			k = i >> j;
752 			MB_CHECK_ASSERT(k < max2);
753 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754 		}
755 	}
756 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758 
759 	grp = ext4_get_group_info(sb, e4b->bd_group);
760 	if (!grp)
761 		return NULL;
762 	list_for_each(cur, &grp->bb_prealloc_list) {
763 		ext4_group_t groupnr;
764 		struct ext4_prealloc_space *pa;
765 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768 		for (i = 0; i < pa->pa_len; i++)
769 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770 	}
771 	return 0;
772 }
773 #undef MB_CHECK_ASSERT
774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
775 					__FILE__, __func__, __LINE__)
776 #else
777 #define mb_check_buddy(e4b)
778 #endif
779 
780 /*
781  * Divide blocks started from @first with length @len into
782  * smaller chunks with power of 2 blocks.
783  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
784  * then increase bb_counters[] for corresponded chunk size.
785  */
786 static void ext4_mb_mark_free_simple(struct super_block *sb,
787 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
788 					struct ext4_group_info *grp)
789 {
790 	struct ext4_sb_info *sbi = EXT4_SB(sb);
791 	ext4_grpblk_t min;
792 	ext4_grpblk_t max;
793 	ext4_grpblk_t chunk;
794 	unsigned int border;
795 
796 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
797 
798 	border = 2 << sb->s_blocksize_bits;
799 
800 	while (len > 0) {
801 		/* find how many blocks can be covered since this position */
802 		max = ffs(first | border) - 1;
803 
804 		/* find how many blocks of power 2 we need to mark */
805 		min = fls(len) - 1;
806 
807 		if (max < min)
808 			min = max;
809 		chunk = 1 << min;
810 
811 		/* mark multiblock chunks only */
812 		grp->bb_counters[min]++;
813 		if (min > 0)
814 			mb_clear_bit(first >> min,
815 				     buddy + sbi->s_mb_offsets[min]);
816 
817 		len -= chunk;
818 		first += chunk;
819 	}
820 }
821 
822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
823 {
824 	int order;
825 
826 	/*
827 	 * We don't bother with a special lists groups with only 1 block free
828 	 * extents and for completely empty groups.
829 	 */
830 	order = fls(len) - 2;
831 	if (order < 0)
832 		return 0;
833 	if (order == MB_NUM_ORDERS(sb))
834 		order--;
835 	return order;
836 }
837 
838 /* Move group to appropriate avg_fragment_size list */
839 static void
840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
841 {
842 	struct ext4_sb_info *sbi = EXT4_SB(sb);
843 	int new_order;
844 
845 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
846 		return;
847 
848 	new_order = mb_avg_fragment_size_order(sb,
849 					grp->bb_free / grp->bb_fragments);
850 	if (new_order == grp->bb_avg_fragment_size_order)
851 		return;
852 
853 	if (grp->bb_avg_fragment_size_order != -1) {
854 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
855 					grp->bb_avg_fragment_size_order]);
856 		list_del(&grp->bb_avg_fragment_size_node);
857 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
858 					grp->bb_avg_fragment_size_order]);
859 	}
860 	grp->bb_avg_fragment_size_order = new_order;
861 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
862 					grp->bb_avg_fragment_size_order]);
863 	list_add_tail(&grp->bb_avg_fragment_size_node,
864 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
865 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
866 					grp->bb_avg_fragment_size_order]);
867 }
868 
869 /*
870  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
871  * cr level needs an update.
872  */
873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
874 			enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
875 {
876 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
877 	struct ext4_group_info *iter, *grp;
878 	int i;
879 
880 	if (ac->ac_status == AC_STATUS_FOUND)
881 		return;
882 
883 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
884 		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
885 
886 	grp = NULL;
887 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889 			continue;
890 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893 			continue;
894 		}
895 		grp = NULL;
896 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
897 				    bb_largest_free_order_node) {
898 			if (sbi->s_mb_stats)
899 				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
900 			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
901 				grp = iter;
902 				break;
903 			}
904 		}
905 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
906 		if (grp)
907 			break;
908 	}
909 
910 	if (!grp) {
911 		/* Increment cr and search again */
912 		*new_cr = CR_GOAL_LEN_FAST;
913 	} else {
914 		*group = grp->bb_group;
915 		ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
916 	}
917 }
918 
919 /*
920  * Find a suitable group of given order from the average fragments list.
921  */
922 static struct ext4_group_info *
923 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
924 {
925 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
926 	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
927 	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
928 	struct ext4_group_info *grp = NULL, *iter;
929 	enum criteria cr = ac->ac_criteria;
930 
931 	if (list_empty(frag_list))
932 		return NULL;
933 	read_lock(frag_list_lock);
934 	if (list_empty(frag_list)) {
935 		read_unlock(frag_list_lock);
936 		return NULL;
937 	}
938 	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
939 		if (sbi->s_mb_stats)
940 			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
941 		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
942 			grp = iter;
943 			break;
944 		}
945 	}
946 	read_unlock(frag_list_lock);
947 	return grp;
948 }
949 
950 /*
951  * Choose next group by traversing average fragment size list of suitable
952  * order. Updates *new_cr if cr level needs an update.
953  */
954 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
955 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
956 {
957 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
958 	struct ext4_group_info *grp = NULL;
959 	int i;
960 
961 	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
962 		if (sbi->s_mb_stats)
963 			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
964 	}
965 
966 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
967 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
968 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
969 		if (grp)
970 			break;
971 	}
972 
973 	if (grp) {
974 		*group = grp->bb_group;
975 		ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
976 	} else {
977 		*new_cr = CR_BEST_AVAIL_LEN;
978 	}
979 }
980 
981 /*
982  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
983  * order we have and proactively trim the goal request length to that order to
984  * find a suitable group faster.
985  *
986  * This optimizes allocation speed at the cost of slightly reduced
987  * preallocations. However, we make sure that we don't trim the request too
988  * much and fall to CR_GOAL_LEN_SLOW in that case.
989  */
990 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
991 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
992 {
993 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
994 	struct ext4_group_info *grp = NULL;
995 	int i, order, min_order;
996 	unsigned long num_stripe_clusters = 0;
997 
998 	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
999 		if (sbi->s_mb_stats)
1000 			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1001 	}
1002 
1003 	/*
1004 	 * mb_avg_fragment_size_order() returns order in a way that makes
1005 	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1006 	 * fls() instead since we need to know the actual length while modifying
1007 	 * goal length.
1008 	 */
1009 	order = fls(ac->ac_g_ex.fe_len) - 1;
1010 	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1011 	if (min_order < 0)
1012 		min_order = 0;
1013 
1014 	if (sbi->s_stripe > 0) {
1015 		/*
1016 		 * We are assuming that stripe size is always a multiple of
1017 		 * cluster ratio otherwise __ext4_fill_super exists early.
1018 		 */
1019 		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1020 		if (1 << min_order < num_stripe_clusters)
1021 			/*
1022 			 * We consider 1 order less because later we round
1023 			 * up the goal len to num_stripe_clusters
1024 			 */
1025 			min_order = fls(num_stripe_clusters) - 1;
1026 	}
1027 
1028 	if (1 << min_order < ac->ac_o_ex.fe_len)
1029 		min_order = fls(ac->ac_o_ex.fe_len);
1030 
1031 	for (i = order; i >= min_order; i--) {
1032 		int frag_order;
1033 		/*
1034 		 * Scale down goal len to make sure we find something
1035 		 * in the free fragments list. Basically, reduce
1036 		 * preallocations.
1037 		 */
1038 		ac->ac_g_ex.fe_len = 1 << i;
1039 
1040 		if (num_stripe_clusters > 0) {
1041 			/*
1042 			 * Try to round up the adjusted goal length to
1043 			 * stripe size (in cluster units) multiple for
1044 			 * efficiency.
1045 			 */
1046 			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1047 						     num_stripe_clusters);
1048 		}
1049 
1050 		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1051 							ac->ac_g_ex.fe_len);
1052 
1053 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1054 		if (grp)
1055 			break;
1056 	}
1057 
1058 	if (grp) {
1059 		*group = grp->bb_group;
1060 		ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1061 	} else {
1062 		/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063 		ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064 		*new_cr = CR_GOAL_LEN_SLOW;
1065 	}
1066 }
1067 
1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1069 {
1070 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1071 		return 0;
1072 	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1073 		return 0;
1074 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1075 		return 0;
1076 	return 1;
1077 }
1078 
1079 /*
1080  * Return next linear group for allocation. If linear traversal should not be
1081  * performed, this function just returns the same group
1082  */
1083 static int
1084 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
1085 {
1086 	if (!should_optimize_scan(ac))
1087 		goto inc_and_return;
1088 
1089 	if (ac->ac_groups_linear_remaining) {
1090 		ac->ac_groups_linear_remaining--;
1091 		goto inc_and_return;
1092 	}
1093 
1094 	return group;
1095 inc_and_return:
1096 	/*
1097 	 * Artificially restricted ngroups for non-extent
1098 	 * files makes group > ngroups possible on first loop.
1099 	 */
1100 	return group + 1 >= ngroups ? 0 : group + 1;
1101 }
1102 
1103 /*
1104  * ext4_mb_choose_next_group: choose next group for allocation.
1105  *
1106  * @ac        Allocation Context
1107  * @new_cr    This is an output parameter. If the there is no good group
1108  *            available at current CR level, this field is updated to indicate
1109  *            the new cr level that should be used.
1110  * @group     This is an input / output parameter. As an input it indicates the
1111  *            next group that the allocator intends to use for allocation. As
1112  *            output, this field indicates the next group that should be used as
1113  *            determined by the optimization functions.
1114  * @ngroups   Total number of groups
1115  */
1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118 {
1119 	*new_cr = ac->ac_criteria;
1120 
1121 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122 		*group = next_linear_group(ac, *group, ngroups);
1123 		return;
1124 	}
1125 
1126 	if (*new_cr == CR_POWER2_ALIGNED) {
1127 		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1128 	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1129 		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1130 	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131 		ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1132 	} else {
1133 		/*
1134 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135 		 * bb_free. But until that happens, we should never come here.
1136 		 */
1137 		WARN_ON(1);
1138 	}
1139 }
1140 
1141 /*
1142  * Cache the order of the largest free extent we have available in this block
1143  * group.
1144  */
1145 static void
1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147 {
1148 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1149 	int i;
1150 
1151 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152 		if (grp->bb_counters[i] > 0)
1153 			break;
1154 	/* No need to move between order lists? */
1155 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156 	    i == grp->bb_largest_free_order) {
1157 		grp->bb_largest_free_order = i;
1158 		return;
1159 	}
1160 
1161 	if (grp->bb_largest_free_order >= 0) {
1162 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1163 					      grp->bb_largest_free_order]);
1164 		list_del_init(&grp->bb_largest_free_order_node);
1165 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166 					      grp->bb_largest_free_order]);
1167 	}
1168 	grp->bb_largest_free_order = i;
1169 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1171 					      grp->bb_largest_free_order]);
1172 		list_add_tail(&grp->bb_largest_free_order_node,
1173 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175 					      grp->bb_largest_free_order]);
1176 	}
1177 }
1178 
1179 static noinline_for_stack
1180 void ext4_mb_generate_buddy(struct super_block *sb,
1181 			    void *buddy, void *bitmap, ext4_group_t group,
1182 			    struct ext4_group_info *grp)
1183 {
1184 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1185 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186 	ext4_grpblk_t i = 0;
1187 	ext4_grpblk_t first;
1188 	ext4_grpblk_t len;
1189 	unsigned free = 0;
1190 	unsigned fragments = 0;
1191 	unsigned long long period = get_cycles();
1192 
1193 	/* initialize buddy from bitmap which is aggregation
1194 	 * of on-disk bitmap and preallocations */
1195 	i = mb_find_next_zero_bit(bitmap, max, 0);
1196 	grp->bb_first_free = i;
1197 	while (i < max) {
1198 		fragments++;
1199 		first = i;
1200 		i = mb_find_next_bit(bitmap, max, i);
1201 		len = i - first;
1202 		free += len;
1203 		if (len > 1)
1204 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205 		else
1206 			grp->bb_counters[0]++;
1207 		if (i < max)
1208 			i = mb_find_next_zero_bit(bitmap, max, i);
1209 	}
1210 	grp->bb_fragments = fragments;
1211 
1212 	if (free != grp->bb_free) {
1213 		ext4_grp_locked_error(sb, group, 0, 0,
1214 				      "block bitmap and bg descriptor "
1215 				      "inconsistent: %u vs %u free clusters",
1216 				      free, grp->bb_free);
1217 		/*
1218 		 * If we intend to continue, we consider group descriptor
1219 		 * corrupt and update bb_free using bitmap value
1220 		 */
1221 		grp->bb_free = free;
1222 		ext4_mark_group_bitmap_corrupted(sb, group,
1223 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224 	}
1225 	mb_set_largest_free_order(sb, grp);
1226 	mb_update_avg_fragment_size(sb, grp);
1227 
1228 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229 
1230 	period = get_cycles() - period;
1231 	atomic_inc(&sbi->s_mb_buddies_generated);
1232 	atomic64_add(period, &sbi->s_mb_generation_time);
1233 }
1234 
1235 /* The buddy information is attached the buddy cache inode
1236  * for convenience. The information regarding each group
1237  * is loaded via ext4_mb_load_buddy. The information involve
1238  * block bitmap and buddy information. The information are
1239  * stored in the inode as
1240  *
1241  * {                        page                        }
1242  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1243  *
1244  *
1245  * one block each for bitmap and buddy information.
1246  * So for each group we take up 2 blocks. A page can
1247  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1248  * So it can have information regarding groups_per_page which
1249  * is blocks_per_page/2
1250  *
1251  * Locking note:  This routine takes the block group lock of all groups
1252  * for this page; do not hold this lock when calling this routine!
1253  */
1254 
1255 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1256 {
1257 	ext4_group_t ngroups;
1258 	int blocksize;
1259 	int blocks_per_page;
1260 	int groups_per_page;
1261 	int err = 0;
1262 	int i;
1263 	ext4_group_t first_group, group;
1264 	int first_block;
1265 	struct super_block *sb;
1266 	struct buffer_head *bhs;
1267 	struct buffer_head **bh = NULL;
1268 	struct inode *inode;
1269 	char *data;
1270 	char *bitmap;
1271 	struct ext4_group_info *grinfo;
1272 
1273 	inode = page->mapping->host;
1274 	sb = inode->i_sb;
1275 	ngroups = ext4_get_groups_count(sb);
1276 	blocksize = i_blocksize(inode);
1277 	blocks_per_page = PAGE_SIZE / blocksize;
1278 
1279 	mb_debug(sb, "init page %lu\n", page->index);
1280 
1281 	groups_per_page = blocks_per_page >> 1;
1282 	if (groups_per_page == 0)
1283 		groups_per_page = 1;
1284 
1285 	/* allocate buffer_heads to read bitmaps */
1286 	if (groups_per_page > 1) {
1287 		i = sizeof(struct buffer_head *) * groups_per_page;
1288 		bh = kzalloc(i, gfp);
1289 		if (bh == NULL)
1290 			return -ENOMEM;
1291 	} else
1292 		bh = &bhs;
1293 
1294 	first_group = page->index * blocks_per_page / 2;
1295 
1296 	/* read all groups the page covers into the cache */
1297 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1298 		if (group >= ngroups)
1299 			break;
1300 
1301 		grinfo = ext4_get_group_info(sb, group);
1302 		if (!grinfo)
1303 			continue;
1304 		/*
1305 		 * If page is uptodate then we came here after online resize
1306 		 * which added some new uninitialized group info structs, so
1307 		 * we must skip all initialized uptodate buddies on the page,
1308 		 * which may be currently in use by an allocating task.
1309 		 */
1310 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1311 			bh[i] = NULL;
1312 			continue;
1313 		}
1314 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1315 		if (IS_ERR(bh[i])) {
1316 			err = PTR_ERR(bh[i]);
1317 			bh[i] = NULL;
1318 			goto out;
1319 		}
1320 		mb_debug(sb, "read bitmap for group %u\n", group);
1321 	}
1322 
1323 	/* wait for I/O completion */
1324 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1325 		int err2;
1326 
1327 		if (!bh[i])
1328 			continue;
1329 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1330 		if (!err)
1331 			err = err2;
1332 	}
1333 
1334 	first_block = page->index * blocks_per_page;
1335 	for (i = 0; i < blocks_per_page; i++) {
1336 		group = (first_block + i) >> 1;
1337 		if (group >= ngroups)
1338 			break;
1339 
1340 		if (!bh[group - first_group])
1341 			/* skip initialized uptodate buddy */
1342 			continue;
1343 
1344 		if (!buffer_verified(bh[group - first_group]))
1345 			/* Skip faulty bitmaps */
1346 			continue;
1347 		err = 0;
1348 
1349 		/*
1350 		 * data carry information regarding this
1351 		 * particular group in the format specified
1352 		 * above
1353 		 *
1354 		 */
1355 		data = page_address(page) + (i * blocksize);
1356 		bitmap = bh[group - first_group]->b_data;
1357 
1358 		/*
1359 		 * We place the buddy block and bitmap block
1360 		 * close together
1361 		 */
1362 		if ((first_block + i) & 1) {
1363 			/* this is block of buddy */
1364 			BUG_ON(incore == NULL);
1365 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1366 				group, page->index, i * blocksize);
1367 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1368 			grinfo = ext4_get_group_info(sb, group);
1369 			if (!grinfo) {
1370 				err = -EFSCORRUPTED;
1371 				goto out;
1372 			}
1373 			grinfo->bb_fragments = 0;
1374 			memset(grinfo->bb_counters, 0,
1375 			       sizeof(*grinfo->bb_counters) *
1376 			       (MB_NUM_ORDERS(sb)));
1377 			/*
1378 			 * incore got set to the group block bitmap below
1379 			 */
1380 			ext4_lock_group(sb, group);
1381 			/* init the buddy */
1382 			memset(data, 0xff, blocksize);
1383 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1384 			ext4_unlock_group(sb, group);
1385 			incore = NULL;
1386 		} else {
1387 			/* this is block of bitmap */
1388 			BUG_ON(incore != NULL);
1389 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1390 				group, page->index, i * blocksize);
1391 			trace_ext4_mb_bitmap_load(sb, group);
1392 
1393 			/* see comments in ext4_mb_put_pa() */
1394 			ext4_lock_group(sb, group);
1395 			memcpy(data, bitmap, blocksize);
1396 
1397 			/* mark all preallocated blks used in in-core bitmap */
1398 			ext4_mb_generate_from_pa(sb, data, group);
1399 			ext4_mb_generate_from_freelist(sb, data, group);
1400 			ext4_unlock_group(sb, group);
1401 
1402 			/* set incore so that the buddy information can be
1403 			 * generated using this
1404 			 */
1405 			incore = data;
1406 		}
1407 	}
1408 	SetPageUptodate(page);
1409 
1410 out:
1411 	if (bh) {
1412 		for (i = 0; i < groups_per_page; i++)
1413 			brelse(bh[i]);
1414 		if (bh != &bhs)
1415 			kfree(bh);
1416 	}
1417 	return err;
1418 }
1419 
1420 /*
1421  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1422  * on the same buddy page doesn't happen whild holding the buddy page lock.
1423  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1424  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1425  */
1426 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1427 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1428 {
1429 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1430 	int block, pnum, poff;
1431 	int blocks_per_page;
1432 	struct page *page;
1433 
1434 	e4b->bd_buddy_page = NULL;
1435 	e4b->bd_bitmap_page = NULL;
1436 
1437 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1438 	/*
1439 	 * the buddy cache inode stores the block bitmap
1440 	 * and buddy information in consecutive blocks.
1441 	 * So for each group we need two blocks.
1442 	 */
1443 	block = group * 2;
1444 	pnum = block / blocks_per_page;
1445 	poff = block % blocks_per_page;
1446 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1447 	if (!page)
1448 		return -ENOMEM;
1449 	BUG_ON(page->mapping != inode->i_mapping);
1450 	e4b->bd_bitmap_page = page;
1451 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1452 
1453 	if (blocks_per_page >= 2) {
1454 		/* buddy and bitmap are on the same page */
1455 		return 0;
1456 	}
1457 
1458 	block++;
1459 	pnum = block / blocks_per_page;
1460 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1461 	if (!page)
1462 		return -ENOMEM;
1463 	BUG_ON(page->mapping != inode->i_mapping);
1464 	e4b->bd_buddy_page = page;
1465 	return 0;
1466 }
1467 
1468 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1469 {
1470 	if (e4b->bd_bitmap_page) {
1471 		unlock_page(e4b->bd_bitmap_page);
1472 		put_page(e4b->bd_bitmap_page);
1473 	}
1474 	if (e4b->bd_buddy_page) {
1475 		unlock_page(e4b->bd_buddy_page);
1476 		put_page(e4b->bd_buddy_page);
1477 	}
1478 }
1479 
1480 /*
1481  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1482  * block group lock of all groups for this page; do not hold the BG lock when
1483  * calling this routine!
1484  */
1485 static noinline_for_stack
1486 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1487 {
1488 
1489 	struct ext4_group_info *this_grp;
1490 	struct ext4_buddy e4b;
1491 	struct page *page;
1492 	int ret = 0;
1493 
1494 	might_sleep();
1495 	mb_debug(sb, "init group %u\n", group);
1496 	this_grp = ext4_get_group_info(sb, group);
1497 	if (!this_grp)
1498 		return -EFSCORRUPTED;
1499 
1500 	/*
1501 	 * This ensures that we don't reinit the buddy cache
1502 	 * page which map to the group from which we are already
1503 	 * allocating. If we are looking at the buddy cache we would
1504 	 * have taken a reference using ext4_mb_load_buddy and that
1505 	 * would have pinned buddy page to page cache.
1506 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1507 	 * page accessed.
1508 	 */
1509 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1510 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1511 		/*
1512 		 * somebody initialized the group
1513 		 * return without doing anything
1514 		 */
1515 		goto err;
1516 	}
1517 
1518 	page = e4b.bd_bitmap_page;
1519 	ret = ext4_mb_init_cache(page, NULL, gfp);
1520 	if (ret)
1521 		goto err;
1522 	if (!PageUptodate(page)) {
1523 		ret = -EIO;
1524 		goto err;
1525 	}
1526 
1527 	if (e4b.bd_buddy_page == NULL) {
1528 		/*
1529 		 * If both the bitmap and buddy are in
1530 		 * the same page we don't need to force
1531 		 * init the buddy
1532 		 */
1533 		ret = 0;
1534 		goto err;
1535 	}
1536 	/* init buddy cache */
1537 	page = e4b.bd_buddy_page;
1538 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1539 	if (ret)
1540 		goto err;
1541 	if (!PageUptodate(page)) {
1542 		ret = -EIO;
1543 		goto err;
1544 	}
1545 err:
1546 	ext4_mb_put_buddy_page_lock(&e4b);
1547 	return ret;
1548 }
1549 
1550 /*
1551  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1552  * block group lock of all groups for this page; do not hold the BG lock when
1553  * calling this routine!
1554  */
1555 static noinline_for_stack int
1556 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1557 		       struct ext4_buddy *e4b, gfp_t gfp)
1558 {
1559 	int blocks_per_page;
1560 	int block;
1561 	int pnum;
1562 	int poff;
1563 	struct page *page;
1564 	int ret;
1565 	struct ext4_group_info *grp;
1566 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1567 	struct inode *inode = sbi->s_buddy_cache;
1568 
1569 	might_sleep();
1570 	mb_debug(sb, "load group %u\n", group);
1571 
1572 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1573 	grp = ext4_get_group_info(sb, group);
1574 	if (!grp)
1575 		return -EFSCORRUPTED;
1576 
1577 	e4b->bd_blkbits = sb->s_blocksize_bits;
1578 	e4b->bd_info = grp;
1579 	e4b->bd_sb = sb;
1580 	e4b->bd_group = group;
1581 	e4b->bd_buddy_page = NULL;
1582 	e4b->bd_bitmap_page = NULL;
1583 
1584 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1585 		/*
1586 		 * we need full data about the group
1587 		 * to make a good selection
1588 		 */
1589 		ret = ext4_mb_init_group(sb, group, gfp);
1590 		if (ret)
1591 			return ret;
1592 	}
1593 
1594 	/*
1595 	 * the buddy cache inode stores the block bitmap
1596 	 * and buddy information in consecutive blocks.
1597 	 * So for each group we need two blocks.
1598 	 */
1599 	block = group * 2;
1600 	pnum = block / blocks_per_page;
1601 	poff = block % blocks_per_page;
1602 
1603 	/* we could use find_or_create_page(), but it locks page
1604 	 * what we'd like to avoid in fast path ... */
1605 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1606 	if (page == NULL || !PageUptodate(page)) {
1607 		if (page)
1608 			/*
1609 			 * drop the page reference and try
1610 			 * to get the page with lock. If we
1611 			 * are not uptodate that implies
1612 			 * somebody just created the page but
1613 			 * is yet to initialize the same. So
1614 			 * wait for it to initialize.
1615 			 */
1616 			put_page(page);
1617 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1618 		if (page) {
1619 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1620 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1621 				/* should never happen */
1622 				unlock_page(page);
1623 				ret = -EINVAL;
1624 				goto err;
1625 			}
1626 			if (!PageUptodate(page)) {
1627 				ret = ext4_mb_init_cache(page, NULL, gfp);
1628 				if (ret) {
1629 					unlock_page(page);
1630 					goto err;
1631 				}
1632 				mb_cmp_bitmaps(e4b, page_address(page) +
1633 					       (poff * sb->s_blocksize));
1634 			}
1635 			unlock_page(page);
1636 		}
1637 	}
1638 	if (page == NULL) {
1639 		ret = -ENOMEM;
1640 		goto err;
1641 	}
1642 	if (!PageUptodate(page)) {
1643 		ret = -EIO;
1644 		goto err;
1645 	}
1646 
1647 	/* Pages marked accessed already */
1648 	e4b->bd_bitmap_page = page;
1649 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1650 
1651 	block++;
1652 	pnum = block / blocks_per_page;
1653 	poff = block % blocks_per_page;
1654 
1655 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1656 	if (page == NULL || !PageUptodate(page)) {
1657 		if (page)
1658 			put_page(page);
1659 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1660 		if (page) {
1661 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1662 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1663 				/* should never happen */
1664 				unlock_page(page);
1665 				ret = -EINVAL;
1666 				goto err;
1667 			}
1668 			if (!PageUptodate(page)) {
1669 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1670 							 gfp);
1671 				if (ret) {
1672 					unlock_page(page);
1673 					goto err;
1674 				}
1675 			}
1676 			unlock_page(page);
1677 		}
1678 	}
1679 	if (page == NULL) {
1680 		ret = -ENOMEM;
1681 		goto err;
1682 	}
1683 	if (!PageUptodate(page)) {
1684 		ret = -EIO;
1685 		goto err;
1686 	}
1687 
1688 	/* Pages marked accessed already */
1689 	e4b->bd_buddy_page = page;
1690 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1691 
1692 	return 0;
1693 
1694 err:
1695 	if (page)
1696 		put_page(page);
1697 	if (e4b->bd_bitmap_page)
1698 		put_page(e4b->bd_bitmap_page);
1699 
1700 	e4b->bd_buddy = NULL;
1701 	e4b->bd_bitmap = NULL;
1702 	return ret;
1703 }
1704 
1705 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1706 			      struct ext4_buddy *e4b)
1707 {
1708 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1709 }
1710 
1711 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1712 {
1713 	if (e4b->bd_bitmap_page)
1714 		put_page(e4b->bd_bitmap_page);
1715 	if (e4b->bd_buddy_page)
1716 		put_page(e4b->bd_buddy_page);
1717 }
1718 
1719 
1720 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1721 {
1722 	int order = 1, max;
1723 	void *bb;
1724 
1725 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1726 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1727 
1728 	while (order <= e4b->bd_blkbits + 1) {
1729 		bb = mb_find_buddy(e4b, order, &max);
1730 		if (!mb_test_bit(block >> order, bb)) {
1731 			/* this block is part of buddy of order 'order' */
1732 			return order;
1733 		}
1734 		order++;
1735 	}
1736 	return 0;
1737 }
1738 
1739 static void mb_clear_bits(void *bm, int cur, int len)
1740 {
1741 	__u32 *addr;
1742 
1743 	len = cur + len;
1744 	while (cur < len) {
1745 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1746 			/* fast path: clear whole word at once */
1747 			addr = bm + (cur >> 3);
1748 			*addr = 0;
1749 			cur += 32;
1750 			continue;
1751 		}
1752 		mb_clear_bit(cur, bm);
1753 		cur++;
1754 	}
1755 }
1756 
1757 /* clear bits in given range
1758  * will return first found zero bit if any, -1 otherwise
1759  */
1760 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1761 {
1762 	__u32 *addr;
1763 	int zero_bit = -1;
1764 
1765 	len = cur + len;
1766 	while (cur < len) {
1767 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1768 			/* fast path: clear whole word at once */
1769 			addr = bm + (cur >> 3);
1770 			if (*addr != (__u32)(-1) && zero_bit == -1)
1771 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1772 			*addr = 0;
1773 			cur += 32;
1774 			continue;
1775 		}
1776 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1777 			zero_bit = cur;
1778 		cur++;
1779 	}
1780 
1781 	return zero_bit;
1782 }
1783 
1784 void mb_set_bits(void *bm, int cur, int len)
1785 {
1786 	__u32 *addr;
1787 
1788 	len = cur + len;
1789 	while (cur < len) {
1790 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1791 			/* fast path: set whole word at once */
1792 			addr = bm + (cur >> 3);
1793 			*addr = 0xffffffff;
1794 			cur += 32;
1795 			continue;
1796 		}
1797 		mb_set_bit(cur, bm);
1798 		cur++;
1799 	}
1800 }
1801 
1802 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1803 {
1804 	if (mb_test_bit(*bit + side, bitmap)) {
1805 		mb_clear_bit(*bit, bitmap);
1806 		(*bit) -= side;
1807 		return 1;
1808 	}
1809 	else {
1810 		(*bit) += side;
1811 		mb_set_bit(*bit, bitmap);
1812 		return -1;
1813 	}
1814 }
1815 
1816 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1817 {
1818 	int max;
1819 	int order = 1;
1820 	void *buddy = mb_find_buddy(e4b, order, &max);
1821 
1822 	while (buddy) {
1823 		void *buddy2;
1824 
1825 		/* Bits in range [first; last] are known to be set since
1826 		 * corresponding blocks were allocated. Bits in range
1827 		 * (first; last) will stay set because they form buddies on
1828 		 * upper layer. We just deal with borders if they don't
1829 		 * align with upper layer and then go up.
1830 		 * Releasing entire group is all about clearing
1831 		 * single bit of highest order buddy.
1832 		 */
1833 
1834 		/* Example:
1835 		 * ---------------------------------
1836 		 * |   1   |   1   |   1   |   1   |
1837 		 * ---------------------------------
1838 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1839 		 * ---------------------------------
1840 		 *   0   1   2   3   4   5   6   7
1841 		 *      \_____________________/
1842 		 *
1843 		 * Neither [1] nor [6] is aligned to above layer.
1844 		 * Left neighbour [0] is free, so mark it busy,
1845 		 * decrease bb_counters and extend range to
1846 		 * [0; 6]
1847 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1848 		 * mark [6] free, increase bb_counters and shrink range to
1849 		 * [0; 5].
1850 		 * Then shift range to [0; 2], go up and do the same.
1851 		 */
1852 
1853 
1854 		if (first & 1)
1855 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1856 		if (!(last & 1))
1857 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1858 		if (first > last)
1859 			break;
1860 		order++;
1861 
1862 		buddy2 = mb_find_buddy(e4b, order, &max);
1863 		if (!buddy2) {
1864 			mb_clear_bits(buddy, first, last - first + 1);
1865 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1866 			break;
1867 		}
1868 		first >>= 1;
1869 		last >>= 1;
1870 		buddy = buddy2;
1871 	}
1872 }
1873 
1874 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1875 			   int first, int count)
1876 {
1877 	int left_is_free = 0;
1878 	int right_is_free = 0;
1879 	int block;
1880 	int last = first + count - 1;
1881 	struct super_block *sb = e4b->bd_sb;
1882 
1883 	if (WARN_ON(count == 0))
1884 		return;
1885 	BUG_ON(last >= (sb->s_blocksize << 3));
1886 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1887 	/* Don't bother if the block group is corrupt. */
1888 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1889 		return;
1890 
1891 	mb_check_buddy(e4b);
1892 	mb_free_blocks_double(inode, e4b, first, count);
1893 
1894 	this_cpu_inc(discard_pa_seq);
1895 	e4b->bd_info->bb_free += count;
1896 	if (first < e4b->bd_info->bb_first_free)
1897 		e4b->bd_info->bb_first_free = first;
1898 
1899 	/* access memory sequentially: check left neighbour,
1900 	 * clear range and then check right neighbour
1901 	 */
1902 	if (first != 0)
1903 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1904 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1905 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1906 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1907 
1908 	if (unlikely(block != -1)) {
1909 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1910 		ext4_fsblk_t blocknr;
1911 
1912 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1913 		blocknr += EXT4_C2B(sbi, block);
1914 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1915 			ext4_grp_locked_error(sb, e4b->bd_group,
1916 					      inode ? inode->i_ino : 0,
1917 					      blocknr,
1918 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1919 					      block);
1920 			ext4_mark_group_bitmap_corrupted(
1921 				sb, e4b->bd_group,
1922 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1923 		}
1924 		goto done;
1925 	}
1926 
1927 	/* let's maintain fragments counter */
1928 	if (left_is_free && right_is_free)
1929 		e4b->bd_info->bb_fragments--;
1930 	else if (!left_is_free && !right_is_free)
1931 		e4b->bd_info->bb_fragments++;
1932 
1933 	/* buddy[0] == bd_bitmap is a special case, so handle
1934 	 * it right away and let mb_buddy_mark_free stay free of
1935 	 * zero order checks.
1936 	 * Check if neighbours are to be coaleasced,
1937 	 * adjust bitmap bb_counters and borders appropriately.
1938 	 */
1939 	if (first & 1) {
1940 		first += !left_is_free;
1941 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1942 	}
1943 	if (!(last & 1)) {
1944 		last -= !right_is_free;
1945 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1946 	}
1947 
1948 	if (first <= last)
1949 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1950 
1951 done:
1952 	mb_set_largest_free_order(sb, e4b->bd_info);
1953 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1954 	mb_check_buddy(e4b);
1955 }
1956 
1957 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1958 				int needed, struct ext4_free_extent *ex)
1959 {
1960 	int next = block;
1961 	int max, order;
1962 	void *buddy;
1963 
1964 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1965 	BUG_ON(ex == NULL);
1966 
1967 	buddy = mb_find_buddy(e4b, 0, &max);
1968 	BUG_ON(buddy == NULL);
1969 	BUG_ON(block >= max);
1970 	if (mb_test_bit(block, buddy)) {
1971 		ex->fe_len = 0;
1972 		ex->fe_start = 0;
1973 		ex->fe_group = 0;
1974 		return 0;
1975 	}
1976 
1977 	/* find actual order */
1978 	order = mb_find_order_for_block(e4b, block);
1979 	block = block >> order;
1980 
1981 	ex->fe_len = 1 << order;
1982 	ex->fe_start = block << order;
1983 	ex->fe_group = e4b->bd_group;
1984 
1985 	/* calc difference from given start */
1986 	next = next - ex->fe_start;
1987 	ex->fe_len -= next;
1988 	ex->fe_start += next;
1989 
1990 	while (needed > ex->fe_len &&
1991 	       mb_find_buddy(e4b, order, &max)) {
1992 
1993 		if (block + 1 >= max)
1994 			break;
1995 
1996 		next = (block + 1) * (1 << order);
1997 		if (mb_test_bit(next, e4b->bd_bitmap))
1998 			break;
1999 
2000 		order = mb_find_order_for_block(e4b, next);
2001 
2002 		block = next >> order;
2003 		ex->fe_len += 1 << order;
2004 	}
2005 
2006 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2007 		/* Should never happen! (but apparently sometimes does?!?) */
2008 		WARN_ON(1);
2009 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2010 			"corruption or bug in mb_find_extent "
2011 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2012 			block, order, needed, ex->fe_group, ex->fe_start,
2013 			ex->fe_len, ex->fe_logical);
2014 		ex->fe_len = 0;
2015 		ex->fe_start = 0;
2016 		ex->fe_group = 0;
2017 	}
2018 	return ex->fe_len;
2019 }
2020 
2021 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2022 {
2023 	int ord;
2024 	int mlen = 0;
2025 	int max = 0;
2026 	int cur;
2027 	int start = ex->fe_start;
2028 	int len = ex->fe_len;
2029 	unsigned ret = 0;
2030 	int len0 = len;
2031 	void *buddy;
2032 	bool split = false;
2033 
2034 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2035 	BUG_ON(e4b->bd_group != ex->fe_group);
2036 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2037 	mb_check_buddy(e4b);
2038 	mb_mark_used_double(e4b, start, len);
2039 
2040 	this_cpu_inc(discard_pa_seq);
2041 	e4b->bd_info->bb_free -= len;
2042 	if (e4b->bd_info->bb_first_free == start)
2043 		e4b->bd_info->bb_first_free += len;
2044 
2045 	/* let's maintain fragments counter */
2046 	if (start != 0)
2047 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2048 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2049 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2050 	if (mlen && max)
2051 		e4b->bd_info->bb_fragments++;
2052 	else if (!mlen && !max)
2053 		e4b->bd_info->bb_fragments--;
2054 
2055 	/* let's maintain buddy itself */
2056 	while (len) {
2057 		if (!split)
2058 			ord = mb_find_order_for_block(e4b, start);
2059 
2060 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2061 			/* the whole chunk may be allocated at once! */
2062 			mlen = 1 << ord;
2063 			if (!split)
2064 				buddy = mb_find_buddy(e4b, ord, &max);
2065 			else
2066 				split = false;
2067 			BUG_ON((start >> ord) >= max);
2068 			mb_set_bit(start >> ord, buddy);
2069 			e4b->bd_info->bb_counters[ord]--;
2070 			start += mlen;
2071 			len -= mlen;
2072 			BUG_ON(len < 0);
2073 			continue;
2074 		}
2075 
2076 		/* store for history */
2077 		if (ret == 0)
2078 			ret = len | (ord << 16);
2079 
2080 		/* we have to split large buddy */
2081 		BUG_ON(ord <= 0);
2082 		buddy = mb_find_buddy(e4b, ord, &max);
2083 		mb_set_bit(start >> ord, buddy);
2084 		e4b->bd_info->bb_counters[ord]--;
2085 
2086 		ord--;
2087 		cur = (start >> ord) & ~1U;
2088 		buddy = mb_find_buddy(e4b, ord, &max);
2089 		mb_clear_bit(cur, buddy);
2090 		mb_clear_bit(cur + 1, buddy);
2091 		e4b->bd_info->bb_counters[ord]++;
2092 		e4b->bd_info->bb_counters[ord]++;
2093 		split = true;
2094 	}
2095 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2096 
2097 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2098 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2099 	mb_check_buddy(e4b);
2100 
2101 	return ret;
2102 }
2103 
2104 /*
2105  * Must be called under group lock!
2106  */
2107 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2108 					struct ext4_buddy *e4b)
2109 {
2110 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2111 	int ret;
2112 
2113 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2114 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2115 
2116 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2117 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2118 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2119 
2120 	/* preallocation can change ac_b_ex, thus we store actually
2121 	 * allocated blocks for history */
2122 	ac->ac_f_ex = ac->ac_b_ex;
2123 
2124 	ac->ac_status = AC_STATUS_FOUND;
2125 	ac->ac_tail = ret & 0xffff;
2126 	ac->ac_buddy = ret >> 16;
2127 
2128 	/*
2129 	 * take the page reference. We want the page to be pinned
2130 	 * so that we don't get a ext4_mb_init_cache_call for this
2131 	 * group until we update the bitmap. That would mean we
2132 	 * double allocate blocks. The reference is dropped
2133 	 * in ext4_mb_release_context
2134 	 */
2135 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2136 	get_page(ac->ac_bitmap_page);
2137 	ac->ac_buddy_page = e4b->bd_buddy_page;
2138 	get_page(ac->ac_buddy_page);
2139 	/* store last allocated for subsequent stream allocation */
2140 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2141 		spin_lock(&sbi->s_md_lock);
2142 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2143 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2144 		spin_unlock(&sbi->s_md_lock);
2145 	}
2146 	/*
2147 	 * As we've just preallocated more space than
2148 	 * user requested originally, we store allocated
2149 	 * space in a special descriptor.
2150 	 */
2151 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2152 		ext4_mb_new_preallocation(ac);
2153 
2154 }
2155 
2156 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2157 					struct ext4_buddy *e4b,
2158 					int finish_group)
2159 {
2160 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2161 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2162 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2163 
2164 	if (ac->ac_status == AC_STATUS_FOUND)
2165 		return;
2166 	/*
2167 	 * We don't want to scan for a whole year
2168 	 */
2169 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2170 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2171 		ac->ac_status = AC_STATUS_BREAK;
2172 		return;
2173 	}
2174 
2175 	/*
2176 	 * Haven't found good chunk so far, let's continue
2177 	 */
2178 	if (bex->fe_len < gex->fe_len)
2179 		return;
2180 
2181 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2182 		ext4_mb_use_best_found(ac, e4b);
2183 }
2184 
2185 /*
2186  * The routine checks whether found extent is good enough. If it is,
2187  * then the extent gets marked used and flag is set to the context
2188  * to stop scanning. Otherwise, the extent is compared with the
2189  * previous found extent and if new one is better, then it's stored
2190  * in the context. Later, the best found extent will be used, if
2191  * mballoc can't find good enough extent.
2192  *
2193  * The algorithm used is roughly as follows:
2194  *
2195  * * If free extent found is exactly as big as goal, then
2196  *   stop the scan and use it immediately
2197  *
2198  * * If free extent found is smaller than goal, then keep retrying
2199  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2200  *   that stop scanning and use whatever we have.
2201  *
2202  * * If free extent found is bigger than goal, then keep retrying
2203  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2204  *   stopping the scan and using the extent.
2205  *
2206  *
2207  * FIXME: real allocation policy is to be designed yet!
2208  */
2209 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2210 					struct ext4_free_extent *ex,
2211 					struct ext4_buddy *e4b)
2212 {
2213 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2214 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2215 
2216 	BUG_ON(ex->fe_len <= 0);
2217 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2218 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2219 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2220 
2221 	ac->ac_found++;
2222 	ac->ac_cX_found[ac->ac_criteria]++;
2223 
2224 	/*
2225 	 * The special case - take what you catch first
2226 	 */
2227 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228 		*bex = *ex;
2229 		ext4_mb_use_best_found(ac, e4b);
2230 		return;
2231 	}
2232 
2233 	/*
2234 	 * Let's check whether the chuck is good enough
2235 	 */
2236 	if (ex->fe_len == gex->fe_len) {
2237 		*bex = *ex;
2238 		ext4_mb_use_best_found(ac, e4b);
2239 		return;
2240 	}
2241 
2242 	/*
2243 	 * If this is first found extent, just store it in the context
2244 	 */
2245 	if (bex->fe_len == 0) {
2246 		*bex = *ex;
2247 		return;
2248 	}
2249 
2250 	/*
2251 	 * If new found extent is better, store it in the context
2252 	 */
2253 	if (bex->fe_len < gex->fe_len) {
2254 		/* if the request isn't satisfied, any found extent
2255 		 * larger than previous best one is better */
2256 		if (ex->fe_len > bex->fe_len)
2257 			*bex = *ex;
2258 	} else if (ex->fe_len > gex->fe_len) {
2259 		/* if the request is satisfied, then we try to find
2260 		 * an extent that still satisfy the request, but is
2261 		 * smaller than previous one */
2262 		if (ex->fe_len < bex->fe_len)
2263 			*bex = *ex;
2264 	}
2265 
2266 	ext4_mb_check_limits(ac, e4b, 0);
2267 }
2268 
2269 static noinline_for_stack
2270 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2271 					struct ext4_buddy *e4b)
2272 {
2273 	struct ext4_free_extent ex = ac->ac_b_ex;
2274 	ext4_group_t group = ex.fe_group;
2275 	int max;
2276 	int err;
2277 
2278 	BUG_ON(ex.fe_len <= 0);
2279 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2280 	if (err)
2281 		return;
2282 
2283 	ext4_lock_group(ac->ac_sb, group);
2284 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2285 
2286 	if (max > 0) {
2287 		ac->ac_b_ex = ex;
2288 		ext4_mb_use_best_found(ac, e4b);
2289 	}
2290 
2291 	ext4_unlock_group(ac->ac_sb, group);
2292 	ext4_mb_unload_buddy(e4b);
2293 }
2294 
2295 static noinline_for_stack
2296 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2297 				struct ext4_buddy *e4b)
2298 {
2299 	ext4_group_t group = ac->ac_g_ex.fe_group;
2300 	int max;
2301 	int err;
2302 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2303 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2304 	struct ext4_free_extent ex;
2305 
2306 	if (!grp)
2307 		return -EFSCORRUPTED;
2308 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2309 		return 0;
2310 	if (grp->bb_free == 0)
2311 		return 0;
2312 
2313 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2314 	if (err)
2315 		return err;
2316 
2317 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2318 		ext4_mb_unload_buddy(e4b);
2319 		return 0;
2320 	}
2321 
2322 	ext4_lock_group(ac->ac_sb, group);
2323 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2324 			     ac->ac_g_ex.fe_len, &ex);
2325 	ex.fe_logical = 0xDEADFA11; /* debug value */
2326 
2327 	if (max >= ac->ac_g_ex.fe_len &&
2328 	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2329 		ext4_fsblk_t start;
2330 
2331 		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2332 		/* use do_div to get remainder (would be 64-bit modulo) */
2333 		if (do_div(start, sbi->s_stripe) == 0) {
2334 			ac->ac_found++;
2335 			ac->ac_b_ex = ex;
2336 			ext4_mb_use_best_found(ac, e4b);
2337 		}
2338 	} else if (max >= ac->ac_g_ex.fe_len) {
2339 		BUG_ON(ex.fe_len <= 0);
2340 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2341 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2342 		ac->ac_found++;
2343 		ac->ac_b_ex = ex;
2344 		ext4_mb_use_best_found(ac, e4b);
2345 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2346 		/* Sometimes, caller may want to merge even small
2347 		 * number of blocks to an existing extent */
2348 		BUG_ON(ex.fe_len <= 0);
2349 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2350 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2351 		ac->ac_found++;
2352 		ac->ac_b_ex = ex;
2353 		ext4_mb_use_best_found(ac, e4b);
2354 	}
2355 	ext4_unlock_group(ac->ac_sb, group);
2356 	ext4_mb_unload_buddy(e4b);
2357 
2358 	return 0;
2359 }
2360 
2361 /*
2362  * The routine scans buddy structures (not bitmap!) from given order
2363  * to max order and tries to find big enough chunk to satisfy the req
2364  */
2365 static noinline_for_stack
2366 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2367 					struct ext4_buddy *e4b)
2368 {
2369 	struct super_block *sb = ac->ac_sb;
2370 	struct ext4_group_info *grp = e4b->bd_info;
2371 	void *buddy;
2372 	int i;
2373 	int k;
2374 	int max;
2375 
2376 	BUG_ON(ac->ac_2order <= 0);
2377 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2378 		if (grp->bb_counters[i] == 0)
2379 			continue;
2380 
2381 		buddy = mb_find_buddy(e4b, i, &max);
2382 		if (WARN_RATELIMIT(buddy == NULL,
2383 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2384 			continue;
2385 
2386 		k = mb_find_next_zero_bit(buddy, max, 0);
2387 		if (k >= max) {
2388 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2389 				"%d free clusters of order %d. But found 0",
2390 				grp->bb_counters[i], i);
2391 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2392 					 e4b->bd_group,
2393 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2394 			break;
2395 		}
2396 		ac->ac_found++;
2397 		ac->ac_cX_found[ac->ac_criteria]++;
2398 
2399 		ac->ac_b_ex.fe_len = 1 << i;
2400 		ac->ac_b_ex.fe_start = k << i;
2401 		ac->ac_b_ex.fe_group = e4b->bd_group;
2402 
2403 		ext4_mb_use_best_found(ac, e4b);
2404 
2405 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2406 
2407 		if (EXT4_SB(sb)->s_mb_stats)
2408 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2409 
2410 		break;
2411 	}
2412 }
2413 
2414 /*
2415  * The routine scans the group and measures all found extents.
2416  * In order to optimize scanning, caller must pass number of
2417  * free blocks in the group, so the routine can know upper limit.
2418  */
2419 static noinline_for_stack
2420 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2421 					struct ext4_buddy *e4b)
2422 {
2423 	struct super_block *sb = ac->ac_sb;
2424 	void *bitmap = e4b->bd_bitmap;
2425 	struct ext4_free_extent ex;
2426 	int i, j, freelen;
2427 	int free;
2428 
2429 	free = e4b->bd_info->bb_free;
2430 	if (WARN_ON(free <= 0))
2431 		return;
2432 
2433 	i = e4b->bd_info->bb_first_free;
2434 
2435 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2436 		i = mb_find_next_zero_bit(bitmap,
2437 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2438 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2439 			/*
2440 			 * IF we have corrupt bitmap, we won't find any
2441 			 * free blocks even though group info says we
2442 			 * have free blocks
2443 			 */
2444 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2445 					"%d free clusters as per "
2446 					"group info. But bitmap says 0",
2447 					free);
2448 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2449 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2450 			break;
2451 		}
2452 
2453 		if (ac->ac_criteria < CR_FAST) {
2454 			/*
2455 			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2456 			 * sure that this group will have a large enough
2457 			 * continuous free extent, so skip over the smaller free
2458 			 * extents
2459 			 */
2460 			j = mb_find_next_bit(bitmap,
2461 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2462 			freelen = j - i;
2463 
2464 			if (freelen < ac->ac_g_ex.fe_len) {
2465 				i = j;
2466 				free -= freelen;
2467 				continue;
2468 			}
2469 		}
2470 
2471 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2472 		if (WARN_ON(ex.fe_len <= 0))
2473 			break;
2474 		if (free < ex.fe_len) {
2475 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2476 					"%d free clusters as per "
2477 					"group info. But got %d blocks",
2478 					free, ex.fe_len);
2479 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2480 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2481 			/*
2482 			 * The number of free blocks differs. This mostly
2483 			 * indicate that the bitmap is corrupt. So exit
2484 			 * without claiming the space.
2485 			 */
2486 			break;
2487 		}
2488 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2489 		ext4_mb_measure_extent(ac, &ex, e4b);
2490 
2491 		i += ex.fe_len;
2492 		free -= ex.fe_len;
2493 	}
2494 
2495 	ext4_mb_check_limits(ac, e4b, 1);
2496 }
2497 
2498 /*
2499  * This is a special case for storages like raid5
2500  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2501  */
2502 static noinline_for_stack
2503 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2504 				 struct ext4_buddy *e4b)
2505 {
2506 	struct super_block *sb = ac->ac_sb;
2507 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2508 	void *bitmap = e4b->bd_bitmap;
2509 	struct ext4_free_extent ex;
2510 	ext4_fsblk_t first_group_block;
2511 	ext4_fsblk_t a;
2512 	ext4_grpblk_t i, stripe;
2513 	int max;
2514 
2515 	BUG_ON(sbi->s_stripe == 0);
2516 
2517 	/* find first stripe-aligned block in group */
2518 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2519 
2520 	a = first_group_block + sbi->s_stripe - 1;
2521 	do_div(a, sbi->s_stripe);
2522 	i = (a * sbi->s_stripe) - first_group_block;
2523 
2524 	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2525 	i = EXT4_B2C(sbi, i);
2526 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2527 		if (!mb_test_bit(i, bitmap)) {
2528 			max = mb_find_extent(e4b, i, stripe, &ex);
2529 			if (max >= stripe) {
2530 				ac->ac_found++;
2531 				ac->ac_cX_found[ac->ac_criteria]++;
2532 				ex.fe_logical = 0xDEADF00D; /* debug value */
2533 				ac->ac_b_ex = ex;
2534 				ext4_mb_use_best_found(ac, e4b);
2535 				break;
2536 			}
2537 		}
2538 		i += stripe;
2539 	}
2540 }
2541 
2542 /*
2543  * This is also called BEFORE we load the buddy bitmap.
2544  * Returns either 1 or 0 indicating that the group is either suitable
2545  * for the allocation or not.
2546  */
2547 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2548 				ext4_group_t group, enum criteria cr)
2549 {
2550 	ext4_grpblk_t free, fragments;
2551 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2552 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2553 
2554 	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2555 
2556 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp) || !grp))
2557 		return false;
2558 
2559 	free = grp->bb_free;
2560 	if (free == 0)
2561 		return false;
2562 
2563 	fragments = grp->bb_fragments;
2564 	if (fragments == 0)
2565 		return false;
2566 
2567 	switch (cr) {
2568 	case CR_POWER2_ALIGNED:
2569 		BUG_ON(ac->ac_2order == 0);
2570 
2571 		/* Avoid using the first bg of a flexgroup for data files */
2572 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2573 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2574 		    ((group % flex_size) == 0))
2575 			return false;
2576 
2577 		if (free < ac->ac_g_ex.fe_len)
2578 			return false;
2579 
2580 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2581 			return true;
2582 
2583 		if (grp->bb_largest_free_order < ac->ac_2order)
2584 			return false;
2585 
2586 		return true;
2587 	case CR_GOAL_LEN_FAST:
2588 	case CR_BEST_AVAIL_LEN:
2589 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2590 			return true;
2591 		break;
2592 	case CR_GOAL_LEN_SLOW:
2593 		if (free >= ac->ac_g_ex.fe_len)
2594 			return true;
2595 		break;
2596 	case CR_ANY_FREE:
2597 		return true;
2598 	default:
2599 		BUG();
2600 	}
2601 
2602 	return false;
2603 }
2604 
2605 /*
2606  * This could return negative error code if something goes wrong
2607  * during ext4_mb_init_group(). This should not be called with
2608  * ext4_lock_group() held.
2609  *
2610  * Note: because we are conditionally operating with the group lock in
2611  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2612  * function using __acquire and __release.  This means we need to be
2613  * super careful before messing with the error path handling via "goto
2614  * out"!
2615  */
2616 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2617 				     ext4_group_t group, enum criteria cr)
2618 {
2619 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2620 	struct super_block *sb = ac->ac_sb;
2621 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2622 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2623 	ext4_grpblk_t free;
2624 	int ret = 0;
2625 
2626 	if (!grp)
2627 		return -EFSCORRUPTED;
2628 	if (sbi->s_mb_stats)
2629 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2630 	if (should_lock) {
2631 		ext4_lock_group(sb, group);
2632 		__release(ext4_group_lock_ptr(sb, group));
2633 	}
2634 	free = grp->bb_free;
2635 	if (free == 0)
2636 		goto out;
2637 	if (cr <= CR_FAST && free < ac->ac_g_ex.fe_len)
2638 		goto out;
2639 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2640 		goto out;
2641 	if (should_lock) {
2642 		__acquire(ext4_group_lock_ptr(sb, group));
2643 		ext4_unlock_group(sb, group);
2644 	}
2645 
2646 	/* We only do this if the grp has never been initialized */
2647 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2648 		struct ext4_group_desc *gdp =
2649 			ext4_get_group_desc(sb, group, NULL);
2650 		int ret;
2651 
2652 		/*
2653 		 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2654 		 * search to find large good chunks almost for free. If buddy
2655 		 * data is not ready, then this optimization makes no sense. But
2656 		 * we never skip the first block group in a flex_bg, since this
2657 		 * gets used for metadata block allocation, and we want to make
2658 		 * sure we locate metadata blocks in the first block group in
2659 		 * the flex_bg if possible.
2660 		 */
2661 		if (cr < CR_FAST &&
2662 		    (!sbi->s_log_groups_per_flex ||
2663 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2664 		    !(ext4_has_group_desc_csum(sb) &&
2665 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2666 			return 0;
2667 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2668 		if (ret)
2669 			return ret;
2670 	}
2671 
2672 	if (should_lock) {
2673 		ext4_lock_group(sb, group);
2674 		__release(ext4_group_lock_ptr(sb, group));
2675 	}
2676 	ret = ext4_mb_good_group(ac, group, cr);
2677 out:
2678 	if (should_lock) {
2679 		__acquire(ext4_group_lock_ptr(sb, group));
2680 		ext4_unlock_group(sb, group);
2681 	}
2682 	return ret;
2683 }
2684 
2685 /*
2686  * Start prefetching @nr block bitmaps starting at @group.
2687  * Return the next group which needs to be prefetched.
2688  */
2689 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2690 			      unsigned int nr, int *cnt)
2691 {
2692 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2693 	struct buffer_head *bh;
2694 	struct blk_plug plug;
2695 
2696 	blk_start_plug(&plug);
2697 	while (nr-- > 0) {
2698 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2699 								  NULL);
2700 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2701 
2702 		/*
2703 		 * Prefetch block groups with free blocks; but don't
2704 		 * bother if it is marked uninitialized on disk, since
2705 		 * it won't require I/O to read.  Also only try to
2706 		 * prefetch once, so we avoid getblk() call, which can
2707 		 * be expensive.
2708 		 */
2709 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2710 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2711 		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2712 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2713 			if (bh && !IS_ERR(bh)) {
2714 				if (!buffer_uptodate(bh) && cnt)
2715 					(*cnt)++;
2716 				brelse(bh);
2717 			}
2718 		}
2719 		if (++group >= ngroups)
2720 			group = 0;
2721 	}
2722 	blk_finish_plug(&plug);
2723 	return group;
2724 }
2725 
2726 /*
2727  * Prefetching reads the block bitmap into the buffer cache; but we
2728  * need to make sure that the buddy bitmap in the page cache has been
2729  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2730  * is not yet completed, or indeed if it was not initiated by
2731  * ext4_mb_prefetch did not start the I/O.
2732  *
2733  * TODO: We should actually kick off the buddy bitmap setup in a work
2734  * queue when the buffer I/O is completed, so that we don't block
2735  * waiting for the block allocation bitmap read to finish when
2736  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2737  */
2738 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2739 			   unsigned int nr)
2740 {
2741 	struct ext4_group_desc *gdp;
2742 	struct ext4_group_info *grp;
2743 
2744 	while (nr-- > 0) {
2745 		if (!group)
2746 			group = ext4_get_groups_count(sb);
2747 		group--;
2748 		gdp = ext4_get_group_desc(sb, group, NULL);
2749 		grp = ext4_get_group_info(sb, group);
2750 
2751 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2752 		    ext4_free_group_clusters(sb, gdp) > 0) {
2753 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2754 				break;
2755 		}
2756 	}
2757 }
2758 
2759 static noinline_for_stack int
2760 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2761 {
2762 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2763 	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2764 	int err = 0, first_err = 0;
2765 	unsigned int nr = 0, prefetch_ios = 0;
2766 	struct ext4_sb_info *sbi;
2767 	struct super_block *sb;
2768 	struct ext4_buddy e4b;
2769 	int lost;
2770 
2771 	sb = ac->ac_sb;
2772 	sbi = EXT4_SB(sb);
2773 	ngroups = ext4_get_groups_count(sb);
2774 	/* non-extent files are limited to low blocks/groups */
2775 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2776 		ngroups = sbi->s_blockfile_groups;
2777 
2778 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2779 
2780 	/* first, try the goal */
2781 	err = ext4_mb_find_by_goal(ac, &e4b);
2782 	if (err || ac->ac_status == AC_STATUS_FOUND)
2783 		goto out;
2784 
2785 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2786 		goto out;
2787 
2788 	/*
2789 	 * ac->ac_2order is set only if the fe_len is a power of 2
2790 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2791 	 * try exact allocation using buddy.
2792 	 */
2793 	i = fls(ac->ac_g_ex.fe_len);
2794 	ac->ac_2order = 0;
2795 	/*
2796 	 * We search using buddy data only if the order of the request
2797 	 * is greater than equal to the sbi_s_mb_order2_reqs
2798 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2799 	 * We also support searching for power-of-two requests only for
2800 	 * requests upto maximum buddy size we have constructed.
2801 	 */
2802 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2803 		/*
2804 		 * This should tell if fe_len is exactly power of 2
2805 		 */
2806 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2807 			ac->ac_2order = array_index_nospec(i - 1,
2808 							   MB_NUM_ORDERS(sb));
2809 	}
2810 
2811 	/* if stream allocation is enabled, use global goal */
2812 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2813 		/* TBD: may be hot point */
2814 		spin_lock(&sbi->s_md_lock);
2815 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2816 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2817 		spin_unlock(&sbi->s_md_lock);
2818 	}
2819 
2820 	/*
2821 	 * Let's just scan groups to find more-less suitable blocks We
2822 	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2823 	 * aligned, in which case let's do that faster approach first.
2824 	 */
2825 	if (ac->ac_2order)
2826 		cr = CR_POWER2_ALIGNED;
2827 repeat:
2828 	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2829 		ac->ac_criteria = cr;
2830 		/*
2831 		 * searching for the right group start
2832 		 * from the goal value specified
2833 		 */
2834 		group = ac->ac_g_ex.fe_group;
2835 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2836 		prefetch_grp = group;
2837 
2838 		for (i = 0, new_cr = cr; i < ngroups; i++,
2839 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2840 			int ret = 0;
2841 
2842 			cond_resched();
2843 			if (new_cr != cr) {
2844 				cr = new_cr;
2845 				goto repeat;
2846 			}
2847 
2848 			/*
2849 			 * Batch reads of the block allocation bitmaps
2850 			 * to get multiple READs in flight; limit
2851 			 * prefetching at cr=0/1, otherwise mballoc can
2852 			 * spend a lot of time loading imperfect groups
2853 			 */
2854 			if ((prefetch_grp == group) &&
2855 			    (cr >= CR_FAST ||
2856 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2857 				nr = sbi->s_mb_prefetch;
2858 				if (ext4_has_feature_flex_bg(sb)) {
2859 					nr = 1 << sbi->s_log_groups_per_flex;
2860 					nr -= group & (nr - 1);
2861 					nr = min(nr, sbi->s_mb_prefetch);
2862 				}
2863 				prefetch_grp = ext4_mb_prefetch(sb, group,
2864 							nr, &prefetch_ios);
2865 			}
2866 
2867 			/* This now checks without needing the buddy page */
2868 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2869 			if (ret <= 0) {
2870 				if (!first_err)
2871 					first_err = ret;
2872 				continue;
2873 			}
2874 
2875 			err = ext4_mb_load_buddy(sb, group, &e4b);
2876 			if (err)
2877 				goto out;
2878 
2879 			ext4_lock_group(sb, group);
2880 
2881 			/*
2882 			 * We need to check again after locking the
2883 			 * block group
2884 			 */
2885 			ret = ext4_mb_good_group(ac, group, cr);
2886 			if (ret == 0) {
2887 				ext4_unlock_group(sb, group);
2888 				ext4_mb_unload_buddy(&e4b);
2889 				continue;
2890 			}
2891 
2892 			ac->ac_groups_scanned++;
2893 			if (cr == CR_POWER2_ALIGNED)
2894 				ext4_mb_simple_scan_group(ac, &e4b);
2895 			else if ((cr == CR_GOAL_LEN_FAST ||
2896 				 cr == CR_BEST_AVAIL_LEN) &&
2897 				 sbi->s_stripe &&
2898 				 !(ac->ac_g_ex.fe_len %
2899 				 EXT4_B2C(sbi, sbi->s_stripe)))
2900 				ext4_mb_scan_aligned(ac, &e4b);
2901 			else
2902 				ext4_mb_complex_scan_group(ac, &e4b);
2903 
2904 			ext4_unlock_group(sb, group);
2905 			ext4_mb_unload_buddy(&e4b);
2906 
2907 			if (ac->ac_status != AC_STATUS_CONTINUE)
2908 				break;
2909 		}
2910 		/* Processed all groups and haven't found blocks */
2911 		if (sbi->s_mb_stats && i == ngroups)
2912 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2913 
2914 		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2915 			/* Reset goal length to original goal length before
2916 			 * falling into CR_GOAL_LEN_SLOW */
2917 			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2918 	}
2919 
2920 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2921 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2922 		/*
2923 		 * We've been searching too long. Let's try to allocate
2924 		 * the best chunk we've found so far
2925 		 */
2926 		ext4_mb_try_best_found(ac, &e4b);
2927 		if (ac->ac_status != AC_STATUS_FOUND) {
2928 			/*
2929 			 * Someone more lucky has already allocated it.
2930 			 * The only thing we can do is just take first
2931 			 * found block(s)
2932 			 */
2933 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2934 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2935 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2936 				 ac->ac_b_ex.fe_len, lost);
2937 
2938 			ac->ac_b_ex.fe_group = 0;
2939 			ac->ac_b_ex.fe_start = 0;
2940 			ac->ac_b_ex.fe_len = 0;
2941 			ac->ac_status = AC_STATUS_CONTINUE;
2942 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2943 			cr = CR_ANY_FREE;
2944 			goto repeat;
2945 		}
2946 	}
2947 
2948 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2949 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2950 out:
2951 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2952 		err = first_err;
2953 
2954 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2955 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2956 		 ac->ac_flags, cr, err);
2957 
2958 	if (nr)
2959 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2960 
2961 	return err;
2962 }
2963 
2964 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2965 {
2966 	struct super_block *sb = pde_data(file_inode(seq->file));
2967 	ext4_group_t group;
2968 
2969 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2970 		return NULL;
2971 	group = *pos + 1;
2972 	return (void *) ((unsigned long) group);
2973 }
2974 
2975 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2976 {
2977 	struct super_block *sb = pde_data(file_inode(seq->file));
2978 	ext4_group_t group;
2979 
2980 	++*pos;
2981 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2982 		return NULL;
2983 	group = *pos + 1;
2984 	return (void *) ((unsigned long) group);
2985 }
2986 
2987 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2988 {
2989 	struct super_block *sb = pde_data(file_inode(seq->file));
2990 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2991 	int i;
2992 	int err, buddy_loaded = 0;
2993 	struct ext4_buddy e4b;
2994 	struct ext4_group_info *grinfo;
2995 	unsigned char blocksize_bits = min_t(unsigned char,
2996 					     sb->s_blocksize_bits,
2997 					     EXT4_MAX_BLOCK_LOG_SIZE);
2998 	struct sg {
2999 		struct ext4_group_info info;
3000 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3001 	} sg;
3002 
3003 	group--;
3004 	if (group == 0)
3005 		seq_puts(seq, "#group: free  frags first ["
3006 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3007 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3008 
3009 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3010 		sizeof(struct ext4_group_info);
3011 
3012 	grinfo = ext4_get_group_info(sb, group);
3013 	if (!grinfo)
3014 		return 0;
3015 	/* Load the group info in memory only if not already loaded. */
3016 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3017 		err = ext4_mb_load_buddy(sb, group, &e4b);
3018 		if (err) {
3019 			seq_printf(seq, "#%-5u: I/O error\n", group);
3020 			return 0;
3021 		}
3022 		buddy_loaded = 1;
3023 	}
3024 
3025 	memcpy(&sg, grinfo, i);
3026 
3027 	if (buddy_loaded)
3028 		ext4_mb_unload_buddy(&e4b);
3029 
3030 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3031 			sg.info.bb_fragments, sg.info.bb_first_free);
3032 	for (i = 0; i <= 13; i++)
3033 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3034 				sg.info.bb_counters[i] : 0);
3035 	seq_puts(seq, " ]\n");
3036 
3037 	return 0;
3038 }
3039 
3040 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3041 {
3042 }
3043 
3044 const struct seq_operations ext4_mb_seq_groups_ops = {
3045 	.start  = ext4_mb_seq_groups_start,
3046 	.next   = ext4_mb_seq_groups_next,
3047 	.stop   = ext4_mb_seq_groups_stop,
3048 	.show   = ext4_mb_seq_groups_show,
3049 };
3050 
3051 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3052 {
3053 	struct super_block *sb = seq->private;
3054 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3055 
3056 	seq_puts(seq, "mballoc:\n");
3057 	if (!sbi->s_mb_stats) {
3058 		seq_puts(seq, "\tmb stats collection turned off.\n");
3059 		seq_puts(
3060 			seq,
3061 			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3062 		return 0;
3063 	}
3064 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3065 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3066 
3067 	seq_printf(seq, "\tgroups_scanned: %u\n",
3068 		   atomic_read(&sbi->s_bal_groups_scanned));
3069 
3070 	/* CR_POWER2_ALIGNED stats */
3071 	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3072 	seq_printf(seq, "\t\thits: %llu\n",
3073 		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3074 	seq_printf(
3075 		seq, "\t\tgroups_considered: %llu\n",
3076 		atomic64_read(
3077 			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3078 	seq_printf(seq, "\t\textents_scanned: %u\n",
3079 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3080 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3081 		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3082 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3083 		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3084 
3085 	/* CR_GOAL_LEN_FAST stats */
3086 	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3087 	seq_printf(seq, "\t\thits: %llu\n",
3088 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3089 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3090 		   atomic64_read(
3091 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3092 	seq_printf(seq, "\t\textents_scanned: %u\n",
3093 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3094 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3095 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3096 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3097 		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3098 
3099 	/* CR_BEST_AVAIL_LEN stats */
3100 	seq_puts(seq, "\tcr_best_avail_stats:\n");
3101 	seq_printf(seq, "\t\thits: %llu\n",
3102 		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3103 	seq_printf(
3104 		seq, "\t\tgroups_considered: %llu\n",
3105 		atomic64_read(
3106 			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3107 	seq_printf(seq, "\t\textents_scanned: %u\n",
3108 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3109 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3110 		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3111 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3112 		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3113 
3114 	/* CR_GOAL_LEN_SLOW stats */
3115 	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3116 	seq_printf(seq, "\t\thits: %llu\n",
3117 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3118 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3119 		   atomic64_read(
3120 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3121 	seq_printf(seq, "\t\textents_scanned: %u\n",
3122 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3123 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3124 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3125 
3126 	/* CR_ANY_FREE stats */
3127 	seq_puts(seq, "\tcr_any_free_stats:\n");
3128 	seq_printf(seq, "\t\thits: %llu\n",
3129 		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3130 	seq_printf(
3131 		seq, "\t\tgroups_considered: %llu\n",
3132 		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3133 	seq_printf(seq, "\t\textents_scanned: %u\n",
3134 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3135 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3136 		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3137 
3138 	/* Aggregates */
3139 	seq_printf(seq, "\textents_scanned: %u\n",
3140 		   atomic_read(&sbi->s_bal_ex_scanned));
3141 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3142 	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3143 		   atomic_read(&sbi->s_bal_len_goals));
3144 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3145 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3146 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3147 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3148 		   atomic_read(&sbi->s_mb_buddies_generated),
3149 		   ext4_get_groups_count(sb));
3150 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3151 		   atomic64_read(&sbi->s_mb_generation_time));
3152 	seq_printf(seq, "\tpreallocated: %u\n",
3153 		   atomic_read(&sbi->s_mb_preallocated));
3154 	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3155 	return 0;
3156 }
3157 
3158 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3159 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3160 {
3161 	struct super_block *sb = pde_data(file_inode(seq->file));
3162 	unsigned long position;
3163 
3164 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3165 		return NULL;
3166 	position = *pos + 1;
3167 	return (void *) ((unsigned long) position);
3168 }
3169 
3170 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3171 {
3172 	struct super_block *sb = pde_data(file_inode(seq->file));
3173 	unsigned long position;
3174 
3175 	++*pos;
3176 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3177 		return NULL;
3178 	position = *pos + 1;
3179 	return (void *) ((unsigned long) position);
3180 }
3181 
3182 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3183 {
3184 	struct super_block *sb = pde_data(file_inode(seq->file));
3185 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3186 	unsigned long position = ((unsigned long) v);
3187 	struct ext4_group_info *grp;
3188 	unsigned int count;
3189 
3190 	position--;
3191 	if (position >= MB_NUM_ORDERS(sb)) {
3192 		position -= MB_NUM_ORDERS(sb);
3193 		if (position == 0)
3194 			seq_puts(seq, "avg_fragment_size_lists:\n");
3195 
3196 		count = 0;
3197 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3198 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3199 				    bb_avg_fragment_size_node)
3200 			count++;
3201 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3202 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3203 					(unsigned int)position, count);
3204 		return 0;
3205 	}
3206 
3207 	if (position == 0) {
3208 		seq_printf(seq, "optimize_scan: %d\n",
3209 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3210 		seq_puts(seq, "max_free_order_lists:\n");
3211 	}
3212 	count = 0;
3213 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3214 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3215 			    bb_largest_free_order_node)
3216 		count++;
3217 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3218 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3219 		   (unsigned int)position, count);
3220 
3221 	return 0;
3222 }
3223 
3224 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3225 {
3226 }
3227 
3228 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3229 	.start  = ext4_mb_seq_structs_summary_start,
3230 	.next   = ext4_mb_seq_structs_summary_next,
3231 	.stop   = ext4_mb_seq_structs_summary_stop,
3232 	.show   = ext4_mb_seq_structs_summary_show,
3233 };
3234 
3235 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3236 {
3237 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3238 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3239 
3240 	BUG_ON(!cachep);
3241 	return cachep;
3242 }
3243 
3244 /*
3245  * Allocate the top-level s_group_info array for the specified number
3246  * of groups
3247  */
3248 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3249 {
3250 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3251 	unsigned size;
3252 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3253 
3254 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3255 		EXT4_DESC_PER_BLOCK_BITS(sb);
3256 	if (size <= sbi->s_group_info_size)
3257 		return 0;
3258 
3259 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3260 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3261 	if (!new_groupinfo) {
3262 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3263 		return -ENOMEM;
3264 	}
3265 	rcu_read_lock();
3266 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3267 	if (old_groupinfo)
3268 		memcpy(new_groupinfo, old_groupinfo,
3269 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3270 	rcu_read_unlock();
3271 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3272 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3273 	if (old_groupinfo)
3274 		ext4_kvfree_array_rcu(old_groupinfo);
3275 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3276 		   sbi->s_group_info_size);
3277 	return 0;
3278 }
3279 
3280 /* Create and initialize ext4_group_info data for the given group. */
3281 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3282 			  struct ext4_group_desc *desc)
3283 {
3284 	int i;
3285 	int metalen = 0;
3286 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3287 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3288 	struct ext4_group_info **meta_group_info;
3289 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3290 
3291 	/*
3292 	 * First check if this group is the first of a reserved block.
3293 	 * If it's true, we have to allocate a new table of pointers
3294 	 * to ext4_group_info structures
3295 	 */
3296 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3297 		metalen = sizeof(*meta_group_info) <<
3298 			EXT4_DESC_PER_BLOCK_BITS(sb);
3299 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3300 		if (meta_group_info == NULL) {
3301 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3302 				 "for a buddy group");
3303 			return -ENOMEM;
3304 		}
3305 		rcu_read_lock();
3306 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3307 		rcu_read_unlock();
3308 	}
3309 
3310 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3311 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3312 
3313 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3314 	if (meta_group_info[i] == NULL) {
3315 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3316 		goto exit_group_info;
3317 	}
3318 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3319 		&(meta_group_info[i]->bb_state));
3320 
3321 	/*
3322 	 * initialize bb_free to be able to skip
3323 	 * empty groups without initialization
3324 	 */
3325 	if (ext4_has_group_desc_csum(sb) &&
3326 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3327 		meta_group_info[i]->bb_free =
3328 			ext4_free_clusters_after_init(sb, group, desc);
3329 	} else {
3330 		meta_group_info[i]->bb_free =
3331 			ext4_free_group_clusters(sb, desc);
3332 	}
3333 
3334 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3335 	init_rwsem(&meta_group_info[i]->alloc_sem);
3336 	meta_group_info[i]->bb_free_root = RB_ROOT;
3337 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3338 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3339 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3340 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3341 	meta_group_info[i]->bb_group = group;
3342 
3343 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3344 	return 0;
3345 
3346 exit_group_info:
3347 	/* If a meta_group_info table has been allocated, release it now */
3348 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3349 		struct ext4_group_info ***group_info;
3350 
3351 		rcu_read_lock();
3352 		group_info = rcu_dereference(sbi->s_group_info);
3353 		kfree(group_info[idx]);
3354 		group_info[idx] = NULL;
3355 		rcu_read_unlock();
3356 	}
3357 	return -ENOMEM;
3358 } /* ext4_mb_add_groupinfo */
3359 
3360 static int ext4_mb_init_backend(struct super_block *sb)
3361 {
3362 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3363 	ext4_group_t i;
3364 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3365 	int err;
3366 	struct ext4_group_desc *desc;
3367 	struct ext4_group_info ***group_info;
3368 	struct kmem_cache *cachep;
3369 
3370 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3371 	if (err)
3372 		return err;
3373 
3374 	sbi->s_buddy_cache = new_inode(sb);
3375 	if (sbi->s_buddy_cache == NULL) {
3376 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3377 		goto err_freesgi;
3378 	}
3379 	/* To avoid potentially colliding with an valid on-disk inode number,
3380 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3381 	 * not in the inode hash, so it should never be found by iget(), but
3382 	 * this will avoid confusion if it ever shows up during debugging. */
3383 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3384 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3385 	for (i = 0; i < ngroups; i++) {
3386 		cond_resched();
3387 		desc = ext4_get_group_desc(sb, i, NULL);
3388 		if (desc == NULL) {
3389 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3390 			goto err_freebuddy;
3391 		}
3392 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3393 			goto err_freebuddy;
3394 	}
3395 
3396 	if (ext4_has_feature_flex_bg(sb)) {
3397 		/* a single flex group is supposed to be read by a single IO.
3398 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3399 		 * unsigned integer, so the maximum shift is 32.
3400 		 */
3401 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3402 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3403 			goto err_freebuddy;
3404 		}
3405 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3406 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3407 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3408 	} else {
3409 		sbi->s_mb_prefetch = 32;
3410 	}
3411 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3412 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3413 	/* now many real IOs to prefetch within a single allocation at cr=0
3414 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3415 	 * load too many groups, at some point we should start to use what
3416 	 * we've got in memory.
3417 	 * with an average random access time 5ms, it'd take a second to get
3418 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3419 	 */
3420 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3421 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3422 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3423 
3424 	return 0;
3425 
3426 err_freebuddy:
3427 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3428 	while (i-- > 0) {
3429 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3430 
3431 		if (grp)
3432 			kmem_cache_free(cachep, grp);
3433 	}
3434 	i = sbi->s_group_info_size;
3435 	rcu_read_lock();
3436 	group_info = rcu_dereference(sbi->s_group_info);
3437 	while (i-- > 0)
3438 		kfree(group_info[i]);
3439 	rcu_read_unlock();
3440 	iput(sbi->s_buddy_cache);
3441 err_freesgi:
3442 	rcu_read_lock();
3443 	kvfree(rcu_dereference(sbi->s_group_info));
3444 	rcu_read_unlock();
3445 	return -ENOMEM;
3446 }
3447 
3448 static void ext4_groupinfo_destroy_slabs(void)
3449 {
3450 	int i;
3451 
3452 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3453 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3454 		ext4_groupinfo_caches[i] = NULL;
3455 	}
3456 }
3457 
3458 static int ext4_groupinfo_create_slab(size_t size)
3459 {
3460 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3461 	int slab_size;
3462 	int blocksize_bits = order_base_2(size);
3463 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3464 	struct kmem_cache *cachep;
3465 
3466 	if (cache_index >= NR_GRPINFO_CACHES)
3467 		return -EINVAL;
3468 
3469 	if (unlikely(cache_index < 0))
3470 		cache_index = 0;
3471 
3472 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3473 	if (ext4_groupinfo_caches[cache_index]) {
3474 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3475 		return 0;	/* Already created */
3476 	}
3477 
3478 	slab_size = offsetof(struct ext4_group_info,
3479 				bb_counters[blocksize_bits + 2]);
3480 
3481 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3482 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3483 					NULL);
3484 
3485 	ext4_groupinfo_caches[cache_index] = cachep;
3486 
3487 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3488 	if (!cachep) {
3489 		printk(KERN_EMERG
3490 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3491 		return -ENOMEM;
3492 	}
3493 
3494 	return 0;
3495 }
3496 
3497 static void ext4_discard_work(struct work_struct *work)
3498 {
3499 	struct ext4_sb_info *sbi = container_of(work,
3500 			struct ext4_sb_info, s_discard_work);
3501 	struct super_block *sb = sbi->s_sb;
3502 	struct ext4_free_data *fd, *nfd;
3503 	struct ext4_buddy e4b;
3504 	struct list_head discard_list;
3505 	ext4_group_t grp, load_grp;
3506 	int err = 0;
3507 
3508 	INIT_LIST_HEAD(&discard_list);
3509 	spin_lock(&sbi->s_md_lock);
3510 	list_splice_init(&sbi->s_discard_list, &discard_list);
3511 	spin_unlock(&sbi->s_md_lock);
3512 
3513 	load_grp = UINT_MAX;
3514 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3515 		/*
3516 		 * If filesystem is umounting or no memory or suffering
3517 		 * from no space, give up the discard
3518 		 */
3519 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3520 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3521 			grp = fd->efd_group;
3522 			if (grp != load_grp) {
3523 				if (load_grp != UINT_MAX)
3524 					ext4_mb_unload_buddy(&e4b);
3525 
3526 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3527 				if (err) {
3528 					kmem_cache_free(ext4_free_data_cachep, fd);
3529 					load_grp = UINT_MAX;
3530 					continue;
3531 				} else {
3532 					load_grp = grp;
3533 				}
3534 			}
3535 
3536 			ext4_lock_group(sb, grp);
3537 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3538 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3539 			ext4_unlock_group(sb, grp);
3540 		}
3541 		kmem_cache_free(ext4_free_data_cachep, fd);
3542 	}
3543 
3544 	if (load_grp != UINT_MAX)
3545 		ext4_mb_unload_buddy(&e4b);
3546 }
3547 
3548 int ext4_mb_init(struct super_block *sb)
3549 {
3550 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3551 	unsigned i, j;
3552 	unsigned offset, offset_incr;
3553 	unsigned max;
3554 	int ret;
3555 
3556 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3557 
3558 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3559 	if (sbi->s_mb_offsets == NULL) {
3560 		ret = -ENOMEM;
3561 		goto out;
3562 	}
3563 
3564 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3565 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3566 	if (sbi->s_mb_maxs == NULL) {
3567 		ret = -ENOMEM;
3568 		goto out;
3569 	}
3570 
3571 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3572 	if (ret < 0)
3573 		goto out;
3574 
3575 	/* order 0 is regular bitmap */
3576 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3577 	sbi->s_mb_offsets[0] = 0;
3578 
3579 	i = 1;
3580 	offset = 0;
3581 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3582 	max = sb->s_blocksize << 2;
3583 	do {
3584 		sbi->s_mb_offsets[i] = offset;
3585 		sbi->s_mb_maxs[i] = max;
3586 		offset += offset_incr;
3587 		offset_incr = offset_incr >> 1;
3588 		max = max >> 1;
3589 		i++;
3590 	} while (i < MB_NUM_ORDERS(sb));
3591 
3592 	sbi->s_mb_avg_fragment_size =
3593 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3594 			GFP_KERNEL);
3595 	if (!sbi->s_mb_avg_fragment_size) {
3596 		ret = -ENOMEM;
3597 		goto out;
3598 	}
3599 	sbi->s_mb_avg_fragment_size_locks =
3600 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3601 			GFP_KERNEL);
3602 	if (!sbi->s_mb_avg_fragment_size_locks) {
3603 		ret = -ENOMEM;
3604 		goto out;
3605 	}
3606 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3607 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3608 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3609 	}
3610 	sbi->s_mb_largest_free_orders =
3611 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3612 			GFP_KERNEL);
3613 	if (!sbi->s_mb_largest_free_orders) {
3614 		ret = -ENOMEM;
3615 		goto out;
3616 	}
3617 	sbi->s_mb_largest_free_orders_locks =
3618 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3619 			GFP_KERNEL);
3620 	if (!sbi->s_mb_largest_free_orders_locks) {
3621 		ret = -ENOMEM;
3622 		goto out;
3623 	}
3624 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3625 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3626 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3627 	}
3628 
3629 	spin_lock_init(&sbi->s_md_lock);
3630 	sbi->s_mb_free_pending = 0;
3631 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3632 	INIT_LIST_HEAD(&sbi->s_discard_list);
3633 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3634 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3635 
3636 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3637 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3638 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3639 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3640 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3641 	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3642 
3643 	/*
3644 	 * The default group preallocation is 512, which for 4k block
3645 	 * sizes translates to 2 megabytes.  However for bigalloc file
3646 	 * systems, this is probably too big (i.e, if the cluster size
3647 	 * is 1 megabyte, then group preallocation size becomes half a
3648 	 * gigabyte!).  As a default, we will keep a two megabyte
3649 	 * group pralloc size for cluster sizes up to 64k, and after
3650 	 * that, we will force a minimum group preallocation size of
3651 	 * 32 clusters.  This translates to 8 megs when the cluster
3652 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3653 	 * which seems reasonable as a default.
3654 	 */
3655 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3656 				       sbi->s_cluster_bits, 32);
3657 	/*
3658 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3659 	 * to the lowest multiple of s_stripe which is bigger than
3660 	 * the s_mb_group_prealloc as determined above. We want
3661 	 * the preallocation size to be an exact multiple of the
3662 	 * RAID stripe size so that preallocations don't fragment
3663 	 * the stripes.
3664 	 */
3665 	if (sbi->s_stripe > 1) {
3666 		sbi->s_mb_group_prealloc = roundup(
3667 			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3668 	}
3669 
3670 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3671 	if (sbi->s_locality_groups == NULL) {
3672 		ret = -ENOMEM;
3673 		goto out;
3674 	}
3675 	for_each_possible_cpu(i) {
3676 		struct ext4_locality_group *lg;
3677 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3678 		mutex_init(&lg->lg_mutex);
3679 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3680 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3681 		spin_lock_init(&lg->lg_prealloc_lock);
3682 	}
3683 
3684 	if (bdev_nonrot(sb->s_bdev))
3685 		sbi->s_mb_max_linear_groups = 0;
3686 	else
3687 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3688 	/* init file for buddy data */
3689 	ret = ext4_mb_init_backend(sb);
3690 	if (ret != 0)
3691 		goto out_free_locality_groups;
3692 
3693 	return 0;
3694 
3695 out_free_locality_groups:
3696 	free_percpu(sbi->s_locality_groups);
3697 	sbi->s_locality_groups = NULL;
3698 out:
3699 	kfree(sbi->s_mb_avg_fragment_size);
3700 	kfree(sbi->s_mb_avg_fragment_size_locks);
3701 	kfree(sbi->s_mb_largest_free_orders);
3702 	kfree(sbi->s_mb_largest_free_orders_locks);
3703 	kfree(sbi->s_mb_offsets);
3704 	sbi->s_mb_offsets = NULL;
3705 	kfree(sbi->s_mb_maxs);
3706 	sbi->s_mb_maxs = NULL;
3707 	return ret;
3708 }
3709 
3710 /* need to called with the ext4 group lock held */
3711 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3712 {
3713 	struct ext4_prealloc_space *pa;
3714 	struct list_head *cur, *tmp;
3715 	int count = 0;
3716 
3717 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3718 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3719 		list_del(&pa->pa_group_list);
3720 		count++;
3721 		kmem_cache_free(ext4_pspace_cachep, pa);
3722 	}
3723 	return count;
3724 }
3725 
3726 int ext4_mb_release(struct super_block *sb)
3727 {
3728 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3729 	ext4_group_t i;
3730 	int num_meta_group_infos;
3731 	struct ext4_group_info *grinfo, ***group_info;
3732 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3733 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3734 	int count;
3735 
3736 	if (test_opt(sb, DISCARD)) {
3737 		/*
3738 		 * wait the discard work to drain all of ext4_free_data
3739 		 */
3740 		flush_work(&sbi->s_discard_work);
3741 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3742 	}
3743 
3744 	if (sbi->s_group_info) {
3745 		for (i = 0; i < ngroups; i++) {
3746 			cond_resched();
3747 			grinfo = ext4_get_group_info(sb, i);
3748 			if (!grinfo)
3749 				continue;
3750 			mb_group_bb_bitmap_free(grinfo);
3751 			ext4_lock_group(sb, i);
3752 			count = ext4_mb_cleanup_pa(grinfo);
3753 			if (count)
3754 				mb_debug(sb, "mballoc: %d PAs left\n",
3755 					 count);
3756 			ext4_unlock_group(sb, i);
3757 			kmem_cache_free(cachep, grinfo);
3758 		}
3759 		num_meta_group_infos = (ngroups +
3760 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3761 			EXT4_DESC_PER_BLOCK_BITS(sb);
3762 		rcu_read_lock();
3763 		group_info = rcu_dereference(sbi->s_group_info);
3764 		for (i = 0; i < num_meta_group_infos; i++)
3765 			kfree(group_info[i]);
3766 		kvfree(group_info);
3767 		rcu_read_unlock();
3768 	}
3769 	kfree(sbi->s_mb_avg_fragment_size);
3770 	kfree(sbi->s_mb_avg_fragment_size_locks);
3771 	kfree(sbi->s_mb_largest_free_orders);
3772 	kfree(sbi->s_mb_largest_free_orders_locks);
3773 	kfree(sbi->s_mb_offsets);
3774 	kfree(sbi->s_mb_maxs);
3775 	iput(sbi->s_buddy_cache);
3776 	if (sbi->s_mb_stats) {
3777 		ext4_msg(sb, KERN_INFO,
3778 		       "mballoc: %u blocks %u reqs (%u success)",
3779 				atomic_read(&sbi->s_bal_allocated),
3780 				atomic_read(&sbi->s_bal_reqs),
3781 				atomic_read(&sbi->s_bal_success));
3782 		ext4_msg(sb, KERN_INFO,
3783 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3784 				"%u 2^N hits, %u breaks, %u lost",
3785 				atomic_read(&sbi->s_bal_ex_scanned),
3786 				atomic_read(&sbi->s_bal_groups_scanned),
3787 				atomic_read(&sbi->s_bal_goals),
3788 				atomic_read(&sbi->s_bal_2orders),
3789 				atomic_read(&sbi->s_bal_breaks),
3790 				atomic_read(&sbi->s_mb_lost_chunks));
3791 		ext4_msg(sb, KERN_INFO,
3792 		       "mballoc: %u generated and it took %llu",
3793 				atomic_read(&sbi->s_mb_buddies_generated),
3794 				atomic64_read(&sbi->s_mb_generation_time));
3795 		ext4_msg(sb, KERN_INFO,
3796 		       "mballoc: %u preallocated, %u discarded",
3797 				atomic_read(&sbi->s_mb_preallocated),
3798 				atomic_read(&sbi->s_mb_discarded));
3799 	}
3800 
3801 	free_percpu(sbi->s_locality_groups);
3802 
3803 	return 0;
3804 }
3805 
3806 static inline int ext4_issue_discard(struct super_block *sb,
3807 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3808 		struct bio **biop)
3809 {
3810 	ext4_fsblk_t discard_block;
3811 
3812 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3813 			 ext4_group_first_block_no(sb, block_group));
3814 	count = EXT4_C2B(EXT4_SB(sb), count);
3815 	trace_ext4_discard_blocks(sb,
3816 			(unsigned long long) discard_block, count);
3817 	if (biop) {
3818 		return __blkdev_issue_discard(sb->s_bdev,
3819 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3820 			(sector_t)count << (sb->s_blocksize_bits - 9),
3821 			GFP_NOFS, biop);
3822 	} else
3823 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3824 }
3825 
3826 static void ext4_free_data_in_buddy(struct super_block *sb,
3827 				    struct ext4_free_data *entry)
3828 {
3829 	struct ext4_buddy e4b;
3830 	struct ext4_group_info *db;
3831 	int err, count = 0;
3832 
3833 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3834 		 entry->efd_count, entry->efd_group, entry);
3835 
3836 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3837 	/* we expect to find existing buddy because it's pinned */
3838 	BUG_ON(err != 0);
3839 
3840 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3841 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3842 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3843 
3844 	db = e4b.bd_info;
3845 	/* there are blocks to put in buddy to make them really free */
3846 	count += entry->efd_count;
3847 	ext4_lock_group(sb, entry->efd_group);
3848 	/* Take it out of per group rb tree */
3849 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3850 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3851 
3852 	/*
3853 	 * Clear the trimmed flag for the group so that the next
3854 	 * ext4_trim_fs can trim it.
3855 	 * If the volume is mounted with -o discard, online discard
3856 	 * is supported and the free blocks will be trimmed online.
3857 	 */
3858 	if (!test_opt(sb, DISCARD))
3859 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3860 
3861 	if (!db->bb_free_root.rb_node) {
3862 		/* No more items in the per group rb tree
3863 		 * balance refcounts from ext4_mb_free_metadata()
3864 		 */
3865 		put_page(e4b.bd_buddy_page);
3866 		put_page(e4b.bd_bitmap_page);
3867 	}
3868 	ext4_unlock_group(sb, entry->efd_group);
3869 	ext4_mb_unload_buddy(&e4b);
3870 
3871 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3872 }
3873 
3874 /*
3875  * This function is called by the jbd2 layer once the commit has finished,
3876  * so we know we can free the blocks that were released with that commit.
3877  */
3878 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3879 {
3880 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3881 	struct ext4_free_data *entry, *tmp;
3882 	struct list_head freed_data_list;
3883 	struct list_head *cut_pos = NULL;
3884 	bool wake;
3885 
3886 	INIT_LIST_HEAD(&freed_data_list);
3887 
3888 	spin_lock(&sbi->s_md_lock);
3889 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3890 		if (entry->efd_tid != commit_tid)
3891 			break;
3892 		cut_pos = &entry->efd_list;
3893 	}
3894 	if (cut_pos)
3895 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3896 				  cut_pos);
3897 	spin_unlock(&sbi->s_md_lock);
3898 
3899 	list_for_each_entry(entry, &freed_data_list, efd_list)
3900 		ext4_free_data_in_buddy(sb, entry);
3901 
3902 	if (test_opt(sb, DISCARD)) {
3903 		spin_lock(&sbi->s_md_lock);
3904 		wake = list_empty(&sbi->s_discard_list);
3905 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3906 		spin_unlock(&sbi->s_md_lock);
3907 		if (wake)
3908 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3909 	} else {
3910 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3911 			kmem_cache_free(ext4_free_data_cachep, entry);
3912 	}
3913 }
3914 
3915 int __init ext4_init_mballoc(void)
3916 {
3917 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3918 					SLAB_RECLAIM_ACCOUNT);
3919 	if (ext4_pspace_cachep == NULL)
3920 		goto out;
3921 
3922 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3923 				    SLAB_RECLAIM_ACCOUNT);
3924 	if (ext4_ac_cachep == NULL)
3925 		goto out_pa_free;
3926 
3927 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3928 					   SLAB_RECLAIM_ACCOUNT);
3929 	if (ext4_free_data_cachep == NULL)
3930 		goto out_ac_free;
3931 
3932 	return 0;
3933 
3934 out_ac_free:
3935 	kmem_cache_destroy(ext4_ac_cachep);
3936 out_pa_free:
3937 	kmem_cache_destroy(ext4_pspace_cachep);
3938 out:
3939 	return -ENOMEM;
3940 }
3941 
3942 void ext4_exit_mballoc(void)
3943 {
3944 	/*
3945 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3946 	 * before destroying the slab cache.
3947 	 */
3948 	rcu_barrier();
3949 	kmem_cache_destroy(ext4_pspace_cachep);
3950 	kmem_cache_destroy(ext4_ac_cachep);
3951 	kmem_cache_destroy(ext4_free_data_cachep);
3952 	ext4_groupinfo_destroy_slabs();
3953 }
3954 
3955 
3956 /*
3957  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3958  * Returns 0 if success or error code
3959  */
3960 static noinline_for_stack int
3961 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3962 				handle_t *handle, unsigned int reserv_clstrs)
3963 {
3964 	struct buffer_head *bitmap_bh = NULL;
3965 	struct ext4_group_desc *gdp;
3966 	struct buffer_head *gdp_bh;
3967 	struct ext4_sb_info *sbi;
3968 	struct super_block *sb;
3969 	ext4_fsblk_t block;
3970 	int err, len;
3971 
3972 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3973 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3974 
3975 	sb = ac->ac_sb;
3976 	sbi = EXT4_SB(sb);
3977 
3978 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3979 	if (IS_ERR(bitmap_bh)) {
3980 		return PTR_ERR(bitmap_bh);
3981 	}
3982 
3983 	BUFFER_TRACE(bitmap_bh, "getting write access");
3984 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3985 					    EXT4_JTR_NONE);
3986 	if (err)
3987 		goto out_err;
3988 
3989 	err = -EIO;
3990 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3991 	if (!gdp)
3992 		goto out_err;
3993 
3994 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3995 			ext4_free_group_clusters(sb, gdp));
3996 
3997 	BUFFER_TRACE(gdp_bh, "get_write_access");
3998 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3999 	if (err)
4000 		goto out_err;
4001 
4002 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4003 
4004 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4005 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4006 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4007 			   "fs metadata", block, block+len);
4008 		/* File system mounted not to panic on error
4009 		 * Fix the bitmap and return EFSCORRUPTED
4010 		 * We leak some of the blocks here.
4011 		 */
4012 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4013 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4014 			      ac->ac_b_ex.fe_len);
4015 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4016 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4017 		if (!err)
4018 			err = -EFSCORRUPTED;
4019 		goto out_err;
4020 	}
4021 
4022 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4023 #ifdef AGGRESSIVE_CHECK
4024 	{
4025 		int i;
4026 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
4027 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
4028 						bitmap_bh->b_data));
4029 		}
4030 	}
4031 #endif
4032 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4033 		      ac->ac_b_ex.fe_len);
4034 	if (ext4_has_group_desc_csum(sb) &&
4035 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4036 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4037 		ext4_free_group_clusters_set(sb, gdp,
4038 					     ext4_free_clusters_after_init(sb,
4039 						ac->ac_b_ex.fe_group, gdp));
4040 	}
4041 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
4042 	ext4_free_group_clusters_set(sb, gdp, len);
4043 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4044 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
4045 
4046 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4047 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4048 	/*
4049 	 * Now reduce the dirty block count also. Should not go negative
4050 	 */
4051 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4052 		/* release all the reserved blocks if non delalloc */
4053 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4054 				   reserv_clstrs);
4055 
4056 	if (sbi->s_log_groups_per_flex) {
4057 		ext4_group_t flex_group = ext4_flex_group(sbi,
4058 							  ac->ac_b_ex.fe_group);
4059 		atomic64_sub(ac->ac_b_ex.fe_len,
4060 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
4061 						  flex_group)->free_clusters);
4062 	}
4063 
4064 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4065 	if (err)
4066 		goto out_err;
4067 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4068 
4069 out_err:
4070 	brelse(bitmap_bh);
4071 	return err;
4072 }
4073 
4074 /*
4075  * Idempotent helper for Ext4 fast commit replay path to set the state of
4076  * blocks in bitmaps and update counters.
4077  */
4078 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4079 			int len, int state)
4080 {
4081 	struct buffer_head *bitmap_bh = NULL;
4082 	struct ext4_group_desc *gdp;
4083 	struct buffer_head *gdp_bh;
4084 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4085 	ext4_group_t group;
4086 	ext4_grpblk_t blkoff;
4087 	int i, err;
4088 	int already;
4089 	unsigned int clen, clen_changed, thisgrp_len;
4090 
4091 	while (len > 0) {
4092 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4093 
4094 		/*
4095 		 * Check to see if we are freeing blocks across a group
4096 		 * boundary.
4097 		 * In case of flex_bg, this can happen that (block, len) may
4098 		 * span across more than one group. In that case we need to
4099 		 * get the corresponding group metadata to work with.
4100 		 * For this we have goto again loop.
4101 		 */
4102 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4103 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4104 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4105 
4106 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4107 			ext4_error(sb, "Marking blocks in system zone - "
4108 				   "Block = %llu, len = %u",
4109 				   block, thisgrp_len);
4110 			bitmap_bh = NULL;
4111 			break;
4112 		}
4113 
4114 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4115 		if (IS_ERR(bitmap_bh)) {
4116 			err = PTR_ERR(bitmap_bh);
4117 			bitmap_bh = NULL;
4118 			break;
4119 		}
4120 
4121 		err = -EIO;
4122 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4123 		if (!gdp)
4124 			break;
4125 
4126 		ext4_lock_group(sb, group);
4127 		already = 0;
4128 		for (i = 0; i < clen; i++)
4129 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4130 					 !state)
4131 				already++;
4132 
4133 		clen_changed = clen - already;
4134 		if (state)
4135 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
4136 		else
4137 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
4138 		if (ext4_has_group_desc_csum(sb) &&
4139 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4140 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4141 			ext4_free_group_clusters_set(sb, gdp,
4142 			     ext4_free_clusters_after_init(sb, group, gdp));
4143 		}
4144 		if (state)
4145 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4146 		else
4147 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4148 
4149 		ext4_free_group_clusters_set(sb, gdp, clen);
4150 		ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4151 		ext4_group_desc_csum_set(sb, group, gdp);
4152 
4153 		ext4_unlock_group(sb, group);
4154 
4155 		if (sbi->s_log_groups_per_flex) {
4156 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
4157 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4158 						   s_flex_groups, flex_group);
4159 
4160 			if (state)
4161 				atomic64_sub(clen_changed, &fg->free_clusters);
4162 			else
4163 				atomic64_add(clen_changed, &fg->free_clusters);
4164 
4165 		}
4166 
4167 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4168 		if (err)
4169 			break;
4170 		sync_dirty_buffer(bitmap_bh);
4171 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4172 		sync_dirty_buffer(gdp_bh);
4173 		if (err)
4174 			break;
4175 
4176 		block += thisgrp_len;
4177 		len -= thisgrp_len;
4178 		brelse(bitmap_bh);
4179 		BUG_ON(len < 0);
4180 	}
4181 
4182 	if (err)
4183 		brelse(bitmap_bh);
4184 }
4185 
4186 /*
4187  * here we normalize request for locality group
4188  * Group request are normalized to s_mb_group_prealloc, which goes to
4189  * s_strip if we set the same via mount option.
4190  * s_mb_group_prealloc can be configured via
4191  * /sys/fs/ext4/<partition>/mb_group_prealloc
4192  *
4193  * XXX: should we try to preallocate more than the group has now?
4194  */
4195 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4196 {
4197 	struct super_block *sb = ac->ac_sb;
4198 	struct ext4_locality_group *lg = ac->ac_lg;
4199 
4200 	BUG_ON(lg == NULL);
4201 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4202 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4203 }
4204 
4205 /*
4206  * This function returns the next element to look at during inode
4207  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4208  * (ei->i_prealloc_lock)
4209  *
4210  * new_start	The start of the range we want to compare
4211  * cur_start	The existing start that we are comparing against
4212  * node	The node of the rb_tree
4213  */
4214 static inline struct rb_node*
4215 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4216 {
4217 	if (new_start < cur_start)
4218 		return node->rb_left;
4219 	else
4220 		return node->rb_right;
4221 }
4222 
4223 static inline void
4224 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4225 			  ext4_lblk_t start, ext4_lblk_t end)
4226 {
4227 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4228 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4229 	struct ext4_prealloc_space *tmp_pa;
4230 	ext4_lblk_t tmp_pa_start, tmp_pa_end;
4231 	struct rb_node *iter;
4232 
4233 	read_lock(&ei->i_prealloc_lock);
4234 	for (iter = ei->i_prealloc_node.rb_node; iter;
4235 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4236 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4237 				  pa_node.inode_node);
4238 		tmp_pa_start = tmp_pa->pa_lstart;
4239 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4240 
4241 		spin_lock(&tmp_pa->pa_lock);
4242 		if (tmp_pa->pa_deleted == 0)
4243 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4244 		spin_unlock(&tmp_pa->pa_lock);
4245 	}
4246 	read_unlock(&ei->i_prealloc_lock);
4247 }
4248 
4249 /*
4250  * Given an allocation context "ac" and a range "start", "end", check
4251  * and adjust boundaries if the range overlaps with any of the existing
4252  * preallocatoins stored in the corresponding inode of the allocation context.
4253  *
4254  * Parameters:
4255  *	ac			allocation context
4256  *	start			start of the new range
4257  *	end			end of the new range
4258  */
4259 static inline void
4260 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4261 			  ext4_lblk_t *start, ext4_lblk_t *end)
4262 {
4263 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4264 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4265 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4266 	struct rb_node *iter;
4267 	ext4_lblk_t new_start, new_end;
4268 	ext4_lblk_t tmp_pa_start, tmp_pa_end, left_pa_end = -1, right_pa_start = -1;
4269 
4270 	new_start = *start;
4271 	new_end = *end;
4272 
4273 	/*
4274 	 * Adjust the normalized range so that it doesn't overlap with any
4275 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4276 	 * so it doesn't change underneath us.
4277 	 */
4278 	read_lock(&ei->i_prealloc_lock);
4279 
4280 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4281 	for (iter = ei->i_prealloc_node.rb_node; iter;
4282 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4283 					    tmp_pa_start, iter)) {
4284 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4285 				  pa_node.inode_node);
4286 		tmp_pa_start = tmp_pa->pa_lstart;
4287 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4288 
4289 		/* PA must not overlap original request */
4290 		spin_lock(&tmp_pa->pa_lock);
4291 		if (tmp_pa->pa_deleted == 0)
4292 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4293 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4294 		spin_unlock(&tmp_pa->pa_lock);
4295 	}
4296 
4297 	/*
4298 	 * Step 2: check if the found PA is left or right neighbor and
4299 	 * get the other neighbor
4300 	 */
4301 	if (tmp_pa) {
4302 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4303 			struct rb_node *tmp;
4304 
4305 			left_pa = tmp_pa;
4306 			tmp = rb_next(&left_pa->pa_node.inode_node);
4307 			if (tmp) {
4308 				right_pa = rb_entry(tmp,
4309 						    struct ext4_prealloc_space,
4310 						    pa_node.inode_node);
4311 			}
4312 		} else {
4313 			struct rb_node *tmp;
4314 
4315 			right_pa = tmp_pa;
4316 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4317 			if (tmp) {
4318 				left_pa = rb_entry(tmp,
4319 						   struct ext4_prealloc_space,
4320 						   pa_node.inode_node);
4321 			}
4322 		}
4323 	}
4324 
4325 	/* Step 3: get the non deleted neighbors */
4326 	if (left_pa) {
4327 		for (iter = &left_pa->pa_node.inode_node;;
4328 		     iter = rb_prev(iter)) {
4329 			if (!iter) {
4330 				left_pa = NULL;
4331 				break;
4332 			}
4333 
4334 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4335 					  pa_node.inode_node);
4336 			left_pa = tmp_pa;
4337 			spin_lock(&tmp_pa->pa_lock);
4338 			if (tmp_pa->pa_deleted == 0) {
4339 				spin_unlock(&tmp_pa->pa_lock);
4340 				break;
4341 			}
4342 			spin_unlock(&tmp_pa->pa_lock);
4343 		}
4344 	}
4345 
4346 	if (right_pa) {
4347 		for (iter = &right_pa->pa_node.inode_node;;
4348 		     iter = rb_next(iter)) {
4349 			if (!iter) {
4350 				right_pa = NULL;
4351 				break;
4352 			}
4353 
4354 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4355 					  pa_node.inode_node);
4356 			right_pa = tmp_pa;
4357 			spin_lock(&tmp_pa->pa_lock);
4358 			if (tmp_pa->pa_deleted == 0) {
4359 				spin_unlock(&tmp_pa->pa_lock);
4360 				break;
4361 			}
4362 			spin_unlock(&tmp_pa->pa_lock);
4363 		}
4364 	}
4365 
4366 	if (left_pa) {
4367 		left_pa_end =
4368 			left_pa->pa_lstart + EXT4_C2B(sbi, left_pa->pa_len);
4369 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4370 	}
4371 
4372 	if (right_pa) {
4373 		right_pa_start = right_pa->pa_lstart;
4374 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4375 	}
4376 
4377 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4378 	if (left_pa) {
4379 		if (left_pa_end > new_start)
4380 			new_start = left_pa_end;
4381 	}
4382 
4383 	if (right_pa) {
4384 		if (right_pa_start < new_end)
4385 			new_end = right_pa_start;
4386 	}
4387 	read_unlock(&ei->i_prealloc_lock);
4388 
4389 	/* XXX: extra loop to check we really don't overlap preallocations */
4390 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4391 
4392 	*start = new_start;
4393 	*end = new_end;
4394 }
4395 
4396 /*
4397  * Normalization means making request better in terms of
4398  * size and alignment
4399  */
4400 static noinline_for_stack void
4401 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4402 				struct ext4_allocation_request *ar)
4403 {
4404 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4405 	struct ext4_super_block *es = sbi->s_es;
4406 	int bsbits, max;
4407 	ext4_lblk_t end;
4408 	loff_t size, start_off;
4409 	loff_t orig_size __maybe_unused;
4410 	ext4_lblk_t start;
4411 
4412 	/* do normalize only data requests, metadata requests
4413 	   do not need preallocation */
4414 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4415 		return;
4416 
4417 	/* sometime caller may want exact blocks */
4418 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4419 		return;
4420 
4421 	/* caller may indicate that preallocation isn't
4422 	 * required (it's a tail, for example) */
4423 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4424 		return;
4425 
4426 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4427 		ext4_mb_normalize_group_request(ac);
4428 		return ;
4429 	}
4430 
4431 	bsbits = ac->ac_sb->s_blocksize_bits;
4432 
4433 	/* first, let's learn actual file size
4434 	 * given current request is allocated */
4435 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4436 	size = size << bsbits;
4437 	if (size < i_size_read(ac->ac_inode))
4438 		size = i_size_read(ac->ac_inode);
4439 	orig_size = size;
4440 
4441 	/* max size of free chunks */
4442 	max = 2 << bsbits;
4443 
4444 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4445 		(req <= (size) || max <= (chunk_size))
4446 
4447 	/* first, try to predict filesize */
4448 	/* XXX: should this table be tunable? */
4449 	start_off = 0;
4450 	if (size <= 16 * 1024) {
4451 		size = 16 * 1024;
4452 	} else if (size <= 32 * 1024) {
4453 		size = 32 * 1024;
4454 	} else if (size <= 64 * 1024) {
4455 		size = 64 * 1024;
4456 	} else if (size <= 128 * 1024) {
4457 		size = 128 * 1024;
4458 	} else if (size <= 256 * 1024) {
4459 		size = 256 * 1024;
4460 	} else if (size <= 512 * 1024) {
4461 		size = 512 * 1024;
4462 	} else if (size <= 1024 * 1024) {
4463 		size = 1024 * 1024;
4464 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4465 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4466 						(21 - bsbits)) << 21;
4467 		size = 2 * 1024 * 1024;
4468 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4469 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4470 							(22 - bsbits)) << 22;
4471 		size = 4 * 1024 * 1024;
4472 	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4473 					(8<<20)>>bsbits, max, 8 * 1024)) {
4474 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4475 							(23 - bsbits)) << 23;
4476 		size = 8 * 1024 * 1024;
4477 	} else {
4478 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4479 		size	  = (loff_t) EXT4_C2B(sbi,
4480 					      ac->ac_o_ex.fe_len) << bsbits;
4481 	}
4482 	size = size >> bsbits;
4483 	start = start_off >> bsbits;
4484 
4485 	/*
4486 	 * For tiny groups (smaller than 8MB) the chosen allocation
4487 	 * alignment may be larger than group size. Make sure the
4488 	 * alignment does not move allocation to a different group which
4489 	 * makes mballoc fail assertions later.
4490 	 */
4491 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4492 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4493 
4494 	/* don't cover already allocated blocks in selected range */
4495 	if (ar->pleft && start <= ar->lleft) {
4496 		size -= ar->lleft + 1 - start;
4497 		start = ar->lleft + 1;
4498 	}
4499 	if (ar->pright && start + size - 1 >= ar->lright)
4500 		size -= start + size - ar->lright;
4501 
4502 	/*
4503 	 * Trim allocation request for filesystems with artificially small
4504 	 * groups.
4505 	 */
4506 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4507 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4508 
4509 	end = start + size;
4510 
4511 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4512 
4513 	size = end - start;
4514 
4515 	/*
4516 	 * In this function "start" and "size" are normalized for better
4517 	 * alignment and length such that we could preallocate more blocks.
4518 	 * This normalization is done such that original request of
4519 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4520 	 * "size" boundaries.
4521 	 * (Note fe_len can be relaxed since FS block allocation API does not
4522 	 * provide gurantee on number of contiguous blocks allocation since that
4523 	 * depends upon free space left, etc).
4524 	 * In case of inode pa, later we use the allocated blocks
4525 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4526 	 * range of goal/best blocks [start, size] to put it at the
4527 	 * ac_o_ex.fe_logical extent of this inode.
4528 	 * (See ext4_mb_use_inode_pa() for more details)
4529 	 */
4530 	if (start + size <= ac->ac_o_ex.fe_logical ||
4531 			start > ac->ac_o_ex.fe_logical) {
4532 		ext4_msg(ac->ac_sb, KERN_ERR,
4533 			 "start %lu, size %lu, fe_logical %lu",
4534 			 (unsigned long) start, (unsigned long) size,
4535 			 (unsigned long) ac->ac_o_ex.fe_logical);
4536 		BUG();
4537 	}
4538 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4539 
4540 	/* now prepare goal request */
4541 
4542 	/* XXX: is it better to align blocks WRT to logical
4543 	 * placement or satisfy big request as is */
4544 	ac->ac_g_ex.fe_logical = start;
4545 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4546 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4547 
4548 	/* define goal start in order to merge */
4549 	if (ar->pright && (ar->lright == (start + size)) &&
4550 	    ar->pright >= size &&
4551 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4552 		/* merge to the right */
4553 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4554 						&ac->ac_g_ex.fe_group,
4555 						&ac->ac_g_ex.fe_start);
4556 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4557 	}
4558 	if (ar->pleft && (ar->lleft + 1 == start) &&
4559 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4560 		/* merge to the left */
4561 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4562 						&ac->ac_g_ex.fe_group,
4563 						&ac->ac_g_ex.fe_start);
4564 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4565 	}
4566 
4567 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4568 		 orig_size, start);
4569 }
4570 
4571 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4572 {
4573 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4574 
4575 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4576 		atomic_inc(&sbi->s_bal_reqs);
4577 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4578 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4579 			atomic_inc(&sbi->s_bal_success);
4580 
4581 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4582 		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4583 			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4584 		}
4585 
4586 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4587 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4588 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4589 			atomic_inc(&sbi->s_bal_goals);
4590 		/* did we allocate as much as normalizer originally wanted? */
4591 		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4592 			atomic_inc(&sbi->s_bal_len_goals);
4593 
4594 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4595 			atomic_inc(&sbi->s_bal_breaks);
4596 	}
4597 
4598 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4599 		trace_ext4_mballoc_alloc(ac);
4600 	else
4601 		trace_ext4_mballoc_prealloc(ac);
4602 }
4603 
4604 /*
4605  * Called on failure; free up any blocks from the inode PA for this
4606  * context.  We don't need this for MB_GROUP_PA because we only change
4607  * pa_free in ext4_mb_release_context(), but on failure, we've already
4608  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4609  */
4610 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4611 {
4612 	struct ext4_prealloc_space *pa = ac->ac_pa;
4613 	struct ext4_buddy e4b;
4614 	int err;
4615 
4616 	if (pa == NULL) {
4617 		if (ac->ac_f_ex.fe_len == 0)
4618 			return;
4619 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4620 		if (WARN_RATELIMIT(err,
4621 				   "ext4: mb_load_buddy failed (%d)", err))
4622 			/*
4623 			 * This should never happen since we pin the
4624 			 * pages in the ext4_allocation_context so
4625 			 * ext4_mb_load_buddy() should never fail.
4626 			 */
4627 			return;
4628 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4629 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4630 			       ac->ac_f_ex.fe_len);
4631 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4632 		ext4_mb_unload_buddy(&e4b);
4633 		return;
4634 	}
4635 	if (pa->pa_type == MB_INODE_PA) {
4636 		spin_lock(&pa->pa_lock);
4637 		pa->pa_free += ac->ac_b_ex.fe_len;
4638 		spin_unlock(&pa->pa_lock);
4639 	}
4640 }
4641 
4642 /*
4643  * use blocks preallocated to inode
4644  */
4645 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4646 				struct ext4_prealloc_space *pa)
4647 {
4648 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4649 	ext4_fsblk_t start;
4650 	ext4_fsblk_t end;
4651 	int len;
4652 
4653 	/* found preallocated blocks, use them */
4654 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4655 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4656 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4657 	len = EXT4_NUM_B2C(sbi, end - start);
4658 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4659 					&ac->ac_b_ex.fe_start);
4660 	ac->ac_b_ex.fe_len = len;
4661 	ac->ac_status = AC_STATUS_FOUND;
4662 	ac->ac_pa = pa;
4663 
4664 	BUG_ON(start < pa->pa_pstart);
4665 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4666 	BUG_ON(pa->pa_free < len);
4667 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4668 	pa->pa_free -= len;
4669 
4670 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4671 }
4672 
4673 /*
4674  * use blocks preallocated to locality group
4675  */
4676 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4677 				struct ext4_prealloc_space *pa)
4678 {
4679 	unsigned int len = ac->ac_o_ex.fe_len;
4680 
4681 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4682 					&ac->ac_b_ex.fe_group,
4683 					&ac->ac_b_ex.fe_start);
4684 	ac->ac_b_ex.fe_len = len;
4685 	ac->ac_status = AC_STATUS_FOUND;
4686 	ac->ac_pa = pa;
4687 
4688 	/* we don't correct pa_pstart or pa_len here to avoid
4689 	 * possible race when the group is being loaded concurrently
4690 	 * instead we correct pa later, after blocks are marked
4691 	 * in on-disk bitmap -- see ext4_mb_release_context()
4692 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4693 	 */
4694 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4695 		 pa->pa_lstart, len, pa);
4696 }
4697 
4698 /*
4699  * Return the prealloc space that have minimal distance
4700  * from the goal block. @cpa is the prealloc
4701  * space that is having currently known minimal distance
4702  * from the goal block.
4703  */
4704 static struct ext4_prealloc_space *
4705 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4706 			struct ext4_prealloc_space *pa,
4707 			struct ext4_prealloc_space *cpa)
4708 {
4709 	ext4_fsblk_t cur_distance, new_distance;
4710 
4711 	if (cpa == NULL) {
4712 		atomic_inc(&pa->pa_count);
4713 		return pa;
4714 	}
4715 	cur_distance = abs(goal_block - cpa->pa_pstart);
4716 	new_distance = abs(goal_block - pa->pa_pstart);
4717 
4718 	if (cur_distance <= new_distance)
4719 		return cpa;
4720 
4721 	/* drop the previous reference */
4722 	atomic_dec(&cpa->pa_count);
4723 	atomic_inc(&pa->pa_count);
4724 	return pa;
4725 }
4726 
4727 /*
4728  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4729  */
4730 static bool
4731 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4732 		      struct ext4_prealloc_space *pa)
4733 {
4734 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4735 	ext4_fsblk_t start;
4736 
4737 	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4738 		return true;
4739 
4740 	/*
4741 	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4742 	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4743 	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4744 	 * consistent with ext4_mb_find_by_goal.
4745 	 */
4746 	start = pa->pa_pstart +
4747 		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4748 	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4749 		return false;
4750 
4751 	if (ac->ac_g_ex.fe_len > pa->pa_len -
4752 	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4753 		return false;
4754 
4755 	return true;
4756 }
4757 
4758 /*
4759  * search goal blocks in preallocated space
4760  */
4761 static noinline_for_stack bool
4762 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4763 {
4764 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4765 	int order, i;
4766 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4767 	struct ext4_locality_group *lg;
4768 	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4769 	loff_t tmp_pa_end;
4770 	struct rb_node *iter;
4771 	ext4_fsblk_t goal_block;
4772 
4773 	/* only data can be preallocated */
4774 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4775 		return false;
4776 
4777 	/*
4778 	 * first, try per-file preallocation by searching the inode pa rbtree.
4779 	 *
4780 	 * Here, we can't do a direct traversal of the tree because
4781 	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4782 	 * deleted and that can cause direct traversal to skip some entries.
4783 	 */
4784 	read_lock(&ei->i_prealloc_lock);
4785 
4786 	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4787 		goto try_group_pa;
4788 	}
4789 
4790 	/*
4791 	 * Step 1: Find a pa with logical start immediately adjacent to the
4792 	 * original logical start. This could be on the left or right.
4793 	 *
4794 	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4795 	 */
4796 	for (iter = ei->i_prealloc_node.rb_node; iter;
4797 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4798 					    tmp_pa->pa_lstart, iter)) {
4799 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4800 				  pa_node.inode_node);
4801 	}
4802 
4803 	/*
4804 	 * Step 2: The adjacent pa might be to the right of logical start, find
4805 	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4806 	 * logical start is towards the left of original request's logical start
4807 	 */
4808 	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4809 		struct rb_node *tmp;
4810 		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4811 
4812 		if (tmp) {
4813 			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4814 					    pa_node.inode_node);
4815 		} else {
4816 			/*
4817 			 * If there is no adjacent pa to the left then finding
4818 			 * an overlapping pa is not possible hence stop searching
4819 			 * inode pa tree
4820 			 */
4821 			goto try_group_pa;
4822 		}
4823 	}
4824 
4825 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4826 
4827 	/*
4828 	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4829 	 * the first non deleted adjacent pa. After this step we should have a
4830 	 * valid tmp_pa which is guaranteed to be non deleted.
4831 	 */
4832 	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4833 		if (!iter) {
4834 			/*
4835 			 * no non deleted left adjacent pa, so stop searching
4836 			 * inode pa tree
4837 			 */
4838 			goto try_group_pa;
4839 		}
4840 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4841 				  pa_node.inode_node);
4842 		spin_lock(&tmp_pa->pa_lock);
4843 		if (tmp_pa->pa_deleted == 0) {
4844 			/*
4845 			 * We will keep holding the pa_lock from
4846 			 * this point on because we don't want group discard
4847 			 * to delete this pa underneath us. Since group
4848 			 * discard is anyways an ENOSPC operation it
4849 			 * should be okay for it to wait a few more cycles.
4850 			 */
4851 			break;
4852 		} else {
4853 			spin_unlock(&tmp_pa->pa_lock);
4854 		}
4855 	}
4856 
4857 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4858 	BUG_ON(tmp_pa->pa_deleted == 1);
4859 
4860 	/*
4861 	 * Step 4: We now have the non deleted left adjacent pa. Only this
4862 	 * pa can possibly satisfy the request hence check if it overlaps
4863 	 * original logical start and stop searching if it doesn't.
4864 	 */
4865 	tmp_pa_end = (loff_t)tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4866 
4867 	if (ac->ac_o_ex.fe_logical >= tmp_pa_end) {
4868 		spin_unlock(&tmp_pa->pa_lock);
4869 		goto try_group_pa;
4870 	}
4871 
4872 	/* non-extent files can't have physical blocks past 2^32 */
4873 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4874 	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4875 	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4876 		/*
4877 		 * Since PAs don't overlap, we won't find any other PA to
4878 		 * satisfy this.
4879 		 */
4880 		spin_unlock(&tmp_pa->pa_lock);
4881 		goto try_group_pa;
4882 	}
4883 
4884 	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4885 		atomic_inc(&tmp_pa->pa_count);
4886 		ext4_mb_use_inode_pa(ac, tmp_pa);
4887 		spin_unlock(&tmp_pa->pa_lock);
4888 		read_unlock(&ei->i_prealloc_lock);
4889 		return true;
4890 	} else {
4891 		/*
4892 		 * We found a valid overlapping pa but couldn't use it because
4893 		 * it had no free blocks. This should ideally never happen
4894 		 * because:
4895 		 *
4896 		 * 1. When a new inode pa is added to rbtree it must have
4897 		 *    pa_free > 0 since otherwise we won't actually need
4898 		 *    preallocation.
4899 		 *
4900 		 * 2. An inode pa that is in the rbtree can only have it's
4901 		 *    pa_free become zero when another thread calls:
4902 		 *      ext4_mb_new_blocks
4903 		 *       ext4_mb_use_preallocated
4904 		 *        ext4_mb_use_inode_pa
4905 		 *
4906 		 * 3. Further, after the above calls make pa_free == 0, we will
4907 		 *    immediately remove it from the rbtree in:
4908 		 *      ext4_mb_new_blocks
4909 		 *       ext4_mb_release_context
4910 		 *        ext4_mb_put_pa
4911 		 *
4912 		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4913 		 * from tree both happen in ext4_mb_new_blocks, which is always
4914 		 * called with i_data_sem held for data allocations, we can be
4915 		 * sure that another process will never see a pa in rbtree with
4916 		 * pa_free == 0.
4917 		 */
4918 		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4919 	}
4920 	spin_unlock(&tmp_pa->pa_lock);
4921 try_group_pa:
4922 	read_unlock(&ei->i_prealloc_lock);
4923 
4924 	/* can we use group allocation? */
4925 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4926 		return false;
4927 
4928 	/* inode may have no locality group for some reason */
4929 	lg = ac->ac_lg;
4930 	if (lg == NULL)
4931 		return false;
4932 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4933 	if (order > PREALLOC_TB_SIZE - 1)
4934 		/* The max size of hash table is PREALLOC_TB_SIZE */
4935 		order = PREALLOC_TB_SIZE - 1;
4936 
4937 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4938 	/*
4939 	 * search for the prealloc space that is having
4940 	 * minimal distance from the goal block.
4941 	 */
4942 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4943 		rcu_read_lock();
4944 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4945 					pa_node.lg_list) {
4946 			spin_lock(&tmp_pa->pa_lock);
4947 			if (tmp_pa->pa_deleted == 0 &&
4948 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4949 
4950 				cpa = ext4_mb_check_group_pa(goal_block,
4951 								tmp_pa, cpa);
4952 			}
4953 			spin_unlock(&tmp_pa->pa_lock);
4954 		}
4955 		rcu_read_unlock();
4956 	}
4957 	if (cpa) {
4958 		ext4_mb_use_group_pa(ac, cpa);
4959 		return true;
4960 	}
4961 	return false;
4962 }
4963 
4964 /*
4965  * the function goes through all block freed in the group
4966  * but not yet committed and marks them used in in-core bitmap.
4967  * buddy must be generated from this bitmap
4968  * Need to be called with the ext4 group lock held
4969  */
4970 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4971 						ext4_group_t group)
4972 {
4973 	struct rb_node *n;
4974 	struct ext4_group_info *grp;
4975 	struct ext4_free_data *entry;
4976 
4977 	grp = ext4_get_group_info(sb, group);
4978 	if (!grp)
4979 		return;
4980 	n = rb_first(&(grp->bb_free_root));
4981 
4982 	while (n) {
4983 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4984 		mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4985 		n = rb_next(n);
4986 	}
4987 	return;
4988 }
4989 
4990 /*
4991  * the function goes through all preallocation in this group and marks them
4992  * used in in-core bitmap. buddy must be generated from this bitmap
4993  * Need to be called with ext4 group lock held
4994  */
4995 static noinline_for_stack
4996 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4997 					ext4_group_t group)
4998 {
4999 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5000 	struct ext4_prealloc_space *pa;
5001 	struct list_head *cur;
5002 	ext4_group_t groupnr;
5003 	ext4_grpblk_t start;
5004 	int preallocated = 0;
5005 	int len;
5006 
5007 	if (!grp)
5008 		return;
5009 
5010 	/* all form of preallocation discards first load group,
5011 	 * so the only competing code is preallocation use.
5012 	 * we don't need any locking here
5013 	 * notice we do NOT ignore preallocations with pa_deleted
5014 	 * otherwise we could leave used blocks available for
5015 	 * allocation in buddy when concurrent ext4_mb_put_pa()
5016 	 * is dropping preallocation
5017 	 */
5018 	list_for_each(cur, &grp->bb_prealloc_list) {
5019 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5020 		spin_lock(&pa->pa_lock);
5021 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5022 					     &groupnr, &start);
5023 		len = pa->pa_len;
5024 		spin_unlock(&pa->pa_lock);
5025 		if (unlikely(len == 0))
5026 			continue;
5027 		BUG_ON(groupnr != group);
5028 		mb_set_bits(bitmap, start, len);
5029 		preallocated += len;
5030 	}
5031 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5032 }
5033 
5034 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5035 				    struct ext4_prealloc_space *pa)
5036 {
5037 	struct ext4_inode_info *ei;
5038 
5039 	if (pa->pa_deleted) {
5040 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5041 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5042 			     pa->pa_len);
5043 		return;
5044 	}
5045 
5046 	pa->pa_deleted = 1;
5047 
5048 	if (pa->pa_type == MB_INODE_PA) {
5049 		ei = EXT4_I(pa->pa_inode);
5050 		atomic_dec(&ei->i_prealloc_active);
5051 	}
5052 }
5053 
5054 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5055 {
5056 	BUG_ON(!pa);
5057 	BUG_ON(atomic_read(&pa->pa_count));
5058 	BUG_ON(pa->pa_deleted == 0);
5059 	kmem_cache_free(ext4_pspace_cachep, pa);
5060 }
5061 
5062 static void ext4_mb_pa_callback(struct rcu_head *head)
5063 {
5064 	struct ext4_prealloc_space *pa;
5065 
5066 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5067 	ext4_mb_pa_free(pa);
5068 }
5069 
5070 /*
5071  * drops a reference to preallocated space descriptor
5072  * if this was the last reference and the space is consumed
5073  */
5074 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5075 			struct super_block *sb, struct ext4_prealloc_space *pa)
5076 {
5077 	ext4_group_t grp;
5078 	ext4_fsblk_t grp_blk;
5079 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5080 
5081 	/* in this short window concurrent discard can set pa_deleted */
5082 	spin_lock(&pa->pa_lock);
5083 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5084 		spin_unlock(&pa->pa_lock);
5085 		return;
5086 	}
5087 
5088 	if (pa->pa_deleted == 1) {
5089 		spin_unlock(&pa->pa_lock);
5090 		return;
5091 	}
5092 
5093 	ext4_mb_mark_pa_deleted(sb, pa);
5094 	spin_unlock(&pa->pa_lock);
5095 
5096 	grp_blk = pa->pa_pstart;
5097 	/*
5098 	 * If doing group-based preallocation, pa_pstart may be in the
5099 	 * next group when pa is used up
5100 	 */
5101 	if (pa->pa_type == MB_GROUP_PA)
5102 		grp_blk--;
5103 
5104 	grp = ext4_get_group_number(sb, grp_blk);
5105 
5106 	/*
5107 	 * possible race:
5108 	 *
5109 	 *  P1 (buddy init)			P2 (regular allocation)
5110 	 *					find block B in PA
5111 	 *  copy on-disk bitmap to buddy
5112 	 *  					mark B in on-disk bitmap
5113 	 *					drop PA from group
5114 	 *  mark all PAs in buddy
5115 	 *
5116 	 * thus, P1 initializes buddy with B available. to prevent this
5117 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5118 	 * against that pair
5119 	 */
5120 	ext4_lock_group(sb, grp);
5121 	list_del(&pa->pa_group_list);
5122 	ext4_unlock_group(sb, grp);
5123 
5124 	if (pa->pa_type == MB_INODE_PA) {
5125 		write_lock(pa->pa_node_lock.inode_lock);
5126 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5127 		write_unlock(pa->pa_node_lock.inode_lock);
5128 		ext4_mb_pa_free(pa);
5129 	} else {
5130 		spin_lock(pa->pa_node_lock.lg_lock);
5131 		list_del_rcu(&pa->pa_node.lg_list);
5132 		spin_unlock(pa->pa_node_lock.lg_lock);
5133 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5134 	}
5135 }
5136 
5137 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5138 {
5139 	struct rb_node **iter = &root->rb_node, *parent = NULL;
5140 	struct ext4_prealloc_space *iter_pa, *new_pa;
5141 	ext4_lblk_t iter_start, new_start;
5142 
5143 	while (*iter) {
5144 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5145 				   pa_node.inode_node);
5146 		new_pa = rb_entry(new, struct ext4_prealloc_space,
5147 				   pa_node.inode_node);
5148 		iter_start = iter_pa->pa_lstart;
5149 		new_start = new_pa->pa_lstart;
5150 
5151 		parent = *iter;
5152 		if (new_start < iter_start)
5153 			iter = &((*iter)->rb_left);
5154 		else
5155 			iter = &((*iter)->rb_right);
5156 	}
5157 
5158 	rb_link_node(new, parent, iter);
5159 	rb_insert_color(new, root);
5160 }
5161 
5162 /*
5163  * creates new preallocated space for given inode
5164  */
5165 static noinline_for_stack void
5166 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5167 {
5168 	struct super_block *sb = ac->ac_sb;
5169 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5170 	struct ext4_prealloc_space *pa;
5171 	struct ext4_group_info *grp;
5172 	struct ext4_inode_info *ei;
5173 
5174 	/* preallocate only when found space is larger then requested */
5175 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5176 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5177 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5178 	BUG_ON(ac->ac_pa == NULL);
5179 
5180 	pa = ac->ac_pa;
5181 
5182 	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5183 		int new_bex_start;
5184 		int new_bex_end;
5185 
5186 		/* we can't allocate as much as normalizer wants.
5187 		 * so, found space must get proper lstart
5188 		 * to cover original request */
5189 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5190 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5191 
5192 		/*
5193 		 * Use the below logic for adjusting best extent as it keeps
5194 		 * fragmentation in check while ensuring logical range of best
5195 		 * extent doesn't overflow out of goal extent:
5196 		 *
5197 		 * 1. Check if best ex can be kept at end of goal (before
5198 		 *    cr_best_avail trimmed it) and still cover original start
5199 		 * 2. Else, check if best ex can be kept at start of goal and
5200 		 *    still cover original start
5201 		 * 3. Else, keep the best ex at start of original request.
5202 		 */
5203 		new_bex_end = ac->ac_g_ex.fe_logical +
5204 			EXT4_C2B(sbi, ac->ac_orig_goal_len);
5205 		new_bex_start = new_bex_end - EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5206 		if (ac->ac_o_ex.fe_logical >= new_bex_start)
5207 			goto adjust_bex;
5208 
5209 		new_bex_start = ac->ac_g_ex.fe_logical;
5210 		new_bex_end =
5211 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5212 		if (ac->ac_o_ex.fe_logical < new_bex_end)
5213 			goto adjust_bex;
5214 
5215 		new_bex_start = ac->ac_o_ex.fe_logical;
5216 		new_bex_end =
5217 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5218 
5219 adjust_bex:
5220 		ac->ac_b_ex.fe_logical = new_bex_start;
5221 
5222 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5223 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5224 		BUG_ON(new_bex_end > (ac->ac_g_ex.fe_logical +
5225 				      EXT4_C2B(sbi, ac->ac_orig_goal_len)));
5226 	}
5227 
5228 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5229 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5230 	pa->pa_len = ac->ac_b_ex.fe_len;
5231 	pa->pa_free = pa->pa_len;
5232 	spin_lock_init(&pa->pa_lock);
5233 	INIT_LIST_HEAD(&pa->pa_group_list);
5234 	pa->pa_deleted = 0;
5235 	pa->pa_type = MB_INODE_PA;
5236 
5237 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5238 		 pa->pa_len, pa->pa_lstart);
5239 	trace_ext4_mb_new_inode_pa(ac, pa);
5240 
5241 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5242 	ext4_mb_use_inode_pa(ac, pa);
5243 
5244 	ei = EXT4_I(ac->ac_inode);
5245 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5246 	if (!grp)
5247 		return;
5248 
5249 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5250 	pa->pa_inode = ac->ac_inode;
5251 
5252 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5253 
5254 	write_lock(pa->pa_node_lock.inode_lock);
5255 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5256 	write_unlock(pa->pa_node_lock.inode_lock);
5257 	atomic_inc(&ei->i_prealloc_active);
5258 }
5259 
5260 /*
5261  * creates new preallocated space for locality group inodes belongs to
5262  */
5263 static noinline_for_stack void
5264 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5265 {
5266 	struct super_block *sb = ac->ac_sb;
5267 	struct ext4_locality_group *lg;
5268 	struct ext4_prealloc_space *pa;
5269 	struct ext4_group_info *grp;
5270 
5271 	/* preallocate only when found space is larger then requested */
5272 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5273 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5274 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5275 	BUG_ON(ac->ac_pa == NULL);
5276 
5277 	pa = ac->ac_pa;
5278 
5279 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5280 	pa->pa_lstart = pa->pa_pstart;
5281 	pa->pa_len = ac->ac_b_ex.fe_len;
5282 	pa->pa_free = pa->pa_len;
5283 	spin_lock_init(&pa->pa_lock);
5284 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5285 	INIT_LIST_HEAD(&pa->pa_group_list);
5286 	pa->pa_deleted = 0;
5287 	pa->pa_type = MB_GROUP_PA;
5288 
5289 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5290 		 pa->pa_len, pa->pa_lstart);
5291 	trace_ext4_mb_new_group_pa(ac, pa);
5292 
5293 	ext4_mb_use_group_pa(ac, pa);
5294 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5295 
5296 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5297 	if (!grp)
5298 		return;
5299 	lg = ac->ac_lg;
5300 	BUG_ON(lg == NULL);
5301 
5302 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5303 	pa->pa_inode = NULL;
5304 
5305 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5306 
5307 	/*
5308 	 * We will later add the new pa to the right bucket
5309 	 * after updating the pa_free in ext4_mb_release_context
5310 	 */
5311 }
5312 
5313 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5314 {
5315 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5316 		ext4_mb_new_group_pa(ac);
5317 	else
5318 		ext4_mb_new_inode_pa(ac);
5319 }
5320 
5321 /*
5322  * finds all unused blocks in on-disk bitmap, frees them in
5323  * in-core bitmap and buddy.
5324  * @pa must be unlinked from inode and group lists, so that
5325  * nobody else can find/use it.
5326  * the caller MUST hold group/inode locks.
5327  * TODO: optimize the case when there are no in-core structures yet
5328  */
5329 static noinline_for_stack int
5330 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5331 			struct ext4_prealloc_space *pa)
5332 {
5333 	struct super_block *sb = e4b->bd_sb;
5334 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5335 	unsigned int end;
5336 	unsigned int next;
5337 	ext4_group_t group;
5338 	ext4_grpblk_t bit;
5339 	unsigned long long grp_blk_start;
5340 	int free = 0;
5341 
5342 	BUG_ON(pa->pa_deleted == 0);
5343 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5344 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5345 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5346 	end = bit + pa->pa_len;
5347 
5348 	while (bit < end) {
5349 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5350 		if (bit >= end)
5351 			break;
5352 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5353 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5354 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5355 			 (unsigned) next - bit, (unsigned) group);
5356 		free += next - bit;
5357 
5358 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5359 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5360 						    EXT4_C2B(sbi, bit)),
5361 					       next - bit);
5362 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5363 		bit = next + 1;
5364 	}
5365 	if (free != pa->pa_free) {
5366 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5367 			 "pa %p: logic %lu, phys. %lu, len %d",
5368 			 pa, (unsigned long) pa->pa_lstart,
5369 			 (unsigned long) pa->pa_pstart,
5370 			 pa->pa_len);
5371 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5372 					free, pa->pa_free);
5373 		/*
5374 		 * pa is already deleted so we use the value obtained
5375 		 * from the bitmap and continue.
5376 		 */
5377 	}
5378 	atomic_add(free, &sbi->s_mb_discarded);
5379 
5380 	return 0;
5381 }
5382 
5383 static noinline_for_stack int
5384 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5385 				struct ext4_prealloc_space *pa)
5386 {
5387 	struct super_block *sb = e4b->bd_sb;
5388 	ext4_group_t group;
5389 	ext4_grpblk_t bit;
5390 
5391 	trace_ext4_mb_release_group_pa(sb, pa);
5392 	BUG_ON(pa->pa_deleted == 0);
5393 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5394 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5395 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5396 			     e4b->bd_group, group, pa->pa_pstart);
5397 		return 0;
5398 	}
5399 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5400 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5401 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5402 
5403 	return 0;
5404 }
5405 
5406 /*
5407  * releases all preallocations in given group
5408  *
5409  * first, we need to decide discard policy:
5410  * - when do we discard
5411  *   1) ENOSPC
5412  * - how many do we discard
5413  *   1) how many requested
5414  */
5415 static noinline_for_stack int
5416 ext4_mb_discard_group_preallocations(struct super_block *sb,
5417 				     ext4_group_t group, int *busy)
5418 {
5419 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5420 	struct buffer_head *bitmap_bh = NULL;
5421 	struct ext4_prealloc_space *pa, *tmp;
5422 	struct list_head list;
5423 	struct ext4_buddy e4b;
5424 	struct ext4_inode_info *ei;
5425 	int err;
5426 	int free = 0;
5427 
5428 	if (!grp)
5429 		return 0;
5430 	mb_debug(sb, "discard preallocation for group %u\n", group);
5431 	if (list_empty(&grp->bb_prealloc_list))
5432 		goto out_dbg;
5433 
5434 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5435 	if (IS_ERR(bitmap_bh)) {
5436 		err = PTR_ERR(bitmap_bh);
5437 		ext4_error_err(sb, -err,
5438 			       "Error %d reading block bitmap for %u",
5439 			       err, group);
5440 		goto out_dbg;
5441 	}
5442 
5443 	err = ext4_mb_load_buddy(sb, group, &e4b);
5444 	if (err) {
5445 		ext4_warning(sb, "Error %d loading buddy information for %u",
5446 			     err, group);
5447 		put_bh(bitmap_bh);
5448 		goto out_dbg;
5449 	}
5450 
5451 	INIT_LIST_HEAD(&list);
5452 	ext4_lock_group(sb, group);
5453 	list_for_each_entry_safe(pa, tmp,
5454 				&grp->bb_prealloc_list, pa_group_list) {
5455 		spin_lock(&pa->pa_lock);
5456 		if (atomic_read(&pa->pa_count)) {
5457 			spin_unlock(&pa->pa_lock);
5458 			*busy = 1;
5459 			continue;
5460 		}
5461 		if (pa->pa_deleted) {
5462 			spin_unlock(&pa->pa_lock);
5463 			continue;
5464 		}
5465 
5466 		/* seems this one can be freed ... */
5467 		ext4_mb_mark_pa_deleted(sb, pa);
5468 
5469 		if (!free)
5470 			this_cpu_inc(discard_pa_seq);
5471 
5472 		/* we can trust pa_free ... */
5473 		free += pa->pa_free;
5474 
5475 		spin_unlock(&pa->pa_lock);
5476 
5477 		list_del(&pa->pa_group_list);
5478 		list_add(&pa->u.pa_tmp_list, &list);
5479 	}
5480 
5481 	/* now free all selected PAs */
5482 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5483 
5484 		/* remove from object (inode or locality group) */
5485 		if (pa->pa_type == MB_GROUP_PA) {
5486 			spin_lock(pa->pa_node_lock.lg_lock);
5487 			list_del_rcu(&pa->pa_node.lg_list);
5488 			spin_unlock(pa->pa_node_lock.lg_lock);
5489 		} else {
5490 			write_lock(pa->pa_node_lock.inode_lock);
5491 			ei = EXT4_I(pa->pa_inode);
5492 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5493 			write_unlock(pa->pa_node_lock.inode_lock);
5494 		}
5495 
5496 		list_del(&pa->u.pa_tmp_list);
5497 
5498 		if (pa->pa_type == MB_GROUP_PA) {
5499 			ext4_mb_release_group_pa(&e4b, pa);
5500 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5501 		} else {
5502 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5503 			ext4_mb_pa_free(pa);
5504 		}
5505 	}
5506 
5507 	ext4_unlock_group(sb, group);
5508 	ext4_mb_unload_buddy(&e4b);
5509 	put_bh(bitmap_bh);
5510 out_dbg:
5511 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5512 		 free, group, grp->bb_free);
5513 	return free;
5514 }
5515 
5516 /*
5517  * releases all non-used preallocated blocks for given inode
5518  *
5519  * It's important to discard preallocations under i_data_sem
5520  * We don't want another block to be served from the prealloc
5521  * space when we are discarding the inode prealloc space.
5522  *
5523  * FIXME!! Make sure it is valid at all the call sites
5524  */
5525 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5526 {
5527 	struct ext4_inode_info *ei = EXT4_I(inode);
5528 	struct super_block *sb = inode->i_sb;
5529 	struct buffer_head *bitmap_bh = NULL;
5530 	struct ext4_prealloc_space *pa, *tmp;
5531 	ext4_group_t group = 0;
5532 	struct list_head list;
5533 	struct ext4_buddy e4b;
5534 	struct rb_node *iter;
5535 	int err;
5536 
5537 	if (!S_ISREG(inode->i_mode)) {
5538 		return;
5539 	}
5540 
5541 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5542 		return;
5543 
5544 	mb_debug(sb, "discard preallocation for inode %lu\n",
5545 		 inode->i_ino);
5546 	trace_ext4_discard_preallocations(inode,
5547 			atomic_read(&ei->i_prealloc_active), needed);
5548 
5549 	INIT_LIST_HEAD(&list);
5550 
5551 	if (needed == 0)
5552 		needed = UINT_MAX;
5553 
5554 repeat:
5555 	/* first, collect all pa's in the inode */
5556 	write_lock(&ei->i_prealloc_lock);
5557 	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5558 	     iter = rb_next(iter)) {
5559 		pa = rb_entry(iter, struct ext4_prealloc_space,
5560 			      pa_node.inode_node);
5561 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5562 
5563 		spin_lock(&pa->pa_lock);
5564 		if (atomic_read(&pa->pa_count)) {
5565 			/* this shouldn't happen often - nobody should
5566 			 * use preallocation while we're discarding it */
5567 			spin_unlock(&pa->pa_lock);
5568 			write_unlock(&ei->i_prealloc_lock);
5569 			ext4_msg(sb, KERN_ERR,
5570 				 "uh-oh! used pa while discarding");
5571 			WARN_ON(1);
5572 			schedule_timeout_uninterruptible(HZ);
5573 			goto repeat;
5574 
5575 		}
5576 		if (pa->pa_deleted == 0) {
5577 			ext4_mb_mark_pa_deleted(sb, pa);
5578 			spin_unlock(&pa->pa_lock);
5579 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5580 			list_add(&pa->u.pa_tmp_list, &list);
5581 			needed--;
5582 			continue;
5583 		}
5584 
5585 		/* someone is deleting pa right now */
5586 		spin_unlock(&pa->pa_lock);
5587 		write_unlock(&ei->i_prealloc_lock);
5588 
5589 		/* we have to wait here because pa_deleted
5590 		 * doesn't mean pa is already unlinked from
5591 		 * the list. as we might be called from
5592 		 * ->clear_inode() the inode will get freed
5593 		 * and concurrent thread which is unlinking
5594 		 * pa from inode's list may access already
5595 		 * freed memory, bad-bad-bad */
5596 
5597 		/* XXX: if this happens too often, we can
5598 		 * add a flag to force wait only in case
5599 		 * of ->clear_inode(), but not in case of
5600 		 * regular truncate */
5601 		schedule_timeout_uninterruptible(HZ);
5602 		goto repeat;
5603 	}
5604 	write_unlock(&ei->i_prealloc_lock);
5605 
5606 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5607 		BUG_ON(pa->pa_type != MB_INODE_PA);
5608 		group = ext4_get_group_number(sb, pa->pa_pstart);
5609 
5610 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5611 					     GFP_NOFS|__GFP_NOFAIL);
5612 		if (err) {
5613 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5614 				       err, group);
5615 			continue;
5616 		}
5617 
5618 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5619 		if (IS_ERR(bitmap_bh)) {
5620 			err = PTR_ERR(bitmap_bh);
5621 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5622 				       err, group);
5623 			ext4_mb_unload_buddy(&e4b);
5624 			continue;
5625 		}
5626 
5627 		ext4_lock_group(sb, group);
5628 		list_del(&pa->pa_group_list);
5629 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5630 		ext4_unlock_group(sb, group);
5631 
5632 		ext4_mb_unload_buddy(&e4b);
5633 		put_bh(bitmap_bh);
5634 
5635 		list_del(&pa->u.pa_tmp_list);
5636 		ext4_mb_pa_free(pa);
5637 	}
5638 }
5639 
5640 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5641 {
5642 	struct ext4_prealloc_space *pa;
5643 
5644 	BUG_ON(ext4_pspace_cachep == NULL);
5645 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5646 	if (!pa)
5647 		return -ENOMEM;
5648 	atomic_set(&pa->pa_count, 1);
5649 	ac->ac_pa = pa;
5650 	return 0;
5651 }
5652 
5653 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5654 {
5655 	struct ext4_prealloc_space *pa = ac->ac_pa;
5656 
5657 	BUG_ON(!pa);
5658 	ac->ac_pa = NULL;
5659 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5660 	/*
5661 	 * current function is only called due to an error or due to
5662 	 * len of found blocks < len of requested blocks hence the PA has not
5663 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5664 	 */
5665 	pa->pa_deleted = 1;
5666 	ext4_mb_pa_free(pa);
5667 }
5668 
5669 #ifdef CONFIG_EXT4_DEBUG
5670 static inline void ext4_mb_show_pa(struct super_block *sb)
5671 {
5672 	ext4_group_t i, ngroups;
5673 
5674 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5675 		return;
5676 
5677 	ngroups = ext4_get_groups_count(sb);
5678 	mb_debug(sb, "groups: ");
5679 	for (i = 0; i < ngroups; i++) {
5680 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5681 		struct ext4_prealloc_space *pa;
5682 		ext4_grpblk_t start;
5683 		struct list_head *cur;
5684 
5685 		if (!grp)
5686 			continue;
5687 		ext4_lock_group(sb, i);
5688 		list_for_each(cur, &grp->bb_prealloc_list) {
5689 			pa = list_entry(cur, struct ext4_prealloc_space,
5690 					pa_group_list);
5691 			spin_lock(&pa->pa_lock);
5692 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5693 						     NULL, &start);
5694 			spin_unlock(&pa->pa_lock);
5695 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5696 				 pa->pa_len);
5697 		}
5698 		ext4_unlock_group(sb, i);
5699 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5700 			 grp->bb_fragments);
5701 	}
5702 }
5703 
5704 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5705 {
5706 	struct super_block *sb = ac->ac_sb;
5707 
5708 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5709 		return;
5710 
5711 	mb_debug(sb, "Can't allocate:"
5712 			" Allocation context details:");
5713 	mb_debug(sb, "status %u flags 0x%x",
5714 			ac->ac_status, ac->ac_flags);
5715 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5716 			"goal %lu/%lu/%lu@%lu, "
5717 			"best %lu/%lu/%lu@%lu cr %d",
5718 			(unsigned long)ac->ac_o_ex.fe_group,
5719 			(unsigned long)ac->ac_o_ex.fe_start,
5720 			(unsigned long)ac->ac_o_ex.fe_len,
5721 			(unsigned long)ac->ac_o_ex.fe_logical,
5722 			(unsigned long)ac->ac_g_ex.fe_group,
5723 			(unsigned long)ac->ac_g_ex.fe_start,
5724 			(unsigned long)ac->ac_g_ex.fe_len,
5725 			(unsigned long)ac->ac_g_ex.fe_logical,
5726 			(unsigned long)ac->ac_b_ex.fe_group,
5727 			(unsigned long)ac->ac_b_ex.fe_start,
5728 			(unsigned long)ac->ac_b_ex.fe_len,
5729 			(unsigned long)ac->ac_b_ex.fe_logical,
5730 			(int)ac->ac_criteria);
5731 	mb_debug(sb, "%u found", ac->ac_found);
5732 	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5733 	if (ac->ac_pa)
5734 		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5735 			 "group pa" : "inode pa");
5736 	ext4_mb_show_pa(sb);
5737 }
5738 #else
5739 static inline void ext4_mb_show_pa(struct super_block *sb)
5740 {
5741 	return;
5742 }
5743 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5744 {
5745 	ext4_mb_show_pa(ac->ac_sb);
5746 	return;
5747 }
5748 #endif
5749 
5750 /*
5751  * We use locality group preallocation for small size file. The size of the
5752  * file is determined by the current size or the resulting size after
5753  * allocation which ever is larger
5754  *
5755  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5756  */
5757 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5758 {
5759 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5760 	int bsbits = ac->ac_sb->s_blocksize_bits;
5761 	loff_t size, isize;
5762 	bool inode_pa_eligible, group_pa_eligible;
5763 
5764 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5765 		return;
5766 
5767 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5768 		return;
5769 
5770 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5771 	inode_pa_eligible = true;
5772 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5773 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5774 		>> bsbits;
5775 
5776 	/* No point in using inode preallocation for closed files */
5777 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5778 	    !inode_is_open_for_write(ac->ac_inode))
5779 		inode_pa_eligible = false;
5780 
5781 	size = max(size, isize);
5782 	/* Don't use group allocation for large files */
5783 	if (size > sbi->s_mb_stream_request)
5784 		group_pa_eligible = false;
5785 
5786 	if (!group_pa_eligible) {
5787 		if (inode_pa_eligible)
5788 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5789 		else
5790 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5791 		return;
5792 	}
5793 
5794 	BUG_ON(ac->ac_lg != NULL);
5795 	/*
5796 	 * locality group prealloc space are per cpu. The reason for having
5797 	 * per cpu locality group is to reduce the contention between block
5798 	 * request from multiple CPUs.
5799 	 */
5800 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5801 
5802 	/* we're going to use group allocation */
5803 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5804 
5805 	/* serialize all allocations in the group */
5806 	mutex_lock(&ac->ac_lg->lg_mutex);
5807 }
5808 
5809 static noinline_for_stack void
5810 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5811 				struct ext4_allocation_request *ar)
5812 {
5813 	struct super_block *sb = ar->inode->i_sb;
5814 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5815 	struct ext4_super_block *es = sbi->s_es;
5816 	ext4_group_t group;
5817 	unsigned int len;
5818 	ext4_fsblk_t goal;
5819 	ext4_grpblk_t block;
5820 
5821 	/* we can't allocate > group size */
5822 	len = ar->len;
5823 
5824 	/* just a dirty hack to filter too big requests  */
5825 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5826 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5827 
5828 	/* start searching from the goal */
5829 	goal = ar->goal;
5830 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5831 			goal >= ext4_blocks_count(es))
5832 		goal = le32_to_cpu(es->s_first_data_block);
5833 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5834 
5835 	/* set up allocation goals */
5836 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5837 	ac->ac_status = AC_STATUS_CONTINUE;
5838 	ac->ac_sb = sb;
5839 	ac->ac_inode = ar->inode;
5840 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5841 	ac->ac_o_ex.fe_group = group;
5842 	ac->ac_o_ex.fe_start = block;
5843 	ac->ac_o_ex.fe_len = len;
5844 	ac->ac_g_ex = ac->ac_o_ex;
5845 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5846 	ac->ac_flags = ar->flags;
5847 
5848 	/* we have to define context: we'll work with a file or
5849 	 * locality group. this is a policy, actually */
5850 	ext4_mb_group_or_file(ac);
5851 
5852 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5853 			"left: %u/%u, right %u/%u to %swritable\n",
5854 			(unsigned) ar->len, (unsigned) ar->logical,
5855 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5856 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5857 			(unsigned) ar->lright, (unsigned) ar->pright,
5858 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5859 }
5860 
5861 static noinline_for_stack void
5862 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5863 					struct ext4_locality_group *lg,
5864 					int order, int total_entries)
5865 {
5866 	ext4_group_t group = 0;
5867 	struct ext4_buddy e4b;
5868 	struct list_head discard_list;
5869 	struct ext4_prealloc_space *pa, *tmp;
5870 
5871 	mb_debug(sb, "discard locality group preallocation\n");
5872 
5873 	INIT_LIST_HEAD(&discard_list);
5874 
5875 	spin_lock(&lg->lg_prealloc_lock);
5876 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5877 				pa_node.lg_list,
5878 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5879 		spin_lock(&pa->pa_lock);
5880 		if (atomic_read(&pa->pa_count)) {
5881 			/*
5882 			 * This is the pa that we just used
5883 			 * for block allocation. So don't
5884 			 * free that
5885 			 */
5886 			spin_unlock(&pa->pa_lock);
5887 			continue;
5888 		}
5889 		if (pa->pa_deleted) {
5890 			spin_unlock(&pa->pa_lock);
5891 			continue;
5892 		}
5893 		/* only lg prealloc space */
5894 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5895 
5896 		/* seems this one can be freed ... */
5897 		ext4_mb_mark_pa_deleted(sb, pa);
5898 		spin_unlock(&pa->pa_lock);
5899 
5900 		list_del_rcu(&pa->pa_node.lg_list);
5901 		list_add(&pa->u.pa_tmp_list, &discard_list);
5902 
5903 		total_entries--;
5904 		if (total_entries <= 5) {
5905 			/*
5906 			 * we want to keep only 5 entries
5907 			 * allowing it to grow to 8. This
5908 			 * mak sure we don't call discard
5909 			 * soon for this list.
5910 			 */
5911 			break;
5912 		}
5913 	}
5914 	spin_unlock(&lg->lg_prealloc_lock);
5915 
5916 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5917 		int err;
5918 
5919 		group = ext4_get_group_number(sb, pa->pa_pstart);
5920 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5921 					     GFP_NOFS|__GFP_NOFAIL);
5922 		if (err) {
5923 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5924 				       err, group);
5925 			continue;
5926 		}
5927 		ext4_lock_group(sb, group);
5928 		list_del(&pa->pa_group_list);
5929 		ext4_mb_release_group_pa(&e4b, pa);
5930 		ext4_unlock_group(sb, group);
5931 
5932 		ext4_mb_unload_buddy(&e4b);
5933 		list_del(&pa->u.pa_tmp_list);
5934 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5935 	}
5936 }
5937 
5938 /*
5939  * We have incremented pa_count. So it cannot be freed at this
5940  * point. Also we hold lg_mutex. So no parallel allocation is
5941  * possible from this lg. That means pa_free cannot be updated.
5942  *
5943  * A parallel ext4_mb_discard_group_preallocations is possible.
5944  * which can cause the lg_prealloc_list to be updated.
5945  */
5946 
5947 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5948 {
5949 	int order, added = 0, lg_prealloc_count = 1;
5950 	struct super_block *sb = ac->ac_sb;
5951 	struct ext4_locality_group *lg = ac->ac_lg;
5952 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5953 
5954 	order = fls(pa->pa_free) - 1;
5955 	if (order > PREALLOC_TB_SIZE - 1)
5956 		/* The max size of hash table is PREALLOC_TB_SIZE */
5957 		order = PREALLOC_TB_SIZE - 1;
5958 	/* Add the prealloc space to lg */
5959 	spin_lock(&lg->lg_prealloc_lock);
5960 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5961 				pa_node.lg_list,
5962 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5963 		spin_lock(&tmp_pa->pa_lock);
5964 		if (tmp_pa->pa_deleted) {
5965 			spin_unlock(&tmp_pa->pa_lock);
5966 			continue;
5967 		}
5968 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5969 			/* Add to the tail of the previous entry */
5970 			list_add_tail_rcu(&pa->pa_node.lg_list,
5971 						&tmp_pa->pa_node.lg_list);
5972 			added = 1;
5973 			/*
5974 			 * we want to count the total
5975 			 * number of entries in the list
5976 			 */
5977 		}
5978 		spin_unlock(&tmp_pa->pa_lock);
5979 		lg_prealloc_count++;
5980 	}
5981 	if (!added)
5982 		list_add_tail_rcu(&pa->pa_node.lg_list,
5983 					&lg->lg_prealloc_list[order]);
5984 	spin_unlock(&lg->lg_prealloc_lock);
5985 
5986 	/* Now trim the list to be not more than 8 elements */
5987 	if (lg_prealloc_count > 8) {
5988 		ext4_mb_discard_lg_preallocations(sb, lg,
5989 						  order, lg_prealloc_count);
5990 		return;
5991 	}
5992 	return ;
5993 }
5994 
5995 /*
5996  * release all resource we used in allocation
5997  */
5998 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5999 {
6000 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
6001 	struct ext4_prealloc_space *pa = ac->ac_pa;
6002 	if (pa) {
6003 		if (pa->pa_type == MB_GROUP_PA) {
6004 			/* see comment in ext4_mb_use_group_pa() */
6005 			spin_lock(&pa->pa_lock);
6006 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6007 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6008 			pa->pa_free -= ac->ac_b_ex.fe_len;
6009 			pa->pa_len -= ac->ac_b_ex.fe_len;
6010 			spin_unlock(&pa->pa_lock);
6011 
6012 			/*
6013 			 * We want to add the pa to the right bucket.
6014 			 * Remove it from the list and while adding
6015 			 * make sure the list to which we are adding
6016 			 * doesn't grow big.
6017 			 */
6018 			if (likely(pa->pa_free)) {
6019 				spin_lock(pa->pa_node_lock.lg_lock);
6020 				list_del_rcu(&pa->pa_node.lg_list);
6021 				spin_unlock(pa->pa_node_lock.lg_lock);
6022 				ext4_mb_add_n_trim(ac);
6023 			}
6024 		}
6025 
6026 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
6027 	}
6028 	if (ac->ac_bitmap_page)
6029 		put_page(ac->ac_bitmap_page);
6030 	if (ac->ac_buddy_page)
6031 		put_page(ac->ac_buddy_page);
6032 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6033 		mutex_unlock(&ac->ac_lg->lg_mutex);
6034 	ext4_mb_collect_stats(ac);
6035 	return 0;
6036 }
6037 
6038 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6039 {
6040 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6041 	int ret;
6042 	int freed = 0, busy = 0;
6043 	int retry = 0;
6044 
6045 	trace_ext4_mb_discard_preallocations(sb, needed);
6046 
6047 	if (needed == 0)
6048 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6049  repeat:
6050 	for (i = 0; i < ngroups && needed > 0; i++) {
6051 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6052 		freed += ret;
6053 		needed -= ret;
6054 		cond_resched();
6055 	}
6056 
6057 	if (needed > 0 && busy && ++retry < 3) {
6058 		busy = 0;
6059 		goto repeat;
6060 	}
6061 
6062 	return freed;
6063 }
6064 
6065 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6066 			struct ext4_allocation_context *ac, u64 *seq)
6067 {
6068 	int freed;
6069 	u64 seq_retry = 0;
6070 	bool ret = false;
6071 
6072 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6073 	if (freed) {
6074 		ret = true;
6075 		goto out_dbg;
6076 	}
6077 	seq_retry = ext4_get_discard_pa_seq_sum();
6078 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6079 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6080 		*seq = seq_retry;
6081 		ret = true;
6082 	}
6083 
6084 out_dbg:
6085 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6086 	return ret;
6087 }
6088 
6089 /*
6090  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6091  * linearly starting at the goal block and also excludes the blocks which
6092  * are going to be in use after fast commit replay.
6093  */
6094 static ext4_fsblk_t
6095 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6096 {
6097 	struct buffer_head *bitmap_bh;
6098 	struct super_block *sb = ar->inode->i_sb;
6099 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6100 	ext4_group_t group, nr;
6101 	ext4_grpblk_t blkoff;
6102 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6103 	ext4_grpblk_t i = 0;
6104 	ext4_fsblk_t goal, block;
6105 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
6106 
6107 	goal = ar->goal;
6108 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6109 			goal >= ext4_blocks_count(es))
6110 		goal = le32_to_cpu(es->s_first_data_block);
6111 
6112 	ar->len = 0;
6113 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6114 	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6115 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6116 		if (IS_ERR(bitmap_bh)) {
6117 			*errp = PTR_ERR(bitmap_bh);
6118 			pr_warn("Failed to read block bitmap\n");
6119 			return 0;
6120 		}
6121 
6122 		while (1) {
6123 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6124 						blkoff);
6125 			if (i >= max)
6126 				break;
6127 			if (ext4_fc_replay_check_excluded(sb,
6128 				ext4_group_first_block_no(sb, group) +
6129 				EXT4_C2B(sbi, i))) {
6130 				blkoff = i + 1;
6131 			} else
6132 				break;
6133 		}
6134 		brelse(bitmap_bh);
6135 		if (i < max)
6136 			break;
6137 
6138 		if (++group >= ext4_get_groups_count(sb))
6139 			group = 0;
6140 
6141 		blkoff = 0;
6142 	}
6143 
6144 	if (i >= max) {
6145 		*errp = -ENOSPC;
6146 		return 0;
6147 	}
6148 
6149 	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6150 	ext4_mb_mark_bb(sb, block, 1, 1);
6151 	ar->len = 1;
6152 
6153 	return block;
6154 }
6155 
6156 /*
6157  * Main entry point into mballoc to allocate blocks
6158  * it tries to use preallocation first, then falls back
6159  * to usual allocation
6160  */
6161 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6162 				struct ext4_allocation_request *ar, int *errp)
6163 {
6164 	struct ext4_allocation_context *ac = NULL;
6165 	struct ext4_sb_info *sbi;
6166 	struct super_block *sb;
6167 	ext4_fsblk_t block = 0;
6168 	unsigned int inquota = 0;
6169 	unsigned int reserv_clstrs = 0;
6170 	int retries = 0;
6171 	u64 seq;
6172 
6173 	might_sleep();
6174 	sb = ar->inode->i_sb;
6175 	sbi = EXT4_SB(sb);
6176 
6177 	trace_ext4_request_blocks(ar);
6178 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6179 		return ext4_mb_new_blocks_simple(ar, errp);
6180 
6181 	/* Allow to use superuser reservation for quota file */
6182 	if (ext4_is_quota_file(ar->inode))
6183 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6184 
6185 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6186 		/* Without delayed allocation we need to verify
6187 		 * there is enough free blocks to do block allocation
6188 		 * and verify allocation doesn't exceed the quota limits.
6189 		 */
6190 		while (ar->len &&
6191 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6192 
6193 			/* let others to free the space */
6194 			cond_resched();
6195 			ar->len = ar->len >> 1;
6196 		}
6197 		if (!ar->len) {
6198 			ext4_mb_show_pa(sb);
6199 			*errp = -ENOSPC;
6200 			return 0;
6201 		}
6202 		reserv_clstrs = ar->len;
6203 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6204 			dquot_alloc_block_nofail(ar->inode,
6205 						 EXT4_C2B(sbi, ar->len));
6206 		} else {
6207 			while (ar->len &&
6208 				dquot_alloc_block(ar->inode,
6209 						  EXT4_C2B(sbi, ar->len))) {
6210 
6211 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6212 				ar->len--;
6213 			}
6214 		}
6215 		inquota = ar->len;
6216 		if (ar->len == 0) {
6217 			*errp = -EDQUOT;
6218 			goto out;
6219 		}
6220 	}
6221 
6222 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6223 	if (!ac) {
6224 		ar->len = 0;
6225 		*errp = -ENOMEM;
6226 		goto out;
6227 	}
6228 
6229 	ext4_mb_initialize_context(ac, ar);
6230 
6231 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6232 	seq = this_cpu_read(discard_pa_seq);
6233 	if (!ext4_mb_use_preallocated(ac)) {
6234 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6235 		ext4_mb_normalize_request(ac, ar);
6236 
6237 		*errp = ext4_mb_pa_alloc(ac);
6238 		if (*errp)
6239 			goto errout;
6240 repeat:
6241 		/* allocate space in core */
6242 		*errp = ext4_mb_regular_allocator(ac);
6243 		/*
6244 		 * pa allocated above is added to grp->bb_prealloc_list only
6245 		 * when we were able to allocate some block i.e. when
6246 		 * ac->ac_status == AC_STATUS_FOUND.
6247 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6248 		 * So we have to free this pa here itself.
6249 		 */
6250 		if (*errp) {
6251 			ext4_mb_pa_put_free(ac);
6252 			ext4_discard_allocated_blocks(ac);
6253 			goto errout;
6254 		}
6255 		if (ac->ac_status == AC_STATUS_FOUND &&
6256 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6257 			ext4_mb_pa_put_free(ac);
6258 	}
6259 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6260 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6261 		if (*errp) {
6262 			ext4_discard_allocated_blocks(ac);
6263 			goto errout;
6264 		} else {
6265 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6266 			ar->len = ac->ac_b_ex.fe_len;
6267 		}
6268 	} else {
6269 		if (++retries < 3 &&
6270 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6271 			goto repeat;
6272 		/*
6273 		 * If block allocation fails then the pa allocated above
6274 		 * needs to be freed here itself.
6275 		 */
6276 		ext4_mb_pa_put_free(ac);
6277 		*errp = -ENOSPC;
6278 	}
6279 
6280 	if (*errp) {
6281 errout:
6282 		ac->ac_b_ex.fe_len = 0;
6283 		ar->len = 0;
6284 		ext4_mb_show_ac(ac);
6285 	}
6286 	ext4_mb_release_context(ac);
6287 	kmem_cache_free(ext4_ac_cachep, ac);
6288 out:
6289 	if (inquota && ar->len < inquota)
6290 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6291 	if (!ar->len) {
6292 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6293 			/* release all the reserved blocks if non delalloc */
6294 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6295 						reserv_clstrs);
6296 	}
6297 
6298 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6299 
6300 	return block;
6301 }
6302 
6303 /*
6304  * We can merge two free data extents only if the physical blocks
6305  * are contiguous, AND the extents were freed by the same transaction,
6306  * AND the blocks are associated with the same group.
6307  */
6308 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6309 					struct ext4_free_data *entry,
6310 					struct ext4_free_data *new_entry,
6311 					struct rb_root *entry_rb_root)
6312 {
6313 	if ((entry->efd_tid != new_entry->efd_tid) ||
6314 	    (entry->efd_group != new_entry->efd_group))
6315 		return;
6316 	if (entry->efd_start_cluster + entry->efd_count ==
6317 	    new_entry->efd_start_cluster) {
6318 		new_entry->efd_start_cluster = entry->efd_start_cluster;
6319 		new_entry->efd_count += entry->efd_count;
6320 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6321 		   entry->efd_start_cluster) {
6322 		new_entry->efd_count += entry->efd_count;
6323 	} else
6324 		return;
6325 	spin_lock(&sbi->s_md_lock);
6326 	list_del(&entry->efd_list);
6327 	spin_unlock(&sbi->s_md_lock);
6328 	rb_erase(&entry->efd_node, entry_rb_root);
6329 	kmem_cache_free(ext4_free_data_cachep, entry);
6330 }
6331 
6332 static noinline_for_stack void
6333 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6334 		      struct ext4_free_data *new_entry)
6335 {
6336 	ext4_group_t group = e4b->bd_group;
6337 	ext4_grpblk_t cluster;
6338 	ext4_grpblk_t clusters = new_entry->efd_count;
6339 	struct ext4_free_data *entry;
6340 	struct ext4_group_info *db = e4b->bd_info;
6341 	struct super_block *sb = e4b->bd_sb;
6342 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6343 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6344 	struct rb_node *parent = NULL, *new_node;
6345 
6346 	BUG_ON(!ext4_handle_valid(handle));
6347 	BUG_ON(e4b->bd_bitmap_page == NULL);
6348 	BUG_ON(e4b->bd_buddy_page == NULL);
6349 
6350 	new_node = &new_entry->efd_node;
6351 	cluster = new_entry->efd_start_cluster;
6352 
6353 	if (!*n) {
6354 		/* first free block exent. We need to
6355 		   protect buddy cache from being freed,
6356 		 * otherwise we'll refresh it from
6357 		 * on-disk bitmap and lose not-yet-available
6358 		 * blocks */
6359 		get_page(e4b->bd_buddy_page);
6360 		get_page(e4b->bd_bitmap_page);
6361 	}
6362 	while (*n) {
6363 		parent = *n;
6364 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6365 		if (cluster < entry->efd_start_cluster)
6366 			n = &(*n)->rb_left;
6367 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6368 			n = &(*n)->rb_right;
6369 		else {
6370 			ext4_grp_locked_error(sb, group, 0,
6371 				ext4_group_first_block_no(sb, group) +
6372 				EXT4_C2B(sbi, cluster),
6373 				"Block already on to-be-freed list");
6374 			kmem_cache_free(ext4_free_data_cachep, new_entry);
6375 			return;
6376 		}
6377 	}
6378 
6379 	rb_link_node(new_node, parent, n);
6380 	rb_insert_color(new_node, &db->bb_free_root);
6381 
6382 	/* Now try to see the extent can be merged to left and right */
6383 	node = rb_prev(new_node);
6384 	if (node) {
6385 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6386 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6387 					    &(db->bb_free_root));
6388 	}
6389 
6390 	node = rb_next(new_node);
6391 	if (node) {
6392 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6393 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6394 					    &(db->bb_free_root));
6395 	}
6396 
6397 	spin_lock(&sbi->s_md_lock);
6398 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6399 	sbi->s_mb_free_pending += clusters;
6400 	spin_unlock(&sbi->s_md_lock);
6401 }
6402 
6403 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6404 					unsigned long count)
6405 {
6406 	struct buffer_head *bitmap_bh;
6407 	struct super_block *sb = inode->i_sb;
6408 	struct ext4_group_desc *gdp;
6409 	struct buffer_head *gdp_bh;
6410 	ext4_group_t group;
6411 	ext4_grpblk_t blkoff;
6412 	int already_freed = 0, err, i;
6413 
6414 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6415 	bitmap_bh = ext4_read_block_bitmap(sb, group);
6416 	if (IS_ERR(bitmap_bh)) {
6417 		pr_warn("Failed to read block bitmap\n");
6418 		return;
6419 	}
6420 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6421 	if (!gdp)
6422 		goto err_out;
6423 
6424 	for (i = 0; i < count; i++) {
6425 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6426 			already_freed++;
6427 	}
6428 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6429 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6430 	if (err)
6431 		goto err_out;
6432 	ext4_free_group_clusters_set(
6433 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
6434 		count - already_freed);
6435 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6436 	ext4_group_desc_csum_set(sb, group, gdp);
6437 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6438 	sync_dirty_buffer(bitmap_bh);
6439 	sync_dirty_buffer(gdp_bh);
6440 
6441 err_out:
6442 	brelse(bitmap_bh);
6443 }
6444 
6445 /**
6446  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6447  *			Used by ext4_free_blocks()
6448  * @handle:		handle for this transaction
6449  * @inode:		inode
6450  * @block:		starting physical block to be freed
6451  * @count:		number of blocks to be freed
6452  * @flags:		flags used by ext4_free_blocks
6453  */
6454 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6455 			       ext4_fsblk_t block, unsigned long count,
6456 			       int flags)
6457 {
6458 	struct buffer_head *bitmap_bh = NULL;
6459 	struct super_block *sb = inode->i_sb;
6460 	struct ext4_group_desc *gdp;
6461 	struct ext4_group_info *grp;
6462 	unsigned int overflow;
6463 	ext4_grpblk_t bit;
6464 	struct buffer_head *gd_bh;
6465 	ext4_group_t block_group;
6466 	struct ext4_sb_info *sbi;
6467 	struct ext4_buddy e4b;
6468 	unsigned int count_clusters;
6469 	int err = 0;
6470 	int ret;
6471 
6472 	sbi = EXT4_SB(sb);
6473 
6474 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6475 	    !ext4_inode_block_valid(inode, block, count)) {
6476 		ext4_error(sb, "Freeing blocks in system zone - "
6477 			   "Block = %llu, count = %lu", block, count);
6478 		/* err = 0. ext4_std_error should be a no op */
6479 		goto error_return;
6480 	}
6481 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6482 
6483 do_more:
6484 	overflow = 0;
6485 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6486 
6487 	grp = ext4_get_group_info(sb, block_group);
6488 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6489 		return;
6490 
6491 	/*
6492 	 * Check to see if we are freeing blocks across a group
6493 	 * boundary.
6494 	 */
6495 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6496 		overflow = EXT4_C2B(sbi, bit) + count -
6497 			EXT4_BLOCKS_PER_GROUP(sb);
6498 		count -= overflow;
6499 		/* The range changed so it's no longer validated */
6500 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6501 	}
6502 	count_clusters = EXT4_NUM_B2C(sbi, count);
6503 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6504 	if (IS_ERR(bitmap_bh)) {
6505 		err = PTR_ERR(bitmap_bh);
6506 		bitmap_bh = NULL;
6507 		goto error_return;
6508 	}
6509 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6510 	if (!gdp) {
6511 		err = -EIO;
6512 		goto error_return;
6513 	}
6514 
6515 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6516 	    !ext4_inode_block_valid(inode, block, count)) {
6517 		ext4_error(sb, "Freeing blocks in system zone - "
6518 			   "Block = %llu, count = %lu", block, count);
6519 		/* err = 0. ext4_std_error should be a no op */
6520 		goto error_return;
6521 	}
6522 
6523 	BUFFER_TRACE(bitmap_bh, "getting write access");
6524 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6525 					    EXT4_JTR_NONE);
6526 	if (err)
6527 		goto error_return;
6528 
6529 	/*
6530 	 * We are about to modify some metadata.  Call the journal APIs
6531 	 * to unshare ->b_data if a currently-committing transaction is
6532 	 * using it
6533 	 */
6534 	BUFFER_TRACE(gd_bh, "get_write_access");
6535 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6536 	if (err)
6537 		goto error_return;
6538 #ifdef AGGRESSIVE_CHECK
6539 	{
6540 		int i;
6541 		for (i = 0; i < count_clusters; i++)
6542 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6543 	}
6544 #endif
6545 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6546 
6547 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6548 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6549 				     GFP_NOFS|__GFP_NOFAIL);
6550 	if (err)
6551 		goto error_return;
6552 
6553 	/*
6554 	 * We need to make sure we don't reuse the freed block until after the
6555 	 * transaction is committed. We make an exception if the inode is to be
6556 	 * written in writeback mode since writeback mode has weak data
6557 	 * consistency guarantees.
6558 	 */
6559 	if (ext4_handle_valid(handle) &&
6560 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6561 	     !ext4_should_writeback_data(inode))) {
6562 		struct ext4_free_data *new_entry;
6563 		/*
6564 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6565 		 * to fail.
6566 		 */
6567 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6568 				GFP_NOFS|__GFP_NOFAIL);
6569 		new_entry->efd_start_cluster = bit;
6570 		new_entry->efd_group = block_group;
6571 		new_entry->efd_count = count_clusters;
6572 		new_entry->efd_tid = handle->h_transaction->t_tid;
6573 
6574 		ext4_lock_group(sb, block_group);
6575 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6576 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6577 	} else {
6578 		/* need to update group_info->bb_free and bitmap
6579 		 * with group lock held. generate_buddy look at
6580 		 * them with group lock_held
6581 		 */
6582 		if (test_opt(sb, DISCARD)) {
6583 			err = ext4_issue_discard(sb, block_group, bit,
6584 						 count_clusters, NULL);
6585 			if (err && err != -EOPNOTSUPP)
6586 				ext4_msg(sb, KERN_WARNING, "discard request in"
6587 					 " group:%u block:%d count:%lu failed"
6588 					 " with %d", block_group, bit, count,
6589 					 err);
6590 		} else
6591 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6592 
6593 		ext4_lock_group(sb, block_group);
6594 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6595 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6596 	}
6597 
6598 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6599 	ext4_free_group_clusters_set(sb, gdp, ret);
6600 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6601 	ext4_group_desc_csum_set(sb, block_group, gdp);
6602 	ext4_unlock_group(sb, block_group);
6603 
6604 	if (sbi->s_log_groups_per_flex) {
6605 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6606 		atomic64_add(count_clusters,
6607 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6608 						  flex_group)->free_clusters);
6609 	}
6610 
6611 	/*
6612 	 * on a bigalloc file system, defer the s_freeclusters_counter
6613 	 * update to the caller (ext4_remove_space and friends) so they
6614 	 * can determine if a cluster freed here should be rereserved
6615 	 */
6616 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6617 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6618 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6619 		percpu_counter_add(&sbi->s_freeclusters_counter,
6620 				   count_clusters);
6621 	}
6622 
6623 	ext4_mb_unload_buddy(&e4b);
6624 
6625 	/* We dirtied the bitmap block */
6626 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6627 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6628 
6629 	/* And the group descriptor block */
6630 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6631 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6632 	if (!err)
6633 		err = ret;
6634 
6635 	if (overflow && !err) {
6636 		block += count;
6637 		count = overflow;
6638 		put_bh(bitmap_bh);
6639 		/* The range changed so it's no longer validated */
6640 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6641 		goto do_more;
6642 	}
6643 error_return:
6644 	brelse(bitmap_bh);
6645 	ext4_std_error(sb, err);
6646 	return;
6647 }
6648 
6649 /**
6650  * ext4_free_blocks() -- Free given blocks and update quota
6651  * @handle:		handle for this transaction
6652  * @inode:		inode
6653  * @bh:			optional buffer of the block to be freed
6654  * @block:		starting physical block to be freed
6655  * @count:		number of blocks to be freed
6656  * @flags:		flags used by ext4_free_blocks
6657  */
6658 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6659 		      struct buffer_head *bh, ext4_fsblk_t block,
6660 		      unsigned long count, int flags)
6661 {
6662 	struct super_block *sb = inode->i_sb;
6663 	unsigned int overflow;
6664 	struct ext4_sb_info *sbi;
6665 
6666 	sbi = EXT4_SB(sb);
6667 
6668 	if (bh) {
6669 		if (block)
6670 			BUG_ON(block != bh->b_blocknr);
6671 		else
6672 			block = bh->b_blocknr;
6673 	}
6674 
6675 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6676 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6677 		return;
6678 	}
6679 
6680 	might_sleep();
6681 
6682 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6683 	    !ext4_inode_block_valid(inode, block, count)) {
6684 		ext4_error(sb, "Freeing blocks not in datazone - "
6685 			   "block = %llu, count = %lu", block, count);
6686 		return;
6687 	}
6688 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6689 
6690 	ext4_debug("freeing block %llu\n", block);
6691 	trace_ext4_free_blocks(inode, block, count, flags);
6692 
6693 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6694 		BUG_ON(count > 1);
6695 
6696 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6697 			    inode, bh, block);
6698 	}
6699 
6700 	/*
6701 	 * If the extent to be freed does not begin on a cluster
6702 	 * boundary, we need to deal with partial clusters at the
6703 	 * beginning and end of the extent.  Normally we will free
6704 	 * blocks at the beginning or the end unless we are explicitly
6705 	 * requested to avoid doing so.
6706 	 */
6707 	overflow = EXT4_PBLK_COFF(sbi, block);
6708 	if (overflow) {
6709 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6710 			overflow = sbi->s_cluster_ratio - overflow;
6711 			block += overflow;
6712 			if (count > overflow)
6713 				count -= overflow;
6714 			else
6715 				return;
6716 		} else {
6717 			block -= overflow;
6718 			count += overflow;
6719 		}
6720 		/* The range changed so it's no longer validated */
6721 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6722 	}
6723 	overflow = EXT4_LBLK_COFF(sbi, count);
6724 	if (overflow) {
6725 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6726 			if (count > overflow)
6727 				count -= overflow;
6728 			else
6729 				return;
6730 		} else
6731 			count += sbi->s_cluster_ratio - overflow;
6732 		/* The range changed so it's no longer validated */
6733 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6734 	}
6735 
6736 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6737 		int i;
6738 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6739 
6740 		for (i = 0; i < count; i++) {
6741 			cond_resched();
6742 			if (is_metadata)
6743 				bh = sb_find_get_block(inode->i_sb, block + i);
6744 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6745 		}
6746 	}
6747 
6748 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6749 	return;
6750 }
6751 
6752 /**
6753  * ext4_group_add_blocks() -- Add given blocks to an existing group
6754  * @handle:			handle to this transaction
6755  * @sb:				super block
6756  * @block:			start physical block to add to the block group
6757  * @count:			number of blocks to free
6758  *
6759  * This marks the blocks as free in the bitmap and buddy.
6760  */
6761 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6762 			 ext4_fsblk_t block, unsigned long count)
6763 {
6764 	struct buffer_head *bitmap_bh = NULL;
6765 	struct buffer_head *gd_bh;
6766 	ext4_group_t block_group;
6767 	ext4_grpblk_t bit;
6768 	unsigned int i;
6769 	struct ext4_group_desc *desc;
6770 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6771 	struct ext4_buddy e4b;
6772 	int err = 0, ret, free_clusters_count;
6773 	ext4_grpblk_t clusters_freed;
6774 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6775 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6776 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6777 
6778 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6779 
6780 	if (count == 0)
6781 		return 0;
6782 
6783 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6784 	/*
6785 	 * Check to see if we are freeing blocks across a group
6786 	 * boundary.
6787 	 */
6788 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6789 		ext4_warning(sb, "too many blocks added to group %u",
6790 			     block_group);
6791 		err = -EINVAL;
6792 		goto error_return;
6793 	}
6794 
6795 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6796 	if (IS_ERR(bitmap_bh)) {
6797 		err = PTR_ERR(bitmap_bh);
6798 		bitmap_bh = NULL;
6799 		goto error_return;
6800 	}
6801 
6802 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6803 	if (!desc) {
6804 		err = -EIO;
6805 		goto error_return;
6806 	}
6807 
6808 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6809 		ext4_error(sb, "Adding blocks in system zones - "
6810 			   "Block = %llu, count = %lu",
6811 			   block, count);
6812 		err = -EINVAL;
6813 		goto error_return;
6814 	}
6815 
6816 	BUFFER_TRACE(bitmap_bh, "getting write access");
6817 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6818 					    EXT4_JTR_NONE);
6819 	if (err)
6820 		goto error_return;
6821 
6822 	/*
6823 	 * We are about to modify some metadata.  Call the journal APIs
6824 	 * to unshare ->b_data if a currently-committing transaction is
6825 	 * using it
6826 	 */
6827 	BUFFER_TRACE(gd_bh, "get_write_access");
6828 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6829 	if (err)
6830 		goto error_return;
6831 
6832 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6833 		BUFFER_TRACE(bitmap_bh, "clear bit");
6834 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6835 			ext4_error(sb, "bit already cleared for block %llu",
6836 				   (ext4_fsblk_t)(block + i));
6837 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6838 		} else {
6839 			clusters_freed++;
6840 		}
6841 	}
6842 
6843 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6844 	if (err)
6845 		goto error_return;
6846 
6847 	/*
6848 	 * need to update group_info->bb_free and bitmap
6849 	 * with group lock held. generate_buddy look at
6850 	 * them with group lock_held
6851 	 */
6852 	ext4_lock_group(sb, block_group);
6853 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6854 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6855 	free_clusters_count = clusters_freed +
6856 		ext4_free_group_clusters(sb, desc);
6857 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6858 	ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6859 	ext4_group_desc_csum_set(sb, block_group, desc);
6860 	ext4_unlock_group(sb, block_group);
6861 	percpu_counter_add(&sbi->s_freeclusters_counter,
6862 			   clusters_freed);
6863 
6864 	if (sbi->s_log_groups_per_flex) {
6865 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6866 		atomic64_add(clusters_freed,
6867 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6868 						  flex_group)->free_clusters);
6869 	}
6870 
6871 	ext4_mb_unload_buddy(&e4b);
6872 
6873 	/* We dirtied the bitmap block */
6874 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6875 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6876 
6877 	/* And the group descriptor block */
6878 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6879 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6880 	if (!err)
6881 		err = ret;
6882 
6883 error_return:
6884 	brelse(bitmap_bh);
6885 	ext4_std_error(sb, err);
6886 	return err;
6887 }
6888 
6889 /**
6890  * ext4_trim_extent -- function to TRIM one single free extent in the group
6891  * @sb:		super block for the file system
6892  * @start:	starting block of the free extent in the alloc. group
6893  * @count:	number of blocks to TRIM
6894  * @e4b:	ext4 buddy for the group
6895  *
6896  * Trim "count" blocks starting at "start" in the "group". To assure that no
6897  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6898  * be called with under the group lock.
6899  */
6900 static int ext4_trim_extent(struct super_block *sb,
6901 		int start, int count, struct ext4_buddy *e4b)
6902 __releases(bitlock)
6903 __acquires(bitlock)
6904 {
6905 	struct ext4_free_extent ex;
6906 	ext4_group_t group = e4b->bd_group;
6907 	int ret = 0;
6908 
6909 	trace_ext4_trim_extent(sb, group, start, count);
6910 
6911 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6912 
6913 	ex.fe_start = start;
6914 	ex.fe_group = group;
6915 	ex.fe_len = count;
6916 
6917 	/*
6918 	 * Mark blocks used, so no one can reuse them while
6919 	 * being trimmed.
6920 	 */
6921 	mb_mark_used(e4b, &ex);
6922 	ext4_unlock_group(sb, group);
6923 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6924 	ext4_lock_group(sb, group);
6925 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6926 	return ret;
6927 }
6928 
6929 static int ext4_try_to_trim_range(struct super_block *sb,
6930 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6931 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6932 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6933 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6934 {
6935 	ext4_grpblk_t next, count, free_count;
6936 	void *bitmap;
6937 
6938 	bitmap = e4b->bd_bitmap;
6939 	start = (e4b->bd_info->bb_first_free > start) ?
6940 		e4b->bd_info->bb_first_free : start;
6941 	count = 0;
6942 	free_count = 0;
6943 
6944 	while (start <= max) {
6945 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6946 		if (start > max)
6947 			break;
6948 		next = mb_find_next_bit(bitmap, max + 1, start);
6949 
6950 		if ((next - start) >= minblocks) {
6951 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6952 
6953 			if (ret && ret != -EOPNOTSUPP)
6954 				break;
6955 			count += next - start;
6956 		}
6957 		free_count += next - start;
6958 		start = next + 1;
6959 
6960 		if (fatal_signal_pending(current)) {
6961 			count = -ERESTARTSYS;
6962 			break;
6963 		}
6964 
6965 		if (need_resched()) {
6966 			ext4_unlock_group(sb, e4b->bd_group);
6967 			cond_resched();
6968 			ext4_lock_group(sb, e4b->bd_group);
6969 		}
6970 
6971 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6972 			break;
6973 	}
6974 
6975 	return count;
6976 }
6977 
6978 /**
6979  * ext4_trim_all_free -- function to trim all free space in alloc. group
6980  * @sb:			super block for file system
6981  * @group:		group to be trimmed
6982  * @start:		first group block to examine
6983  * @max:		last group block to examine
6984  * @minblocks:		minimum extent block count
6985  * @set_trimmed:	set the trimmed flag if at least one block is trimmed
6986  *
6987  * ext4_trim_all_free walks through group's block bitmap searching for free
6988  * extents. When the free extent is found, mark it as used in group buddy
6989  * bitmap. Then issue a TRIM command on this extent and free the extent in
6990  * the group buddy bitmap.
6991  */
6992 static ext4_grpblk_t
6993 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6994 		   ext4_grpblk_t start, ext4_grpblk_t max,
6995 		   ext4_grpblk_t minblocks, bool set_trimmed)
6996 {
6997 	struct ext4_buddy e4b;
6998 	int ret;
6999 
7000 	trace_ext4_trim_all_free(sb, group, start, max);
7001 
7002 	ret = ext4_mb_load_buddy(sb, group, &e4b);
7003 	if (ret) {
7004 		ext4_warning(sb, "Error %d loading buddy information for %u",
7005 			     ret, group);
7006 		return ret;
7007 	}
7008 
7009 	ext4_lock_group(sb, group);
7010 
7011 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
7012 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
7013 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
7014 		if (ret >= 0 && set_trimmed)
7015 			EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
7016 	} else {
7017 		ret = 0;
7018 	}
7019 
7020 	ext4_unlock_group(sb, group);
7021 	ext4_mb_unload_buddy(&e4b);
7022 
7023 	ext4_debug("trimmed %d blocks in the group %d\n",
7024 		ret, group);
7025 
7026 	return ret;
7027 }
7028 
7029 /**
7030  * ext4_trim_fs() -- trim ioctl handle function
7031  * @sb:			superblock for filesystem
7032  * @range:		fstrim_range structure
7033  *
7034  * start:	First Byte to trim
7035  * len:		number of Bytes to trim from start
7036  * minlen:	minimum extent length in Bytes
7037  * ext4_trim_fs goes through all allocation groups containing Bytes from
7038  * start to start+len. For each such a group ext4_trim_all_free function
7039  * is invoked to trim all free space.
7040  */
7041 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7042 {
7043 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7044 	struct ext4_group_info *grp;
7045 	ext4_group_t group, first_group, last_group;
7046 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7047 	uint64_t start, end, minlen, trimmed = 0;
7048 	ext4_fsblk_t first_data_blk =
7049 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7050 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7051 	bool whole_group, eof = false;
7052 	int ret = 0;
7053 
7054 	start = range->start >> sb->s_blocksize_bits;
7055 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
7056 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7057 			      range->minlen >> sb->s_blocksize_bits);
7058 
7059 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7060 	    start >= max_blks ||
7061 	    range->len < sb->s_blocksize)
7062 		return -EINVAL;
7063 	/* No point to try to trim less than discard granularity */
7064 	if (range->minlen < discard_granularity) {
7065 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7066 				discard_granularity >> sb->s_blocksize_bits);
7067 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7068 			goto out;
7069 	}
7070 	if (end >= max_blks - 1) {
7071 		end = max_blks - 1;
7072 		eof = true;
7073 	}
7074 	if (end <= first_data_blk)
7075 		goto out;
7076 	if (start < first_data_blk)
7077 		start = first_data_blk;
7078 
7079 	/* Determine first and last group to examine based on start and end */
7080 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7081 				     &first_group, &first_cluster);
7082 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7083 				     &last_group, &last_cluster);
7084 
7085 	/* end now represents the last cluster to discard in this group */
7086 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7087 	whole_group = true;
7088 
7089 	for (group = first_group; group <= last_group; group++) {
7090 		grp = ext4_get_group_info(sb, group);
7091 		if (!grp)
7092 			continue;
7093 		/* We only do this if the grp has never been initialized */
7094 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7095 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7096 			if (ret)
7097 				break;
7098 		}
7099 
7100 		/*
7101 		 * For all the groups except the last one, last cluster will
7102 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7103 		 * change it for the last group, note that last_cluster is
7104 		 * already computed earlier by ext4_get_group_no_and_offset()
7105 		 */
7106 		if (group == last_group) {
7107 			end = last_cluster;
7108 			whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7109 		}
7110 		if (grp->bb_free >= minlen) {
7111 			cnt = ext4_trim_all_free(sb, group, first_cluster,
7112 						 end, minlen, whole_group);
7113 			if (cnt < 0) {
7114 				ret = cnt;
7115 				break;
7116 			}
7117 			trimmed += cnt;
7118 		}
7119 
7120 		/*
7121 		 * For every group except the first one, we are sure
7122 		 * that the first cluster to discard will be cluster #0.
7123 		 */
7124 		first_cluster = 0;
7125 	}
7126 
7127 	if (!ret)
7128 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
7129 
7130 out:
7131 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7132 	return ret;
7133 }
7134 
7135 /* Iterate all the free extents in the group. */
7136 int
7137 ext4_mballoc_query_range(
7138 	struct super_block		*sb,
7139 	ext4_group_t			group,
7140 	ext4_grpblk_t			start,
7141 	ext4_grpblk_t			end,
7142 	ext4_mballoc_query_range_fn	formatter,
7143 	void				*priv)
7144 {
7145 	void				*bitmap;
7146 	ext4_grpblk_t			next;
7147 	struct ext4_buddy		e4b;
7148 	int				error;
7149 
7150 	error = ext4_mb_load_buddy(sb, group, &e4b);
7151 	if (error)
7152 		return error;
7153 	bitmap = e4b.bd_bitmap;
7154 
7155 	ext4_lock_group(sb, group);
7156 
7157 	start = (e4b.bd_info->bb_first_free > start) ?
7158 		e4b.bd_info->bb_first_free : start;
7159 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7160 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7161 
7162 	while (start <= end) {
7163 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7164 		if (start > end)
7165 			break;
7166 		next = mb_find_next_bit(bitmap, end + 1, start);
7167 
7168 		ext4_unlock_group(sb, group);
7169 		error = formatter(sb, group, start, next - start, priv);
7170 		if (error)
7171 			goto out_unload;
7172 		ext4_lock_group(sb, group);
7173 
7174 		start = next + 1;
7175 	}
7176 
7177 	ext4_unlock_group(sb, group);
7178 out_unload:
7179 	ext4_mb_unload_buddy(&e4b);
7180 
7181 	return error;
7182 }
7183